1
|
Lin Z, Zhu P, Gao L, Chen X, Li M, Wang Y, He J, Miao Y, Miao R. Recent Advances in Understanding the Regulatory Mechanism of Plasma Membrane H+-ATPase through the Brassinosteroid Signaling Pathway. PLANT & CELL PHYSIOLOGY 2024; 65:1515-1529. [PMID: 38372617 DOI: 10.1093/pcp/pcae014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/28/2024] [Accepted: 02/02/2024] [Indexed: 02/20/2024]
Abstract
The polyhydroxylated steroid phytohormone brassinosteroid (BR) controls many aspects of plant growth, development and responses to environmental changes. Plasma membrane (PM) H+-ATPase, the well-known PM proton pump, is a central regulator in plant physiology, which mediates not only plant growth and development, but also adaptation to stresses. Recent studies highlight that PM H+-ATPase is at least partly regulated via the BR signaling. Firstly, the BR cell surface receptor BRASSINOSTEROID-INSENSITIVE 1 (BRI1) and multiple key components of BR signaling directly or indirectly influence PM H+-ATPase activity. Secondly, the SMALL AUXIN UP RNA (SAUR) gene family physically interacts with BRI1 to enhance organ development of Arabidopsis by activating PM H+-ATPase. Thirdly, RNA-sequencing (RNA-seq) assays showed that the expression of some SAUR genes is upregulated under the light or sucrose conditions, which is related to the phosphorylation state of the penultimate residue of PM H+-ATPase in a time-course manner. In this review, we describe the structural and functional features of PM H+-ATPase and summarize recent progress towards understanding the regulatory mechanism of PM H+-ATPase by BRs, and briefly introduce how PM H+-ATPase activity is modulated by its own biterminal regions and the post-translational modifications.
Collapse
Affiliation(s)
- Zhaoheng Lin
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Pan Zhu
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Liyang Gao
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xuanyi Chen
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Meijing Li
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuhe Wang
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Junxian He
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Ying Miao
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Rui Miao
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
2
|
Paweletz LC, Holtbrügge SL, Löb M, De Vecchis D, Schäfer LV, Günther Pomorski T, Justesen BH. Anionic Phospholipids Stimulate the Proton Pumping Activity of the Plant Plasma Membrane P-Type H +-ATPase. Int J Mol Sci 2023; 24:13106. [PMID: 37685912 PMCID: PMC10488199 DOI: 10.3390/ijms241713106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/16/2023] [Accepted: 08/18/2023] [Indexed: 09/10/2023] Open
Abstract
The activity of membrane proteins depends strongly on the surrounding lipid environment. Here, we characterize the lipid stimulation of the plant plasma membrane H+-ATPase Arabidopsis thaliana H+-ATPase isoform 2 (AHA2) upon purification and reconstitution into liposomes of defined lipid compositions. We show that the proton pumping activity of AHA2 is stimulated by anionic phospholipids, especially by phosphatidylserine. This activation was independent of the cytoplasmic C-terminal regulatory domain of the pump. Molecular dynamics simulations revealed several preferential contact sites for anionic phospholipids in the transmembrane domain of AHA2. These contact sites are partially conserved in functionally different P-type ATPases from different organisms, suggesting a general regulation mechanism by the membrane lipid environment. Our findings highlight the fact that anionic lipids play an important role in the control of H+-ATPase activity.
Collapse
Affiliation(s)
- Laura C. Paweletz
- Department of Molecular Biochemistry, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, 44780 Bochum, Germany; (L.C.P.); (M.L.); (T.G.P.)
| | - Simon L. Holtbrügge
- Center for Theoretical Chemistry, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, 44780 Bochum, Germany; (S.L.H.); (D.D.V.)
| | - Malina Löb
- Department of Molecular Biochemistry, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, 44780 Bochum, Germany; (L.C.P.); (M.L.); (T.G.P.)
| | - Dario De Vecchis
- Center for Theoretical Chemistry, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, 44780 Bochum, Germany; (S.L.H.); (D.D.V.)
| | - Lars V. Schäfer
- Center for Theoretical Chemistry, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, 44780 Bochum, Germany; (S.L.H.); (D.D.V.)
| | - Thomas Günther Pomorski
- Department of Molecular Biochemistry, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, 44780 Bochum, Germany; (L.C.P.); (M.L.); (T.G.P.)
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg C, Denmark
| | - Bo Højen Justesen
- Department of Molecular Biochemistry, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, 44780 Bochum, Germany; (L.C.P.); (M.L.); (T.G.P.)
| |
Collapse
|
3
|
Qu L, Chu YJ, Lin WH, Xue HW. A secretory phospholipase D hydrolyzes phosphatidylcholine to suppress rice heading time. PLoS Genet 2021; 17:e1009905. [PMID: 34879072 PMCID: PMC8654219 DOI: 10.1371/journal.pgen.1009905] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 10/21/2021] [Indexed: 11/18/2022] Open
Abstract
Phospholipase D (PLD) hydrolyzes membrane phospholipids and is crucial in various physiological processes and transduction of different signals. Secretory phospholipases play important roles in mammals, however, whose functions in plants remain largely unknown. We previously identified a rice secretory PLD (spPLD) that harbors a signal peptide and here we reported the secretion and function of spPLD in rice heading time regulation. Subcellular localization analysis confirmed the signal peptide is indispensable for spPLD secretion into the extracellular spaces, where spPLD hydrolyzes substrates. spPLD overexpression results in delayed heading time which is dependent on its secretory character, while suppression or deficiency of spPLD led to the early heading of rice under both short-day and long-day conditions, which is consistent with that spPLD overexpression/suppression indeed led to the reduced/increased Hd3a/RFT1 (Arabidopsis Flowing Locus T homolog) activities. Interestingly, rice Hd3a and RFT1 bind to phosphatidylcholines (PCs) and a further analysis by lipidomic approach using mass spectrometry revealed the altered phospholipids profiles in shoot apical meristem, particularly the PC species, under altered spPLD expressions. These results indicate the significance of secretory spPLD and help to elucidate the regulatory network of rice heading time. Secretory phospholipases play essential roles in physiological processes of mammals, while functions of them in plants remain unknown. We identified a rice secretory PLD (spPLD) harboring a signal peptide which is indispensable for secretion of spPLD. Functional studies showed that altered spPLD expression resulted in the changed heading time of rice under both short-day and long-day conditions, which is dependent on the secretory character of spPLD. Rice Hd3a and RFT1, the homologs of Arabidopsis Flowing Locus T (FT), bind to phosphatidylcholine (PC) to promote heading. Analysis of phospholipids profiles in shoot apical meristem by using a mass spectrometry-based lipidomic approach demonstrated that spPLD regulates heading time by hydrolyzing the light period-predominant PC species, further revealing the crucial role of secretory proteins in regulating plant growth and development.
Collapse
Affiliation(s)
- Li Qu
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yu-Jia Chu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Wen-Hui Lin
- School of Life Sciences and Biotechnology, The Joint International Research Laboratory of Metabolic and Developmental Sciences, Joint Center for Single Cell Biology, Shanghai Jiao Tong University, Shanghai, China
- * E-mail: (W-HL); (H-WX)
| | - Hong-Wei Xue
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- * E-mail: (W-HL); (H-WX)
| |
Collapse
|
4
|
Yang Y, Han X, Ma L, Wu Y, Liu X, Fu H, Liu G, Lei X, Guo Y. Dynamic changes of phosphatidylinositol and phosphatidylinositol 4-phosphate levels modulate H +-ATPase and Na +/H + antiporter activities to maintain ion homeostasis in Arabidopsis under salt stress. MOLECULAR PLANT 2021; 14:2000-2014. [PMID: 34339895 DOI: 10.1016/j.molp.2021.07.020] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 06/20/2021] [Accepted: 07/27/2021] [Indexed: 05/28/2023]
Abstract
Plant metabolites are dynamically modified and distributed in response to environmental changes. However, it is poorly understood how metabolic change functions in plant stress responses. Maintaining ion homeostasis under salt stress requires coordinated activation of two types of central regulators: plasma membrane (PM) H+-ATPase and Na+/H+ antiporter. In this study, we used a bioassay-guided isolation approach to identify endogenous small molecules that affect PM H+-ATPase and Na+/H+ antiporter activities and identified phosphatidylinositol (PI), which inhibits PM H+-ATPase activity under non-stress conditions in Arabidopsis by directly binding to the C terminus of the PM H+-ATPase AHA2. Under salt stress, the phosphatidylinositol 4-phosphate-to-phosphatidylinositol (PI4P-to-PI) ratio increased, and PI4P bound and activated the PM Na+/H+ antiporter. PI prefers binding to the inactive form of PM H+-ATPase, while PI4P tends to bind to the active form of the Na+/H+ antiporter. Consistent with this, pis1 mutants, with reduced levels of PI, displayed increased PM H+-ATPase activity and salt stress tolerance, while the pi4kβ1 mutant, with reduced levels of PI4P, displayed reduced PM Na+/H+ antiporter activity and salt stress tolerance. Collectively, our results reveal that the dynamic change between PI and PI4P in response to salt stress in Arabidopsis is crucial for maintaining ion homeostasis to protect plants from unfavorable environmental conditions.
Collapse
Affiliation(s)
- Yongqing Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xiuli Han
- College of Life Sciences, Shandong University of Technology, Zibo 255049, China
| | - Liang Ma
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yujiao Wu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xiao Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Haiqi Fu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Guoyong Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xiaoguang Lei
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center, and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China.
| | - Yan Guo
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
5
|
Yu Y, Xuan Y, Bian X, Zhang L, Pan Z, Kou M, Cao Q, Tang Z, Li Q, Ma D, Li Z, Sun J. Overexpression of phosphatidylserine synthase IbPSS1 affords cellular Na + homeostasis and salt tolerance by activating plasma membrane Na +/H + antiport activity in sweet potato roots. HORTICULTURE RESEARCH 2020; 7:131. [PMID: 32821414 PMCID: PMC7395154 DOI: 10.1038/s41438-020-00358-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/28/2020] [Accepted: 06/03/2020] [Indexed: 05/21/2023]
Abstract
Phosphatidylserine synthase (PSS)-mediated phosphatidylserine (PS) synthesis is crucial for plant development. However, little is known about the contribution of PSS to Na+ homeostasis regulation and salt tolerance in plants. Here, we cloned the IbPSS1 gene, which encodes an ortholog of Arabidopsis AtPSS1, from sweet potato (Ipomoea batatas (L.) Lam.). The transient expression of IbPSS1 in Nicotiana benthamiana leaves increased PS abundance. We then established an efficient Agrobacterium rhizogenes-mediated in vivo root transgenic system for sweet potato. Overexpression of IbPSS1 through this system markedly decreased cellular Na+ accumulation in salinized transgenic roots (TRs) compared with adventitious roots. The overexpression of IbPSS1 enhanced salt-induced Na+/H+ antiport activity and increased plasma membrane (PM) Ca2+-permeable channel sensitivity to NaCl and H2O2 in the TRs. We confirmed the important role of IbPSS1 in improving salt tolerance in transgenic sweet potato lines obtained from an Agrobacterium tumefaciens-mediated transformation system. Similarly, compared with the wild-type (WT) plants, the transgenic lines presented decreased Na+ accumulation, enhanced Na+ exclusion, and increased PM Ca2+-permeable channel sensitivity to NaCl and H2O2 in the roots. Exogenous application of lysophosphatidylserine triggered similar shifts in Na+ accumulation and Na+ and Ca2+ fluxes in the salinized roots of WT. Overall, this study provides an efficient and reliable transgenic method for functional genomic studies of sweet potato. Our results revealed that IbPSS1 contributes to the salt tolerance of sweet potato by enabling Na+ homeostasis and Na+ exclusion in the roots, and the latter process is possibly controlled by PS reinforcing Ca2+ signaling in the roots.
Collapse
Affiliation(s)
- Yicheng Yu
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, 221116 Xuzhou, Jiangsu China
| | - Ying Xuan
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, 221116 Xuzhou, Jiangsu China
| | - Xiaofeng Bian
- Institute of Food Crops, Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, 210014 Nanjing, China
| | - Lei Zhang
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, 221116 Xuzhou, Jiangsu China
| | - Zhiyuan Pan
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, 221116 Xuzhou, Jiangsu China
| | - Meng Kou
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, 221116 Xuzhou, Jiangsu China
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, 221131 Xuzhou, Jiangsu Province China
| | - Qinghe Cao
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, 221131 Xuzhou, Jiangsu Province China
| | - Zhonghou Tang
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, 221131 Xuzhou, Jiangsu Province China
| | - Qiang Li
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, 221131 Xuzhou, Jiangsu Province China
| | - Daifu Ma
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, 221131 Xuzhou, Jiangsu Province China
| | - Zongyun Li
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, 221116 Xuzhou, Jiangsu China
| | - Jian Sun
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, 221116 Xuzhou, Jiangsu China
| |
Collapse
|
6
|
He M, Ding NZ. Plant Unsaturated Fatty Acids: Multiple Roles in Stress Response. FRONTIERS IN PLANT SCIENCE 2020; 11:562785. [PMID: 33013981 PMCID: PMC7500430 DOI: 10.3389/fpls.2020.562785] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 08/19/2020] [Indexed: 05/21/2023]
Abstract
Land plants are exposed to not only biotic stresses such as pathogen infection and herbivore wounding, but abiotic stresses such as cold, heat, drought, and salt. Elaborate strategies have been developed to avoid or abide the adverse effects, with unsaturated fatty acids (UFAs) emerging as general defenders. In higher plants, the most common UFAs are three 18-carbon species, namely, oleic (18:1), linoleic (18:2), and α-linolenic (18:3) acids. These simple compounds act as ingredients and modulators of cellular membranes in glycerolipids, reserve of carbon and energy in triacylglycerol, stocks of extracellular barrier constituents (e.g., cutin and suberin), precursors of various bioactive molecules (e.g., jasmonates and nitroalkenes), and regulators of stress signaling. Nevertheless, they are also potential inducers of oxidative stress. In this review, we will present an overview of these roles and then shed light on genetic engineering of FA synthetic genes for improving plant/crop stress tolerance.
Collapse
|
7
|
Han X, Yang Y, Zhao F, Zhang T, Yu X. An improved protein lipid overlay assay for studying lipid-protein interactions. PLANT METHODS 2020; 16:33. [PMID: 32165912 PMCID: PMC7060618 DOI: 10.1186/s13007-020-00578-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 02/28/2020] [Indexed: 05/05/2023]
Abstract
BACKGROUND Lipids perform multiple functions in the cell, and lipid-protein interactions play a key role in metabolism. Although various techniques have been developed to study lipid-protein interactions, the interacting protein partners that bind to most lipids remain unknown. The protein lipid overlay (PLO) assay has revealed numerous lipid-protein interactions, but its application suffers from unresolved technical issues. RESULTS Herein, we found that blocking proteins may interfere with interactions between lipids and their binding proteins if a separate blocking step is carried out before the incubation step in the PLO assay. To overcome this, we modified the PLO assay by combining an incubation step alongside the blocking step. Verification experiments included phosphatidylinositol-3-phosphate (PI3P) and its commercially available interacting protein G302, C18:1, C18:2, C18:3 and the Arabidopsis plasma membrane H+-ATPase (PM H+-ATPase) AHA2 C-terminus, phosphatidylglycerol (PG) and AtROP6, and phosphatidylserine (PS) and the AHA2 C-terminus. The lipid-protein binding signal in the classical PLO (CPLO) assay was weak and not reproducible, but the modified PLO (MPLO) assay displayed significantly improved sensitivity and reproducibility. CONCLUSIONS This work identified a limitation of the CPLO assay, and both sensitivity and reproducibility were improved in the modified assay, which could prove to be more effective for investigating lipid-protein interactions.
Collapse
Affiliation(s)
- Xiuli Han
- College of Life Sciences, Shandong University of Technology, Zibo, 255049 China
| | - Yongqing Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193 China
| | - Fengyun Zhao
- College of Life Sciences, Shandong University of Technology, Zibo, 255049 China
| | - Tianren Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193 China
| | - Xiang Yu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193 China
| |
Collapse
|
8
|
Zhou Y, Underhill SJR. Plasma membrane H + -ATPase activity and graft success of breadfruit (Artocarpus altilis) onto interspecific rootstocks of marang (A. odoratissimus) and pedalai (A. sericicarpus). PLANT BIOLOGY (STUTTGART, GERMANY) 2018; 20:978-985. [PMID: 30047203 DOI: 10.1111/plb.12879] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 07/23/2018] [Indexed: 05/23/2023]
Abstract
Breadfruit (Artocarpus altilis) is primarily grown as a staple tree crop for food security in Oceania. Significant wind damage has driven interest in developing its dwarfing rootstocks. Due to the predominantly vegetative propagation of the species, grafting onto interspecific seedlings is an approach to identifying dwarfing rootstocks. However, grafting of breadfruit onto unrelated Artocarpus species has not been investigated. Here we first report the success of breadfruit grafting onto interspecific rootstocks, marang (A. odoratissimus) and pedalai (A. sericicarpus). To address the low graft survival, we investigated the relationship of plasma membrane (PM) H+ -ATPase activity to graft success. We provide the first evidence for a positive correlation between PM H+ -ATPase activity and graft survival. The graft unions of successful grafts had higher PM H+ -ATPase activity compared to those of failed grafts. Rootstocks with low PM H+ -ATPase activity in leaf microsomes before grafting had lower graft survival than those with high enzyme activity, with graft success of 10% versus 60% and 0% versus 30% for marang and pedalai rootstocks, respectively. There was a positive correlation between graft success and the PM H+ -ATPase activity measured from the rootstock stem microsomes 2 months after grafting [marang, r(7) = 0.9203, P = 0.0004; pedalai (r(7) = 0. 8820, P = 0.0017]. Removal of scion's own roots decreased the leaf PM H+ -ATPase activity of grafted plants regardless of the final graft outcome. Recovery of the enzyme activity was only found in the successful grafts. The function of PM H+ -ATPase in graft union development and graft success improvement is discussed.
Collapse
Affiliation(s)
- Y Zhou
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, St Lucia, Qld, Australia
- Faculty of Science, Education and Engineering, University of the Sunshine Coast, Sippy Downs, Qld, Australia
| | - S J R Underhill
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, St Lucia, Qld, Australia
- Faculty of Science, Education and Engineering, University of the Sunshine Coast, Sippy Downs, Qld, Australia
| |
Collapse
|
9
|
Han X, Yang Y, Wu Y, Liu X, Lei X, Guo Y. A bioassay-guided fractionation system to identify endogenous small molecules that activate plasma membrane H+-ATPase activity in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:2951-2962. [PMID: 28582540 PMCID: PMC5853834 DOI: 10.1093/jxb/erx156] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 04/08/2017] [Indexed: 05/13/2023]
Abstract
Plasma membrane (PM) H+-ATPase is essential for plant growth and development. Various environmental stimuli regulate its activity, a process that involves many protein cofactors. However, whether endogenous small molecules play a role in this regulation remains unknown. Here, we describe a bio-guided isolation method to identify endogenous small molecules that regulate PM H+-ATPase activity. We obtained crude extracts from Arabidopsis seedlings with or without salt treatment and then purified them into fractions based on polarity and molecular mass by repeated column chromatography. By evaluating the effect of each fraction on PM H+-ATPase activity, we found that fractions containing the endogenous, free unsaturated fatty acids oleic acid (C18:1), linoleic acid (C18:2), and linolenic acid (C18:3) extracted from salt-treated seedlings stimulate PM H+-ATPase activity. These results were further confirmed by the addition of exogenous C18:1, C18:2, or C18:3 in the activity assay. The ssi2 mutant, with reduced levels of C18:1, C18:2, and C18:3, displayed reduced PM H+-ATPase activity. Furthermore, C18:1, C18:2, and C18:3 directly bound to the C-terminus of the PM H+-ATPase AHA2. Collectively, our results demonstrate that the binding of free unsaturated fatty acids to the C-terminus of PM H+-ATPase is required for its activation under salt stress. The bio-guided isolation model described in this study could enable the identification of new endogenous small molecules that modulate essential protein functions, as well as signal transduction, in plants.
Collapse
Affiliation(s)
- Xiuli Han
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
- National Institute of Biological Sciences, Beijing, China
| | - Yongqing Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yujiao Wu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xiaohui Liu
- National Institute of Biological Sciences, Beijing, China
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center, and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Xiaoguang Lei
- National Institute of Biological Sciences, Beijing, China
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center, and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Yan Guo
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
10
|
Morales-Cedillo F, González-Solís A, Gutiérrez-Angoa L, Cano-Ramírez DL, Gavilanes-Ruiz M. Plant lipid environment and membrane enzymes: the case of the plasma membrane H+-ATPase. PLANT CELL REPORTS 2015; 34:617-29. [PMID: 25577330 DOI: 10.1007/s00299-014-1735-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 12/18/2014] [Accepted: 12/29/2014] [Indexed: 05/06/2023]
Abstract
Several lipid classes constitute the universal matrix of the biological membranes. With their amphipathic nature, lipids not only build the continuous barrier that confers identity to every cell and organelle, but they are also active actors that modulate the activity of the proteins immersed in the lipid bilayer. The plasma membrane H(+)-ATPase, an enzyme from plant cells, is an excellent example of a transmembrane protein whose activity is influenced by the hydrophilic compartments at both sides of the membrane and by the hydrophobic domains of the lipid bilayer. As a result, an extensive documentation of the effect of numerous amphiphiles in the enzyme activity can be found. Detergents, membrane glycerolipids, and sterols can produce activation or inhibition of the enzyme activity. In some cases, these effects are associated with the lipids of the membrane bulk, but in others, a direct interaction of the lipid with the protein is involved. This review gives an account of reports related to the action of the membrane lipids on the H(+)-ATPase activity.
Collapse
Affiliation(s)
- Francisco Morales-Cedillo
- Dpto. de Bioquímica, Facultad de Química, Conj. E. Universidad Nacional Autónoma de México, UNAM. Cd. Universitaria, Coyoacán, 04510, Mexico, D.F., Mexico
| | | | | | | | | |
Collapse
|
11
|
Tonoplast Lipid Composition and Proton Pump of Pineapple Fruit During Low-Temperature Storage and Blackheart Development. J Membr Biol 2014; 247:429-39. [DOI: 10.1007/s00232-014-9650-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 03/06/2014] [Indexed: 12/19/2022]
|
12
|
Low temperature alters plasma membrane lipid composition and ATPase activity of pineapple fruit during blackheart development. J Bioenerg Biomembr 2014; 46:59-69. [PMID: 24390546 DOI: 10.1007/s10863-013-9538-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2013] [Accepted: 12/17/2013] [Indexed: 12/13/2022]
Abstract
Plasma membrane (PM) plays central role in triggering primary responses to chilling injury and sustaining cellular homeostasis. Characterising response of membrane lipids to low temperature can provide important information for identifying early causal factors contributing to chilling injury. To this end, PM lipid composition and ATPase activity were assessed in pineapple fruit (Ananas comosus) in relation to the effect of low temperature on the development of blackheart, a form of chilling injury. Chilling temperature at 10 °C induced blackheart development in concurrence with increase in electrolyte leakage. PM ATPase activity was decreased after 1 week at low temperature, followed by a further decrease after 2 weeks. The enzyme activity was not changed during 25 °C storage. Loss of total PM phospholipids was found during postharvest senescence, but more reduction was shown from storage at 10 °C. Phosphatidylcholine and phosphatidylethanolamine were the predominant PM phospholipid species. Low temperature increased the level of phosphatidic acid but decreased the level of phosphatidylinositol. Both phospholipid species were not changed during storage at 25 °C. Postharvest storage at both temperatures decreased the levels of C18:3 and C16:1, and increased level of C18:1. Low temperature decreased the level of C18:2 and increased the level of C14:0. Exogenous application of phosphatidic acid was found to inhibit the PM ATPase activity of pineapple fruit in vitro. Modification of membrane lipid composition and its effect on the functional property of plasma membrane at low temperature were discussed in correlation with their roles in blackheart development of pineapple fruit.
Collapse
|
13
|
Pereira-Netto AB, Roessner U, Fujioka S, Bacic A, Asami T, Yoshida S, Clouse SD. Shooting control by brassinosteroids: metabolomic analysis and effect of brassinazole on Malus prunifolia, the Marubakaido apple rootstock. TREE PHYSIOLOGY 2009; 29:607-20. [PMID: 19203977 DOI: 10.1093/treephys/tpn052] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
To help unravel the role of brassinosteroids (BRs) in the control of shooting, we treated the shoots of Marubakaido apple rootstock (Malus prunifolia (Willd.) Borkh cv. Marubakaido) with brassinolide and Brz 220, an inhibitor of BR biosynthesis. Brassinolide differentially affected elongation and formation of main and primary lateral shoots, which resulted in reduced apical dominance. Treatment of shoots with increasing doses of Brz 220 led to a progressive inhibition of main shoot elongation. Eight different BRs were also identified in the shoots of M. prunifolia. Progressive decline in 6-deoxocathasterone, 6-deoxotyphasterol and castasterone was related to increased doses of Brz 220. Analysis of the metabolic profiles between a fluoro-containing derivative of 28-homocastasterone (5F-HCS) using treated and untreated shoots demonstrated that no 5F-HCS-specific metabolite was identified. However, 4 weeks after the treatment, fructose, glucose and the putatively identified gulonic acid were higher in 5F-HCS-treated shoots, compared to untreated shoots. These results indicate that the previously reported 5F-HCS-induced stimulation of shoot elongation and formation of new shoots in the Marubakaido shoots is under the control of changes in the endogenous BR pool. In addition, the results presented in this report also indicate that the 5F-HCS-induced shooting likely involves a variety of different mechanisms and consequently does not result from changes in the endogenous levels of any single metabolite.
Collapse
Affiliation(s)
- Adaucto B Pereira-Netto
- Department of Botany-SCB, Paraná Federal University, Centro Politecnico, C.P. 19031, 81531-970 Curitiba-Paraná, Brazil.
| | | | | | | | | | | | | |
Collapse
|
14
|
Gutiérrez-Nájera N, Muñoz-Clares RA, Palacios-Bahena S, Ramírez J, Sánchez-Nieto S, Plasencia J, Gavilanes-Ruíz M. Fumonisin B1, a sphingoid toxin, is a potent inhibitor of the plasma membrane H+-ATPase. PLANTA 2005; 221:589-596. [PMID: 15703925 DOI: 10.1007/s00425-004-1469-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2004] [Accepted: 11/15/2004] [Indexed: 05/24/2023]
Abstract
Fumonisin B(1) (FB(1)) is an amphipathic toxin produced by the pathogenic fungus Fusarium verticillioides which causes stem, root and ear rot in maize (Zea mays L.). In this work, we studied the action of FB(1) on the plasma membrane H(+)-ATPase (EC 3.6.1.34) from germinating maize embryos, and on the fluidity and lipid peroxidation of these membranes. In maize embryos the toxin at 40 microM inhibited root elongation by 50% and at 30 microM decreased medium acidification by about 80%. Irrespective of the presence and absence of FB(1), the H(+)-ATPase in plasma membrane vesicles exhibited non-hyperbolic saturation kinetics by ATPH-Mg, with Hill number of 0.67. Initial velocity studies revealed that FB(1) is a total uncompetitive inhibitor of this enzyme with an inhibition constant value of 17.5+/-1 microM. Thus FB(1) decreased V(max) and increased the apparent affinity of the enzyme for ATP-Mg to the same extent. Although FB(1) increased the fluidity at the hydrophobic region of the membrane, no correlation was found with its effect on enzyme activity, since both effects showed different FB(1)-concentration dependence. Peroxidation of membrane lipids was not affected by the toxin. Our results suggest that, under in vivo conditions, the plasma membrane H(+)-ATPase is a potentially important target of the toxin, as it is inhibited not only by FB(1) but also by its structural analogs, the sphingoid intermediates, which accumulate upon the inhibition of sphinganine N-acyltransferase by this toxin.
Collapse
Affiliation(s)
- Nora Gutiérrez-Nájera
- Departamento de Bioquímica, Conj E. Facultad de Química, UNAM Cd Universitaria, 04510 México DF, México
| | | | | | | | | | | | | |
Collapse
|
15
|
Kasamo K. Regulation of plasma membrane H+-ATPase activity by the membrane environment. JOURNAL OF PLANT RESEARCH 2003; 116:517-523. [PMID: 12905076 DOI: 10.1007/s10265-003-0112-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2003] [Accepted: 04/02/2003] [Indexed: 05/24/2023]
Abstract
The plant plasma membrane H(+)-ATPase is a proton pump which plays a central role in physiological functions such as nutrient uptake and intracellular pH regulation. This pump belongs to the P(3)-type ATPase family and creates an electrochemical gradient across the plasma membrane. The generation of this gradient has a major role in providing the energy for secondary active transport across the plasma membrane. The activity of the proton pump is regulated by the transcriptional and post-translational levels and by membrane environmental factors such as membrane lipids. Several reviews have appeared during the last few years concerning the regulatory mechanism at transcriptional and post-translational levels. The plasma membrane H(+)-ATPase requires lipids for activity. This lipid dependency suggests a possible mode of regulation of the H(+)-ATPase via modification of its lipid environment. This review focuses on the regulation of plasma membrane H(+)-ATPase by membrane lipids surrounding H(+)-ATPase molecules.
Collapse
Affiliation(s)
- Kunihiro Kasamo
- Research Institute for Bioresources, Okayama University, Kurashiki, Okayama 710-0046, Japan.
| |
Collapse
|
16
|
Kerkeb L, Donaire JP, Venema K, Rodríguez-Rosales MP. Tolerance to NaCl induces changes in plasma membrane lipid composition, fluidity and H+-ATPase activity of tomato calli. PHYSIOLOGIA PLANTARUM 2001; 113:217-224. [PMID: 12060299 DOI: 10.1034/j.1399-3054.2001.1130209.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Two tomato (Lycopersicon esculentum Mill. cv. Pera) callus lines tolerant to NaCl were obtained by successive subcultures of NaCl-sensitive calli in 50 and 100 mM NaCl-supplemented medium. Growth and ion content, as well as plasma membrane lipid composition, fluidity and H+-ATPase (EC 3.6.1.35) activity, were studied in both NaCl-sensitive and NaCl-tolerant calli. Although calli tolerant to 100 mM NaCl exhibited a reduced growth relative to calli sensitive to NaCl or tolerant to 50 mM NaCl, growth of calli tolerant to 100 mM NaCl was higher than that of NaCl-sensitive calli grown for one subculture in 100 mM NaCl. Growth in the presence of 100 mM NaCl provoked an increase of Na+ and Cl- content, but no significant changes in K+ and Ca2+. As compared with NaCl-sensitive and 50 mM NaCl-tolerant calli, plasma membrane vesicles isolated from calli tolerant to 100 mM NaCl exhibited a higher phospholipid and sterol content as well as a lower phospholipid/free sterol ratio and a lower double bond index (DBI) of phospholipid fatty acids. The changes in plasma membrane lipid composition were correlated with a decrease of plasma membrane fluidity in calli tolerant to 100 mM NaCl, as indicated by fluorimetric studies using diphenylhexatriene (DPH) as probe. Plasma membrane-enriched vesicles isolated from calli tolerant to 100 mM NaCl showed lower ATP hydrolysis and ATP-dependent H+-pumping activities, as well as a lower passive permeability to H+ than plasma membrane from NaCl-sensitive and 50 mM NaCl-tolerant calli. The involvement of the changes in plasma membrane lipid content and composition, fluidity and H+-ATPase activity in salt tolerance of tomato calli is discussed.
Collapse
Affiliation(s)
- Loubna Kerkeb
- Departamento de Bioquímica, Biología Celular y Molecular de Plantas, Estación Experimental del Zaidín (C.S.I.C.), Apartado 419, E-18080 Granada, Spain
| | | | | | | |
Collapse
|
17
|
Arami SI, Hada M, Tada M. Reduction of ATPase activity accompanied by photodecomposition of ergosterol by near-UV irradiation in plasma membranes prepared from Saccharomyces cerevisiae. MICROBIOLOGY (READING, ENGLAND) 1997; 143 ( Pt 7):2465-2471. [PMID: 9245827 DOI: 10.1099/00221287-143-7-2465] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
When plasma membranes prepared from the yeast Saccharomyces cerevisiae were exposed to near-UV radiation, photodecomposition of ergosterol and reduction of ATPase-activity occurred simultaneously. The Vmax for ATPase activity decreased markedly with increasing near-UV dosage while the Km value remained constant. When ATPase solubilized from the plasma membrane was exposed to near-UV, the activity remained constant irrespective of dosage, indicating that the ATPase molecule itself was not damaged by near-UV irradiation. The relationship between content of ergosterol and ATPase activity was examined using liposomes constructed with lipids extracted from the membrane. Maximum activity of ATPase was seen at 5% ergosterol in liposomes; this activity was 2.5 times greater than that in liposomes without ergosterol. Activity of ATPase bound to liposomes with 5% ergosterol was reduced after near-UV irradiation, while the activity remained unchanged in the case of the liposomes without ergosterol. Fluidity of the liposomes with 5% ergosterol also decreased with increasing near-UV dosage. Dosage-response curves for reduction of ATPase activity and for decrease in fluidity were similar to that for photodecomposition of ergosterol. These results suggested that the reduction of ATPase activity in the membrane by near-UV irradiation was not caused by photochemical degradation of the primary structure of the ATPase molecule, but was attributable to conformational change resulting from an alteration in the higher-order structure of the membrane due to photochemical decomposition of ergosterol.
Collapse
Affiliation(s)
- Shin-Ichiro Arami
- Division of Biological Function and Genetic Resources Science, Faculty of Agriculture, Okayama University, Tsushima-naka, Okayama, 700, Japan
| | - Megumi Hada
- Department of Biology, Kobe University, Rokkodai, Nada-ku, 657 Kobe, Japan
| | - Mikiro Tada
- Division of Biological Function and Genetic Resources Science, Faculty of Agriculture, Okayama University, Tsushima-naka, Okayama, 700, Japan
| |
Collapse
|
18
|
Kumar GNM, Knowles NR. Oxidative Stress Results in Increased Sinks for Metabolic Energy during Aging and Sprouting of Potato Seed-Tubers. PLANT PHYSIOLOGY 1996; 112:1301-1313. [PMID: 12226448 PMCID: PMC158058 DOI: 10.1104/pp.112.3.1301] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Glutathione-mediated free-radical-scavenging and plasma membrane ATPase activities increase as sinks for metabolic energy with advancing tuber age. Plasma membrane ATPase activity from 19-month-old tubers was 77% higher than that from 7-month-old tubers throughout sprouting. The higher activity was not attended by an increase in the amount of ATPase per unit plasma membrane protein. Concentrations of oxidized (GSSG) and reduced glutathione more than doubled as tuber age advanced from 6 to 30 months, but the proportion of GSSG to total glutathione remained constant with age. The activity of glutathione transferase, an enzyme that catabolizes lipid-hydroperoxides, increased by 44 and 205% on a fresh weight and protein basis, respectively, as tubers aged from 6 to 30 months. Glutathione reductase activity also increased with advancing age, by 90% on a fresh weight basis and 305% on a protein basis. Older tubers had more glutathione reductase per unit of soluble and mitochondrial protein. The age-induced increase in cytosolic glutathione transferase activity was likely due to increased availability of lipid-hydroperoxides and/or a positive effector. Synthesis of glutathione requires ATP, and the increased reduction of GSSG resulting from catalysis of lipid-hydroperoxides is NADPH-dependent. Thus, increased plasma membrane ATPase and glutathione-mediated free-radical-scavenging activities likely constitute substantial sinks for ATP in older tubers prior to and during sprouting. Increased oxidative stress and loss in membrane integrity and central features of aging that undoubtedly contribute to the enhanced respiration of sprouting older tubers.
Collapse
Affiliation(s)
- GNM. Kumar
- Department of Agricultural, Food and Nutritional Science, 4-10 Agriculture/Forestry Center, University of Alberta, Edmonton, Alberta, Canada T6G 2P5
| | | |
Collapse
|
19
|
Mathieu C, Motta C, Hartmann MA, Thonat C, Boyer N. Changes in plasma membrane fluidity of Bryonia dioica internodes during thigmomorphogenesis. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1235:249-55. [PMID: 7756332 DOI: 10.1016/0005-2736(95)80011-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Fluidity changes in plasma membrane (PM) lipid extracts or native membranes isolated from Bryonia dioica internodes after a mechanical stimulation were monitored by steady-state fluorescence polarization with 1,6-diphenyl-1,3,5-hexatriene as a probe. The signal was shown to rapidly induce an increase in the bulk lipid fluidity. This event was closely related to a relative enrichment in some phospholipid species (PC, PG and PS) as well as a significant increase in the unsaturation index of total fatty acyl chains. Free sterols and protein content did not appear to be involved into this process. After 48 h, lipids from rubbed internodes became less fluid than PM lipids from control internodes.
Collapse
Affiliation(s)
- C Mathieu
- U.A. Physiologie Intégrée de l'Arbre Fruitier, INRA-Université Blaise Pascal, Clermont-Ferrand, France
| | | | | | | | | |
Collapse
|
20
|
Wayne R, Mimura T, Shimmen T. The relationship between carbon and water transport in single cells of Chara corallina. PROTOPLASMA 1994; 180:118-135. [PMID: 11539208 DOI: 10.1007/bf01507848] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The hydraulic resistance of the plasma membrane was measured on single internodal cells of Chara corallina using the method of transcellular osmosis. The hydraulic resistance of the plasma membrane of high CO2-grown cells was significantly higher than the hydraulic resistance of the plasma membrane in low CO2-grown cells. Therefore we tested the possibility that the "bicarbonate transport system", postulated to be present in low CO2-grown cells, serves as a water channel that lowers the hydraulic resistance of the plasma membrane. We were unable to find any correlation between agents that inhibited the "bicarbonate transport system" and agents that increased the hydraulic resistance of low CO2-grown cells. We did, however, find a correlation between the permeability of the cell to water and CO2. We propose that the reduced hydraulic resistance of the plasma membrane of the low CO2-grown cells is a function of a change in either the structural properties of the lipid bilayer or the activity of a CO2 transport protein so that under conditions of reduced inorganic carbon, the plasma membrane becomes more permeable to CO2, and consequently to other small molecules, including H2O, methanol and ethanol.
Collapse
Affiliation(s)
- R Wayne
- Department of Life Science, Himeji Institute of Technology, Harima Science Park City
| | | | | |
Collapse
|
21
|
Machida S, Todoriki S, Hamamatsu S, Saito M. Phospholipid requirements of membrane-bound chitin synthase fromAbsidia glauca. FEMS Microbiol Lett 1994. [DOI: 10.1111/j.1574-6968.1994.tb06644.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
22
|
Cserháti T, Szögyi M. Interaction of phospholipids with proteins and peptides. New advances 1990. THE INTERNATIONAL JOURNAL OF BIOCHEMISTRY 1992; 24:525-37. [PMID: 1516725 DOI: 10.1016/0020-711x(92)90323-s] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
1. The review deals with the recent achievements in the study of the various interactions of phospholipids with proteins and peptides. 2. The interactions are classified according to the hydrophobic, hydrophilic or mixed character of the interactive forces. 3. The effect of the interaction on the structure and biological activity of the interacting molecules is also discussed.
Collapse
Affiliation(s)
- T Cserháti
- Central Research Institute for Chemistry, Hungarian Academy of Sciences, Budapest
| | | |
Collapse
|
23
|
Free fatty acids dissipate proton electrochemical gradients in pea stem microsomes and submitochondrial particles. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1991. [DOI: 10.1016/s0005-2728(05)80244-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|