1
|
Wu D, Guan L, Wu Y, Wang Y, Gao R, Zhong J, Zhang Q, Wang S, Zhang X, Zhang G, Huang J, Gao Y. Multi-Omics Analyses Offer Novel Insights into the Selection of Sugar and Lipid Metabolism During Maize Domestication and Improvement. PLANT, CELL & ENVIRONMENT 2025; 48:2377-2395. [PMID: 39601310 DOI: 10.1111/pce.15305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/25/2024] [Accepted: 11/12/2024] [Indexed: 11/29/2024]
Abstract
Over thousands of years of domestication, maize has undergone significant environmental changes. Understanding the genetic and metabolic trace during maize evolution can better contribute to molecular breeding and nutrition quality improvement. This study examines the metabolic profiles and transcriptomes of maize kernels from teosinte, landrace, and maize accessions at 15 days post-pollination. Differentially accumulated metabolites were enriched in sugar and lipid metabolism pathways. The metabolic selection profile exhibited four distinct patterns: continuous increases, constant decrease, initial decline or stability followed by an increase, and initial growth or stability followed by a subsequent decline. Sugars and JA were positive selection while LPCs/LPEs were negative selection during evolution. The expression level of genes related to sugar accumulation was significantly higher in maize, contrasting with enhanced glycolysis and lipid metabolism activity in teosinte. The correlation network highlighted distinct hormonal regulation of sugar and lipid metabolism. We identified 27 candidate genes associated with sugar, lipid, and JA that have undergone strong selection by population genomic regions. The positive selection of the PLD may explain the negative selection of LPCs/LPEs due to substrate competition. These findings enhance our understanding of the evolutionary trajectory of primary metabolism in maize and provide valuable resources for breeding and improvement.
Collapse
Affiliation(s)
- Di Wu
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Le Guan
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Yingxue Wu
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Yang Wang
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Ruiqi Gao
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Jianbin Zhong
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Qiunan Zhang
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Shifeng Wang
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Xudong Zhang
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Guochao Zhang
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Jun Huang
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Yanqiang Gao
- College of Life Science, Northeast Forestry University, Harbin, China
| |
Collapse
|
2
|
Zang J, Yao X, Zhang T, Yang B, Wang Z, Quan S, Zhang Z, Liu J, Chen H, Zhang X, Hou Y. Excess iron accumulation affects maize endosperm development by inhibiting starch synthesis and inducing DNA damage. J Cell Physiol 2024; 239:e31427. [PMID: 39239803 DOI: 10.1002/jcp.31427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/21/2024] [Accepted: 08/26/2024] [Indexed: 09/07/2024]
Abstract
Iron (Fe) storage in cereal seeds is the principal source of dietary Fe for humans. In maize (Zea mays), the accumulation of Fe in seeds is known to be negatively correlated with crop yield. Hence, it is essential to understand the underlying mechanism, which is crucial for developing and breeding maize cultivars with high yields and high Fe concentrations in the kernels. Here, through the successful application of in vitro kernel culture, we demonstrated that excess Fe supply in the medium caused the kernel to become collapsed and lighter in color, consistent with those found in yellow strip like 2 (ysl2, a small kernel mutant), implicated a crucial role of Fe concentration in kernel development. Indeed, over-accumulation of Fe in endosperm inhibited the abundance and activity of ADP-glucose pyrophosphorylase (AGPase) and the kernel development defect was alleviated by overexpression of Briittle 2 (Bt2, encoding a small subunit of AGPase) in ysl2 mutant. Imaging and quantitative analyses of reactive oxygen species (ROS) and cell death showed that Fe stress-induced ROS burst and severe DNA damage in endosperm cells. In addition, we have successfully identified candidate genes that are associated with iron homeostasis within the kernel, as well as upstream transcription factors that regulate ZmYSL2 by yeast one-hybrid screening. Collectively, our study will provide insights into the molecular mechanism of Fe accumulation-regulated seed development and promote the future efficient application of Fe element in corn improvement.
Collapse
Affiliation(s)
- Jie Zang
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Shandong, China
| | - Xueyan Yao
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Shandong, China
| | - Tengfei Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Innovative Academy of Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Boming Yang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Innovative Academy of Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhen Wang
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Shandong, China
| | - Shuxuan Quan
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Shandong, China
| | - Zhaogui Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Innovative Academy of Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Juan Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Innovative Academy of Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Huabang Chen
- State Key Laboratory of Plant Cell and Chromosome Engineering, Innovative Academy of Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Xiansheng Zhang
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Shandong, China
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, China
| | - Yifeng Hou
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Shandong, China
| |
Collapse
|
3
|
Zi Y, Cheng D, Li H, Guo J, Ju W, Wang C, Humphreys DG, Liu A, Cao X, Liu C, Liu J, Zhao Z, Song J. Effects of the different waxy proteins on starch biosynthesis, starch physicochemical properties and Chinese noodle quality in wheat. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2022; 42:23. [PMID: 37309456 PMCID: PMC10248619 DOI: 10.1007/s11032-022-01292-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
Noodles are an important food in Asia. Wheat starch is the most important component in Chinese noodles. Loss of the waxy genes leads to lower activity of starch synthesis enzymes and decreased amylose content that further affects starch properties and noodle quality. To study the effects of different waxy (Wx) protein subunits on starch biosynthesis and processing quality, the high-yielding wheat cultivar Jimai 22 was treated with the mutagen ethyl methane sulfonate (EMS) to produce a population of Wx lines and chosen 7 Wx protein combinations. The amylose content increased but swelling power decreased as the number of Wx proteins increased. Both GBSS activity and gene expression were the lowest for the waxy mutant, followed by the mutants with 1 Wx protein. The combinations of these mutant alleles lead to reductions in both RNA expression and protein levels. Noodles made from materials with 2 Wx protein subunits had the highest score, which agreed with peak viscosity. The influence of the Wx-B1 protein on amylose synthesis and noodle quality was the highest, whereas the influence of Wx-A1 protein was the lowest. Mutants with lower amylose content caused by the absence of 1 subunit, especially the Wx-B1 subunit, had superior noodle quality. Additionally, the identified mutant lines can be used as intermediate materials to improve wheat quality. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-022-01292-x.
Collapse
Affiliation(s)
- Yan Zi
- National Engineering Research Center of Wheat and Maize/Shandong Technology Innovation Center of Wheat, Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250100 Shandong China
| | - Dungong Cheng
- National Engineering Research Center of Wheat and Maize/Shandong Technology Innovation Center of Wheat, Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250100 Shandong China
| | - Haosheng Li
- National Engineering Research Center of Wheat and Maize/Shandong Technology Innovation Center of Wheat, Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250100 Shandong China
| | - Jun Guo
- National Engineering Research Center of Wheat and Maize/Shandong Technology Innovation Center of Wheat, Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250100 Shandong China
| | - Wei Ju
- National Engineering Research Center of Wheat and Maize/Shandong Technology Innovation Center of Wheat, Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250100 Shandong China
| | - Canguo Wang
- National Engineering Research Center of Wheat and Maize/Shandong Technology Innovation Center of Wheat, Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250100 Shandong China
| | - D. G. Humphreys
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, K.W. Neatby Building, 960 Carling Avenue, Ottawa, K1A 06C ON UK
| | - Aifeng Liu
- National Engineering Research Center of Wheat and Maize/Shandong Technology Innovation Center of Wheat, Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250100 Shandong China
| | - Xinyou Cao
- National Engineering Research Center of Wheat and Maize/Shandong Technology Innovation Center of Wheat, Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250100 Shandong China
| | - Cheng Liu
- National Engineering Research Center of Wheat and Maize/Shandong Technology Innovation Center of Wheat, Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250100 Shandong China
| | - Jianjun Liu
- National Engineering Research Center of Wheat and Maize/Shandong Technology Innovation Center of Wheat, Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250100 Shandong China
| | - Zhendong Zhao
- National Engineering Research Center of Wheat and Maize/Shandong Technology Innovation Center of Wheat, Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250100 Shandong China
| | - Jianmin Song
- National Engineering Research Center of Wheat and Maize/Shandong Technology Innovation Center of Wheat, Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250100 Shandong China
| |
Collapse
|
4
|
Utsumi Y, Utsumi C, Tanaka M, Takahashi S, Okamoto Y, Ono M, Nakamura Y, Seki M. Suppressed expression of starch branching enzyme 1 and 2 increases resistant starch and amylose content and modifies amylopectin structure in cassava. PLANT MOLECULAR BIOLOGY 2022; 108:413-427. [PMID: 34767147 DOI: 10.1007/s11103-021-01209-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 10/23/2021] [Indexed: 06/13/2023]
Abstract
Suppression of starch branching enzymes 1 and 2 in cassava leads to increased resistant starch content through the production of high-amylose and modification of the amylopectin structure. Cassava (Manihot esculenta Crantz) is a starchy root crop used for human consumption as a staple food and industrial applications. Starch is synthesized by various isoforms of several enzymes. However, the function of starch branching enzymes (SBEs) in starch biosynthesis and mechanisms of starch regulation in cassava have not been understood well. In this study, we aimed to suppress the expression of SBEs in cassava to generate starches with a range of distinct properties, in addition to verifying the functional characteristics of the SBEs. One SBE1, two SBE2, and one SBE3 genes were classified by phylogenetic analysis and amino acid alignment. Quantitative real-time RT-PCR revealed tissue-specific expression of SBE genes in the tuberous roots and leaves of cassava. We introduced RNAi constructs containing fragments of SBE1, SBE2, or both genes into cassava by Agrobacterium-mediated transformation, and assessed enzymatic activity of SBE using tuberous roots and leaves from these transgenic plants. Simultaneous suppression of SBE1 and SBE2 rendered an extreme starch phenotype compared to suppression of SBE2 alone. Degree of polymerization of 6-13 chains in amylopectin was markedly reduced by suppression of both SBE1 and SBE2 in comparison to the SBE2 suppression; however, no change in chain-length profiles was observed in the SBE1 suppression alone. The role of SBE1 and SBE2 may have functional overlap in the storage tissue of cassava. Simultaneous suppression of SBE1 and SBE2 resulted in highly resistant starch with increased apparent amylose content compared to suppression of SBE2 alone. This study provides valuable information for understanding starch biosynthesis and suggests targets for altering starch quality.
Collapse
Affiliation(s)
- Yoshinori Utsumi
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, 1-7- 22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan.
| | - Chikako Utsumi
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, 1-7- 22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Maho Tanaka
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, 1-7- 22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
- Plant Epigenome Regulation Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Satoshi Takahashi
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, 1-7- 22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Yoshie Okamoto
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, 1-7- 22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Masami Ono
- Faculty of Bioresource Sciences, Akita Prefectural University, 241-438 Kaidobata-nishi, Shimoshinjo-Nakano, Akita, 010-0195, Japan
- Akita Natural Science Laboratory, 25-44 Oiwake-Nishi, Tennoh, Katagami, Akita, 010-0101, Japan
| | - Yasunori Nakamura
- Faculty of Bioresource Sciences, Akita Prefectural University, 241-438 Kaidobata-nishi, Shimoshinjo-Nakano, Akita, 010-0195, Japan
- Akita Natural Science Laboratory, 25-44 Oiwake-Nishi, Tennoh, Katagami, Akita, 010-0101, Japan
| | - Motoaki Seki
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, 1-7- 22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan.
- Plant Epigenome Regulation Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
- Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka-cho, Totsuka-ku, Yokohama, Kanagawa, 244-0813, Japan.
| |
Collapse
|
5
|
Crofts N, Domon A, Miura S, Hosaka Y, Oitome NF, Itoh A, Noge K, Fujita N. Starch synthases SSIIa and GBSSI control starch structure but do not determine starch granule morphology in the absence of SSIIIa and SSIVb. PLANT MOLECULAR BIOLOGY 2022; 108:379-398. [PMID: 34671919 DOI: 10.1007/s11103-021-01197-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/20/2021] [Indexed: 05/21/2023]
Abstract
High levels of two major starch synthases, SSIIa and GBSSI, in ss3a ss4b double mutant rice alter the starch structure but fail to recover the polygonal starch granule morphology. The endosperm starch granule is polygonal in wild-type rice but spherical in double mutant japonica rice lacking genes encoding two of the five major Starch synthase (SS) isozymes expressed in endosperm, SSIIIa and SSIVb. Japonica rice naturally has low levels of SSIIa and Granule-bound SSI (GBSSI). Therefore, introduction of active SSIIa allele and/or high-expressing GBSSI allele from indica rice into the japonica rice mutant lacking SS isozymes can help elucidate the compensatory roles of SS isozymes in starch biosynthesis. In this study, we crossed the ss3a ss4a double mutant japonica rice with the indica rice to generate three new rice lines with high and/or low SSIIa and GBSSI levels, and examined their starch structure, physicochemical properties, and levels of other starch biosynthetic enzymes. Lines with high SSIIa levels showed more SSI and SSIIa bound to starch granule, reduced levels of short amylopectin chains (7 ≤ DP ≤ 12), increased levels of amylopectin chains with DP > 13, and consequently higher gelatinization temperature. Lines with high GBSSI levels showed an increase in amylose content. The ADP-glucose content of the crude extract was high in lines with low or high SSIIa and low GBSSI levels, but was low in lines with high GBSSI. Addition of high SSIIa and GBSSI altered the starch structure and physicochemical properties but did not affect the starch granule morphology, confirming that SSIIIa and SSIVb are key enzymes affecting starch granule morphology in rice. The relationship among SS isozymes and its effect on the amount of substrate (ADP-glucose) is discussed.
Collapse
Affiliation(s)
- Naoko Crofts
- Department of Biological Production, Akita Prefectural University, Akita, Japan
| | - Asaka Domon
- Department of Biological Production, Akita Prefectural University, Akita, Japan
| | - Satoko Miura
- Department of Biological Production, Akita Prefectural University, Akita, Japan
| | - Yuko Hosaka
- Department of Biological Production, Akita Prefectural University, Akita, Japan
| | - Naoko F Oitome
- Department of Biological Production, Akita Prefectural University, Akita, Japan
| | - Ayaka Itoh
- Department of Biological Production, Akita Prefectural University, Akita, Japan
| | - Koji Noge
- Department of Biological Production, Akita Prefectural University, Akita, Japan
| | - Naoko Fujita
- Department of Biological Production, Akita Prefectural University, Akita, Japan.
| |
Collapse
|
6
|
Fu Y, Jiang E, Yao Y. New Techniques in Structural Tailoring of Starch Functionality. Annu Rev Food Sci Technol 2022; 13:117-143. [PMID: 35080964 DOI: 10.1146/annurev-food-102821-035457] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Inherent characteristics of native starches such as water insolubility, retrogradation and syneresis, and instability in harsh processing conditions (e.g., high temperature and shearing, low pH) limit their industrial applications. As starch properties mainly depend on starch composition and structure, structural tailoring of starch has been important for overcoming functional limitations and expanding starch applications in different fields. In this review, we first introduce the basics of starch structure, properties, and functionalities and then describe the interactions of starch with lipids, polysaccharides, and phenolics. After reviewing genetic, chemical, and enzymatic modifications of starch, we describe current progress in the areas of porous starch and starch-based nanoparticles. New techniques, such as using the CRISPR-Cas9 technique to tailor starch structures and using an emulsion-assisted approach in forming functional starch nanoparticles, are only feasible when they are established based on fundamental knowledge of starch. Expected final online publication date for the Annual Review of Food Science and Technology, Volume 13 is March 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Yezhi Fu
- Department of Food Science, The Pennsylvania State University, University Park, Pennsylvania
| | - Evelyn Jiang
- Department of Food Science, Purdue University, West Lafayette, Indiana; .,Lincolnshire, Illinois
| | - Yuan Yao
- Department of Food Science, Purdue University, West Lafayette, Indiana;
| |
Collapse
|
7
|
Cheng K, Pan YF, Liu LM, Zhang HQ, Zhang YM. Integrated Transcriptomic and Bioinformatics Analyses Reveal the Molecular Mechanisms for the Differences in Seed Oil and Starch Content Between Glycine max and Cicer arietinum. FRONTIERS IN PLANT SCIENCE 2021; 12:743680. [PMID: 34764968 PMCID: PMC8576049 DOI: 10.3389/fpls.2021.743680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/23/2021] [Indexed: 06/13/2023]
Abstract
The seed oil and starch content of soybean are significantly different from that of chickpea. However, there are limited studies on its molecular mechanisms. To address this issue, we conducted integrated transcriptomic and bioinformatics analyses for species-specific genes and acyl-lipid-, starch-, and carbon metabolism-related genes. Among seven expressional patterns of soybean-specific genes, four were highly expressed at the middle- and late oil accumulation stages; these genes significantly enriched fatty acid synthesis and carbon metabolism, and along with common acetyl CoA carboxylase (ACCase) highly expressed at soybean middle seed development stage, common starch-degrading enzyme beta-amylase-5 (BAM5) was highly expressed at soybean early seed development stage and oil synthesis-related genes ACCase, KAS, KAR, ACP, and long-chain acyl-CoA synthetase (LACS) were co-expressed with WRI1, which may result in high seed oil content and low seed starch content in soybean. The common ADP-glucose pyrophosphorylase (AGPase) was highly expressed at chickpea middle seed development stage, along with more starch biosynthesis genes co-expressed with four-transcription-factor homologous genes in chickpea than in soybean, and the common WRI1 was not co-expressed with oil synthesis genes in chickpea, which may result in high seed starch content and low seed oil content in chickpea. The above results may be used to improve chickpea seed oil content in two ways. One is to edit CaWRI1 to co-express with oil synthesis-related genes, which may increase carbon metabolites flowing to oil synthesis, and another is to increase the expression levels of miRNA159 and miRNA319 to inhibit the expression of MYB33, which may downregulate starch synthesis-related genes, making more carbon metabolites flow into oil synthesis. Our study will provide a basis for future breeding efforts to increase the oil content of chickpea seeds.
Collapse
|
8
|
Shen S, Liang XG, Zhang L, Zhao X, Liu YP, Lin S, Gao Z, Wang P, Wang ZM, Zhou SL. Intervening in sibling competition for assimilates by controlled pollination prevents seed abortion under postpollination drought in maize. PLANT, CELL & ENVIRONMENT 2020; 43:903-919. [PMID: 31851373 DOI: 10.1111/pce.13704] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Accepted: 12/07/2019] [Indexed: 06/10/2023]
Abstract
During maize production, drought throughout the flowering stage usually induces seed abortion and yield losses. The influence of postpollination drought stress on seed abortion and its underlying mechanisms are not well characterized. By intervening in the competition for assimilates between kernel siblings under different degrees of postpollination drought stresses accompanied by synchronous pollination (SP) and incomplete pollination (ICP) approaches, the mechanisms of postpollination abortion were investigated at physiological and molecular levels. Upon SP treatment, up to 15% of the fertilized apical kernels were aborted in the drought-exacerbated competition for assimilates. The aborted kernels exhibited weak sucrose hydrolysis and starch synthesis but promoted the synthesis of trehalose-6-phosphate and ethylene. In ICP where basal pollination was prevented, apical kernel growth was restored with reinstated sucrose metabolism and starch synthesis and promoted sucrose and hexose levels under drought stress. In addition, the equilibrium between ethylene and polyamine in response to the drought and pollination treatments was associated with the abortion process. We conclude that competition for assimilates drives postpollination kernel abortion, whereas differences in sugar metabolism and the equilibrium between ethylene and polyamines may be relevant to the "live or die" choice of kernel siblings during this competition.
Collapse
Affiliation(s)
- Si Shen
- College of Agronomy & Biotechnology, China Agricultural University, Beijing, China
| | - Xiao-Gui Liang
- College of Agronomy & Biotechnology, China Agricultural University, Beijing, China
| | - Li Zhang
- College of Agronomy & Biotechnology, China Agricultural University, Beijing, China
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Xue Zhao
- College of Agronomy & Biotechnology, China Agricultural University, Beijing, China
| | - Yun-Peng Liu
- College of Agronomy & Biotechnology, China Agricultural University, Beijing, China
- School of Biological and Environmental Engineering, Binzhou University, Binzhou, China
| | - Shan Lin
- College of Agronomy & Biotechnology, China Agricultural University, Beijing, China
| | - Zhen Gao
- College of Agronomy & Biotechnology, China Agricultural University, Beijing, China
| | - Pu Wang
- College of Agronomy & Biotechnology, China Agricultural University, Beijing, China
- Scientific Observing and Experimental Station of Wuqiao for Crop Water Use Efficiency, Ministry of Agriculture and Rural Affairs, Wuqiao, China
- Innovation Center of Agricultural Technology for Lowland Plain of Hebei, Wuqiao, China
| | - Zhi-Min Wang
- College of Agronomy & Biotechnology, China Agricultural University, Beijing, China
- Scientific Observing and Experimental Station of Wuqiao for Crop Water Use Efficiency, Ministry of Agriculture and Rural Affairs, Wuqiao, China
- Innovation Center of Agricultural Technology for Lowland Plain of Hebei, Wuqiao, China
| | - Shun-Li Zhou
- College of Agronomy & Biotechnology, China Agricultural University, Beijing, China
- Scientific Observing and Experimental Station of Wuqiao for Crop Water Use Efficiency, Ministry of Agriculture and Rural Affairs, Wuqiao, China
- Innovation Center of Agricultural Technology for Lowland Plain of Hebei, Wuqiao, China
| |
Collapse
|
9
|
Molecular cloning and characterization of a gene encoding soluble starch synthase III (SSSIII) in Lotus (Nelumbo nucifera). Biologia (Bratisl) 2020. [DOI: 10.2478/s11756-019-00341-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
10
|
Alves ML, Carbas B, Gaspar D, Paulo M, Brites C, Mendes-Moreira P, Brites CM, Malosetti M, van Eeuwijk F, Vaz Patto MC. Genome-wide association study for kernel composition and flour pasting behavior in wholemeal maize flour. BMC PLANT BIOLOGY 2019; 19:123. [PMID: 30940081 PMCID: PMC6444869 DOI: 10.1186/s12870-019-1729-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 03/19/2019] [Indexed: 05/21/2023]
Abstract
BACKGROUND Maize is a crop in high demand for food purposes and consumers worldwide are increasingly concerned with food quality. However, breeding for improved quality is a complex task and therefore developing tools to select for better quality products is of great importance. Kernel composition, flour pasting behavior, and flour particle size have been previously identified as crucial for maize-based food quality. In this work we carried out a genome-wide association study to identify genomic regions controlling compositional and pasting properties of maize wholemeal flour. RESULTS A collection of 132 diverse inbred lines, with a considerable representation of the food used Portuguese unique germplasm, was trialed during two seasons, and harvested samples characterized for main compositional traits, flour pasting parameters and mean particle size. The collection was genotyped with the MaizeSNP50 array. SNP-trait associations were tested using a mixed linear model accounting for genetic relatedness. Fifty-seven genomic regions were identified, associated with the 11 different quality-related traits evaluated. Regions controlling multiple traits were detected and potential candidate genes identified. As an example, for two viscosity parameters that reflect the capacity of the starch to absorb water and swell, the strongest common associated region was located near the dull endosperm 1 gene that encodes a starch synthase and is determinant on the starch endosperm structure in maize. CONCLUSIONS This study allowed for identifying relevant regions on the maize genome affecting maize kernel composition and flour pasting behavior, candidate genes for the majority of the quality-associated genomic regions, or the most promising target regions to develop molecular tools to increase efficacy and efficiency of quality traits selection (such as "breadability") within maize breeding programs.
Collapse
Affiliation(s)
- Mara Lisa Alves
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Bruna Carbas
- Instituto Nacional de Investigação Agrária e Veterinária, Oeiras, Portugal
| | - Daniel Gaspar
- Instituto Politécnico de Coimbra - Escola Superior Agrária, Coimbra, Portugal
| | - Manuel Paulo
- Instituto Politécnico de Coimbra - Escola Superior Agrária, Coimbra, Portugal
| | - Cláudia Brites
- Instituto Politécnico de Coimbra - Escola Superior Agrária, Coimbra, Portugal
| | | | - Carla Moita Brites
- Instituto Nacional de Investigação Agrária e Veterinária, Oeiras, Portugal
| | | | | | - Maria Carlota Vaz Patto
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| |
Collapse
|
11
|
Felisberto MHF, Beraldo AL, Costa MS, Boas FV, Franco CML, Clerici MTPS. Physicochemical and structural properties of starch from young bamboo culm of Bambusa tuldoides. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2018.07.032] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
12
|
Wang J, Hu P, Lin L, Chen Z, Liu Q, Wei C. Gradually Decreasing Starch Branching Enzyme Expression Is Responsible for the Formation of Heterogeneous Starch Granules. PLANT PHYSIOLOGY 2018; 176:582-595. [PMID: 29133372 PMCID: PMC5761781 DOI: 10.1104/pp.17.01013] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 11/09/2017] [Indexed: 05/07/2023]
Abstract
Rice (Oryza sativa) endosperm is mainly occupied by homogeneous polygonal starch from inside to outside. However, morphologically different (heterogeneous) starches have been identified in some rice mutants. How these heterogeneous starches form remains unknown. A high-amylose rice line (TRS) generated through the antisense inhibition of starch branching synthase I (SBEI) and SBEIIb contains four heterogeneous starches: polygonal, aggregate, elongated, and hollow starch; these starches are regionally distributed in the endosperm from inside to outside. Here, we investigated the relationship between SBE dosage and the morphological architecture of heterogeneous starches in TRS endosperm from the view of the molecular structure of starch. The results indicated that their molecular structures underwent regular changes, including gradually increasing true amylose content but decreasing amylopectin content and gradually increasing the ratio of amylopectin long chain but decreasing the ratio of amylopectin short chain. Granule-bound starch synthase I (GBSSI) amounts in the four heterogeneous starches were not significantly different from each other, but SBEI, SBEIIa, and SBEIIb showed a gradually decreasing trend. Further immunostaining analysis revealed that the gradually decreasing SBEs acting on the formation of the four heterogeneous granules were mainly due to the spatial distribution of the three SBEs in the endosperm. It was suggested that the decreased amylopectin in starch might remove steric hindrance and provide extra space for abundant amylose accumulation when the GBSSI amount was not elevated. Furthermore, extra amylose coupled with altered amylopectin structure possibly led to morphological changes in heterogeneous granules.
Collapse
Affiliation(s)
- Juan Wang
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
- Coinnovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Pan Hu
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Lingshang Lin
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Zichun Chen
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Qiaoquan Liu
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
- Coinnovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Cunxu Wei
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
- Coinnovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
13
|
Mishra BP, Kumar R, Mohan A, Gill KS. Conservation and divergence of Starch Synthase III genes of monocots and dicots. PLoS One 2017; 12:e0189303. [PMID: 29240782 PMCID: PMC5730167 DOI: 10.1371/journal.pone.0189303] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 11/22/2017] [Indexed: 11/18/2022] Open
Abstract
Starch Synthase (SS) plays an important role in extending the α-1,4 glucan chains during starch biosynthesis by catalyzing the transfer of the glucosyl moiety from ADP-glucose to the non-reducing end of a pre-existing glucan chain. SS has five distinct isoforms of which SSIII is involved in the formation of longer glucan chain length. Here we report identification and detailed characterization of 'true' orthologs of the well-characterized maize SSIII (ZmSSIII), among six monocots and two dicot species. ZmSSIII orthologs have nucleotide sequence similarity ranging from 56-81%. Variation in gene size among various orthologs ranged from 5.49 kb in Arabidopsis to 11.62 kb in Brachypodium and the variation was mainly due to intron size and indels present in the exons 1 and 3. Number of exons and introns were highly conserved among all orthologs however. While the intron number was conserved, intron phase showed variation at group, genera and species level except for intron 1 and 5. Several species, genera, and class specific cis-acting regulatory elements were identified in the promoter region. The predicted protein size of the SSIII orthologs ranged from 1094 amino acid (aa) in Arabidopsis to 1688 aa in Brachypodium with sequence identity ranging from 60%-89%. The N-terminal region of the protein was highly variable whereas the C-terminal region containing the Glycosyltransferase domain was conserved with >80% sequence similarity among the orthologs. In addition to confirming the known motifs, eleven novel motifs possibly providing species, genera and group specific functions, were identified in the three carbohydrate binding domains. Despite of significant sequence variation among orthologs, most of the motifs and their relative distances are highly conserved among the orthologs. The 3-D structure of catalytic region of SSIII orthologs superimposed with higher confidence confirming the presence of similar binding sites with five unidentified conserved regions in the catalytic (glycosyltransferase) domain including the pockets involved in catalysis and binding of ligands. Homeologs of wheat SSIII gene showed tissue and developmental stage specific expression pattern with the highest expression recorded in developing grains.
Collapse
Affiliation(s)
- Bhavya Priyadarshini Mishra
- Department of Agricultural Biotechnology and Molecular Biology, Dr. Rajendra Prasad Central Agricultural University, Pusa, Bihar, India
| | - Rajeev Kumar
- Department of Agricultural Biotechnology and Molecular Biology, Dr. Rajendra Prasad Central Agricultural University, Pusa, Bihar, India
| | - Amita Mohan
- Department of Crops and Soil Sciences, Washington State University, Pullman, United States of America
| | - Kulvinder S. Gill
- Department of Crops and Soil Sciences, Washington State University, Pullman, United States of America
- * E-mail:
| |
Collapse
|
14
|
Abstract
The starch-rich endosperms of the Poaceae, which includes wild grasses and their domesticated descendents the cereals, have provided humankind and their livestock with the bulk of their daily calories since the dawn of civilization up to the present day. There are currently unprecedented pressures on global food supplies, largely resulting from population growth, loss of agricultural land that is linked to increased urbanization, and climate change. Since cereal yields essentially underpin world food and feed supply, it is critical that we understand the biological factors contributing to crop yields. In particular, it is important to understand the biochemical pathway that is involved in starch biosynthesis, since this pathway is the major yield determinant in the seeds of six out of the top seven crops grown worldwide. This review outlines the critical stages of growth and development of the endosperm tissue in the Poaceae, including discussion of carbon provision to the growing sink tissue. The main body of the review presents a current view of our understanding of storage starch biosynthesis, which occurs inside the amyloplasts of developing endosperms.
Collapse
|
15
|
Chen GX, Zhen SM, Liu YL, Yan X, Zhang M, Yan YM. In vivo phosphoproteome characterization reveals key starch granule-binding phosphoproteins involved in wheat water-deficit response. BMC PLANT BIOLOGY 2017; 17:168. [PMID: 29058608 PMCID: PMC5651632 DOI: 10.1186/s12870-017-1118-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 10/09/2017] [Indexed: 05/20/2023]
Abstract
BACKGROUND Drought stress during grain development causes significant yield loss in cereal production. The phosphorylated modification of starch granule-binding proteins (SGBPs) is an important mechanism regulating wheat starch biosynthesis. In this study, we performed the first proteomics and phosphoproteomics analyses of SGBPs in elite Chinese bread wheat (Triticum aestivum L.) cultivar Jingdong 17 under well-watered and water-stress conditions. RESULTS Water stress treatment caused significant reductions in spike grain numbers and weight, total starch and amylopectin content, and grain yield. Two-dimensional gel electrophoresis revealed that the quantity of SGBPs was reduced significantly by water-deficit treatment. Phosphoproteome characterization of SGBPs under water-deficit treatment demonstrated a reduced level of phosphorylation of main starch synthesis enzymes, particularly for granule-bound starch synthase (GBSS I), starch synthase II-a (SS II-a), and starch synthase III (SS III). Specifically, the Ser34 site of the GBSSI protein, the Tyr358 site of SS II-a, and the Ser837 site of SS III-a exhibited significant less phosphorylation under water-deficit treatment than well-watered treatment. Furthermore, the expression levels of several key genes related with starch biosynthesis detected by qRT-PCR were decreased significantly at 15 days post-anthesis under water-deficit treatment. Immunolocalization showed a clear movement of GBSS I from the periphery to the interior of starch granules during grain development, under both water-deficit and well-watered conditions. CONCLUSIONS Our results demonstrated that the reduction in gene expression or transcription level, protein expression and phosphorylation levels of starch biosynthesis related enzymes under water-deficit conditions is responsible for the significant decrease in total starch content and grain yield.
Collapse
Affiliation(s)
- Guan-Xing Chen
- College of Life Science, Capital Normal University, Xisanhuan Beilu No. 105, 100048 Beijing, People’s Republic of China
| | - Shou-Min Zhen
- College of Life Science, Capital Normal University, Xisanhuan Beilu No. 105, 100048 Beijing, People’s Republic of China
| | - Yan-Lin Liu
- College of Life Science, Capital Normal University, Xisanhuan Beilu No. 105, 100048 Beijing, People’s Republic of China
| | - Xing Yan
- College of Life Science, Capital Normal University, Xisanhuan Beilu No. 105, 100048 Beijing, People’s Republic of China
| | - Ming Zhang
- College of Life Science, Capital Normal University, Xisanhuan Beilu No. 105, 100048 Beijing, People’s Republic of China
| | - Yue-Ming Yan
- College of Life Science, Capital Normal University, Xisanhuan Beilu No. 105, 100048 Beijing, People’s Republic of China
- Hubei Collaborative Innovation Center for Grain Industry/Yangtze University, Jingzhou, 434025 China
| |
Collapse
|
16
|
Affiliation(s)
- Yasunori Nakamura
- Akita Natural Science Laboratory; Tennoh, Katagami, Akita Japan
- Faculty of Bioresource Sciences; Akita Prefectural University; Shimoshinjo-Nakano, Akita Japan
| |
Collapse
|
17
|
Li J, Fu J, Chen Y, Fan K, He C, Zhang Z, Li L, Liu Y, Zheng J, Ren D, Wang G. The U6 Biogenesis-Like 1 Plays an Important Role in Maize Kernel and Seedling Development by Affecting the 3' End Processing of U6 snRNA. MOLECULAR PLANT 2017; 10:470-482. [PMID: 27825944 DOI: 10.1016/j.molp.2016.10.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 10/29/2016] [Accepted: 10/30/2016] [Indexed: 05/09/2023]
Abstract
Regulation of gene expression at the post-transcriptional level is of crucial importance in the development of an organism. Here we present the characterization of a maize gene, U6 biogenesis-like 1 (UBL1), which plays an important role in kernel and seedling development by influencing pre-mRNA splicing. The ubl1 mutant, exhibiting small kernel and weak seedling, was isolated from a Mutator-tagged population. Transgenic complementation and three independent mutant alleles confirmed that UBL1, which encodes a putative RNA exonuclease belonging to the 2H phosphodiesterase superfamily, is responsible for the phenotype of ubl1. We demonstrated that UBL1 possess the RNA exonuclease activity in vitro and found that loss of UBL1 function in ubl1 causes decreased level and abnormal 3' end constitution of snRNA U6, resulting in splicing defect of mRNAs. Through the in vitro and in vivo studies replacing two histidines with alanines in the H-X-T/S-X (X is a hydrophobic residue) motifs we demonstrated that these two motifs are essential for the normal function of UBL1. We further showed that the function of UBL1 may be conserved across a wide phylogenetic distance as the heterologous expression of maize UBL1 could complement the Arabidopsis ubl1 mutant.
Collapse
Affiliation(s)
- Jiankun Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences
| | - Junjie Fu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yan Chen
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Kaijian Fan
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Cheng He
- Center of Seed Science and Technology, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Zhiqiang Zhang
- Center of Seed Science and Technology, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Li Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yunjun Liu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jun Zheng
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Dongtao Ren
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences
| | - Guoying Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
18
|
Qi X, Li S, Zhu Y, Zhao Q, Zhu D, Yu J. ZmDof3, a maize endosperm-specific Dof protein gene, regulates starch accumulation and aleurone development in maize endosperm. PLANT MOLECULAR BIOLOGY 2017; 93:7-20. [PMID: 27709320 DOI: 10.1007/s11103-016-0543-y] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 09/09/2016] [Indexed: 05/03/2023]
Abstract
To explore the function of Dof transcription factors during kernel development in maize, we first identified Dof genes in the maize genome. We found that ZmDof3 was exclusively expressed in the endosperm of maize kernel and had the features of a Dof transcription factor. Suppression of ZmDof3 resulted in a defective kernel phenotype with reduced starch content and a partially patchy aleurone layer. The expression levels of starch synthesis-related genes and aleurone differentiation-associated genes were down-regulated in ZmDof3 knockdown kernels, indicating that ZmDof3 plays an important role in maize endosperm development. The maize endosperm, occupying a large proportion of the kernel, plays an important role in seed development and germination. Current knowledge regarding the regulation of endosperm development is limited. Dof proteins, a family of plant-specific transcription factors, play critical roles in diverse biological processes. In this study, an endosperm-specific Dof protein gene, ZmDof3, was identified in maize through genome-wide screening. Suppression of ZmDof3 resulted in a defective kernel phenotype. The endosperm of ZmDof3 knockdown kernels was loosely packed with irregular starch granules observed by electronic microscope. Through genome-wide expression profiling, we found that down-regulated genes were enriched in GO terms related to carbohydrate metabolism. Moreover, ZmDof3 could bind to the Dof core element in the promoter of starch biosynthesis genes Du1 and Su2 in vitro and in vivo. In addition, the aleurone at local position in mature ZmDof3 knockdown kernels varied from one to three layers, which consisted of smaller and irregular cells. Further analyses showed that knockdown of ZmDof3 reduced the expression of Nkd1, which is involved in aleurone cell differentiation, and that ZmDof3 could bind to the Dof core element in the Nkd1 promoter. Our study reveals that ZmDof3 functions in maize endosperm development as a positive regulator in the signaling system controlling starch accumulation and aleurone development.
Collapse
Affiliation(s)
- Xin Qi
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Shixue Li
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Yaxi Zhu
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Qian Zhao
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Dengyun Zhu
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Jingjuan Yu
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, China.
| |
Collapse
|
19
|
Cheng L, Liu X, Yin J, Yang J, Li Y, Hui L, Li S, Li L. Activity and expression of ADP-glucose pyrophosphorylase during rhizome formation in lotus (Nelumbo nucifera Gaertn.). BOTANICAL STUDIES 2016; 57:26. [PMID: 28597436 PMCID: PMC5432948 DOI: 10.1186/s40529-016-0140-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 09/20/2016] [Indexed: 05/22/2023]
Abstract
BACKGROUND Lotus root is a traditional and popular aquatic vegetable in China. Starch is an important component of the rhizome and directly affects the quality of processed products. ADP -glucose pyrophosphorylase (AGPase) is a rate-limiting enzyme associated with starch biosynthesis in plants. Therefore, in the present study, AGPase activity and NnAGP expression during rhizome development of lotus were analyzed. RESULTS Among 15 cultivars analyzed, the contents of amylose and total starch in the rhizome were highest in 'Mei Ren Hong'. 'Su Zhou' and 'Zhen Zhu' showed the lowest amylose, amylopectin and total starch contents. In the rhizome, activity of AGPase was highest at the middle swelling stage of development, and higher activity was observed in the 'Hou ba' leaf and terminational leaf at the same stage. Three AGPase genes, comprising two large subunit genes (NnAGPL1 and NnAGPL2) and one small subunit gene (NnAGPS), were isolated and identified. The deduced amino acid sequences showed 40.5 % similarity among the three genes. Full-length genomic DNA sequences of NnAGPL1, NnAGPL2, and NnAGPS were 4841, 11,346 and 4169 bp, respectively. Analysis of the temporal and spatial expression patterns revealed that the transcription levels of NnAGPL1 and NnAGPS were higher in the rhizome, followed by the 'Hou ba' leaf, whereas NnAGPL2 was significantly detected in the 'Hou ba' leaf and terminational leaf. The initial swelling stage of rhizome development was accompanied by the highest accumulation of mRNAs of NnAGPL1, whereas expression of NnAGPL2 was not detected during rhizome development. The transcript level of NnAGPS was highest at the initial swelling stage compared with the other rhizome developmental stages. Transcription of NnAGPL1, NnAGPL2, and NnAGPS was induced within 24 h after treatment with exogenous sucrose. The mRNA level of NnAGPL1 and NnAGPS was increased by exogenous ABA, whereas transcription of NnAGPL2 was not affected by ABA. CONCLUSIONS The three AGPase genes display marked differences in spatial and temporal expression patterns. Regulation of AGPase in relation to starch synthesis in lotus is indicated to be complex.
Collapse
Affiliation(s)
- Libao Cheng
- School of Horticulture and Plant Protection of Yangzhou University, Yangzhou, Jiangsu China
| | - Xian Liu
- School of Horticulture and Plant Protection of Yangzhou University, Yangzhou, Jiangsu China
| | - Jingjing Yin
- School of Horticulture and Plant Protection of Yangzhou University, Yangzhou, Jiangsu China
| | - Jianqiu Yang
- School of Horticulture and Plant Protection of Yangzhou University, Yangzhou, Jiangsu China
| | - Yan Li
- School of Horticulture and Plant Protection of Yangzhou University, Yangzhou, Jiangsu China
| | - Linchong Hui
- School of Horticulture and Plant Protection of Yangzhou University, Yangzhou, Jiangsu China
| | - Shuyan Li
- College of Guangling, Yangzhou University, Yangzhou, Jiangsu China
| | - Liangjun Li
- School of Horticulture and Plant Protection of Yangzhou University, Yangzhou, Jiangsu China
| |
Collapse
|
20
|
Mishra A, Singh A, Sharma M, Kumar P, Roy J. Development of EMS-induced mutation population for amylose and resistant starch variation in bread wheat (Triticum aestivum) and identification of candidate genes responsible for amylose variation. BMC PLANT BIOLOGY 2016; 16:217. [PMID: 27716051 PMCID: PMC5054548 DOI: 10.1186/s12870-016-0896-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 09/13/2016] [Indexed: 05/19/2023]
Abstract
BACKGROUND Starch is a major part of cereal grain. It comprises two glucose polymer fractions, amylose (AM) and amylopectin (AP), that make up about 25 and 75 % of total starch, respectively. The ratio of the two affects processing quality and digestibility of starch-based food products. Digestibility determines nutritional quality, as high amylose starch is considered a resistant or healthy starch (RS type 2) and is highly preferred for preventive measures against obesity and related health conditions. The topic of nutrition security is currently receiving much attention and consumer demand for food products with improved nutritional qualities has increased. In bread wheat (Triticum aestivum L.), variation in amylose content is narrow, hence its limited improvement. Therefore, it is necessary to produce wheat lines or populations showing wide variation in amylose/resistant starch content. In this study, a set of EMS-induced M4 mutant lines showing dynamic variation in amylose/resistant starch content were produced. Furthermore, two diverse mutant lines for amylose content were used to study quantitative expression patterns of 20 starch metabolic pathway genes and to identify candidate genes for amylose biosynthesis. RESULTS A population comprising 101 EMS-induced mutation lines (M4 generation) was produced in a bread wheat (Triticum aestivum) variety. Two methods of amylose measurement in grain starch showed variation in amylose content ranging from ~3 to 76 % in the population. The method of in vitro digestion showed variation in resistant starch content from 1 to 41 %. One-way ANOVA analysis showed significant variation (p < 0.05) in amylose and resistant starch content within the population. A multiple comparison test (Dunnett's test) showed that significant variation in amylose and resistant starch content, with respect to the parent, was observed in about 89 and 38 % of the mutant lines, respectively. Expression pattern analysis of 20 starch metabolic pathway genes in two diverse mutant lines (low and high amylose mutants) showed higher expression of key genes of amylose biosynthesis (GBSSI and their isoforms) in the high amylose mutant line, in comparison to the parent. Higher expression of amylopectin biosynthesis (SBE) was observed in the low amylose mutant lines. An additional six candidate genes showed over-expression (BMY, SPA) and reduced-expression (SSIII, SBEI, SBEIII, ISA3) in the high amylose mutant line, indicating that other starch metabolic genes may also contribute to amylose biosynthesis. CONCLUSION In this study a set of 101 EMS-induced mutant lines (M4 generation) showing variation in amylose and resistant starch content in seed were produced. This population serves as useful germplasm or pre-breeding material for genome-wide study and improvement of starch-based processing and nutrition quality in wheat. It is also useful for the study of the genetic and molecular basis of amylose/resistant starch variation in wheat. Furthermore, gene expression analysis of 20 starch metabolic genes in the two diverse mutant lines (low and high amylose mutants) indicates that in addition to key genes, several other genes (such as phosphorylases, isoamylases, and pullulanases) may also be involved in contributing to amylose/amylopectin biosynthesis.
Collapse
Affiliation(s)
- Ankita Mishra
- Department of Biotechnology (DBT), National Agri-Food Biotechnology Institute (NABI), Government of India, C-127 Industrial Area Phase 8, Mohali, 160071 Punjab India
- Department of Biotechnology, Panjab University, Chandigarh, India
| | - Anuradha Singh
- Department of Biotechnology (DBT), National Agri-Food Biotechnology Institute (NABI), Government of India, C-127 Industrial Area Phase 8, Mohali, 160071 Punjab India
| | - Monica Sharma
- Department of Biotechnology (DBT), National Agri-Food Biotechnology Institute (NABI), Government of India, C-127 Industrial Area Phase 8, Mohali, 160071 Punjab India
| | - Pankaj Kumar
- Department of Biotechnology (DBT), National Agri-Food Biotechnology Institute (NABI), Government of India, C-127 Industrial Area Phase 8, Mohali, 160071 Punjab India
| | - Joy Roy
- Department of Biotechnology (DBT), National Agri-Food Biotechnology Institute (NABI), Government of India, C-127 Industrial Area Phase 8, Mohali, 160071 Punjab India
| |
Collapse
|
21
|
Maize endosperm-specific transcription factors O2 and PBF network the regulation of protein and starch synthesis. Proc Natl Acad Sci U S A 2016; 113:10842-7. [PMID: 27621432 DOI: 10.1073/pnas.1613721113] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The maize endosperm-specific transcription factors opaque2 (O2) and prolamine-box binding factor (PBF) regulate storage protein zein genes. We show that they also control starch synthesis. The starch content in the PbfRNAi and o2 mutants was reduced by ∼5% and 11%, respectively, compared with normal genotypes. In the double-mutant PbfRNAi;o2, starch was decreased by 25%. Transcriptome analysis reveals that >1,000 genes were affected in each of the two mutants and in the double mutant; these genes were mainly enriched in sugar and protein metabolism. Pyruvate orthophosphate dikinase 1 and 2 (PPDKs) and starch synthase III (SSIII) are critical components in the starch biosynthetic enzyme complex. The expression of PPDK1, PPDK2, and SSIII and their protein levels are further reduced in the double mutants as compared with the single mutants. When the promoters of these genes were analyzed, we found a prolamine box and an O2 box that can be additively transactivated by PBF and O2. Starch synthase IIa (SSIIa, encoding another starch synthase for amylopectin) and starch branching enzyme 1 (SBEI, encoding one of the two main starch branching enzymes) are not directly regulated by PBF and O2, but their protein levels are significantly decreased in the o2 mutant and are further decreased in the double mutant, indicating that o2 and PbfRNAi may affect the levels of some other transcription factor(s) or mRNA regulatory factor(s) that in turn would affect the transcript and protein levels of SSIIa and SBEI These findings show that three important traits-nutritional quality, calories, and yield-are linked through the same transcription factors.
Collapse
|
22
|
Xiao Y, Thatcher S, Wang M, Wang T, Beatty M, Zastrow-Hayes G, Li L, Li J, Li B, Yang X. Transcriptome analysis of near-isogenic lines provides molecular insights into starch biosynthesis in maize kernel. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2016; 58:713-23. [PMID: 26676690 DOI: 10.1111/jipb.12455] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 12/14/2015] [Indexed: 05/21/2023]
Abstract
Starch is the major component in maize kernels, providing a stable carbohydrate source for humans and livestock as well as raw material for the biofuel industry. Increasing maize kernel starch content will help meet industry demands and has the potential to increase overall yields. We developed a pair of maize near-isogenic lines (NILs) with different alleles for a starch quantitative trait locus on chromosome 3 (qHS3), resulting in different kernel starch content. To investigate the candidate genes for qHS3 and elucidate their effects on starch metabolism, RNA-Seq was performed for the developing kernels of the NILs at 14 and 21 d after pollination (DAP). Analysis of genomic and transcriptomic data identified 76 genes with nonsynonymous single nucleotide polymorphisms and 384 differentially expressed genes (DEGs) in the introgressed fragment, including a hexokinase gene, ZmHXK3a, which catalyzes the conversion of glucose to glucose-6-phosphate and may play a key role in starch metabolism. The expression pattern of all DEGs in starch metabolism shows that altered expression of the candidate genes for qHS3 promoted starch synthesis, with positive consequences for kernel starch content. These results expand the current understanding of starch biosynthesis and accumulation in maize kernels and provide potential candidate genes to increase starch content.
Collapse
Affiliation(s)
- Yingni Xiao
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Shawn Thatcher
- DuPont Pioneer, 200 Powder Mill Road, Wilmington, DE 19880, USA
| | - Min Wang
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
- College of Agronomy, Northwest Agricultural and Forest University, Yang Ling 712100, China
| | - Tingting Wang
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | | | | | - Lin Li
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, Minnesota 55108, USA
| | - Jiansheng Li
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Bailin Li
- DuPont Pioneer, 200 Powder Mill Road, Wilmington, DE 19880, USA
| | - Xiaohong Yang
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| |
Collapse
|
23
|
Huang B, Keeling PL, Hennen-Bierwagen TA, Myers AM. Comparative in vitro analyses of recombinant maize starch synthases SSI, SSIIa, and SSIII reveal direct regulatory interactions and thermosensitivity. Arch Biochem Biophys 2016; 596:63-72. [PMID: 26940263 DOI: 10.1016/j.abb.2016.02.032] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 02/06/2016] [Accepted: 02/28/2016] [Indexed: 11/19/2022]
Abstract
Starch synthases SSI, SSII, and SSIII function in assembling the amylopectin component of starch, but their specific roles and means of coordination are not fully understood. Genetic analyses indicate regulatory interactions among SS classes, and physical interactions among them are known. The N terminal extension of cereal SSIII, comprising up to 1200 residues beyond the catalytic domain, is responsible at least in part for these interactions. Recombinant maize SSI, SSIIa, and full-length or truncated SSIII, were tested for functional interactions regarding enzymatic activity. Amino-terminal truncated SSIII exhibited reduced activity compared to full-length enzyme, and addition of the N terminus to the truncated protein stimulated catalytic activity. SSIII and SSI displayed a negative interaction that reduced total activity in a reconstituted system. These data demonstrate that SSIII is both a catalytic and regulatory factor. SSIII activity was reduced by approximately 50% after brief incubation at 45 °C, suggesting a role in reduced starch accumulation during growth in high temperatures. Buffer effects were tested to address a current debate regarding the SS mechanism. Glucan stimulated the SSIIa and SSIII reaction rate regardless of the buffer system, supporting the accepted mechanism in which glucosyl units are added to exogenous primer substrates.
Collapse
Affiliation(s)
- Binquan Huang
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Peter L Keeling
- Center for Biorenewable Chemicals, 1140K Biorenewables Research Laboratory, Iowa State University, Ames, IA 50011, USA
| | - Tracie A Hennen-Bierwagen
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Alan M Myers
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA 50011, USA.
| |
Collapse
|
24
|
Wang T, Wang M, Hu S, Xiao Y, Tong H, Pan Q, Xue J, Yan J, Li J, Yang X. Genetic basis of maize kernel starch content revealed by high-density single nucleotide polymorphism markers in a recombinant inbred line population. BMC PLANT BIOLOGY 2015; 15:288. [PMID: 26654531 PMCID: PMC4676831 DOI: 10.1186/s12870-015-0675-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Accepted: 12/03/2015] [Indexed: 05/18/2023]
Abstract
BACKGROUND Starch from maize kernels has diverse applications in human and animal diets and in industry and manufacturing. To meet the demands of these applications, starch quantity and quality need improvement, which requires a clear understanding of the functional mechanisms involved in starch biosynthesis and accumulation. In this study, a recombinant inbred line (RIL) population was developed from a cross between inbred lines CI7 and K22. The RIL population, along with both parents, was grown in three environments, and then genotyped using the MaizeSNP50 BeadChip and phenotyped to dissect the genetic architecture of starch content in maize kernels. RESULTS Based on the genetic linkage map constructed using 2,386 bins as markers, six quantitative trait loci (QTLs) for starch content in maize kernels were detected in the CI7/K22 RIL population. Each QTL accounted for 4.7% (qSTA9-1) to 10.6% (qSTA4-1) of the starch variation. The QTL interval was further reduced using the bin-map method, with the physical distance of a single bin at the QTL peak ranging from 81.7 kb to 2.2 Mb. Based on the functional annotations and prior knowledge of the genes in the top bin, seven genes were considered as potential candidate genes for the identified QTLs. Three of the genes encode enzymes in non-starch metabolism but may indirectly affect starch biosynthesis, and four genes may act as regulators of starch biosynthesis. CONCLUSIONS A few large-effect QTLs, together with a certain number of minor-effect QTLs, mainly contribute to the genetic architecture of kernel starch content in our maize biparental linkage population. All of the identified QTLs, especially the large-effect QTL, qSTA4-1, with a small QTL interval, will be useful for improving the maize kernel starch content through molecular breeding.
Collapse
Affiliation(s)
- Tingting Wang
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genomics and Genetic Improvement, China Agricultural University, 100193, Beijing, China.
| | - Min Wang
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genomics and Genetic Improvement, China Agricultural University, 100193, Beijing, China.
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Shuting Hu
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genomics and Genetic Improvement, China Agricultural University, 100193, Beijing, China.
| | - Yingni Xiao
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genomics and Genetic Improvement, China Agricultural University, 100193, Beijing, China.
| | - Hao Tong
- National Key Laboratory of Crop Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| | - Qingchun Pan
- National Key Laboratory of Crop Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| | - Jiquan Xue
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Jianbing Yan
- National Key Laboratory of Crop Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| | - Jiansheng Li
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genomics and Genetic Improvement, China Agricultural University, 100193, Beijing, China.
| | - Xiaohong Yang
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genomics and Genetic Improvement, China Agricultural University, 100193, Beijing, China.
| |
Collapse
|
25
|
Yoo SH, Lee BH, Li L, Perris SDN, Spalding MH, Han SY, Jane JL. Biocatalytic role of potato starch synthase III for α-glucan biosynthesis in Synechocystis sp. PCC6803 mutants. Int J Biol Macromol 2015; 81:710-7. [PMID: 26358554 DOI: 10.1016/j.ijbiomac.2015.09.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 09/02/2015] [Accepted: 09/04/2015] [Indexed: 11/24/2022]
Abstract
A potato starch synthase III (PSSIII) was expressed in the Synechocystis mutants deficient in either glycogen synthase I (M1) or II (M2) to replenish α-(1,4) linkage synthesizing activity, resulting in new mutants, PM1 and PM2, respectively. These mutants were applied to study the role of exogenous plant starch synthase for starch/glycogen biosynthesis mechanism established in the cyanobacteria. The remaining glycogen synthase genes in PM1 and PM2 were further disrupted to make the mutants PM12 and PM21 which contained PSSIII as the sole glycogen/starch synthase. Among wild type and mutants, there were no significant differences in the amount of α-glucan produced. All the mutants harboring active PSSIII produced α-glucans with relatively much shorter and less longer α-1,4 chains than wild-type glycogen, which was exactly in accordance with the increase in glycogen branching enzyme activity. In fact, α-glucan structure of PM1 was very similar to those of PM12 and PM21, and PM2 had more intermediate chains than M2. This result suggests PSSIII may have distributive elongation property during α-glucan synthesis. In conclusion, the Synechocystis as an expression model system of plant enzymes can be applied to determine the role of starch synthesizing enzymes and their association during α-glucan synthesis.
Collapse
Affiliation(s)
- Sang-Ho Yoo
- Department of Food Science & Technology and Carbohydrate Bioproduct Research Center, Sejong University, 98 Gunja-Dong, Gwangjin-Gu, Seoul 143-747, South Korea.
| | - Byung-Hoo Lee
- Department of Food Science & Biotechnology, College of BioNano Technology, Gachon University, Seongnam 461-701, South Korea
| | - Li Li
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA 50011, USA
| | | | | | - Sang Yun Han
- Department of Nanochemistry, College of BioNano Technology, Gachon University, Seongnam 461-701, South Korea
| | - Jay-lin Jane
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
26
|
Wu H, Clay K, Thompson SS, Hennen-Bierwagen TA, Andrews BJ, Zechmann B, Gibbon BC. Pullulanase and Starch Synthase III Are Associated with Formation of Vitreous Endosperm in Quality Protein Maize. PLoS One 2015; 10:e0130856. [PMID: 26115014 PMCID: PMC4482715 DOI: 10.1371/journal.pone.0130856] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 05/25/2015] [Indexed: 11/25/2022] Open
Abstract
The opaque-2 (o2) mutation of maize increases lysine content, but the low seed density and soft texture of this type of mutant are undesirable. Lines with modifiers of the soft kernel phenotype (mo2) called “Quality Protein Maize” (QPM) have high lysine and kernel phenotypes similar to normal maize. Prior research indicated that the formation of vitreous endosperm in QPM might involve changes in starch granule structure. In this study, we focused on analysis of two starch biosynthetic enzymes that may influence kernel vitreousness. Analysis of recombinant inbred lines derived from a cross of W64Ao2 and K0326Y revealed that pullulanase activity had significant positive correlation with kernel vitreousness. We also found that decreased Starch Synthase III abundance may decrease the pullulanase activity and average glucan chain length given the same Zpu1 genotype. Therefore, Starch Synthase III could indirectly influence the kernel vitreousness by affecting pullulanase activity and coordinating with pullulanase to alter the glucan chain length distribution of amylopectin, resulting in different starch structural properties. The glucan chain length distribution had strong positive correlation with the polydispersity index of glucan chains, which was positively associated with the kernel vitreousness based on nonlinear regression analysis. Therefore, we propose that pullulanase and Starch Synthase III are two important factors responsible for the formation of the vitreous phenotype of QPM endosperms.
Collapse
Affiliation(s)
- Hao Wu
- Department of Biology, Baylor University, Waco, Texas, 76798, United States of America
| | - Kasi Clay
- Department of Biology, Baylor University, Waco, Texas, 76798, United States of America
| | - Stephanie S. Thompson
- Department of Biology, Baylor University, Waco, Texas, 76798, United States of America
| | - Tracie A. Hennen-Bierwagen
- Iowa State University, Department of Biochemistry, Biophysics, and Molecular Biology, Ames, Iowa, 50011, United States of America
| | - Bethany J. Andrews
- Texas A&M University, Department of Soil and Crop Sciences, College Station, Texas, 77843, United States of America
| | - Bernd Zechmann
- Center for Microscopy and Imaging, Baylor University, Waco, Texas, 76798, United States of America
| | - Bryan C. Gibbon
- Department of Biological Sciences, Florida A&M University, Tallahassee, Florida, 32307, United States of America
- * E-mail:
| |
Collapse
|
27
|
Chen H, Narsimhan G, Yao Y. Particulate structure of phytoglycogen studied using β-amylolysis. Carbohydr Polym 2015; 132:582-8. [PMID: 26256385 DOI: 10.1016/j.carbpol.2015.06.074] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 06/18/2015] [Accepted: 06/20/2015] [Indexed: 10/23/2022]
Abstract
Phytoglycogen (PG), a dendrimer-like glucan particulate, has a much higher dispersed molecular density than amylopectin (AP). In this study, β-amylase was used to investigate the effect of high molecular density of PG on its susceptibility to enzymatic hydrolysis. AP and PG reached the limit of β-amylolysis at 20 and 480 min, respectively, suggesting a much higher resistance of PG to β-amylase. The majority of PG β-amylolysis occurred in the initial 2 min, followed by a slow progression that implied low accessibility of internal particulate portion to enzyme. The chain length profile of PG β-limit dextrin showed only one population of long chains, indicating the absence of branch clusters with PG. At the limit of β-amylolysis, a substantial decrease in the molar mass was observed for both PG and AP, whereas only a slight reduction in the Z-average root mean square radius was observed for PG (from 24.5 to 23.1 nm) compared to that of AP (from 91.1 to 69.6 nm).
Collapse
Affiliation(s)
- Hua Chen
- Department of Food Science, Purdue University, United States
| | - Ganesan Narsimhan
- Department of Agricultural & Biological Engineering, Purdue University, United States
| | - Yuan Yao
- Department of Food Science, Purdue University, United States.
| |
Collapse
|
28
|
Sestili F, Palombieri S, Botticella E, Mantovani P, Bovina R, Lafiandra D. TILLING mutants of durum wheat result in a high amylose phenotype and provide information on alternative splicing mechanisms. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 233:127-133. [PMID: 25711820 DOI: 10.1016/j.plantsci.2015.01.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 01/15/2015] [Accepted: 01/18/2015] [Indexed: 05/20/2023]
Abstract
The amylose/amylopectin ratio has a major influence over the properties of starch and determines its optimal end use. Here, high amylose durum wheat has been bred by combining knock down alleles at the two homoelogous genes encoding starch branching enzyme IIa (SBEIIa-A and SBEIIa-B). The complete silencing of these genes had a number of pleiotropic effects on starch synthesis: it affected the transcriptional activity of SBEIIb, ISA1 (starch debranching enzyme) and all of the genes encoding starch synthases (SSI, SSIIa, SSIII and GBSSI). The starch produced by grain of the double SBEIIa mutants was high in amylose (up to ∼1.95 fold that of the wild type) and contained up to about eight fold more resistant starch. A single nucleotide polymorphism adjacent to the splice site at the end of exon 10 of the G364E mutant copies of both SBEIIa-A and SBEIIa-B resulted in the loss of a conserved exonic splicing silencer element. Its starch was similar to that of the SBEIIa double mutant. G364E SBEIIa pre-mRNA was incorrectly processed, resulting in the formation of alternative, but non-functional splicing products.
Collapse
Affiliation(s)
- Francesco Sestili
- Department of Agriculture, Forestry, Nature & Energy, University of Tuscia, Via S Camillo de Lellis SNC, 01100 Viterbo, Italy.
| | - Samuela Palombieri
- Department of Agriculture, Forestry, Nature & Energy, University of Tuscia, Via S Camillo de Lellis SNC, 01100 Viterbo, Italy.
| | - Ermelinda Botticella
- Department of Agriculture, Forestry, Nature & Energy, University of Tuscia, Via S Camillo de Lellis SNC, 01100 Viterbo, Italy.
| | - Paola Mantovani
- Società Produttori Sementi Spa, Via Macero 1, 40050 Argelato, Bologna, Italy.
| | - Riccardo Bovina
- Società Produttori Sementi Spa, Via Macero 1, 40050 Argelato, Bologna, Italy; Department of Agricultural Science (DipSA), University of Bologna, Viale Fanin 44, 40127 Bologna, Italy.
| | - Domenico Lafiandra
- Department of Agriculture, Forestry, Nature & Energy, University of Tuscia, Via S Camillo de Lellis SNC, 01100 Viterbo, Italy.
| |
Collapse
|
29
|
Luo J, Jobling SA, Millar A, Morell MK, Li Z. Allelic effects on starch structure and properties of six starch biosynthetic genes in a rice recombinant inbred line population. RICE (NEW YORK, N.Y.) 2015; 8:15. [PMID: 25844120 PMCID: PMC4385112 DOI: 10.1186/s12284-015-0046-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 01/28/2015] [Indexed: 05/04/2023]
Abstract
BACKGROUND The genetic diversity of six starch biosynthetic genes (Wx, SSI, SSIIa, SBEI, SBEIIa and SBEIIb) in indica and japonica rices opens an opportunity to produce a new variety with more favourable grain starch quality. However, there is limited information about the effects of these six gene allele combinations on starch structure and properties. A recombinant inbred line population from a cross between indica and japonica varieties offers opportunities to combine specific alleles of the six genes. RESULTS The allelic (indica vs japonica) effects of six starch biosynthetic genes on starch structure, functional properties, and abundance of granule bound proteins in rice grains were investigated in a common genetic background using a recombinant inbred line population. The indica Wx (Wxi) allele played a major role while indica SSI (SSIi), japonica SSIIa (SSIIaj) and indica SBEI (SBEIi) alleles had minor roles on the increase of amylose content. SSIIaj and japonica SBEIIb (SBEIIbj) alleles had a major and a minor role on high ratio of ∑DP ≤ 10 to ∑DP ≤ 24 fractions (RCL10/24), respectively. Both major alleles (Wxi and SSIIaj) reduced peak viscosity (PV), onset, peak and end gelatinization temperatures (GTs) of amylopectin, and increased amylose-lipid complex dissociation enthalpy compared with their counterpart-alleles, respectively. SBEIIai and SBEIIbj decreased PV, whereas SSIi and SBEIIbj decreased FV. SBEIi reduced setback viscosity and gelatinization enthalpy. RCL10/24 of chain length distribution in amylopectin is negatively correlated with PV and BD of paste property and GTs of thermal properties. We also report RILs with superior starch properties combining Wxi, SSIj, SSIIaj, SBEIi and SBEIIbj alleles. Additionally, a clear relation is drawn to starch biosynthetic gene alleles, starch structure, properties, and abundance of granule bound starch biosynthetic enzymes inside starch granules. CONCLUSIONS Rice Wxi and SSIIaj alleles play major roles, while SSIi, SBEIi, SBEIIai and SBEIIbj alleles have minor roles in the determination of starch properties between indica and japonica rice through starch structural modification. The combination of these alleles is a key factor for starch quality improvement in rice breeding programs. RCL10/24 value is critical for starch structure and property determination.
Collapse
Affiliation(s)
- Jixun Luo
- />CSIRO Agriculture Flagship, GPO Box 1600, Canberra, ACT 2601 Australia
- />College of Medicine, Biology and Environment, Australian National University, Canberra, ACT 0200 Australia
| | - Stephen A Jobling
- />CSIRO Agriculture Flagship, GPO Box 1600, Canberra, ACT 2601 Australia
| | - Anthony Millar
- />College of Medicine, Biology and Environment, Australian National University, Canberra, ACT 0200 Australia
| | - Matthew K Morell
- />CSIRO Agriculture Flagship, GPO Box 1600, Canberra, ACT 2601 Australia
- />International Rice Research Institute, Maligaya, Muñoz, Nueva Ecija Philippines
| | - Zhongyi Li
- />CSIRO Agriculture Flagship, GPO Box 1600, Canberra, ACT 2601 Australia
| |
Collapse
|
30
|
Luo J, Jobling SA, Millar A, Morell MK, Li Z. Allelic effects on starch structure and properties of six starch biosynthetic genes in a rice recombinant inbred line population. RICE (NEW YORK, N.Y.) 2015; 8:15. [PMID: 25844120 DOI: 10.1186./s12284-015-0046-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 01/28/2015] [Indexed: 05/22/2023]
Abstract
BACKGROUND The genetic diversity of six starch biosynthetic genes (Wx, SSI, SSIIa, SBEI, SBEIIa and SBEIIb) in indica and japonica rices opens an opportunity to produce a new variety with more favourable grain starch quality. However, there is limited information about the effects of these six gene allele combinations on starch structure and properties. A recombinant inbred line population from a cross between indica and japonica varieties offers opportunities to combine specific alleles of the six genes. RESULTS The allelic (indica vs japonica) effects of six starch biosynthetic genes on starch structure, functional properties, and abundance of granule bound proteins in rice grains were investigated in a common genetic background using a recombinant inbred line population. The indica Wx (Wxi) allele played a major role while indica SSI (SSIi), japonica SSIIa (SSIIaj) and indica SBEI (SBEIi) alleles had minor roles on the increase of amylose content. SSIIaj and japonica SBEIIb (SBEIIbj) alleles had a major and a minor role on high ratio of ∑DP ≤ 10 to ∑DP ≤ 24 fractions (RCL10/24), respectively. Both major alleles (Wxi and SSIIaj) reduced peak viscosity (PV), onset, peak and end gelatinization temperatures (GTs) of amylopectin, and increased amylose-lipid complex dissociation enthalpy compared with their counterpart-alleles, respectively. SBEIIai and SBEIIbj decreased PV, whereas SSIi and SBEIIbj decreased FV. SBEIi reduced setback viscosity and gelatinization enthalpy. RCL10/24 of chain length distribution in amylopectin is negatively correlated with PV and BD of paste property and GTs of thermal properties. We also report RILs with superior starch properties combining Wxi, SSIj, SSIIaj, SBEIi and SBEIIbj alleles. Additionally, a clear relation is drawn to starch biosynthetic gene alleles, starch structure, properties, and abundance of granule bound starch biosynthetic enzymes inside starch granules. CONCLUSIONS Rice Wxi and SSIIaj alleles play major roles, while SSIi, SBEIi, SBEIIai and SBEIIbj alleles have minor roles in the determination of starch properties between indica and japonica rice through starch structural modification. The combination of these alleles is a key factor for starch quality improvement in rice breeding programs. RCL10/24 value is critical for starch structure and property determination.
Collapse
Affiliation(s)
- Jixun Luo
- CSIRO Agriculture Flagship, GPO Box 1600, Canberra, ACT 2601 Australia ; College of Medicine, Biology and Environment, Australian National University, Canberra, ACT 0200 Australia
| | - Stephen A Jobling
- CSIRO Agriculture Flagship, GPO Box 1600, Canberra, ACT 2601 Australia
| | - Anthony Millar
- College of Medicine, Biology and Environment, Australian National University, Canberra, ACT 0200 Australia
| | - Matthew K Morell
- CSIRO Agriculture Flagship, GPO Box 1600, Canberra, ACT 2601 Australia ; International Rice Research Institute, Maligaya, Muñoz, Nueva Ecija Philippines
| | - Zhongyi Li
- CSIRO Agriculture Flagship, GPO Box 1600, Canberra, ACT 2601 Australia
| |
Collapse
|
31
|
|
32
|
Liu N, Zhang G, Xu S, Mao W, Hu Q, Gong Y. Comparative Transcriptomic Analyses of Vegetable and Grain Pea (Pisum sativum L.) Seed Development. FRONTIERS IN PLANT SCIENCE 2015; 6:1039. [PMID: 26635856 PMCID: PMC4658420 DOI: 10.3389/fpls.2015.01039] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Accepted: 11/09/2015] [Indexed: 05/19/2023]
Abstract
Understanding the molecular mechanisms regulating pea seed developmental process is extremely important for pea breeding. In this study, we used high-throughput RNA-Seq and bioinformatics analyses to examine the changes in gene expression during seed development in vegetable pea and grain pea, and compare the gene expression profiles of these two pea types. RNA-Seq generated 18.7 G of raw data, which were then de novo assembled into 77,273 unigenes with a mean length of 930 bp. Our results illustrate that transcriptional control during pea seed development is a highly coordinated process. There were 459 and 801 genes differentially expressed at early and late seed maturation stages between vegetable pea and grain pea, respectively. Soluble sugar and starch metabolism related genes were significantly activated during the development of pea seeds coinciding with the onset of accumulation of sugar and starch in the seeds. A comparative analysis of genes involved in sugar and starch biosynthesis in vegetable pea (high seed soluble sugar and low starch) and grain pea (high seed starch and low soluble sugar) revealed that differential expression of related genes at late development stages results in a negative correlation between soluble sugar and starch biosynthetic flux in vegetable and grain pea seeds. RNA-Seq data was validated by using real-time quantitative RT-PCR analysis for 30 randomly selected genes. To our knowledge, this work represents the first report of seed development transcriptomics in pea. The obtained results provide a foundation to support future efforts to unravel the underlying mechanisms that control the developmental biology of pea seeds, and serve as a valuable resource for improving pea breeding.
Collapse
Affiliation(s)
- Na Liu
- Institute of Vegetables, Zhejiang Academy of Agricultural SciencesHangzhou, China
| | - Guwen Zhang
- Institute of Vegetables, Zhejiang Academy of Agricultural SciencesHangzhou, China
| | - Shengchun Xu
- Institute of Vegetables, Zhejiang Academy of Agricultural SciencesHangzhou, China
| | - Weihua Mao
- Center of Analysis and Measurement, Zhejiang UniversityHangzhou, China
| | - Qizan Hu
- Institute of Vegetables, Zhejiang Academy of Agricultural SciencesHangzhou, China
| | - Yaming Gong
- Institute of Vegetables, Zhejiang Academy of Agricultural SciencesHangzhou, China
- *Correspondence: Yaming Gong
| |
Collapse
|
33
|
Chen G, Zhu J, Zhou J, Subburaj S, Zhang M, Han C, Hao P, Li X, Yan Y. Dynamic development of starch granules and the regulation of starch biosynthesis in Brachypodium distachyon: comparison with common wheat and Aegilops peregrina. BMC PLANT BIOLOGY 2014; 14:198. [PMID: 25095703 PMCID: PMC4256708 DOI: 10.1186/s12870-014-0198-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 07/15/2014] [Indexed: 05/06/2023]
Abstract
BACKGROUND Thorough understanding of seed starch biosynthesis and accumulation mechanisms is of great importance for agriculture and crop improvement strategies. We conducted the first comprehensive study of the dynamic development of starch granules and the regulation of starch biosynthesis in Brachypodium distachyon and compared the findings with those reported for common wheat (Chinese Spring, CS) and Aegilops peregrina. RESULTS Only B-granules were identified in Brachypodium Bd21, and the shape variation and development of starch granules were similar in the B-granules of CS and Bd21. Phylogenetic analysis showed that most of the Bd21 starch synthesis-related genes were more similar to those in wheat than in rice. Early expression of key genes in Bd21 starch biosynthesis mediate starch synthesis in the pericarp; intermediate-stage expression increases the number and size of starch granules. In contrast, these enzymes in CS and Ae. peregrina were mostly expressed at intermediate stages, driving production of new B-granules and increasing the granule size, respectively. Immunogold labeling showed that granule-bound starch synthase (GBSSI; related to amylose synthesis) was mainly present in starch granules: at lower levels in the B-granules of Bd21 than in CS. Furthermore, GBSSI was phosphorylated at threonine 183 and tyrosine 185 in the starch synthase catalytic domain in CS and Ae. peregrina, but neither site was phosphorylated in Bd21, suggesting GBSSI phosphorylation could improve amylose biosynthesis. CONCLUSIONS Bd21 contains only B-granules, and the expression of key genes in the three studied genera is consistent with the dynamic development of starch granules. GBSSI is present in greater amounts in the B-granules of CS than in Bd21; two phosphorylation sites (Thr183 and Tyr185) were found in Triticum and Aegilops; these sites were not phosphorylated in Bd21. GBSSI phosphorylation may reflect its importance in amylose synthesis.
Collapse
Affiliation(s)
- Guanxing Chen
- College of Life Science, Capital Normal University, 100048 Beijing, China
| | - Jiantang Zhu
- College of Life Science, Capital Normal University, 100048 Beijing, China
| | - Jianwen Zhou
- College of Life Science, Capital Normal University, 100048 Beijing, China
| | | | - Ming Zhang
- College of Life Science, Capital Normal University, 100048 Beijing, China
| | - Caixia Han
- College of Life Science, Capital Normal University, 100048 Beijing, China
| | - Pengchao Hao
- College of Life Science, Capital Normal University, 100048 Beijing, China
| | - Xiaohui Li
- College of Life Science, Capital Normal University, 100048 Beijing, China
| | - Yueming Yan
- College of Life Science, Capital Normal University, 100048 Beijing, China
| |
Collapse
|
34
|
Zhu F, Bertoft E, Seetharaman K. Distribution of branches in whole starches from maize mutants deficient in starch synthase III. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:4577-4583. [PMID: 24684540 DOI: 10.1021/jf500697g] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
An earlier study explored the possibility of analyzing the distribution of branches directly in native, whole starch without isolating the amylopectin component. The aim of this study was to explore if this approach can be extended to include starch mutants. Whole starches from du1 maize mutants deficient in starch synthase III (SSIII) with amylose content of ∼30-40% were characterized and compared with the wild type of the common genetic background W64A. Clusters were produced from whole starch by hydrolysis with α-amylase of Bacillus amyloliquefaciens. Their compositions of building blocks and chains were analyzed further by complete α-amylolysis and by debranching, respectively, whereafter the products were subjected to gel permeation and anion exchange chromatography. The size and structure of the clusters were compared with those of their isolated amylopectin component. Whereas the whole starch of the wild type sample had a branched structure similar to that of its amylopectin component, the results showed that the du1 mutation resulted in more singly branched building blocks in the whole starch compared to the isolated amylopectin. This suggested that amylose and/or intermediate materials in whole du1 starches likely contributed to the composition of branches. This study explored an alternative procedure to characterize the composition of branches in the whole starch without fractionating the components.
Collapse
Affiliation(s)
- Fan Zhu
- School of Chemical Sciences, University of Auckland , Private Bag 92019, Auckland, New Zealand
| | | | | |
Collapse
|
35
|
Nougué O, Corbi J, Ball SG, Manicacci D, Tenaillon MI. Molecular evolution accompanying functional divergence of duplicated genes along the plant starch biosynthesis pathway. BMC Evol Biol 2014; 14:103. [PMID: 24884572 PMCID: PMC4041918 DOI: 10.1186/1471-2148-14-103] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 05/02/2014] [Indexed: 12/15/2022] Open
Abstract
Background Starch is the main source of carbon storage in the Archaeplastida. The starch biosynthesis pathway (sbp) emerged from cytosolic glycogen metabolism shortly after plastid endosymbiosis and was redirected to the plastid stroma during the green lineage divergence. The SBP is a complex network of genes, most of which are members of large multigene families. While some gene duplications occurred in the Archaeplastida ancestor, most were generated during the sbp redirection process, and the remaining few paralogs were generated through compartmentalization or tissue specialization during the evolution of the land plants. In the present study, we tested models of duplicated gene evolution in order to understand the evolutionary forces that have led to the development of SBP in angiosperms. We combined phylogenetic analyses and tests on the rates of evolution along branches emerging from major duplication events in six gene families encoding sbp enzymes. Results We found evidence of positive selection along branches following cytosolic or plastidial specialization in two starch phosphorylases and identified numerous residues that exhibited changes in volume, polarity or charge. Starch synthases, branching and debranching enzymes functional specializations were also accompanied by accelerated evolution. However, none of the sites targeted by selection corresponded to known functional domains, catalytic or regulatory. Interestingly, among the 13 duplications tested, 7 exhibited evidence of positive selection in both branches emerging from the duplication, 2 in only one branch, and 4 in none of the branches. Conclusions The majority of duplications were followed by accelerated evolution targeting specific residues along both branches. This pattern was consistent with the optimization of the two sub-functions originally fulfilled by the ancestral gene before duplication. Our results thereby provide strong support to the so-called “Escape from Adaptive Conflict” (EAC) model. Because none of the residues targeted by selection occurred in characterized functional domains, we propose that enzyme specialization has occurred through subtle changes in affinity, activity or interaction with other enzymes in complex formation, while the basic function defined by the catalytic domain has been maintained.
Collapse
Affiliation(s)
| | | | | | - Domenica Manicacci
- University Paris-Sud, UMR 0320/UMR 8120 Génétique Végétale, Ferme du Moulon, F-91190 Gif-sur-Yvette, France.
| | | |
Collapse
|
36
|
McMaugh SJ, Thistleton JL, Anschaw E, Luo J, Konik-Rose C, Wang H, Huang M, Larroque O, Regina A, Jobling SA, Morell MK, Li Z. Suppression of starch synthase I expression affects the granule morphology and granule size and fine structure of starch in wheat endosperm. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:2189-201. [PMID: 24634486 PMCID: PMC3991748 DOI: 10.1093/jxb/eru095] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Studies in Arabidopsis and rice suggest that manipulation of starch synthase I (SSI) expression in wheat may lead to the production of wheat grains with novel starch structure and properties. This work describes the suppression of SSI expression in wheat grains using RNAi technology, which leads to a low level of enzymatic activity for SSI in the developing endosperm, and a low abundance of SSI protein inside the starch granules of mature grains. The amylopectin fraction of starch from the SSI suppressed lines showed an increased frequency of very short chains (degree of polymerization, dp 6 and 7), a lower proportion of short chains (dp 8-12), and more intermediate chains (dp 13-20) than in the grain from their negative segregant lines. In the most severely affected line, amylose content was significantly increased, the morphology of starch granules was changed, and the proportion of B starch granules was significantly reduced. The change of the fine structure of the starch in the SSI-RNAi suppression lines alters the gelatinization temperature, swelling power, and viscosity of the starch. This work demonstrates that the roles of SSI in the determination of starch structure and properties are similar among different cereals and Arabidopsis.
Collapse
Affiliation(s)
- Stephen J McMaugh
- CSIRO Food Future Flagship, GPO Box 1600, Canberra, ACT 2601, Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Glycogen synthase isoforms in Synechocystis sp. PCC6803: identification of different roles to produce glycogen by targeted mutagenesis. PLoS One 2014; 9:e91524. [PMID: 24637565 PMCID: PMC3956634 DOI: 10.1371/journal.pone.0091524] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 02/13/2014] [Indexed: 12/01/2022] Open
Abstract
Synechocystis sp. PCC6803 belongs to cyanobacteria which carry out photosynthesis and has recently become of interest due to the evolutionary link between bacteria and plant species. Similar to other bacteria, the primary carbohydrate storage source of Synechocystis sp. PCC6803 is glycogen. While most bacteria are not known to have any isoforms of glycogen synthase, analysis of the genomic DNA sequence of Synechocystis sp. PCC6803 predicts that this strain encodes two isoforms of glycogen synthase (GS) for synthesizing glycogen structure. To examine the functions of the putative GS genes, each gene (sll1393 or sll0945) was disrupted by double cross-over homologous recombination. Zymogram analysis of the two GS disruption mutants allowed the identification of a protein band corresponding to each GS isoform. Results showed that two GS isoforms (GSI and GSII) are present in Synechocystis sp. PCC6803, and both are involved in glycogen biosynthesis with different elongation properties: GSI is processive and GSII is distributive. Total GS activities in the mutant strains were not affected and were compensated by the remaining isoform. Analysis of the branch-structure of glycogen revealed that the sll1393− mutant (GSI−) produced glycogen containing more intermediate-length chains (DP 8–18) at the expense of shorter and longer chains compared with the wild-type strain. The sll0945− mutant (GSII−) produced glycogen similar to the wild-type, with only a slightly higher proportion of short chains (DP 4–11). The current study suggests that GS isoforms in Synechocystis sp. PCC6803 have different elongation specificities in the biosynthesis of glycogen, combined with ADP-glucose pyrophosphorylase and glycogen branching enzyme.
Collapse
|
38
|
Busi MV, Gomez-Casati DF, Martín M, Barchiesi J, Grisolía MJ, Hedín N, Carrillo JB. Starch Metabolism in Green Plants. POLYSACCHARIDES 2014. [DOI: 10.1007/978-3-319-03751-6_78-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
39
|
Zhu F, Bertoft E, Seetharaman K. Composition of clusters and building blocks in amylopectins from maize mutants deficient in starch synthase III. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:12345-12355. [PMID: 24229421 DOI: 10.1021/jf403865n] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Branches in amylopectin are distributed along the backbone. Units of the branches are building blocks (smaller) and clusters (larger) based on the distance between branches. In this study, composition of clusters and building blocks of amylopectins from dull1 maize mutants deficient in starch synthase III (SSIII) with a common genetic background (W64A) were characterized and compared with the wild type. Clusters were produced from amylopectins by partial hydrolysis using α-amylase of Bacillus amyloliquefaciens and were subsequently treated with phosphorylase a and β-amylase to produce φ,β-limit dextrins. Clusters were further extensively hydrolyzed with the α-amylase to produce building blocks. Structures of clusters and building blocks were analyzed by diverse chromatographic techniques. The results showed that the dull1 mutation resulted in larger clusters with more singly branched building blocks. The average cluster contained ~5.4 blocks in dull1 mutants and ~4.2 blocks in the wild type. The results are compared with previous results from SSIII-deficient amo1 barley and suggest fundamental differences in the cluster structures.
Collapse
Affiliation(s)
- Fan Zhu
- School of Chemical Sciences, University of Auckland , Private Bag 92019, Auckland 1142, New Zealand
| | | | | |
Collapse
|
40
|
Zhu F, Bertoft E, Källman A, Myers AM, Seetharaman K. Molecular structure of starches from maize mutants deficient in starch synthase III. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:9899-907. [PMID: 23967805 DOI: 10.1021/jf402090f] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Molecular structures of starches from dull1 maize mutants deficient in starch synthase III (SSIII) with a common genetic background (W64A) were characterized and compared with the wild type. Amylose content with altered structure was higher in the nonwaxy mutants (25.4-30.2%) compared to the wild type maize (21.5%) as revealed by gel permeation chromatography. Superlong chains of the amylopectin component were found in all nonwaxy samples. Unit chain length distribution of amylopectins and their φ,β-limit dextrins (reflecting amylopectin internal structure) from dull1 mutants were also characterized by anion-exchange chromatography after debranching. Deficiency of SSIII led to an increased amount of short chains (DP ≤36 in amylopectin), whereas the content of long chains decreased from 8.4% to between 3.1 and 3.7% in both amylopectin and φ,β-limit dextrins. Moreover, both the external and internal chain lengths decreased, suggesting a difference in their cluster structures. Whereas the molar ratio of A:B-chains was similar in all samples (1.1-1.2), some ratios of chain categories were affected by the absence of SSIII, notably the ratio of "fingerprint" A-chains to "clustered" A-chains. This study highlighted the relationship between SSIII and the internal molecular structure of maize starch.
Collapse
Affiliation(s)
- Fan Zhu
- School of Chemical Sciences, University of Auckland , Private Bag 92019, Auckland 1142, New Zealand
| | | | | | | | | |
Collapse
|
41
|
|
42
|
Asare EK, Båga M, Rossnagel BG, Chibbar RN. Polymorphism in the barley granule bound starch synthase 1 (gbss1) gene associated with grain starch variant amylose concentration. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:10082-10092. [PMID: 22950712 DOI: 10.1021/jf302291t] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Granule bound starch synthase 1 (GBSS1) accumulation within starch granules and structure of Gbss1 alleles were determined for nine barley ( Hordeum vulgare L.) genotypes producing amylose-free (undetectable), near-waxy (1.6-4.5%), normal (25.8%), and increased (38.0-40.8%) amylose grain starches. Compared to normal starch granules, GBSS1 accumulation was severely reduced in three near-waxy, slightly reduced in two waxy, and slightly elevated in three increased amylose starches. Gbss1 nucleotide sequence analysis for the nine genotypes distinguished them into three Gbss1 groups with several single-nucleotide polymorphisms. A new unique Q312H substitution within GBSS1 was discovered in near-waxy genotype SB94912 with reduced amylose (1.6%) concentration relative to the other two near-waxy lines, CDC Rattan and CDC Candle (4.5%). The two waxy genotype GBSS1 showed a previously described D287V change for CDC Alamo and a new G513W change for CDC Fibar. Both amino acid alterations are conserved residues within starch synthase domains involved in glucan interaction. The increased amylose genotypes showed several unique nucleotide changes within the second and fourth Gbss1 introns, but only SB94893 GBSS1 showed a unique amino acid substitution, A250T in exon 6. The Gbss1 nucleotide differences were used to design genetic markers to monitor Gbss1 alleles in genotypes with various amylose grain starches.
Collapse
Affiliation(s)
- Eric K Asare
- Department of Plant Sciences, University of Saskatchewan , 51 Campus Drive, Saskatoon, Saskatchewan S7N 5A8, Canada
| | | | | | | |
Collapse
|
43
|
Kakumanu A, Ambavaram MM, Klumas C, Krishnan A, Batlang U, Myers E, Grene R, Pereira A. Effects of drought on gene expression in maize reproductive and leaf meristem tissue revealed by RNA-Seq. PLANT PHYSIOLOGY 2012; 160:846-67. [PMID: 22837360 PMCID: PMC3461560 DOI: 10.1104/pp.112.200444] [Citation(s) in RCA: 210] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 07/19/2012] [Indexed: 05/18/2023]
Abstract
Drought stress affects cereals especially during the reproductive stage. The maize (Zea mays) drought transcriptome was studied using RNA-Seq analysis to compare drought-treated and well-watered fertilized ovary and basal leaf meristem tissue. More drought-responsive genes responded in the ovary compared with the leaf meristem. Gene Ontology enrichment analysis revealed a massive decrease in transcript abundance of cell division and cell cycle genes in the drought-stressed ovary only. Among Gene Ontology categories related to carbohydrate metabolism, changes in starch and Suc metabolism-related genes occurred in the ovary, consistent with a decrease in starch levels, and in Suc transporter function, with no comparable changes occurring in the leaf meristem. Abscisic acid (ABA)-related processes responded positively, but only in the ovaries. Related responses suggested the operation of low glucose sensing in drought-stressed ovaries. The data are discussed in the context of the susceptibility of maize kernel to drought stress leading to embryo abortion and the relative robustness of dividing vegetative tissue taken at the same time from the same plant subjected to the same conditions. Our working hypothesis involves signaling events associated with increased ABA levels, decreased glucose levels, disruption of ABA/sugar signaling, activation of programmed cell death/senescence through repression of a phospholipase C-mediated signaling pathway, and arrest of the cell cycle in the stressed ovary at 1 d after pollination. Increased invertase levels in the stressed leaf meristem, on the other hand, resulted in that tissue maintaining hexose levels at an "unstressed" level, and at lower ABA levels, which was correlated with successful resistance to drought stress.
Collapse
Affiliation(s)
| | | | - Curtis Klumas
- Virginia Bioinformatics Institute (A.Ka., M.M.R.A., A.Kr., U.B., A.P.), Department of Plant Pathology (A.Ka., R.G.), and Genetics, Bioinformatics, and Computational Biology Program (C.K., E.M.), Virginia Tech, Blacksburg, Virginia 24061; and Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, Arkansas 72701 (A.P.)
| | | | | | - Elijah Myers
- Virginia Bioinformatics Institute (A.Ka., M.M.R.A., A.Kr., U.B., A.P.), Department of Plant Pathology (A.Ka., R.G.), and Genetics, Bioinformatics, and Computational Biology Program (C.K., E.M.), Virginia Tech, Blacksburg, Virginia 24061; and Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, Arkansas 72701 (A.P.)
| | - Ruth Grene
- Virginia Bioinformatics Institute (A.Ka., M.M.R.A., A.Kr., U.B., A.P.), Department of Plant Pathology (A.Ka., R.G.), and Genetics, Bioinformatics, and Computational Biology Program (C.K., E.M.), Virginia Tech, Blacksburg, Virginia 24061; and Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, Arkansas 72701 (A.P.)
| | - Andy Pereira
- Virginia Bioinformatics Institute (A.Ka., M.M.R.A., A.Kr., U.B., A.P.), Department of Plant Pathology (A.Ka., R.G.), and Genetics, Bioinformatics, and Computational Biology Program (C.K., E.M.), Virginia Tech, Blacksburg, Virginia 24061; and Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, Arkansas 72701 (A.P.)
| |
Collapse
|
44
|
Abstract
Starch is the major non-structural carbohydrate in plants. It serves as an important store of carbon that fuels plant metabolism and growth when they are unable to photosynthesise. This storage can be in leaves and other green tissues, where it is degraded during the night, or in heterotrophic tissues such as roots, seeds and tubers, where it is stored over longer time periods. Arabidopsis accumulates starch in many of its tissues, but mostly in its leaves during the day. It has proven to be a powerful genetic system for discovering how starch is synthesised and degraded, and new proteins and processes have been discovered. Such work has major significance for our starch crops, whose yield and quality could be improved by the application of this knowledge. Research into Arabidopsis starch metabolism has begun to reveal how its daily turnover is integrated into the rest of metabolism and adapted to the environmental conditions. Furthermore, Arabidopsis mutant lines deficient in starch metabolism have been employed as tools to study other biological processes ranging from sugar sensing to gravitropism and flowering time control. This review gives a detailed account of the use of Arabidopsis to study starch metabolism. It describes the major discoveries made and presents an overview of our understanding today, together with some as-yet unresolved questions.
Collapse
Affiliation(s)
- Sebastian Streb
- Institute of Agricultural Sciences, Department of Biology, ETH
Zurich, Universitätstrasse 2, Zurich, Switzerland
| | - Samuel C. Zeeman
- Institute of Agricultural Sciences, Department of Biology, ETH
Zurich, Universitätstrasse 2, Zurich, Switzerland
| |
Collapse
|
45
|
Streb S, Zeeman SC. Starch metabolism in Arabidopsis. THE ARABIDOPSIS BOOK 2012; 10:e0160. [PMID: 23393426 DOI: 10.199/tab.e0160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Starch is the major non-structural carbohydrate in plants. It serves as an important store of carbon that fuels plant metabolism and growth when they are unable to photosynthesise. This storage can be in leaves and other green tissues, where it is degraded during the night, or in heterotrophic tissues such as roots, seeds and tubers, where it is stored over longer time periods. Arabidopsis accumulates starch in many of its tissues, but mostly in its leaves during the day. It has proven to be a powerful genetic system for discovering how starch is synthesised and degraded, and new proteins and processes have been discovered. Such work has major significance for our starch crops, whose yield and quality could be improved by the application of this knowledge. Research into Arabidopsis starch metabolism has begun to reveal how its daily turnover is integrated into the rest of metabolism and adapted to the environmental conditions. Furthermore, Arabidopsis mutant lines deficient in starch metabolism have been employed as tools to study other biological processes ranging from sugar sensing to gravitropism and flowering time control. This review gives a detailed account of the use of Arabidopsis to study starch metabolism. It describes the major discoveries made and presents an overview of our understanding today, together with some as-yet unresolved questions.
Collapse
Affiliation(s)
- Sebastian Streb
- Institute of Agricultural Sciences, Department of Biology, ETH Zurich, Universitätstrasse 2, Zurich, Switzerland
| | | |
Collapse
|
46
|
Crofts N, Abe K, Aihara S, Itoh R, Nakamura Y, Itoh K, Fujita N. Lack of starch synthase IIIa and high expression of granule-bound starch synthase I synergistically increase the apparent amylose content in rice endosperm. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2012; 193-194:62-69. [PMID: 22794919 DOI: 10.1016/j.plantsci.2012.05.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Revised: 05/09/2012] [Accepted: 05/10/2012] [Indexed: 05/18/2023]
Abstract
Rice endosperm starch is composed of 0-30% linear amylose, which is entirely synthesized by granule-bound starch synthase I (GBSSI: encoded by Waxy, Wx). The remainder consists of branched amylopectin and is elongated by multiple starch synthases (SS) including SSI, IIa and IIIa. Typical japonica rice lacks active SSIIa and contains a low expressing Wx(b) causing a low amylose content (ca. 20%). WAB2-3 (SS3a/Wx(a)) lines generated by the introduction of a dominant indica Wx(a) into a japonica waxy mutant (SS3a/wx) exhibit elevated GBSSI and amylose content (ca. 25%). The japonica ss3a mutant (ss3a/Wx(b)) shows a high amylose content (ca. 30%), decreased long chains of amylopectin and increased GBSSI levels. To investigate the functional relationship between the ss3a and Wx(a) genes, the ss3a/Wx(a) line was generated by crossing ss3a/Wx(b) with SS3a/Wx(a), and the starch properties of this line were examined. The results show that the apparent amylose content of the ss3a/Wx(a) line was increased (41.3%) compared to the parental lines. However, the GBSSI quantity did not increase compared to the SS3a/Wx(a) line. The amylopectin branch structures were similar to the ss3a/Wx(b) mutant. Therefore, Wx(a) and ss3a synergistically increase the apparent amylose content in rice endosperm, and the possible reasons for this increase are discussed.
Collapse
Affiliation(s)
- Naoko Crofts
- Department of Biological Production, Akita Prefectural University, 241-438 Kaidobata-Nishi, Nakano Shimoshinjo, Akita City, Akita 010-0195, Japan.
| | - Katsumi Abe
- Graduate School of Science and Technology, Niigata University, 8050 Ikarashi 2-no-cho, Nishi-ku, Niigata 950-2181, Japan.
| | - Satomi Aihara
- Department of Biological Production, Akita Prefectural University, 241-438 Kaidobata-Nishi, Nakano Shimoshinjo, Akita City, Akita 010-0195, Japan.
| | - Rumiko Itoh
- Department of Biological Production, Akita Prefectural University, 241-438 Kaidobata-Nishi, Nakano Shimoshinjo, Akita City, Akita 010-0195, Japan. i---love--
| | - Yasunori Nakamura
- Department of Biological Production, Akita Prefectural University, 241-438 Kaidobata-Nishi, Nakano Shimoshinjo, Akita City, Akita 010-0195, Japan.
| | - Kimiko Itoh
- Graduate School of Science and Technology, Niigata University, 8050 Ikarashi 2-no-cho, Nishi-ku, Niigata 950-2181, Japan; Center for Transdisciplinary Research Institute, Niigata University, 8050 Ikarashi 2-no-cho, Nishi-ku, Niigata 950-2181, Japan.
| | - Naoko Fujita
- Department of Biological Production, Akita Prefectural University, 241-438 Kaidobata-Nishi, Nakano Shimoshinjo, Akita City, Akita 010-0195, Japan.
| |
Collapse
|
47
|
Lin Q, Huang B, Zhang M, Zhang X, Rivenbark J, Lappe RL, James MG, Myers AM, Hennen-Bierwagen TA. Functional interactions between starch synthase III and isoamylase-type starch-debranching enzyme in maize endosperm. PLANT PHYSIOLOGY 2012; 158:679-92. [PMID: 22193705 PMCID: PMC3271759 DOI: 10.1104/pp.111.189704] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Accepted: 12/20/2011] [Indexed: 05/09/2023]
Abstract
This study characterized genetic interactions between the maize (Zea mays) genes dull1 (du1), encoding starch synthase III (SSIII), and isa2, encoding a noncatalytic subunit of heteromeric isoamylase-type starch-debranching enzyme (ISA1/ISA2 heteromer). Mutants lacking ISA2 still possess the ISA1 homomeric enzyme. Eight du1(-) mutations were characterized, and structural changes in amylopectin resulting from each were measured. In every instance, the same complex pattern of alterations in discontinuous spans of chain lengths was observed, which cannot be explained solely by a discrete range of substrates preferred by SSIII. Homozygous double mutants were constructed containing the null mutation isa2-339 and either du1-Ref, encoding a truncated SSIII protein lacking the catalytic domain, or the null allele du1-R4059. In contrast to the single mutant parents, double mutant endosperms affected in both SSIII and ISA2 were starch deficient and accumulated phytoglycogen. This phenotype was previously observed only in maize sugary1 mutants impaired for the catalytic subunit ISA1. ISA1 homomeric enzyme complexes assembled in both double mutants and were enzymatically active in vitro. Thus, SSIII is required for normal starch crystallization and the prevention of phytoglycogen accumulation when the only isoamylase-type debranching activity present is ISA1 homomer, but not in the wild-type condition, when both ISA1 homomer and ISA1/ISA2 heteromer are present. Previous genetic and biochemical analyses showed that SSIII also is required for normal glucan accumulation when the only isoamylase-type debranching enzyme activity present is ISA1/ISA heteromer. These data indicate that isoamylase-type debranching enzyme and SSIII work in a coordinated fashion to repress phytoglycogen accumulation.
Collapse
|
48
|
Fujita N. Analyses of Function of Starch Biosynthesis-related Isozymes in Rice and Production of Novel Starches. J Appl Glycosci (1999) 2012. [DOI: 10.5458/jag.jag.jag-2011_026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
49
|
Fujita N, Satoh R, Hayashi A, Kodama M, Itoh R, Aihara S, Nakamura Y. Starch biosynthesis in rice endosperm requires the presence of either starch synthase I or IIIa. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:4819-31. [PMID: 21730357 PMCID: PMC3192996 DOI: 10.1093/jxb/err125] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Starch synthase (SS) I and IIIa are the first and second largest components of total soluble SS activity, respectively, in developing japonica rice (Oryza sativa L.) endosperm. To elucidate the distinct and overlapping functions of these enzymes, double mutants were created by crossing the ss1 null mutant with the ss3a null mutant. In the F(2) generation, two opaque seed types were found to have either the ss1ss1/SS3ass3a or the SS1ss1/ss3ass3a genotype. Phenotypic analyses revealed lower SS activity in the endosperm of these lines than in those of the parent mutant lines since these seeds had different copies of SSI and SSIIIa genes in a heterozygous state. The endosperm of the two types of opaque seeds contained the unique starch with modified fine structure, round-shaped starch granules, high amylose content, and specific physicochemical properties. The seed weight was ∼90% of that of the wild type. The amount of granule-bound starch synthase I (GBSSI) and the activity of ADP-glucose pyrophosphorylase (AGPase) were higher than in the wild type and parent mutant lines. The double-recessive homozygous mutant prepared from both ss1 and ss3a null mutants was considered sterile, while the mutant produced by the leaky ss1 mutant×ss3a null mutant cross was fertile. This present study strongly suggests that at least SSI or SSIIIa is required for starch biosynthesis in rice endosperm.
Collapse
Affiliation(s)
- Naoko Fujita
- Department of Biological Production, Akita Prefectural University, Akita City, Akita, 010-0195, Japan.
| | | | | | | | | | | | | |
Collapse
|
50
|
Xia H, Yandeau-Nelson M, Thompson DB, Guiltinan MJ. Deficiency of maize starch-branching enzyme I results in altered starch fine structure, decreased digestibility and reduced coleoptile growth during germination. BMC PLANT BIOLOGY 2011; 11:95. [PMID: 21599988 PMCID: PMC3245629 DOI: 10.1186/1471-2229-11-95] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Accepted: 05/21/2011] [Indexed: 05/17/2023]
Abstract
BACKGROUND Two distinct starch branching enzyme (SBE) isoforms predate the divergence of monocots and dicots and have been conserved in plants since then. This strongly suggests that both SBEI and SBEII provide unique selective advantages to plants. However, no phenotype for the SBEI mutation, sbe1a, had been previously observed. To explore this incongruity the objective of the present work was to characterize functional and molecular phenotypes of both sbe1a and wild-type (Wt) in the W64A maize inbred line. RESULTS Endosperm starch granules from the sbe1a mutant were more resistant to digestion by pancreatic α-amylase, and the sbe1a mutant starch had an altered branching pattern for amylopectin and amylose. When kernels were germinated, the sbe1a mutant was associated with shorter coleoptile length and higher residual starch content, suggesting that less efficient starch utilization may have impaired growth during germination. CONCLUSIONS The present report documents for the first time a molecular phenotype due to the absence of SBEI, and suggests strongly that it is associated with altered physiological function of the starch in vivo. We believe that these results provide a plausible rationale for the conservation of SBEI in plants in both monocots and dicots, as greater seedling vigor would provide an important survival advantage when resources are limited.
Collapse
Affiliation(s)
- Huan Xia
- MARS Petcare US, 315 Cool Springs Boulevard, Franklin, Tennessee 37067, USA
- Department of Food Science, The Pennsylvania State University, University Park, Pennsylvania 16802-2504, USA
| | - Marna Yandeau-Nelson
- Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, Iowa 50011-3260, USA
- Department of Horticulture, The Pennsylvania State University, University Park, Pennsylvania 16802-5807, USA
| | - Donald B Thompson
- Department of Food Science, The Pennsylvania State University, University Park, Pennsylvania 16802-2504, USA
| | - Mark J Guiltinan
- Department of Horticulture, The Pennsylvania State University, University Park, Pennsylvania 16802-5807, USA
| |
Collapse
|