1
|
Huang J, Tao H, Chen J, Shen Y, Lei J, Pan J, Yan C, Yan N. Structure-guided discovery of protein and glycan components in native mastigonemes. Cell 2024; 187:1733-1744.e12. [PMID: 38552612 DOI: 10.1016/j.cell.2024.02.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 01/07/2024] [Accepted: 02/27/2024] [Indexed: 04/02/2024]
Abstract
Mastigonemes, the hair-like lateral appendages lining cilia or flagella, participate in mechanosensation and cellular motion, but their constituents and structure have remained unclear. Here, we report the cryo-EM structure of native mastigonemes isolated from Chlamydomonas at 3.0 Å resolution. The long stem assembles as a super spiral, with each helical turn comprising four pairs of anti-parallel mastigoneme-like protein 1 (Mst1). A large array of arabinoglycans, which represents a common class of glycosylation in plants and algae, is resolved surrounding the type II poly-hydroxyproline (Hyp) helix in Mst1. The EM map unveils a mastigoneme axial protein (Mstax) that is rich in heavily glycosylated Hyp and contains a PKD2-like transmembrane domain (TMD). Mstax, with nearly 8,000 residues spanning from the intracellular region to the distal end of the mastigoneme, provides the framework for Mst1 assembly. Our study provides insights into the complexity of protein and glycan interactions in native bio-architectures.
Collapse
Affiliation(s)
- Junhao Huang
- Beijing Frontier Research Center for Biological Structures, State Key Laboratory of Membrane Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Hui Tao
- MOE Key Laboratory of Protein Sciences, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jikun Chen
- MOE Key Laboratory of Protein Sciences, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yang Shen
- Beijing Frontier Research Center for Biological Structures, State Key Laboratory of Membrane Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jianlin Lei
- Beijing Frontier Research Center for Biological Structures, State Key Laboratory of Membrane Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Junmin Pan
- MOE Key Laboratory of Protein Sciences, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, China.
| | - Chuangye Yan
- Beijing Frontier Research Center for Biological Structures, State Key Laboratory of Membrane Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| | - Nieng Yan
- Beijing Frontier Research Center for Biological Structures, State Key Laboratory of Membrane Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China; Institute of Bio-Architecture and Bio-Interactions (IBABI), Shenzhen Medical Academy of Research and Translation (SMART), Shenzhen, Guangdong 518107, China.
| |
Collapse
|
2
|
Lykins J, Moschitto MJ, Zhou Y, Filippova EV, Le HV, Tomita T, Fox BA, Bzik DJ, Su C, Rajagopala SV, Flores K, Spano F, Woods S, Roberts CW, Hua C, El Bissati K, Wheeler KM, Dovgin S, Muench SP, McPhillie M, Fishwick CW, Anderson WF, Lee PJ, Hickman M, Weiss LM, Dubey JP, Lorenzi HA, Silverman RB, McLeod RL. From TgO/GABA-AT, GABA, and T-263 Mutant to Conception of Toxoplasma. iScience 2024; 27:108477. [PMID: 38205261 PMCID: PMC10776954 DOI: 10.1016/j.isci.2023.108477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 04/28/2023] [Accepted: 11/13/2023] [Indexed: 01/12/2024] Open
Abstract
Toxoplasma gondii causes morbidity, mortality, and disseminates widely via cat sexual stages. Here, we find T. gondii ornithine aminotransferase (OAT) is conserved across phyla. We solve TgO/GABA-AT structures with bound inactivators at 1.55 Å and identify an inactivator selective for TgO/GABA-AT over human OAT and GABA-AT. However, abrogating TgO/GABA-AT genetically does not diminish replication, virulence, cyst-formation, or eliminate cat's oocyst shedding. Increased sporozoite/merozoite TgO/GABA-AT expression led to our study of a mutagenized clone with oocyst formation blocked, arresting after forming male and female gametes, with "Rosetta stone"-like mutations in genes expressed in merozoites. Mutations are similar to those in organisms from plants to mammals, causing defects in conception and zygote formation, affecting merozoite capacitation, pH/ionicity/sodium-GABA concentrations, drawing attention to cyclic AMP/PKA, and genes enhancing energy or substrate formation in TgO/GABA-AT-related-pathways. These candidates potentially influence merozoite's capacity to make gametes that fuse to become zygotes, thereby contaminating environments and causing disease.
Collapse
Affiliation(s)
- Joseph Lykins
- Pritzker School of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Matthew J. Moschitto
- Department of Chemistry, Department of Molecular Biosciences, Chemistry of Life Processes Institute, Center for Molecular Innovation and Drug Discovery, and Center for Developmental Therapeutics, Northwestern University, Evanston, IL 60208-3113, USA
| | - Ying Zhou
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL 60637, USA
| | - Ekaterina V. Filippova
- Center for Structural Genomics of Infectious Diseases and the Department of Biochemistry and Molecular Genetics, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Hoang V. Le
- Department of Chemistry, Department of Molecular Biosciences, Chemistry of Life Processes Institute, Center for Molecular Innovation and Drug Discovery, and Center for Developmental Therapeutics, Northwestern University, Evanston, IL 60208-3113, USA
| | - Tadakimi Tomita
- Division of Parasitology, Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Barbara A. Fox
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | - David J. Bzik
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | - Chunlei Su
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996, USA
| | - Seesandra V. Rajagopala
- Department of Infectious Diseases, The J. Craig Venter Institute, 9704 Medical Center Drive, Rockville, MD 20850, USA
| | - Kristin Flores
- Center for Structural Genomics of Infectious Diseases and the Department of Biochemistry and Molecular Genetics, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Furio Spano
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Stuart Woods
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow Scotland, UK
| | - Craig W. Roberts
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow Scotland, UK
| | - Cong Hua
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL 60637, USA
| | - Kamal El Bissati
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL 60637, USA
| | - Kelsey M. Wheeler
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL 60637, USA
| | - Sarah Dovgin
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL 60637, USA
| | - Stephen P. Muench
- School of Biomedical Sciences and Astbury Centre for Structural Molecular Biology, The University of Leeds, Leeds, West York LS2 9JT, UK
| | - Martin McPhillie
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - Colin W.G. Fishwick
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - Wayne F. Anderson
- Center for Structural Genomics of Infectious Diseases and the Department of Biochemistry and Molecular Genetics, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
- Department of Pharmacology, Northwestern University, Chicago, IL 60611, USA
| | - Patricia J. Lee
- Division of Experimental Therapeutics, Military Malaria Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA
| | - Mark Hickman
- Division of Experimental Therapeutics, Military Malaria Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA
| | - Louis M. Weiss
- Division of Parasitology, Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Division of Infectious Diseases, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Jitender P. Dubey
- Animal Parasitic Diseases Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA
| | - Hernan A. Lorenzi
- Department of Infectious Diseases, The J. Craig Venter Institute, 9704 Medical Center Drive, Rockville, MD 20850, USA
| | - Richard B. Silverman
- Department of Chemistry, Department of Molecular Biosciences, Chemistry of Life Processes Institute, Center for Molecular Innovation and Drug Discovery, and Center for Developmental Therapeutics, Northwestern University, Evanston, IL 60208-3113, USA
- Department of Pharmacology, Northwestern University, Chicago, IL 60611, USA
| | - Rima L. McLeod
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL 60637, USA
- Department of Pediatrics (Infectious Diseases), Institute of Genomics, Genetics, and Systems Biology, Global Health Center, Toxoplasmosis Center, CHeSS, The College, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
3
|
Lv Y, Han F, Liu M, Zhang T, Cui G, Wang J, Yang Y, Yang YG, Yang W. Characteristics of N 6-methyladenosine Modification During Sexual Reproduction of Chlamydomonas reinhardtii. GENOMICS, PROTEOMICS & BIOINFORMATICS 2023; 21:756-768. [PMID: 35550876 PMCID: PMC10787120 DOI: 10.1016/j.gpb.2022.04.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/12/2022] [Accepted: 04/24/2022] [Indexed: 06/15/2023]
Abstract
The unicellular green alga Chlamydomonas reinhardtii (hereafter Chlamydomonas) possesses both plant and animal attributes, and it is an ideal model organism for studying fundamental processes such as photosynthesis, sexual reproduction, and life cycle. N6-methyladenosine (m6A) is the most prevalent mRNA modification, and it plays important roles during sexual reproduction in animals and plants. However, the pattern and function of m6A modification during the sexual reproduction of Chlamydomonas remain unknown. Here, we performed transcriptome and methylated RNA immunoprecipitation sequencing (MeRIP-seq) analyses on six samples from different stages during sexual reproduction of the Chlamydomonas life cycle. The results show that m6A modification frequently occurs at the main motif of DRAC (D = G/A/U, R = A/G) in Chlamydomonas mRNAs. Moreover, m6A peaks in Chlamydomonas mRNAs are mainly enriched in the 3' untranslated regions (3'UTRs) and negatively correlated with the abundance of transcripts at each stage. In particular, there is a significant negative correlation between the expression levels and the m6A levels of genes involved in the microtubule-associated pathway, indicating that m6A modification influences the sexual reproduction and the life cycle of Chlamydomonas by regulating microtubule-based movement. In summary, our findings are the first to demonstrate the distribution and the functions of m6A modification in Chlamydomonas mRNAs and provide new evolutionary insights into m6A modification in the process of sexual reproduction in other plant organisms.
Collapse
Affiliation(s)
- Ying Lv
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; China National Botanical Garden, Beijing 100093, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fei Han
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; China National Botanical Garden, Beijing 100093, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mengxia Liu
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ting Zhang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
| | - Guanshen Cui
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
| | - Jiaojiao Wang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; China National Botanical Garden, Beijing 100093, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying Yang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China; Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Yun-Gui Yang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China; Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Wenqiang Yang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; China National Botanical Garden, Beijing 100093, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China; Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100093, China.
| |
Collapse
|
4
|
Geng S, Hamaji T, Ferris PJ, Gao M, Nishimura Y, Umen J. A conserved RWP-RK transcription factor VSR1 controls gametic differentiation in volvocine algae. Proc Natl Acad Sci U S A 2023; 120:e2305099120. [PMID: 37436957 PMCID: PMC10629530 DOI: 10.1073/pnas.2305099120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 06/12/2023] [Indexed: 07/14/2023] Open
Abstract
Volvocine green algae are a model for understanding the evolution of mating types and sexes. They are facultatively sexual, with gametic differentiation occurring in response to nitrogen starvation (-N) in most genera and to sex inducer hormone in Volvox. The conserved RWP-RK family transcription factor (TF) MID is encoded by the minus mating-type locus or male sex-determining region of heterothallic volvocine species and dominantly determines minus or male gametic differentiation. However, the factor(s) responsible for establishing the default plus or female differentiation programs have remained elusive. We performed a phylo-transcriptomic screen for autosomal RWP-RK TFs induced during gametogenesis in unicellular isogamous Chlamydomonas reinhardtii (Chlamydomonas) and in multicellular oogamous Volvox carteri (Volvox) and identified a single conserved ortho-group we named Volvocine Sex Regulator 1 (VSR1). Chlamydomonas vsr1 mutants of either mating type failed to mate and could not induce expression of key mating-type-specific genes. Similarly, Volvox vsr1 mutants in either sex could initiate sexual embryogenesis, but the presumptive eggs or androgonidia (sperm packet precursors) were infertile and unable to express key sex-specific genes. Yeast two-hybrid assays identified a conserved domain in VSR1 capable of self-interaction or interaction with the conserved N terminal domain of MID. In vivo coimmunoprecipitation experiments demonstrated association of VSR1 and MID in both Chlamydomonas and Volvox. These data support a new model for volvocine sexual differentiation where VSR1 homodimers activate expression of plus/female gamete-specific-genes, but when MID is present, MID-VSR1 heterodimers are preferentially formed and activate minus/male gamete-specific-genes.
Collapse
Affiliation(s)
- Sa Geng
- Donald Danforth Plant Science Center, St Louis, MO63132
| | - Takashi Hamaji
- Donald Danforth Plant Science Center, St Louis, MO63132
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto606-8502, Japan
- Research and Development Initiative, Chuo University, Bunkyo-ku, Tokyo112-8551, Japan
| | | | - Minglu Gao
- Donald Danforth Plant Science Center, St Louis, MO63132
| | - Yoshiki Nishimura
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto606-8502, Japan
| | - James Umen
- Donald Danforth Plant Science Center, St Louis, MO63132
| |
Collapse
|
5
|
Sakuraba Y, Zhuo M, Yanagisawa S. RWP-RK domain-containing transcription factors in the Viridiplantae: biology and phylogenetic relationships. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:4323-4337. [PMID: 35605260 DOI: 10.1093/jxb/erac229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
The RWP-RK protein family is a group of transcription factors containing the RWP-RK DNA-binding domain. This domain is an ancient motif that emerged before the establishment of the Viridiplantae-the green plants, consisting of green algae and land plants. The domain is mostly absent in other kingdoms but widely distributed in Viridiplantae. In green algae, a liverwort, and several angiosperms, RWP-RK proteins play essential roles in nitrogen responses and sexual reproduction-associated processes, which are seemingly unrelated phenomena but possibly interdependent in autotrophs. Consistent with related but diversified roles of the RWP-RK proteins in these organisms, the RWP-RK protein family appears to have expanded intensively, but independently, in the algal and land plant lineages. Thus, bryophyte RWP-RK proteins occupy a unique position in the evolutionary process of establishing the RWP-RK protein family. In this review, we summarize current knowledge of the RWP-RK protein family in the Viridiplantae, and discuss the significance of bryophyte RWP-RK proteins in clarifying the relationship between diversification in the RWP-RK protein family and procurement of sophisticated mechanisms for adaptation to the terrestrial environment.
Collapse
Affiliation(s)
- Yasuhito Sakuraba
- Plant Functional Biotechnology, Agro-Biotechnology Research Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Mengna Zhuo
- Plant Functional Biotechnology, Agro-Biotechnology Research Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Shuichi Yanagisawa
- Plant Functional Biotechnology, Agro-Biotechnology Research Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
6
|
Schad A, Rössler S, Nagel R, Wagner H, Wilhelm C. Crossing and selection of Chlamydomonas reinhardtii strains for biotechnological glycolate production. Appl Microbiol Biotechnol 2022; 106:3539-3554. [PMID: 35511277 PMCID: PMC9151519 DOI: 10.1007/s00253-022-11933-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 04/13/2022] [Accepted: 04/20/2022] [Indexed: 11/27/2022]
Abstract
Abstract As an alternative to chemical building blocks derived from algal biomass, the excretion of glycolate has been proposed. This process has been observed in green algae such as Chlamydomonas reinhardtii as a product of the photorespiratory pathway. Photorespiration generally occurs at low CO2 and high O2 concentrations, through the key enzyme RubisCO initiating the pathway via oxygenation of 1.5-ribulose-bisphosphate. In wild-type strains, photorespiration is usually suppressed in favour of carboxylation due to the cellular carbon concentrating mechanisms (CCMs) controlling the internal CO2 concentration. Additionally, newly produced glycolate is directly metabolized in the C2 cycle. Therefore, both the CCMs and the C2 cycle are the key elements which limit the glycolate production in wild-type cells. Using conventional crossing techniques, we have developed Chlamydomonas reinhardtii double mutants deficient in these two key pathways to direct carbon flux to glycolate excretion. Under aeration with ambient air, the double mutant D6 showed a significant and stable glycolate production when compared to the non-producing wild type. Interestingly, this mutant can act as a carbon sink by fixing atmospheric CO2 into glycolate without requiring any additional CO2 supply. Thus, the double-mutant strain D6 can be used as a photocatalyst to produce chemical building blocks and as a future platform for algal-based biotechnology. Key Points • Chlamydomonas reinhardtii cia5 gyd double mutants were developed by sexual crossing • The double mutation eliminates the need for an inhibitor in glycolate production • The strain D6 produces significant amounts of glycolate with ambient air only Supplementary Information The online version contains supplementary material available at 10.1007/s00253-022-11933-y.
Collapse
Affiliation(s)
- Antonia Schad
- Department of Algal Biotechnology, Faculty of Life Science, University of Leipzig, Permoserstraße 15, D-04318, Leipzig, Germany
| | - Sonja Rössler
- Department of Algal Biotechnology, Faculty of Life Science, University of Leipzig, Permoserstraße 15, D-04318, Leipzig, Germany
| | - Raimund Nagel
- Department of Plant Physiology, Faculty of Life Science, University of Leipzig, Johannisallee 21-23, D-04103, Leipzig, Germany
| | - Heiko Wagner
- Department of Algal Biotechnology, Faculty of Life Science, University of Leipzig, Permoserstraße 15, D-04318, Leipzig, Germany
| | - Christian Wilhelm
- Department of Algal Biotechnology, Faculty of Life Science, University of Leipzig, Permoserstraße 15, D-04318, Leipzig, Germany.
| |
Collapse
|
7
|
Sakato-Antoku M, King SM. Developmental Changes in Ciliary Composition during Gametogenesis in Chlamydomonas. Mol Biol Cell 2022; 33:br10. [PMID: 35389765 PMCID: PMC9561859 DOI: 10.1091/mbc.e22-02-0033] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Chlamydomonas reinhardtii transitions from mitotically dividing vegetative cells to sexually competent gametes of two distinct mating types following nutrient deprivation. Gametes of opposite mating type interact via their cilia, initiating an intraciliary signaling cascade and ultimately fuse forming diploid zygotes. The process of gametogenesis is genetically encode, and a previous study revealed numerous significant changes in mRNA abundance during this life-cycle transition. Here we describe a proteomic analysis of cilia derived from vegetative and gametic cells of both mating types in an effort to assess the global changes that occur within the organelle during this process. We identify numerous membrane- and/or matrix-associated proteins in gametic cilia that were not detected in cilia from vegetative cells. This includes the pro-protein from which the GATI-amide gametic chemotactic modulator derives, as well as receptors, a dynamin-related protein, ammonium transporters, two proteins potentially involved in the intraciliary signaling cascade-driven increase in cAMP, and multiple proteins with a variety of interaction domains. These changes in ciliary composition likely directly affect the functional properties of this organelle as the cell transitions between life-cycle stages.
Collapse
Affiliation(s)
- Miho Sakato-Antoku
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, Connecticut 06030-3305, USA
| | - Stephen M King
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, Connecticut 06030-3305, USA
| |
Collapse
|
8
|
Satouh Y, Inoue N. Involvement of cellular protrusions in gamete interactions. Semin Cell Dev Biol 2022; 129:93-102. [PMID: 35370088 DOI: 10.1016/j.semcdb.2022.03.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/15/2022] [Accepted: 03/25/2022] [Indexed: 12/24/2022]
Abstract
Gamete fusion is of considerable importance in reproductive events, as it determines the gamete pairs or chromosomes that the next generation will inherit. To preserve species specificity with an appropriate karyotype, the fusion between gametes requires regulatory mechanisms to ensure limited fusion competency. In many organisms, gamete surfaces are not smooth, but present constitutive or transient cellular protrusions suggested to be involved in gamete fusion. However, the molecular mechanisms and the factors essential for the membrane-membrane fusion process and cellular protrusion involvement have remained unclear. Recent advances in the identification and functional analysis of the essential factors for gamete interaction have revealed the molecular mechanisms underlying their activity regulation and dynamics. In homogametic fertilization, dynamic regulation of the fusion core machinery on cellular protrusions was precisely uncovered. In heterogametic fertilization, oocyte fusion competency was suggested to correlate with the compartmentalization of the fusion essential factor and protrusion formation. These findings shed light on the significance of cellular protrusions in gamete fusion as a physically and functionally specialized site for cellular fusion. In this review, we consider the developments in gamete interaction research in various species with different fertilization modes, highlighting the commonalities in the relationship between gamete fusion and cellular protrusions.
Collapse
Affiliation(s)
- Yuhkoh Satouh
- Laboratory of Molecular Traffic, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, Japan.
| | - Naokazu Inoue
- Department of Cell Science, Institute of Biomedical Sciences, School of Medicine, Fukushima Medical University, Fukushima, Fukushima, Japan.
| |
Collapse
|
9
|
Kulkarni P, Bhattacharya S, Achuthan S, Behal A, Jolly MK, Kotnala S, Mohanty A, Rangarajan G, Salgia R, Uversky V. Intrinsically Disordered Proteins: Critical Components of the Wetware. Chem Rev 2022; 122:6614-6633. [PMID: 35170314 PMCID: PMC9250291 DOI: 10.1021/acs.chemrev.1c00848] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Despite the wealth of knowledge gained about intrinsically disordered proteins (IDPs) since their discovery, there are several aspects that remain unexplored and, hence, poorly understood. A living cell is a complex adaptive system that can be described as a wetware─a metaphor used to describe the cell as a computer comprising both hardware and software and attuned to logic gates─capable of "making" decisions. In this focused Review, we discuss how IDPs, as critical components of the wetware, influence cell-fate decisions by wiring protein interaction networks to keep them minimally frustrated. Because IDPs lie between order and chaos, we explore the possibility that they can be modeled as attractors. Further, we discuss how the conformational dynamics of IDPs manifests itself as conformational noise, which can potentially amplify transcriptional noise to stochastically switch cellular phenotypes. Finally, we explore the potential role of IDPs in prebiotic evolution, in forming proteinaceous membrane-less organelles, in the origin of multicellularity, and in protein conformation-based transgenerational inheritance of acquired characteristics. Together, these ideas provide a new conceptual framework to discern how IDPs may perform critical biological functions despite their lack of structure.
Collapse
Affiliation(s)
- Prakash Kulkarni
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA, USA
| | - Supriyo Bhattacharya
- Integrative Genomics Core, City of Hope National Medical Center, Duarte, CA, USA
| | - Srisairam Achuthan
- Division of Research Informatics, Center for Informatics, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Amita Behal
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA, USA
| | - Mohit Kumar Jolly
- Center for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Sourabh Kotnala
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA, USA
| | - Atish Mohanty
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA, USA
| | - Govindan Rangarajan
- Department of Mathematics, Indian Institute of Science, Bangalore 560012, India
- Center for Neuroscience, Indian Institute of Science, Bangalore 560012, India
| | - Ravi Salgia
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA, USA
| | - Vladimir Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
- Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Institutskiy pereulok, 9, Dolgoprudny, Moscow region 141700, Russia
| |
Collapse
|
10
|
Lipke PN, Rauceo JM, Viljoen A. Cell-Cell Mating Interactions: Overview and Potential of Single-Cell Force Spectroscopy. Int J Mol Sci 2022; 23:ijms23031110. [PMID: 35163034 PMCID: PMC8835621 DOI: 10.3390/ijms23031110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/08/2022] [Accepted: 01/14/2022] [Indexed: 02/01/2023] Open
Abstract
It is an understatement that mating and DNA transfer are key events for living organisms. Among the traits needed to facilitate mating, cell adhesion between gametes is a universal requirement. Thus, there should be specific properties for the adhesion proteins involved in mating. Biochemical and biophysical studies have revealed structural information about mating adhesins, as well as their specificities and affinities, leading to some ideas about these specialized adhesion proteins. Recently, single-cell force spectroscopy (SCFS) has added important findings. In SCFS, mating cells are brought into contact in an atomic force microscope (AFM), and the adhesive forces are monitored through the course of mating. The results have shown some remarkable characteristics of mating adhesins and add knowledge about the design and evolution of mating adhesins.
Collapse
Affiliation(s)
- Peter N. Lipke
- Biology Department, Brooklyn College of the City University of New York, 2900 Bedford Avenue, Brooklyn, NY 11210, USA
- Correspondence: (P.N.L.); (A.V.)
| | - Jason M. Rauceo
- Department of Sciences, John Jay College of the City University of New York, New York, NY 10019, USA;
| | - Albertus Viljoen
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Croix du Sud, 4–5, bte L7.07.07, 1348 Louvain-la-Neuve, Belgium
- Correspondence: (P.N.L.); (A.V.)
| |
Collapse
|
11
|
Pinello JF, Clark TG. HAP2-Mediated Gamete Fusion: Lessons From the World of Unicellular Eukaryotes. Front Cell Dev Biol 2022; 9:807313. [PMID: 35071241 PMCID: PMC8777248 DOI: 10.3389/fcell.2021.807313] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 11/15/2021] [Indexed: 01/29/2023] Open
Abstract
Most, if not all the cellular requirements for fertilization and sexual reproduction arose early in evolution and are retained in extant lineages of single-celled organisms including a number of important model organism species. In recent years, work in two such species, the green alga, Chlamydomonas reinhardtii, and the free-living ciliate, Tetrahymena thermophila, have lent important new insights into the role of HAP2/GCS1 as a catalyst for gamete fusion in organisms ranging from protists to flowering plants and insects. Here we summarize the current state of knowledge around how mating types from these algal and ciliate systems recognize, adhere and fuse to one another, current gaps in our understanding of HAP2-mediated gamete fusion, and opportunities for applying what we know in practical terms, especially for the control of protozoan parasites.
Collapse
Affiliation(s)
- Jennifer F. Pinello
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, United States
| | - Theodore G. Clark
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY, United States
| |
Collapse
|
12
|
Molino JVD, Carpine R, Gademann K, Mayfield S, Sieber S. Development of a cell surface display system in Chlamydomonas reinhardtii. ALGAL RES 2022. [DOI: 10.1016/j.algal.2021.102570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
13
|
Pinello JF, Liu Y, Snell WJ. MAR1 links membrane adhesion to membrane merger during cell-cell fusion in Chlamydomonas. Dev Cell 2021; 56:3380-3392.e9. [PMID: 34813735 DOI: 10.1016/j.devcel.2021.10.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 09/22/2021] [Accepted: 10/28/2021] [Indexed: 01/17/2023]
Abstract
Union of two gametes to form a zygote is a defining event in the life of sexual eukaryotes, yet the mechanisms that underlie cell-cell fusion during fertilization remain poorly characterized. Here, in studies of fertilization in the green alga, Chlamydomonas, we report identification of a membrane protein on minus gametes, Minus Adhesion Receptor 1 (MAR1), that is essential for the membrane attachment with plus gametes that immediately precedes lipid bilayer merger. We show that MAR1 forms a receptor pair with previously identified receptor FUS1 on plus gametes, whose ectodomain architecture we find is identical to a sperm adhesion protein conserved throughout plant lineages. Strikingly, before fusion, MAR1 is biochemically and functionally associated with the ancient, evolutionarily conserved eukaryotic Class II fusion protein HAP2 on minus gametes. Thus, the integral membrane protein MAR1 provides a molecular link between membrane adhesion and bilayer merger during fertilization in Chlamydomonas.
Collapse
Affiliation(s)
- Jennifer F Pinello
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Yanjie Liu
- Department of Cell Biology, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX 75390-9039, USA
| | - William J Snell
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
14
|
Zhang J, Pinello JF, Fernández I, Baquero E, Fedry J, Rey FA, Snell WJ. Species-specific gamete recognition initiates fusion-driving trimer formation by conserved fusogen HAP2. Nat Commun 2021; 12:4380. [PMID: 34282138 PMCID: PMC8289870 DOI: 10.1038/s41467-021-24613-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 06/15/2021] [Indexed: 12/02/2022] Open
Abstract
Recognition and fusion between gametes during fertilization is an ancient process. Protein HAP2, recognized as the primordial eukaryotic gamete fusogen, is a structural homolog of viral class II fusion proteins. The mechanisms that regulate HAP2 function, and whether virus-fusion-like conformational changes are involved, however, have not been investigated. We report here that fusion between plus and minus gametes of the green alga Chlamydomonas indeed requires an obligate conformational rearrangement of HAP2 on minus gametes from a labile, prefusion form into the stable homotrimers observed in structural studies. Activation of HAP2 to undergo its fusogenic conformational change occurs only upon species-specific adhesion between the two gamete membranes. Following a molecular mechanism akin to fusion of enveloped viruses, the membrane insertion capacity of the fusion loop is required to couple formation of trimers to gamete fusion. Thus, species-specific membrane attachment is the gateway to fusion-driving HAP2 rearrangement into stable trimers. HAP2 is essential for gamete fusion during fertilization and is conserved among eukaryotes. Here the authors show that species-specific adhesion between Chlamydomonas plus and minus gametes initiates HAP2 to undergo a fusogenic conformational change into homotrimers via a molecular mechanism akin to that of enveloped viruses.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
| | - Jennifer F Pinello
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
| | - Ignacio Fernández
- Unité de Virologie Structurale, Virology Department and CNRS UMR 3569, Institut Pasteur, Paris, France
| | - Eduard Baquero
- Unité de Virologie Structurale, Virology Department and CNRS UMR 3569, Institut Pasteur, Paris, France
| | - Juliette Fedry
- Unité de Virologie Structurale, Virology Department and CNRS UMR 3569, Institut Pasteur, Paris, France
| | - Félix A Rey
- Unité de Virologie Structurale, Virology Department and CNRS UMR 3569, Institut Pasteur, Paris, France
| | - William J Snell
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA.
| |
Collapse
|
15
|
Kariyawasam T, Joo S, Lee J, Toor D, Gao AF, Noh KC, Lee JH. TALE homeobox heterodimer GSM1/GSP1 is a molecular switch that prevents unwarranted genetic recombination in Chlamydomonas. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 100:938-953. [PMID: 31368133 DOI: 10.1111/tpj.14486] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 07/23/2019] [Accepted: 07/24/2019] [Indexed: 06/10/2023]
Abstract
Eukaryotic sexual life cycles alternate between haploid and diploid stages, the transitions between which are delineated by cell fusion and meiotic division. Transcription factors in the TALE-class homeobox family, GSM1 and GSP1, predominantly control gene expression for the haploid-to-diploid transition during sexual reproduction in the unicellular green alga, Chlamydomonas reinhardtii. To understand the roles that GSM1 and GSP1 play in zygote development, we used gsm1 and gsp1 mutants and examined fused gametes that normally undergo the multiple organellar fusions required for the genetic unity of the zygotes. In gsm1 and gsp1 zygotes, no fusion was observed for the nucleus and chloroplast. Surprisingly, mitochondria and endoplasmic reticulum, which undergo dynamic autologous fusion/fission, did not undergo heterologous fusions in gsm1 or gsp1 zygotes. Furthermore, the mutants failed to resorb their flagella, an event that normally renders the zygotes immotile. When gsm1 and gsp1 zygotes resumed the mitotic cycle, their two nuclei fused prior to mitosis, but neither chloroplastic nor mitochondrial fusion took place, suggesting that these fusions are specifically turned on by GSM1/GSP1. Taken together, this study shows that organellar restructuring during zygotic diploidization does not occur by default but is triggered by a combinatorial switch, the GSM1/GSP1 dyad. This switch may represent an ancient mechanism that evolved to restrict genetic recombination during sexual development.
Collapse
Affiliation(s)
| | - Sunjoo Joo
- Department of Botany, University of British Columbia, Vancouver, Canada
| | - Jenny Lee
- Department of Botany, University of British Columbia, Vancouver, Canada
| | - Deepak Toor
- Department of Botany, University of British Columbia, Vancouver, Canada
| | - Ally F Gao
- Department of Botany, University of British Columbia, Vancouver, Canada
| | - Kyung-Chul Noh
- Department of Biology, Washington University, St. Louis, MO, USA
| | - Jae-Hyeok Lee
- Department of Botany, University of British Columbia, Vancouver, Canada
| |
Collapse
|
16
|
Cronmiller E, Toor D, Shao NC, Kariyawasam T, Wang MH, Lee JH. Cell wall integrity signaling regulates cell wall-related gene expression in Chlamydomonas reinhardtii. Sci Rep 2019; 9:12204. [PMID: 31434930 PMCID: PMC6704257 DOI: 10.1038/s41598-019-48523-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 08/02/2019] [Indexed: 11/13/2022] Open
Abstract
An intact cell wall is critical for cellular interactions with the environment and protecting the cell from environmental challenges. Signaling mechanisms are necessary to monitor cell wall integrity and to regulate cell wall production and remodeling during growth and division cycles. The green alga, Chlamydomonas, has a proteinaceous cell wall of defined structure that is readily removed by gametolysin (g-lysin), a metalloprotease released during sexual mating. Naked cells treated with g-lysin induce the mRNA accumulation of >100 cell wall-related genes within an hour, offering a system to study signaling and regulatory mechanisms for de novo cell wall assembly. Combining quantitative RT-PCR and luciferase reporter assays to probe transcript accumulation and promoter activity, we revealed that up to 500-fold upregulation of cell wall-related genes was driven at least partly by transcriptional activation upon g-lysin treatment. To investigate how naked cells trigger this rapid transcriptional activation, we tested whether osmotic stress and cell wall integrity are involved in this process. Under a constant hypotonic condition, comparable levels of cell wall-gene activation were observed by g-lysin treatment. In contrast, cells in an iso- or hypertonic condition showed up to 80% reduction in the g-lysin-induced gene activation, suggesting that osmotic stress is required for full-scale responses to g-lysin treatment. To test whether mechanical perturbation of cell walls is involved, we isolated and examined a new set of cell wall mutants with defective or little cell walls. All cell wall mutants examined showed a constitutive upregulation of cell wall-related genes at a level that is only achieved by treatment with g-lysin in wild-type cells. Our study suggests a cell wall integrity monitoring mechanism that senses both osmotic stress and mechanical defects of cell walls and regulates cell wall-gene expression in Chlamydomonas, which may relate to cell wall integrity signaling mechanisms in other organisms.
Collapse
Affiliation(s)
- Evan Cronmiller
- Department of Botany, University of British Columbia, 6270 University Blvd., Vancouver, Canada
| | - Deepak Toor
- Department of Botany, University of British Columbia, 6270 University Blvd., Vancouver, Canada
| | - Nai Chun Shao
- Department of Botany, University of British Columbia, 6270 University Blvd., Vancouver, Canada
| | - Thamali Kariyawasam
- Department of Botany, University of British Columbia, 6270 University Blvd., Vancouver, Canada
| | - Ming Hsiu Wang
- Department of Botany, University of British Columbia, 6270 University Blvd., Vancouver, Canada
| | - Jae-Hyeok Lee
- Department of Botany, University of British Columbia, 6270 University Blvd., Vancouver, Canada.
| |
Collapse
|
17
|
Ranjan P, Awasthi M, Snell WJ. Transient Internalization and Microtubule-Dependent Trafficking of a Ciliary Signaling Receptor from the Plasma Membrane to the Cilium. Curr Biol 2019; 29:2942-2947.e2. [PMID: 31422889 DOI: 10.1016/j.cub.2019.07.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 07/03/2019] [Accepted: 07/09/2019] [Indexed: 12/24/2022]
Abstract
Cilia are ancient organelles used by unicellular and multicellular organisms not only for motility but also to receive and respond to multiple environmental cues, including light, odorants, morphogens, growth factors, and contact with cilia of other cells. Much is known about the cellular mechanisms that deliver membrane proteins to cilia during ciliogenesis. Execution of a ciliary signaling pathway, however, can critically depend on rapid alterations in the receptor composition of the cilium itself, and our understanding of the mechanisms that underlie these rapid, regulated alterations remains limited [1-6]. In the bi-ciliated, unicellular alga Chlamydomonas reinhardtii, interactions between cilia of mating type plus and mating type minus gametes mediated by adhesion receptors SAG1 and SAD1 activate a ciliary signaling pathway [7]. In response, a large, inactive pool of SAG1 on the plasma membrane of plus gametes rapidly becomes enriched in the peri-ciliary membrane and enters the cilia to become active and maintain and enhance ciliary adhesion and signaling [8-14]. Ciliary entry per se of SAG1 is independent of anterograde intraflagellar transport (IFT) [13], but the rapid apical enrichment requires cytoplasmic microtubules and the retrograde IFT motor, dynein 1b [14]. Whether the receptors move laterally within the plasma membrane or transit internally during redistribution is unknown. Here, in coupled immunolocalization/biochemical studies on SAG1, we show that, within minutes after gamete activation is initiated, cell-surface SAG1 is internalized, associates with an apico-basally polarized array of cytoplasmic microtubules, and returns to the cell surface at a peri-ciliary staging area for entry into cilia.
Collapse
Affiliation(s)
- Peeyush Ranjan
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Mayanka Awasthi
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - William J Snell
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
18
|
Salomé PA, Merchant SS. A Series of Fortunate Events: Introducing Chlamydomonas as a Reference Organism. THE PLANT CELL 2019; 31:1682-1707. [PMID: 31189738 PMCID: PMC6713297 DOI: 10.1105/tpc.18.00952] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 05/20/2019] [Accepted: 06/08/2019] [Indexed: 05/13/2023]
Abstract
The unicellular alga Chlamydomonas reinhardtii is a classical reference organism for studying photosynthesis, chloroplast biology, cell cycle control, and cilia structure and function. It is also an emerging model for studying sensory cilia, the production of high-value bioproducts, and in situ structural determination. Much of the early appeal of Chlamydomonas was rooted in its promise as a genetic system, but like other classic model organisms, this rise to prominence predated the discovery of the structure of DNA, whole-genome sequences, and molecular techniques for gene manipulation. The haploid genome of C. reinhardtii facilitates genetic analyses and offers many of the advantages of microbial systems applied to a photosynthetic organism. C. reinhardtii has contributed to our understanding of chloroplast-based photosynthesis and cilia biology. Despite pervasive transgene silencing, technological advances have allowed researchers to address outstanding lines of inquiry in algal research. The most thoroughly studied unicellular alga, C. reinhardtii, is the current standard for algal research, and although genome editing is still far from efficient and routine, it nevertheless serves as a template for other algae. We present a historical retrospective of the rise of C. reinhardtii to illuminate its past and present. We also present resources for current and future scientists who may wish to expand their studies to the realm of microalgae.
Collapse
Affiliation(s)
- Patrice A Salomé
- University of California, Los Angeles, Department of Chemistry and Biochemistry, Los Angeles, CA 90095
| | - Sabeeha S Merchant
- University of California, Los Angeles, Department of Chemistry and Biochemistry, Los Angeles, CA 90095
- University of California, Berkeley, Departments of Plant and Microbial Biology and Molecular and Cell Biology, Berkeley, CA 94720
| |
Collapse
|
19
|
Ramola B, Kumar V, Nanda M, Mishra Y, Tyagi T, Gupta A, Sharma N. Evaluation, comparison of different solvent extraction, cell disruption methods and hydrothermal liquefaction of Oedogonium macroalgae for biofuel production. ACTA ACUST UNITED AC 2019; 22:e00340. [PMID: 31080765 PMCID: PMC6500918 DOI: 10.1016/j.btre.2019.e00340] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 04/08/2019] [Accepted: 04/13/2019] [Indexed: 01/08/2023]
Abstract
Lipids yield increased by osmotic shock cell disruption method. High percentage of hexadecanoic acid (52–68%) was obtained by soxhlet extraction. Impurities of chlorophyll and protein were also detected in the extracted lipids. Only one type of FAME, hexadecanoic acid methyl ester was obtained by Triton X-100. 23.3 wt% of crude oil was produced by HTL of algal biomass with TiO2 at 300 °C.
Cell disruption and lipid extraction methods for macroalgae are not well reported. Therefore, we compared various lipid extraction methods and extraction efficiency of various solvents to improve lipid yields from Oedogonium fresh water macroalgae. Lipid extraction was done by 2 methods viz., modified Bligh and Dyer method and soxhlet extraction using either single solvents or mixtures. In soxhlet extraction method five solvents were used (1) Hexane commonly used solvent for lipid extractions, (2) chloroform: methanol (2:1), (3) Chloroform: hexane (1:1), (4) Chloroform: hexane (1:2), (5) Dichloromethane + methanol (2:1). To improve lipid extraction yields, various cell disruption methods were also compared during the present study. Impurities of chlorophyll and protein were also detected in the extracted lipids. Hydrothermal liquefaction of algal biomass with TiO2 was also conducted at 300 °C. HTL was more effective by which 23.3 wt% of bio-crude oil was obtained.
Collapse
Affiliation(s)
- Bharti Ramola
- Department of Chemistry, Uttaranchal University, Dehradun, 248007, India
| | - Vinod Kumar
- Department of Chemistry, Uttaranchal University, Dehradun, 248007, India
- Corresponding author.
| | - Manisha Nanda
- Department of Biotechnology, Dolphin (PG) Institute of Biomedical and Natural Sciences, Dehradun, 248007, India
| | - Yashi Mishra
- Department of Chemistry, Uttaranchal University, Dehradun, 248007, India
| | - Tushar Tyagi
- Department of Chemistry, Uttaranchal University, Dehradun, 248007, India
| | - Ayushi Gupta
- Department of Biotechnology, Uttaranchal University, Dehradun, 248007, India
| | - Nishesh Sharma
- Department of Biotechnology, Uttaranchal University, Dehradun, 248007, India
| |
Collapse
|
20
|
Shinkawa H, Kajikawa M, Nomura Y, Ogura M, Sawaragi Y, Yamano T, Nakagami H, Sugiyama N, Ishihama Y, Kanesaki Y, Yoshikawa H, Fukuzawa H. Algal Protein Kinase, Triacylglycerol Accumulation Regulator 1, Modulates Cell Viability and Gametogenesis in Carbon/Nitrogen-Imbalanced Conditions. PLANT & CELL PHYSIOLOGY 2019; 60:916-930. [PMID: 30668822 DOI: 10.1093/pcp/pcz010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 01/08/2019] [Indexed: 05/20/2023]
Abstract
Nutrient-deprived microalgae accumulate triacylglycerol (TAG) in lipid droplets. A dual-specificity tyrosine phosphorylation-regulated kinase, TAG accumulation regulator 1 (TAR1) has been shown to be required for acetate-dependent TAG accumulation and the degradation of chlorophyll and photosynthesis-related proteins in photomixotrophic nitrogen (N)-deficient conditions (Kajikawa et�al. 2015). However, this previous report only examined particular condition. Here, we report that in photoautotrophic N-deficient conditions, tar1-1 cells, with a mutation in the TAR1 gene, maintained higher levels of cell viability and lower levels of hydrogen peroxide generation and accumulated higher levels of TAG and starch compared with those of wild type (WT) cells with bubbling of air containing 5% carbon dioxide. Transcriptomic analyses suggested that genes involved in the scavenging of reactive oxygen species are not repressed in tar1-1 cells. In contrast, the mating efficiency and mRNA levels of key regulatory genes for gametogenesis, MID, MTD and FUS, were suppressed in tar1-1 cells. Among the TAR1-dependent phosphopeptides deduced by phosphoproteomic analysis, protein kinases and enzymes related to N assimilation and carbon (C) metabolism are of particular interest. Characterization of these putative downstream factors may elucidate the molecular pathway whereby TAR1 mediates cellular propagation and C and N metabolism in C/N-imbalanced stress conditions.
Collapse
Affiliation(s)
- Haruka Shinkawa
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | | | - Yuko Nomura
- RIKEN Center for Sustainable Resource Science, Kanagawa, 230-0045 Japan
| | - Mayu Ogura
- Graduate School of Pharmaceutical Science, Kyoto University, Kyoto, 606-8501 Japan
| | - Yuri Sawaragi
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Takashi Yamano
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Hirofumi Nakagami
- RIKEN Center for Sustainable Resource Science, Kanagawa, 230-0045 Japan
| | - Naoyuki Sugiyama
- Graduate School of Pharmaceutical Science, Kyoto University, Kyoto, 606-8501 Japan
| | - Yasushi Ishihama
- Graduate School of Pharmaceutical Science, Kyoto University, Kyoto, 606-8501 Japan
| | - Yu Kanesaki
- NODAI Genome Research Center, Tokyo University of Agriculture, Tokyo, 156-8502 Japan
| | - Hirofumi Yoshikawa
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, 156-8502 Japan
| | - Hideya Fukuzawa
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| |
Collapse
|
21
|
Garcia G, Raleigh DR, Reiter JF. How the Ciliary Membrane Is Organized Inside-Out to Communicate Outside-In. Curr Biol 2018; 28:R421-R434. [PMID: 29689227 PMCID: PMC6434934 DOI: 10.1016/j.cub.2018.03.010] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cilia, organelles that move to execute functions like fertilization and signal to execute functions like photoreception and embryonic patterning, are composed of a core of nine-fold doublet microtubules overlain by a membrane. Distinct types of cilia display distinct membrane morphologies, ranging from simple domed cylinders to the highly ornate invaginations and membrane disks of photoreceptor outer segments. Critical for the ability of cilia to signal, both the protein and the lipid compositions of ciliary membranes are different from those of other cellular membranes. This specialization presents a unique challenge for the cell as, unlike membrane-bounded organelles, the ciliary membrane is contiguous with the surrounding plasma membrane. This distinct ciliary membrane is generated in concert with multiple membrane remodeling events that comprise the process of ciliogenesis. Once the cilium is formed, control of ciliary membrane composition relies on discrete molecular machines, including a barrier to membrane proteins entering the cilium at a specialized region of the base of the cilium called the transition zone and a trafficking adaptor that controls G protein-coupled receptor (GPCR) localization to the cilium called the BBSome. The ciliary membrane can be further remodeled by the removal of membrane proteins by the release of ciliary extracellular vesicles that may function in intercellular communication, removal of unneeded proteins or ciliary disassembly. Here, we review the structures and transport mechanisms that control ciliary membrane composition, and discuss how membrane specialization enables the cilium to function as the antenna of the cell.
Collapse
Affiliation(s)
- Galo Garcia
- Department of Biochemistry and Biophysics, Cardiovascular Research Institute, University of California, San Francisco, CA 94158, USA
| | - David R Raleigh
- Department of Biochemistry and Biophysics, Cardiovascular Research Institute, University of California, San Francisco, CA 94158, USA; Department of Radiation Oncology, University of California, San Francisco, CA 94143, USA; Department of Neurological Surgery, University of California, San Francisco, CA 94143, USA
| | - Jeremy F Reiter
- Department of Biochemistry and Biophysics, Cardiovascular Research Institute, University of California, San Francisco, CA 94158, USA.
| |
Collapse
|
22
|
Abstract
Cell-cell fusion is essential for fertilization and organ development. Dedicated proteins known as fusogens are responsible for mediating membrane fusion. However, until recently, these proteins either remained unidentified or were poorly understood at the mechanistic level. Here, we review how fusogens surmount multiple energy barriers to mediate cell-cell fusion. We describe how early preparatory steps bring membranes to a distance of ∼10 nm, while fusogens act in the final approach between membranes. The mechanical force exerted by cell fusogens and the accompanying lipidic rearrangements constitute the hallmarks of cell-cell fusion. Finally, we discuss the relationship between viral and eukaryotic fusogens, highlight a classification scheme regrouping a superfamily of fusogens called Fusexins, and propose new questions and avenues of enquiry.
Collapse
Affiliation(s)
- Javier M Hernández
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, D-44227 Dortmund, Germany
| | - Benjamin Podbilewicz
- Department of Biology, Technion - Israel Institute of Technology, Haifa 32000, Israel
| |
Collapse
|
23
|
Joo S, Nishimura Y, Cronmiller E, Hong RH, Kariyawasam T, Wang MH, Shao NC, El Akkad SED, Suzuki T, Higashiyama T, Jin E, Lee JH. Gene Regulatory Networks for the Haploid-to-Diploid Transition of Chlamydomonas reinhardtii. PLANT PHYSIOLOGY 2017; 175:314-332. [PMID: 28710131 PMCID: PMC5580766 DOI: 10.1104/pp.17.00731] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 07/12/2017] [Indexed: 05/20/2023]
Abstract
The sexual cycle of the unicellular Chlamydomonas reinhardtii culminates in the formation of diploid zygotes that differentiate into dormant spores that eventually undergo meiosis. Mating between gametes induces rapid cell wall shedding via the enzyme g-lysin; cell fusion is followed by heterodimerization of sex-specific homeobox transcription factors, GSM1 and GSP1, and initiation of zygote-specific gene expression. To investigate the genetic underpinnings of the zygote developmental pathway, we performed comparative transcriptome analysis of both pre- and post-fertilization samples. We identified 253 transcripts specifically enriched in early zygotes, 82% of which were not up-regulated in gsp1 null zygotes. We also found that the GSM1/GSP1 heterodimer negatively regulates the vegetative wall program at the posttranscriptional level, enabling prompt transition from vegetative wall to zygotic wall assembly. Annotation of the g-lysin-induced and early zygote genes reveals distinct vegetative and zygotic wall programs, supported by concerted up-regulation of genes encoding cell wall-modifying enzymes and proteins involved in nucleotide-sugar metabolism. The haploid-to-diploid transition in Chlamydomonas is masterfully controlled by the GSM1/GSP1 heterodimer, translating fertilization and gamete coalescence into a bona fide differentiation program. The fertilization-triggered integration of genes required to make related, but structurally and functionally distinct organelles-the vegetative versus zygote cell wall-presents a likely scenario for the evolution of complex developmental gene regulatory networks.
Collapse
Affiliation(s)
- Sunjoo Joo
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T1Z4, Canada
| | - Yoshiki Nishimura
- Department of Botany, Graduate School of Science, Kyoto University, Oiwake-cho, Kita-Shirakawa, Sakyo-ku, Kyoto 606-8502, Japan
| | - Evan Cronmiller
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T1Z4, Canada
| | - Ran Ha Hong
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T1Z4, Canada
| | - Thamali Kariyawasam
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T1Z4, Canada
| | - Ming Hsiu Wang
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T1Z4, Canada
| | - Nai Chun Shao
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T1Z4, Canada
| | - Saif-El-Din El Akkad
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T1Z4, Canada
| | - Takamasa Suzuki
- ERATO, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Tetsuya Higashiyama
- ERATO, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Eonseon Jin
- Department Life Sciences, Research Institute for Natural Sciences, Hanyang University, 222 Wangsipri-ro, Sungdong-gu, Seoul 133-791, Republic of Korea
| | - Jae-Hyeok Lee
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T1Z4, Canada
| |
Collapse
|
24
|
Johnson KL, Cassin AM, Lonsdale A, Bacic A, Doblin MS, Schultz CJ. Pipeline to Identify Hydroxyproline-Rich Glycoproteins. PLANT PHYSIOLOGY 2017; 174:886-903. [PMID: 28446635 PMCID: PMC5462032 DOI: 10.1104/pp.17.00294] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 04/21/2017] [Indexed: 05/14/2023]
Abstract
Intrinsically disordered proteins (IDPs) are functional proteins that lack a well-defined three-dimensional structure. The study of IDPs is a rapidly growing area as the crucial biological functions of more of these proteins are uncovered. In plants, IDPs are implicated in plant stress responses, signaling, and regulatory processes. A superfamily of cell wall proteins, the hydroxyproline-rich glycoproteins (HRGPs), have characteristic features of IDPs. Their protein backbones are rich in the disordering amino acid proline, they contain repeated sequence motifs and extensive posttranslational modifications (glycosylation), and they have been implicated in many biological functions. HRGPs are evolutionarily ancient, having been isolated from the protein-rich walls of chlorophyte algae to the cellulose-rich walls of embryophytes. Examination of HRGPs in a range of plant species should provide valuable insights into how they have evolved. Commonly divided into the arabinogalactan proteins, extensins, and proline-rich proteins, in reality, a continuum of structures exists within this diverse and heterogenous superfamily. An inability to accurately classify HRGPs leads to inconsistent gene ontologies limiting the identification of HRGP classes in existing and emerging omics data sets. We present a novel and robust motif and amino acid bias (MAAB) bioinformatics pipeline to classify HRGPs into 23 descriptive subclasses. Validation of MAAB was achieved using available genomic resources and then applied to the 1000 Plants transcriptome project (www.onekp.com) data set. Significant improvement in the detection of HRGPs using multiple-k-mer transcriptome assembly methodology was observed. The MAAB pipeline is readily adaptable and can be modified to optimize the recovery of IDPs from other organisms.
Collapse
Affiliation(s)
- Kim L Johnson
- Australian Research Council Centre of Excellence in Plant Cell Walls, School of BioSciences, University of Melbourne, Parkville, Victoria 3010, Australia (K.L.J., A.M.C., A.L., A.B., M.S.D.); and
- School of Agriculture, Food, and Wine, University of Adelaide, Waite Research Institute, Glen Osmond, South Australia 5064, Australia (C.J.S.)
| | - Andrew M Cassin
- Australian Research Council Centre of Excellence in Plant Cell Walls, School of BioSciences, University of Melbourne, Parkville, Victoria 3010, Australia (K.L.J., A.M.C., A.L., A.B., M.S.D.); and
- School of Agriculture, Food, and Wine, University of Adelaide, Waite Research Institute, Glen Osmond, South Australia 5064, Australia (C.J.S.)
| | - Andrew Lonsdale
- Australian Research Council Centre of Excellence in Plant Cell Walls, School of BioSciences, University of Melbourne, Parkville, Victoria 3010, Australia (K.L.J., A.M.C., A.L., A.B., M.S.D.); and
- School of Agriculture, Food, and Wine, University of Adelaide, Waite Research Institute, Glen Osmond, South Australia 5064, Australia (C.J.S.)
| | - Antony Bacic
- Australian Research Council Centre of Excellence in Plant Cell Walls, School of BioSciences, University of Melbourne, Parkville, Victoria 3010, Australia (K.L.J., A.M.C., A.L., A.B., M.S.D.); and
- School of Agriculture, Food, and Wine, University of Adelaide, Waite Research Institute, Glen Osmond, South Australia 5064, Australia (C.J.S.)
| | - Monika S Doblin
- Australian Research Council Centre of Excellence in Plant Cell Walls, School of BioSciences, University of Melbourne, Parkville, Victoria 3010, Australia (K.L.J., A.M.C., A.L., A.B., M.S.D.); and
- School of Agriculture, Food, and Wine, University of Adelaide, Waite Research Institute, Glen Osmond, South Australia 5064, Australia (C.J.S.)
| | - Carolyn J Schultz
- Australian Research Council Centre of Excellence in Plant Cell Walls, School of BioSciences, University of Melbourne, Parkville, Victoria 3010, Australia (K.L.J., A.M.C., A.L., A.B., M.S.D.); and
- School of Agriculture, Food, and Wine, University of Adelaide, Waite Research Institute, Glen Osmond, South Australia 5064, Australia (C.J.S.)
| |
Collapse
|
25
|
Johnson KL, Cassin AM, Lonsdale A, Wong GKS, Soltis DE, Miles NW, Melkonian M, Melkonian B, Deyholos MK, Leebens-Mack J, Rothfels CJ, Stevenson DW, Graham SW, Wang X, Wu S, Pires JC, Edger PP, Carpenter EJ, Bacic A, Doblin MS, Schultz CJ. Insights into the Evolution of Hydroxyproline-Rich Glycoproteins from 1000 Plant Transcriptomes. PLANT PHYSIOLOGY 2017; 174:904-921. [PMID: 28446636 PMCID: PMC5462033 DOI: 10.1104/pp.17.00295] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 04/21/2017] [Indexed: 05/19/2023]
Abstract
The carbohydrate-rich cell walls of land plants and algae have been the focus of much interest given the value of cell wall-based products to our current and future economies. Hydroxyproline-rich glycoproteins (HRGPs), a major group of wall glycoproteins, play important roles in plant growth and development, yet little is known about how they have evolved in parallel with the polysaccharide components of walls. We investigate the origins and evolution of the HRGP superfamily, which is commonly divided into three major multigene families: the arabinogalactan proteins (AGPs), extensins (EXTs), and proline-rich proteins. Using motif and amino acid bias, a newly developed bioinformatics pipeline, we identified HRGPs in sequences from the 1000 Plants transcriptome project (www.onekp.com). Our analyses provide new insights into the evolution of HRGPs across major evolutionary milestones, including the transition to land and the early radiation of angiosperms. Significantly, data mining reveals the origin of glycosylphosphatidylinositol (GPI)-anchored AGPs in green algae and a 3- to 4-fold increase in GPI-AGPs in liverworts and mosses. The first detection of cross-linking (CL)-EXTs is observed in bryophytes, which suggests that CL-EXTs arose though the juxtaposition of preexisting SPn EXT glycomotifs with refined Y-based motifs. We also detected the loss of CL-EXT in a few lineages, including the grass family (Poaceae), that have a cell wall composition distinct from other monocots and eudicots. A key challenge in HRGP research is tracking individual HRGPs throughout evolution. Using the 1000 Plants output, we were able to find putative orthologs of Arabidopsis pollen-specific GPI-AGPs in basal eudicots.
Collapse
Affiliation(s)
- Kim L Johnson
- Australian Research Council Centre of Excellence in Plant Cell Walls, School of BioSciences, University of Melbourne, Parkville, Victoria 3010, Australia (K.L.J., A.M.C., A.L., A.B., M.S.D.)
- Departments of Biological Sciences and Medicine, University of Alberta, Edmonton, Alberta, Canada, and BGI-Shenzhen, Bei Shan Industrial Zone, Yantian District, Shenzhen, China (G.K.-S.W., E.J.C.)
- Florida Museum of Natural History, Department of Biology, University of Florida, Gainsville, Florida 32611 (D.E.S., N.W.M.)
- Botanical Institute, Cologne Biocenter, University of Cologne, D50674 Cologne, Germany (M.M., B.M.)
- Department of Biology, University of British Columbia, Kelowna, British Columbia V1V 1V7, Canada (M.K.D.)
- Department of Plant Biology, University of Georgia, Athens, Georgia 3062 (J.L.-M.)
- University Herbarium and Department of Integrative Biology, University of California, Berkeley, California 94720 (C.J.R.)
- New York Botanical Garden, Bronx, New York 10458 (D.W.S.)
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada (S.W.G.)
- Key Laboratory of Genome Science and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China (X.W., S.W.)
- Division of Biological Sciences and Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211 (J.C.P.)
- Department of Horticulture, Michigan State University, East Lansing, Michigan 48823 (P.P.E.); and
- School of Agriculture, Food, and Wine, University of Adelaide, Waite Research Institute, Glen Osmond, South Australia 5064, Australia (C.J.S.)
| | - Andrew M Cassin
- Australian Research Council Centre of Excellence in Plant Cell Walls, School of BioSciences, University of Melbourne, Parkville, Victoria 3010, Australia (K.L.J., A.M.C., A.L., A.B., M.S.D.)
- Departments of Biological Sciences and Medicine, University of Alberta, Edmonton, Alberta, Canada, and BGI-Shenzhen, Bei Shan Industrial Zone, Yantian District, Shenzhen, China (G.K.-S.W., E.J.C.)
- Florida Museum of Natural History, Department of Biology, University of Florida, Gainsville, Florida 32611 (D.E.S., N.W.M.)
- Botanical Institute, Cologne Biocenter, University of Cologne, D50674 Cologne, Germany (M.M., B.M.)
- Department of Biology, University of British Columbia, Kelowna, British Columbia V1V 1V7, Canada (M.K.D.)
- Department of Plant Biology, University of Georgia, Athens, Georgia 3062 (J.L.-M.)
- University Herbarium and Department of Integrative Biology, University of California, Berkeley, California 94720 (C.J.R.)
- New York Botanical Garden, Bronx, New York 10458 (D.W.S.)
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada (S.W.G.)
- Key Laboratory of Genome Science and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China (X.W., S.W.)
- Division of Biological Sciences and Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211 (J.C.P.)
- Department of Horticulture, Michigan State University, East Lansing, Michigan 48823 (P.P.E.); and
- School of Agriculture, Food, and Wine, University of Adelaide, Waite Research Institute, Glen Osmond, South Australia 5064, Australia (C.J.S.)
| | - Andrew Lonsdale
- Australian Research Council Centre of Excellence in Plant Cell Walls, School of BioSciences, University of Melbourne, Parkville, Victoria 3010, Australia (K.L.J., A.M.C., A.L., A.B., M.S.D.)
- Departments of Biological Sciences and Medicine, University of Alberta, Edmonton, Alberta, Canada, and BGI-Shenzhen, Bei Shan Industrial Zone, Yantian District, Shenzhen, China (G.K.-S.W., E.J.C.)
- Florida Museum of Natural History, Department of Biology, University of Florida, Gainsville, Florida 32611 (D.E.S., N.W.M.)
- Botanical Institute, Cologne Biocenter, University of Cologne, D50674 Cologne, Germany (M.M., B.M.)
- Department of Biology, University of British Columbia, Kelowna, British Columbia V1V 1V7, Canada (M.K.D.)
- Department of Plant Biology, University of Georgia, Athens, Georgia 3062 (J.L.-M.)
- University Herbarium and Department of Integrative Biology, University of California, Berkeley, California 94720 (C.J.R.)
- New York Botanical Garden, Bronx, New York 10458 (D.W.S.)
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada (S.W.G.)
- Key Laboratory of Genome Science and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China (X.W., S.W.)
- Division of Biological Sciences and Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211 (J.C.P.)
- Department of Horticulture, Michigan State University, East Lansing, Michigan 48823 (P.P.E.); and
- School of Agriculture, Food, and Wine, University of Adelaide, Waite Research Institute, Glen Osmond, South Australia 5064, Australia (C.J.S.)
| | - Gane Ka-Shu Wong
- Australian Research Council Centre of Excellence in Plant Cell Walls, School of BioSciences, University of Melbourne, Parkville, Victoria 3010, Australia (K.L.J., A.M.C., A.L., A.B., M.S.D.)
- Departments of Biological Sciences and Medicine, University of Alberta, Edmonton, Alberta, Canada, and BGI-Shenzhen, Bei Shan Industrial Zone, Yantian District, Shenzhen, China (G.K.-S.W., E.J.C.)
- Florida Museum of Natural History, Department of Biology, University of Florida, Gainsville, Florida 32611 (D.E.S., N.W.M.)
- Botanical Institute, Cologne Biocenter, University of Cologne, D50674 Cologne, Germany (M.M., B.M.)
- Department of Biology, University of British Columbia, Kelowna, British Columbia V1V 1V7, Canada (M.K.D.)
- Department of Plant Biology, University of Georgia, Athens, Georgia 3062 (J.L.-M.)
- University Herbarium and Department of Integrative Biology, University of California, Berkeley, California 94720 (C.J.R.)
- New York Botanical Garden, Bronx, New York 10458 (D.W.S.)
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada (S.W.G.)
- Key Laboratory of Genome Science and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China (X.W., S.W.)
- Division of Biological Sciences and Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211 (J.C.P.)
- Department of Horticulture, Michigan State University, East Lansing, Michigan 48823 (P.P.E.); and
- School of Agriculture, Food, and Wine, University of Adelaide, Waite Research Institute, Glen Osmond, South Australia 5064, Australia (C.J.S.)
| | - Douglas E Soltis
- Australian Research Council Centre of Excellence in Plant Cell Walls, School of BioSciences, University of Melbourne, Parkville, Victoria 3010, Australia (K.L.J., A.M.C., A.L., A.B., M.S.D.)
- Departments of Biological Sciences and Medicine, University of Alberta, Edmonton, Alberta, Canada, and BGI-Shenzhen, Bei Shan Industrial Zone, Yantian District, Shenzhen, China (G.K.-S.W., E.J.C.)
- Florida Museum of Natural History, Department of Biology, University of Florida, Gainsville, Florida 32611 (D.E.S., N.W.M.)
- Botanical Institute, Cologne Biocenter, University of Cologne, D50674 Cologne, Germany (M.M., B.M.)
- Department of Biology, University of British Columbia, Kelowna, British Columbia V1V 1V7, Canada (M.K.D.)
- Department of Plant Biology, University of Georgia, Athens, Georgia 3062 (J.L.-M.)
- University Herbarium and Department of Integrative Biology, University of California, Berkeley, California 94720 (C.J.R.)
- New York Botanical Garden, Bronx, New York 10458 (D.W.S.)
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada (S.W.G.)
- Key Laboratory of Genome Science and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China (X.W., S.W.)
- Division of Biological Sciences and Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211 (J.C.P.)
- Department of Horticulture, Michigan State University, East Lansing, Michigan 48823 (P.P.E.); and
- School of Agriculture, Food, and Wine, University of Adelaide, Waite Research Institute, Glen Osmond, South Australia 5064, Australia (C.J.S.)
| | - Nicholas W Miles
- Australian Research Council Centre of Excellence in Plant Cell Walls, School of BioSciences, University of Melbourne, Parkville, Victoria 3010, Australia (K.L.J., A.M.C., A.L., A.B., M.S.D.)
- Departments of Biological Sciences and Medicine, University of Alberta, Edmonton, Alberta, Canada, and BGI-Shenzhen, Bei Shan Industrial Zone, Yantian District, Shenzhen, China (G.K.-S.W., E.J.C.)
- Florida Museum of Natural History, Department of Biology, University of Florida, Gainsville, Florida 32611 (D.E.S., N.W.M.)
- Botanical Institute, Cologne Biocenter, University of Cologne, D50674 Cologne, Germany (M.M., B.M.)
- Department of Biology, University of British Columbia, Kelowna, British Columbia V1V 1V7, Canada (M.K.D.)
- Department of Plant Biology, University of Georgia, Athens, Georgia 3062 (J.L.-M.)
- University Herbarium and Department of Integrative Biology, University of California, Berkeley, California 94720 (C.J.R.)
- New York Botanical Garden, Bronx, New York 10458 (D.W.S.)
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada (S.W.G.)
- Key Laboratory of Genome Science and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China (X.W., S.W.)
- Division of Biological Sciences and Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211 (J.C.P.)
- Department of Horticulture, Michigan State University, East Lansing, Michigan 48823 (P.P.E.); and
- School of Agriculture, Food, and Wine, University of Adelaide, Waite Research Institute, Glen Osmond, South Australia 5064, Australia (C.J.S.)
| | - Michael Melkonian
- Australian Research Council Centre of Excellence in Plant Cell Walls, School of BioSciences, University of Melbourne, Parkville, Victoria 3010, Australia (K.L.J., A.M.C., A.L., A.B., M.S.D.)
- Departments of Biological Sciences and Medicine, University of Alberta, Edmonton, Alberta, Canada, and BGI-Shenzhen, Bei Shan Industrial Zone, Yantian District, Shenzhen, China (G.K.-S.W., E.J.C.)
- Florida Museum of Natural History, Department of Biology, University of Florida, Gainsville, Florida 32611 (D.E.S., N.W.M.)
- Botanical Institute, Cologne Biocenter, University of Cologne, D50674 Cologne, Germany (M.M., B.M.)
- Department of Biology, University of British Columbia, Kelowna, British Columbia V1V 1V7, Canada (M.K.D.)
- Department of Plant Biology, University of Georgia, Athens, Georgia 3062 (J.L.-M.)
- University Herbarium and Department of Integrative Biology, University of California, Berkeley, California 94720 (C.J.R.)
- New York Botanical Garden, Bronx, New York 10458 (D.W.S.)
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada (S.W.G.)
- Key Laboratory of Genome Science and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China (X.W., S.W.)
- Division of Biological Sciences and Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211 (J.C.P.)
- Department of Horticulture, Michigan State University, East Lansing, Michigan 48823 (P.P.E.); and
- School of Agriculture, Food, and Wine, University of Adelaide, Waite Research Institute, Glen Osmond, South Australia 5064, Australia (C.J.S.)
| | - Barbara Melkonian
- Australian Research Council Centre of Excellence in Plant Cell Walls, School of BioSciences, University of Melbourne, Parkville, Victoria 3010, Australia (K.L.J., A.M.C., A.L., A.B., M.S.D.)
- Departments of Biological Sciences and Medicine, University of Alberta, Edmonton, Alberta, Canada, and BGI-Shenzhen, Bei Shan Industrial Zone, Yantian District, Shenzhen, China (G.K.-S.W., E.J.C.)
- Florida Museum of Natural History, Department of Biology, University of Florida, Gainsville, Florida 32611 (D.E.S., N.W.M.)
- Botanical Institute, Cologne Biocenter, University of Cologne, D50674 Cologne, Germany (M.M., B.M.)
- Department of Biology, University of British Columbia, Kelowna, British Columbia V1V 1V7, Canada (M.K.D.)
- Department of Plant Biology, University of Georgia, Athens, Georgia 3062 (J.L.-M.)
- University Herbarium and Department of Integrative Biology, University of California, Berkeley, California 94720 (C.J.R.)
- New York Botanical Garden, Bronx, New York 10458 (D.W.S.)
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada (S.W.G.)
- Key Laboratory of Genome Science and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China (X.W., S.W.)
- Division of Biological Sciences and Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211 (J.C.P.)
- Department of Horticulture, Michigan State University, East Lansing, Michigan 48823 (P.P.E.); and
- School of Agriculture, Food, and Wine, University of Adelaide, Waite Research Institute, Glen Osmond, South Australia 5064, Australia (C.J.S.)
| | - Michael K Deyholos
- Australian Research Council Centre of Excellence in Plant Cell Walls, School of BioSciences, University of Melbourne, Parkville, Victoria 3010, Australia (K.L.J., A.M.C., A.L., A.B., M.S.D.)
- Departments of Biological Sciences and Medicine, University of Alberta, Edmonton, Alberta, Canada, and BGI-Shenzhen, Bei Shan Industrial Zone, Yantian District, Shenzhen, China (G.K.-S.W., E.J.C.)
- Florida Museum of Natural History, Department of Biology, University of Florida, Gainsville, Florida 32611 (D.E.S., N.W.M.)
- Botanical Institute, Cologne Biocenter, University of Cologne, D50674 Cologne, Germany (M.M., B.M.)
- Department of Biology, University of British Columbia, Kelowna, British Columbia V1V 1V7, Canada (M.K.D.)
- Department of Plant Biology, University of Georgia, Athens, Georgia 3062 (J.L.-M.)
- University Herbarium and Department of Integrative Biology, University of California, Berkeley, California 94720 (C.J.R.)
- New York Botanical Garden, Bronx, New York 10458 (D.W.S.)
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada (S.W.G.)
- Key Laboratory of Genome Science and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China (X.W., S.W.)
- Division of Biological Sciences and Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211 (J.C.P.)
- Department of Horticulture, Michigan State University, East Lansing, Michigan 48823 (P.P.E.); and
- School of Agriculture, Food, and Wine, University of Adelaide, Waite Research Institute, Glen Osmond, South Australia 5064, Australia (C.J.S.)
| | - James Leebens-Mack
- Australian Research Council Centre of Excellence in Plant Cell Walls, School of BioSciences, University of Melbourne, Parkville, Victoria 3010, Australia (K.L.J., A.M.C., A.L., A.B., M.S.D.)
- Departments of Biological Sciences and Medicine, University of Alberta, Edmonton, Alberta, Canada, and BGI-Shenzhen, Bei Shan Industrial Zone, Yantian District, Shenzhen, China (G.K.-S.W., E.J.C.)
- Florida Museum of Natural History, Department of Biology, University of Florida, Gainsville, Florida 32611 (D.E.S., N.W.M.)
- Botanical Institute, Cologne Biocenter, University of Cologne, D50674 Cologne, Germany (M.M., B.M.)
- Department of Biology, University of British Columbia, Kelowna, British Columbia V1V 1V7, Canada (M.K.D.)
- Department of Plant Biology, University of Georgia, Athens, Georgia 3062 (J.L.-M.)
- University Herbarium and Department of Integrative Biology, University of California, Berkeley, California 94720 (C.J.R.)
- New York Botanical Garden, Bronx, New York 10458 (D.W.S.)
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada (S.W.G.)
- Key Laboratory of Genome Science and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China (X.W., S.W.)
- Division of Biological Sciences and Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211 (J.C.P.)
- Department of Horticulture, Michigan State University, East Lansing, Michigan 48823 (P.P.E.); and
- School of Agriculture, Food, and Wine, University of Adelaide, Waite Research Institute, Glen Osmond, South Australia 5064, Australia (C.J.S.)
| | - Carl J Rothfels
- Australian Research Council Centre of Excellence in Plant Cell Walls, School of BioSciences, University of Melbourne, Parkville, Victoria 3010, Australia (K.L.J., A.M.C., A.L., A.B., M.S.D.)
- Departments of Biological Sciences and Medicine, University of Alberta, Edmonton, Alberta, Canada, and BGI-Shenzhen, Bei Shan Industrial Zone, Yantian District, Shenzhen, China (G.K.-S.W., E.J.C.)
- Florida Museum of Natural History, Department of Biology, University of Florida, Gainsville, Florida 32611 (D.E.S., N.W.M.)
- Botanical Institute, Cologne Biocenter, University of Cologne, D50674 Cologne, Germany (M.M., B.M.)
- Department of Biology, University of British Columbia, Kelowna, British Columbia V1V 1V7, Canada (M.K.D.)
- Department of Plant Biology, University of Georgia, Athens, Georgia 3062 (J.L.-M.)
- University Herbarium and Department of Integrative Biology, University of California, Berkeley, California 94720 (C.J.R.)
- New York Botanical Garden, Bronx, New York 10458 (D.W.S.)
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada (S.W.G.)
- Key Laboratory of Genome Science and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China (X.W., S.W.)
- Division of Biological Sciences and Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211 (J.C.P.)
- Department of Horticulture, Michigan State University, East Lansing, Michigan 48823 (P.P.E.); and
- School of Agriculture, Food, and Wine, University of Adelaide, Waite Research Institute, Glen Osmond, South Australia 5064, Australia (C.J.S.)
| | - Dennis W Stevenson
- Australian Research Council Centre of Excellence in Plant Cell Walls, School of BioSciences, University of Melbourne, Parkville, Victoria 3010, Australia (K.L.J., A.M.C., A.L., A.B., M.S.D.)
- Departments of Biological Sciences and Medicine, University of Alberta, Edmonton, Alberta, Canada, and BGI-Shenzhen, Bei Shan Industrial Zone, Yantian District, Shenzhen, China (G.K.-S.W., E.J.C.)
- Florida Museum of Natural History, Department of Biology, University of Florida, Gainsville, Florida 32611 (D.E.S., N.W.M.)
- Botanical Institute, Cologne Biocenter, University of Cologne, D50674 Cologne, Germany (M.M., B.M.)
- Department of Biology, University of British Columbia, Kelowna, British Columbia V1V 1V7, Canada (M.K.D.)
- Department of Plant Biology, University of Georgia, Athens, Georgia 3062 (J.L.-M.)
- University Herbarium and Department of Integrative Biology, University of California, Berkeley, California 94720 (C.J.R.)
- New York Botanical Garden, Bronx, New York 10458 (D.W.S.)
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada (S.W.G.)
- Key Laboratory of Genome Science and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China (X.W., S.W.)
- Division of Biological Sciences and Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211 (J.C.P.)
- Department of Horticulture, Michigan State University, East Lansing, Michigan 48823 (P.P.E.); and
- School of Agriculture, Food, and Wine, University of Adelaide, Waite Research Institute, Glen Osmond, South Australia 5064, Australia (C.J.S.)
| | - Sean W Graham
- Australian Research Council Centre of Excellence in Plant Cell Walls, School of BioSciences, University of Melbourne, Parkville, Victoria 3010, Australia (K.L.J., A.M.C., A.L., A.B., M.S.D.)
- Departments of Biological Sciences and Medicine, University of Alberta, Edmonton, Alberta, Canada, and BGI-Shenzhen, Bei Shan Industrial Zone, Yantian District, Shenzhen, China (G.K.-S.W., E.J.C.)
- Florida Museum of Natural History, Department of Biology, University of Florida, Gainsville, Florida 32611 (D.E.S., N.W.M.)
- Botanical Institute, Cologne Biocenter, University of Cologne, D50674 Cologne, Germany (M.M., B.M.)
- Department of Biology, University of British Columbia, Kelowna, British Columbia V1V 1V7, Canada (M.K.D.)
- Department of Plant Biology, University of Georgia, Athens, Georgia 3062 (J.L.-M.)
- University Herbarium and Department of Integrative Biology, University of California, Berkeley, California 94720 (C.J.R.)
- New York Botanical Garden, Bronx, New York 10458 (D.W.S.)
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada (S.W.G.)
- Key Laboratory of Genome Science and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China (X.W., S.W.)
- Division of Biological Sciences and Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211 (J.C.P.)
- Department of Horticulture, Michigan State University, East Lansing, Michigan 48823 (P.P.E.); and
- School of Agriculture, Food, and Wine, University of Adelaide, Waite Research Institute, Glen Osmond, South Australia 5064, Australia (C.J.S.)
| | - Xumin Wang
- Australian Research Council Centre of Excellence in Plant Cell Walls, School of BioSciences, University of Melbourne, Parkville, Victoria 3010, Australia (K.L.J., A.M.C., A.L., A.B., M.S.D.)
- Departments of Biological Sciences and Medicine, University of Alberta, Edmonton, Alberta, Canada, and BGI-Shenzhen, Bei Shan Industrial Zone, Yantian District, Shenzhen, China (G.K.-S.W., E.J.C.)
- Florida Museum of Natural History, Department of Biology, University of Florida, Gainsville, Florida 32611 (D.E.S., N.W.M.)
- Botanical Institute, Cologne Biocenter, University of Cologne, D50674 Cologne, Germany (M.M., B.M.)
- Department of Biology, University of British Columbia, Kelowna, British Columbia V1V 1V7, Canada (M.K.D.)
- Department of Plant Biology, University of Georgia, Athens, Georgia 3062 (J.L.-M.)
- University Herbarium and Department of Integrative Biology, University of California, Berkeley, California 94720 (C.J.R.)
- New York Botanical Garden, Bronx, New York 10458 (D.W.S.)
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada (S.W.G.)
- Key Laboratory of Genome Science and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China (X.W., S.W.)
- Division of Biological Sciences and Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211 (J.C.P.)
- Department of Horticulture, Michigan State University, East Lansing, Michigan 48823 (P.P.E.); and
- School of Agriculture, Food, and Wine, University of Adelaide, Waite Research Institute, Glen Osmond, South Australia 5064, Australia (C.J.S.)
| | - Shuangxiu Wu
- Australian Research Council Centre of Excellence in Plant Cell Walls, School of BioSciences, University of Melbourne, Parkville, Victoria 3010, Australia (K.L.J., A.M.C., A.L., A.B., M.S.D.)
- Departments of Biological Sciences and Medicine, University of Alberta, Edmonton, Alberta, Canada, and BGI-Shenzhen, Bei Shan Industrial Zone, Yantian District, Shenzhen, China (G.K.-S.W., E.J.C.)
- Florida Museum of Natural History, Department of Biology, University of Florida, Gainsville, Florida 32611 (D.E.S., N.W.M.)
- Botanical Institute, Cologne Biocenter, University of Cologne, D50674 Cologne, Germany (M.M., B.M.)
- Department of Biology, University of British Columbia, Kelowna, British Columbia V1V 1V7, Canada (M.K.D.)
- Department of Plant Biology, University of Georgia, Athens, Georgia 3062 (J.L.-M.)
- University Herbarium and Department of Integrative Biology, University of California, Berkeley, California 94720 (C.J.R.)
- New York Botanical Garden, Bronx, New York 10458 (D.W.S.)
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada (S.W.G.)
- Key Laboratory of Genome Science and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China (X.W., S.W.)
- Division of Biological Sciences and Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211 (J.C.P.)
- Department of Horticulture, Michigan State University, East Lansing, Michigan 48823 (P.P.E.); and
- School of Agriculture, Food, and Wine, University of Adelaide, Waite Research Institute, Glen Osmond, South Australia 5064, Australia (C.J.S.)
| | - J Chris Pires
- Australian Research Council Centre of Excellence in Plant Cell Walls, School of BioSciences, University of Melbourne, Parkville, Victoria 3010, Australia (K.L.J., A.M.C., A.L., A.B., M.S.D.)
- Departments of Biological Sciences and Medicine, University of Alberta, Edmonton, Alberta, Canada, and BGI-Shenzhen, Bei Shan Industrial Zone, Yantian District, Shenzhen, China (G.K.-S.W., E.J.C.)
- Florida Museum of Natural History, Department of Biology, University of Florida, Gainsville, Florida 32611 (D.E.S., N.W.M.)
- Botanical Institute, Cologne Biocenter, University of Cologne, D50674 Cologne, Germany (M.M., B.M.)
- Department of Biology, University of British Columbia, Kelowna, British Columbia V1V 1V7, Canada (M.K.D.)
- Department of Plant Biology, University of Georgia, Athens, Georgia 3062 (J.L.-M.)
- University Herbarium and Department of Integrative Biology, University of California, Berkeley, California 94720 (C.J.R.)
- New York Botanical Garden, Bronx, New York 10458 (D.W.S.)
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada (S.W.G.)
- Key Laboratory of Genome Science and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China (X.W., S.W.)
- Division of Biological Sciences and Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211 (J.C.P.)
- Department of Horticulture, Michigan State University, East Lansing, Michigan 48823 (P.P.E.); and
- School of Agriculture, Food, and Wine, University of Adelaide, Waite Research Institute, Glen Osmond, South Australia 5064, Australia (C.J.S.)
| | - Patrick P Edger
- Australian Research Council Centre of Excellence in Plant Cell Walls, School of BioSciences, University of Melbourne, Parkville, Victoria 3010, Australia (K.L.J., A.M.C., A.L., A.B., M.S.D.)
- Departments of Biological Sciences and Medicine, University of Alberta, Edmonton, Alberta, Canada, and BGI-Shenzhen, Bei Shan Industrial Zone, Yantian District, Shenzhen, China (G.K.-S.W., E.J.C.)
- Florida Museum of Natural History, Department of Biology, University of Florida, Gainsville, Florida 32611 (D.E.S., N.W.M.)
- Botanical Institute, Cologne Biocenter, University of Cologne, D50674 Cologne, Germany (M.M., B.M.)
- Department of Biology, University of British Columbia, Kelowna, British Columbia V1V 1V7, Canada (M.K.D.)
- Department of Plant Biology, University of Georgia, Athens, Georgia 3062 (J.L.-M.)
- University Herbarium and Department of Integrative Biology, University of California, Berkeley, California 94720 (C.J.R.)
- New York Botanical Garden, Bronx, New York 10458 (D.W.S.)
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada (S.W.G.)
- Key Laboratory of Genome Science and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China (X.W., S.W.)
- Division of Biological Sciences and Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211 (J.C.P.)
- Department of Horticulture, Michigan State University, East Lansing, Michigan 48823 (P.P.E.); and
- School of Agriculture, Food, and Wine, University of Adelaide, Waite Research Institute, Glen Osmond, South Australia 5064, Australia (C.J.S.)
| | - Eric J Carpenter
- Australian Research Council Centre of Excellence in Plant Cell Walls, School of BioSciences, University of Melbourne, Parkville, Victoria 3010, Australia (K.L.J., A.M.C., A.L., A.B., M.S.D.)
- Departments of Biological Sciences and Medicine, University of Alberta, Edmonton, Alberta, Canada, and BGI-Shenzhen, Bei Shan Industrial Zone, Yantian District, Shenzhen, China (G.K.-S.W., E.J.C.)
- Florida Museum of Natural History, Department of Biology, University of Florida, Gainsville, Florida 32611 (D.E.S., N.W.M.)
- Botanical Institute, Cologne Biocenter, University of Cologne, D50674 Cologne, Germany (M.M., B.M.)
- Department of Biology, University of British Columbia, Kelowna, British Columbia V1V 1V7, Canada (M.K.D.)
- Department of Plant Biology, University of Georgia, Athens, Georgia 3062 (J.L.-M.)
- University Herbarium and Department of Integrative Biology, University of California, Berkeley, California 94720 (C.J.R.)
- New York Botanical Garden, Bronx, New York 10458 (D.W.S.)
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada (S.W.G.)
- Key Laboratory of Genome Science and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China (X.W., S.W.)
- Division of Biological Sciences and Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211 (J.C.P.)
- Department of Horticulture, Michigan State University, East Lansing, Michigan 48823 (P.P.E.); and
- School of Agriculture, Food, and Wine, University of Adelaide, Waite Research Institute, Glen Osmond, South Australia 5064, Australia (C.J.S.)
| | - Antony Bacic
- Australian Research Council Centre of Excellence in Plant Cell Walls, School of BioSciences, University of Melbourne, Parkville, Victoria 3010, Australia (K.L.J., A.M.C., A.L., A.B., M.S.D.)
- Departments of Biological Sciences and Medicine, University of Alberta, Edmonton, Alberta, Canada, and BGI-Shenzhen, Bei Shan Industrial Zone, Yantian District, Shenzhen, China (G.K.-S.W., E.J.C.)
- Florida Museum of Natural History, Department of Biology, University of Florida, Gainsville, Florida 32611 (D.E.S., N.W.M.)
- Botanical Institute, Cologne Biocenter, University of Cologne, D50674 Cologne, Germany (M.M., B.M.)
- Department of Biology, University of British Columbia, Kelowna, British Columbia V1V 1V7, Canada (M.K.D.)
- Department of Plant Biology, University of Georgia, Athens, Georgia 3062 (J.L.-M.)
- University Herbarium and Department of Integrative Biology, University of California, Berkeley, California 94720 (C.J.R.)
- New York Botanical Garden, Bronx, New York 10458 (D.W.S.)
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada (S.W.G.)
- Key Laboratory of Genome Science and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China (X.W., S.W.)
- Division of Biological Sciences and Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211 (J.C.P.)
- Department of Horticulture, Michigan State University, East Lansing, Michigan 48823 (P.P.E.); and
- School of Agriculture, Food, and Wine, University of Adelaide, Waite Research Institute, Glen Osmond, South Australia 5064, Australia (C.J.S.)
| | - Monika S Doblin
- Australian Research Council Centre of Excellence in Plant Cell Walls, School of BioSciences, University of Melbourne, Parkville, Victoria 3010, Australia (K.L.J., A.M.C., A.L., A.B., M.S.D.)
- Departments of Biological Sciences and Medicine, University of Alberta, Edmonton, Alberta, Canada, and BGI-Shenzhen, Bei Shan Industrial Zone, Yantian District, Shenzhen, China (G.K.-S.W., E.J.C.)
- Florida Museum of Natural History, Department of Biology, University of Florida, Gainsville, Florida 32611 (D.E.S., N.W.M.)
- Botanical Institute, Cologne Biocenter, University of Cologne, D50674 Cologne, Germany (M.M., B.M.)
- Department of Biology, University of British Columbia, Kelowna, British Columbia V1V 1V7, Canada (M.K.D.)
- Department of Plant Biology, University of Georgia, Athens, Georgia 3062 (J.L.-M.)
- University Herbarium and Department of Integrative Biology, University of California, Berkeley, California 94720 (C.J.R.)
- New York Botanical Garden, Bronx, New York 10458 (D.W.S.)
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada (S.W.G.)
- Key Laboratory of Genome Science and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China (X.W., S.W.)
- Division of Biological Sciences and Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211 (J.C.P.)
- Department of Horticulture, Michigan State University, East Lansing, Michigan 48823 (P.P.E.); and
- School of Agriculture, Food, and Wine, University of Adelaide, Waite Research Institute, Glen Osmond, South Australia 5064, Australia (C.J.S.)
| | - Carolyn J Schultz
- Australian Research Council Centre of Excellence in Plant Cell Walls, School of BioSciences, University of Melbourne, Parkville, Victoria 3010, Australia (K.L.J., A.M.C., A.L., A.B., M.S.D.);
- Departments of Biological Sciences and Medicine, University of Alberta, Edmonton, Alberta, Canada, and BGI-Shenzhen, Bei Shan Industrial Zone, Yantian District, Shenzhen, China (G.K.-S.W., E.J.C.);
- Florida Museum of Natural History, Department of Biology, University of Florida, Gainsville, Florida 32611 (D.E.S., N.W.M.);
- Botanical Institute, Cologne Biocenter, University of Cologne, D50674 Cologne, Germany (M.M., B.M.);
- Department of Biology, University of British Columbia, Kelowna, British Columbia V1V 1V7, Canada (M.K.D.)
- Department of Plant Biology, University of Georgia, Athens, Georgia 3062 (J.L.-M.);
- University Herbarium and Department of Integrative Biology, University of California, Berkeley, California 94720 (C.J.R.);
- New York Botanical Garden, Bronx, New York 10458 (D.W.S.);
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada (S.W.G.);
- Key Laboratory of Genome Science and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China (X.W., S.W.);
- Division of Biological Sciences and Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211 (J.C.P.);
- Department of Horticulture, Michigan State University, East Lansing, Michigan 48823 (P.P.E.); and
- School of Agriculture, Food, and Wine, University of Adelaide, Waite Research Institute, Glen Osmond, South Australia 5064, Australia (C.J.S.)
| |
Collapse
|
26
|
Sekimoto H. Sexual reproduction and sex determination in green algae. JOURNAL OF PLANT RESEARCH 2017; 130:423-431. [PMID: 28188480 DOI: 10.1007/s10265-017-0908-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 12/26/2016] [Indexed: 06/06/2023]
Abstract
The sexual reproductive processes of some representative freshwater green algae are reviewed. Chlamydomonas reinhardtii is a unicellular volvocine alga having two mating types: mating type plus (mt+) and mating type minus (mt-), which are controlled by a single, complex mating-type locus. Sexual adhesion between the gametes is mediated by sex-specific agglutinin molecules on their flagellar membranes. Cell fusion is initiated by an adhesive interaction between the mt+ and mt- mating structures, followed by localized membrane fusion. The loci of sex-limited genes and the conformation of sex-determining regions have been rearranged during the evolution of volvocine algae; however, the essential function of the sex-determining genes of the isogamous unicellular Chlamydomonas reinhardtii is conserved in the multicellular oogamous Volvox carteri. The sexual reproduction of the unicellular charophycean alga, Closterium peracerosum-strigosum-littorale complex, is also focused on here. The sexual reproductive processes of heterothallic strains are controlled by two multifunctional sex pheromones, PR-IP and PR-IP Inducer, which independently promote multiple steps in conjugation at the appropriate times through different induction mechanisms. The molecules involved in sexual reproduction and sex determination have also been characterized.
Collapse
Affiliation(s)
- Hiroyuki Sekimoto
- Department of Chemical and Biological Sciences, Faculty of Science, Japan Women's University, 2-8-1 Mejirodai, Bunkyo-ku, Tokyo, 112-8681, Japan.
| |
Collapse
|
27
|
Beekman M, Nieuwenhuis B, Ortiz-Barrientos D, Evans JP. Sexual selection in hermaphrodites, sperm and broadcast spawners, plants and fungi. Philos Trans R Soc Lond B Biol Sci 2016; 371:20150541. [PMID: 27619704 PMCID: PMC5031625 DOI: 10.1098/rstb.2015.0541] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/23/2016] [Indexed: 11/12/2022] Open
Abstract
Darwin was the first to recognize that sexual selection is a strong evolutionary force. Exaggerated traits allow same-sex individuals to compete over access to mates and provide a mechanism by which mates are selected. It is relatively easy to appreciate how inter- and intrasexual selection work in organisms with the sensory capabilities to perceive physical or behavioural traits that signal mate quality or mate compatibility, and to assess the relative quality of competitors. It is therefore not surprising that most studies of sexual selection have focused on animals with separate sexes and obvious adaptations that function in the context of reproductive competition. Yet, many sexual organisms are both male and female at the same time, often lack sexual dimorphism and never come into direct contact at mating. How does sexual selection act in such species, and what can we learn from them? Here, we address these questions by exploring the potential for sexual selection in simultaneous hermaphrodites, sperm- and broadcast spawners, plants and fungi. Our review reveals a range of mechanisms of sexual selection, operating primarily after gametes have been released, which are common in many of these groups and also quite possibly in more familiar (internally fertilizing and sexually dimorphic) organisms.This article is part of the themed issue 'Weird sex: the underappreciated diversity of sexual reproduction'.
Collapse
Affiliation(s)
- Madeleine Beekman
- School of Life and Environmental Sciences, University of Sydney, 2006 New South Wales, Australia
| | - Bart Nieuwenhuis
- Department of Ecology and Genetics, Uppsala University, Norbyvägen 18D, 75236 Uppsala, Sweden
| | | | - Jonathan P Evans
- Centre for Evolutionary Biology, School of Animal Biology, University of Western Australia, 6009 Western Australia, Australia
| |
Collapse
|
28
|
Seed CE, Tomkins JL. Flow Cytometric Methods for Indirect Analysis and Quantification of Gametogenesis in Chlamydomonas reinhardtii (Chlorophyceae). PLoS One 2016; 11:e0161453. [PMID: 27676075 PMCID: PMC5038954 DOI: 10.1371/journal.pone.0161453] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 08/06/2016] [Indexed: 11/30/2022] Open
Abstract
Induction of sexual reproduction in the facultatively sexual Chlamydomonas reinhardtii is cued by depletion of nitrogen. We explore the capacity for indirect monitoring of population variation in the gametogenic process using flow cytometry. We describe a high-throughput method capable of identifying fluorescence, ploidy and scatter profiles that track vegetative cells entering and undergoing gametogenesis. We demonstrate for the first time, that very early and late growth phases reduce the capacity to distinguish putative gametes from vegetative cells based on scatter and fluorescence profiles, and that early/mid-logarithmic cultures show the optimal distinction between vegetative cells and gamete scatter profiles. We argue that early/mid logarithmic cultures are valuable in such high throughput comparative approaches when investigating optimisation or quantification of gametogenesis based on scatter and fluorescence profiles. This approach provides new insights into the impact of culture conditions on gametogenesis, while documenting novel scatter and fluorescence profile shifts which typify the process. This method has potential applications to; enabling quick high-throughput monitoring, uses in increasing efficiency in the quantification of gametogenesis, as a method of comparing the switch between vegetative and gametic states across treatments, and as criteria for enrichment of gametic phenotypes in cell sorting assays.
Collapse
Affiliation(s)
- Catherine E. Seed
- Centre for Evolutionary Biology, School of Animal Biology (M092), The University of Western Australia, Crawley, Australia
- * E-mail:
| | - Joseph L. Tomkins
- Centre for Evolutionary Biology, School of Animal Biology (M092), The University of Western Australia, Crawley, Australia
| |
Collapse
|
29
|
Lopez D, Hamaji T, Kropat J, De Hoff P, Morselli M, Rubbi L, Fitz-Gibbon S, Gallaher SD, Merchant SS, Umen J, Pellegrini M. Dynamic Changes in the Transcriptome and Methylome of Chlamydomonas reinhardtii throughout Its Life Cycle. PLANT PHYSIOLOGY 2015; 169:2730-43. [PMID: 26450704 PMCID: PMC4677889 DOI: 10.1104/pp.15.00861] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 10/07/2015] [Indexed: 05/02/2023]
Abstract
The green alga Chlamydomonas reinhardtii undergoes gametogenesis and mating upon nitrogen starvation. While the steps involved in its sexual reproductive cycle have been extensively characterized, the genome-wide transcriptional and epigenetic changes underlying different life cycle stages have yet to be fully described. Here, we performed transcriptome and methylome sequencing to quantify expression and DNA methylation from vegetative and gametic cells of each mating type and from zygotes. We identified 361 gametic genes with mating type-specific expression patterns and 627 genes that are specifically induced in zygotes; furthermore, these sex-related gene sets were enriched for secretory pathway and alga-specific genes. We also examined the C. reinhardtii nuclear methylation map with base-level resolution at different life cycle stages. Despite having low global levels of nuclear methylation, we detected 23 hypermethylated loci in gene-poor, repeat-rich regions. We observed mating type-specific differences in chloroplast DNA methylation levels in plus versus minus mating type gametes followed by chloroplast DNA hypermethylation in zygotes. Lastly, we examined the expression of candidate DNA methyltransferases and found three, DMT1a, DMT1b, and DMT4, that are differentially expressed during the life cycle and are candidate DNA methylases. The expression and methylation data we present provide insight into cell type-specific transcriptional and epigenetic programs during key stages of the C. reinhardtii life cycle.
Collapse
Affiliation(s)
- David Lopez
- Molecular Biology Institute (D.L.), Department of Molecular, Cell, and Developmental Biology (D.L., M.M., L.R., S.F.-G., M.P.), Department of Chemistry and Biochemistry (J.K., S.F.-G., S.D.G., S.S.M.), and Institute for Genomics and Proteomics (S.S.M., M.P.), University of California, Los Angeles, California 90095;Donald Danforth Plant Science Center, St. Louis, Missouri 63132 (T.H., J.U.); andSalk Institute for Biological Studies, La Jolla, California 92037 (P.D.H.)
| | - Takashi Hamaji
- Molecular Biology Institute (D.L.), Department of Molecular, Cell, and Developmental Biology (D.L., M.M., L.R., S.F.-G., M.P.), Department of Chemistry and Biochemistry (J.K., S.F.-G., S.D.G., S.S.M.), and Institute for Genomics and Proteomics (S.S.M., M.P.), University of California, Los Angeles, California 90095;Donald Danforth Plant Science Center, St. Louis, Missouri 63132 (T.H., J.U.); andSalk Institute for Biological Studies, La Jolla, California 92037 (P.D.H.)
| | - Janette Kropat
- Molecular Biology Institute (D.L.), Department of Molecular, Cell, and Developmental Biology (D.L., M.M., L.R., S.F.-G., M.P.), Department of Chemistry and Biochemistry (J.K., S.F.-G., S.D.G., S.S.M.), and Institute for Genomics and Proteomics (S.S.M., M.P.), University of California, Los Angeles, California 90095;Donald Danforth Plant Science Center, St. Louis, Missouri 63132 (T.H., J.U.); andSalk Institute for Biological Studies, La Jolla, California 92037 (P.D.H.)
| | - Peter De Hoff
- Molecular Biology Institute (D.L.), Department of Molecular, Cell, and Developmental Biology (D.L., M.M., L.R., S.F.-G., M.P.), Department of Chemistry and Biochemistry (J.K., S.F.-G., S.D.G., S.S.M.), and Institute for Genomics and Proteomics (S.S.M., M.P.), University of California, Los Angeles, California 90095;Donald Danforth Plant Science Center, St. Louis, Missouri 63132 (T.H., J.U.); andSalk Institute for Biological Studies, La Jolla, California 92037 (P.D.H.)
| | - Marco Morselli
- Molecular Biology Institute (D.L.), Department of Molecular, Cell, and Developmental Biology (D.L., M.M., L.R., S.F.-G., M.P.), Department of Chemistry and Biochemistry (J.K., S.F.-G., S.D.G., S.S.M.), and Institute for Genomics and Proteomics (S.S.M., M.P.), University of California, Los Angeles, California 90095;Donald Danforth Plant Science Center, St. Louis, Missouri 63132 (T.H., J.U.); andSalk Institute for Biological Studies, La Jolla, California 92037 (P.D.H.)
| | - Liudmilla Rubbi
- Molecular Biology Institute (D.L.), Department of Molecular, Cell, and Developmental Biology (D.L., M.M., L.R., S.F.-G., M.P.), Department of Chemistry and Biochemistry (J.K., S.F.-G., S.D.G., S.S.M.), and Institute for Genomics and Proteomics (S.S.M., M.P.), University of California, Los Angeles, California 90095;Donald Danforth Plant Science Center, St. Louis, Missouri 63132 (T.H., J.U.); andSalk Institute for Biological Studies, La Jolla, California 92037 (P.D.H.)
| | - Sorel Fitz-Gibbon
- Molecular Biology Institute (D.L.), Department of Molecular, Cell, and Developmental Biology (D.L., M.M., L.R., S.F.-G., M.P.), Department of Chemistry and Biochemistry (J.K., S.F.-G., S.D.G., S.S.M.), and Institute for Genomics and Proteomics (S.S.M., M.P.), University of California, Los Angeles, California 90095;Donald Danforth Plant Science Center, St. Louis, Missouri 63132 (T.H., J.U.); andSalk Institute for Biological Studies, La Jolla, California 92037 (P.D.H.)
| | - Sean D Gallaher
- Molecular Biology Institute (D.L.), Department of Molecular, Cell, and Developmental Biology (D.L., M.M., L.R., S.F.-G., M.P.), Department of Chemistry and Biochemistry (J.K., S.F.-G., S.D.G., S.S.M.), and Institute for Genomics and Proteomics (S.S.M., M.P.), University of California, Los Angeles, California 90095;Donald Danforth Plant Science Center, St. Louis, Missouri 63132 (T.H., J.U.); andSalk Institute for Biological Studies, La Jolla, California 92037 (P.D.H.)
| | - Sabeeha S Merchant
- Molecular Biology Institute (D.L.), Department of Molecular, Cell, and Developmental Biology (D.L., M.M., L.R., S.F.-G., M.P.), Department of Chemistry and Biochemistry (J.K., S.F.-G., S.D.G., S.S.M.), and Institute for Genomics and Proteomics (S.S.M., M.P.), University of California, Los Angeles, California 90095;Donald Danforth Plant Science Center, St. Louis, Missouri 63132 (T.H., J.U.); andSalk Institute for Biological Studies, La Jolla, California 92037 (P.D.H.)
| | - James Umen
- Molecular Biology Institute (D.L.), Department of Molecular, Cell, and Developmental Biology (D.L., M.M., L.R., S.F.-G., M.P.), Department of Chemistry and Biochemistry (J.K., S.F.-G., S.D.G., S.S.M.), and Institute for Genomics and Proteomics (S.S.M., M.P.), University of California, Los Angeles, California 90095;Donald Danforth Plant Science Center, St. Louis, Missouri 63132 (T.H., J.U.); andSalk Institute for Biological Studies, La Jolla, California 92037 (P.D.H.)
| | - Matteo Pellegrini
- Molecular Biology Institute (D.L.), Department of Molecular, Cell, and Developmental Biology (D.L., M.M., L.R., S.F.-G., M.P.), Department of Chemistry and Biochemistry (J.K., S.F.-G., S.D.G., S.S.M.), and Institute for Genomics and Proteomics (S.S.M., M.P.), University of California, Los Angeles, California 90095;Donald Danforth Plant Science Center, St. Louis, Missouri 63132 (T.H., J.U.); andSalk Institute for Biological Studies, La Jolla, California 92037 (P.D.H.)
| |
Collapse
|
30
|
Mori T, Kawai-Toyooka H, Igawa T, Nozaki H. Gamete Dialogs in Green Lineages. MOLECULAR PLANT 2015; 8:1442-54. [PMID: 26145252 DOI: 10.1016/j.molp.2015.06.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 06/15/2015] [Accepted: 06/28/2015] [Indexed: 05/20/2023]
Abstract
Gamete fusion is a core process of sexual reproduction and, in both plants and animals, different sex gametes fuse within species. Although most of the molecular factors involved in gamete interaction are still unknown in various sex-possessing eukaryotes, reports of such factors in algae and land plants have been increasing in the past decade. In particular, knowledge of gamete interaction in flowering plants and green algae has increased since the identification of the conserved gamete fusion factor generative cell specific 1/hapless 2 (GCS1/HAP2). GCS1 was first identified as a pollen generative cell-specific transmembrane protein in the lily (Lilium longiflorum), and was then shown to function not only in flowering plant gamete fusion but also in various eukaryotes, including unicellular protists and metazoans. In addition, although initially restricted to Chlamydomonas, knowledge of gamete attachment in flowering plants was also acquired. This review focuses on recent progress in the study of gamete interaction in volvocine green algae and flowering plants and discusses conserved mechanisms of gamete recognition, attachment, and fusion leading to zygote formation.
Collapse
Affiliation(s)
- Toshiyuki Mori
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Hiroko Kawai-Toyooka
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Tomoko Igawa
- Graduate School of Horticulture, Chiba University, 648 Matsudo, Matsudo, Chiba 271-8510, Japan
| | - Hisayoshi Nozaki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
31
|
Díaz-Santos E, Vila M, de la Vega M, León R, Vigara J. Study of bioflocculation induced by Saccharomyces bayanus var. uvarum and flocculating protein factors in microalgae. ALGAL RES 2015. [DOI: 10.1016/j.algal.2014.12.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
32
|
Cao M, Ning J, Hernandez-Lara CI, Belzile O, Wang Q, Dutcher SK, Liu Y, Snell WJ. Uni-directional ciliary membrane protein trafficking by a cytoplasmic retrograde IFT motor and ciliary ectosome shedding. eLife 2015; 4. [PMID: 25688564 PMCID: PMC4362204 DOI: 10.7554/elife.05242] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Accepted: 02/14/2015] [Indexed: 12/22/2022] Open
Abstract
The role of the primary cilium in key signaling pathways depends on dynamic regulation of ciliary membrane protein composition, yet we know little about the motors or membrane events that regulate ciliary membrane protein trafficking in existing organelles. Recently, we showed that cilium-generated signaling in Chlamydomonas induced rapid, anterograde IFT-independent, cytoplasmic microtubule-dependent redistribution of the membrane polypeptide, SAG1-C65, from the plasma membrane to the periciliary region and the ciliary membrane. Here, we report that the retrograde IFT motor, cytoplasmic dynein 1b, is required in the cytoplasm for this rapid redistribution. Furthermore, signaling-induced trafficking of SAG1-C65 into cilia is unidirectional and the entire complement of cellular SAG1-C65 is shed during signaling and can be recovered in the form of ciliary ectosomes that retain signal-inducing activity. Thus, during signaling, cells regulate ciliary membrane protein composition through cytoplasmic action of the retrograde IFT motor and shedding of ciliary ectosomes. DOI:http://dx.doi.org/10.7554/eLife.05242.001 Nearly every cell in the human body has slender, hair-like structures known as cilia that project outwards from its surface. These structures can sense and respond to light, chemicals and touch, and they are required for normal development. Failure of cilia to form or function in the correct manner can lead to severe diseases—such as kidney disorders, deafness and loss of vision. A major puzzle for researchers who study cilia has been to understand how cells change the composition of these structures as part of their response to a sensory input. Cilia are ancient structures that were present in early single-celled organisms and researchers interested in cilia have often used a single-celled green alga called Chlamydomonas reinhardtii as a model system for their studies. When these algae reproduce sexually, the two types of sex cells sense the presence of each other when their cilia touch and then stick together. This ciliary touching activates signals that are sent into the cells to get them ready to fuse together, much like sperm and egg cells do in animals. Both ciliary touching and signaling depend on a protein called SAG1, a part of which (known as SAG1-C65) is normally found mostly over the surface membrane of C. reinhardtii. Only very small amounts of SAG1-C65 are normally found on cilia; but, when the sex cells' cilia touch, this protein rapidly moves to the end of the cell nearest the cilia via a previously unknown mechanism. SAG1-C65 then becomes much more enriched in the cilia. Cao, Ning, Hernandez-Lara et al. investigated this process and found that SAG1-C65 movement requires a molecular motor called ‘cytoplasmic dynein’. This motor protein typically walks along the inside of cilia to transport other molecules away from the tip and towards the cell membrane. However, Cao, Ning, Hernandez-Lara et al. found that this dynein also carries SAG1-C65 from the membrane of the cells towards the base of the cilia in preparation for it to enter into these structures. As part of an effort to understand the fate of the protein after it entered cilia, Cao, Ning, Hernandez-Lara et al. discovered that the SAG1-C65 disappeared from the structures without returning to the cell membrane. Instead, SAG1-C65 was packaged within tiny bubble-like structures near the tips of cilia and these packages were then shed from cilia into the external environment. This discovery challenges a widely held view that proteins are only removed from cilia by returning to the cell. Future work will be required to understand more of the molecular details of these processes, which are likely to be present in most cells with cilia. DOI:http://dx.doi.org/10.7554/eLife.05242.002
Collapse
Affiliation(s)
- Muqing Cao
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Jue Ning
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Carmen I Hernandez-Lara
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Olivier Belzile
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Qian Wang
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Susan K Dutcher
- Department of Genetics, Washington University, St. Louis, United States
| | - Yanjie Liu
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, United States
| | - William J Snell
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, United States
| |
Collapse
|
33
|
von Dassow P, John U, Ogata H, Probert I, Bendif EM, Kegel JU, Audic S, Wincker P, Da Silva C, Claverie JM, Doney S, Glover DM, Flores DM, Herrera Y, Lescot M, Garet-Delmas MJ, de Vargas C. Life-cycle modification in open oceans accounts for genome variability in a cosmopolitan phytoplankton. ISME JOURNAL 2014; 9:1365-77. [PMID: 25461969 PMCID: PMC4438323 DOI: 10.1038/ismej.2014.221] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 10/08/2014] [Accepted: 10/17/2014] [Indexed: 11/30/2022]
Abstract
Emiliania huxleyi is the most abundant calcifying plankton in modern oceans with substantial intraspecific genome variability and a biphasic life cycle involving sexual alternation between calcified 2N and flagellated 1N cells. We show that high genome content variability in Emiliania relates to erosion of 1N-specific genes and loss of the ability to form flagellated cells. Analysis of 185 E. huxleyi strains isolated from world oceans suggests that loss of flagella occurred independently in lineages inhabiting oligotrophic open oceans over short evolutionary timescales. This environmentally linked physiogenomic change suggests life cycling is not advantageous in very large/diluted populations experiencing low biotic pressure and low ecological variability. Gene loss did not appear to reflect pressure for genome streamlining in oligotrophic oceans as previously observed in picoplankton. Life-cycle modifications might be common in plankton and cause major functional variability to be hidden from traditional taxonomic or molecular markers.
Collapse
Affiliation(s)
- Peter von Dassow
- 1] Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile [2] UMI 3614, Evolutionary Biology and Ecology of Algae, CNRS, UPMC Sorbonne Universités, PUCCh, UACH, Station Biologique de Roscoff, Roscoff, France [3] Instituto Milenio de Oceanografía, Concepción, Chile [4] CNRS UMR 7144 and UMPC, Evolution of Pelagic Ecosystems and Protists (EPEP), CNRS, UPMC, Station Biologique de Roscoff, Roscoff, France
| | - Uwe John
- Alfred Wegener Institute Helmhotz Centre for Polar and Marine Research, Bremerhaven, Germany
| | - Hiroyuki Ogata
- 1] Institute for Chemical Research, Kyoto University, Kyoto, Japan [2] CNRS, Aix-Marseille Université, Laboratoire Information Génomique et Structurale (UMR 7256), Mediterranean Institute of Microbiology (FR 3479), Marseille, France
| | - Ian Probert
- CNRS-UMPC, FR2424, Roscoff Culture Collection, Station Biologique de Roscoff, Roscoff, France
| | - El Mahdi Bendif
- Marine Biological Association of the UK, The Laboratory, Citadel Hill, Plymouth, UK
| | - Jessica U Kegel
- Alfred Wegener Institute Helmhotz Centre for Polar and Marine Research, Bremerhaven, Germany
| | - Stéphane Audic
- CNRS UMR 7144 and UMPC, Evolution of Pelagic Ecosystems and Protists (EPEP), CNRS, UPMC, Station Biologique de Roscoff, Roscoff, France
| | | | | | - Jean-Michel Claverie
- CNRS, Aix-Marseille Université, Laboratoire Information Génomique et Structurale (UMR 7256), Mediterranean Institute of Microbiology (FR 3479), Marseille, France
| | - Scott Doney
- Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - David M Glover
- Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Daniella Mella Flores
- 1] Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile [2] UMI 3614, Evolutionary Biology and Ecology of Algae, CNRS, UPMC Sorbonne Universités, PUCCh, UACH, Station Biologique de Roscoff, Roscoff, France
| | - Yeritza Herrera
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Magali Lescot
- CNRS, Aix-Marseille Université, Laboratoire Information Génomique et Structurale (UMR 7256), Mediterranean Institute of Microbiology (FR 3479), Marseille, France
| | - Marie-José Garet-Delmas
- CNRS UMR 7144 and UMPC, Evolution of Pelagic Ecosystems and Protists (EPEP), CNRS, UPMC, Station Biologique de Roscoff, Roscoff, France
| | - Colomban de Vargas
- CNRS UMR 7144 and UMPC, Evolution of Pelagic Ecosystems and Protists (EPEP), CNRS, UPMC, Station Biologique de Roscoff, Roscoff, France
| |
Collapse
|
34
|
Domozych DS, Domozych CE. Multicellularity in green algae: upsizing in a walled complex. FRONTIERS IN PLANT SCIENCE 2014; 5:649. [PMID: 25477895 PMCID: PMC4235416 DOI: 10.3389/fpls.2014.00649] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 09/03/2014] [Indexed: 05/09/2023]
Abstract
Modern green algae constitute a large and diverse taxonomic assemblage that encompasses many multicellular phenotypes including colonial, filamentous, and parenchymatous forms. In all multicellular green algae, each cell is surrounded by an extracellular matrix (ECM), most often in the form of a cell wall. Volvocalean taxa like Volvox have an elaborate, gel-like, hydroxyproline rich glycoprotein covering that contains the cells of the colony. In "ulvophytes," uronic acid-rich and sulfated polysaccharides are the likely adhesion agents that maintain the multicellular habit. Charophytes also produce polysaccharide-rich cell walls and in late divergent taxa, pectin plays a critical role in cell adhesion in the multicellular complex. Cell walls are products of coordinated interaction of membrane trafficking, cytoskeletal dynamics and the cell's signal transduction machinery responding both to precise internal clocks and external environmental cues. Most often, these activities must be synchronized with the secretion, deposition and remodeling of the polymers of the ECM. Rapid advances in molecular genetics, cell biology and cell wall biochemistry of green algae will soon provide new insights into the evolution and subcellular processes leading to multicellularity.
Collapse
Affiliation(s)
- David S. Domozych
- Skidmore Microscopy Imaging Center, Department of Biology, Skidmore College, Saratoga SpringsNY, USA
| | | |
Collapse
|
35
|
Lin H, Miller ML, Granas DM, Dutcher SK. Whole genome sequencing identifies a deletion in protein phosphatase 2A that affects its stability and localization in Chlamydomonas reinhardtii. PLoS Genet 2013; 9:e1003841. [PMID: 24086163 PMCID: PMC3784568 DOI: 10.1371/journal.pgen.1003841] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 08/13/2013] [Indexed: 11/19/2022] Open
Abstract
Whole genome sequencing is a powerful tool in the discovery of single nucleotide polymorphisms (SNPs) and small insertions/deletions (indels) among mutant strains, which simplifies forward genetics approaches. However, identification of the causative mutation among a large number of non-causative SNPs in a mutant strain remains a big challenge. In the unicellular biflagellate green alga Chlamydomonas reinhardtii, we generated a SNP/indel library that contains over 2 million polymorphisms from four wild-type strains, one highly polymorphic strain that is frequently used in meiotic mapping, ten mutant strains that have flagellar assembly or motility defects, and one mutant strain, imp3, which has a mating defect. A comparison of polymorphisms in the imp3 strain and the other 15 strains allowed us to identify a deletion of the last three amino acids, Y313F314L315, in a protein phosphatase 2A catalytic subunit (PP2A3) in the imp3 strain. Introduction of a wild-type HA-tagged PP2A3 rescues the mutant phenotype, but mutant HA-PP2A3 at Y313 or L315 fail to rescue. Our immunoprecipitation results indicate that the Y313, L315, or YFLΔ mutations do not affect the binding of PP2A3 to the scaffold subunit, PP2A-2r. In contrast, the Y313, L315, or YFLΔ mutations affect both the stability and the localization of PP2A3. The PP2A3 protein is less abundant in these mutants and fails to accumulate in the basal body area as observed in transformants with either wild-type HA-PP2A3 or a HA-PP2A3 with a V310T change. The accumulation of HA-PP2A3 in the basal body region disappears in mated dikaryons, which suggests that the localization of PP2A3 may be essential to the mating process. Overall, our results demonstrate that the terminal YFL tail of PP2A3 is important in the regulation on Chlamydomonas mating.
Collapse
Affiliation(s)
- Huawen Lin
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Michelle L. Miller
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - David M. Granas
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Center for Genomic Sciences and System Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Susan K. Dutcher
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
36
|
Species and population level molecular profiling reveals cryptic recombination and emergent asymmetry in the dimorphic mating locus of C. reinhardtii. PLoS Genet 2013; 9:e1003724. [PMID: 24009520 PMCID: PMC3757049 DOI: 10.1371/journal.pgen.1003724] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 06/28/2013] [Indexed: 12/12/2022] Open
Abstract
Heteromorphic sex-determining regions or mating-type loci can contain large regions of non-recombining sequence where selection operates under different constraints than in freely recombining autosomal regions. Detailed studies of these non-recombining regions can provide insights into how genes are gained and lost, and how genetic isolation is maintained between mating haplotypes or sex chromosomes. The Chlamydomonas reinhardtii mating-type locus (MT) is a complex polygenic region characterized by sequence rearrangements and suppressed recombination between its two haplotypes, MT+ and MT−. We used new sequence information to redefine the genetic contents of MT and found repeated translocations from autosomes as well as sexually controlled expression patterns for several newly identified genes. We examined sequence diversity of MT genes from wild isolates of C. reinhardtii to investigate the impacts of recombination suppression. Our population data revealed two previously unreported types of genetic exchange in Chlamydomonas MT—gene conversion in the rearranged domains, and crossover exchanges in flanking domains—both of which contribute to maintenance of genetic homogeneity between haplotypes. To investigate the cause of blocked recombination in MT we assessed recombination rates in crosses where the parents were homozygous at MT. While normal recombination was restored in MT+×MT+ crosses, it was still suppressed in MT−×MT− crosses. These data revealed an underlying asymmetry in the two MT haplotypes and suggest that sequence rearrangements are insufficient to fully account for recombination suppression. Together our findings reveal new evolutionary dynamics for mating loci and have implications for the evolution of heteromorphic sex chromosomes and other non-recombining genomic regions. Sex chromosomes and mating-type loci are often atypical in their structure and evolutionary dynamics. One distinguishing feature is the absence of recombination that results in genetic isolation and promotes rapid evolution and sometimes degeneration. We investigated gene content, sex-regulated expression, and recombination of mating locus (MT) genes in the unicellular alga Chlamydomonas reinhardtii. Despite the lack of observable recombination in and around Chlamydomonas MT, genes from its two mating types are far more similar to each other than expected for a non-recombining region. This discrepancy is explained by our finding evidence of genetic exchange between the two mating types within wild populations. In addition, we observed an unexpected asymmetry in the recombination behavior of the two mating types that may have contributed to the preferential expansion of one MT haplotype over the other through insertion of new genes. Our data suggest a mechanism to explain the emergence of heteromorphic sex chromosomes in haploid organisms by asymmetric expansion rather than by loss or degeneration as occurs in some Y or W chromosomes from diploid organisms. Our observations support a revised view of recombination in sex-determining regions as a quantitative phenomenon that can significantly affect rates of evolution and sex-linked genetic diversification.
Collapse
|
37
|
Belzile O, Hernandez-Lara CI, Wang Q, Snell WJ. Regulated membrane protein entry into flagella is facilitated by cytoplasmic microtubules and does not require IFT. Curr Biol 2013; 23:1460-5. [PMID: 23891117 DOI: 10.1016/j.cub.2013.06.025] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 05/09/2013] [Accepted: 06/11/2013] [Indexed: 01/24/2023]
Abstract
The membrane protein composition of the primary cilium, a key sensory organelle, is dynamically regulated during cilium-generated signaling [1, 2]. During ciliogenesis, ciliary membrane proteins, along with structural and signaling proteins, are carried through the multicomponent, intensely studied ciliary diffusion barrier at the base of the organelle [3-8] by intraflagellar transport (IFT) [9-18]. A favored model is that signaling-triggered accumulation of previously excluded membrane proteins in fully formed cilia [19-21] also requires IFT, but direct evidence is lacking. Here, in studies of regulated entry of a membrane protein into the flagellum of Chlamydomonas, we show that cells use an IFT-independent mechanism to breach the diffusion barrier at the flagellar base. In resting cells, a flagellar signaling component [22], the integral membrane polypeptide SAG1-C65, is uniformly distributed over the plasma membrane and excluded from the flagellar membrane. Flagellar adhesion-induced signaling triggers rapid, striking redistribution of the protein to the apical ends of the cells concomitantly with entry into the flagella. Protein polarization and flagellar enrichment are facilitated by cytoplasmic microtubules. Using a conditional anterograde IFT mutant, we demonstrate that the IFT machinery is not required for regulated SAG1-C65 entry into flagella. Thus, integral membrane proteins can negotiate passage through the ciliary diffusion barrier without the need for a motor.
Collapse
Affiliation(s)
- Olivier Belzile
- Department of Cell Biology, University of Texas Southwestern Medical School, 6000 Harry Hines Boulevard, Dallas, TX 75390-9039, USA
| | | | | | | |
Collapse
|
38
|
Evolution of uni- and bifactorial sexual compatibility systems in fungi. Heredity (Edinb) 2013; 111:445-55. [PMID: 23838688 DOI: 10.1038/hdy.2013.67] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 06/07/2013] [Accepted: 06/10/2013] [Indexed: 12/29/2022] Open
Abstract
Mating systems, that is, whether organisms give rise to progeny by selfing, inbreeding or outcrossing, strongly affect important ecological and evolutionary processes. Large variations in mating systems exist in fungi, allowing the study of their origin and consequences. In fungi, sexual incompatibility is determined by molecular recognition mechanisms, controlled by a single mating-type locus in most unifactorial fungi. In Basidiomycete fungi, however, which include rusts, smuts and mushrooms, a system has evolved in which incompatibility is controlled by two unlinked loci. This bifactorial system probably evolved from a unifactorial system. Multiple independent transitions back to a unifactorial system occurred. It is still unclear what force drove evolution and maintenance of these contrasting inheritance patterns that determine mating compatibility. Here, we give an overview of the evolutionary factors that might have driven the evolution of bifactoriality from a unifactorial system and the transitions back to unifactoriality. Bifactoriality most likely evolved for selfing avoidance. Subsequently, multiallelism at mating-type loci evolved through negative frequency-dependent selection by increasing the chance to find a compatible mate. Unifactoriality then evolved back in some species, possibly because either selfing was favoured or for increasing the chance to find a compatible mate in species with few alleles. Owing to the existence of closely related unifactorial and bifactorial species and the increasing knowledge of the genetic systems of the different mechanisms, Basidiomycetes provide an excellent model for studying the different forces that shape breeding systems.
Collapse
|
39
|
Shih SM, Engel BD, Kocabas F, Bilyard T, Gennerich A, Marshall WF, Yildiz A. Intraflagellar transport drives flagellar surface motility. eLife 2013; 2:e00744. [PMID: 23795295 PMCID: PMC3679542 DOI: 10.7554/elife.00744] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 04/30/2013] [Indexed: 11/23/2022] Open
Abstract
The assembly and maintenance of all cilia and flagella require intraflagellar transport (IFT) along the axoneme. IFT has been implicated in sensory and motile ciliary functions, but the mechanisms of this relationship remain unclear. Here, we used Chlamydomonas flagellar surface motility (FSM) as a model to test whether IFT provides force for gliding of cells across solid surfaces. We show that IFT trains are coupled to flagellar membrane glycoproteins (FMGs) in a Ca2+-dependent manner. IFT trains transiently pause through surface adhesion of their FMG cargos, and dynein-1b motors pull the cell towards the distal tip of the axoneme. Each train is transported by at least four motors, with only one type of motor active at a time. Our results demonstrate the mechanism of Chlamydomonas gliding motility and suggest that IFT plays a major role in adhesion-induced ciliary signaling pathways. DOI:http://dx.doi.org/10.7554/eLife.00744.001 Cilia and flagella protrude like bristles from the cell surface. They share the same basic ‘9+2’ axoneme structure, being made up of nine microtubule doublets that surround a central pair of singlet microtubules. Flagella are generally involved in cell propulsion, whereas motile cilia help to move fluids over cell surfaces. Maintaining cilia and flagella is a challenge for cells, which must find a way to send new proteins all the way along the axoneme to the site of assembly at the flagellar tip. Cells achieve this via a process called intraflagellar transport, in which proteins are carried back and forth by kinesin and dynein motors along the axonemal doublet microtubules. Intraflagellar transport has been proposed to influence other functions of cilia and flagella, including the propulsion of cells over surfaces. However, the details of these interactions are unclear. Through a combination of biophysical and microscopy approaches, Shih et al. describe the mechanism that the green alga Chalmydomonas uses to power flagellar gliding over surfaces. By tracking single fluorescently tagged molecules, Shih et al. observed that flagellar membrane glycoproteins are carried along the axoneme by the intraflagellar transport machinery. During transport, flagellar membrane glycoproteins transiently adhere to the surface, and dynein motors that were previously engaged in carrying these glycoproteins now transmit force that moves the axonemal microtubules. This process, which is dependent on the concentration of calcium ions in the extracellular environment, generates the force that propels the alga's flagella along the surface. Gliding motility is thought to have been one of the initial driving forces for the evolution of cilia and flagella. How the intricate mechanism of flagellar beat motility could have evolved has been the subject of much discussion, as it would require the flagellum to have evolved first. In demonstrating that gliding motility is powered by the same intraflagellar transport mechanism that is required for flagellar assembly, Shih et al. provide strong evidence for the evolution of primitive flagella before the evolution of flagellar beating. Furthermore, since algal flagella have essentially the same structure as the cilia of human cells, these findings could ultimately aid in the development of treatments for diseases that result from defects in intraflagellar transport, including polycystic kidney disease and retinal degeneration. DOI:http://dx.doi.org/10.7554/eLife.00744.002
Collapse
Affiliation(s)
- Sheng Min Shih
- Department of Physics , University of California, Berkeley , Berkeley , United States
| | | | | | | | | | | | | |
Collapse
|
40
|
Radhakrishnan A, Vitalis A, Mao AH, Steffen AT, Pappu RV. Improved atomistic Monte Carlo simulations demonstrate that poly-L-proline adopts heterogeneous ensembles of conformations of semi-rigid segments interrupted by kinks. J Phys Chem B 2012; 116:6862-71. [PMID: 22329658 PMCID: PMC3376247 DOI: 10.1021/jp212637r] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Poly-L-proline (PLP) polymers are useful mimics of biologically relevant proline-rich sequences. Biophysical and computational studies of PLP polymers in aqueous solutions are challenging because of the diversity of length scales and the slow time scales for conformational conversions. We describe an atomistic simulation approach that combines an improved ABSINTH implicit solvation model, with conformational sampling based on standard and novel Metropolis Monte Carlo moves. Refinements to forcefield parameters were guided by published experimental data for proline-rich systems. We assessed the validity of our simulation results through quantitative comparisons to experimental data that were not used in refining the forcefield parameters. Our analysis shows that PLP polymers form heterogeneous ensembles of conformations characterized by semirigid, rod-like segments interrupted by kinks, which result from a combination of internal cis peptide bonds, flexible backbone ψ angles, and the coupling between ring puckering and backbone degrees of freedom.
Collapse
Affiliation(s)
- Aditya Radhakrishnan
- Department of Biomedical Engineering, Washington University in St. Louis, One Brookings Drive, Campus Box 1097, St. Louis, MO 63130, USA
- Program in Molecular Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Andreas Vitalis
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Albert H. Mao
- Medical Scientist Training Program and Computational & Molecular Biophysics Program, Washington University School of Medicine, St. Louis, MO 63110
| | - Adam T. Steffen
- Department of Biomedical Engineering, Washington University in St. Louis, One Brookings Drive, Campus Box 1097, St. Louis, MO 63130, USA
| | - Rohit V. Pappu
- Department of Biomedical Engineering, Washington University in St. Louis, One Brookings Drive, Campus Box 1097, St. Louis, MO 63130, USA
| |
Collapse
|
41
|
Nishimura Y, Shikanai T, Nakamura S, Kawai-Yamada M, Uchimiya H. Gsp1 triggers the sexual developmental program including inheritance of chloroplast DNA and mitochondrial DNA in Chlamydomonas reinhardtii. THE PLANT CELL 2012; 24:2401-14. [PMID: 22715041 PMCID: PMC3406891 DOI: 10.1105/tpc.112.097865] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 05/16/2012] [Accepted: 05/23/2012] [Indexed: 05/24/2023]
Abstract
The isogamous green alga Chlamydomonas reinhardtii has emerged as a premier model for studying the genetic regulation of fertilization and sexual development. A key regulator is known to be a homeoprotein gene, GAMETE-SPECIFIC PLUS1 (GSP1), which triggers the zygotic program. In this study, we isolated a mutant, biparental31 (bp31), which lacks GSP1. bp31 mt+ gametes fuse normally to form zygotes, but the sexual development of the resulting diploid cell is arrested and pellicle/zygospore/tetrad formation is abolished. The uniparental inheritance of chloroplast (cp) and mitochondrial (mt) DNA (cytoplasmic inheritance) was also impaired. bp31 has a deletion of ∼60 kb on chromosome 2, including GSP1. The mutant phenotype was not rescued by transformation with GSP1 alone but could be rescued by the cotransformation with GSP1 and another gene, INOSITOL MONOPHOSPHATASE-LIKE1, which is involved in various cellular processes, including the phosphatidylinositol signaling pathway. This study confirms the importance of Gsp1 in mediating the zygotic program, including the uniparental inheritance of cp/mtDNA. Moreover, the results also suggest a role for inositol metabolism in the sexual developmental program.
Collapse
Affiliation(s)
- Yoshiki Nishimura
- Laboratory of Plant Molecular Genetics, Department of Botany, Kyoto University, Oiwake-cho, Kita-Shirakawa, Kyoto 606-8502, Japan.
| | | | | | | | | |
Collapse
|
42
|
Abstract
This review covers essentially all aspects of the organisms in the green algal family Volvocaceae and suggests the genetic history of the various steps in their evolution from their unicellular ancestors.
Collapse
Affiliation(s)
- A W Coleman
- Department of Molecular and Cell Biology, Brown University, Providence, Rhode Island 02912, USA
| |
Collapse
|
43
|
Ott C, Elia N, Jeong SY, Insinna C, Sengupta P, Lippincott-Schwartz J. Primary cilia utilize glycoprotein-dependent adhesion mechanisms to stabilize long-lasting cilia-cilia contacts. Cilia 2012; 1:3. [PMID: 23351752 PMCID: PMC3541541 DOI: 10.1186/2046-2530-1-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Accepted: 04/25/2012] [Indexed: 12/11/2022] Open
Abstract
Background The central tenet of cilia function is sensing and transmitting information. The capacity to directly contact extracellular surfaces would empower primary cilia to probe the environment for information about the nature and location of nearby surfaces. It has been well established that flagella and other motile cilia perform diverse cellular functions through adhesion. We hypothesized that mammalian primary cilia also interact with the extracellular environment through direct physical contact. Methods We identified cilia in rod photoreceptors and cholangiocytes in fixed mouse tissues and examined the structures that these cilia contact in vivo. We then utilized an MDCK cell culture model to characterize the nature of the contacts we observed. Results In retina and liver tissue, we observed that cilia from nearby cells touch one another. Using MDCK cells, we found compelling evidence that these contacts are stable adhesions that form bridges between two cells, or networks between many cells. We examined the nature and duration of the cilia-cilia contacts and discovered primary cilia movements that facilitate cilia-cilia encounters. Stable adhesions form as the area of contact expands from a single point to a stretch of tightly bound, adjacent cilia membranes. The cilia-cilia contacts persisted for hours and were resistant to several harsh treatments such as proteases and DTT. Unlike many other cell adhesion mechanisms, calcium was not required for the formation or maintenance of cilia adhesion. However, swainsonine, which blocks maturation of N-linked glycoproteins, reduced contact formation. We propose that cellular control of adhesion maintenance is active because cilia adhesion did not prevent cell division; rather, contacts dissolved during mitosis as cilia were resorbed. Conclusions The demonstration that mammalian primary cilia formed prolonged, direct, physical contacts supports a novel paradigm: that mammalian primary cilia detect features of the extracellular space, not just as passive antennae, but also through direct physical contact. We present a model for the cycle of glycoprotein-dependent contact formation, maintenance, and termination, and discuss the implications for potential physiological functions of cilia-cilia contacts.
Collapse
Affiliation(s)
- Carolyn Ott
- Cell Biology and Metabolism Program, National Institute of Child Health and Human Development, Bethesda, MD, USA.
| | | | | | | | | | | |
Collapse
|
44
|
Naziga EB, Schweizer F, Wetmore SD. Conformational Study of the Hydroxyproline–O–Glycosidic Linkage: Sugar–Peptide Orientation and Prolyl Amide Isomerization in (α/β)–Galactosylated 4(R/S)–Hydroxyproline. J Phys Chem B 2012; 116:860-71. [DOI: 10.1021/jp207479q] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Emmanuel B. Naziga
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive, Lethbridge, Alberta, Canada T1K 3M4
| | - Frank Schweizer
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2
| | - Stacey D. Wetmore
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive, Lethbridge, Alberta, Canada T1K 3M4
| |
Collapse
|
45
|
Hiraoka M, Ichihara K, Zhu W, Ma J, Shimada S. Culture and hybridization experiments on an ulva clade including the Qingdao strain blooming in the yellow sea. PLoS One 2011; 6:e19371. [PMID: 21573216 PMCID: PMC3088668 DOI: 10.1371/journal.pone.0019371] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Accepted: 04/03/2011] [Indexed: 12/01/2022] Open
Abstract
In the summer of 2008, immediately prior to the Beijing Olympics, a massive green tide of the genus Ulva covered the Qingdao coast of the Yellow Sea in China. Based on molecular analyses using the nuclear encoded rDNA internal transcribed spacer (ITS) region, the Qingdao strains dominating the green tide were reported to be included in a single phylogenetic clade, currently regarded as a single species. On the other hand, our detailed phylogenetic analyses of the clade, using a higher resolution DNA marker, suggested that two genetically separate entities could be included within the clade. However, speciation within the Ulva clade has not yet been examined. We examined the occurrence of an intricate speciation within the clade, including the Qingdao strains, via combined studies of culture, hybridization and phylogenetic analysis. The two entities separated by our phylogenetic analyses of the clade were simply distinguished as U. linza and U. prolifera morphologically by the absence or presence of branches in cultured thalli. The inclusion of sexual strains and several asexual strains were found in each taxon. Hybridizations among the sexual strains also supported the separation by a partial gamete incompatibility. The sexually reproducing Qingdao strains crossed with U. prolifera without any reproductive boundary, but a complete reproductive isolation to U. linza occurred by gamete incompatibility. The results demonstrate that the U. prolifera group includes two types of sexual strains distinguishable by crossing affinity to U. linza. Species identification within the Ulva clade requires high resolution DNA markers and/or hybridization experiments and is not possible by reliance on the ITS markers alone.
Collapse
Affiliation(s)
- Masanori Hiraoka
- Usa Marine Biological Institute, Kochi University, Usa, Tosa, Kochi, Japan.
| | | | | | | | | |
Collapse
|
46
|
Prochnik SE, Umen J, Nedelcu AM, Hallmann A, Miller SM, Nishii I, Ferris P, Kuo A, Mitros T, Fritz-Laylin LK, Hellsten U, Chapman J, Simakov O, Rensing SA, Terry A, Pangilinan J, Kapitonov V, Jurka J, Salamov A, Shapiro H, Schmutz J, Grimwood J, Lindquist E, Lucas S, Grigoriev IV, Schmitt R, Kirk D, Rokhsar DS. Genomic analysis of organismal complexity in the multicellular green alga Volvox carteri. Science 2010; 329:223-6. [PMID: 20616280 DOI: 10.1126/science.1188800] [Citation(s) in RCA: 408] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The multicellular green alga Volvox carteri and its morphologically diverse close relatives (the volvocine algae) are well suited for the investigation of the evolution of multicellularity and development. We sequenced the 138-mega-base pair genome of V. carteri and compared its approximately 14,500 predicted proteins to those of its unicellular relative Chlamydomonas reinhardtii. Despite fundamental differences in organismal complexity and life history, the two species have similar protein-coding potentials and few species-specific protein-coding gene predictions. Volvox is enriched in volvocine-algal-specific proteins, including those associated with an expanded and highly compartmentalized extracellular matrix. Our analysis shows that increases in organismal complexity can be associated with modifications of lineage-specific proteins rather than large-scale invention of protein-coding capacity.
Collapse
Affiliation(s)
- Simon E Prochnik
- U.S. Department of Energy, Joint Genome Institute, Walnut Creek, CA 94598, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Nishimura Y. Uniparental inheritance of cpDNA and the genetic control of sexual differentiation in Chlamydomonas reinhardtii. JOURNAL OF PLANT RESEARCH 2010; 123:149-162. [PMID: 20196233 DOI: 10.1007/s10265-009-0292-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
An intriguing feature of most eukaryotes is that chloroplast (cp) and mitochondrial (mt) genomes are inherited almost exclusively from one parent. Uniparental inheritance of cp/mt genomes was long thought to be a passive outcome, based on the fact that eggs contain multiple numbers of organelles, while male gametes contribute,at best, only a few cp/mtDNA. However, the process is likely to be more dynamic because uniparental inheritance occurs in organisms that produce gametes of identical sizes (isogamous). In Chlamydomonas reinhardtii,the uniparental inheritance of cp/mt genomes is achieved by a series of mating type-controlled events that actively eliminate the mating type minus (mt-) cpDNA.The method by which Chlamydomonas selectively degrades mt- cpDNA has long fascinated researchers, and is the subject of this review.
Collapse
Affiliation(s)
- Yoshiki Nishimura
- Department of Botany, Graduate School of Sciences, Kyoto University, Oiwake-cho, Kita-shirakawa, Sakyo-ku, Kyoto 606-8502, Japane.
| |
Collapse
|
48
|
Owens NW, Lee A, Marat K, Schweizer F. The implications of (2S,4S)-hydroxyproline 4-O-glycosylation for prolyl amide isomerization. Chemistry 2009; 15:10649-57. [PMID: 19739208 DOI: 10.1002/chem.200900844] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The conformations of peptides and proteins are often influenced by glycans O-linked to serine (Ser) or threonine (Thr). (2S,4R)-4-Hydroxyproline (Hyp), together with L-proline (Pro), are interesting targets for O-glycosylation because they have a unique influence on peptide and protein conformation. In previous work we found that glycosylation of Hyp does not affect the N-terminal amide trans/cis ratios (K(trans/cis)) or the rates of amide isomerization in model amides. The stereoisomer of Hyp--(2S,4S)-4-hydroxyproline (hyp)--is rarely found in nature, and has a different influence both on the conformation of the pyrrolidine ring and on K(trans/cis). Glycans attached to hyp would be expected to be projected from the opposite face of the prolyl side chain relative to Hyp; the impact this would have on K(trans/cis) was unknown. Measurements of (3)J coupling constants indicate that the glycan has little impact on the C(gamma)-endo conformation produced by hyp. As a result, it was found that the D-galactose residue extending from a C(gamma)-endo pucker affects both K(trans/cis) and the rate of isomerization, which is not found to occur when it is projected from a C(gamma)-exo pucker; this reflects the different environments delineated by the proline side chain. The enthalpic contributions to the stabilization of the trans amide isomer may be due to disruption of intramolecular interactions present in hyp; the change in enthalpy is balanced by a decrease in entropy incurred upon glycosylation. Because the different stereoisomers--Hyp and hyp--project the O-linked carbohydrates in opposite spatial orientations, these glycosylated amino acids may be useful for understanding of how the projection of a glycan from the peptide or protein backbone exerts its influence.
Collapse
Affiliation(s)
- Neil W Owens
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| | | | | | | |
Collapse
|
49
|
von Dassow P, Ogata H, Probert I, Wincker P, Da Silva C, Audic S, Claverie JM, de Vargas C. Transcriptome analysis of functional differentiation between haploid and diploid cells of Emiliania huxleyi, a globally significant photosynthetic calcifying cell. Genome Biol 2009; 10:R114. [PMID: 19832986 PMCID: PMC2784329 DOI: 10.1186/gb-2009-10-10-r114] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2009] [Revised: 08/19/2009] [Accepted: 10/15/2009] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Eukaryotes are classified as either haplontic, diplontic, or haplo-diplontic, depending on which ploidy levels undergo mitotic cell division in the life cycle. Emiliania huxleyi is one of the most abundant phytoplankton species in the ocean, playing an important role in global carbon fluxes, and represents haptophytes, an enigmatic group of unicellular organisms that diverged early in eukaryotic evolution. This species is haplo-diplontic. Little is known about the haploid cells, but they have been hypothesized to allow persistence of the species between the yearly blooms of diploid cells. We sequenced over 38,000 expressed sequence tags from haploid and diploid E. huxleyi normalized cDNA libraries to identify genes involved in important processes specific to each life phase (2N calcification or 1N motility), and to better understand the haploid phase of this prominent haplo-diplontic organism. RESULTS The haploid and diploid transcriptomes showed a dramatic differentiation, with approximately 20% greater transcriptome richness in diploid cells than in haploid cells and only CONCLUSIONS This study permitted the identification of genes likely involved in diploid-specific biomineralization, haploid-specific motility, and transcriptional control. Greater transcriptome richness in diploid cells suggests they may be more versatile for exploiting a diversity of rich environments whereas haploid cells are intrinsically more streamlined.
Collapse
Affiliation(s)
- Peter von Dassow
- Evolution du Plancton et PaleOceans, Station Biologique de Roscoff, CNRS UPMC UMR7144, 29682 Roscoff, France
| | - Hiroyuki Ogata
- Information Génomique et Structurale, CNRS - UPR2589, Institut de Microbiologie de la Méditerranée, Parc Scientifique de Luminy - 163 Avenue de Luminy - Case 934, FR- 13288, Marseille cedex 09, France
| | - Ian Probert
- Evolution du Plancton et PaleOceans, Station Biologique de Roscoff, CNRS UPMC UMR7144, 29682 Roscoff, France
| | | | | | - Stéphane Audic
- Information Génomique et Structurale, CNRS - UPR2589, Institut de Microbiologie de la Méditerranée, Parc Scientifique de Luminy - 163 Avenue de Luminy - Case 934, FR- 13288, Marseille cedex 09, France
| | - Jean-Michel Claverie
- Information Génomique et Structurale, CNRS - UPR2589, Institut de Microbiologie de la Méditerranée, Parc Scientifique de Luminy - 163 Avenue de Luminy - Case 934, FR- 13288, Marseille cedex 09, France
| | - Colomban de Vargas
- Evolution du Plancton et PaleOceans, Station Biologique de Roscoff, CNRS UPMC UMR7144, 29682 Roscoff, France
| |
Collapse
|
50
|
Abstract
In unicellular and multicellular eukaryotes, fast cell motility and rapid movement of material over cell surfaces are often mediated by ciliary or flagellar beating. The conserved defining structure in most motile cilia and flagella is the '9+2' microtubule axoneme. Our general understanding of flagellum assembly and the regulation of flagellar motility has been led by results from seminal studies of flagellate protozoa and algae. Here we review recent work relating to various aspects of protist physiology and cell biology. In particular, we discuss energy metabolism in eukaryotic flagella, modifications to the canonical assembly pathway and flagellum function in parasite virulence.
Collapse
|