1
|
Gao Q, Zeng Z, Hao T, Zhang Z, Liang D, Xia C, Gao H, Liu L. Transcriptional and post-transcriptional regulation of chloroplast development by nuclear-localized XAP5 CIRCADIAN TIMEKEEPER. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 343:112081. [PMID: 38579979 DOI: 10.1016/j.plantsci.2024.112081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/08/2024] [Accepted: 04/01/2024] [Indexed: 04/07/2024]
Abstract
Chlorophyll biosynthesis and breakdown, important cellular processes for photosynthesis, occur in the chloroplast. As a semi-autonomous organelle, chloroplast development is mainly regulated by nuclear-encoded chloroplast proteins and proteins encoded by itself. However, the knowledge of chloroplast development regulated by other organelles is limited. Here, we report that the nuclear-localized XAP5 CIRCADIAN TIMEKEEPER (XCT) is essential for chloroplast development in Arabidopsis. In this study, significantly decreased chlorophyll content phenotypes of cotyledons and subsequently emerging organs from shoot apical meristem were observed in xct-2. XCT is constitutively expressed in various tissues and localized in the nuclear with speckle patterns. RNA-seq analysis identified 207 differently spliced genes and 1511 differently expressed genes, in which chloroplast development-, chlorophyll metabolism- and photosynthesis-related genes were enriched. Further biochemical assays suggested that XCT was co-purified with the well-known splicing factors and transcription machinery, suggesting dual functions of XCT in gene transcription and splicing. Interestingly, we also found that the chlorophyll contents in xct-2 significantly decreased under high temperature and high light condition, indicating XCT integrates temperature and light signals to fine-tune the chlorophyll metabolism in Arabidopsis. Therefore, our results provide new insights into chloroplast development regulation by XCT, a nuclear-localized protein, at the transcriptional and post-transcriptional level.
Collapse
Affiliation(s)
- Qian Gao
- Jiangsu Key Laboratory for Eco-agriculture Biotechnology around Hongze Lake, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environment Protection, Huaiyin Normal University, Huaian 223300, China
| | - Ziyang Zeng
- Jiangsu Key Laboratory for Eco-agriculture Biotechnology around Hongze Lake, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environment Protection, Huaiyin Normal University, Huaian 223300, China
| | - Tianqi Hao
- Jiangsu Key Laboratory for Eco-agriculture Biotechnology around Hongze Lake, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environment Protection, Huaiyin Normal University, Huaian 223300, China
| | - Ziru Zhang
- Jiangsu Key Laboratory for Eco-agriculture Biotechnology around Hongze Lake, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environment Protection, Huaiyin Normal University, Huaian 223300, China
| | - Daan Liang
- Jiangsu Key Laboratory for Eco-agriculture Biotechnology around Hongze Lake, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environment Protection, Huaiyin Normal University, Huaian 223300, China
| | - Congcong Xia
- Jiangsu Key Laboratory for Eco-agriculture Biotechnology around Hongze Lake, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environment Protection, Huaiyin Normal University, Huaian 223300, China
| | - Hui Gao
- College of Marine Resources and Environment, Hebei Normal University of Science and Technology, Qinhuangdao 066600, China.
| | - Lei Liu
- Jiangsu Key Laboratory for Eco-agriculture Biotechnology around Hongze Lake, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environment Protection, Huaiyin Normal University, Huaian 223300, China.
| |
Collapse
|
2
|
Xiong S, Yu K, Lin H, Ye X, Xiao S, Yang Y, Stanley DW, Song Q, Fang Q, Ye G. Regulatory network in heat stress response in parasitoid wasp focusing on Xap5 heat stress regulator. iScience 2024; 27:108622. [PMID: 38205256 PMCID: PMC10777071 DOI: 10.1016/j.isci.2023.108622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/22/2023] [Accepted: 11/30/2023] [Indexed: 01/12/2024] Open
Abstract
Insects are susceptible to elevated temperatures, resulting in impaired fertility, and shortened lifespan. This study investigated the genetic mechanisms underlying heat stress effects. We conducted RNA sequencing on Pteromalus puparum exposed to 25°C and 35°C, revealing transcriptional signatures. Weighted Gene Co-expression Network Analysis uncovered heat stress-associated modules, forming a regulatory network of 113 genes. The network is naturally divided into two subgroups, one linked to acute heat stress, including heat shock proteins (HSPs), and the other to chronic heat stress, involving lipogenesis genes. We identified an Xap5 Heat Shock Regulator (XHSR) gene as a crucial network component, validated through RNA interference and quantitative PCR assays. XHSR knockdown reduced wasps' lifespan while directly inducing HSPs and mediating lipogenesis gene induction. CRISPR/Cas9-mediated knockout of the Drosophila XHSR homolog reduced mutants' survival, highlighting its conserved role. This research sheds light on thermal tolerance mechanisms, offering potential applications in pest control amid global warming.
Collapse
Affiliation(s)
- Shijiao Xiong
- State Key Laboratory of Rice Biology and Breeding & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Kaili Yu
- State Key Laboratory of Rice Biology and Breeding & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Haiwei Lin
- State Key Laboratory of Rice Biology and Breeding & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xinhai Ye
- State Key Laboratory of Rice Biology and Breeding & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shan Xiao
- State Key Laboratory of Rice Biology and Breeding & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yi Yang
- State Key Laboratory of Rice Biology and Breeding & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - David W. Stanley
- USDA/ARS Biological Control of Insects Research Laboratory, 1503 S. Providence Road, Columbia MO, USA
| | - Qisheng Song
- Division of Plant Sciences, University of Missouri, Columbia, MO, USA
| | - Qi Fang
- State Key Laboratory of Rice Biology and Breeding & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Gongyin Ye
- State Key Laboratory of Rice Biology and Breeding & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
3
|
Global Analysis of Dark- and Heat-Regulated Alternative Splicing in Arabidopsis. Int J Mol Sci 2023; 24:ijms24065299. [PMID: 36982373 PMCID: PMC10049525 DOI: 10.3390/ijms24065299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/02/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
Alternative splicing (AS) is one of the major post-transcriptional regulation mechanisms that contributes to plant responses to various environmental perturbations. Darkness and heat are two common abiotic factors affecting plant growth, yet the involvement and regulation of AS in the plant responses to these signals remain insufficiently examined. In this study, we subjected Arabidopsis seedlings to 6 h of darkness or heat stress and analyzed their transcriptome through short-read RNA sequencing. We revealed that both treatments altered the transcription and AS of a subset of genes yet with different mechanisms. Dark-regulated AS events were found enriched in photosynthesis and light signaling pathways, while heat-regulated AS events were enriched in responses to abiotic stresses but not in heat-responsive genes, which responded primarily through transcriptional regulation. The AS of splicing-related genes (SRGs) was susceptible to both treatments; while dark treatment mostly regulated the AS of these genes, heat had a strong effect on both their transcription and AS. PCR analysis showed that the AS of the Serine/Arginine-rich family gene SR30 was reversely regulated by dark and heat, and heat induced the upregulation of multiple minor SR30 isoforms with intron retention. Our results suggest that AS participates in plant responses to these two abiotic signals and reveal the regulation of splicing regulators during these processes.
Collapse
|
4
|
Uehara TN, Nonoyama T, Taki K, Kuwata K, Sato A, Fujimoto KJ, Hirota T, Matsuo H, Maeda AE, Ono A, Takahara TT, Tsutsui H, Suzuki T, Yanai T, Kay SA, Itami K, Kinoshita T, Yamaguchi J, Nakamichi N. Phosphorylation of RNA Polymerase II by CDKC;2 Maintains the Arabidopsis Circadian Clock Period. PLANT & CELL PHYSIOLOGY 2022; 63:450-462. [PMID: 35086143 PMCID: PMC9016870 DOI: 10.1093/pcp/pcac011] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/19/2022] [Accepted: 01/25/2022] [Indexed: 06/14/2023]
Abstract
The circadian clock is an internal timekeeping system that governs about 24 h biological rhythms of a broad range of developmental and metabolic activities. The clocks in eukaryotes are thought to rely on lineage-specific transcriptional-translational feedback loops. However, the mechanisms underlying the basic transcriptional regulation events for clock function have not yet been fully explored. Here, through a combination of chemical biology and genetic approaches, we demonstrate that phosphorylation of RNA polymerase II by CYCLIN DEPENDENT KINASE C; 2 (CDKC;2) is required for maintaining the circadian period in Arabidopsis. Chemical screening identified BML-259, the inhibitor of mammalian CDK2/CDK5, as a compound lengthening the circadian period of Arabidopsis. Short-term BML-259 treatment resulted in decreased expression of most clock-associated genes. Development of a chemical probe followed by affinity proteomics revealed that BML-259 binds to CDKC;2. Loss-of-function mutations of cdkc;2 caused a long period phenotype. In vitro experiments demonstrated that the CDKC;2 immunocomplex phosphorylates the C-terminal domain of RNA polymerase II, and BML-259 inhibits this phosphorylation. Collectively, this study suggests that transcriptional activity maintained by CDKC;2 is required for proper period length, which is an essential feature of the circadian clock in Arabidopsis.
Collapse
Affiliation(s)
| | | | | | - Keiko Kuwata
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa, Nagoya, 464-8601 Japan
| | - Ayato Sato
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa, Nagoya, 464-8601 Japan
| | - Kazuhiro J Fujimoto
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa, Nagoya, 464-8602 Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa, Nagoya, 464-8601 Japan
| | - Tsuyoshi Hirota
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa, Nagoya, 464-8601 Japan
| | - Hiromi Matsuo
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya, 464-8601 Japan
| | - Akari E Maeda
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa, Nagoya, 464-8602 Japan
| | - Azusa Ono
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa, Nagoya, 464-8602 Japan
| | - Tomoaki T Takahara
- Department of Applied Chemistry, Waseda University, 513 Wasedatsurumakicho, Shinjuku, Tokyo, 162-0041 Japan
| | - Hiroki Tsutsui
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa, Nagoya, 464-8602 Japan
| | - Takamasa Suzuki
- College of Bioscience and Biotechnology, Chubu University, 1200 Matsumoto-cho, Kasugai, 487-8501 Japan
| | - Takeshi Yanai
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa, Nagoya, 464-8602 Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa, Nagoya, 464-8601 Japan
| | - Steve A Kay
- Keck School of Medicine, University of Southern California, 1975 Zonal Avenue, Los Angeles, CA 90033, USA
| | - Kenichiro Itami
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa, Nagoya, 464-8602 Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa, Nagoya, 464-8601 Japan
- JST ERATO, Itami Molecular Nanocarbon Project, Nagoya University, Furo-cho, Chikusa, Nagoya, 464-8602 Japan
| | - Toshinori Kinoshita
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa, Nagoya, 464-8602 Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa, Nagoya, 464-8601 Japan
| | - Junichiro Yamaguchi
- *Corresponding authors: Norihito Nakamichi, E-mail, ; Junichiro Yamaguchi, E-mail,
| | - Norihito Nakamichi
- *Corresponding authors: Norihito Nakamichi, E-mail, ; Junichiro Yamaguchi, E-mail,
| |
Collapse
|
5
|
Liu L, Li X, Yuan L, Zhang G, Gao H, Xu X, Zhao H. XAP5 CIRCADIAN TIMEKEEPER specifically modulates 3' splice site recognition and is important for circadian clock regulation partly by alternative splicing of LHY and TIC. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 172:151-157. [PMID: 35065375 DOI: 10.1016/j.plaphy.2022.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 01/14/2022] [Accepted: 01/16/2022] [Indexed: 06/14/2023]
Abstract
Pre-mRNA splicing is an essential step during gene expression, which takes place in the spliceosome, a large dynamic ribonucleoprotein complex assembled in a stepwise manner. During the last decade, several spliceosomal mutants were functionally identified to cause a lengthened circadian period by introducing intron retention defects into circadian clock genes in Arabidopsis. However, the spliceosomal components that play opposite roles in the circadian period via alternative 3' splice site (Alt 3'ss) are largely unknown. Here, we demonstrated that XCT (XAP5 CIRCADIAN TIMEKEEPER) is a key spliceosomal component associated with multiple splicing factors. Moreover, genome-wide analysis revealed that inactivation of XCT particularly results in defects in Alt 3'ss recognition by RNA sequencing. Further analysis indicated that a strong alteration in the 3' splice sites of LHY and TIC partly accounts for the shortened circadian period of the xct mutant. Therefore, our results demonstrated that mutations in XCT shortened the circadian period partly by alternative splicing of LHY and TIC particularly in 3' splice site recognition, which provides new insight into the link between alternative splicing and the circadian clock.
Collapse
Affiliation(s)
- Lei Liu
- Jiangsu Key Laboratory for Eco-agriculture Biotechnology Around Hongze Lake, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environment Protection, Huaiyin Normal University, Huai'an, 223300, China.
| | - Xiaoyun Li
- College of Life Science, Hebei Normal University, Hebei, 050024, China
| | - Li Yuan
- Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Guofang Zhang
- College of Life Science, Hebei Normal University, Hebei, 050024, China
| | - Hui Gao
- College of Marine Resources and Environment, Hebei Normal University of Science and Technology, Qinhuangdao, 066600, China
| | - Xiaodong Xu
- Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Hongtao Zhao
- College of Life Science, Hebei Normal University, Hebei, 050024, China.
| |
Collapse
|
6
|
Kumimoto RW, Ellison CT, Toruño TY, Bak A, Zhang H, Casteel CL, Coaker G, Harmer SL. XAP5 CIRCADIAN TIMEKEEPER Affects Both DNA Damage Responses and Immune Signaling in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2021; 12:707923. [PMID: 34659282 PMCID: PMC8517334 DOI: 10.3389/fpls.2021.707923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 08/30/2021] [Indexed: 06/02/2023]
Abstract
Numerous links have been reported between immune response and DNA damage repair pathways in both plants and animals but the precise nature of the relationship between these fundamental processes is not entirely clear. Here, we report that XAP5 CIRCADIAN TIMEKEEPER (XCT), a protein highly conserved across eukaryotes, acts as a negative regulator of immunity in Arabidopsis thaliana and plays a positive role in responses to DNA damaging radiation. We find xct mutants have enhanced resistance to infection by a virulent bacterial pathogen, Pseudomonas syringae pv. tomato DC3000, and are hyper-responsive to the defense-activating hormone salicylic acid (SA) when compared to wild-type. Unlike most mutants with constitutive effector-triggered immunity (ETI), xct plants do not have increased levels of SA and retain enhanced immunity at elevated temperatures. Genetic analysis indicates XCT acts independently of NONEXPRESSOR OF PATHOGENESIS RELATED GENES1 (NPR1), which encodes a known SA receptor. Since DNA damage has been reported to potentiate immune responses, we next investigated the DNA damage response in our mutants. We found xct seedlings to be hypersensitive to UV-C and γ radiation and deficient in phosphorylation of the histone variant H2A.X, one of the earliest known responses to DNA damage. These data demonstrate that loss of XCT causes a defect in an early step of the DNA damage response pathway. Together, our data suggest that alterations in DNA damage response pathways may underlie the enhanced immunity seen in xct mutants.
Collapse
Affiliation(s)
- Roderick W. Kumimoto
- Department of Plant Biology, University of California, Davis, Davis, CA, United States
| | - Cory T. Ellison
- Department of Plant Biology, University of California, Davis, Davis, CA, United States
| | - Tania Y. Toruño
- Department of Plant Pathology, University of California, Davis, Davis, CA, United States
| | - Aurélie Bak
- Department of Plant Pathology, University of California, Davis, Davis, CA, United States
| | - Hongtao Zhang
- Department of Plant Biology, University of California, Davis, Davis, CA, United States
| | - Clare L. Casteel
- Department of Plant Pathology, University of California, Davis, Davis, CA, United States
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY, United States
| | - Gitta Coaker
- Department of Plant Pathology, University of California, Davis, Davis, CA, United States
| | - Stacey L. Harmer
- Department of Plant Biology, University of California, Davis, Davis, CA, United States
| |
Collapse
|
7
|
Oliver J, Fan M, McKinley B, Zemelis‐Durfee S, Brandizzi F, Wilkerson C, Mullet JE. The AGCVIII kinase Dw2 modulates cell proliferation, endomembrane trafficking, and MLG/xylan cell wall localization in elongating stem internodes of Sorghum bicolor. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:1053-1071. [PMID: 33211340 PMCID: PMC7983884 DOI: 10.1111/tpj.15086] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/06/2020] [Accepted: 11/12/2020] [Indexed: 05/31/2023]
Abstract
Stems of bioenergy sorghum (Sorghum bicolor L. Moench.), a drought-tolerant C4 grass, contain up to 50 nodes and internodes of varying length that span 4-5 m and account for approximately 84% of harvested biomass. Stem internode growth impacts plant height and biomass accumulation and is regulated by brassinosteroid signaling, auxin transport, and gibberellin biosynthesis. In addition, an AGCVIII kinase (Dw2) regulates sorghum stem internode growth, but the underlying mechanism and signaling network are unknown. Here we provide evidence that mutation of Dw2 reduces cell proliferation in internode intercalary meristems, inhibits endocytosis, and alters the distribution of heteroxylan and mixed linkage glucan in cell walls. Phosphoproteomic analysis showed that Dw2 signaling influences the phosphorylation of proteins involved in lipid signaling (PLDδ), endomembrane trafficking, hormone, light, and receptor signaling, and photosynthesis. Together, our results show that Dw2 modulates endomembrane function and cell division during sorghum internode growth, providing insight into the regulation of monocot stem development.
Collapse
Affiliation(s)
- Joel Oliver
- Department of Biochemistry & BiophysicsTexas A&M UniversityCollege StationTexas77843USA
| | - Mingzhu Fan
- Department of Plant BiologyMichigan State UniversityEast LansingMichigan48824USA
- Great Lakes Bioenergy Research CenterMichigan State UniversityEast LansingMichigan48824USA
| | - Brian McKinley
- Department of Biochemistry & BiophysicsTexas A&M UniversityCollege StationTexas77843USA
| | - Starla Zemelis‐Durfee
- MSU‐DOE Plant Research LabMichigan State UniversityEast LansingMichigan48824USA
- Great Lakes Bioenergy Research CenterMichigan State UniversityEast LansingMichigan48824USA
| | - Federica Brandizzi
- MSU‐DOE Plant Research LabMichigan State UniversityEast LansingMichigan48824USA
- Department of Plant BiologyMichigan State UniversityEast LansingMichigan48824USA
- Great Lakes Bioenergy Research CenterMichigan State UniversityEast LansingMichigan48824USA
| | - Curtis Wilkerson
- Department of Plant BiologyMichigan State UniversityEast LansingMichigan48824USA
- Great Lakes Bioenergy Research CenterMichigan State UniversityEast LansingMichigan48824USA
- Department of Biochemistry and Molecular BiologyMichigan State UniversityEast LansingMichigan48824USA
| | - John E. Mullet
- Department of Biochemistry & BiophysicsTexas A&M UniversityCollege StationTexas77843USA
| |
Collapse
|
8
|
De La Harpe M, Paris M, Hess J, Barfuss MHJ, Serrano-Serrano ML, Ghatak A, Chaturvedi P, Weckwerth W, Till W, Salamin N, Wai CM, Ming R, Lexer C. Genomic footprints of repeated evolution of CAM photosynthesis in a Neotropical species radiation. PLANT, CELL & ENVIRONMENT 2020; 43:2987-3001. [PMID: 32677061 DOI: 10.1111/pce.13847] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 06/28/2020] [Accepted: 07/05/2020] [Indexed: 05/24/2023]
Abstract
The adaptive radiation of Bromeliaceae (pineapple family) is one of the most diverse among Neotropical flowering plants. Diversification in this group was facilitated by shifts in several adaptive traits or "key innovations" including the transition from C3 to CAM photosynthesis associated with xeric (heat/drought) adaptation. We used phylogenomic approaches, complemented by differential gene expression (RNA-seq) and targeted metabolite profiling, to address the mechanisms of C3 /CAM evolution in the extremely species-rich bromeliad genus, Tillandsia, and related taxa. Evolutionary analyses of whole-genome sequencing and RNA-seq data suggest that evolution of CAM is associated with coincident changes to different pathways mediating xeric adaptation in this group. At the molecular level, C3 /CAM shifts were accompanied by gene expansion of XAP5 CIRCADIAN TIMEKEEPER homologs, a regulator involved in sugar- and light-dependent regulation of growth and development. Our analyses also support the re-programming of abscisic acid-related gene expression via differential expression of ABF2/ABF3 transcription factor homologs, and adaptive sequence evolution of an ENO2/LOS2 enolase homolog, effectively tying carbohydrate flux to abscisic acid-mediated abiotic stress response. By pinpointing different regulators of overlapping molecular responses, our results suggest plausible mechanistic explanations for the repeated evolution of correlated adaptive traits seen in a textbook example of an adaptive radiation.
Collapse
Affiliation(s)
- Marylaure De La Harpe
- Department of Botany and Biodiversity Research, Division of Systematic and Evolutionary Botany, Faculty of Life Sciences, University of Vienna, Vienna, Austria
- Department of Biology, Unit of Ecology & Evolution, University of Fribourg, Fribourg, Switzerland
| | - Margot Paris
- Department of Botany and Biodiversity Research, Division of Systematic and Evolutionary Botany, Faculty of Life Sciences, University of Vienna, Vienna, Austria
- Department of Biology, Unit of Ecology & Evolution, University of Fribourg, Fribourg, Switzerland
| | - Jaqueline Hess
- Department of Botany and Biodiversity Research, Division of Systematic and Evolutionary Botany, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Michael Harald Johannes Barfuss
- Department of Botany and Biodiversity Research, Division of Systematic and Evolutionary Botany, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | | | - Arindam Ghatak
- Department of Functional and Evolutionary Ecology, Division of Molecular Systems Biology (MOSYS), Faculty of Life Sciences, University of Vienna, Vienna, Austria
- Vienna Metabolomics Center (VIME), University of Vienna, Vienna, Austria
| | - Palak Chaturvedi
- Department of Functional and Evolutionary Ecology, Division of Molecular Systems Biology (MOSYS), Faculty of Life Sciences, University of Vienna, Vienna, Austria
- Vienna Metabolomics Center (VIME), University of Vienna, Vienna, Austria
| | - Wolfram Weckwerth
- Department of Functional and Evolutionary Ecology, Division of Molecular Systems Biology (MOSYS), Faculty of Life Sciences, University of Vienna, Vienna, Austria
- Vienna Metabolomics Center (VIME), University of Vienna, Vienna, Austria
| | - Walter Till
- Department of Botany and Biodiversity Research, Division of Systematic and Evolutionary Botany, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Nicolas Salamin
- Department of Computational Biology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Ching Man Wai
- Department of Horticulture, College of Agriculture and Natural Resources, Michigan State University, East Lansing, Michigan, USA
| | - Ray Ming
- Department of Plant Biology, School of Integrative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Christian Lexer
- Department of Botany and Biodiversity Research, Division of Systematic and Evolutionary Botany, Faculty of Life Sciences, University of Vienna, Vienna, Austria
- Department of Biology, Unit of Ecology & Evolution, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
9
|
Zhao X, Li C, Zhang H, Yan C, Sun Q, Wang J, Yuan C, Shan S. Alternative splicing profiling provides insights into the molecular mechanisms of peanut peg development. BMC PLANT BIOLOGY 2020; 20:488. [PMID: 33096983 PMCID: PMC7585205 DOI: 10.1186/s12870-020-02702-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 10/14/2020] [Indexed: 05/08/2023]
Abstract
BACKGROUND The cultivated peanut (Arachis hypogaea) is one of the most important oilseed crops worldwide, and the generation of pegs and formation of subterranean pods are essential processes in peanut reproductive development. However, little information has been reported about alternative splicing (AS) in peanut peg formation and development. RESULTS Herein, we presented a comprehensive full-length (FL) transcriptome profiling of AS isoforms during peanut peg and early pod development. We identified 1448, 1102, 832, and 902 specific spliced transcripts in aerial pegs, subterranean pegs, subterranean unswollen pegs, and early swelling pods, respectively. A total of 184 spliced transcripts related to gravity stimulation, light and mechanical response, hormone mediated signaling pathways, and calcium-dependent proteins were identified as possibly involved in peanut peg development. For aerial pegs, spliced transcripts we got were mainly involved in gravity stimulation and cell wall morphogenetic processes. The genes undergoing AS in subterranean peg were possibly involved in gravity stimulation, cell wall morphogenetic processes, and abiotic response. For subterranean unswollen pegs, spliced transcripts were predominantly related to the embryo development and root formation. The genes undergoing splice in early swelling pods were mainly related to ovule development, root hair cells enlargement, root apex division, and seed germination. CONCLUSION This study provides evidence that multiple genes are related to gravity stimulation, light and mechanical response, hormone mediated signaling pathways, and calcium-dependent proteins undergoing AS express development-specific spliced isoforms or exhibit an obvious isoform switch during the peanut peg development. AS isoforms in subterranean pegs and pods provides valuable sources to further understand post-transcriptional regulatory mechanisms of AS in the generation of pegs and formation of subterranean pods.
Collapse
Affiliation(s)
- Xiaobo Zhao
- Shandong Peanut Research Institute, Qingdao, China
| | - Chunjuan Li
- Shandong Peanut Research Institute, Qingdao, China
| | - Hao Zhang
- Shandong Peanut Research Institute, Qingdao, China
| | - Caixia Yan
- Shandong Peanut Research Institute, Qingdao, China
| | - Quanxi Sun
- Shandong Peanut Research Institute, Qingdao, China
| | - Juan Wang
- Shandong Peanut Research Institute, Qingdao, China
| | - Cuiling Yuan
- Shandong Peanut Research Institute, Qingdao, China
| | - Shihua Shan
- Shandong Peanut Research Institute, Qingdao, China
| |
Collapse
|
10
|
Zheng Y, Zhang Z, Wan Y, Tian J, Xie W. Development of EST-SSR Markers Linked to Flowering Candidate Genes in Elymus sibiricus L. Based on RNA Sequencing. PLANTS 2020; 9:plants9101371. [PMID: 33076513 PMCID: PMC7650638 DOI: 10.3390/plants9101371] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/05/2020] [Accepted: 10/14/2020] [Indexed: 01/08/2023]
Abstract
Elymus sibiricus L. is an important cold-season grass with excellent cold and drought tolerance, good palatability, and nutrition. Flowering time is a key trait that affects forage and seed yield. Development of EST-SSR (expressed sequence tag simple sequence repeat) markers based on flowering genes contributes to the improvement of flowering traits. In the study, we detected 155 candidate genes related to flowering traits from 10,591 unigenes via transcriptome sequencing in early- and late-flowering genotypes. These candidate genes were mainly involved in the photoperiodic pathway, vernalization pathway, central integrator, and gibberellin pathway. A total of 125 candidate gene-based EST-SSRs were developed. Further, 15 polymorphic EST-SSRs closely associated to 13 candidate genes were used for genetic diversity and population structure analysis among 20 E. sibiricus accessions, including two contrasting panels (early-flowering and late-flowering). Among them, primer 28366, designed from heading date 3a (HD3a), effectively distinguished early- and late-flowering genotypes using a specifically amplified band of 175 bp. The polymorphic information content (PIC) value ranged from 0.12 to 0.48, with an average of 0.25. The unweighted pair group method analysis (UPGMA) cluster and structure analysis showed that the 20 E. sibiricus genotypes with similar flowering times tended to group together. These newly developed EST-SSR markers have the potential to be used for molecular markers assisted selection and germplasm evaluation of flowering traits in E. sibiricus.
Collapse
|
11
|
Abstract
Chen et al. ( Nature Genet. 51: 1549-1558; Oct. 2019) sequenced Ananas comosus var. bracteatus accession CB5, cultivated for its bright pink-to-red colored fruit, and yellow-fleshed A. comosus accession F153, reporting an improved F153 reference assembly while annotating MICRORNA (MIRNA) loci and gene family expressions relevant to lignin and anthocyanin biosynthesis. An independent article (Xiong et al.Sci. Rep. 8: 1947; 2018) reported var. bracteatus MIRNAs but not MIR828, a negative regulator of anthocyanin and polyphenolics biosynthesis by targeting MYB transcription factors associated with UV light- and sugar-signaling in dicots. MIR828 has been reported in gymnosperms, Amborella (sister to flowering plants), and basal monocot orders Liliales, Asparagales, Zingiberales, Arecales, but not in the Poales, a sister order comprising grasses and ~3,000 species of bromeliads including pineapple. Here I show MIR828 exists in pineapple and directs post-transcriptional gene silencing of mRNAs encoding MYB family members with inferred function to regulate the conspicuous red fruit trait in var. bracteatus. MIR828 plesiomorphy (an ancient basal trait) may shed light on monocot apomorphic fruit development, postulated for 21 monocot families with fleshy fruits as due to homoplasy/convergence driven by tropical climate and/or enticements to vertebrate endozoic seed dispersers.
Collapse
Affiliation(s)
- Christopher D. Rock
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, 79409, USA
| |
Collapse
|
12
|
Abstract
Chen et al. ( Nature Genet. 51: 1549-1558; Oct. 2019) sequenced Ananas comosus var. bracteatus accession CB5, cultivated for its bright pink-to-red colored fruit, and yellow-fleshed A. comosus accession F153, reporting an improved F153 reference assembly while annotating MICRORNA (MIRNA) loci and gene family expressions relevant to lignin and anthocyanin biosynthesis. An independent article (Xiong et al.Sci. Rep. 8: 1947; 2018) reported var. bracteatus MIRNAs but not MIR828, a negative regulator of anthocyanin and polyphenolics biosynthesis by targeting MYB transcription factors associated with UV light- and sugar-signaling in dicots. MIR828 has been reported in gymnosperms, Amborella (sister to flowering plants), and basal monocot orders Liliales, Asparagales, Zingiberales, Arecales, but not in the Poales, a sister order comprising grasses and ~3,000 species of bromeliads including pineapple. Here I show MIR828 exists in pineapple and directs post-transcriptional gene silencing of mRNAs encoding MYB family members with inferred function to regulate the conspicuous red fruit trait in var. bracteatus. MIR828 plesiomorphy (an ancient basal trait) may shed light on monocot apomorphic fruit development, postulated for 21 monocot families with fleshy fruits as due to homoplasy/convergence driven by tropical climate and/or enticements to vertebrate endozoic seed dispersers.
Collapse
Affiliation(s)
- Christopher D. Rock
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, 79409, USA
| |
Collapse
|
13
|
Manavella PA, Yang SW, Palatnik J. Keep calm and carry on: miRNA biogenesis under stress. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 99:832-843. [PMID: 31025462 DOI: 10.1111/tpj.14369] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 04/09/2019] [Accepted: 04/23/2019] [Indexed: 05/20/2023]
Abstract
MicroRNAs (miRNAs) are major post-transcriptional regulators of gene expression. Their biogenesis relies on the cleavage of longer precursors by a nuclear localized processing machinery. The evolutionary preference of plant miRNAs to silence transcription factors turned these small molecules into key actors during growth and adaptive responses. Furthermore, during their life cycle plants are subject to changes in the environmental conditions surrounding them. In order to face these changes, plants display unique adaptive capacities based on an enormous developmental plasticity, where miRNAs play central roles. Many individual miRNAs have been shown to modulate the plant response to different environmental cues and stresses. In the last few years, increasing evidence has shown that not only individual genes encoding miRNAs but also the miRNA pathway as a whole is subject to regulation in response to external stimulus. In this review, we discuss the current knowledge about the miRNA pathway. We dissect the pathway to analyze the events leading to the generation of these small RNAs and emphasize the regulation of core components of the miRNA biogenesis machinery.
Collapse
Affiliation(s)
- Pablo A Manavella
- Instituto de Agrobiotecnología del Litoral (IAL, CONICET-UNL-FBCB), Santa Fe, 3000, Argentina
| | - Seong W Yang
- Department of Systems Biology, Institute of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Javier Palatnik
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), Rosario, 2000, Argentina
| |
Collapse
|
14
|
Hearn TJ, Marti Ruiz MC, Abdul-Awal SM, Wimalasekera R, Stanton CR, Haydon MJ, Theodoulou FL, Hannah MA, Webb AAR. BIG Regulates Dynamic Adjustment of Circadian Period in Arabidopsis thaliana. PLANT PHYSIOLOGY 2018; 178:358-371. [PMID: 29997180 PMCID: PMC6130016 DOI: 10.1104/pp.18.00571] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 06/28/2018] [Indexed: 05/26/2023]
Abstract
Circadian clocks drive rhythms with a period near 24 h, but the molecular basis of the regulation of the period of the circadian clockis poorly understood. We previously demonstrated that metabolites affect the free-running period of the circadian oscillator of Arabidopsis (Arabidopsis thaliana), with endogenous sugars acting as an accelerator and exogenous nicotinamide acting as a brake. Changes in circadian oscillator period are thought to adjust the timing of biological activities through the process of entrainment, in which the circadian oscillator becomes synchronized to rhythmic signals such as light and dark cycles as well as changes in internal metabolism. To identify the molecular components associated with the dynamic adjustment of circadian period, we performed a forward genetic screen. We identified Arabidopsis mutants that were either period insensitive to nicotinamide (sin) or period oversensitive to nicotinamide (son). We mapped son1 to BIG, a gene of unknown molecular function that was shown previously to play a role in light signaling. We found that son1 has an early entrained phase, suggesting that the dynamic alteration of circadian period contributes to the correct timing of biological events. Our data provide insight into how the dynamic period adjustment of circadian oscillators contributes to establishing a correct phase relationship with the environment and show that BIG is involved in this process.
Collapse
Affiliation(s)
- Timothy J Hearn
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| | - Maria C Marti Ruiz
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| | - S M Abdul-Awal
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
- Biotechnology and Genetic Engineering Discipline, Khulna University, Khulna-9208, Bangladesh
| | - Rinukshi Wimalasekera
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| | - Camilla R Stanton
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| | - Michael J Haydon
- School of BioSciences, University of Melbourne, Melbourne, Victoria 3010, Australia
| | | | | | - Alex A R Webb
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| |
Collapse
|
15
|
Graf A, Coman D, Uhrig RG, Walsh S, Flis A, Stitt M, Gruissem W. Parallel analysis of Arabidopsis circadian clock mutants reveals different scales of transcriptome and proteome regulation. Open Biol 2018; 7:rsob.160333. [PMID: 28250106 PMCID: PMC5376707 DOI: 10.1098/rsob.160333] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 02/06/2017] [Indexed: 12/12/2022] Open
Abstract
The circadian clock regulates physiological processes central to growth and survival. To date, most plant circadian clock studies have relied on diurnal transcriptome changes to elucidate molecular connections between the circadian clock and observable phenotypes in wild-type plants. Here, we have integrated RNA-sequencing and protein mass spectrometry data to comparatively analyse the lhycca1, prr7prr9, gi and toc1 circadian clock mutant rosette at the end of day and end of night. Each mutant affects specific sets of genes and proteins, suggesting that the circadian clock regulation is modular. Furthermore, each circadian clock mutant maintains its own dynamically fluctuating transcriptome and proteome profile specific to subcellular compartments. Most of the measured protein levels do not correlate with changes in their corresponding transcripts. Transcripts and proteins that have coordinated changes in abundance are enriched for carbohydrate- and cold-responsive genes. Transcriptome changes in all four circadian clock mutants also affect genes encoding starch degradation enzymes, transcription factors and protein kinases. The comprehensive transcriptome and proteome datasets demonstrate that future system-driven research of the circadian clock requires multi-level experimental approaches. Our work also shows that further work is needed to elucidate the roles of post-translational modifications and protein degradation in the regulation of clock-related processes.
Collapse
Affiliation(s)
- Alexander Graf
- Department of Biology, ETH Zurich, 8092 Zurich, Switzerland.,Max Planck Institute of Molecular Plant Physiology, 14476 Postdam-Golm, Germany
| | - Diana Coman
- Department of Biology, ETH Zurich, 8092 Zurich, Switzerland
| | - R Glen Uhrig
- Department of Biology, ETH Zurich, 8092 Zurich, Switzerland
| | - Sean Walsh
- Department of Biology, ETH Zurich, 8092 Zurich, Switzerland
| | - Anna Flis
- Max Planck Institute of Molecular Plant Physiology, 14476 Postdam-Golm, Germany
| | - Mark Stitt
- Max Planck Institute of Molecular Plant Physiology, 14476 Postdam-Golm, Germany
| | | |
Collapse
|
16
|
New class of transcription factors controls flagellar assembly by recruiting RNA polymerase II in Chlamydomonas. Proc Natl Acad Sci U S A 2018; 115:4435-4440. [PMID: 29632184 DOI: 10.1073/pnas.1719206115] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Cells have developed regulatory mechanisms that underlie flagellar assembly and maintenance, including the transcriptional regulation of flagellar genes, an initial step for making flagella. Although transcriptional regulation of flagellar gene expression is required for flagellar assembly in Chlamydomonas, no transcription factor that regulates the transcription of flagellar genes has been identified. We report that X chromosome-associated protein 5 (XAP5) acts as a transcription factor to regulate flagellar assembly in Chlamydomonas While XAP5 proteins are evolutionarily conserved across diverse organisms and play vital roles in diverse biological processes, nothing is known about the biochemical function of any member of this important protein family. Our data show that loss of XAP5 leads to defects in flagellar assembly. Posttranslational modifications of XAP5 track flagellar length during flagellar assembly, suggesting that cells possess a feedback system that modulates modifications to XAP5. Notably, XAP5 regulates flagellar gene expression via directly binding to a motif containing a CTGGGGTG-core. Furthermore, recruitment of RNA polymerase II (Pol II) machinery for transcriptional activation depends on the activities of XAP5. Our data demonstrate that, through recruitment of Pol II, XAP5 defines a class of transcription factors for transcriptional regulation of ciliary genes. This work provides insights into the biochemical function of the XAP5 family and the fundamental biology of the flagellar assembly, which enhance our understanding of the signaling and functions of flagella.
Collapse
|
17
|
Xu YJ, Lei Y, Li R, Zhang LL, Zhao ZX, Zhao JH, Fan J, Li Y, Yang H, Shang J, Xiao S, Wang WM. XAP5 CIRCADIAN TIMEKEEPER Positively Regulates RESISTANCE TO POWDERY MILDEW8.1-Mediated Immunity in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2017; 8:2044. [PMID: 29250093 PMCID: PMC5714888 DOI: 10.3389/fpls.2017.02044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 11/15/2017] [Indexed: 06/02/2023]
Abstract
Ectopic expression of the Arabidopsis RESISTANCE TO POWDERY MILDEW8.1 (RPW8.1) boosts pattern-triggered immunity leading to enhanced resistance to different pathogens in Arabidopsis and rice. However, the underlying regulatory mechanism remains largely elusive. Here, we report that XAP5 CIRCADIAN TIMEKEEPER (XCT, At2g21150) positively regulates RPW8.1-mediated cell death and disease resistance. Forward genetic screen identified the b3-17 mutant that exhibited less cell death and susceptibility to powdery mildew and bacterial pathogens. Map-based cloning identified a G-to-A point mutation at the 3' splice site of the 8th intron, which resulted in splice shift to 8-bp down-stream of the original splice site of XCT in b3-17, and introduced into a stop codon after two codons leading to a truncated XCT. XCT has previously been identified as a circadian clock gene required for small RNA biogenesis and acting down-stream of ETHYLENE-INSENSITIVE3 (EIN3) in the ethylene-signaling pathway. Here we further showed that mutation or down-regulation of XCT by artificial microRNA reduced RPW8.1-mediated immunity in R1Y4, a transgenic line expressing RPW8.1-YFP from the RPW8.1 native promoter. On the contrary, overexpression of XCT in R1Y4 background enhanced RPW8.1-mediated cell death, H2O2 production and resistance against powdery mildew. Consistently, the expression of RPW8.1 was down- and up-regulated in xct mutant and XCT overexpression lines, respectively. Taken together, these results indicate that XCT positively regulates RPW8.1-mediated cell death and disease resistance, and provide new insight into the regulatory mechanism of RPW8.1-mediated immunity.
Collapse
Affiliation(s)
- Yong-Ju Xu
- Rice Research Institute and Research Center for Major Crop Diseases, Sichuan Agricultural University, Chengdu, China
| | - Yang Lei
- Rice Research Institute and Research Center for Major Crop Diseases, Sichuan Agricultural University, Chengdu, China
| | - Ran Li
- Rice Research Institute and Research Center for Major Crop Diseases, Sichuan Agricultural University, Chengdu, China
| | - Ling-Li Zhang
- Rice Research Institute and Research Center for Major Crop Diseases, Sichuan Agricultural University, Chengdu, China
| | - Zhi-Xue Zhao
- Rice Research Institute and Research Center for Major Crop Diseases, Sichuan Agricultural University, Chengdu, China
| | - Jing-Hao Zhao
- Rice Research Institute and Research Center for Major Crop Diseases, Sichuan Agricultural University, Chengdu, China
| | - Jing Fan
- Rice Research Institute and Research Center for Major Crop Diseases, Sichuan Agricultural University, Chengdu, China
| | - Yan Li
- Rice Research Institute and Research Center for Major Crop Diseases, Sichuan Agricultural University, Chengdu, China
| | - Hui Yang
- Rice Research Institute and Research Center for Major Crop Diseases, Sichuan Agricultural University, Chengdu, China
| | - Jing Shang
- Rice Research Institute and Research Center for Major Crop Diseases, Sichuan Agricultural University, Chengdu, China
| | - Shunyuan Xiao
- Institute for Bioscience and Biotechnology Research and Department of Plant Sciences and Landscape Architecture, University of Maryland, College Park, College Park, MD, United States
| | - Wen-Ming Wang
- Rice Research Institute and Research Center for Major Crop Diseases, Sichuan Agricultural University, Chengdu, China
- Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
18
|
Haydon MJ, Mielczarek O, Frank A, Román Á, Webb AAR. Sucrose and Ethylene Signaling Interact to Modulate the Circadian Clock. PLANT PHYSIOLOGY 2017; 175:947-958. [PMID: 28778922 PMCID: PMC5619894 DOI: 10.1104/pp.17.00592] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 08/01/2017] [Indexed: 05/19/2023]
Abstract
Circadian clocks drive rhythmic physiology and metabolism to optimize plant growth and performance under daily environmental fluctuations caused by the rotation of the planet. Photosynthesis is a key metabolic process that must be appropriately timed to the light-dark cycle. The circadian clock contributes to the regulation of photosynthesis, and in turn the daily accumulation of sugars from photosynthesis also feeds back to regulate the circadian oscillator. We have previously shown that GIGANTEA (GI) is required to sustain Suc-dependent circadian rhythms in darkness. The mechanism by which Suc affects the circadian oscillator in a GI-dependent manner was unknown. Here, we identify that Suc sustains rhythms in the dark by stabilizing GI protein, dependent on the F-box protein ZEITLUPE, and implicate CONSTITUTIVE TRIPLE RESPONSE1 (CTR1), a negative regulator of ethylene signaling. Our identification of a role for CTR1 in the response to Suc prompted a reinvestigation of the effects of ethylene on the circadian oscillator. We demonstrate that ethylene shortens the circadian period, conditional on the effects of Suc and requiring GI These findings reveal that Suc affects the stability of circadian oscillator proteins and can mask the effects of ethylene on the circadian system, identifying novel molecular pathways for input of sugar to the Arabidopsis (Arabidopsis thaliana) circadian network.
Collapse
Affiliation(s)
- Michael J Haydon
- School of BioSciences, The University of Melbourne, Parkville 3010, Australia
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
- Department of Biology, University of York, York YO10 5DD, United Kingdom
| | - Olga Mielczarek
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| | - Alexander Frank
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| | - Ángela Román
- Department of Biology, University of York, York YO10 5DD, United Kingdom
| | - Alex A R Webb
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| |
Collapse
|
19
|
Kim Y, Hur SW, Jeong BC, Oh SH, Hwang YC, Kim SH, Koh JT. The Fam50a positively regulates ameloblast differentiation via interacting with Runx2. J Cell Physiol 2017; 233:1512-1522. [PMID: 28574578 DOI: 10.1002/jcp.26038] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 06/01/2017] [Indexed: 11/12/2022]
Abstract
Differentiated ameloblasts secret enamel matrix proteins such as amelogenin, ameloblastin, and enamelin. Expression levels of these proteins are regulated by various factors. To find a new regulatory factor for ameloblast differentiation, we performed 2D-PAGE analysis using mouse ameloblast lineage cell line (mALCs) cultured with mineralizing medium. Of identified proteins, family with sequence similarity 50 member A (Fam50a) was significantly increased during differentiation of mALCs. Fam50a protein was also highly expressed in secretory ameloblasts of mouse tooth germs. In mALCs cultures, forced expression of Fam50a up-regulated the expression of enamel matrix protein genes such as amelogenin, ameloblastin, and enamelin. In addition, up-regulation of Fam50a also increased ALP activity and mineralized nodule formation in a dose-dependent manner. In contrast, knockdown of Fam50a decreased expression levels of enamel matrix protein genes, ALP activity, and mineralized nodule formation. By fluorescence microscopy, endogenous Fam50a protein was found to be localized to the nucleus of ameloblasts. In addition, Fam50a synergistically increased Ambn transactivation by Runx2. Moreover, Fam50a increased binding affinity of Runx2 to Ambn promoter by physically interacting with Runx2. Taken together, these results suggest Fam50a might be a new positive regulator of ameloblast differentiation.
Collapse
Affiliation(s)
- Yuri Kim
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, South Korea.,Research Center for Biomineralization Disorders, School of Dentistry, Chonnam National University, Gwangju, South Korea
| | - Sung-Woong Hur
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, South Korea.,Research Center for Biomineralization Disorders, School of Dentistry, Chonnam National University, Gwangju, South Korea
| | - Byung-Chul Jeong
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, South Korea.,Research Center for Biomineralization Disorders, School of Dentistry, Chonnam National University, Gwangju, South Korea
| | - Sin-Hye Oh
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, South Korea.,Research Center for Biomineralization Disorders, School of Dentistry, Chonnam National University, Gwangju, South Korea
| | - Yun-Chan Hwang
- Research Center for Biomineralization Disorders, School of Dentistry, Chonnam National University, Gwangju, South Korea.,Department of Conservative Dentistry, School of Dentistry, Chonnam National University, Gwangju, South Korea
| | - Sun-Hun Kim
- Research Center for Biomineralization Disorders, School of Dentistry, Chonnam National University, Gwangju, South Korea.,Department of Oral Anatomy, School of Dentistry, Chonnam National University, Gwangju, South Korea
| | - Jeong-Tae Koh
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, South Korea.,Research Center for Biomineralization Disorders, School of Dentistry, Chonnam National University, Gwangju, South Korea
| |
Collapse
|
20
|
Gray JA, Shalit-Kaneh A, Chu DN, Hsu PY, Harmer SL. The REVEILLE Clock Genes Inhibit Growth of Juvenile and Adult Plants by Control of Cell Size. PLANT PHYSIOLOGY 2017; 173:2308-2322. [PMID: 28254761 PMCID: PMC5373068 DOI: 10.1104/pp.17.00109] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 02/28/2017] [Indexed: 05/25/2023]
Abstract
The circadian clock is a complex regulatory network that enhances plant growth and fitness in a constantly changing environment. In Arabidopsis (Arabidopsis thaliana), the clock is composed of numerous regulatory feedback loops in which REVEILLE8 (RVE8) and its homologs RVE4 and RVE6 act in a partially redundant manner to promote clock pace. Here, we report that the remaining members of the RVE8 clade, RVE3 and RVE5, play only minor roles in the regulation of clock function. However, we find that RVE8 clade proteins have unexpected functions in the modulation of light input to the clock and the control of plant growth at multiple stages of development. In seedlings, these proteins repress hypocotyl elongation in a daylength- and sucrose-dependent manner. Strikingly, adult rve4 6 8 and rve3 4 5 6 8 mutants are much larger than wild-type plants, with both increased leaf area and biomass. This size phenotype is associated with a faster growth rate and larger cell size and is not simply due to a delay in the transition to flowering. Gene expression and epistasis analysis reveal that the growth phenotypes of rve mutants are due to the misregulation of PHYTOCHROME INTERACTING FACTOR4 (PIF4) and PIF5 expression. Our results show that even small changes in PIF gene expression caused by the perturbation of clock gene function can have large effects on the growth of adult plants.
Collapse
Affiliation(s)
- Jennifer A Gray
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, California 95616
| | - Akiva Shalit-Kaneh
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, California 95616
| | - Dalena Nhu Chu
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, California 95616
| | - Polly Yingshan Hsu
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, California 95616
| | - Stacey L Harmer
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, California 95616
| |
Collapse
|
21
|
Fang X, Shi Y, Lu X, Chen Z, Qi Y. CMA33/XCT Regulates Small RNA Production through Modulating the Transcription of Dicer-Like Genes in Arabidopsis. MOLECULAR PLANT 2015; 8:1227-36. [PMID: 25770820 DOI: 10.1016/j.molp.2015.03.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Revised: 03/06/2015] [Accepted: 03/08/2015] [Indexed: 05/20/2023]
Abstract
Small RNAs (sRNAs) play important regulatory roles in various aspects of plant biology. They are processed from double-stranded RNA precursors by Dicer-like (DCL) proteins. There are three major classes of sRNAs in Arabidopsis: DCL1-dependent microRNA (miRNA), DCL3-dependent heterochromatic siRNA (hc-siRNA), and DCL4-dependent trans-acting siRNA (ta-siRNA). We have previously isolated a mutant with compromised miRNA activity, cma33. Here we show that CMA33 encodes a nuclear localized protein, XAP5 CIRCADIAN TIMEKEEPER (XCT). The cma33/xct mutation led to reduced accumulation of not only miRNAs but also hc-siRNAs and ta-siRNAs. Intriguingly, we found that the expression of DCL1, DCL3, and DCL4, but not other genes in the sRNA biogenesis pathways, was decreased in cma33/xct. Consistent with this, the occupancy of Pol II at DCL1, DCL3, and DCL4 genes was reduced upon the loss of CMA33/XCT. Collectively, our data suggest that CMA33/XCT modulates sRNA production through regulating the transcription of DCLs.
Collapse
Affiliation(s)
- Xiaofeng Fang
- Graduate Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; National Institute of Biological Sciences, Zhongguancun Life Science Park, Beijing 102206, China
| | - Yupeng Shi
- Graduate Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; National Institute of Biological Sciences, Zhongguancun Life Science Park, Beijing 102206, China
| | - Xiuli Lu
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China; Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Zulong Chen
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China; National Institute of Biological Sciences, Zhongguancun Life Science Park, Beijing 102206, China
| | - Yijun Qi
- Graduate Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China; Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
22
|
Anver S, Roguev A, Zofall M, Krogan NJ, Grewal SIS, Harmer SL. Yeast X-chromosome-associated protein 5 (Xap5) functions with H2A.Z to suppress aberrant transcripts. EMBO Rep 2014; 15:894-902. [PMID: 24957674 DOI: 10.15252/embr.201438902] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Chromatin regulatory proteins affect diverse developmental and environmental response pathways via their influence on nuclear processes such as the regulation of gene expression. Through a genome-wide genetic screen, we implicate a novel protein called X-chromosome-associated protein 5 (Xap5) in chromatin regulation. We show that Xap5 is a chromatin-associated protein acting in a similar manner as the histone variant H2A.Z to suppress expression of antisense and repeat element transcripts throughout the fission yeast genome. Xap5 is highly conserved across eukaryotes, and a plant homolog rescues xap5 mutant yeast. We propose that Xap5 likely functions as a chromatin regulator in diverse organisms.
Collapse
Affiliation(s)
- Shajahan Anver
- Department of Plant Biology, College of Biological Sciences University of California, Davis, CA, USA
| | - Assen Roguev
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA
| | - Martin Zofall
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Nevan J Krogan
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA
| | - Shiv I S Grewal
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Stacey L Harmer
- Department of Plant Biology, College of Biological Sciences University of California, Davis, CA, USA
| |
Collapse
|
23
|
Hsu PY, Harmer SL. Wheels within wheels: the plant circadian system. TRENDS IN PLANT SCIENCE 2014; 19:240-9. [PMID: 24373845 PMCID: PMC3976767 DOI: 10.1016/j.tplants.2013.11.007] [Citation(s) in RCA: 238] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 11/20/2013] [Accepted: 11/20/2013] [Indexed: 05/18/2023]
Abstract
Circadian clocks integrate environmental signals with internal cues to coordinate diverse physiological outputs so that they occur at the most appropriate season or time of day. Recent studies using systems approaches, primarily in Arabidopsis, have expanded our understanding of the molecular regulation of the central circadian oscillator and its connections to input and output pathways. Similar approaches have also begun to reveal the importance of the clock for key agricultural traits in crop species. In this review, we discuss recent developments in the field, including a new understanding of the molecular architecture underlying the plant clock; mechanistic links between clock components and input and output pathways; and our growing understanding of the importance of clock genes for agronomically important traits.
Collapse
Affiliation(s)
- Polly Yingshan Hsu
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, CA 95616, USA
| | - Stacey L Harmer
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, CA 95616, USA.
| |
Collapse
|
24
|
O’Reilly LP, Zhang X, Smithgall TE. Individual Src-family tyrosine kinases direct the degradation or protection of the clock protein Timeless via differential ubiquitylation. Cell Signal 2013; 25:860-6. [PMID: 23266470 PMCID: PMC3595377 DOI: 10.1016/j.cellsig.2012.12.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 12/05/2012] [Accepted: 12/17/2012] [Indexed: 01/10/2023]
Abstract
Timeless was originally identified in Drosophila as an essential component of circadian cycle regulation, where its function is tightly controlled at the protein level by tyrosine phosphorylation and subsequent degradation. In mammals, Timeless has also been implicated in circadian rhythms as well as cell cycle control and embryonic development. Here we report that mammalian Timeless is an SH3 domain-binding protein and substrate for several members of the Src protein-tyrosine kinase family, including Fyn, Hck, c-Src and c-Yes. Co-expression of Tim with Fyn or Hck was followed by ubiquitylation and subsequent degradation in human 293T cells. While c-Src and c-Yes also promoted Tim ubiquitylation, in this case ubiquitylation correlated with Tim protein accumulation rather than degradation. Both c-Src and c-Yes selectively promoted modification of Tim through Lys63-linked polyubiquitin, which may explain the differential effects on Tim protein turnover. These data show distinct and opposing roles for individual Src-family members in the regulation of Tim protein levels, suggesting a unique mechanism for the regulation of Tim function in mammals.
Collapse
Affiliation(s)
- Linda P. O’Reilly
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Xiong Zhang
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Thomas E. Smithgall
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| |
Collapse
|
25
|
Moraes CÁ, Cambras T, Diez-Noguera A, Schimitt R, Dantas G, Levandovski R, Hidalgo MP. A new chronobiological approach to discriminate between acute and chronic depression using peripheral temperature, rest-activity, and light exposure parameters. BMC Psychiatry 2013; 13:77. [PMID: 23510455 PMCID: PMC3599978 DOI: 10.1186/1471-244x-13-77] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Accepted: 03/05/2013] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Circadian theories for major depressive disorder have suggested that the rhythm of the circadian pacemaker is misaligned. Stable phase relationships between internal rhythms, such as temperature and rest/activity, and the external day-night cycle, are considered to be crucial for adapting to life in the external environmental. Therefore, the relationship and possible alterations among (i) light exposure, (ii) activity rhythm, and (iii) temperature rhythm could be important factors in clinical depression. This study aimed to investigate the rhythmic alterations in depression and evaluate the ability of chronobiological parameters to discriminate between healthy subjects and depressed patients. METHODS Thirty female subjects, including healthy subjects, depressed patients in the first episode, and major recurrent depression patients. Symptoms were assessed using Hamilton Depression Scale, Beck Depression Inventory and Montgomery-Äsberg Scale. Motor activity, temperature, and light values were determined for 7 days by actigraph, and circadian rhythms were calculated. RESULTS Depressed groups showed a lower amplitude in the circadian rhythm of activity and light exposure, but a higher amplitude in the rhythm of peripheral temperature. The correlation between temperature and activity values was different in the day and night among the control and depressed groups. For the same level of activity, depressed patients had lowest temperature values during the day. The amplitudes of temperature and activity were the highest discriminant parameters. CONCLUSIONS These results indicate that the study of rhythms is useful for diagnosis and therapy for depressive mood disorders.
Collapse
Affiliation(s)
- Cláudia Ávila Moraes
- Laboratório de Cronobiologia do Hospital de Clínicas de Porto Alegre (HCPA), da Universidade Federal do Rio Grande do Sul (UFRGS), Ramiro Barcelos, 2350 sala 12107, Porto Alegre, RS, 90035-003, Brazil
| | - Trinitat Cambras
- Departament de Fisiologia, Facultat de Farmàcia, Universitat de Barcelona, Avinguda de Joan XXIIIs/n, Barcelona, 08028, Spain
| | - Antoni Diez-Noguera
- Departament de Fisiologia, Facultat de Farmàcia, Universitat de Barcelona, Avinguda de Joan XXIIIs/n, Barcelona, 08028, Spain
| | - Regina Schimitt
- Laboratório de Cronobiologia do Hospital de Clínicas de Porto Alegre (HCPA), da Universidade Federal do Rio Grande do Sul (UFRGS), Ramiro Barcelos, 2350 sala 12107, Porto Alegre, RS, 90035-003, Brazil
| | - Giovana Dantas
- Laboratório de Cronobiologia do Hospital de Clínicas de Porto Alegre (HCPA), da Universidade Federal do Rio Grande do Sul (UFRGS), Ramiro Barcelos, 2350 sala 12107, Porto Alegre, RS, 90035-003, Brazil
| | - Rosa Levandovski
- Laboratório de Cronobiologia do Hospital de Clínicas de Porto Alegre (HCPA), da Universidade Federal do Rio Grande do Sul (UFRGS), Ramiro Barcelos, 2350 sala 12107, Porto Alegre, RS, 90035-003, Brazil
| | - Maria Paz Hidalgo
- Laboratório de Cronobiologia do Hospital de Clínicas de Porto Alegre (HCPA), da Universidade Federal do Rio Grande do Sul (UFRGS), Ramiro Barcelos, 2350 sala 12107, Porto Alegre, RS, 90035-003, Brazil,Programa de Pós-Graduação em Ciências Médicas: Psiquiatria, UFRGS, Porto Alegre, Brazil,Departamento de Psiquiatria e Medicina Legal da Faculdade de Medicina, da Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
26
|
Wang X, Wu F, Xie Q, Wang H, Wang Y, Yue Y, Gahura O, Ma S, Liu L, Cao Y, Jiao Y, Puta F, McClung CR, Xu X, Ma L. SKIP is a component of the spliceosome linking alternative splicing and the circadian clock in Arabidopsis. THE PLANT CELL 2012; 24:3278-95. [PMID: 22942380 PMCID: PMC3462631 DOI: 10.1105/tpc.112.100081] [Citation(s) in RCA: 168] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 06/15/2012] [Accepted: 08/01/2012] [Indexed: 05/19/2023]
Abstract
Circadian clocks generate endogenous rhythms in most organisms from cyanobacteria to humans and facilitate entrainment to environmental diurnal cycles, thus conferring a fitness advantage. Both transcriptional and posttranslational mechanisms are prominent in the basic network architecture of circadian systems. Posttranscriptional regulation, including mRNA processing, is emerging as a critical step for clock function. However, little is known about the molecular mechanisms linking RNA metabolism to the circadian clock network. Here, we report that a conserved SNW/Ski-interacting protein (SKIP) domain protein, SKIP, a splicing factor and component of the spliceosome, is involved in posttranscriptional regulation of circadian clock genes in Arabidopsis thaliana. Mutation in SKIP lengthens the circadian period in a temperature-sensitive manner and affects light input and the sensitivity of the clock to light resetting. SKIP physically interacts with the spliceosomal splicing factor Ser/Arg-rich protein45 and associates with the pre-mRNA of clock genes, such as PSEUDORESPONSE REGULATOR7 (PRR7) and PRR9, and is necessary for the regulation of their alternative splicing and mRNA maturation. Genome-wide investigations reveal that SKIP functions in regulating alternative splicing of many genes, presumably through modulating recognition or cleavage of 5' and 3' splice donor and acceptor sites. Our study addresses a fundamental question on how the mRNA splicing machinery contributes to circadian clock function at a posttranscriptional level.
Collapse
Affiliation(s)
- Xiaoxue Wang
- National Institute of Biological Sciences, Beijing 102206, China
| | - Fangming Wu
- National Institute of Biological Sciences, Beijing 102206, China
- College of Life Sciences, Beijing Normal University, Beijing 100875, China
- Hebei Key Laboratory of Molecular Cell Biology, College of Biological Sciences, Hebei Normal University, Shijiazhuang 050016, Hebei, China
| | - Qiguang Xie
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755-3576
| | - Huamei Wang
- National Institute of Biological Sciences, Beijing 102206, China
| | - Ying Wang
- Institute of Genetics and Developmental Biology, Chinese Academy of Science, Beijing 100101, China
| | - Yanling Yue
- National Institute of Biological Sciences, Beijing 102206, China
| | - Ondrej Gahura
- Department of Cell Biology, Faculty of Science, Charles University in Prague, Prague 128 00, Czech Republic
| | - Shuangshuang Ma
- National Institute of Biological Sciences, Beijing 102206, China
- Hebei Key Laboratory of Molecular Cell Biology, College of Biological Sciences, Hebei Normal University, Shijiazhuang 050016, Hebei, China
| | - Lei Liu
- National Institute of Biological Sciences, Beijing 102206, China
- Hebei Key Laboratory of Molecular Cell Biology, College of Biological Sciences, Hebei Normal University, Shijiazhuang 050016, Hebei, China
| | - Ying Cao
- National Institute of Biological Sciences, Beijing 102206, China
- Hebei Key Laboratory of Molecular Cell Biology, College of Biological Sciences, Hebei Normal University, Shijiazhuang 050016, Hebei, China
| | - Yuling Jiao
- Institute of Genetics and Developmental Biology, Chinese Academy of Science, Beijing 100101, China
| | - Frantisek Puta
- Department of Cell Biology, Faculty of Science, Charles University in Prague, Prague 128 00, Czech Republic
| | - C. Robertson McClung
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755-3576
| | - Xiaodong Xu
- Hebei Key Laboratory of Molecular Cell Biology, College of Biological Sciences, Hebei Normal University, Shijiazhuang 050016, Hebei, China
| | - Ligeng Ma
- National Institute of Biological Sciences, Beijing 102206, China
- Hebei Key Laboratory of Molecular Cell Biology, College of Biological Sciences, Hebei Normal University, Shijiazhuang 050016, Hebei, China
- College of Biological Sciences, Capital Normal University, Beijing 100048, China
- Address correspondence to
| |
Collapse
|
27
|
Ruts T, Matsubara S, Wiese-Klinkenberg A, Walter A. Diel patterns of leaf and root growth: endogenous rhythmicity or environmental response? JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:3339-51. [PMID: 22223810 DOI: 10.1093/jxb/err334] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Plants are sessile organisms forced to adjust to their surrounding environment. In a single plant the photoautotrophic shoot is exposed to pronounced environmental variations recurring in a day-night 24 h (diel) cycle, whereas the heterotrophic root grows in a temporally less fluctuating environment. The contrasting habitats of shoots and roots are reflected in different diel growth patterns and their responsiveness to environmental stimuli. Differences between diel leaf growth patterns of mono- and dicotyledonous plants correspond to their different organization and placement of growth zones. In monocots, heterotrophic growth zones are organized linearly and protected from the environment by sheaths of older leaves. In contrast, photosynthetically active growth zones of dicot leaves are exposed directly to the environment and show characteristic, species-specific diel growth patterns. It is hypothesized that the different exposure to environmental constraints and simultaneously the sink/source status of the growing organs may have induced distinct endogenous control of diel growth patterns in roots and leaves of monocot and dicot plants. Confronted by strong temporal fluctuations in environment, the circadian clock may facilitate robust intrinsic control of leaf growth in dicot plants.
Collapse
Affiliation(s)
- Tom Ruts
- Forschungszentrum Jülich, IBG-2: Plant Sciences, Wilhelm-Johnen-Strasse, Jülich, Germany
| | | | | | | |
Collapse
|
28
|
Zhang A, Skaar DA, Li Y, Huang D, Price TM, Murphy SK, Jirtle RL. Novel retrotransposed imprinted locus identified at human 6p25. Nucleic Acids Res 2011; 39:5388-400. [PMID: 21421564 PMCID: PMC3141237 DOI: 10.1093/nar/gkr108] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Differentially methylated regions (DMRs) are stable epigenetic features within or in proximity to imprinted genes. We used this feature to identify candidate human imprinted loci by quantitative DNA methylation analysis. We discovered a unique DMR at the 5′-end of FAM50B at 6p25.2. We determined that sense transcripts originating from the FAM50B locus are expressed from the paternal allele in all human tissues investigated except for ovary, in which expression is biallelic. Furthermore, an antisense transcript, FAM50B-AS, was identified to be monoallelically expressed from the paternal allele in a variety of tissues. Comparative phylogenetic analysis showed that FAM50B orthologs are absent in chicken and platypus, but are present and biallelically expressed in opossum and mouse. These findings indicate that FAM50B originated in Therians after divergence from Prototherians via retrotransposition of a gene on the X chromosome. Moreover, our data are consistent with acquisition of imprinting during Eutherian evolution after divergence of Glires from the Euarchonta mammals. FAM50B expression is deregulated in testicular germ cell tumors, and loss of imprinting occurs frequently in testicular seminomas, suggesting an important role for FAM50B in spermatogenesis and tumorigenesis. These results also underscore the importance of accounting for parental origin in understanding the mechanism of 6p25-related diseases.
Collapse
Affiliation(s)
- Aiping Zhang
- Department of Radiation Oncology, Department of Community and Family Medicine and Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Ellison CT, Vandenbussche F, Van Der Straeten D, Harmer SL. XAP5 CIRCADIAN TIMEKEEPER regulates ethylene responses in aerial tissues of Arabidopsis. PLANT PHYSIOLOGY 2011; 155:988-99. [PMID: 21163961 PMCID: PMC3032482 DOI: 10.1104/pp.110.164277] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2010] [Accepted: 12/09/2010] [Indexed: 05/21/2023]
Abstract
The phytohormone ethylene differentially regulates plant architecture and growth in both a light- and nutrient-dependent fashion. The modulation of plant development by ethylene in response to both external and internal signals can also generate tissue-specific differential responses. Here, we report that XAP5 CIRCADIAN TIMEKEEPER (XCT) is involved in blue light-dependent ethylene responses in the aerial tissues of Arabidopsis (Arabidopsis thaliana) seedlings. XCT was first identified as a circadian clock mutant with a short free-running period. The xct mutation also causes sugar-specific hypocotyl growth defects, in which mutants are short in blue light when grown on a sucrose-rich medium but tall when grown on sucrose-deficient medium. Our data suggest that the hypocotyl defects in blue light are not directly caused by defects in clock or light signaling but rather by enhanced ethylene responses. In blue light, xct mutants have a more active ethylene response pathway and exhibit growth phenotypes similar to the constitutive ethylene signaling mutant constitutive triple response1 (ctr1). xct mutants also have reduced ethylene emission, analogous to plants that have lost CTR1 function. Genetic analysis suggests that XCT negatively regulates ethylene responses downstream of ETHYLENE-INSENSITIVE3 in aerial tissues. However, XCT is not required for all ethylene-mediated processes, such as the inhibition of root growth. Thus, XCT acts downstream of a major transcriptional regulator in an organ-specific manner, playing an environment-dependent role in the regulation of plant growth.
Collapse
|
30
|
Wang Y, Wu JF, Nakamichi N, Sakakibara H, Nam HG, Wu SH. LIGHT-REGULATED WD1 and PSEUDO-RESPONSE REGULATOR9 form a positive feedback regulatory loop in the Arabidopsis circadian clock. THE PLANT CELL 2011; 23:486-98. [PMID: 21357491 PMCID: PMC3077782 DOI: 10.1105/tpc.110.081661] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Revised: 01/13/2011] [Accepted: 01/26/2011] [Indexed: 05/18/2023]
Abstract
In Arabidopsis thaliana, central circadian clock genes constitute several feedback loops. These interlocking loops generate an ~24-h oscillation that enables plants to anticipate the daily diurnal environment. The identification of additional clock proteins can help dissect the complex nature of the circadian clock. Previously, LIGHT-REGULATED WD1 (LWD1) and LWD2 were identified as two clock proteins regulating circadian period length and photoperiodic flowering. Here, we systematically studied the function of LWD1/2 in the Arabidopsis circadian clock. Analysis of the lwd1 lwd2 double mutant revealed that LWD1/2 plays dual functions in the light input pathway and the regulation of the central oscillator. Promoter:luciferase fusion studies showed that activities of LWD1/2 promoters are rhythmic and depend on functional PSEUDO-RESPONSE REGULATOR9 (PRR9) and PRR7. LWD1/2 is also needed for the expression of PRR9, PRR7, and PRR5. LWD1 is preferentially localized within the nucleus and associates with promoters of PRR9, PRR5, and TOC1 in vivo. Our results support the existence of a positive feedback loop within the Arabidopsis circadian clock. Further mechanistic studies of this positive feedback loop and its regulatory effects on the other clock components will further elucidate the complex nature of the Arabidopsis circadian clock.
Collapse
Affiliation(s)
- Ying Wang
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 114, Taiwan
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Jing-Fen Wu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Norihito Nakamichi
- Plant Productivity Systems Research Group, RIKEN Plant Science Center, Tsurumi, Yokohama 230-0045, Japan
| | - Hitoshi Sakakibara
- Plant Productivity Systems Research Group, RIKEN Plant Science Center, Tsurumi, Yokohama 230-0045, Japan
| | - Hong-Gil Nam
- Division of Molecular and Life Sciences, Pohang University of Science and Technology, Hyojadong, Pohang, Kyungbuk 790-784, Korea
| | - Shu-Hsing Wu
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 114, Taiwan
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
- Address correspondence to
| |
Collapse
|
31
|
Sanchez A, Shin J, Davis SJ. Abiotic stress and the plant circadian clock. PLANT SIGNALING & BEHAVIOR 2011; 6:223-31. [PMID: 21325898 PMCID: PMC3121982 DOI: 10.4161/psb.6.2.14893] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2010] [Revised: 01/18/2011] [Accepted: 01/19/2011] [Indexed: 05/20/2023]
Abstract
In this review, we focus on the interaction between the circadian clock of higher plants to that of metabolic and physiological processes that coordinate growth and performance under a predictable, albeit changing environment. In this, the phytochrome and cryptochrome photoreceptors have shown to be important, but not essential for oscillator control under diurnal cycles of light and dark. From this foundation, we will examine how emerging findings have firmly linked the circadian clock, as a central mediator in the coordination of metabolism, to maintain homeostasis. This occurs by oscillator synchronization of global transcription, which leads to a dynamic control of a host of physiological processes. These include the determination of the levels of primary and secondary metabolites, and the anticipation of future environmental stresses, such as mid-day drought and midnight coldness. Interestingly, metabolic and stress cues themselves appear to feedback on oscillator function. In such a way, the circadian clock of plants and abiotic-stress tolerance appear to be firmly interconnected processes.
Collapse
Affiliation(s)
- Alfredo Sanchez
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | | | | |
Collapse
|
32
|
Abstract
The rotation of the earth on its axis confers the property of dramatic, recurrent, rhythmic environmental change. The rhythmicity of this change from day to night and again to day imparts predictability. As a consequence, most organisms have acquired the capacity to measure time to use this time information to temporally regulate their biology to coordinate with their environment in anticipation of coming change. Circadian rhythms, endogenous rhythms with periods of ∼24h, are driven by an internal circadian clock. This clock integrates temporal information and coordinates of many aspects of biology, including basic metabolism, hormone signaling and responses, and responses to biotic and abiotic stress, making clocks central to "systems biology." This review will first address the extent to which the clock regulates many biological processes. The architecture and mechanisms of the plant circadian oscillator, emphasizing what has been learned from intensive study of the circadian clock in the model plant, Arabidopsis thaliana, will be considered. The conservation of clock components in other species will address the extent to which the Arabidopsis model will inform our consideration of plants in general. Finally, studies addressing the role of clocks in fitness will be discussed. Accumulating evidence indicates that the consonance of the endogenous circadian clock with environmental cycles enhances fitness, including both biomass accumulation and reproductive performance. Thus, increased understanding of plant responses to environmental input and to endogenous temporal cues has ecological and agricultural importance.
Collapse
Affiliation(s)
- C Robertson McClung
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire, USA
| |
Collapse
|
33
|
Type II protein arginine methyltransferase 5 (PRMT5) is required for circadian period determination in Arabidopsis thaliana. Proc Natl Acad Sci U S A 2010; 107:21211-6. [PMID: 21097700 DOI: 10.1073/pnas.1011987107] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Posttranslational modification is an important element in circadian clock function from cyanobacteria through plants and mammals. For example, a number of key clock components are phosphorylated and thereby marked for subsequent ubiquitination and degradation. Through forward genetic analysis we demonstrate that protein arginine methyltransferase 5 (PRMT5; At4g31120) is a critical determinant of circadian period in Arabidopsis. PRMT5 is coregulated with a set of 1,253 genes that shows alterations in phase of expression in response to entrainment to thermocycles versus photocycles in constant temperature. PRMT5 encodes a type II protein arginine methyltransferase that catalyzes the symmetric dimethylation of arginine residues (Rsme2). Rsme2 modification has been observed in many taxa, and targets include histones, components of the transcription complex, and components of the spliceosome. Neither arginine methylation nor PRMT5 has been implicated previously in circadian clock function, but the period lengthening associated with mutational disruption of prmt5 indicates that Rsme2 is a decoration important for the Arabidopsis clock and possibly for clocks in general.
Collapse
|
34
|
Kim J, Somers DE. Rapid assessment of gene function in the circadian clock using artificial microRNA in Arabidopsis mesophyll protoplasts. PLANT PHYSIOLOGY 2010; 154:611-21. [PMID: 20709829 PMCID: PMC2949038 DOI: 10.1104/pp.110.162271] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2010] [Accepted: 08/09/2010] [Indexed: 05/19/2023]
Abstract
Rapid assessment of the effect of reduced levels of gene products is often a bottleneck in determining how to proceed with an interesting gene candidate. Additionally, gene families with closely related members can confound determination of the role of even a single one of the group. We describe here an in vivo method to rapidly determine gene function using transient expression of artificial microRNAs (amiRNAs) in Arabidopsis (Arabidopsis thaliana) mesophyll protoplasts. We use a luciferase-based reporter of circadian clock activity to optimize and validate this system. Protoplasts transiently cotransfected with promoter-luciferase and gene-specific amiRNA plasmids sustain free-running rhythms of bioluminescence for more than 6 d. Using both amiRNA plasmids available through the Arabidopsis Biological Resource Center, as well as custom design of constructs using the Weigel amiRNA design algorithm, we show that transient knockdown of known clock genes recapitulates the same circadian phenotypes reported in the literature for loss-of-function mutant plants. We additionally show that amiRNA designed to knock down expression of the casein kinase II β-subunit gene family lengthens period, consistent with previous reports of a short period in casein kinase II β-subunit overexpressors. Our results demonstrate that this system can facilitate a much more rapid analysis of gene function by obviating the need to initially establish stably transformed transgenics to assess the phenotype of gene knockdowns. This approach will be useful in a wide range of plant disciplines when an endogenous cell-based phenotype is observable or can be devised, as done here using a luciferase reporter.
Collapse
|
35
|
Pruneda-Paz JL, Kay SA. An expanding universe of circadian networks in higher plants. TRENDS IN PLANT SCIENCE 2010; 15:259-65. [PMID: 20382065 PMCID: PMC2866796 DOI: 10.1016/j.tplants.2010.03.003] [Citation(s) in RCA: 134] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2009] [Revised: 03/05/2010] [Accepted: 03/11/2010] [Indexed: 05/16/2023]
Abstract
Extensive circadian clock networks regulate almost every biological process in plants. Clock-controlled physiological responses are coupled with daily oscillations in environmental conditions resulting in enhanced fitness and growth vigor. Identification of core clock components and their associated molecular interactions has established the basic network architecture of plant clocks, which consists of multiple interlocked feedback loops. A hierarchical structure of transcriptional feedback overlaid with regulated protein turnover sets the pace of the clock and ultimately drives all clock-controlled processes. Although originally described as linear entities, increasing evidence suggests that many signaling pathways can act as both inputs and outputs within the overall network. Future studies will determine the molecular mechanisms involved in these complex regulatory loops.
Collapse
Affiliation(s)
- Jose L Pruneda-Paz
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | | |
Collapse
|
36
|
Imaizumi T. Arabidopsis circadian clock and photoperiodism: time to think about location. CURRENT OPINION IN PLANT BIOLOGY 2010; 13:83-9. [PMID: 19836294 PMCID: PMC2818179 DOI: 10.1016/j.pbi.2009.09.007] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2009] [Revised: 09/09/2009] [Accepted: 09/15/2009] [Indexed: 05/17/2023]
Abstract
Plants possess a circadian clock that enables them to coordinate internal biological events with external daily changes. Recent studies in Arabidopsis revealed that tissue-specific clock components exist and that the clock network architecture also varies within different organs. These findings indicate that the makeup of circadian clock(s) within a plant is quite variable. Plants utilize the circadian clock to measure day-length changes for regulating seasonal responses, such as flowering. To ensure that flowering occurs under optimum conditions, the clock regulates diurnal CONSTANS (CO) expression. Subsequently, CO protein induces FLOWERING LOCUS T (FT) expression which leads to flowering. It is emerging that both CO and FT expression are intricately controlled by groups of transcription factors with overlapping functions.
Collapse
Affiliation(s)
- Takato Imaizumi
- Department of Biology, University of Washington, 24 Kincaid Hall, Box 351800, Seattle, WA 98195-1800, USA.
| |
Collapse
|
37
|
REVEILLE1, a Myb-like transcription factor, integrates the circadian clock and auxin pathways. Proc Natl Acad Sci U S A 2009; 106:16883-8. [PMID: 19805390 DOI: 10.1073/pnas.0813035106] [Citation(s) in RCA: 192] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The circadian clock modulates expression of a large fraction of the Arabidopsis genome and affects many aspects of plant growth and development. We have discovered one way in which the circadian system regulates hormone signaling, identifying a node that links the clock and auxin networks. Auxin plays key roles in development and responses to environmental cues, in part through regulation of plant growth. We have characterized REVEILLE1 (RVE1), a Myb-like, clock-regulated transcription factor that is homologous to the central clock genes CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) and LATE ELONGATED HYPOCOTYL (LHY). Despite this homology, inactivation of RVE1 does not affect circadian rhythmicity but instead causes a growth phenotype, indicating this factor is a clock output affecting plant development. CCA1 regulates growth via the bHLH transcription factors PHYTOCHROME INTERACTING FACTOR4 (PIF4) and PIF5, but RVE1 acts independently of these genes. RVE1 instead controls auxin levels, promoting free auxin production during the day but having no effect during the night. RVE1 positively regulates the expression of the auxin biosynthetic gene YUCCA8 (YUC8), providing a mechanism for its growth-promoting effects. RVE1 is therefore a node that connects two important signaling networks that coordinate plant growth with rhythmic changes in the environment.
Collapse
|
38
|
Abstract
The circadian clock regulates diverse aspects of plant growth and development and promotes plant fitness. Molecular identification of clock components, primarily in Arabidopsis, has led to recent rapid progress in our understanding of the clock mechanism in higher plants. Using mathematical modeling and experimental approaches, workers in the field have developed a model of the clock that incorporates both transcriptional and posttranscriptional regulation of clock genes. This cell-autonomous clock, or oscillator, generates rhythmic outputs that can be monitored at the cellular and whole-organism level. The clock not only confers daily rhythms in growth and metabolism, but also interacts with signaling pathways involved in plant responses to the environment. Future work will lead to a better understanding of how the clock and other signaling networks are integrated to provide plants with an adaptive advantage.
Collapse
Affiliation(s)
- Stacey L Harmer
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, California 95616, USA.
| |
Collapse
|
39
|
Mach J. Newly isolated circadian clock components conserved across eukaryotes. THE PLANT CELL 2008; 20:1187. [PMID: 18515496 PMCID: PMC2438464 DOI: 10.1105/tpc.108.200510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
|