1
|
Wijfjes RY, Boesten R, Becker FFM, Theeuwen TPJM, Snoek BL, Mastoraki M, Verheijen JJ, Güvencli N, Denkers LAM, Koornneef M, van Eeuwijk FA, Smit S, de de Ridder D, Aarts MGM. Allelic variants confer Arabidopsis adaptation to small regional environmental differences. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024. [PMID: 39400686 DOI: 10.1111/tpj.17067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/30/2024] [Accepted: 09/19/2024] [Indexed: 10/15/2024]
Abstract
Natural populations of Arabidopsis thaliana provide powerful systems to study the adaptation of wild plant species. Previous research has predominantly focused on global populations or accessions collected from regions with diverse climates. However, little is known about the genetics underlying adaptation in regions with mild environmental clines. We have examined a diversity panel consisting of 192 A. thaliana accessions collected from the Netherlands, a region with limited climatic variation. Despite the relatively uniform climate, we identified evidence of local adaptation within this population. Notably, semidwarf accessions, due to mutation of the GIBBERELLIC ACID REQUIRING 5 (GA5) gene, occur at a relatively high frequency near the coast and these displayed enhanced tolerance to high wind velocities. Additionally, we evaluated the performance of the population under iron deficiency conditions and found that allelic variation in the FE SUPEROXIDE DISMUTASE 3 (FSD3) gene affects tolerance to low iron levels. Moreover, we explored patterns of local adaptation to environmental clines in temperature and precipitation, observing that allelic variation at LA RELATED PROTEIN 1C (LARP1c) likely affects drought tolerance. Not only is the genetic variation observed in a diversity panel of A. thaliana collected in a region with mild environmental clines comparable to that in collections sampled over larger geographic ranges but it is also sufficiently rich to elucidate the genetic and environmental factors underlying natural plant adaptation.
Collapse
Affiliation(s)
- Raúl Y Wijfjes
- Bioinformatics Group, Wageningen University and Research, Droevendaalsesteeg 1, Wageningen, 6708 PB, The Netherlands
| | - René Boesten
- Laboratory of Genetics, Wageningen University and Research, Droevendaalsesteeg 1, Wageningen, 6708 PB, The Netherlands
| | - Frank F M Becker
- Laboratory of Genetics, Wageningen University and Research, Droevendaalsesteeg 1, Wageningen, 6708 PB, The Netherlands
| | - Tom P J M Theeuwen
- Laboratory of Genetics, Wageningen University and Research, Droevendaalsesteeg 1, Wageningen, 6708 PB, The Netherlands
| | - Basten L Snoek
- Theoretical Biology and Bioinformatics, Utrecht University, Padualaan 8, Utrecht, 3584 CH, The Netherlands
| | - Maria Mastoraki
- Laboratory of Genetics, Wageningen University and Research, Droevendaalsesteeg 1, Wageningen, 6708 PB, The Netherlands
| | - Jelle J Verheijen
- Laboratory of Genetics, Wageningen University and Research, Droevendaalsesteeg 1, Wageningen, 6708 PB, The Netherlands
| | - Nuri Güvencli
- Laboratory of Genetics, Wageningen University and Research, Droevendaalsesteeg 1, Wageningen, 6708 PB, The Netherlands
| | - Lissy-Anne M Denkers
- Department of Plant Physiology, Green Life Science Research Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, Sciencepark 904, Amsterdam, 1098 XH, The Netherlands
| | - Maarten Koornneef
- Laboratory of Genetics, Wageningen University and Research, Droevendaalsesteeg 1, Wageningen, 6708 PB, The Netherlands
| | - Fred A van Eeuwijk
- Biometris, Wageningen University and Research, Droevendaalsesteeg 1, Wageningen, 6708 PB, The Netherlands
| | - Sandra Smit
- Bioinformatics Group, Wageningen University and Research, Droevendaalsesteeg 1, Wageningen, 6708 PB, The Netherlands
| | - Dick de de Ridder
- Bioinformatics Group, Wageningen University and Research, Droevendaalsesteeg 1, Wageningen, 6708 PB, The Netherlands
| | - Mark G M Aarts
- Laboratory of Genetics, Wageningen University and Research, Droevendaalsesteeg 1, Wageningen, 6708 PB, The Netherlands
| |
Collapse
|
2
|
Korotaeva N, Shmakov V, Bel’kov V, Pyatrikas D, Moldavskaya S, Gorbenko I. The Influence of Water Deficit on Dehydrin Content in Callus Culture Cells of Scots Pine. PLANTS (BASEL, SWITZERLAND) 2024; 13:2752. [PMID: 39409624 PMCID: PMC11479203 DOI: 10.3390/plants13192752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/11/2024] [Accepted: 09/23/2024] [Indexed: 10/20/2024]
Abstract
Under a water deficit, the protective proteins known as dehydrins (DHNs) prevent nonspecific interactions in protein and membrane structures and their damage, in addition to playing an antioxidant role. The DHNs of a widespread xerophytic species Scots pine (Pinus sylvestris L.) have been poorly studied, and their role in resistance to water deficits has not been revealed. In this paper, we have expanded the list of DHNs that accumulate in the cells of Scots pine under the conditions of water deficits and revealed their relationship with the effects of water deficits. In this investigation, callus cultures of branches and buds of Scots pine were used. A weak water deficit was created by adding polyethylene glycol to the culture medium. Under the conditions of a water deficit, the activity of catalase and peroxidase enzymes increased in the callus cultures. A moderate decrease in the total water content was correlated with a decrease in the growth rate of the callus cultures, as well as with an increase in the activity of lipid peroxidation. The accumulation of Mr 72, 38, and 27 kDa DHNs occurred in the callus cultures of buds, and the accumulation of Mr 72 and 27 kDa DHNs positively correlated with the lipid peroxidation activity. An increase in the content of DHNs was observed in cultures that differed in origin, growth indicators, and biochemical parameters, indicating the universality of this reaction. Thus, previously undescribed DHNs were identified, the accumulation of which is caused by water deficiency and is associated with manifestations of oxidative stress in the kidney cells of Scots pine.
Collapse
Affiliation(s)
- Natalia Korotaeva
- Siberian Institute of Plant Physiology and Biochemistry, Siberian Branch of the Russian Academy of Sciences, Irkutsk 664033, Russia; (V.S.); (V.B.); (D.P.); (S.M.); (I.G.)
| | | | | | | | | | | |
Collapse
|
3
|
Wang J, Palomar VM, Min JH, Wierzbicki AT. PAP1 and PAP7 are required for association of plastid-encoded RNA polymerase with DNA. PLANT MOLECULAR BIOLOGY 2024; 114:100. [PMID: 39302509 DOI: 10.1007/s11103-024-01498-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 08/28/2024] [Indexed: 09/22/2024]
Abstract
Plastid-encoded RNA polymerase (PEP) is a bacterial-type multisubunit RNA polymerase responsible for the majority of transcription in chloroplasts. PEP consists of four core subunits, which are orthologs of their cyanobacterial counterparts. In Arabidopsis thaliana, PEP is expected to interact with 14 PEP-associated proteins (PAPs), which serve as peripheral subunits of the RNA polymerase. The exact contributions of PAPs to PEP function are still poorly understood. We used ptChIP-seq to show that PAP1 (also known as pTAC3), a peripheral subunit of PEP, binds to the same genomic loci as RpoB, a core subunit of PEP. The pap1 mutant shows a complete loss of RpoB binding to DNA throughout the genome, indicating that PAP1 is necessary for RpoB binding to DNA. A similar loss of RpoB binding to DNA is observed in a mutant defective in PAP7 (also known as pTAC14), another peripheral PEP subunit. We propose that PAPs are required for the recruitment of core PEP subunits to DNA.
Collapse
Affiliation(s)
- Joyful Wang
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - V Miguel Palomar
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, 04510, México
| | - Ji-Hee Min
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Andrzej T Wierzbicki
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
4
|
Gong S, Gan H, Chu J, Wang Z, Sun J. A chromosome-level genome assembly provides insights into the local adaptation of Tamarix austromongolica in the Yellow River Basin, China. DNA Res 2024; 31:dsae021. [PMID: 38946223 PMCID: PMC11306577 DOI: 10.1093/dnares/dsae021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 06/06/2024] [Accepted: 06/29/2024] [Indexed: 07/02/2024] Open
Abstract
Tamarix austromongolica is endemic to the Yellow River Basin and has adapted to diverse ecological settings in the region, including the arid areas of northwestern China and the saline soil regions of the Yellow River Delta. However, the genetic basis of its local adaptation remains unclear. We report a chromosome-level assembly of the T. austromongolica genome based on PacBio high-fidelity sequencing and Hi-C technology. The 12 pseudochromosomes cover 98.44% of the 1.32 Gb assembly, with a contig N50 of 52.57 Mb and a BUSCO score of 98.2%. The genome comprises 913.6 Mb (68.83%) of repetitive sequences and 22,374 protein-coding genes. Genome evolution analyses suggest that genes under positive selection and significantly expanded gene families have facilitated T. austromongolica's adaptability to diverse environmental factors and high resistance to diseases. Using genotyping-by-sequencing, we conducted population structure and selection analyses of 114 samples from 15 sites. Two genetic groups were identified, and 114 and 289 candidate genes were assigned to the populations of the northwestern and eastern parts of the Yellow River, respectively. Furthermore, we discovered numerous candidate genes associated with high-altitude adaptability and salt tolerance. This research provides valuable genomic resources for the evolutionary study and genetic breeding of tamarisk.
Collapse
Affiliation(s)
- Shuai Gong
- Coastal Forestry Research Center of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, PR China
| | - Honghao Gan
- Coastal Forestry Research Center of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, PR China
| | - Jianmin Chu
- Coastal Forestry Research Center of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, PR China
- Experimental Center of Desert Forestry, Chinese Academy of Forestry, Dengkou 015200, PR China
| | - Zhaoshan Wang
- Coastal Forestry Research Center of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, PR China
| | - Jia Sun
- Coastal Forestry Research Center of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, PR China
| |
Collapse
|
5
|
Qin H, Guo J, Jin Y, Li Z, Chen J, Bie Z, Luo C, Peng F, Yan D, Kong Q, Liang F, Zhang H, Hu X, Cui R, Cui X. Integrative analysis of transcriptome and metabolome provides insights into the mechanisms of leaf variegation in Heliopsis helianthoides. BMC PLANT BIOLOGY 2024; 24:731. [PMID: 39085772 PMCID: PMC11290119 DOI: 10.1186/s12870-024-05450-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 07/23/2024] [Indexed: 08/02/2024]
Abstract
BACKGROUND In the field of ornamental horticulture, phenotypic mutations, particularly in leaf color, are of great interest due to their potential in developing new plant varieties. The introduction of variegated leaf traits in plants like Heliopsis helianthoides, a perennial herbaceous species with ecological adaptability, provides a rich resource for molecular breeding and research on pigment metabolism and photosynthesis. We aimed to explore the mechanism of leaf variegation of Heliopsis helianthoides (using HY2021F1-0915 variegated mutant named HY, and green-leaf control check named CK in 2020 April, May and June) by analyzing the transcriptome and metabolome. RESULTS Leaf color and physiological parameters were found to be significantly different between HY and CK types. Chlorophyll content of HY was lower than that of CK samples. Combined with the result of Weighted Gene Co-expression Network Analysis (WGCNA), 26 consistently downregulated differentially expressed genes (DEGs) were screened in HY compared to CK subtypes. Among the DEGs, 9 genes were verified to be downregulated in HY than CK by qRT-PCR. The reduction of chlorophyll content in HY might be due to the downregulation of FSD2. Low expression level of PFE2, annotated as ferritin-4, might also contribute to the interveinal chlorosis of HY. Based on metabolome data, differential metabolites (DEMs) between HY and CK samples were significantly enriched on ABC transporters in three months. By integrating DEGs and DEMs, they were enriched on carotenoids pathway. Downregulation of four carotenoid pigments might be one of the reasons for HY's light color. CONCLUSION FSD2 and PFE2 (ferritin-4) were identified as key genes which likely contribute to the reduced chlorophyll content and interveinal chlorosis observed in HY. The differential metabolites were significantly enriched in ABC transporters. Carotenoid biosynthesis pathway was highlighted with decreased pigments in HY individuals. These findings not only enhance our understanding of leaf variegation mechanisms but also offer valuable insights for future plant breeding strategies aimed at preserving and enhancing variegated-leaf traits in ornamental plants.
Collapse
Affiliation(s)
- Helan Qin
- Beijing Key Laboratory of Greening Plants Breeding/Beijing Academy of Forestry and Landscape Architecture, No.7 Huajiadi, Chaoyang District, Beijing, 100102, China.
| | - Jia Guo
- Beijing Key Laboratory of Greening Plants Breeding/Beijing Academy of Forestry and Landscape Architecture, No.7 Huajiadi, Chaoyang District, Beijing, 100102, China
| | - Yingshan Jin
- Beijing Key Laboratory of Greening Plants Breeding/Beijing Academy of Forestry and Landscape Architecture, No.7 Huajiadi, Chaoyang District, Beijing, 100102, China
| | - Zijing Li
- Beijing Key Laboratory of Greening Plants Breeding/Beijing Academy of Forestry and Landscape Architecture, No.7 Huajiadi, Chaoyang District, Beijing, 100102, China
| | - Ju Chen
- Beijing Florascape Co., Ltd, No.2 Wenxing Dong Street, Xicheng District, Beijing, 100044, China
| | - Zhengwei Bie
- Beijing Qunfangpu Horticulture Co., Ltd, No.19 Madian East Road, Haidian District, Beijing, 100088, China
| | - Chunyu Luo
- Beijing Lv Xing Landscaping Co., Ltd, Zhangjiawan Town, Tongzhou District, Beijing, 101117, China
| | - Feitong Peng
- Beijing Key Laboratory of Greening Plants Breeding/Beijing Academy of Forestry and Landscape Architecture, No.7 Huajiadi, Chaoyang District, Beijing, 100102, China
| | - Dongyan Yan
- Beijing Key Laboratory of Greening Plants Breeding/Beijing Academy of Forestry and Landscape Architecture, No.7 Huajiadi, Chaoyang District, Beijing, 100102, China
| | - Qinggang Kong
- Beijing Florascape Co., Ltd, No.2 Wenxing Dong Street, Xicheng District, Beijing, 100044, China
| | - Fang Liang
- Beijing Key Laboratory of Greening Plants Breeding/Beijing Academy of Forestry and Landscape Architecture, No.7 Huajiadi, Chaoyang District, Beijing, 100102, China
| | - Hua Zhang
- Beijing Key Laboratory of Greening Plants Breeding/Beijing Academy of Forestry and Landscape Architecture, No.7 Huajiadi, Chaoyang District, Beijing, 100102, China
| | - Xuefan Hu
- Beijing Key Laboratory of Greening Plants Breeding/Beijing Academy of Forestry and Landscape Architecture, No.7 Huajiadi, Chaoyang District, Beijing, 100102, China
| | - Rongfeng Cui
- Beijing Key Laboratory of Greening Plants Breeding/Beijing Academy of Forestry and Landscape Architecture, No.7 Huajiadi, Chaoyang District, Beijing, 100102, China
| | - Xiuna Cui
- Beijing Florascape Co., Ltd, No.2 Wenxing Dong Street, Xicheng District, Beijing, 100044, China
| |
Collapse
|
6
|
Qiao Y, Tian F, Yu L, Zhao J, Zhai Q, Chen W. Imaging Mass Spectrometry and Genome Mining Reveal Antimicrobial Peptides of Novel Pediococcus acidilactici CCFM18. Foods 2024; 13:2213. [PMID: 39063297 PMCID: PMC11276274 DOI: 10.3390/foods13142213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
The mechanism of metabolites produced by lactic acid bacteria in mediating microbial interactions has been difficult to ascertain. This study comparatively evaluated the antimicrobial effect of the novel bacterium Pediococcus acidilactici CCFM18 and explored the global chemical view of its interactions with indicator bacteria. P. acidilactici CCFM18 had sufficiently strong antimicrobial activity to effectively inhibit the growth of the indicator bacteria and enhance their intracellular reactive oxygen species (ROS) level. The emerging technique of matrix-assisted laser desorption ionization-time-of-flight (MALDI-TOF) imaging mass spectrometry indicated that P. acidilactici CCFM18 increased the production of pediocin PA-1 and the penocin A profile during its interaction with the indicator bacteria, thus differing from P. acidilactici CCFM28 (a commonly used laboratory strain). Strikingly, the production of coagulin A was triggered only by signaling molecules made by the competing strain L. thermophilus, suggesting an idiosyncratic response from P. acidilactici CCFM18. Bioinformatic mining of the P. acidilactici CCFM18 draft genome sequence revealed gene loci that code for the complex secondary metabolites analyzed via MSI. Taken together, these results illustrate that chemical interactions between P. acidilactici CCFM18 and indicator bacteria exhibit high complexity and specificity and can drive P. acidilactici CCFM18 to produce different secondary metabolites.
Collapse
Affiliation(s)
- Yiteng Qiao
- College of Food Science and Engineering, Shandong Agricultural University, Tai’an 271018, China;
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (F.T.); (L.Y.); (J.Z.); (Q.Z.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Fengwei Tian
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (F.T.); (L.Y.); (J.Z.); (Q.Z.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Leilei Yu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (F.T.); (L.Y.); (J.Z.); (Q.Z.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (F.T.); (L.Y.); (J.Z.); (Q.Z.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (F.T.); (L.Y.); (J.Z.); (Q.Z.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (F.T.); (L.Y.); (J.Z.); (Q.Z.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
7
|
Yang Q, Liu Y, Zhou J, Li MJ, Yang YZ, Wei QP, Zhang JK, Li XL. The transcription factor MhZAT10 enhances antioxidant capacity by directly activating the antioxidant genes MhMSD1, MhAPX3a and MhCAT1 in apple rootstock SH6 (Malus honanensis × M. domestica). TREE PHYSIOLOGY 2024; 44:tpae077. [PMID: 38943359 DOI: 10.1093/treephys/tpae077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/30/2024] [Accepted: 06/27/2024] [Indexed: 07/01/2024]
Abstract
Stress tolerance in apple (Malus domestica) can be improved by grafting to a stress-tolerant rootstock, such as 'SH6' (Malus honanensis × M. domestica 'Ralls Genet'). However, the mechanisms of stress tolerance in this rootstock are unclear. In Arabidopsis (Arabidopsis thaliana), the transcription factor ZINC FINGER OF ARABIDOPSIS THALIANA 10 is a key component of plant tolerance to multiple abiotic stresses and positively regulates antioxidant enzymes. However, how reactive oxygen species are eliminated upon activation of ZINC FINGER OF ARABIDOPSIS THALIANA 10 in response to abiotic stress remains elusive. Here, we report that MhZAT10 in the rootstock SH6 directly activates the transcription of three genes encoding the antioxidant enzymes MANGANESE SUPEROXIDE DISMUTASE 1 (MhMSD1), ASCORBATE PEROXIDASE 3A (MhAPX3a) and CATALASE 1 (MhCAT1) by binding to their promoters. Heterologous expression in Arabidopsis protoplasts showed that MhMSD1, MhAPX3a and MhCAT1 localize in multiple subcellular compartments. Overexpressing MhMSD1, MhAPX3a or MhCAT1 in SH6 fruit calli resulted in higher superoxide dismutase, ascorbate peroxidase and catalase enzyme activities in their respective overexpressing calli than in those overexpressing MhZAT10. Notably, the calli overexpressing MhZAT10 exhibited better growth and lower reactive oxygen species levels under simulated osmotic stress. Apple SH6 plants overexpressing MhZAT10 in their roots via Agrobacterium rhizogenes-mediated transformation also showed enhanced tolerance to osmotic stress, with higher leaf photosynthetic capacity, relative water content in roots and antioxidant enzyme activity, as well as less reactive oxygen species accumulation. Overall, our study demonstrates that the transcription factor MhZAT10 synergistically regulates the transcription of multiple antioxidant-related genes and elevates reactive oxygen species detoxification.
Collapse
Affiliation(s)
- Qian Yang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Minzhuang Road 12, Haidian District, Beijing 100093, China
| | - Yan Liu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Minzhuang Road 12, Haidian District, Beijing 100093, China
| | - Jia Zhou
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Minzhuang Road 12, Haidian District, Beijing 100093, China
| | - Min-Ji Li
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Minzhuang Road 12, Haidian District, Beijing 100093, China
| | - Yu-Zhang Yang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Minzhuang Road 12, Haidian District, Beijing 100093, China
| | - Qin-Ping Wei
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Minzhuang Road 12, Haidian District, Beijing 100093, China
| | - Jun-Ke Zhang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Minzhuang Road 12, Haidian District, Beijing 100093, China
| | - Xing-Liang Li
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Minzhuang Road 12, Haidian District, Beijing 100093, China
| |
Collapse
|
8
|
Dai Y, Chen H, Li Y, Hui R, Zhang Z. Promising New Methods Based on the SOD Enzyme and SAUR36 Gene to Screen for Canola Materials with Heavy Metal Resistance. BIOLOGY 2024; 13:441. [PMID: 38927321 PMCID: PMC11200428 DOI: 10.3390/biology13060441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 05/30/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024]
Abstract
Canola is the largest self-produced vegetable oil source in China, although excessive levels of cadmium, lead, and arsenic seriously affect its yield. Therefore, developing methods to identify canola materials with good heavy metal tolerance is a hot topic for canola breeding. In this study, canola near-isogenic lines with different oil contents (F338 (40.62%) and F335 (46.68%) as the control) and heavy metal tolerances were used as raw materials. In an experiment with 100 times the safe standard values, the superoxide dismutase (SOD) and peroxidase (POD) activities of F335 were 32.02 mmol/mg and 71.84 mmol/mg, while the activities of F338 were 24.85 mmol/mg and 63.86 mmol/mg, exhibiting significant differences. The DEGs and DAPs in the MAPK signaling pathway of the plant hormone signal transduction pathway and other related pathways were analyzed and verified using RT-qPCR. SAUR36 and SAUR32 were identified as the key differential genes. The expression of the SAUR36 gene in canola materials planted in the experimental field was significantly higher than in the control, and FY958 exhibited the largest difference (27.82 times). In this study, SOD and SAUR36 were found to be closely related to heavy metal stress tolerance. Therefore, they may be used to screen for new canola materials with good heavy metal stress tolerance for canola breeding.
Collapse
Affiliation(s)
- Yue Dai
- College of Agriculture, Agricultural University of Hunan, 1 Agricultural Road, Changsha 410128, China; (Y.D.); (H.C.)
| | - Hao Chen
- College of Agriculture, Agricultural University of Hunan, 1 Agricultural Road, Changsha 410128, China; (Y.D.); (H.C.)
| | - Yufang Li
- Hunan Cotton Science Institute, No. 3036 Shanjuan Road, Changde 415101, China;
| | - Rongkui Hui
- Hunan Province Institute of Agricultural Science, South of Hongyuan East Road, Changsha 410125, China
| | - Zhenqian Zhang
- College of Agriculture, Agricultural University of Hunan, 1 Agricultural Road, Changsha 410128, China; (Y.D.); (H.C.)
| |
Collapse
|
9
|
Baranova EN, Kononenko NV, Lapshin PV, Nechaeva TL, Khaliluev MR, Zagoskina NV, Smirnova EA, Yuorieva NO, Raldugina GN, Chaban IA, Kurenina LV, Gulevich AA. Superoxide Dismutase Premodulates Oxidative Stress in Plastids for Protection of Tobacco Plants from Cold Damage Ultrastructure Damage. Int J Mol Sci 2024; 25:5544. [PMID: 38791585 PMCID: PMC11122273 DOI: 10.3390/ijms25105544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 05/26/2024] Open
Abstract
ROS-dependent induction of oxidative damage can be used as a trigger initiating genetically determined non-specific protection in plant cells and tissues. Plants are potentially able to withstand various specific (toxic, osmotic) factors of abiotic effects, but do not have sufficient or specific sensitivity to form an adequate effective response. In this work, we demonstrate one of the possible approaches for successful cold acclimation through the formation of effective protection of photosynthetic structures due to the insertion of the heterologous FeSOD gene into the tobacco genome under the control of the constitutive promoter and equipped with a signal sequence targeting the protein to plastid. The increased enzymatic activity of superoxide dismutase in the plastid compartment of transgenic tobacco plants enables them to tolerate the oxidative factor of environmental stresses scavenging ROS. On the other hand, the cost of such resistance is quite high and, when grown under normal conditions, disturbs the arrangement of the intrachloroplastic subdomains leading to the modification of stromal thylakoids, probably significantly affecting the photosynthesis processes that regulate the efficiency of photosystem II. This is partially compensated for by the fact that, at the same time, under normal conditions, the production of peroxide induces the activation of ROS detoxification enzymes. However, a violation of a number of processes, such as the metabolism of accumulation, and utilization and transportation of sugars and starch, is significantly altered, which leads to a shift in metabolic chains. The expected step for further improvement of the applied technology could be both the use of inducible promoters in the expression cassette, and the addition of other genes encoding for hydrogen peroxide-scavenging enzymes in the genetic construct that are downstream in the metabolic chain.
Collapse
Affiliation(s)
- Ekaterina N. Baranova
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya St. 42, 127550 Moscow, Russia (M.R.K.); (E.A.S.); (I.A.C.); (L.V.K.)
- N.V. Tsitsin Main Botanical Garden of Russian Academy of Sciences, 127276 Moscow, Russia
- Moscow K.A. Timiryazev Agricultural Academy (RSAU-MTAA), Russian State Agrarian University, Timiryazevskaya 49, 127434 Moscow, Russia
| | - Neonila V. Kononenko
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya St. 42, 127550 Moscow, Russia (M.R.K.); (E.A.S.); (I.A.C.); (L.V.K.)
| | - Pyotr V. Lapshin
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya St. 35, 127276 Moscow, Russia (T.L.N.); (N.V.Z.)
| | - Tatiana L. Nechaeva
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya St. 35, 127276 Moscow, Russia (T.L.N.); (N.V.Z.)
| | - Marat R. Khaliluev
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya St. 42, 127550 Moscow, Russia (M.R.K.); (E.A.S.); (I.A.C.); (L.V.K.)
- Moscow K.A. Timiryazev Agricultural Academy (RSAU-MTAA), Russian State Agrarian University, Timiryazevskaya 49, 127434 Moscow, Russia
| | - Natalia V. Zagoskina
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya St. 35, 127276 Moscow, Russia (T.L.N.); (N.V.Z.)
| | - Elena A. Smirnova
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya St. 42, 127550 Moscow, Russia (M.R.K.); (E.A.S.); (I.A.C.); (L.V.K.)
- Biology Faculty, Lomonosov Moscow State University, Leninskie Gory 1, Building 12, 119991 Moscow, Russia
- Department of Biology, MSU-BIT University, Shenzhen 518172, China
| | - Natalya O. Yuorieva
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya St. 35, 127276 Moscow, Russia (T.L.N.); (N.V.Z.)
| | - Galina N. Raldugina
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya St. 35, 127276 Moscow, Russia (T.L.N.); (N.V.Z.)
| | - Inna A. Chaban
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya St. 42, 127550 Moscow, Russia (M.R.K.); (E.A.S.); (I.A.C.); (L.V.K.)
| | - Ludmila V. Kurenina
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya St. 42, 127550 Moscow, Russia (M.R.K.); (E.A.S.); (I.A.C.); (L.V.K.)
| | - Alexander A. Gulevich
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya St. 42, 127550 Moscow, Russia (M.R.K.); (E.A.S.); (I.A.C.); (L.V.K.)
| |
Collapse
|
10
|
Nishimura Y. Plastid Nucleoids: Insights into Their Shape and Dynamics. PLANT & CELL PHYSIOLOGY 2024; 65:551-559. [PMID: 37542434 DOI: 10.1093/pcp/pcad090] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/26/2023] [Accepted: 08/04/2023] [Indexed: 08/07/2023]
Abstract
Chloroplasts/plastids are unique organelles found in plant cells and some algae and are responsible for performing essential functions such as photosynthesis. The plastid genome, consisting of circular and linear DNA molecules, is packaged and organized into specialized structures called nucleoids. The composition and dynamics of these nucleoids have been the subject of intense research, as they are critical for proper plastid functions and development. In this mini-review, recent advances in understanding the organization and regulation of plastid nucleoids are overviewed, with a focus on the various proteins and factors that regulate the shape and dynamics of nucleoids, including DNA-binding proteins and membrane anchorage proteins. The dynamic nature of nucleoid organization, which is influenced by a variety of developmental cues and the cell cycle, is also examined.
Collapse
Affiliation(s)
- Yoshiki Nishimura
- Department of Botany, Graduate School of Science, Kyoto University, Oiwake-cho, Kita-Shirakawa, Sakyo-ku, Kyoto, 606-8502 Japan
| |
Collapse
|
11
|
do Prado PFV, Ahrens FM, Liebers M, Ditz N, Braun HP, Pfannschmidt T, Hillen HS. Structure of the multi-subunit chloroplast RNA polymerase. Mol Cell 2024; 84:910-925.e5. [PMID: 38428434 DOI: 10.1016/j.molcel.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/26/2024] [Accepted: 02/06/2024] [Indexed: 03/03/2024]
Abstract
Chloroplasts contain a dedicated genome that encodes subunits of the photosynthesis machinery. Transcription of photosynthesis genes is predominantly carried out by a plastid-encoded RNA polymerase (PEP), a nearly 1 MDa complex composed of core subunits with homology to eubacterial RNA polymerases (RNAPs) and at least 12 additional chloroplast-specific PEP-associated proteins (PAPs). However, the architecture of this complex and the functions of the PAPs remain unknown. Here, we report the cryo-EM structure of a 19-subunit PEP complex from Sinapis alba (white mustard). The structure reveals that the PEP core resembles prokaryotic and nuclear RNAPs but contains chloroplast-specific features that mediate interactions with the PAPs. The PAPs are unrelated to known transcription factors and arrange around the core in a unique fashion. Their structures suggest potential functions during transcription in the chemical environment of chloroplasts. These results reveal structural insights into chloroplast transcription and provide a framework for understanding photosynthesis gene expression.
Collapse
Affiliation(s)
- Paula F V do Prado
- University Medical Center Göttingen, Department of Cellular Biochemistry, Humboldtallee 23, 37073 Göttingen, Germany; Max Planck Institute for Multidisciplinary Sciences, Research Group Structure and Function of Molecular Machines, Am Fassberg 11, 37077 Göttingen, Germany; Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, 37075 Göttingen, Germany
| | - Frederik M Ahrens
- Institute of Botany, Plant Physiology, Leibniz University Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany
| | - Monique Liebers
- Institute of Botany, Plant Physiology, Leibniz University Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany
| | - Noah Ditz
- Institute of Plant Genetics, Plant Molecular Biology and Plant Proteomics, Leibniz University Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany
| | - Hans-Peter Braun
- Institute of Plant Genetics, Plant Molecular Biology and Plant Proteomics, Leibniz University Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany
| | - Thomas Pfannschmidt
- Institute of Botany, Plant Physiology, Leibniz University Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany.
| | - Hauke S Hillen
- University Medical Center Göttingen, Department of Cellular Biochemistry, Humboldtallee 23, 37073 Göttingen, Germany; Max Planck Institute for Multidisciplinary Sciences, Research Group Structure and Function of Molecular Machines, Am Fassberg 11, 37077 Göttingen, Germany; Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, 37075 Göttingen, Germany; Göttingen Center for Molecular Biosciences (GZMB), Research Group Structure and Function of Molecular Machines, University of Göttingen, 37077 Göttingen, Germany.
| |
Collapse
|
12
|
Vergara-Cruces Á, Pramanick I, Pearce D, Vogirala VK, Byrne MJ, Low JKK, Webster MW. Structure of the plant plastid-encoded RNA polymerase. Cell 2024; 187:1145-1159.e21. [PMID: 38428394 DOI: 10.1016/j.cell.2024.01.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/18/2023] [Accepted: 01/24/2024] [Indexed: 03/03/2024]
Abstract
Chloroplast genes encoding photosynthesis-associated proteins are predominantly transcribed by the plastid-encoded RNA polymerase (PEP). PEP is a multi-subunit complex composed of plastid-encoded subunits similar to bacterial RNA polymerases (RNAPs) stably bound to a set of nuclear-encoded PEP-associated proteins (PAPs). PAPs are essential to PEP activity and chloroplast biogenesis, but their roles are poorly defined. Here, we present cryoelectron microscopy (cryo-EM) structures of native 21-subunit PEP and a PEP transcription elongation complex from white mustard (Sinapis alba). We identify that PAPs encase the core polymerase, forming extensive interactions that likely promote complex assembly and stability. During elongation, PAPs interact with DNA downstream of the transcription bubble and with the nascent mRNA. The models reveal details of the superoxide dismutase, lysine methyltransferase, thioredoxin, and amino acid ligase enzymes that are subunits of PEP. Collectively, these data provide a foundation for the mechanistic understanding of chloroplast transcription and its role in plant growth and adaptation.
Collapse
Affiliation(s)
- Ángel Vergara-Cruces
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Ishika Pramanick
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - David Pearce
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK; School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Vinod K Vogirala
- Electron Bio-Imaging Centre (eBIC), Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
| | - Matthew J Byrne
- Electron Bio-Imaging Centre (eBIC), Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
| | - Jason K K Low
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2050, Australia
| | - Michael W Webster
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK.
| |
Collapse
|
13
|
Wu XX, Mu WH, Li F, Sun SY, Cui CJ, Kim C, Zhou F, Zhang Y. Cryo-EM structures of the plant plastid-encoded RNA polymerase. Cell 2024; 187:1127-1144.e21. [PMID: 38428393 DOI: 10.1016/j.cell.2024.01.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/12/2023] [Accepted: 01/16/2024] [Indexed: 03/03/2024]
Abstract
Chloroplasts are green plastids in the cytoplasm of eukaryotic algae and plants responsible for photosynthesis. The plastid-encoded RNA polymerase (PEP) plays an essential role during chloroplast biogenesis from proplastids and functions as the predominant RNA polymerase in mature chloroplasts. The PEP-centered transcription apparatus comprises a bacterial-origin PEP core and more than a dozen eukaryotic-origin PEP-associated proteins (PAPs) encoded in the nucleus. Here, we determined the cryo-EM structures of Nicotiana tabacum (tobacco) PEP-PAP apoenzyme and PEP-PAP transcription elongation complexes at near-atomic resolutions. Our data show the PEP core adopts a typical fold as bacterial RNAP. Fifteen PAPs bind at the periphery of the PEP core, facilitate assembling the PEP-PAP supercomplex, protect the complex from oxidation damage, and likely couple gene transcription with RNA processing. Our results report the high-resolution architecture of the chloroplast transcription apparatus and provide the structural basis for the mechanistic and functional study of transcription regulation in chloroplasts.
Collapse
Affiliation(s)
- Xiao-Xian Wu
- Key Laboratory of Synthetic Biology, Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Wen-Hui Mu
- Key Laboratory of Synthetic Biology, Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Fan Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Shu-Yi Sun
- Key Laboratory of Synthetic Biology, Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chao-Jun Cui
- University of Chinese Academy of Sciences, Beijing 100049, China; Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Chanhong Kim
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Fei Zhou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China.
| | - Yu Zhang
- Key Laboratory of Synthetic Biology, Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|
14
|
de Souza Junior JC, Monteiro FA. Nitrate fertilization enhances manganese phytoextraction in Tanzania guinea grass: a novel hyperaccumulator plant? ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:9661-9670. [PMID: 38194170 DOI: 10.1007/s11356-023-31548-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 12/10/2023] [Indexed: 01/10/2024]
Abstract
Manganese (Mn) is essential for plants but very toxic at high rates. However, hyperaccumulators can tolerate high Mn concentrations in plant tissue, especially when properly fertilized with N. Tanzania guinea grass (Megathyrsus maximus Jacq.) has been indicated as metal tolerant and a good candidate for Mn phytoextraction due to its fast growth and high biomass. The objective was to evaluate the Mn hyperaccumulator potential of Tanzania guinea grass grown as affected by proportions of nitrate/ammonium (NO3-/NH4+). An experiment in a growth chamber with nutrient solution, combining NO3-/NH4+ proportions (100/0 and 70/30) and Mn rates (10, 500, 1500, and 3000 μmol L-1), was carried out. The highest Mn concentration was verified in plants grown with 100/0 NO3-/NH4+ and Mn at 3000 μmol L-1, reaching up to 5500 and 21,187 mg kg-1 in shoots and roots, respectively, an overall concentration of 13,345 mg kg-1. These numbers are typically seen in hyperaccumulators. At that combination, Mn accumulation in shoots was also the highest, reaching up to 76.2 mg per pot, a phytoextraction rate of 23.1%. Excess Mn increased both H2O2 concentration in roots and non-photochemical quenching and therefore decreased net photosynthesis, stomatal conductance, electron transport rate, and photochemical quenching. Nevertheless, proline concentration in roots affected by excess Mn was high and indicates its important role for mitigating stress since Mn rates did not even affect the dry biomass. Tanzania guinea grass is highly tolerant to excess Mn as much as a hyperaccumulator. However, to show all its potential, the grass needs to be supplied with N as NO3-. We indicate Tanzania guinea grass as a Mn hyperaccumulator plant.
Collapse
Affiliation(s)
| | - Francisco Antonio Monteiro
- "Luiz de Queiroz" College of Agriculture, University of São Paulo, Piracicaba, São Paulo, 13418-900, Brazil.
| |
Collapse
|
15
|
Seo DH, Jang J, Park D, Yoon Y, Choi YD, Jang G. PEP-ASSOCIATED PROTEIN 3 regulates rice tiller formation and grain yield by controlling chloroplast biogenesis. PLANT PHYSIOLOGY 2024; 194:805-818. [PMID: 37819034 PMCID: PMC10828210 DOI: 10.1093/plphys/kiad536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 08/15/2023] [Accepted: 09/14/2023] [Indexed: 10/13/2023]
Abstract
Plastid-encoded RNA polymerase (PEP) plays a pivotal role in chloroplast development by governing the transcription of chloroplast genes, and PEP-associated proteins (PAPs) modulate PEP transcriptional activity. Therefore, PAPs provide an intriguing target for those efforts to improve yield, by enhancing chloroplast development. In this study, we identified the rice (Oryza sativa) OsPAP3 gene and characterized its function in chloroplast development. OsPAP3 expression was light-dependent and leaf-specific, similar to the PEP-dependent chloroplast gene RUBISCO LARGE SUBUNIT (OsRbcL), and OsPAP3 protein localized to chloroplast nucleoids where PEP functions. Analysis of loss-of-function and gain-of-function mutants showed that the expression of OsPAP3 is tightly linked to chloroplast gene expression and chloroplast biogenesis in rice. Homozygous knockout mutants of OsPAP3 had fewer chloroplasts than wild type, whereas plants overexpressing OsPAP3 had more chloroplasts. Also, OsPAP3 knockout suppressed the PEP-dependent expression of chloroplast genes, but OsPAP3 overexpression increased their expression. These findings indicate that OsPAP3 regulates chloroplast biogenesis in rice by controlling the PEP-dependent expression of chloroplast genes. More importantly, data from 3 seasons of field cultivation revealed that the overexpression of OsPAP3 improves rice grain yield by approximately 25%, largely due to increased tiller formation. Collectively, these observations suggest that OsPAP3 regulates rice growth and productivity by promoting chloroplast development.
Collapse
Affiliation(s)
- Deok Hyun Seo
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Jinwoo Jang
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Dongryeol Park
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Youngdae Yoon
- Department of Environmental Health Science, Konkuk University, Seoul 05029, Republic of Korea
| | - Yang Do Choi
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Geupil Jang
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Republic of Korea
| |
Collapse
|
16
|
Chen C, Cheng D, Li L, Sun X, He S, Li M, Chen J. Physiological Characteristics and Transcriptome Analysis of Exogenous Brassinosteroid-Treated Kiwifruit. Int J Mol Sci 2023; 24:17252. [PMID: 38139080 PMCID: PMC10744020 DOI: 10.3390/ijms242417252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/24/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
Brassinosteroids (BRs) play pivotal roles in improving plant stress tolerance. To investigate the mechanism of BR regulation of salt tolerance in kiwifruit, we used 'Hongyang' kiwifruit as the test material. We exposed the plants to 150 mmol/L NaCl stress and irrigated them with exogenous BR (2,4-epibrassinolide). The phenotypic analysis showed that salt stress significantly inhibited photosynthesis in kiwifruit, leading to a significant increase in the H2O2 content of leaves and roots and a significant increase in Na+/K+, resulting in oxidative damage and an ion imbalance. BR treatment resulted in enhanced photosynthesis, reduced H2O2 content, and reduced Na+/K+ in leaves, alleviating the salt stress injury. Furthermore, transcriptome enrichment analysis showed that the differentially expressed genes (DEGs) related to BR treatment are involved in pathways such as starch and sucrose metabolism, pentose and glucuronate interconversions, and plant hormone signal transduction, among others. Among the DEGs involved in plant hormone signal transduction, those with the highest expression were involved in abscisic acid signal transduction. Moreover, there was a significant increase in the expression of the AcHKT1 gene, which regulates ion transduction, and the antioxidant enzyme AcFSD2 gene, which is a key gene for improving salt tolerance. The data suggest that BRs can improve salt tolerance by regulating ion homeostasis and reducing oxidative stress.
Collapse
Affiliation(s)
- Chen Chen
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Dawei Cheng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Lan Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Xiaoxu Sun
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Shasha He
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Ming Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
- Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang 453514, China
| | - Jinyong Chen
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| |
Collapse
|
17
|
Luo P, Shi C, Zhou Y, Zhou J, Zhang X, Wang Y, Yang Y, Peng X, Xie T, Tang X. The nuclear-localized RNA helicase 13 is essential for chloroplast development in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:5057-5071. [PMID: 37310806 DOI: 10.1093/jxb/erad225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/12/2023] [Indexed: 06/15/2023]
Abstract
The chloroplast is a semi-autonomous organelle with a double membrane structure, and its structural stability is a prerequisite for its correct function. Chloroplast development is regulated by known nuclear-encoded chloroplast proteins or proteins encoded within the chloroplast itself. However, the mechanism of chloroplast development regulated by other organelles remains largely unknown. Here, we report that the nuclear-localized DEAD-box RNA helicase 13 (RH13) is essential for chloroplast development in Arabidopsis thaliana. RH13 is widely expressed in tissues and localized to the nucleolus. A homozygous rh13 mutant shows abnormal chloroplast structure and leaf morphogenesis. Proteomic analysis showed that the expression levels of photosynthesis-related proteins in chloroplasts were reduced due to loss of RH13. Furthermore, RNA-sequencing and proteomics data revealed decreases in the expression levels of these chloroplast-related genes, which undergo alternative splicing events in the rh13 mutant. Taken together, we propose that nucleolus-localized RH13 is critical for chloroplast development in Arabidopsis.
Collapse
Affiliation(s)
- Pan Luo
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Science, Hubei University, Wuhan 430062, China
| | - Ce Shi
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yi Zhou
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Science, Hubei University, Wuhan 430062, China
| | - Jiao Zhou
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Xuecheng Zhang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yukun Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yong Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Science, Hubei University, Wuhan 430062, China
| | - Xiongbo Peng
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Tingting Xie
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Xingchun Tang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Science, Hubei University, Wuhan 430062, China
| |
Collapse
|
18
|
Zhang Y, Tian L, Lu C. Chloroplast gene expression: Recent advances and perspectives. PLANT COMMUNICATIONS 2023; 4:100611. [PMID: 37147800 PMCID: PMC10504595 DOI: 10.1016/j.xplc.2023.100611] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 04/11/2023] [Accepted: 05/01/2023] [Indexed: 05/07/2023]
Abstract
Chloroplasts evolved from an ancient cyanobacterial endosymbiont more than 1.5 billion years ago. During subsequent coevolution with the nuclear genome, the chloroplast genome has remained independent, albeit strongly reduced, with its own transcriptional machinery and distinct features, such as chloroplast-specific innovations in gene expression and complicated post-transcriptional processing. Light activates the expression of chloroplast genes via mechanisms that optimize photosynthesis, minimize photodamage, and prioritize energy investments. Over the past few years, studies have moved from describing phases of chloroplast gene expression to exploring the underlying mechanisms. In this review, we focus on recent advances and emerging principles that govern chloroplast gene expression in land plants. We discuss engineering of pentatricopeptide repeat proteins and its biotechnological effects on chloroplast RNA research; new techniques for characterizing the molecular mechanisms of chloroplast gene expression; and important aspects of chloroplast gene expression for improving crop yield and stress tolerance. We also discuss biological and mechanistic questions that remain to be answered in the future.
Collapse
Affiliation(s)
- Yi Zhang
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Lin Tian
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Congming Lu
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, China.
| |
Collapse
|
19
|
Wang YY, Head DJ, Hauser BA. During Water Stress, Fertility Modulated by ROS Scavengers Abundant in Arabidopsis Pistils. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12112182. [PMID: 37299161 DOI: 10.3390/plants12112182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/24/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023]
Abstract
Hours after watering plants with 75 mM NaCl, the water potential of reproductive structures precipitously decreases. In flowers with mature gametes, this change in water potential did not alter the rate of fertilization but caused 37% of the fertilized ovules to abort. We hypothesize that the accumulation of reactive oxygen species (ROS) in ovules is an early physiological manifestation associated with seed failure. In this study, we characterize ROS scavengers that were differentially expressed in stressed ovules to determine whether any of these genes regulate ROS accumulation and/or associate with seed failure. Mutants in an iron-dependent superoxide dismutase (FSD2), ascorbate peroxidase (APX4), and three peroxidases (PER17, PER28, and PER29) were evaluated for changes in fertility. Fertility was unchanged in apx4 mutants, but the other mutants grown under normal conditions averaged a 140% increase in seed failure. In pistils, PER17 expression increases three-fold after stress, while the other genes decreased two-fold or more following stress; this change in expression accounts for differences in fertility between healthy and stressed conditions for different genotypes. In pistils, H2O2 levels rose in per mutants, but only in the triple mutant was there a significant increase, indicating that other ROS or their scavengers be involved in seed failure.
Collapse
Affiliation(s)
- Ya-Ying Wang
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
| | - Donald J Head
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
| | - Bernard A Hauser
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
- Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
20
|
Chang J, Wang K, Zhang C, Han X, Zhang X, Ren H, Yao X. Transcriptome Analysis of Resistant and Susceptible Pecan ( Carya illinoinensis) Reveals the Mechanism of Resistance to Black Spot Disease ( Colletotrichum fioriniae). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:5812-5822. [PMID: 36995220 DOI: 10.1021/acs.jafc.2c08434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Pecan, Carya illinoinensis (Wangenh.) K. Koch, is an important dried fruit and woody oil tree species grown worldwide. With continuous expansion of pecan cultivation, the frequency and scope of diseases, especially black spot disease, are increasing, damaging trees and reducing yields. In this study, the key factors in resistance to black spot disease (Colletotrichum fioriniae) were investigated between the high-resistance pecan variety "Kanza" and the low-resistance variety "Mahan". Leaf anatomy and antioxidase activities confirmed much stronger resistance to black spot disease in "Kanza" than in "Mahan". Transcriptome analysis indicated that the increased expression of genes associated with defense response, oxidation-reduction, and catalytic activity was involved in disease resistance. A connection network identified a highly expressed hub gene CiFSD2 (CIL1242S0042), which might participate in redox reactions to affect disease resistance. Overexpression of CiFSD2 in tobacco inhibited enlargement of necrotic spots and increased disease resistance. Overall, the expression of differentially expressed genes differed in pecan varieties with different levels of resistance to C. fioriniae infection. In addition, the hub genes associated with black spot resistance were identified and the functions clarified. The in-depth understanding of resistance to black spot disease provides new insights for early screening of resistant varieties and molecular-assisted breeding in pecan.
Collapse
Affiliation(s)
- Jun Chang
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang, Hangzhou 311400, China
| | - Kailiang Wang
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang, Hangzhou 311400, China
| | - Chengcai Zhang
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang, Hangzhou 311400, China
| | - Xiaojiao Han
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang, Hangzhou 311400, China
| | - Xiaodan Zhang
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang, Hangzhou 311400, China
| | - Huadong Ren
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang, Hangzhou 311400, China
| | - Xiaohua Yao
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang, Hangzhou 311400, China
| |
Collapse
|
21
|
Proteomic Analysis of Proteins Related to Defense Responses in Arabidopsis Plants Transformed with the rolB Oncogene. Int J Mol Sci 2023; 24:ijms24031880. [PMID: 36768198 PMCID: PMC9915171 DOI: 10.3390/ijms24031880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/10/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
During Agrobacterium rhizogenes-plant interaction, the rolB gene is transferred into the plant genome and is stably inherited in the plant's offspring. Among the numerous effects of rolB on plant metabolism, including the activation of secondary metabolism, its effect on plant defense systems has not been sufficiently studied. In this work, we performed a proteomic analysis of rolB-expressing Arabidopsis thaliana plants with particular focus on defense proteins. We found a total of 77 overexpressed proteins and 64 underexpressed proteins in rolB-transformed plants using two-dimensional gel electrophoresis and MALDI mass spectrometry. In the rolB-transformed plants, we found a reduced amount of scaffold proteins RACK1A, RACK1B, and RACK1C, which are known as receptors for activated C-kinase 1. The proteomic analysis showed that rolB could suppress the plant immune system by suppressing the RNA-binding proteins GRP7, CP29B, and CP31B, which action are similar to the action of type-III bacterial effectors. At the same time, rolB plants induce the massive biosynthesis of protective proteins VSP1 and VSP2, as well as pathogenesis-related protein PR-4, which are markers of the activated jasmonate pathway. The increased contents of glutathione-S-transferases F6, F2, F10, U19, and DHAR1 and the osmotin-like defense protein OSM34 were found. The defense-associated protein PCaP1, which is required for oligogalacturonide-induced priming and immunity, was upregulated. Moreover, rolB-transformed plants showed the activation of all components of the PYK10 defense complex that is involved in the metabolism of glucosinolates. We hypothesized that various defense systems activated by rolB protect the host plant from competing phytopathogens and created an effective ecological niche for A. rhizogenes. A RolB → RACK1A signaling module was proposed that might exert most of the rolB-mediated effects on plant physiology. Our proteomics data are available via ProteomeXchange with identifier PXD037959.
Collapse
|
22
|
Lasorella C, Fortunato S, Dipierro N, Jeran N, Tadini L, Vita F, Pesaresi P, de Pinto MC. Chloroplast-localized GUN1 contributes to the acquisition of basal thermotolerance in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2022; 13:1058831. [PMID: 36618674 PMCID: PMC9813751 DOI: 10.3389/fpls.2022.1058831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Heat stress (HS) severely affects different cellular compartments operating in metabolic processes and represents a critical threat to plant growth and yield. Chloroplasts are crucial for heat stress response (HSR), signaling to the nucleus the environmental challenge and adjusting metabolic and biosynthetic functions accordingly. GENOMES UNCOUPLED 1 (GUN1), a chloroplast-localized protein, has been recognized as one of the main players of chloroplast retrograde signaling. Here, we investigate HSR in Arabidopsis wild-type and gun1 plantlets subjected to 2 hours of HS at 45°C. In wild-type plants, Reactive Oxygen Species (ROS) accumulate promptly after HS, contributing to transiently oxidize the cellular environment and acting as signaling molecules. After 3 hours of physiological recovery at growth temperature (22°C), the induction of enzymatic and non-enzymatic antioxidants prevents oxidative damage. On the other hand, gun1 mutants fail to induce the oxidative burst immediately after HS and accumulate ROS and oxidative damage after 3 hours of recovery at 22°C, thus resulting in enhanced sensitivity to HS. These data suggest that GUN1 is required to oxidize the cellular environment, participating in the acquisition of basal thermotolerance through the redox-dependent plastid-to-nucleus communication.
Collapse
Affiliation(s)
- Cecilia Lasorella
- Department of Bioscience, Biotechnology and Environment University of Bari Aldo Moro, Bari, Italy
| | - Stefania Fortunato
- Department of Bioscience, Biotechnology and Environment University of Bari Aldo Moro, Bari, Italy
| | - Nunzio Dipierro
- Department of Bioscience, Biotechnology and Environment University of Bari Aldo Moro, Bari, Italy
| | - Nicolaj Jeran
- Department of Biosciences, University of Milano, Milano, Italy
| | - Luca Tadini
- Department of Biosciences, University of Milano, Milano, Italy
| | - Federico Vita
- Department of Bioscience, Biotechnology and Environment University of Bari Aldo Moro, Bari, Italy
| | - Paolo Pesaresi
- Department of Biosciences, University of Milano, Milano, Italy
| | - Maria Concetta de Pinto
- Department of Bioscience, Biotechnology and Environment University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
23
|
Melicher P, Dvořák P, Šamaj J, Takáč T. Protein-protein interactions in plant antioxidant defense. FRONTIERS IN PLANT SCIENCE 2022; 13:1035573. [PMID: 36589041 PMCID: PMC9795235 DOI: 10.3389/fpls.2022.1035573] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 11/14/2022] [Indexed: 06/17/2023]
Abstract
The regulation of reactive oxygen species (ROS) levels in plants is ensured by mechanisms preventing their over accumulation, and by diverse antioxidants, including enzymes and nonenzymatic compounds. These are affected by redox conditions, posttranslational modifications, transcriptional and posttranscriptional modifications, Ca2+, nitric oxide (NO) and mitogen-activated protein kinase signaling pathways. Recent knowledge about protein-protein interactions (PPIs) of antioxidant enzymes advanced during last decade. The best-known examples are interactions mediated by redox buffering proteins such as thioredoxins and glutaredoxins. This review summarizes interactions of major antioxidant enzymes with regulatory and signaling proteins and their diverse functions. Such interactions are important for stability, degradation and activation of interacting partners. Moreover, PPIs of antioxidant enzymes may connect diverse metabolic processes with ROS scavenging. Proteins like receptor for activated C kinase 1 may ensure coordination of antioxidant enzymes to ensure efficient ROS regulation. Nevertheless, PPIs in antioxidant defense are understudied, and intensive research is required to define their role in complex regulation of ROS scavenging.
Collapse
|
24
|
Liebers M, Cozzi C, Uecker F, Chambon L, Blanvillain R, Pfannschmidt T. Biogenic signals from plastids and their role in chloroplast development. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:7105-7125. [PMID: 36002302 DOI: 10.1093/jxb/erac344] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
Plant seeds do not contain differentiated chloroplasts. Upon germination, the seedlings thus need to gain photoautotrophy before storage energies are depleted. This requires the coordinated expression of photosynthesis genes encoded in nuclear and plastid genomes. Chloroplast biogenesis needs to be additionally coordinated with the light regulation network that controls seedling development. This coordination is achieved by nucleus to plastid signals called anterograde and plastid to nucleus signals termed retrograde. Retrograde signals sent from plastids during initial chloroplast biogenesis are also called biogenic signals. They have been recognized as highly important for proper chloroplast biogenesis and for seedling development. The molecular nature, transport, targets, and signalling function of biogenic signals are, however, under debate. Several studies disproved the involvement of a number of key components that were at the base of initial models of retrograde signalling. New models now propose major roles for a functional feedback between plastid and cytosolic protein homeostasis in signalling plastid dysfunction as well as the action of dually localized nucleo-plastidic proteins that coordinate chloroplast biogenesis with light-dependent control of seedling development. This review provides a survey of the developments in this research field, summarizes the unsolved questions, highlights several recent advances, and discusses potential new working modes.
Collapse
Affiliation(s)
- Monique Liebers
- Gottfried-Wilhelm-Leibniz-Universität Hannover, Naturwissenschaftliche Fakultät, Institut für Botanik, Pflanzenphysiologie, Herrenhäuser Str. 2, D-30419 Hannover, Germany
| | - Carolina Cozzi
- Gottfried-Wilhelm-Leibniz-Universität Hannover, Naturwissenschaftliche Fakultät, Institut für Botanik, Pflanzenphysiologie, Herrenhäuser Str. 2, D-30419 Hannover, Germany
| | - Finia Uecker
- Gottfried-Wilhelm-Leibniz-Universität Hannover, Naturwissenschaftliche Fakultät, Institut für Botanik, Pflanzenphysiologie, Herrenhäuser Str. 2, D-30419 Hannover, Germany
| | - Louise Chambon
- Université Grenoble-Alpes, CNRS, CEA, INRA, IRIG-LPCV, F-38000 Grenoble, France
| | - Robert Blanvillain
- Université Grenoble-Alpes, CNRS, CEA, INRA, IRIG-LPCV, F-38000 Grenoble, France
| | - Thomas Pfannschmidt
- Gottfried-Wilhelm-Leibniz-Universität Hannover, Naturwissenschaftliche Fakultät, Institut für Botanik, Pflanzenphysiologie, Herrenhäuser Str. 2, D-30419 Hannover, Germany
| |
Collapse
|
25
|
Park HS, Jeon JH, Cho W, Lee Y, Park JY, Kim J, Park YS, Koo HJ, Kang JH, Lee TJ, Kim SH, Kim JB, Kwon HY, Kim SH, Paek NC, Jang G, Suh JY, Yang TJ. High-throughput discovery of plastid genes causing albino phenotypes in ornamental chimeric plants. HORTICULTURE RESEARCH 2022; 10:uhac246. [PMID: 36643742 PMCID: PMC9832966 DOI: 10.1093/hr/uhac246] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/26/2022] [Indexed: 06/17/2023]
Abstract
Chimeric plants composed of green and albino tissues have great ornamental value. To unveil the functional genes responsible for albino phenotypes in chimeric plants, we inspected the complete plastid genomes (plastomes) in green and albino leaf tissues from 23 ornamental chimeric plants belonging to 20 species, including monocots, dicots, and gymnosperms. In nine chimeric plants, plastomes were identical between green and albino tissues. Meanwhile, another 14 chimeric plants were heteroplasmic, showing a mutation between green and albino tissues. We identified 14 different point mutations in eight functional plastid genes related to plastid-encoded RNA polymerase (rpo) or photosystems which caused albinism in the chimeric plants. Among them, 12 were deleterious mutations in the target genes, in which early termination appeared due to small deletion-mediated frameshift or single nucleotide substitution. Another was single nucleotide substitution in an intron of the ycf3 and the other was a missense mutation in coding region of the rpoC2 gene. We inspected chlorophyll structure, protein functional model of the rpoC2, and expression levels of the related genes in green and albino tissues of Reynoutria japonica. A single amino acid change, histidine-to-proline substitution, in the rpoC2 protein may destabilize the peripheral helix of plastid-encoded RNA polymerase, impairing the biosynthesis of the photosynthesis system in the albino tissue of R. japonica chimera plant.
Collapse
Affiliation(s)
| | | | | | | | - Jee Young Park
- Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life Sciences, and Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jiseok Kim
- Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life Sciences, and Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Young Sang Park
- Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life Sciences, and Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hyun Jo Koo
- Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life Sciences, and Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jung Hwa Kang
- Hantaek Botanical Garden, Yongin, Gyeonggi-do, 17183, Republic of Korea
| | - Taek Joo Lee
- Hantaek Botanical Garden, Yongin, Gyeonggi-do, 17183, Republic of Korea
| | - Sang Hoon Kim
- Radiation Breeding Research Team, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 56212, Korea
| | - Jin-Baek Kim
- Radiation Breeding Research Team, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 56212, Korea
| | - Hae-Yun Kwon
- Special Forest Resources Division, National Institute of Forest Science, Suwon 16631, Korea
| | - Suk-Hwan Kim
- Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life Sciences, and Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Nam-Chon Paek
- Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life Sciences, and Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Geupil Jang
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, South Korea
| | - Jeong-Yong Suh
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | | |
Collapse
|
26
|
Islam W, Naveed H, Idress A, Ishaq DU, Kurfi BG, Zeng F. Plant responses to metals stress: microRNAs in focus. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:69197-69212. [PMID: 35951237 DOI: 10.1007/s11356-022-22451-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
Metal toxicity can largely affect the growth and yield of numerous plant species. Plants have developed specific mechanisms to withstand the varying amounts of metals. One approach involves utilization of microRNAs (miRNAs) that are known for cleaving transcripts or inhibiting translation to mediate post-transcriptional control. Use of transcription factors (TFs) or gene regulation in metal detoxification largely depends on metal-responsive miRNAs. Moreover, systemic signals and physiological processes for plants response to metal toxicities are likewise controlled by miRNAs. Therefore, it is necessary to understand miRNAs and their regulatory networks in relation to metal stress. The miRNA-based approach can be important to produce metal-tolerant plant species. Here, we have reviewed the importance of plant miRNAs and their role in mitigating metal toxicities. The current review also discusses the specific advances that have occurred as a result of the identification and validation of several metal stress-responsive miRNAs.
Collapse
Affiliation(s)
- Waqar Islam
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
- Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele, 848300, China
| | - Hassan Naveed
- College of Life Sciences, Leshan Normal University, Sichuan, 614004, China
| | - Atif Idress
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, 510260, China
| | - Daha Umar Ishaq
- Centre of Mitochondrial Biology & Medicine, Xian Joiotong University, Xi'An, 710049, China
- Department of Biochemistry, Faculty of Basic Medical Sciences, Bayero University, Kano, 700241, Nigeria
| | - Binta G Kurfi
- Department of Biochemistry, Faculty of Basic Medical Sciences, Bayero University, Kano, 700241, Nigeria
| | - Fanjiang Zeng
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China.
- Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele, 848300, China.
| |
Collapse
|
27
|
Wang D, Wang J, Su P, Dai J, Tan X, Zhang D, Liu Y, Cheng F. Effects of dazomet combined with Rhodopsesudomonas palustris PSB-06 on root-knot nematode, Meloidogyne incognita infecting ginger and soil microorganisms diversity. Front Microbiol 2022; 13:1021445. [PMID: 36246285 PMCID: PMC9558219 DOI: 10.3389/fmicb.2022.1021445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
Root-knot nematode, Meloidogyne incognita is one of the most important nematodes affecting ginger crop. Rhodopseudomonas palustris PSB-06, as effective microbial fertilizer in increasing plant growth and suppressing soil-borne disease of many crops has been reported. The combination of R. palustris PSB-06 and dazomet treatments had been proved to inhibit root-knot nematode on ginger and increase ginger yield in our preliminary study. The field experiments were conducted to elucidate the reasons behind this finding, and followed by next-generation sequencing to determine the microbial population structures in ginger root rhizosphere. The results showed that combination of R. palustris PSB-06 and dazomet treatment had a synergetic effect by achieving of 80.00% reduction in root-knot nematode numbers less than soil without treatment, and also could increase 37.37% of ginger yield through increasing the contents of chlorophyll and total protein in ginger leaves. Microbiota composition and alpha diversity varied with treatments and growth stages, soil bacterial diversity rapidly increased after planting ginger. In addition, the combined treatment could increase diversity and community composition of probiotic bacteria, and decrease those of soil-borne pathogenic fungi comparing to the soil treated with dazomet alone. Meanwhile, it could also effectively increase soil organic matter, available phosphorus and available potassium. Analysis of correlation between soil microorganisms and physicochemical properties indicated that the soil pH value and available phosphorus content were important factors that could affect soil microorganisms structure at the harvest stage. The bacterial family was more closely correlated with the soil physicochemical properties than the fungal family. Therefore, the combination of R. palustris PSB-06 and dazomet was considered as an effective method to control root-knot nematode disease and improve ginger soil conditions.
Collapse
Affiliation(s)
- Dongwei Wang
- Key Laboratory of Integrated Management of the Pests and Diseases on Horticultural Crops in Hunan Province, Institute of Plant Protection, Hunan Academy of Agriculture Sciences, Changsha, China
| | - Jian Wang
- Agricultural Economy and Regional Planning Research Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Pin Su
- Key Laboratory of Integrated Management of the Pests and Diseases on Horticultural Crops in Hunan Province, Institute of Plant Protection, Hunan Academy of Agriculture Sciences, Changsha, China
| | - Jianping Dai
- Key Laboratory of Integrated Management of the Pests and Diseases on Horticultural Crops in Hunan Province, Institute of Plant Protection, Hunan Academy of Agriculture Sciences, Changsha, China
| | - Xinqiu Tan
- Key Laboratory of Integrated Management of the Pests and Diseases on Horticultural Crops in Hunan Province, Institute of Plant Protection, Hunan Academy of Agriculture Sciences, Changsha, China
| | - Deyong Zhang
- Key Laboratory of Integrated Management of the Pests and Diseases on Horticultural Crops in Hunan Province, Institute of Plant Protection, Hunan Academy of Agriculture Sciences, Changsha, China
| | - Yong Liu
- Key Laboratory of Integrated Management of the Pests and Diseases on Horticultural Crops in Hunan Province, Institute of Plant Protection, Hunan Academy of Agriculture Sciences, Changsha, China
- *Correspondence: Yong Liu,
| | - Feixue Cheng
- Key Laboratory of Integrated Management of the Pests and Diseases on Horticultural Crops in Hunan Province, Institute of Plant Protection, Hunan Academy of Agriculture Sciences, Changsha, China
- Feixue Cheng,
| |
Collapse
|
28
|
Interference Expression of StMSD Inhibited the Deposition of Suberin and Lignin at Wounds of Potato Tubers by Reducing the Production of H2O2. Antioxidants (Basel) 2022; 11:antiox11101901. [PMID: 36290624 PMCID: PMC9598499 DOI: 10.3390/antiox11101901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/20/2022] [Accepted: 09/20/2022] [Indexed: 11/17/2022] Open
Abstract
Superoxide dismutase (SOD) actively participates in the wound stress of plants. However, whether StMSD mediates the generation of H2O2 and the deposition of suberin polyphenolic and lignin at potato tuber wounds is elusive. In this study, we developed the StMSD interference expression of potato plants and tubers by Agrobacterium tumefaciens-mediated transformation. The StSOD expression showed a marked downregulation in StMSD-interference tubers, especially StCSD2 and StCSD3. The content of O2•− exhibited a noticeable increase together with the inhibition in H2O2 accumulation. Moreover, the gene expression levels of StPAL (phenylalanine ammonia-lyase) and StC4H (cinnamate-4-hydroxylase) were downregulated in StMSD-interference tubers, and less suberin polyphenolic and lignin depositions at the wounds were observed. Taken together, the interference expression of StMSD can result in less suberin polyphenolic and lignin deposition by inhibiting the disproportionation of O2•− to H2O2 and restraining phenylpropanoid metabolism in tubers.
Collapse
|
29
|
Qian R, Ye Y, Hu Q, Ma X, Zheng J. Complete Chloroplast Genome of Gladiolus gandavensis ( Gladiolus) and Genetic Evolutionary Analysis. Genes (Basel) 2022; 13:1599. [PMID: 36140767 PMCID: PMC9498597 DOI: 10.3390/genes13091599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 08/26/2022] [Accepted: 09/04/2022] [Indexed: 11/25/2022] Open
Abstract
Gladiolus is an important ornamental plant that is one of the world's four most-grown cut flowers. Gladiolus gandavensis has only been found in the Cangnan County (Zhejiang Province) of China, which is recorded in the "Botanical". To explore the origin of G. gandavensis, chloroplast genome sequencing was conducted. The results indicated that a total of 151,654 bp of circular DNA was obtained. The chloroplast genome of G. gandavensis has a quadripartite structure (contains a large single-copy (LSC) region (81,547 bp), a small single-copy region (SSC) (17,895 bp), and two inverted repeats (IRs) (IRa and IRb, 52,212 bp)), similar to that of other species. In addition, a total of 84 protein-coding genes, 8 rRNA-encoding genes, and 38 tRNA-encoding genes were present in the chloroplast genome. To further study the structural characteristics of the chloroplast genome in G. gandavensis, a comparative analysis of eight species of the Iridaceae family was conducted, and the results revealed higher similarity in the IR regions than in the LSC and SSC regions. In addition, 265 simple sequence repeats (SSRs) were detected in this study. The results of the phylogenetic analysis indicated that the chloroplast genome of G. gandavensis has high homology with the Crocus cartwrightianus and Crocus sativus chloroplast genomes. Genetic analysis based on the rbcl sequence among 49 Gladiolus species showed that samples 42, 49, 50, and 54 had high homology with the three samples from China (64, 65, and 66), which might be caused by chance similarity in genotypes. These results suggest that G. gandavensis may have originated from South Africa.
Collapse
Affiliation(s)
| | | | | | | | - Jian Zheng
- Zhejiang Institute of Subtropical Crops, Wenzhou Key Laboratory of Resource Plant Innovation and Utilization, Wenzhou 325005, China
| |
Collapse
|
30
|
Jan M, Liu Z, Rochaix JD, Sun X. Retrograde and anterograde signaling in the crosstalk between chloroplast and nucleus. FRONTIERS IN PLANT SCIENCE 2022; 13:980237. [PMID: 36119624 PMCID: PMC9478734 DOI: 10.3389/fpls.2022.980237] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/18/2022] [Indexed: 06/02/2023]
Abstract
The chloroplast is a complex cellular organelle that not only performs photosynthesis but also synthesizes amino acids, lipids, and phytohormones. Nuclear and chloroplast genetic activity are closely coordinated through signaling chains from the nucleus to chloroplast, referred to as anterograde signaling, and from chloroplast to the nucleus, named retrograde signaling. The chloroplast can act as an environmental sensor and communicates with other cell compartments during its biogenesis and in response to stress, notably with the nucleus through retrograde signaling to regulate nuclear gene expression in response to developmental cues and stresses that affect photosynthesis and growth. Although several components involved in the generation and transmission of plastid-derived retrograde signals and in the regulation of the responsive nuclear genes have been identified, the plastid retrograde signaling network is still poorly understood. Here, we review the current knowledge on multiple plastid retrograde signaling pathways, and on potential plastid signaling molecules. We also discuss the retrograde signaling-dependent regulation of nuclear gene expression within the frame of a multilayered network of transcription factors.
Collapse
Affiliation(s)
- Masood Jan
- State Key Laboratory of Cotton Biology and State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Zhixin Liu
- State Key Laboratory of Cotton Biology and State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Jean-David Rochaix
- Department of Molecular Biology and Plant Biology, University of Geneva, Geneva, Switzerland
| | - Xuwu Sun
- State Key Laboratory of Cotton Biology and State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| |
Collapse
|
31
|
Bychkov IA, Andreeva AA, Kudryakova NV, Pojidaeva ES, Kusnetsov VV. The role of PAP4/FSD3 and PAP9/FSD2 in heat stress responses of chloroplast genes. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 322:111359. [PMID: 35738478 DOI: 10.1016/j.plantsci.2022.111359] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/01/2022] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
Chloroplasts' mechanisms of adaptation to elevated temperatures are largely determined by the gene expression of the plastid transcription apparatus. Gene disruption of iron-containing superoxide dismutase PAP4/FSD3 and PAP9/FSD2, which are parts of the DNA-RNA polymerase complex of plastids, contributed to a decrease in resistance to oxidative stress caused by the prolonged action of elevated temperatures (5 days, 30 °C). Under heat stress conditions, pap4/fsd3 and pap9/fsd2 mutants showed a decline in chlorophyll content and photosynthesis level, as measured by photosynthetic parameters, and a different amplitude of HSP gene response to heat stress. The expression of nuclear- and plastid-encoded photosynthesis genes and corresponding proteins was strongly inhibited in the mutants as compared with wild-type plants and was further suppressed or displayed no additional changes at 30 °C. NEP-dependent plastid genes, as well as NEP genes RPOTp and RPOTmp, were also downregulated in the mutants by high temperature or remained stable, unlike in wild-type seedlings where these genes were strongly upregulated. The results obtained correspond to the concept of the complex effect of various forms of reactive oxygen species under all types of stresses, including heat stress, and confirm the hypothesis of a new regulatory function in plastid transcription acquired by enzymatic proteins during evolution.
Collapse
Affiliation(s)
- Ivan A Bychkov
- К.А. Timiryazev Institute of Plant Physiology RAS, 35 Botanicheskaya St., Moscow 127276, Russia
| | - Aleksandra A Andreeva
- К.А. Timiryazev Institute of Plant Physiology RAS, 35 Botanicheskaya St., Moscow 127276, Russia
| | - Natalia V Kudryakova
- К.А. Timiryazev Institute of Plant Physiology RAS, 35 Botanicheskaya St., Moscow 127276, Russia.
| | - Elena S Pojidaeva
- К.А. Timiryazev Institute of Plant Physiology RAS, 35 Botanicheskaya St., Moscow 127276, Russia
| | - Victor V Kusnetsov
- К.А. Timiryazev Institute of Plant Physiology RAS, 35 Botanicheskaya St., Moscow 127276, Russia
| |
Collapse
|
32
|
Lee J, Chen H, Lee G, Emonet A, Kim S, Shim D, Lee Y. MSD2-mediated ROS metabolism fine-tunes the timing of floral organ abscission in Arabidopsis. THE NEW PHYTOLOGIST 2022; 235:2466-2480. [PMID: 35689444 PMCID: PMC9543660 DOI: 10.1111/nph.18303] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 05/27/2022] [Indexed: 06/14/2023]
Abstract
The timely removal of end-of-purpose flowering organs is as essential for reproduction and plant survival as timely flowering. Despite much progress in understanding the molecular mechanisms of floral organ abscission, little is known about how various environmental factors are integrated into developmental programmes that determine the timing of abscission. Here, we investigated whether reactive oxygen species (ROS), mediators of various stress-related signalling pathways, are involved in determining the timing of abscission and, if so, how they are integrated with the developmental pathway in Arabidopsis thaliana. MSD2, encoding a secretory manganese superoxide dismutase, was preferentially expressed in the abscission zone of flowers, and floral organ abscission was accelerated by the accumulation of ROS in msd2 mutants. The expression of the genes encoding the receptor-like kinase HAESA (HAE) and its cognate peptide ligand INFLORESCENCE DEFICIENT IN ABSCISSION (IDA), the key signalling components of abscission, was accelerated in msd2 mutants, suggesting that MSD2 acts upstream of IDA-HAE. Further transcriptome and pharmacological analyses revealed that abscisic acid and nitric oxide facilitate abscission by regulating the expression of IDA and HAE during MSD2-mediated signalling. These results suggest that MSD2-dependent ROS metabolism is an important regulatory point integrating environmental stimuli into the developmental programme leading to abscission.
Collapse
Affiliation(s)
- Jinsu Lee
- Research Institute of Basic SciencesSeoul National UniversitySeoul08826Korea
- Research Centre for Plant PlasticitySeoul National UniversitySeoul08826Korea
| | - Huize Chen
- Research Institute of Basic SciencesSeoul National UniversitySeoul08826Korea
- Higher Education Key Laboratory of Plant Molecular and Environmental Stress Response in Shanxi ProvinceShanxi Normal UniversityTaiyuan030000ShanxiChina
| | - Gisuk Lee
- Department of Biological SciencesKorea Advanced Institute for Science and TechnologyDaejeon34141Korea
| | - Aurélia Emonet
- Department of Plant Molecular BiologyUniversity of Lausanne1015LausanneSwitzerland
| | - Sang‐Gyu Kim
- Department of Biological SciencesKorea Advanced Institute for Science and TechnologyDaejeon34141Korea
| | - Donghwan Shim
- Department of Biological SciencesChungnam National UniversityDaejeon34134Korea
| | - Yuree Lee
- Research Centre for Plant PlasticitySeoul National UniversitySeoul08826Korea
- School of Biological SciencesSeoul National UniversitySeoul08826Korea
- Plant Genomics and Breeding InstituteSeoul National UniversitySeoul08826Korea
| |
Collapse
|
33
|
Three-Dimensional Envelope and Subunit Interactions of the Plastid-Encoded RNA Polymerase from Sinapis alba. Int J Mol Sci 2022; 23:ijms23179922. [PMID: 36077319 PMCID: PMC9456514 DOI: 10.3390/ijms23179922] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
RNA polymerases (RNAPs) are found in all living organisms. In the chloroplasts, the plastid-encoded RNA polymerase (PEP) is a prokaryotic-type multimeric RNAP involved in the selective transcription of the plastid genome. One of its active states requires the assembly of nuclear-encoded PEP-Associated Proteins (PAPs) on the catalytic core, producing a complex of more than 900 kDa, regarded as essential for chloroplast biogenesis. In this study, sequence alignments of the catalytic core subunits across various chloroplasts of the green lineage and prokaryotes combined with structural data show that variations are observed at the surface of the core, whereas internal amino acids associated with the catalytic activity are conserved. A purification procedure compatible with a structural analysis was used to enrich the native PEP from Sinapis alba chloroplasts. A mass spectrometry (MS)-based proteomic analysis revealed the core components, the PAPs and additional proteins, such as FLN2 and pTAC18. MS coupled with crosslinking (XL-MS) provided the initial structural information in the form of protein clusters, highlighting the relative position of some subunits with the surfaces of their interactions. Using negative stain electron microscopy, the PEP three-dimensional envelope was calculated. Particles classification shows that the protrusions are very well-conserved, offering a framework for the future positioning of all the PAPs. Overall, the results show that PEP-associated proteins are firmly and specifically associated with the catalytic core, giving to the plastid transcriptional complex a singular structure compared to other RNAPs.
Collapse
|
34
|
Dai X, Zhang S, Liu S, Qi H, Duan X, Han Z, Wang J. Functional Characterization and Phenotyping of Protoplasts on a Microfluidics-Based Flow Cytometry. BIOSENSORS 2022; 12:bios12090688. [PMID: 36140072 PMCID: PMC9496511 DOI: 10.3390/bios12090688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022]
Abstract
A better understanding of the phenotypic heterogeneity of protoplasts requires a comprehensive analysis of the morphological and metabolic characteristics of many individual cells. In this study, we developed a microfluidic flow cytometry with fluorescence sensor for functional characterization and phenotyping of protoplasts to allow an unbiased assessment of the influence of environmental factors at the single cell level. First, based on the measurement of intracellular homeostasis of reactive oxygen species (ROS) with a DCFH-DA dye, the effects of various external stress factors such as H2O2, temperature, ultraviolet (UV) light, and cadmium ions on intracellular ROS accumulation in Arabidopsis mesophyll protoplasts were quantitatively investigated. Second, a faster and stronger oxidative burst was observed in Petunia protoplasts isolated from white petals than in those isolated from purple petals, demonstrating the photoprotective role of anthocyanins. Third, using mutants with different endogenous auxin, we demonstrated the beneficial effect of auxin during the process of primary cell wall regeneration. Moreover, UV-B irradiation has a similar accelerating effect by increasing the intracellular auxin level, as shown by double fluorescence channels. In summary, our work has revealed previously underappreciated phenotypic variability within a protoplast population and demonstrated the advantages of a microfluidic flow cytometry for assessing the in vivo dynamics of plant metabolic and physiological indices at the single-cell level.
Collapse
Affiliation(s)
- Xingda Dai
- School of Environmental Science and Engineering, Tianjin University, Weijin Rd. 92, Tianjin 300072, China
| | - Shuaihua Zhang
- State Key Laboratory of Precision Measuring Technology and Instruments, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Weijin Rd. 92, Tianjin 300072, China
| | - Siyuan Liu
- State Key Laboratory of Precision Measuring Technology and Instruments, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Weijin Rd. 92, Tianjin 300072, China
| | - Hang Qi
- State Key Laboratory of Precision Measuring Technology and Instruments, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Weijin Rd. 92, Tianjin 300072, China
| | - Xuexin Duan
- State Key Laboratory of Precision Measuring Technology and Instruments, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Weijin Rd. 92, Tianjin 300072, China
| | - Ziyu Han
- State Key Laboratory of Precision Measuring Technology and Instruments, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Weijin Rd. 92, Tianjin 300072, China
- Correspondence: (Z.H.); (J.W.)
| | - Jiehua Wang
- School of Environmental Science and Engineering, Tianjin University, Weijin Rd. 92, Tianjin 300072, China
- Correspondence: (Z.H.); (J.W.)
| |
Collapse
|
35
|
Mnsod1 promotes the development of Pleurotus ostreatus and enhances the tolerance of mycelia to heat stress. Microb Cell Fact 2022; 21:155. [PMID: 35934720 PMCID: PMC9358896 DOI: 10.1186/s12934-022-01878-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 07/17/2022] [Indexed: 12/02/2022] Open
Abstract
Background Superoxide dismutases (SODs, EC 1.15.1.1) are defense proteins that can be used as sweepers to clear reactive oxygen species (ROS). They have been widely studied in the plant. Intensive research demonstrates that SOD plays an essential role in plants. However, in Pleurotus ostreatus, the function and regulatory pathway of SOD in the growth and development and the abiotic stress response have not been clear. Results In this study, three MnSOD-encoding genes of the P. ostreatus CCMSSC00389 strain were cloned and identified. Mnsod1, Mnsod2, and Mnsod3 were interrupted by 3, 7, and 2 introns, and encoded proteins of 204, 220, and 344 amino acids, respectively. By comparing the relative expression of three MnSOD-encoding genes in mycelia, the results showed that the gene with the highest primary expression was Mnsod1. Subsequently, the function of P. ostreatus Mnsod1 was explored by overexpression (OE) and RNA interference (RNAi). The results showed that during the growth and development of P. ostreatus, MnSOD1 protein increased gradually from mycelia to the fruiting body, but decreased in spores. The change of Mnsod1 transcription level was not consistent with the changing trend of MnSOD1 protein. Further studies showed that during primordia formation, the expression of Mnsod1 gradually increased, reaching a peak at 48 h, and the transcription level was 2.05-folds compared to control. H2O2 content progressively accumulated during the formation of primordia, and its change trend was similar to that of Mnsod1 transcription. OE-Mnsod1-1 and OE-Mnsod1-21 strains accelerated the formation of primordia. The results suggested that Mnsod1 may participate in the formation rate of P. ostreatus primordium by regulating the signal molecule H2O2. In addition, OE-Mnsod1-1 and OE-Mnsod1-21 strains shortened the mycelial recovery time after heat stress and improved the tolerance of the strains to 2.5 mM and 5 mM H2O2, which showed that Mnsod1 was involved in the response of P. ostreatus mycelium to heat stress. Conclusions This study indicates that Mnsod1 plays an active role in the formation of P. ostreatus primordia and the response to abiotic stress. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-022-01878-2.
Collapse
|
36
|
Castro PH, Couto D, Santos MÂ, Freitas S, Lourenço T, Dias E, Huguet S, Marques da Silva J, Tavares RM, Bejarano ER, Azevedo H. SUMO E3 ligase SIZ1 connects sumoylation and reactive oxygen species homeostasis processes in Arabidopsis. PLANT PHYSIOLOGY 2022; 189:934-954. [PMID: 35238389 PMCID: PMC9157161 DOI: 10.1093/plphys/kiac085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
The ubiquitin-like modifying peptide SMALL UBIQUITIN-LIKE MODIFIER (SUMO) has become a known modulator of the plant response to multiple environmental stimuli. A common feature of many of these external stresses is the production of reactive oxygen species (ROS). Taking into account that SUMO conjugates rapidly accumulate in response to an external oxidative stimulus, it is likely that ROS and sumoylation converge at the molecular and regulatory levels. In this study, we explored the SUMO-ROS relationship, using as a model the Arabidopsis (Arabidopsis thaliana) null mutant of the major SUMO-conjugation enhancer, the E3 ligase SAP AND MIZ 1 (SIZ1). We showed that SIZ1 is involved in SUMO conjugate increase when primed with both exogenous and endogenous ROS. In siz1, seedlings were sensitive to oxidative stress imposition, and mutants accumulated different ROS throughout development. We demonstrated that the deregulation in hydrogen peroxide and superoxide homeostasis, but not of singlet O2 (1O2), was partially due to SA accumulation in siz1. Furthermore, transcriptomic analysis highlighted a transcriptional signature that implicated siz1 with 1O2 homeostasis. Subsequently, we observed that siz1 displayed chloroplast morphological defects and altered energy dissipation activity and established a link between the chlorophyll precursor protochlorophyllide and deregulation of PROTOCHLOROPHYLLIDE OXIDOREDUCTASE A (PORA), which is known to drive overproduction of 1O2. Ultimately, network analysis uncovered known and additional associations between transcriptional control of PORA and SIZ1-dependent sumoylation. Our study connects sumoylation, and specifically SIZ1, to the control of chloroplast functions and places sumoylation as a molecular mechanism involved in ROS homeostatic and signaling events.
Collapse
Affiliation(s)
- Pedro Humberto Castro
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão 4485-661, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão 4485-661, Portugal
- Biosystems & Integrative Sciences Institute (BioISI), Plant Functional Biology Center, University of Minho, Braga 4710-057, Portugal
| | - Daniel Couto
- Biosystems & Integrative Sciences Institute (BioISI), Plant Functional Biology Center, University of Minho, Braga 4710-057, Portugal
| | - Miguel Ângelo Santos
- Biosystems & Integrative Sciences Institute (BioISI), Plant Functional Biology Center, University of Minho, Braga 4710-057, Portugal
| | - Sara Freitas
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão 4485-661, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão 4485-661, Portugal
- Biosystems & Integrative Sciences Institute (BioISI), Plant Functional Biology Center, University of Minho, Braga 4710-057, Portugal
| | - Tiago Lourenço
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão 4485-661, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão 4485-661, Portugal
- Biosystems & Integrative Sciences Institute (BioISI), Plant Functional Biology Center, University of Minho, Braga 4710-057, Portugal
| | - Eva Dias
- Biosystems & Integrative Sciences Institute (BioISI), Plant Functional Biology Center, University of Minho, Braga 4710-057, Portugal
| | - Stéphanie Huguet
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay 91405, France
- Université de Paris, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay 91405, France
| | - Jorge Marques da Silva
- Biosystems and Integrative Sciences Institute (BioISI) and Departamento de Biologia Vegetal, Faculdade de Ciências, Universidade de Lisboa, Lisboa 1749-016, Portugal
| | - Rui Manuel Tavares
- Biosystems & Integrative Sciences Institute (BioISI), Plant Functional Biology Center, University of Minho, Braga 4710-057, Portugal
| | - Eduardo Rodríguez Bejarano
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Department of Biología Celular, Genética y Fisiología, Universidad de Málaga, Málaga 29071, Spain
| | - Herlander Azevedo
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão 4485-661, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão 4485-661, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto 4099-002, Portugal
| |
Collapse
|
37
|
Sanyal RP, Prashar V, Jawali N, Sunkar R, Misra HS, Saini A. Molecular and Biochemical Analysis of Duplicated Cytosolic CuZn Superoxide Dismutases of Rice and in silico Analysis in Plants. FRONTIERS IN PLANT SCIENCE 2022; 13:864330. [PMID: 35707617 PMCID: PMC9191229 DOI: 10.3389/fpls.2022.864330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/21/2022] [Indexed: 06/15/2023]
Abstract
Superoxide dismutases (SODs, EC 1.15.1.1) are ubiquitous antioxidant metalloenzymes important for oxidative stress tolerance and cellular redox environment. Multiple factors have contributed toward the origin and diversity of SOD isoforms among different organisms. In plants, the genome duplication events, responsible for the generation of multiple gene copies/gene families, have also contributed toward the SOD diversity. However, the importance of such molecular events on the characteristics of SODs has not been studied well. This study investigated the effects of divergence on important characteristics of two block-duplicated rice cytosolic CuZn SODs (OsCSD1, OsCSD4), along with in silico assessment of similar events in other plants. The analysis revealed heterogeneity in gene length, regulatory regions, untranslated regions (UTRs), and coding regions of two OsCSDs. An inconsistency in the database-predicted OsCSD1 gene structure was also identified and validated experimentally. Transcript analysis showed differences in the basal levels and stress responsiveness of OsCSD1 and OsCSD4, and indicated the presence of two transcription start sites in the OsCSD1. At the amino acid level, the two OsCSDs showed differences at 18 sites; however, both exist as a homodimer, displaying typical CuZn SOD characteristics, and enhancing the oxidative stress tolerance of Escherichia coli cells. However, OsCSD4 showed higher specific activity as well as stability. The comparison of the two OsCSDs with reported thermostable CSDs from other plants identified regions likely to be associated with stability, while the homology modeling and superposition highlighted structural differences. The two OsCSDs displayed heteromeric interaction capability and forms an enzymatically active heterodimer (OsCSD1:OsCSD4) on co-expression, which may have significance as both are cytosolic. In silico analysis of 74 plant genomes revealed the prevalence of block duplications for multiple CSD copies (mostly cytosolic). The divergence and clustering analysis of CSDs suggested the possibility of an ancestral duplication event in monocots. Conserved SOD features indicating retention of SOD function among CSD duplicates were evident in few monocots and dicots. In most other species, the CSD copies lacked critical features and may not harbor SOD function; however, other feature-associated functions or novel functions might be present. These aspects of divergent CSD copies encoding co-localized CSDs may have implications in plant SOD functions in the cytosol and other organelles.
Collapse
Affiliation(s)
- Ravi Prakash Sanyal
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Vishal Prashar
- Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Narendra Jawali
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India
- Centre for Natural Biological Resources and Community Development, Bengaluru, India
| | - Ramanjulu Sunkar
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, United States
| | - Hari Sharan Misra
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Ajay Saini
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| |
Collapse
|
38
|
Zhang Q, Dai X, Wang H, Wang F, Tang D, Jiang C, Zhang X, Guo W, Lei Y, Ma C, Zhang H, Li P, Zhao Y, Wang Z. Transcriptomic Profiling Provides Molecular Insights Into Hydrogen Peroxide-Enhanced Arabidopsis Growth and Its Salt Tolerance. FRONTIERS IN PLANT SCIENCE 2022; 13:866063. [PMID: 35463436 PMCID: PMC9019583 DOI: 10.3389/fpls.2022.866063] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 02/28/2022] [Indexed: 05/05/2023]
Abstract
Salt stress is an important environmental factor limiting plant growth and crop production. Plant adaptation to salt stress can be improved by chemical pretreatment. This study aims to identify whether hydrogen peroxide (H2O2) pretreatment of seedlings affects the stress tolerance of Arabidopsis thaliana seedlings. The results show that pretreatment with H2O2 at appropriate concentrations enhances the salt tolerance ability of Arabidopsis seedlings, as revealed by lower Na+ levels, greater K+ levels, and improved K+/Na+ ratios in leaves. Furthermore, H2O2 pretreatment improves the membrane properties by reducing the relative membrane permeability (RMP) and malonaldehyde (MDA) content in addition to improving the activities of antioxidant enzymes, including superoxide dismutase, and glutathione peroxidase. Our transcription data show that exogenous H2O2 pretreatment leads to the induced expression of cell cycle, redox regulation, and cell wall organization-related genes in Arabidopsis, which may accelerate cell proliferation, enhance tolerance to osmotic stress, maintain the redox balance, and remodel the cell walls of plants in subsequent high-salt environments.
Collapse
Affiliation(s)
- Qikun Zhang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Xiuru Dai
- State Key Laboratory of Crop Biology, College of Agronomic Sciences, Shandong Agricultural University, Tai’an, China
| | - Huanpeng Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Fanhua Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Dongxue Tang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Chunyun Jiang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, China
- Linyi Center for Disease Control and Prevention, Linyi, China
| | - Xiaoyan Zhang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Wenjing Guo
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Yuanyuan Lei
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Changle Ma
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Hui Zhang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Pinghua Li
- State Key Laboratory of Crop Biology, College of Agronomic Sciences, Shandong Agricultural University, Tai’an, China
| | - Yanxiu Zhao
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Zenglan Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, China
| |
Collapse
|
39
|
Chen H, Lee J, Lee JM, Han M, Emonet A, Lee J, Jia X, Lee Y. MSD2, an apoplastic Mn-SOD, contributes to root skotomorphogenic growth by modulating ROS distribution in Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 317:111192. [PMID: 35193741 DOI: 10.1016/j.plantsci.2022.111192] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/07/2022] [Accepted: 01/17/2022] [Indexed: 05/22/2023]
Abstract
Reactive oxygen species (ROS) play essential roles as a second messenger in various physiological processes in plants. Due to their oxidative nature, ROS can also be harmful. Thus, the generation and homeostasis of ROS are tightly controlled by multiple enzymes. Membrane-localized NADPH oxidases are well known to generate ROS during developmental and stress responses, but the metabolic pathways of the superoxide (O2-) generated by them in the apoplast are poorly understood, and the identity of the apoplastic superoxide dismutase (SOD) is unknown in Arabidopsis. Here, we show that a putative manganese SOD, MSD2 is secreted and possesses a SOD activity that can be inhibited by nitration at tyrosine 68. The expression of MSD2 in roots is light condition-dependent, suggesting that MSD2 may act on ROS metabolism in roots during the light-to-dark transition. Root architecture is governed by ROS distribution that exhibits opposite gradient of H2O2 and O2-, which is indeed altered in etiolated msd2 mutants and accompanied by changes in the onset of differentiation. These results provide a missing link in our understanding of ROS metabolism and suggest that MSD2 plays a role in root skotomorphogenesis by regulating ROS distribution, thereby playing a pivotal role in plant growth and development.
Collapse
Affiliation(s)
- Huize Chen
- Higher Education Key Laboratory of Plant Molecular and Environmental Stress Response in Shanxi Province, Shanxi Normal University, Taiyuan, 030000, Shanxi, PR China; Research Institute of Basic Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jinsu Lee
- Research Institute of Basic Sciences, Seoul National University, Seoul, 08826, Republic of Korea; Research Center for Plant Plasticity, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jung-Min Lee
- School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Minsoo Han
- School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Aurélia Emonet
- Department of Plant Molecular Biology, University of Lausanne, Biophore Building, UNIL-Sorge, 1015, Lausanne, Switzerland
| | - Jiyoun Lee
- Department of New Biology, DGIST, Daegu, 42988, Republic of Korea
| | - Xingtian Jia
- Higher Education Key Laboratory of Plant Molecular and Environmental Stress Response in Shanxi Province, Shanxi Normal University, Taiyuan, 030000, Shanxi, PR China
| | - Yuree Lee
- Research Center for Plant Plasticity, Seoul National University, Seoul, 08826, Republic of Korea; School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea; Plant Genomics and Breeding Institute, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
40
|
Chloroplast Thylakoidal Ascorbate Peroxidase, PtotAPX, Has Enhanced Resistance to Oxidative Stress in Populus tomentosa. Int J Mol Sci 2022; 23:ijms23063340. [PMID: 35328760 PMCID: PMC8953715 DOI: 10.3390/ijms23063340] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 02/04/2023] Open
Abstract
Chloroplasts are the most major producers of reactive oxygen species (ROS) during photosynthesis. However, the function of thylakoid ascorbate peroxidase (tAPX) in response to oxidative stress in wood trees is largely unknown. Our results showed that PtotAPX of Populus tomentosa could effectively utilize ascorbic acid (AsA) to hydrolyze hydrogen peroxide (H2O2) in vitro. The overexpression or antisense of PtotAPX (OX-PtotAPX or anti-PtotAPX, respectively) in Populus tomentosa plants did not significantly affect plant morphology during plant growth. When treated with methyl viologen (MV), the OX-PtotAPX plants exhibited less morphological damage under stress conditions compared to WT plants. OX-PtotAPX plants maintained lower H2O2 levels and malondialdehyde (MDA) contents, but more reduced AsA levels, a higher photosynthetic rate (Pn), and the maximal photochemical efficiency of PSII (Fv/Fm), whereas anti-PtotAPX plants showed the opposite phenotype. Furthermore, the activity of APX was slightly higher in OX-PtotAPX under normal growth conditions, and this activity significantly decreased after stress treatment, which was the lowest in anti-P. Based on these results, we propose that PtotAPX is important for protecting the photosynthetic machinery under severe oxidative stress conditions in P. tomentosa, and is a potential genetic resource for regulating the stress tolerance of woody plants.
Collapse
|
41
|
PAP8/pTAC6 Is Part of a Nuclear Protein Complex and Displays RNA Recognition Motifs of Viral Origin. Int J Mol Sci 2022; 23:ijms23063059. [PMID: 35328480 PMCID: PMC8954402 DOI: 10.3390/ijms23063059] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/09/2022] [Accepted: 03/09/2022] [Indexed: 12/13/2022] Open
Abstract
Chloroplast biogenesis depends on a complex transcriptional program involving coordinated expression of plastid and nuclear genes. In particular, photosynthesis-associated plastid genes are expressed by the plastid-encoded polymerase (PEP) that undergoes a structural rearrangement during chloroplast formation. The prokaryotic-type core enzyme is rebuilt into a larger complex by the addition of nuclear-encoded PEP-associated proteins (PAP1 to PAP12). Among the PAPs, some have been detected in the nucleus (PAP5 and PAP8), where they could serve a nuclear function required for efficient chloroplast biogenesis. Here, we detected PAP8 in a large nuclear subcomplex that may include other subunits of the plastid-encoded RNA polymerase. We have made use of PAP8 recombinant proteins in Arabidopsis thaliana to decouple its nucleus- and chloroplast-associated functions and found hypomorphic mutants pointing at essential amino acids. While the origin of the PAP8 gene remained elusive, we have found in its sequence a micro-homologous domain located within a large structural homology with a rhinoviral RNA-dependent RNA polymerase, highlighting potential RNA recognition motifs in PAP8. PAP8 in vitro RNA binding activity suggests that this domain is functional. Hence, we propose that the acquisition of PAPs may have occurred during evolution by different routes, including lateral gene transfer.
Collapse
|
42
|
Melicher P, Dvořák P, Krasylenko Y, Shapiguzov A, Kangasjärvi J, Šamaj J, Takáč T. Arabidopsis Iron Superoxide Dismutase FSD1 Protects Against Methyl Viologen-Induced Oxidative Stress in a Copper-Dependent Manner. FRONTIERS IN PLANT SCIENCE 2022; 13:823561. [PMID: 35360337 PMCID: PMC8963501 DOI: 10.3389/fpls.2022.823561] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 01/31/2022] [Indexed: 06/14/2023]
Abstract
Iron superoxide dismutase 1 (FSD1) was recently characterized as a plastidial, cytoplasmic, and nuclear enzyme with osmoprotective and antioxidant functions. However, the current knowledge on its role in oxidative stress tolerance is ambiguous. Here, we characterized the role of FSD1 in response to methyl viologen (MV)-induced oxidative stress in Arabidopsis thaliana. In accordance with the known regulation of FSD1 expression, abundance, and activity, the findings demonstrated that the antioxidant function of FSD1 depends on the availability of Cu2+ in growth media. Arabidopsis fsd1 mutants showed lower capacity to decompose superoxide at low Cu2+ concentrations in the medium. Prolonged exposure to MV led to reduced ascorbate levels and higher protein carbonylation in fsd1 mutants and transgenic plants lacking a plastid FSD1 pool as compared to the wild type. MV induced a rapid increase in FSD1 activity, followed by a decrease after 4 h long exposure. Genetic disruption of FSD1 negatively affected the hydrogen peroxide-decomposing ascorbate peroxidase in fsd1 mutants. Chloroplastic localization of FSD1 is crucial to maintain redox homeostasis. Proteomic analysis showed that the sensitivity of fsd1 mutants to MV coincided with decreased abundances of ferredoxin and photosystem II light-harvesting complex proteins. These mutants have higher levels of chloroplastic proteases indicating an altered protein turnover in chloroplasts. Moreover, FSD1 disruption affects the abundance of proteins involved in the defense response. Collectively, the study provides evidence for the conditional antioxidative function of FSD1 and its possible role in signaling.
Collapse
Affiliation(s)
- Pavol Melicher
- Department of Biotechnology, Faculty of Science, Palacký University Olomouc, Olomouc, Czechia
| | - Petr Dvořák
- Department of Biotechnology, Faculty of Science, Palacký University Olomouc, Olomouc, Czechia
| | - Yuliya Krasylenko
- Department of Biotechnology, Faculty of Science, Palacký University Olomouc, Olomouc, Czechia
| | - Alexey Shapiguzov
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
- Production Systems Unit, Natural Resources Institute Finland (Luke), Piikkiö, Finland
- Institute of Plant Physiology, Russian Academy of Sciences, Moscow, Russia
| | - Jaakko Kangasjärvi
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Jozef Šamaj
- Department of Biotechnology, Faculty of Science, Palacký University Olomouc, Olomouc, Czechia
| | - Tomáš Takáč
- Department of Biotechnology, Faculty of Science, Palacký University Olomouc, Olomouc, Czechia
| |
Collapse
|
43
|
Jiang L, Zhang D, Liu C, Shen W, He J, Yue Q, Niu C, Yang F, Li X, Shen X, Hou N, Chen P, Ma F, Guan Q. MdGH3.6 is targeted by MdMYB94 and plays a negative role in apple water-deficit stress tolerance. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:1271-1289. [PMID: 34918398 DOI: 10.1111/tpj.15631] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 12/02/2021] [Accepted: 12/11/2021] [Indexed: 06/14/2023]
Abstract
Drought significantly limits apple fruit production and quality. Decoding the key genes involved in drought stress tolerance is important for breeding varieties with improved drought resistance. Here, we identified GRETCHEN HAGEN3.6 (GH3.6), an indole-3-acetic acid (IAA) conjugating enzyme, to be a negative regulator of water-deficit stress tolerance in apple. Overexpressing MdGH3.6 reduced IAA content, adventitious root number, root length and water-deficit stress tolerance, whereas knocking down MdGH3.6 and its close paralogs increased IAA content, adventitious root number, root length and water-deficit stress tolerance. Moreover, MdGH3.6 negatively regulated the expression of wax biosynthetic genes under water-deficit stress and thus negatively regulated cuticular wax content. Additionally, MdGH3.6 negatively regulated reactive oxygen species scavengers, including antioxidant enzymes and metabolites involved in the phenylpropanoid and flavonoid pathway in response to water-deficit stress. Further study revealed that the homolog of transcription factor AtMYB94, rather than AtMYB96, could bind to the MdGH3.6 promoter and negatively regulated its expression under water-deficit stress conditions in apple. Overall, our results identify a candidate gene for the improvement of drought resistance in fruit trees.
Collapse
Affiliation(s)
- Lijuan Jiang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Dehui Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chen Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Wenyun Shen
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jieqiang He
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Qianyu Yue
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chundong Niu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Feng Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xuewei Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiaoxia Shen
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Nan Hou
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Pengxiang Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Qingmei Guan
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
44
|
Reactive Oxygen Species, Antioxidant Responses and Implications from a Microbial Modulation Perspective. BIOLOGY 2022; 11:biology11020155. [PMID: 35205022 PMCID: PMC8869449 DOI: 10.3390/biology11020155] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 12/17/2022]
Abstract
Simple Summary Environmental conditions are subject to unprecedented changes due to recent progressive anthropogenic activities on our planet. Plants, as the frontline of food security, are susceptible to these changes, resulting in the generation of unavoidable byproducts of metabolism (ROS), which eventually affect their productivity. The response of plants to these unfavorable conditions is highly intricate and depends on several factors, among them are the species/genotype tolerance level, intensity, and duration of stress factors. Defensive mechanisms in plant systems, by nature, are concerned primarily with generating enzymatic and non-enzymatic antioxidants. In addition to this, plant-microbe interactions have been found to improve immune systems in plants suffering from drought and salinity stress. Abstract Plants are exposed to various environmental stresses in their lifespan that threaten their survival. Reactive oxygen species (ROS), the byproducts of aerobic metabolism, are essential signalling molecules in regulating multiple plant developmental processes as well as in reinforcing plant tolerance to biotic and abiotic stimuli. However, intensified environmental challenges such as salinity, drought, UV irradiation, and heavy metals usually interfere with natural ROS metabolism and homeostasis, thus aggravating ROS generation excessively and ultimately resulting in oxidative stress. Cellular damage is confined to the degradation of biomolecular structures, including carbohydrates, proteins, lipids, pigments, and DNA. The nature of the double-edged function of ROS as a secondary messenger or harmful oxidant has been attributed to the degree of existing balance between cellular ROS production and ROS removal machinery. The activities of enzyme-based antioxidants, catalase (CAT, EC 1.11.1.6), monodehydroascorbate reductase (MDHAR, E.C.1.6.5.4), dehydroascorbate reductase (DHAR, EC 1.8.5.1), superoxide dismutase (SOD, EC 1.15.1.1), ascorbate peroxidase (APX, EC 1.11.1.11), glutathione reductase (GR, EC 1.6.4.2), and guaiacol peroxidase (GPX, EC 1.11.1.7); and non-enzyme based antioxidant molecules, ascorbate (AA), glutathione (GSH), carotenoids, α-tocopherol, prolines, flavonoids, and phenolics, are indeed parts of the defensive strategies developed by plants to scavenge excess ROS and to maintain cellular redox homeostasis during oxidative stress. This review briefly summarises current knowledge on enzymatic and non-enzymatic antioxidant machinery in plants. Moreover, additional information about the beneficial impact of the microbiome on countering abiotic/biotic stresses in association with roots and plant tissues has also been provided.
Collapse
|
45
|
González-Teuber M, Contreras RA, Zúñiga GE, Barrera D, Bascuñán-Godoy L. Synergistic Association With Root Endophytic Fungi Improves Morpho-Physiological and Biochemical Responses of Chenopodium quinoa to Salt Stress. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2021.787318] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Symbiotic associations with microbes can contribute to mitigating abiotic environmental stress in plants. In this study, we investigated individual and interactive effects of two root endophytic fungal species on physiological and biochemical mechanisms of the crop Chenopodium quinoa in response to salinity. Fungal endophytes (FE) Talaromyces minioluteus and Penicillium murcianum, isolated from quinoa plants that occur naturally in the Atacama Desert, were used for endophyte inoculation. A greenhouse experiment was developed using four plant groups: (1) plants inoculated with T. minioluteus (E1+), (2) plants inoculated with P. murcianum (E2+), (3) plants inoculated with both fungal species (E1E2+), and (4) non-inoculated plants (E-). Plants from each group were then assigned to either salt (300 mM) or control (no salt) treatments. Differences in morphological traits, photosynthesis, stomatal conductance, transpiration, superoxide dismutase (SOD), ascorbate peroxidase (APX), peroxidase, (POD), phenylalanine ammonia-lyase (PAL), phenolic content, and lipid peroxidation between plant groups under each treatment were examined. We found that both endophyte species significantly improved morphological and physiological traits, including plant height, number of shoots, photosynthesis, stomatal conductance, and transpiration, in C. quinoa in response to salt, but optimal physiological responses were observed in E1E2+ plants. Under saline conditions, endophyte inoculation improved SOD, APX, and POD activity by over 50%, and phenolic content by approximately 30%, with optimal enzymatic responses again observed in E1E2+ plants. Lipid peroxidation was significantly lower in inoculated plants than in non-inoculated plants. Results demonstrate that both endophyte species enhanced the ability of C. quinoa to cope with salt stress by improving antioxidative enzyme and non-enzyme systems. In general, both FE species interacting in tandem yielded better morphological, physiological, and biochemical responses to salinity in quinoa than inoculation by a single species in isolation. Our study highlights the importance of stress-adapted FE as a biological agent for mitigating abiotic stress in crop plants.
Collapse
|
46
|
Yang C, Yan W, Chang H, Sun C. Arabidopsis CIA2 and CIL have distinct and overlapping functions in regulating chloroplast and flower development. PLANT DIRECT 2022; 6:e380. [PMID: 35106435 PMCID: PMC8786619 DOI: 10.1002/pld3.380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/14/2021] [Accepted: 12/26/2021] [Indexed: 05/05/2023]
Abstract
Arabidopsis CHLOROPLAST IMPORT APPARATUS 2 (CIA2) and its paralogous protein CIA2-LIKE (CIL) are nuclear transcription factors containing a C-terminal CCT motif. CIA2 promotes the expression of nuclear genes encoding chloroplast-localized translocons and ribosomal proteins, thereby increasing the efficiency of protein import and synthesis in chloroplasts. We have previously reported that CIA2 and CIL form a homodimer or heterodimer through their C-terminal sequences and interact with other nuclear proteins, such as CONSTANS (CO), via their N-terminal sequences, but the function of CIL had remained unclear. In this study, we verified through transgenic cia2 mutant plants expressing the CIL coding sequence that CIL is partially functionally redundant to CIA2 during vegetative growth. We also compared phenotypes and gene expression profiles of wildtype Col-0, cia2, cil, and cia2/cil mutants. Our results indicate that CIA2 and CIL coordinate chloroplast biogenesis and function mainly by upregulating the expression of the nuclear factor GOLDEN2-LIKE 1 (GLK1) and chloroplast transcription-, translation-, protein import-, and photosynthesis-related genes, with CIA2 playing a more crucial role. Furthermore, we compared flowering phenotypes in single, double, and triple mutant plants of co, cia2, and cil. We found that CIA2 and CIL participate in modulating long-day floral development. Notably, CIA2 increases flower number and height of the inflorescence main axis, whereas CIL promotes flowering.
Collapse
Affiliation(s)
- Chun‐Yen Yang
- Department of Life SciencesNational Taiwan Normal UniversityTaipeiTaiwan
| | - Wen‐You Yan
- Department of Life SciencesNational Taiwan Normal UniversityTaipeiTaiwan
| | - Hsin‐Yen Chang
- Department of Life SciencesNational Taiwan Normal UniversityTaipeiTaiwan
| | - Chih‐Wen Sun
- Department of Life SciencesNational Taiwan Normal UniversityTaipeiTaiwan
| |
Collapse
|
47
|
Zhang Z, Wang J, Xing G, Li M, Li S. Integrating physiology, genetics, and transcriptome to decipher a new thermo-sensitive and light-sensitive virescent leaf gene mutant in cucumber. FRONTIERS IN PLANT SCIENCE 2022; 13:972620. [PMID: 36051299 PMCID: PMC9424728 DOI: 10.3389/fpls.2022.972620] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 07/25/2022] [Indexed: 05/08/2023]
Abstract
Chloroplasts are the material basis of photosynthesis, and temperature and light severely affect chloroplast development and thus influence photosynthetic efficiency. This study identified a spontaneous virescent leaf mutant, SC311Y, whose cotyledons and true leaves were yellow and gradually turned green. However, temperature and light affected the process of turning green. In addition, this mutant (except at the seedling stage) had ruffled leaves with white stripes, sterile males, and poorly fertile female flowers. Genetic characteristics analysis revealed that the recessive gene controlled the virescent leaf. Two F2 populations mapped v-3 to the interval of 33.54-35.66 Mb on chromosome 3. In this interval, BSA-Seq, RNA-Seq, and cDNA sequence analyses revealed only one nonsynonymous mutation in the Csa3G042730 gene, which encoded the RNA exosome supercomplex subunit resurrection1 (RST1). Csa3G042730 was predicted to be the candidate gene controlling the virescent leaf, and the candidate gene may regulate chloroplast development by regulating plastid division2 (PDV2). A transcriptome analysis showed that different factors caused the reduced chlorophyll and carotenoid content in the mutants. To our knowledge, this study is the first report of map-based cloning related to virescent leaf, male-sterile, and chloroplast RNA regulation in cucumber. The results could accelerate the study of the RNA exosome supercomplex for the dynamic regulation of chloroplast RNA.
Collapse
Affiliation(s)
- Zhipeng Zhang
- College of Horticulture, Shanxi Agricultural University, Jinzhong, China
- Collaborative Innovation Center for Improving Quality and Increase of Protected Vegetables in Shanxi Province, Jinzhong, China
| | - Jinyao Wang
- College of Horticulture, Shanxi Agricultural University, Jinzhong, China
- Collaborative Innovation Center for Improving Quality and Increase of Protected Vegetables in Shanxi Province, Jinzhong, China
| | - Guoming Xing
- College of Horticulture, Shanxi Agricultural University, Jinzhong, China
- Collaborative Innovation Center for Improving Quality and Increase of Protected Vegetables in Shanxi Province, Jinzhong, China
| | - Meilan Li
- College of Horticulture, Shanxi Agricultural University, Jinzhong, China
- Collaborative Innovation Center for Improving Quality and Increase of Protected Vegetables in Shanxi Province, Jinzhong, China
- *Correspondence: Meilan Li,
| | - Sen Li
- College of Horticulture, Shanxi Agricultural University, Jinzhong, China
- Collaborative Innovation Center for Improving Quality and Increase of Protected Vegetables in Shanxi Province, Jinzhong, China
- Sen Li,
| |
Collapse
|
48
|
Bhuria M, Goel P, Kumar S, Singh AK. AtUSP17 negatively regulates salt stress tolerance through modulation of multiple signaling pathways in Arabidopsis. PHYSIOLOGIA PLANTARUM 2022; 174:e13635. [PMID: 35080785 DOI: 10.1111/ppl.13635] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/23/2021] [Accepted: 01/20/2022] [Indexed: 06/14/2023]
Abstract
AtUSP17 is a multiple stress-inducible gene that encodes a universal stress protein (USP) in Arabidopsis thaliana. In the present study, we functionally characterized AtUSP17 using its knock-down mutant, Atusp17, and AtUSP17-overexpression lines (WTOE). The overexpression of AtUSP17 in wild-type and Atusp17 mutant Arabidopsis plants resulted in higher sensitivity to salt stress during seed germination than WT and Atusp17 mutant lines. In addition, the WTOE and FC lines exhibited higher abscisic acid (ABA) sensitivity than Atusp17 mutant during germination. The exogenous application of ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) was able to rescue the salt hypersensitive phenotype of WTOE lines. In contrast, AgNO3 , an ethylene action inhibitor, further blocked the effect of ACC during germination. The addition of ACC under salt stress resulted in reduced reactive oxygen species (ROS) accumulation, expression of ABA-responsive genes, improved proline synthesis, increased expression of positive regulators of ethylene signaling and antioxidant defense genes with enhanced antioxidant enzyme activities. The WTOE lines exhibited salt sensitivity even at the adult plant stage, while Atusp17 mutant exhibited higher salt tolerance with higher chlorophyll, relative water content and lower electrolyte leakage as compared with WT. The BAR interaction viewer database and available literature mining identified AtUSP17-interacting proteins, which include RGS1, RACK1C and PRN1 involved in G-protein signaling, which play a crucial role in salt stress responses. Based on the present study and available literature, we proposed a model in which AtUSP17 negatively mediates salt tolerance in Arabidopsis through modulation of ethylene, ABA, ROS, and G-protein signaling and responses.
Collapse
Affiliation(s)
- Monika Bhuria
- Department of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
- Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Parul Goel
- Department of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
- Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Sanjay Kumar
- Department of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
- Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Anil Kumar Singh
- Department of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
- Academy of Scientific and Innovative Research, Ghaziabad, India
- ICAR-National Institute for Plant Biotechnology, New Delhi, India
| |
Collapse
|
49
|
Yang Z, Liu M, Ding S, Zhang Y, Yang H, Wen X, Chi W, Lu C, Lu Q. Plastid Deficient 1 Is Essential for the Accumulation of Plastid-Encoded RNA Polymerase Core Subunit β and Chloroplast Development in Arabidopsis. Int J Mol Sci 2021; 22:ijms222413648. [PMID: 34948448 PMCID: PMC8705867 DOI: 10.3390/ijms222413648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/13/2021] [Accepted: 12/16/2021] [Indexed: 12/05/2022] Open
Abstract
Plastid-encoded RNA polymerase (PEP)-dependent transcription is an essential process for chloroplast development and plant growth. It is a complex event that is regulated by numerous nuclear-encoded proteins. In order to elucidate the complex regulation mechanism of PEP activity, identification and characterization of PEP activity regulation factors are needed. Here, we characterize Plastid Deficient 1 (PD1) as a novel regulator for PEP-dependent gene expression and chloroplast development in Arabidopsis. The PD1 gene encodes a protein that is conserved in photoautotrophic organisms. The Arabidopsis pd1 mutant showed albino and seedling-lethal phenotypes. The plastid development in the pd1 mutant was arrested. The PD1 protein localized in the chloroplasts, and it colocalized with nucleoid protein TRXz. RT-quantitative real-time PCR, northern blot, and run-on analyses indicated that the PEP-dependent transcription in the pd1 mutant was dramatically impaired, whereas the nuclear-encoded RNA polymerase-dependent transcription was up-regulated. The yeast two-hybrid assays and coimmunoprecipitation experiments showed that the PD1 protein interacts with PEP core subunit β (PEP-β), which has been verified to be essential for chloroplast development. The immunoblot analysis indicated that the accumulation of PEP-β was barely detected in the pd1 mutant, whereas the accumulation of the other essential components of the PEP complex, such as core subunits α and β′, were not affected in the pd1 mutant. These observations suggested that the PD1 protein is essential for the accumulation of PEP-β and chloroplast development in Arabidopsis, potentially by direct interaction with PEP-β.
Collapse
Affiliation(s)
- Zhipan Yang
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; (Z.Y.); (M.L.); (S.D.); (H.Y.); (X.W.); (W.C.)
| | - Mingxin Liu
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; (Z.Y.); (M.L.); (S.D.); (H.Y.); (X.W.); (W.C.)
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shunhua Ding
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; (Z.Y.); (M.L.); (S.D.); (H.Y.); (X.W.); (W.C.)
| | - Yi Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian 271018, China;
| | - Huixia Yang
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; (Z.Y.); (M.L.); (S.D.); (H.Y.); (X.W.); (W.C.)
| | - Xiaogang Wen
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; (Z.Y.); (M.L.); (S.D.); (H.Y.); (X.W.); (W.C.)
| | - Wei Chi
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; (Z.Y.); (M.L.); (S.D.); (H.Y.); (X.W.); (W.C.)
| | - Congming Lu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian 271018, China;
- Correspondence: (C.L.); (Q.L.)
| | - Qingtao Lu
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; (Z.Y.); (M.L.); (S.D.); (H.Y.); (X.W.); (W.C.)
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: (C.L.); (Q.L.)
| |
Collapse
|
50
|
Identification of a Novel Mutation Exacerbated the PSI Photoinhibition in pgr5/ pgrl1 Mutants; Caution for Overestimation of the Phenotypes in Arabidopsis pgr5-1 Mutant. Cells 2021; 10:cells10112884. [PMID: 34831107 PMCID: PMC8616342 DOI: 10.3390/cells10112884] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/20/2021] [Accepted: 10/22/2021] [Indexed: 12/12/2022] Open
Abstract
PSI photoinhibition is usually avoided through P700 oxidation. Without this protective mechanism, excess light represents a potentially lethal threat to plants. PGR5 is suggested to be a major component of cyclic electron transport around PSI and is important for P700 oxidation in angiosperms. The known Arabidopsis PGR5 deficient mutant, pgr5-1, is incapable of P700 oxidation regulation and has been used in numerous photosynthetic studies. However, here it was revealed that pgr5-1 was a double mutant with exaggerated PSI photoinhibition. pgr5-1 significantly reduced growth compared to the newly isolated PGR5 deficient mutant, pgr5hope1. The introduction of PGR5 into pgr5-1 restored P700 oxidation regulation, but remained a pale-green phenotype, indicating that pgr5-1 had additional mutations. Both pgr5-1 and pgr5hope1 tended to cause PSI photoinhibition by excess light, but pgr5-1 exhibited an enhanced reduction in PSI activity. Introducing AT2G17240, a candidate gene for the second mutation into pgr5-1 restored the pale-green phenotype and partially restored PSI activity. Furthermore, a deficient mutant of PGRL1 complexing with PGR5 significantly reduced PSI activity in the double-deficient mutant with AT2G17240. From these results, we concluded that AT2G17240, named PSI photoprotection 1 (PTP1), played a role in PSI photoprotection, especially in PGR5/PGRL1 deficient mutants.
Collapse
|