1
|
Nicolas Mala KL, Skalak J, Zemlyanskaya E, Dolgikh V, Jedlickova V, Robert HS, Havlickova L, Panzarova K, Trtilek M, Bancroft I, Hejatko J. Primary multistep phosphorelay activation comprises both cytokinin and abiotic stress responses: insights from comparative analysis of Brassica type-A response regulators. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:6346-6368. [PMID: 39171371 PMCID: PMC11523033 DOI: 10.1093/jxb/erae335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/21/2024] [Indexed: 08/23/2024]
Abstract
Multistep phosphorelay (MSP) signaling integrates hormonal and environmental signals to control both plant development and adaptive responses. Type-A RESPONSE REGULATOR (RRA) genes, the downstream members of the MSP cascade and cytokinin primary response genes, are thought to mediate primarily the negative feedback regulation of (cytokinin-induced) MSP signaling. However, transcriptional data also suggest the involvement of RRA genes in stress-related responses. By employing evolutionary conservation with the well-characterized Arabidopsis thaliana RRA genes, we identified five and 38 novel putative RRA genes in Brassica oleracea and Brassica napus, respectively. Our phylogenetic analysis suggests the existence of gene-specific selective pressure, maintaining the homologs of ARR3, ARR6, and ARR16 as singletons during the evolution of Brassicaceae. We categorized RRA genes based on the kinetics of their cytokinin-mediated up-regulation and observed both similarities and specificities in this type of response across Brassicaceae species. Using bioinformatic analysis and experimental data demonstrating the cytokinin and abiotic stress responsiveness of the A. thaliana-derived TCSv2 reporter, we unveil the mechanistic conservation of cytokinin- and stress-mediated up-regulation of RRA genes in B. rapa and B. napus. Notably, we identify partial cytokinin dependency of cold stress-induced RRA transcription, thus further demonstrating the role of cytokinin signaling in crop adaptive responses.
Collapse
Affiliation(s)
- Katrina Leslie Nicolas Mala
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5/A2, 625 00 Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5/A2, 625 00 Brno, Czech Republic
| | - Jan Skalak
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5/A2, 625 00 Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5/A2, 625 00 Brno, Czech Republic
| | - Elena Zemlyanskaya
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, 630090, Russia
- Faculty of Natural Sciences, Novosibirsk State University, Novosibirsk, 630090, Russia
| | - Vladislav Dolgikh
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, 630090, Russia
- Faculty of Natural Sciences, Novosibirsk State University, Novosibirsk, 630090, Russia
| | - Veronika Jedlickova
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5/A2, 625 00 Brno, Czech Republic
| | - Helene S Robert
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5/A2, 625 00 Brno, Czech Republic
| | | | - Klara Panzarova
- PSI (Photon Systems Instruments), Ltd, Drásov, 66424 Drásov, Czech Republic
| | - Martin Trtilek
- PSI (Photon Systems Instruments), Ltd, Drásov, 66424 Drásov, Czech Republic
| | - Ian Bancroft
- Department of Biology, University of York, York, UK
| | - Jan Hejatko
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5/A2, 625 00 Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5/A2, 625 00 Brno, Czech Republic
| |
Collapse
|
2
|
Wu B, Sun M, Zhong T, Zhang J, Lei T, Yan Y, Chen X, Nan R, Sun F, Zhang C, Xi Y. Genome-wide identification and expression analysis of two-component system genes in switchgrass (Panicum virgatum L.). BMC PLANT BIOLOGY 2024; 24:1014. [PMID: 39465364 PMCID: PMC11520087 DOI: 10.1186/s12870-024-05687-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 10/09/2024] [Indexed: 10/29/2024]
Abstract
The two-component system (TCS) consists of histidine kinase (HK), histidine phosphate transfer protein (HP), and response regulatory factor (RR). It is one of the most crucial components of signal transduction in plants, playing a significant role in regulating plant growth, development, and responses to various abiotic stresses. Although TCS genes have been extensively identified in a variety of plants, the genome-wide recognition and examination of TCS in switchgrass remain unreported. Accordingly, this study identified a total of 87 TCS members in the genome of switchgrass, comprising 20 HK(L)s, 10 HPs, and 57 RRs. Detailed analyses were also conducted on their gene structures, conserved domains, and phylogenetic relationships. Moreover, this study analysed the gene expression profiles across diverse organs and investigated their response patterns to adverse environmental stresses. Results revealed that 87 TCS genes were distributed across 18 chromosomes, with uneven distribution. Expansion of these genes in switchgrass was achieved through both fragment and tandem duplication. PvTCS members are relatively conservative in the evolutionary process, but the gene structure varies significantly. Various cis-acting elements, varying in types and amounts, are present in the promoter region of PvTCSs, all related to plant growth, development, and abiotic stress, due to the TCS gene structure. Protein-protein interaction and microRNA prediction suggest complex interactions and transcriptional regulation among TCS members. Additionally, most TCS members are expressed in roots and stems, with some genes showing organ-specific expression at different stages of leaf and inflorescence development. Under conditions of abiotic stress such as drought, low temperature, high temperature, and salt stress, as well as exogenous abscisic acid (ABA), the expression of most TCS genes is either stimulated or inhibited. Our systematic analysis could offer insight into the characterization of the TCS genes, and further the growth of functional studies in switchgrass.
Collapse
Affiliation(s)
- Baolin Wu
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, Shaanxi, 712100, China
| | - Mengyu Sun
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, Shaanxi, 712100, China
| | - Tao Zhong
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, Shaanxi, 712100, China
| | - Jiawei Zhang
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, Shaanxi, 712100, China
| | - Tingshu Lei
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, Shaanxi, 712100, China
| | - Yuming Yan
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, Shaanxi, 712100, China
| | - Xiaohong Chen
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, Shaanxi, 712100, China
| | - Rui Nan
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, Shaanxi, 712100, China
| | - Fengli Sun
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, Shaanxi, 712100, China
| | - Chao Zhang
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, Shaanxi, 712100, China
| | - Yajun Xi
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China.
- State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
3
|
Argueso CT, Kieber JJ. Cytokinin: From autoclaved DNA to two-component signaling. THE PLANT CELL 2024; 36:1429-1450. [PMID: 38163638 PMCID: PMC11062471 DOI: 10.1093/plcell/koad327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/25/2023] [Accepted: 11/03/2023] [Indexed: 01/03/2024]
Abstract
Since its first identification in the 1950s as a regulator of cell division, cytokinin has been linked to many physiological processes in plants, spanning growth and development and various responses to the environment. Studies from the last two and one-half decades have revealed the pathways underlying the biosynthesis and metabolism of cytokinin and have elucidated the mechanisms of its perception and signaling, which reflects an ancient signaling system evolved from two-component elements in bacteria. Mutants in the genes encoding elements involved in these processes have helped refine our understanding of cytokinin functions in plants. Further, recent advances have provided insight into the mechanisms of intracellular and long-distance cytokinin transport and the identification of several proteins that operate downstream of cytokinin signaling. Here, we review these processes through a historical lens, providing an overview of cytokinin metabolism, transport, signaling, and functions in higher plants.
Collapse
Affiliation(s)
- Cristiana T Argueso
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Joseph J Kieber
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
4
|
Xufeng X, Yuanfeng H, Ming Z, Shucheng S, Haonan Z, Weifeng Z, Fei G, Caijun W, Shuying F. Transcriptome profiling reveals the genes involved in tuberous root expansion in Pueraria (Pueraria montana var. thomsonii). BMC PLANT BIOLOGY 2023; 23:338. [PMID: 37365513 DOI: 10.1186/s12870-023-04303-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 05/20/2023] [Indexed: 06/28/2023]
Abstract
BACKGROUND Pueraria is a dry root commonly used in Traditional Chinese Medicine or as food and fodder, and tuberous root expansion is an important agronomic characteristic that influences its yield. However, no specific genes regulating tuberous root expansion in Pueraria have been identified. Therefore, we aimed to explore the expansion mechanism of Pueraria at six developmental stages (P1-P6), by profiling the tuberous roots of an annual local variety "Gange No.1" harvested at 105, 135, 165, 195, 225, and 255 days after transplanting. RESULTS Observations of the tuberous root phenotype and cell microstructural morphology revealed that the P3 stage was a critical boundary point in the expansion process, which was preceded by a thickening diameter and yield gain rapidly of the tuberous roots, and followed by longitudinal elongation at both ends. A total of 17,441 differentially expressed genes (DEGs) were identified by comparing the P1 stage (unexpanded) against the P2-P6 stages (expanded) using transcriptome sequencing; 386 differential genes were shared across the six developmental stages. KEGG pathway enrichment analysis showed that the DEGs shared by P1 and P2-P6 stages were mainly involved in pathways related to the "cell wall and cell cycle", "plant hormone signal transduction", "sucrose and starch metabolism", and "transcription factor (TF)". The finding is consistent with the physiological data collected on changes in sugar, starch, and hormone contents. In addition, TFs including bHLHs, AP2s, ERFs, MYBs, WRKYs, and bZIPs were involved in cell differentiation, division, and expansion, which may relate to tuberous root expansion. The combination of KEGG and trend analyses revealed six essential candidate genes involved in tuberous root expansion; of them, CDC48, ARF, and EXP genes were significantly upregulated during tuberous root expansion while INV, EXT, and XTH genes were significantly downregulated. CONCLUSION Our findings provide new insights into the complex mechanisms of tuberous root expansion in Pueraria and candidate target genes, which can aid in increasing Pueraria yield.
Collapse
Affiliation(s)
- Xiao Xufeng
- College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Hu Yuanfeng
- College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Zhang Ming
- Department of Biological Engineering, Jiangxi Biotech Vocational College, Nanchang, 330200, China
| | - Si Shucheng
- College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Zhou Haonan
- College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Zhu Weifeng
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Ge Fei
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Wu Caijun
- College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Fan Shuying
- College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China.
| |
Collapse
|
5
|
Maki T, Kusaka H, Matsumoto Y, Yamazaki A, Yamaoka S, Ohno S, Doi M, Tanaka Y. The mutation of CaCKI1 causes seedless fruits in chili pepper (Capsicum annuum). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:85. [PMID: 36964815 DOI: 10.1007/s00122-023-04342-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 03/08/2023] [Indexed: 06/18/2023]
Abstract
The seedless mutant tn-1 in chili pepper is caused by a mutation in CaCKI1 (CA12g21620), which encodes histidine kinase involving female gametophyte development. An amino acid insertion in the receiver domain of CaCKI1 may be the mutation responsible for tn-1. Seedlessness is a desirable trait in fruit crops because the removal of seeds is a troublesome step for consumers and processing industries. However, little knowledge is available to develop seedless chili peppers. In a previous study, a chili pepper mutant tn-1, which stably produces seedless fruits, was isolated. In this study, we report characterization of tn-1 and identification of the causative gene. Although pollen germination was normal, confocal laser microscopy observations revealed deficiency in embryo sac development in tn-1. By marker analysis, the tn-1 locus was narrowed down to a 313 kb region on chromosome 12. Further analysis combined with mapping-by-sequencing identified CA12g21620, which encodes histidine kinase as a candidate gene. Phylogenetic analysis revealed CA12g21620 was the homolog of Arabidopsis CKI1 (Cytokinin Independent 1), which plays an important role in female gametophyte development, and CA12g21620 was designated as CaCKI1. Sequence analysis revealed that tn-1 has a 3-bp insertion in the 6th exon resulting in one lysine (K) residue insertion in receiver domain of CaCKI1, and the sequence nearby the insertion is widely conserved among CKI1 orthologs in various plants. This suggested that one K residue insertion may reduce the phosphorylation relay downstream of CaCKI1 and impair normal development of female gametophyte, resulting in seedless fruits production in tn-1. Furthermore, we demonstrated that virus-induced gene silencing of CaCKI1 reduced normally developed female gametophyte in chili pepper. This study describes the significant role of CaCKI1 in seed development in chili pepper and the possibility of developing seedless cultivars using its mutation.
Collapse
Affiliation(s)
- Takahiro Maki
- Graduate School of Agriculture, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-Ku, Kyoto, 606-8502, Japan
| | - Hirokazu Kusaka
- Graduate School of Agriculture, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-Ku, Kyoto, 606-8502, Japan
| | - Yuki Matsumoto
- Graduate School of Agriculture, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-Ku, Kyoto, 606-8502, Japan
| | - Akira Yamazaki
- Graduate School of Agriculture, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-Ku, Kyoto, 606-8502, Japan
- Faculty of Agriculture, Kindai University, Naka Machi, Nara, 631-8505, Japan
| | - Shohei Yamaoka
- Graduate School of Biostudies, Kyoto University, Sakyo-Ku, Kyoto, 606-8501, Japan
| | - Sho Ohno
- Graduate School of Agriculture, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-Ku, Kyoto, 606-8502, Japan
| | - Motoaki Doi
- Graduate School of Agriculture, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-Ku, Kyoto, 606-8502, Japan
| | - Yoshiyuki Tanaka
- Graduate School of Agriculture, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-Ku, Kyoto, 606-8502, Japan.
| |
Collapse
|
6
|
Huo R, Zhao Y, Liu T, Xu M, Wang X, Xu P, Dai S, Cui X, Han Y, Liu Z, Li Z. Genome-wide identification and expression analysis of two-component system genes in sweet potato ( Ipomoea batatas L.). FRONTIERS IN PLANT SCIENCE 2023; 13:1091620. [PMID: 36714734 PMCID: PMC9878860 DOI: 10.3389/fpls.2022.1091620] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/28/2022] [Indexed: 06/18/2023]
Abstract
Two-component system (TCS), which comprises histidine kinases (HKs), histidine phosphotransfer proteins (HPs), and response regulators (RRs), plays essential roles in regulating plant growth, development, and response to various environmental stimuli. TCS genes have been comprehensively identified in various plants, while studies on the genome-wide identification and analysis of TCS in sweet potato were still not reported. Therefore, in this study, a total of 90 TCS members consisting of 20 HK(L)s, 11 HPs, and 59 RRs were identified in the genome of Ipomoea batatas. Furthermore, their gene structures, conserved domains, and phylogenetic relationships were analyzed in detail. Additionally, the gene expression profiles in various organs were analyzed, and response patterns to adverse environmental stresses were investigated. The results showed that these 90 TCS genes were mapped on 15 chromosomes with a notably uneven distribution, and the expansion of TCS genes in sweet potato was attributed to both segmental and tandem duplications. The majority of the TCS genes showed distinct organ-specific expression profiles, especially in three types of roots (stem roots, fibrous roots, tuberous roots). Moreover, most of the TCS genes were either induced or suppressed upon treatment with abiotic stresses (drought, salinity, cold, heat) and exogenous phytohormone abscisic acid (ABA). In addition, the yeast-two hybrid system was used to reveal the HK-HP-RR protein-protein interactions. IbHP1, IbHP2, IbHP4, and IbHP5 could interact with three HKs (IbHK1a, IbHK1b, and IbHK5), and also interact with majority of the type-B RRs (IbRR20-IbRR28), while no interaction affinity was detected for IbHP3. Our systematic analyses could provide insights into the characterization of the TCS genes, and further the development of functional studies in sweet potato.
Collapse
Affiliation(s)
- Ruxue Huo
- Jiangsu Key Laboratory of Phylogeny and Comparative Genomics, School of Life Sciences, Institute of Integrative Plant Biology, Jiangsu Normal University, Xuzhou, China
- College of Agriculture and Forestry Science, Linyi University, Linyi, China
| | - Yanshu Zhao
- College of Agriculture and Forestry Science, Linyi University, Linyi, China
| | - Tianxu Liu
- College of Agriculture and Forestry Science, Linyi University, Linyi, China
| | - Meng Xu
- College of Agriculture and Forestry Science, Linyi University, Linyi, China
| | - Xiaohua Wang
- College of Agriculture and Forestry Science, Linyi University, Linyi, China
| | - Ping Xu
- College of Agriculture and Forestry Science, Linyi University, Linyi, China
| | - Shengjie Dai
- College of Agriculture and Forestry Science, Linyi University, Linyi, China
| | - Xiaoyu Cui
- College of Agriculture and Forestry Science, Linyi University, Linyi, China
| | - Yonghua Han
- Jiangsu Key Laboratory of Phylogeny and Comparative Genomics, School of Life Sciences, Institute of Integrative Plant Biology, Jiangsu Normal University, Xuzhou, China
| | - Zhenning Liu
- College of Agriculture and Forestry Science, Linyi University, Linyi, China
| | - Zongyun Li
- Jiangsu Key Laboratory of Phylogeny and Comparative Genomics, School of Life Sciences, Institute of Integrative Plant Biology, Jiangsu Normal University, Xuzhou, China
| |
Collapse
|
7
|
Xu C, Wu F, Guo J, Hou S, Wu X, Xin Y. Transcriptomic analysis and physiological characteristics of exogenous naphthylacetic acid application to regulate the healing process of oriental melon grafted onto squash. PeerJ 2022; 10:e13980. [PMID: 36128197 PMCID: PMC9482769 DOI: 10.7717/peerj.13980] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/10/2022] [Indexed: 01/19/2023] Open
Abstract
The plant graft healing process is an intricate development influenced by numerous endogenous and environmental factors. This process involves the histological changes, physiological and biochemical reactions, signal transduction, and hormone exchanges in the grafting junction. Studies have shown that applying exogenous plant growth regulators can effectively promote the graft healing process and improve the quality of grafted plantlets. However, the physiological and molecular mechanism of graft healing formation remains unclear. In our present study, transcriptome changes in the melon and cucurbita genomes were analyzed between control and NAA treatment, and we provided the first view of complex networks to regulate graft healing under exogenous NAA application. The results showed that the exogenous NAA application could accelerate the graft healing process of oriental melon scion grafted onto squash rootstock through histological observation, increase the SOD, POD, PAL, and PPO activities during graft union development and enhance the contents of IAA, GA3, and ZR except for the IL stage. The DEGs were identified in the plant hormone signal-transduction, phenylpropanoid biosynthesis, and phenylalanine metabolism through transcriptome analysis of CK vs. NAA at the IL, CA, and VB stage by KEGG pathway enrichment analysis. Moreover, the exogenous NAA application significantly promoted the expression of genes involved in the hormone signal-transduction pathway, ROS scavenging system, and vascular bundle formation.
Collapse
Affiliation(s)
- Chuanqiang Xu
- National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), Shenyang, China,Key Laboratory of Protected Horticulture (Shenyang Agricultural University) Ministry of Education, Shenyang, China,College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Fang Wu
- National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), Shenyang, China,Key Laboratory of Protected Horticulture (Shenyang Agricultural University) Ministry of Education, Shenyang, China,College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Jieying Guo
- National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), Shenyang, China,Key Laboratory of Protected Horticulture (Shenyang Agricultural University) Ministry of Education, Shenyang, China,College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Shuan Hou
- National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), Shenyang, China,Key Laboratory of Protected Horticulture (Shenyang Agricultural University) Ministry of Education, Shenyang, China,College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Xiaofang Wu
- National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), Shenyang, China,Key Laboratory of Protected Horticulture (Shenyang Agricultural University) Ministry of Education, Shenyang, China,College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Ying Xin
- National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), Shenyang, China,Key Laboratory of Protected Horticulture (Shenyang Agricultural University) Ministry of Education, Shenyang, China,College of Horticulture, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
8
|
Cai Z, Cai Z, Huang J, Wang A, Ntambiyukuri A, Chen B, Zheng G, Li H, Huang Y, Zhan J, Xiao D, He L. Transcriptomic analysis of tuberous root in two sweet potato varieties reveals the important genes and regulatory pathways in tuberous root development. BMC Genomics 2022; 23:473. [PMID: 35761189 PMCID: PMC9235109 DOI: 10.1186/s12864-022-08670-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 05/30/2022] [Indexed: 11/16/2022] Open
Abstract
Background Tuberous root formation and development is a complex process in sweet potato, which is regulated by multiple genes and environmental factors. However, the regulatory mechanism of tuberous root development is unclear. Results In this study, the transcriptome of fibrous roots (R0) and tuberous roots in three developmental stages (Rl, R2, R3) were analyzed in two sweet potato varieties, GJS-8 and XGH. A total of 22,914 and 24,446 differentially expressed genes (DEGs) were identified in GJS-8 and XGH respectively, 15,920 differential genes were shared by GJS-8 and XGH. KEGG pathway enrichment analysis showed that the DEGs shared by GJS-8 and XGH were mainly involved in “plant hormone signal transduction” “starch and sucrose metabolism” and “MAPK signal transduction”. Trihelix transcription factor (Tai6.25300) was found to be closely related to tuberous root enlargement by the comprehensive analysis of these DEGs and weighted gene co-expression network analysis (WGCNA). Conclusion A hypothetical model of genetic regulatory network for tuberous root development of sweet potato is proposed, which emphasizes that some specific signal transduction pathways like “plant hormone signal transduction” “Ca2+signal” “MAPK signal transduction” and metabolic processes including “starch and sucrose metabolism” and “cell cycle and cell wall metabolism” are related to tuberous root development in sweet potato. These results provide new insights into the molecular mechanism of tuberous root development in sweet potato. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08670-x.
Collapse
Affiliation(s)
- Zhaoqin Cai
- National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, 530004, People's Republic of China.,Guangxi South Subtropical Agricultural Science Research Institute, Chongzuo, 532406, People's Republic of China
| | - Zhipeng Cai
- National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, 530004, People's Republic of China
| | - Jingli Huang
- National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, 530004, People's Republic of China
| | - Aiqin Wang
- National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, 530004, People's Republic of China.,Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, Nanning, 530004, People's Republic of China
| | - Aaron Ntambiyukuri
- National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, 530004, People's Republic of China
| | - Bimei Chen
- Hepu Institute of Agricultural Sciences, Beihai, 536101, People's Republic of China
| | - Ganghui Zheng
- Hepu Institute of Agricultural Sciences, Beihai, 536101, People's Republic of China
| | - Huifeng Li
- Maize Research Institute of Guangxi Academy of Agricultural Sciences, Nanning, 530007, People's Republic of China
| | - Yongmei Huang
- Maize Research Institute of Guangxi Academy of Agricultural Sciences, Nanning, 530007, People's Republic of China
| | - Jie Zhan
- National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, 530004, People's Republic of China.,Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, Nanning, 530004, People's Republic of China
| | - Dong Xiao
- National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, 530004, People's Republic of China. .,Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, Nanning, 530004, People's Republic of China.
| | - Longfei He
- National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, 530004, People's Republic of China. .,Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, Nanning, 530004, People's Republic of China.
| |
Collapse
|
9
|
Bhakta S, Negi S, Tak H, Singh S, Ganapathi TR. MusaATAF2-like protein regulates shoot development and multiplication by inducing cytokinin hypersensitivity and flavonoid accumulation in banana plants. PLANT CELL REPORTS 2022; 41:1197-1208. [PMID: 35244754 DOI: 10.1007/s00299-022-02849-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 02/14/2022] [Indexed: 05/20/2023]
Abstract
Senescence-associated transcription factor ATAF2 regulates cytokinin signalling and in vitro shoot multiplication in banana plants. MusaATAF2-like protein is a stress-related NAC transcription factor of banana. It regulates senescence in rooted banana plants. During the early stages of plant development under in vitro conditions, the presence of 6-benzylaminopurine leads to vigorous shoot multiplication. The major contributor to plant shoot multiplication is auxin to cytokinin ratio and their signalling components. The LC-MS analysis of transgenic banana plants overexpressing MusaATAF2 indicated significantly higher cytokinin content and remarkably lower auxin content. Auxin transport has been reported to be inhibited by flavonoids. Their significantly higher abundance in the shoot tissues in transgenic lines suggested potential negative regulation of auxin signalling in transgenic plants. Enhanced shoot multiplication in transgenic lines was further corroborated by reduced transcript abundance of type-A Arabidopsis response regulator-like genes (inhibitors of cytokinin signalling pathway) and higher expression of Arabidopsis histidine kinase-like genes and type-B Arabidopsis response regulator-like genes (positive regulators of cytokinin signalling pathway) in transgenic lines. Altogether, the data concludes that MusaATAF2 induces cytokinin hypersensitivity in banana shoots by modulating/regulating the cytokinin signalling components and flavonoids content.
Collapse
Affiliation(s)
- Subham Bhakta
- Plant Cell Culture Technology Section, Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Sanjana Negi
- Department of Biotechnology, University of Mumbai, Mumbai, India
| | - Himanshu Tak
- Plant Cell Culture Technology Section, Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Sudhir Singh
- Homi Bhabha National Institute, Mumbai, India
- Plant Biotechnology and Secondary Metabolites Section, Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, India
| | - T R Ganapathi
- Plant Cell Culture Technology Section, Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, India.
- Homi Bhabha National Institute, Mumbai, India.
| |
Collapse
|
10
|
Basnet P, Um T, Roy NS, Cho WS, Park SC, Park KC, Choi IY. Identification and Characterization of Key Genes Responsible for Weedy and Cultivar Growth Types in Soybean. Front Genet 2022; 13:805347. [PMID: 35281824 PMCID: PMC8907156 DOI: 10.3389/fgene.2022.805347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/17/2022] [Indexed: 11/13/2022] Open
Abstract
In cultivated plants, shoot morphology is an important factor that influences crop economic value. However, the effects of gene expression patterns on shoot morphology are not clearly understood. In this study, the molecular mechanism behind shoot morphology (including leaf, stem, and node) was analyzed using RNA sequencing to compare weedy (creeper) and cultivar (stand) growth types obtained in F7 derived from a cross of wild and cultivated soybeans. A total of 12,513 (in leaves), 14,255 (in stems), and 11,850 (in nodes) differentially expressed genes were identified among weedy and cultivar soybeans. Comparative transcriptome and expression analyses revealed 22 phytohormone-responsive genes. We found that GIBBERELLIN 2-OXIDASE 8 (GA2ox), SPINDLY (SPY), FERONIA (FER), AUXIN RESPONSE FACTOR 8 (ARF8), CYTOKININ DEHYDROGENASE-1 (CKX1), and ARABIDOPSIS HISTIDINE KINASE-3 (AHK3), which are crucial phytohormone response genes, were mainly regulated in the shoot of weedy and cultivar types. These results indicate that interactions between phytohormone signaling genes regulate shoot morphology in weedy and cultivar growth type plants. Our study provides insights that are useful for breeding and improving crops to generate high-yield soybean varieties.
Collapse
Affiliation(s)
- Prakash Basnet
- Department of Agriculture and Life Industry, Kangwon National University, Chuncheon, South Korea
| | - Taeyoung Um
- Department of Agriculture and Life Industry, Kangwon National University, Chuncheon, South Korea
| | - Neha Samir Roy
- Department of Agriculture and Life Industry, Kangwon National University, Chuncheon, South Korea
| | - Woo Suk Cho
- Department of Agricultural Biotechnology/National Academy of Agricultural Science, Rural Development Administration, Jeonju, South Korea
| | - Soo Chul Park
- Department of Agricultural Biotechnology/National Academy of Agricultural Science, Rural Development Administration, Jeonju, South Korea
| | - Kyong-Cheul Park
- Department of Agriculture and Life Industry, Kangwon National University, Chuncheon, South Korea
| | - Ik-Young Choi
- Department of Agriculture and Life Industry, Kangwon National University, Chuncheon, South Korea
- *Correspondence: Ik-Young Choi,
| |
Collapse
|
11
|
Xu C, Zhang Y, Zhao M, Liu Y, Xu X, Li T. Transcriptomic analysis of melon/squash graft junction reveals molecular mechanisms potentially underlying the graft union development. PeerJ 2022; 9:e12569. [PMID: 34993019 PMCID: PMC8675255 DOI: 10.7717/peerj.12569] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 11/08/2021] [Indexed: 01/20/2023] Open
Abstract
Oriental melon (Cucumis melo var. makuwa Makino) has become a widely planted horticultural crop in China especially in recent years and has been subjected to the grafting technique for the improvement of cultivation and stress resistance. Although grafting has a long history in horticulture, there is little known about the molecular mechanisms of the graft healing process in oriental melon. This study aims to reveal the molecular changes involved in the graft healing process. In the present work, anatomical observations indicated that the 2, 6, and 9 DAG were three critical stages for the graft healing and therefore, were selected for the subsequent high-throughput RNA-seq analysis. A total of 1,950 and 1,313 DEGs were identified by comparing IL vs. CA and CA vs. VB libraries, respectively. More DEGs in the melon scion exhibited abundant transcriptional changes compared to the squash rootstock, providing increased metabolic activity and thus more material basis for the graft healing formation in the scion. Several DEGs were enriched in the plant hormone signal transduction pathway, phenylpropanoid biosynthesis, and carbon metabolism. In addition, the results showed that concentrations of IAA, GA3, and ZR were induced in the graft junctions. In conclusion, our study determined that genes involved in the hormone-signaling pathway and lignin biosynthesis played the essential roles during graft healing. These findings expand our current understandings of the molecular basis of the graft junction formation and facilitate the improvement and success of melon grafting in future production.
Collapse
Affiliation(s)
- Chuanqiang Xu
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning, China.,Collaborative Innovation Center of Protected Vegetable Surround Bohai Gulf Region, Shenyang, Liaoning, China.,Key Laboratory of Protected Horticulture (Shenyang Agricultural University) Ministry of Education, Shenyang, Liaoning, China
| | - Ying Zhang
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning, China.,Collaborative Innovation Center of Protected Vegetable Surround Bohai Gulf Region, Shenyang, Liaoning, China.,Key Laboratory of Protected Horticulture (Shenyang Agricultural University) Ministry of Education, Shenyang, Liaoning, China
| | - Mingzhe Zhao
- College of Agronomy, Shenyang Agricultural University, Shenyang City, Liaoning Province, China
| | - Yiling Liu
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning, China.,Collaborative Innovation Center of Protected Vegetable Surround Bohai Gulf Region, Shenyang, Liaoning, China.,Key Laboratory of Protected Horticulture (Shenyang Agricultural University) Ministry of Education, Shenyang, Liaoning, China
| | - Xin Xu
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning, China.,Collaborative Innovation Center of Protected Vegetable Surround Bohai Gulf Region, Shenyang, Liaoning, China.,Key Laboratory of Protected Horticulture (Shenyang Agricultural University) Ministry of Education, Shenyang, Liaoning, China
| | - Tianlai Li
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning, China.,Collaborative Innovation Center of Protected Vegetable Surround Bohai Gulf Region, Shenyang, Liaoning, China.,Key Laboratory of Protected Horticulture (Shenyang Agricultural University) Ministry of Education, Shenyang, Liaoning, China
| |
Collapse
|
12
|
Djeghdir I, Chefdor F, Bertheau L, Koudounas K, Carqueijeiro I, Lemos Cruz P, Courdavault V, Depierreux C, Larcher M, Lamblin F, Héricourt F, Glévarec G, Oudin A, Carpin S. Evaluation of type-B RR dimerization in poplar: A mechanism to preserve signaling specificity? PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 313:111068. [PMID: 34763861 DOI: 10.1016/j.plantsci.2021.111068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/20/2021] [Accepted: 09/24/2021] [Indexed: 06/13/2023]
Abstract
Plants possess specific signaling pathways, such as the MultiStep Phosphorelay (MSP), which is involved in cytokinin and ethylene sensing, and light, drought or osmotic stress sensing. These MSP comprise histidine-aspartate kinases (HKs) as receptors, histidine phosphotransfer (HPts) proteins acting as phosphorelay proteins, and response regulators (RRs), some of which act as transcription factors (type-B RRs). In previous studies, we identified partners of the poplar osmosensing signaling pathway, composed of two HKs, three main HPts, and six type-B RRs. To date, it is unresolved as to how cytokinin or osmotic stress signal specificity is achieved in the MSP in order to generate specific responses. Here, we present a large-scale interaction study of poplar type-B RR dimerization. Using the two-hybrid assay, we were able to show the homodimerization of type-B RRs, the heterodimerization of duplicated type-B RRs, and surprisingly, a lack of interaction between some type-B RRs belonging to different duplicates. The lack of interaction of the duplicates RR12-14 and RR18-19, which are involved in the osmosensing pathway has been confirmed by BiFC experiments. This study reveals, for the first time, an overview of type-B RR dimerization in poplar and makes way for the hypothesis that signal specificity for cytokinin or osmotic stress could be in part due to the fact that it is impossible for specific type-B RRs to heterodimerize.
Collapse
Affiliation(s)
- I Djeghdir
- LBLGC, Université d'Orléans, INRAE, USC1328, 45067, Orléans, Cedex 2, France
| | - F Chefdor
- LBLGC, Université d'Orléans, INRAE, USC1328, 45067, Orléans, Cedex 2, France
| | - L Bertheau
- LBLGC, Université d'Orléans, INRAE, USC1328, 45067, Orléans, Cedex 2, France
| | - K Koudounas
- Biomolécules et Biotechnologies Végétales (BBV), EA 2106, Université de Tours, 31 Avenue Monge, 37200, Tours, France
| | - I Carqueijeiro
- Biomolécules et Biotechnologies Végétales (BBV), EA 2106, Université de Tours, 31 Avenue Monge, 37200, Tours, France
| | - P Lemos Cruz
- Biomolécules et Biotechnologies Végétales (BBV), EA 2106, Université de Tours, 31 Avenue Monge, 37200, Tours, France
| | - V Courdavault
- Biomolécules et Biotechnologies Végétales (BBV), EA 2106, Université de Tours, 31 Avenue Monge, 37200, Tours, France
| | - C Depierreux
- LBLGC, Université d'Orléans, INRAE, USC1328, 45067, Orléans, Cedex 2, France
| | - M Larcher
- LBLGC, Université d'Orléans, INRAE, USC1328, 45067, Orléans, Cedex 2, France
| | - F Lamblin
- LBLGC, Université d'Orléans, INRAE, USC1328, 45067, Orléans, Cedex 2, France
| | - F Héricourt
- LBLGC, Université d'Orléans, INRAE, USC1328, 45067, Orléans, Cedex 2, France
| | - G Glévarec
- Biomolécules et Biotechnologies Végétales (BBV), EA 2106, Université de Tours, 31 Avenue Monge, 37200, Tours, France
| | - A Oudin
- Biomolécules et Biotechnologies Végétales (BBV), EA 2106, Université de Tours, 31 Avenue Monge, 37200, Tours, France
| | - S Carpin
- LBLGC, Université d'Orléans, INRAE, USC1328, 45067, Orléans, Cedex 2, France.
| |
Collapse
|
13
|
Park J, Lee S, Park G, Cho H, Choi D, Umeda M, Choi Y, Hwang D, Hwang I. CYTOKININ-RESPONSIVE GROWTH REGULATOR regulates cell expansion and cytokinin-mediated cell cycle progression. PLANT PHYSIOLOGY 2021; 186:1734-1746. [PMID: 33909905 PMCID: PMC8260111 DOI: 10.1093/plphys/kiab180] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 03/31/2021] [Indexed: 05/23/2023]
Abstract
The cytokinin (CK) phytohormones have long been known to activate cell proliferation in plants. However, how CKs regulate cell division and cell expansion remains unclear. Here, we reveal that a basic helix-loop-helix transcription factor, CYTOKININ-RESPONSIVE GROWTH REGULATOR (CKG), mediates CK-dependent regulation of cell expansion and cell cycle progression in Arabidopsis thaliana. The overexpression of CKG increased cell size in a ploidy-independent manner and promoted entry into the S phase of the cell cycle, especially at the seedling stage. Furthermore, CKG enhanced organ growth in a pleiotropic fashion, from embryogenesis to reproductive stages, particularly of cotyledons. In contrast, ckg loss-of-function mutants exhibited smaller cotyledons. CKG mainly regulates the expression of genes involved in the regulation of the cell cycle including WEE1. We propose that CKG provides a regulatory module that connects cell cycle progression and organ growth to CK responses.
Collapse
Affiliation(s)
- Joonghyuk Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Seungchul Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Geuntae Park
- School of Biological Sciences, Seoul National University, Seoul 151-747, Korea
| | - Hyunwoo Cho
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Daeseok Choi
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Masaaki Umeda
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Takayama 8916-5, Ikoma, Nara 630-0192, Japan
| | - Yeonhee Choi
- School of Biological Sciences, Seoul National University, Seoul 151-747, Korea
| | - Daehee Hwang
- School of Biological Sciences, Seoul National University, Seoul 151-747, Korea
| | - Ildoo Hwang
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Korea
| |
Collapse
|
14
|
Hoang XLT, Prerostova S, Thu NBA, Thao NP, Vankova R, Tran LSP. Histidine Kinases: Diverse Functions in Plant Development and Responses to Environmental Conditions. ANNUAL REVIEW OF PLANT BIOLOGY 2021; 72:297-323. [PMID: 34143645 DOI: 10.1146/annurev-arplant-080720-093057] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The two-component system (TCS), which is one of the most evolutionarily conserved signaling pathway systems, has been known to regulate multiple biological activities and environmental responses in plants. Significant progress has been made in characterizing the biological functions of the TCS components, including signal receptor histidine kinase (HK) proteins, signal transducer histidine-containing phosphotransfer proteins, and effector response regulator proteins. In this review, our scope is focused on the diverse structure, subcellular localization, and interactions of the HK proteins, as well as their signaling functions during development and environmental responses across different plant species. Based on data collected from scientific studies, knowledge about acting mechanisms and regulatory roles of HK proteins is presented. This comprehensive summary ofthe HK-related network provides a panorama of sophisticated modulating activities of HK members and gaps in understanding these activities, as well as the basis for developing biotechnological strategies to enhance the quality of crop plants.
Collapse
Affiliation(s)
- Xuan Lan Thi Hoang
- Applied Biotechnology for Crop Development Research Unit, School of Biotechnology, International University, Ho Chi Minh City 700000, Vietnam; , ,
- Vietnam National University, Ho Chi Minh City 700000, Vietnam
| | - Sylva Prerostova
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Czech Academy of Sciences, 165 02 Prague 6, Czech Republic; ,
| | - Nguyen Binh Anh Thu
- Applied Biotechnology for Crop Development Research Unit, School of Biotechnology, International University, Ho Chi Minh City 700000, Vietnam; , ,
- Vietnam National University, Ho Chi Minh City 700000, Vietnam
| | - Nguyen Phuong Thao
- Applied Biotechnology for Crop Development Research Unit, School of Biotechnology, International University, Ho Chi Minh City 700000, Vietnam; , ,
- Vietnam National University, Ho Chi Minh City 700000, Vietnam
| | - Radomira Vankova
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Czech Academy of Sciences, 165 02 Prague 6, Czech Republic; ,
| | - Lam-Son Phan Tran
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, Texas 79409, USA;
- Stress Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama 230-0045, Japan
| |
Collapse
|
15
|
Skalak J, Nicolas KL, Vankova R, Hejatko J. Signal Integration in Plant Abiotic Stress Responses via Multistep Phosphorelay Signaling. FRONTIERS IN PLANT SCIENCE 2021; 12:644823. [PMID: 33679861 PMCID: PMC7925916 DOI: 10.3389/fpls.2021.644823] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 01/26/2021] [Indexed: 05/02/2023]
Abstract
Plants growing in any particular geographical location are exposed to variable and diverse environmental conditions throughout their lifespan. The multifactorial environmental pressure resulted into evolution of plant adaptation and survival strategies requiring ability to integrate multiple signals that combine to yield specific responses. These adaptive responses enable plants to maintain their growth and development while acquiring tolerance to a variety of environmental conditions. An essential signaling cascade that incorporates a wide range of exogenous as well as endogenous stimuli is multistep phosphorelay (MSP). MSP mediates the signaling of essential plant hormones that balance growth, development, and environmental adaptation. Nevertheless, the mechanisms by which specific signals are recognized by a commonly-occurring pathway are not yet clearly understood. Here we summarize our knowledge on the latest model of multistep phosphorelay signaling in plants and the molecular mechanisms underlying the integration of multiple inputs including both hormonal (cytokinins, ethylene and abscisic acid) and environmental (light and temperature) signals into a common pathway. We provide an overview of abiotic stress responses mediated via MSP signaling that are both hormone-dependent and independent. We highlight the mutual interactions of key players such as sensor kinases of various substrate specificities including their downstream targets. These constitute a tightly interconnected signaling network, enabling timely adaptation by the plant to an ever-changing environment. Finally, we propose possible future directions in stress-oriented research on MSP signaling and highlight its potential importance for targeted crop breeding.
Collapse
Affiliation(s)
- Jan Skalak
- CEITEC - Central European Institute of Technology and National Centre for Biomolecular Research, Masaryk University, Brno, Czechia
| | - Katrina Leslie Nicolas
- CEITEC - Central European Institute of Technology and National Centre for Biomolecular Research, Masaryk University, Brno, Czechia
| | - Radomira Vankova
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Czech Academy of Sciences, Prague, Czechia
| | - Jan Hejatko
- CEITEC - Central European Institute of Technology and National Centre for Biomolecular Research, Masaryk University, Brno, Czechia
- *Correspondence: Jan Hejatko,
| |
Collapse
|
16
|
Hodgens C, Chang N, Schaller GE, Kieber JJ. Mutagenomics: A Rapid, High-Throughput Method to Identify Causative Mutations from a Genetic Screen. PLANT PHYSIOLOGY 2020; 184:1658-1673. [PMID: 32887734 PMCID: PMC7723078 DOI: 10.1104/pp.20.00609] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 09/02/2020] [Indexed: 05/30/2023]
Abstract
Genetic screens are powerful tools to dissect complex biological processes, but a rate-limiting step is often the cloning of targeted genes. Here, we present a strategy, "mutagenomics," to identify causal mutations from a screen in a high throughput fashion in the absence of backcrossing. Mutagenomics is initiated by sequencing the genomes of the mutants identified, which are then subjected to a three-stage pipeline. The first stage identifies sequence changes in genes previously linked to the targeted pathway. The second stage uses heuristics derived from a simulation strategy to identify genes that are represented by multiple independent alleles more often than expected by chance. The third stage identifies candidate genes for the remaining lines by sequencing multiple lines of common descent. Our simulations indicate that sequencing as few as three to four sibling lines generally results in fewer than five candidate genes. We applied mutagenomics to a screen for Arabidopsis (Arabidopsis thaliana) mutants involved in the response to the phytohormone cytokinin. Mutagenomics identified likely causative genes for many of the mutant lines analyzed from this screen, including 13 alleles of the gene encoding the ARABIDOPSIS HIS KINASE4 cytokinin receptor. The screen also identified 1-AMINOCYCLOPROPANE-1-CARBOXYLATE (ACC) SYNTHASE7, an ACC synthase homolog involved in ethylene biosynthesis, and ELONGATED HYPOCOTYL5 (HY5), a master transcriptional regulator of photomorphogenesis. HY5 was found to mediate a subset of the transcriptional response to cytokinin. Mutagenomics has the potential to accelerate the pace and utility of genetic screens in Arabidopsis.
Collapse
Affiliation(s)
- Charles Hodgens
- Department of Biology, University of North Carolina at Chapel Hill, North Carolina 27599
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Nicole Chang
- Department of Biology, University of North Carolina at Chapel Hill, North Carolina 27599
| | - G Eric Schaller
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755
| | - Joseph J Kieber
- Department of Biology, University of North Carolina at Chapel Hill, North Carolina 27599
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| |
Collapse
|
17
|
Terceros GC, Resentini F, Cucinotta M, Manrique S, Colombo L, Mendes MA. The Importance of Cytokinins during Reproductive Development in Arabidopsis and Beyond. Int J Mol Sci 2020; 21:ijms21218161. [PMID: 33142827 PMCID: PMC7662338 DOI: 10.3390/ijms21218161] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/13/2020] [Accepted: 10/20/2020] [Indexed: 11/16/2022] Open
Abstract
Fertilization and seed formation are fundamental events in the life cycle of flowering plants. The seed is a functional unit whose main purpose is to propagate the plant. The first step in seed development is the formation of male and female gametophytes and subsequent steps culminate in successful fertilization. The detailed study of this process is highly relevant because it directly impacts human needs, such as protecting biodiversity and ensuring sustainable agriculture to feed the increasing world population. Cytokinins comprise a class of phytohormones that play many important roles during plant growth and development and in recent years, the role of this class of phytohormones during reproduction has become clear. Here, we review the role of cytokinins during ovule, pollen and seed formation at the genetic and molecular levels. The expansion of knowledge concerning the molecular mechanisms that control plant reproduction is extremely important to optimise seed production.
Collapse
|
18
|
Bagdassarian KS, Brown CM, Jones ET, Etchells P. Connections in the cambium, receptors in the ring. CURRENT OPINION IN PLANT BIOLOGY 2020; 57:96-103. [PMID: 32866742 DOI: 10.1016/j.pbi.2020.07.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 07/05/2020] [Accepted: 07/22/2020] [Indexed: 05/04/2023]
Abstract
In plants, pluripotent cells in meristems divide to provide cells for the formation of postembryonic tissues. The cambium is the meristem from which the vascular tissue is derived and is the main driver for secondary (radial) growth in dicots. Xylem and phloem are specified on opposing sides of the cambium, and tightly regulated cell divisions ensure their spatial separation. Peptide ligands, phytohormones, and their receptors are central to maintaining this patterning and regulating proliferation. Here, we describe recent advances in our understanding of how these signals are integrated to control vascular development and secondary growth.
Collapse
Affiliation(s)
| | - Catherine M Brown
- Department of Biosciences, Durham University, Durham, DH1 3LE, United Kingdom
| | - Ewan T Jones
- Department of Biosciences, Durham University, Durham, DH1 3LE, United Kingdom
| | - Peter Etchells
- Department of Biosciences, Durham University, Durham, DH1 3LE, United Kingdom.
| |
Collapse
|
19
|
Hertig C, Melzer M, Rutten T, Erbe S, Hensel G, Kumlehn J, Weschke W, Weber H, Thiel J. Barley HISTIDINE KINASE 1 (HvHK1) coordinates transfer cell specification in the young endosperm. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:1869-1884. [PMID: 32530511 DOI: 10.1111/tpj.14875] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 05/29/2020] [Accepted: 06/02/2020] [Indexed: 06/11/2023]
Abstract
Cereal endosperm represents the most important source of the world's food; nevertheless, the molecular mechanisms underlying cell and tissue differentiation in cereal grains remain poorly understood. Endosperm cellularization commences at the maternal-filial intersection of grains and generates endosperm transfer cells (ETCs), a cell type with a prominent anatomy optimized for efficient nutrient transport. Barley HISTIDINE KINASE1 (HvHK1) was identified as a receptor component with spatially restricted expression in the syncytial endosperm where ETCs emerge. Here, we demonstrate its function in ETC fate acquisition using RNA interference-mediated downregulation of HvHK1. Repression of HvHK1 impairs cell specification in the central ETC region and the development of transfer cell morphology, and consecutively defects differentiation of adjacent endosperm tissues. Coinciding with reduced expression of HvHK1, disturbed cell plate formation and fusion were observed at the initiation of endosperm cellularization, revealing that HvHK1 triggers initial cytokinesis of ETCs. Cell-type-specific RNA sequencing confirmed loss of transfer cell identity, compromised cell wall biogenesis and reduced transport capacities in aberrant cells and elucidated two-component signaling and hormone pathways that are mediated by HvHK1. Gene regulatory network modeling was used to specify the direct targets of HvHK1; this predicted non-canonical auxin signaling elements as the main regulatory links governing cellularization of ETCs, potentially through interaction with type-B response regulators. This work provides clues to previously unknown molecular mechanisms directing ETC specification, a process with fundamental impact on grain yield in cereals.
Collapse
Affiliation(s)
- Christian Hertig
- Department of Physiology and Cell Biology, Leibniz Institute for Plant Genetics and Crop Plant Research (IPK), Seeland/OT Gatersleben, D-06466, Germany
| | - Michael Melzer
- Department of Physiology and Cell Biology, Leibniz Institute for Plant Genetics and Crop Plant Research (IPK), Seeland/OT Gatersleben, D-06466, Germany
| | - Twan Rutten
- Department of Physiology and Cell Biology, Leibniz Institute for Plant Genetics and Crop Plant Research (IPK), Seeland/OT Gatersleben, D-06466, Germany
| | - Stephan Erbe
- Department of Molecular Genetics, Leibniz Institute for Plant Genetics and Crop Plant Research (IPK), Seeland/OT Gatersleben, D-06466, Germany
| | - Götz Hensel
- Department of Physiology and Cell Biology, Leibniz Institute for Plant Genetics and Crop Plant Research (IPK), Seeland/OT Gatersleben, D-06466, Germany
| | - Jochen Kumlehn
- Department of Physiology and Cell Biology, Leibniz Institute for Plant Genetics and Crop Plant Research (IPK), Seeland/OT Gatersleben, D-06466, Germany
| | - Winfriede Weschke
- Department of Molecular Genetics, Leibniz Institute for Plant Genetics and Crop Plant Research (IPK), Seeland/OT Gatersleben, D-06466, Germany
| | - Hans Weber
- Department of Molecular Genetics, Leibniz Institute for Plant Genetics and Crop Plant Research (IPK), Seeland/OT Gatersleben, D-06466, Germany
| | - Johannes Thiel
- Department of Molecular Genetics, Leibniz Institute for Plant Genetics and Crop Plant Research (IPK), Seeland/OT Gatersleben, D-06466, Germany
| |
Collapse
|
20
|
Qi X, Takahashi H, Kawasaki Y, Ohta Y, Isozaki M, Kojima M, Takebayashi Y, Sakakibara H, Imanishi S, Chen X, Nakazono M. Differences in xylem development between Dutch and Japanese tomato (Solanum lycopersicum) correlate with cytokinin levels in hypocotyls. ANNALS OF BOTANY 2020; 126:315-322. [PMID: 32407462 PMCID: PMC7380485 DOI: 10.1093/aob/mcaa094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 05/06/2020] [Indexed: 05/12/2023]
Abstract
BACKGROUND AND AIMS Dutch tomato cultivars tend to have a greater yield than Japanese cultivars even if they are grown under the same conditions. Factors contributing to the increased yield of the Dutch cultivars were a greater light use efficiency and greater leaf photosynthetic rate. On the other hand, the relationship between tomato yields and anatomical traits is still unclear. The aim of this study is to identify the anatomical traits related to the difference in yield between Dutch and Japanese cultivars. METHODS Anatomical properties were compared during different growth stages of Dutch and Japanese tomatoes. Hormone profiles and related gene expression in hypocotyls of Dutch and Japanese cultivars were compared in the hypocotyls of 3- and 4-week-old plants. KEY RESULTS Dutch cultivars have a more developed secondary xylem than Japanese cultivars, which would allow for greater transport of water, mineral nutrients and phytohormones to the shoots. The areas and ratios of the xylem in the hypocotyls of 3- to 6-week-old plants were larger in the Dutch cultivars. In reciprocal grafts of the Japanese and Dutch cultivars, xylem development at the scion and rootstock depended on the scion cultivar, suggesting that some factors in the scion are responsible for the difference in xylem development. The cytokinin content, especially the level of N6-(Δ 2-isopentenyl) adenine (iP)-type cytokinin, was higher in the Dutch cultivars. This result was supported by the greater expression of Sl-IPT3 (a cytokinin biosynthesis gene) and Sl-RR16/17 (a cytokinin-responsive gene) in the Dutch cultivars. CONCLUSIONS These results suggest that iP-type cytokinins, which are locally synthesized in the hypocotyl, contribute to xylem development. The greater xylem development in Dutch cultivars might contribute to the high yield of the tomato.
Collapse
Affiliation(s)
- Xiaohua Qi
- Department of Horticulture, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, PR China
| | - Hirokazu Takahashi
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya, Japan
- For correspondence. E-mail
| | - Yasushi Kawasaki
- Western Region Agricultural Research Center, National Agriculture and Food Research Organization, Zentsuji, Japan
| | - Yuya Ohta
- Mie Prefecture Agricultural Research Institute, Ureshino Kawakitacho, Matsusaka, Mie, Japan
| | - Masahide Isozaki
- Institute of Vegetable and Floriculture Science, NARO, Tsukuba, Japan
| | - Mikiko Kojima
- RIKEN Center for Sustainable Resource Science, Suehiro, Tsurumi, Yokohama, Japan
| | - Yumiko Takebayashi
- RIKEN Center for Sustainable Resource Science, Suehiro, Tsurumi, Yokohama, Japan
| | - Hitoshi Sakakibara
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya, Japan
- RIKEN Center for Sustainable Resource Science, Suehiro, Tsurumi, Yokohama, Japan
| | | | - Xuehao Chen
- Department of Horticulture, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, PR China
| | - Mikio Nakazono
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya, Japan
- The UWA School of Agriculture and Environment, Faculty of Science, The University of Western Australia, Crawley, WA, Australia
| |
Collapse
|
21
|
Huo R, Liu Z, Yu X, Li Z. The Interaction Network and Signaling Specificity of Two-Component System in Arabidopsis. Int J Mol Sci 2020; 21:ijms21144898. [PMID: 32664520 PMCID: PMC7402358 DOI: 10.3390/ijms21144898] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 01/25/2023] Open
Abstract
Two-component systems (TCS) in plants have evolved into a more complicated multi-step phosphorelay (MSP) pathway, which employs histidine kinases (HKs), histidine-containing phosphotransfer proteins (HPts), and response regulators (RRs) to regulate various aspects of plant growth and development. How plants perceive the external signals, then integrate and transduce the secondary signals specifically to the desired destination, is a fundamental characteristic of the MSP signaling network. The TCS elements involved in the MSP pathway and molecular mechanisms of signal transduction have been best understood in the model plant Arabidopsis thaliana. In this review, we focus on updated knowledge on TCS signal transduction in Arabidopsis. We first present a brief description of the TCS elements; then, the protein–protein interaction network is established. Finally, we discuss the possible molecular mechanisms involved in the specificity of the MSP signaling at the mRNA and protein levels.
Collapse
Affiliation(s)
- Ruxue Huo
- Institute of Integrative Plant Biology, Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China;
- College of Agriculture and Forestry Sciences, Linyi University, Linyi 276000, China
| | - Zhenning Liu
- College of Agriculture and Forestry Sciences, Linyi University, Linyi 276000, China
- Correspondence: (Z.L.); (Z.L.)
| | - Xiaolin Yu
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China;
| | - Zongyun Li
- Institute of Integrative Plant Biology, Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China;
- Correspondence: (Z.L.); (Z.L.)
| |
Collapse
|
22
|
Novel markers for high-throughput protoplast-based analyses of phytohormone signaling. PLoS One 2020; 15:e0234154. [PMID: 32497144 PMCID: PMC7272087 DOI: 10.1371/journal.pone.0234154] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/19/2020] [Indexed: 02/03/2023] Open
Abstract
Phytohormones mediate most diverse processes in plants, ranging from organ development to immune responses. Receptor protein complexes perceive changes in intracellular phytohormone levels and trigger a signaling cascade to effectuate downstream responses. The in planta analysis of elements involved in phytohormone signaling can be achieved through transient expression in mesophyll protoplasts, which are a fast and versatile alternative to generating plant lines that stably express a transgene. While promoter-reporter constructs have been used successfully to identify internal or external factors that change phytohormone signaling, the range of available marker constructs does not meet the potential of the protoplast technique for large scale approaches. The aim of our study was to provide novel markers for phytohormone signaling in the Arabidopsis mesophyll protoplast system. We validated 18 promoter::luciferase constructs towards their phytohormone responsiveness and specificity and suggest an experimental setup for high-throughput analyses. We recommend novel markers for the analysis of auxin, abscisic acid, cytokinin, salicylic acid and jasmonic acid responses that will facilitate future screens for biological elements and environmental stimuli affecting phytohormone signaling.
Collapse
|
23
|
Wang H. Regulation of vascular cambium activity. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 291:110322. [PMID: 31928672 DOI: 10.1016/j.plantsci.2019.110322] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 09/25/2019] [Accepted: 10/24/2019] [Indexed: 05/04/2023]
Abstract
Vascular cambium contributes to lateral growth in dicotyledonous plants and gymnosperms. Physiological, genetics and molecular studies indicate that cambial activity is regulated by a combination of long-distance hormonal signals and short-range peptide signaling pathways. Communication from endodermis and phloem tissues also affects cambial stem cell proliferation. Interactions between these signaling pathways provide flexibility for vascular development. In this mini-review, we discuss the new findings in long- and short-range signaling pathways in regulating vascular cambium proliferation and provide future perspectives in the cambium research. Deep imaging and mathematical modeling will help further dissecting the functional mechanisms of cambial activity control.
Collapse
Affiliation(s)
- Huanzhong Wang
- Department of Plant Science and Landscape Architecture, University of Connecticut, 1376 Storrs Rd, Storrs, CT 06269, United States.
| |
Collapse
|
24
|
Wan Y, Zhang M, Hong A, Lan X, Yang H, Liu Y. Transcriptome and weighted correlation network analyses provide insights into inflorescence stem straightness in Paeonia lactiflora. PLANT MOLECULAR BIOLOGY 2020; 102:239-252. [PMID: 31832900 DOI: 10.1007/s11103-019-00945-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 12/04/2019] [Indexed: 06/10/2023]
Abstract
Lack of structural components results in inflorescence stem bending. Differentially expressed genes involved in lignin and hemicellulose biosynthesis are vital; genes involved in cellulose and glycan biosynthesis are also relevant. An erect inflorescence stem is essential for high-quality cut herbaceous peony flowers. To explore the factors underlying inflorescence stem bending, major cell walls contents were measured, and stem structure was observed in two herbaceous peony varieties with contrasting stem straightness traits ('Da Fugui', upright; 'Chui Touhong', bending). In addition, Illumina sequencing was performed and weighted correlation network analysis (WGCNA) was used to analyze the results. The results showed significant differences in lignin, hemicellulose and soluble sugar contents, sclerenchyma and xylem areas and thickening in cell walls in pith at stage S3, when bending begins. In addition, 44,182 significantly differentially expressed genes (DEGs) were found, and these DEGs were mainly enriched in 36 pathways. Among the DEGs, hub genes involved in lignin, cellulose, and xylan biosynthesis and transcription factors that regulated these process were identified by WGCNA. These results suggested that the contents of compounds that provided cell wall rigidity were vital factors affecting inflorescence stem straightness in herbaceous peony. Genes involved in or regulating the biosynthesis of these compounds are thus important; lignin and hemicellulose are of great interest, and cellulose and glycan should not be ignored. This paper lays a foundation for developing new herbaceous peony varieties suitable for cut flowers by molecular-assisted breeding.
Collapse
Affiliation(s)
- Yingling Wan
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, College of Landscape Architecture, Beijing Forestry University, Beijing, 100083, People's Republic of China
| | - Min Zhang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, College of Landscape Architecture, Beijing Forestry University, Beijing, 100083, People's Republic of China
| | - Aiying Hong
- Management Office of Caozhou Peony Garden, Heze, 274000, Shandong, People's Republic of China
| | - Xinyu Lan
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, College of Landscape Architecture, Beijing Forestry University, Beijing, 100083, People's Republic of China
| | - Huiyan Yang
- Management Office of Caozhou Peony Garden, Heze, 274000, Shandong, People's Republic of China
| | - Yan Liu
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, College of Landscape Architecture, Beijing Forestry University, Beijing, 100083, People's Republic of China.
| |
Collapse
|
25
|
Cerbantez-Bueno VE, Zúñiga-Mayo VM, Reyes-Olalde JI, Lozano-Sotomayor P, Herrera-Ubaldo H, Marsch-Martinez N, de Folter S. Redundant and Non-redundant Functions of the AHK Cytokinin Receptors During Gynoecium Development. FRONTIERS IN PLANT SCIENCE 2020; 11:568277. [PMID: 33117412 PMCID: PMC7575793 DOI: 10.3389/fpls.2020.568277] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 09/17/2020] [Indexed: 05/17/2023]
Abstract
The phytohormone cytokinin is crucial for plant growth and development. The site of action of cytokinin in the plant is dependent on the expression of the cytokinin receptors. In Arabidopsis, there are three cytokinin receptors that present some overlap in expression pattern. Functional studies demonstrated that the receptors play highly redundant roles but also have specialized functions. Here, we focus on gynoecium development, which is the female reproductive part of the plant. Cytokinin signaling has been demonstrated to be important for reproductive development, positively affecting seed yield and fruit production. Most of these developmental processes are regulated by cytokinin during early gynoecium development. While some information is available, there is a gap in knowledge on cytokinin function and especially on the cytokinin receptors during early gynoecium development. Therefore, we studied the expression patterns and the role of the cytokinin receptors during gynoecium development. We found that the three receptors are expressed in the gynoecium and that they have redundant and specialized functions.
Collapse
Affiliation(s)
- Vincent E. Cerbantez-Bueno
- Unidad de Genómica Avanzada (UGA-LANGEBIO), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, Mexico
| | - Victor M. Zúñiga-Mayo
- Unidad de Genómica Avanzada (UGA-LANGEBIO), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, Mexico
| | - J. Irepan Reyes-Olalde
- Unidad de Genómica Avanzada (UGA-LANGEBIO), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, Mexico
| | - Paulina Lozano-Sotomayor
- Unidad de Genómica Avanzada (UGA-LANGEBIO), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, Mexico
| | - Humberto Herrera-Ubaldo
- Unidad de Genómica Avanzada (UGA-LANGEBIO), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, Mexico
| | | | - Stefan de Folter
- Unidad de Genómica Avanzada (UGA-LANGEBIO), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, Mexico
- *Correspondence: Stefan de Folter,
| |
Collapse
|
26
|
Héricourt F, Larcher M, Chefdor F, Koudounas K, Carqueijeiro I, Lemos Cruz P, Courdavault V, Tanigawa M, Maeda T, Depierreux C, Lamblin F, Glévarec G, Carpin S. New Insight into HPts as Hubs in Poplar Cytokinin and Osmosensing Multistep Phosphorelays: Cytokinin Pathway Uses Specific HPts. PLANTS 2019; 8:plants8120591. [PMID: 31835814 PMCID: PMC6963366 DOI: 10.3390/plants8120591] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/04/2019] [Accepted: 12/09/2019] [Indexed: 02/02/2023]
Abstract
We have previously identified proteins in poplar which belong to an osmosensing (OS) signaling pathway, called a multistep phosphorelay (MSP). The MSP comprises histidine-aspartate kinases (HK), which act as membrane receptors; histidine phosphotransfer (HPt) proteins, which act as phosphorelay proteins; and response regulators (RR), some of which act as transcription factors. In this study, we identified the HK proteins homologous to the Arabidopsis cytokinin (CK) receptors, which are first partners in the poplar cytokinin MSP, and focused on specificity of these two MSPs (CK and OS), which seem to share the same pool of HPt proteins. Firstly, we isolated five CK HKs from poplar which are homologous to Arabidopsis AHK2, AHK3, and AHK4, namely, HK2, HK3a, HK3b, HK4a, HK4b. These HKs were shown to be functional kinases, as observed in a functional complementation of a yeast HK deleted strain. Moreover, one of these HKs, HK4a, was shown to have kinase activity dependent on the presence of CK. Exhaustive interaction tests between these five CK HKs and the 10 HPts characterized in poplar were performed using two-hybrid and BiFC experiments. The resulting partnership was compared to that previously identified between putative osmosensors HK1a/1b and HPt proteins. Finally, in planta coexpression analysis of genes encoding these potential partners revealed that almost all HPts are coexpressed with CK HKs in four different poplar organs. Overall, these results allowed us to unravel the common and specific partnerships existing between OS and CK MSP in Populus.
Collapse
Affiliation(s)
- François Héricourt
- LBLGC, University of Orléans, EA1207, INRA, USC1328, rue de Chartres, CEDEX 2, 45067 Orléans, France; (F.H.); (M.L.); (F.C.); (C.D.); (F.L.)
| | - Mélanie Larcher
- LBLGC, University of Orléans, EA1207, INRA, USC1328, rue de Chartres, CEDEX 2, 45067 Orléans, France; (F.H.); (M.L.); (F.C.); (C.D.); (F.L.)
| | - Françoise Chefdor
- LBLGC, University of Orléans, EA1207, INRA, USC1328, rue de Chartres, CEDEX 2, 45067 Orléans, France; (F.H.); (M.L.); (F.C.); (C.D.); (F.L.)
| | - Konstantinos Koudounas
- BBV, University of Tours, EA 2106, 31 Avenue Monge, 37200 Tours, France; (K.K.); (I.C.); (P.L.C.); (V.C.); (G.G.)
| | - Inês Carqueijeiro
- BBV, University of Tours, EA 2106, 31 Avenue Monge, 37200 Tours, France; (K.K.); (I.C.); (P.L.C.); (V.C.); (G.G.)
| | - Pamela Lemos Cruz
- BBV, University of Tours, EA 2106, 31 Avenue Monge, 37200 Tours, France; (K.K.); (I.C.); (P.L.C.); (V.C.); (G.G.)
| | - Vincent Courdavault
- BBV, University of Tours, EA 2106, 31 Avenue Monge, 37200 Tours, France; (K.K.); (I.C.); (P.L.C.); (V.C.); (G.G.)
| | - Mirai Tanigawa
- Department of Biology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan; (M.T.); (T.M.)
| | - Tatsuya Maeda
- Department of Biology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan; (M.T.); (T.M.)
| | - Christiane Depierreux
- LBLGC, University of Orléans, EA1207, INRA, USC1328, rue de Chartres, CEDEX 2, 45067 Orléans, France; (F.H.); (M.L.); (F.C.); (C.D.); (F.L.)
| | - Frédéric Lamblin
- LBLGC, University of Orléans, EA1207, INRA, USC1328, rue de Chartres, CEDEX 2, 45067 Orléans, France; (F.H.); (M.L.); (F.C.); (C.D.); (F.L.)
| | - Gaëlle Glévarec
- BBV, University of Tours, EA 2106, 31 Avenue Monge, 37200 Tours, France; (K.K.); (I.C.); (P.L.C.); (V.C.); (G.G.)
| | - Sabine Carpin
- LBLGC, University of Orléans, EA1207, INRA, USC1328, rue de Chartres, CEDEX 2, 45067 Orléans, France; (F.H.); (M.L.); (F.C.); (C.D.); (F.L.)
- Correspondence: ; Tel.: +33-2-3849-4804
| |
Collapse
|
27
|
Chen JJ, Wang LY, Immanen J, Nieminen K, Spicer R, Helariutta Y, Zhang J, He XQ. Differential regulation of auxin and cytokinin during the secondary vascular tissue regeneration in Populus trees. THE NEW PHYTOLOGIST 2019; 224:188-201. [PMID: 31230359 DOI: 10.1111/nph.16019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 06/14/2019] [Indexed: 05/04/2023]
Abstract
Tissue regeneration upon wounding in plants highlights the developmental plasticity of plants. Previous studies have described the morphological and molecular changes of secondary vascular tissue (SVT) regeneration after large-scale bark girdling in trees. However, how phytohormones regulate SVT regeneration is still unknown. Here, we established a novel in vitro SVT regeneration system in the hybrid aspen (Populus tremula × Populus tremuloides) clone T89 to bypass the limitation of using field-grown trees. The effects of phytohormones on SVT regeneration were investigated by applying exogenous hormones and utilizing various transgenic trees. Vascular tissue-specific markers and hormonal response factors were also examined during SVT regeneration. Using this in vitro regeneration system, we demonstrated that auxin and cytokinin differentially regulate phloem and cambium regeneration. Whereas auxin is sufficient to induce regeneration of phloem prior to continuous cambium restoration, cytokinin only promotes the formation of new phloem, not cambium. The positive role of cytokinin on phloem regeneration was further confirmed in cytokinin overexpression trees. Analysis of a DR5 reporter transgenic line further suggested that cytokinin blocks the re-establishment of auxin gradients, which is required for the cambium formation. Investigation on the auxin and cytokinin signalling genes indicated these two hormones interact to regulate SVT regeneration. Taken together, the in vitro SVT regeneration system allows us to make use of various molecular and genetic tools to investigate SVT regeneration. Our results confirmed that complementary auxin and cytokinin domains are required for phloem and cambium reconstruction.
Collapse
Affiliation(s)
- Jia-Jia Chen
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, 00014, Finland
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, 00014, Finland
| | - Ling-Yan Wang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Juha Immanen
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, 00014, Finland
- Natural Resources Institute Finland (Luke), Production Systems, Plant Genetics, Helsinki, 00790, Finland
| | - Kaisa Nieminen
- Natural Resources Institute Finland (Luke), Production Systems, Plant Genetics, Helsinki, 00790, Finland
| | - Rachel Spicer
- Department of Botany, Connecticut College, New London, CT, 06320, USA
| | - Ykä Helariutta
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, 00014, Finland
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, 00014, Finland
- The Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge, CB2 1LR, UK
| | - Jing Zhang
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, 00014, Finland
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, 00014, Finland
| | - Xin-Qiang He
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China
| |
Collapse
|
28
|
Molecular Responses during Plant Grafting and Its Regulation by Auxins, Cytokinins, and Gibberellins. Biomolecules 2019; 9:biom9090397. [PMID: 31443419 PMCID: PMC6770456 DOI: 10.3390/biom9090397] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 08/20/2019] [Accepted: 08/21/2019] [Indexed: 12/25/2022] Open
Abstract
Plant grafting is an important horticulture technique used to produce a new plant after joining rootstock and scion. This is one of the most used techniques by horticulturists to enhance the quality and production of various crops. Grafting helps in improving the health of plants, their yield, and the quality of plant products, along with the enhancement of their postharvest life. The main process responsible for successful production of grafted plants is the connection of vascular tissues. This step determines the success rate of grafts and hence needs to be studied in detail. There are many factors that regulate the connection of scion and stock, and plant hormones are of special interest for researchers in the recent times. These phytohormones act as signaling molecules and have the capability of translocation across the graft union. Plant hormones, mainly auxins, cytokinins, and gibberellins, play a major role in the regulation of various key physiological processes occurring at the grafting site. In the current review, we discuss the molecular mechanisms of graft development and the phytohormone-mediated regulation of the growth and development of graft union.
Collapse
|
29
|
Tan S, Debellé F, Gamas P, Frugier F, Brault M. Diversification of cytokinin phosphotransfer signaling genes in Medicago truncatula and other legume genomes. BMC Genomics 2019; 20:373. [PMID: 31088345 PMCID: PMC6518804 DOI: 10.1186/s12864-019-5724-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 04/22/2019] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Legumes can establish on nitrogen-deprived soils a symbiotic interaction with Rhizobia bacteria, leading to the formation of nitrogen-fixing root nodules. Cytokinin phytohormones are critical for triggering root cortical cell divisions at the onset of nodule initiation. Cytokinin signaling is based on a Two-Component System (TCS) phosphorelay cascade, involving successively Cytokinin-binding Histidine Kinase receptors, phosphorelay proteins shuttling between the cytoplasm and the nucleus, and Type-B Response Regulator (RRB) transcription factors activating the expression of cytokinin primary response genes. Among those, Type-A Response Regulators (RRA) exert a negative feedback on the TCS signaling. To determine whether the legume plant nodulation capacity is linked to specific features of TCS proteins, a genome-wide identification was performed in six legume genomes (Cajanus cajan, pigeonpea; Cicer arietinum, chickpea; Glycine max, soybean; Phaseolus vulgaris, common bean; Lotus japonicus; Medicago truncatula). The diversity of legume TCS proteins was compared to the one found in two non-nodulating species, Arabidopsis thaliana and Vitis vinifera, which are references for functional analyses of TCS components and phylogenetic analyses, respectively. RESULTS A striking expansion of non-canonical RRBs was identified, notably leading to the emergence of proteins where the conserved phosphor-accepting aspartate residue is replaced by a glutamate or an asparagine. M. truncatula genome-wide expression datasets additionally revealed that only a limited subset of cytokinin-related TCS genes is highly expressed in different organs, namely MtCHK1/MtCRE1, MtHPT1, and MtRRB3, suggesting that this "core" module potentially acts in most plant organs including nodules. CONCLUSIONS Further functional analyses are required to determine the relevance of these numerous non-canonical TCS RRBs in symbiotic nodulation, as well as of canonical MtHPT1 and MtRRB3 core signaling elements.
Collapse
Affiliation(s)
- Sovanna Tan
- IPS2 (Institute of Plant Sciences Paris-Saclay), CNRS, Université Paris-Sud, Université Paris-Diderot, INRA, Université d’Evry, Université Paris-Saclay, Rue de Noetzlin, 91190 Gif-sur-Yvette, France
| | - Frédéric Debellé
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| | - Pascal Gamas
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| | - Florian Frugier
- IPS2 (Institute of Plant Sciences Paris-Saclay), CNRS, Université Paris-Sud, Université Paris-Diderot, INRA, Université d’Evry, Université Paris-Saclay, Rue de Noetzlin, 91190 Gif-sur-Yvette, France
| | - Mathias Brault
- IPS2 (Institute of Plant Sciences Paris-Saclay), CNRS, Université Paris-Sud, Université Paris-Diderot, INRA, Université d’Evry, Université Paris-Saclay, Rue de Noetzlin, 91190 Gif-sur-Yvette, France
| |
Collapse
|
30
|
Chang SX, Pu C, Guan RZ, Pu M, Xu ZG. Transcriptional and translational responses of rapeseed leaves to red and blue lights at the rosette stage. J Zhejiang Univ Sci B 2018; 19:581-595. [PMID: 30070082 DOI: 10.1631/jzus.b1700408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Under different red (R):blue (B) photon flux ratios, the growth performance of rapeseed (Brassica napus L.) is significantly different. Rapeseed under high R ratios shows shade response, while under high B ratios it shows sun-type morphology. Rapeseed under monochromatic red or blue light is seriously stressed. Transcriptomic and proteomic methods were used to analyze the metabolic pathway change of rapeseed (cv. "Zhongshuang 11") leaves under different R:B photon flux ratios (including 100R:0B%, 75R:25B%, 25R:75B%, and 0R:100B%), based on digital gene expression (DGE) and two-dimensional gel electrophoresis (2-DE). For DGE analysis, 2054 differentially expressed transcripts (|log2(fold change)|≥1, q<0.005) were detected among the treatments. High R ratios (100R:0B% and 75R:25B%) enhanced the expression of cellular structural components, mainly the cell wall and cell membrane. These components participated in plant epidermis development and anatomical structure morphogenesis. This might be related to the shade response induced by red light. High B ratios (25R:75B% and 0R:100B%) promoted the expression of chloroplast-related components, which might be involved in the formation of sun-type chloroplast induced by blue light. For 2-DE analysis, 37 protein spots showed more than a 2-fold difference in expression among the treatments. Monochromatic light (ML; 100R:0B% and 0R:100B%) stimulated accumulation of proteins associated with antioxidation, photosystem II (PSII), DNA and ribosome repairs, while compound light (CL; 75R:25B% and 25R:75B%) accelerated accumulation of proteins associated with carbohydrate, nucleic acid, amino acid, vitamin, and xanthophyll metabolisms. These findings can be useful in understanding the response mechanisms of rapeseed leaves to different R:B photon flux ratios.
Collapse
Affiliation(s)
- Sheng-Xin Chang
- College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Chu Pu
- College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Rong-Zhan Guan
- College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Min Pu
- Lumlux Corp., Suzhou 215143, China
| | - Zhi-Gang Xu
- College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
31
|
Han S, Cho H, Noh J, Qi J, Jung HJ, Nam H, Lee S, Hwang D, Greb T, Hwang I. BIL1-mediated MP phosphorylation integrates PXY and cytokinin signalling in secondary growth. NATURE PLANTS 2018; 4:605-614. [PMID: 29988154 DOI: 10.1038/s41477-018-0180-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Accepted: 05/17/2018] [Indexed: 05/03/2023]
Abstract
Vascular cambium proliferation in plants is crucial for the generation of vascular tissues and for mechanical strength. Phytohormones and mobile peptides are key regulators of vascular cambial activity during secondary growth; however, the signalling cross-talk underlying their coordinated action is largely unknown. Here, we reveal that BIN2-LIKE 1 (BIL1), a glycogen synthase kinase 3, integrates the PHLOEM INTERCALATED WITH XYLEM/tracheary element differentiation inhibitory factor (TDIF) RECEPTOR (PXY/TDR) module into MONOPTEROS/AUXIN RESPONSE FACTOR 5 (MP/ARF5) transcription factor action during secondary growth. BIL1-mediated phosphorylation of MP/ARF5 enhances its negative effect on vascular cambial activity, which upregulates the negative regulators of cytokinin signalling ARABIDOPSIS RESPONSE REGULATOR 7 (ARR7) and ARR15. PXY/TDR inhibits BIL1 activity, which attenuates the effect of MP/ARF5 on ARR7 and ARR15 expression, thus increasing vascular cambial activity. Together, these results suggest that BIL1 is a key mediator that links peptide signalling with auxin-cytokinin signalling for the maintenance of cambial activity.
Collapse
Affiliation(s)
- Soeun Han
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Korea
| | - Hyunwoo Cho
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Korea
| | - Jaegyun Noh
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Korea
| | - Jiyan Qi
- Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany
| | - Hee-Jung Jung
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Korea
| | - Heejae Nam
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Korea
| | - Seungchul Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Korea
| | - Daehee Hwang
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Korea
| | - Thomas Greb
- Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany
| | - Ildoo Hwang
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Korea.
| |
Collapse
|
32
|
Yuan L, Liu Z, Song X, Jernstedt J, Sundaresan V. The gymnosperm ortholog of the angiosperm central cell-specification gene CKI1 provides an essential clue to endosperm origin. THE NEW PHYTOLOGIST 2018; 218:1685-1696. [PMID: 29603241 DOI: 10.1111/nph.15115] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 02/09/2018] [Indexed: 05/22/2023]
Abstract
A defining feature of angiosperms is double fertilization involving the female gametophyte central cell and formation of a nutrient-storing tissue called endosperm. The route for the evolutionary origin of endosperm from a gymnosperm ancestor, particularly the molecular steps involved, has remained elusive. Recently, the histidine kinase gene Cytokinin-Independent 1 (CKI1), an activator of cytokinin signaling, was described as a key to specification of the endosperm precursor central cell in Arabidopsis. Here, we have investigated the function and expression of a putative ortholog of CKI1 in the gymnosperm Ginkgo biloba. We demonstrate that Ginkgo CKI1 can partially rescue an Arabidopsis cki1 mutant and promote weak activation of the cytokinin signaling pathway in the Arabidopsis embryo sac, but does not confer central cell specification. Ginkgo CKI1 is expressed in both male and female gametophytes of Ginkgo. In the latter, it is expressed in the ventral canal cell, which is sister to the egg cell in the archegonium. As in Arabidopsis, Ginkgo CKI1 is not expressed in the egg cell. The similarities in expression patterns of CKI1 in Ginkgo and Arabidopsis female gametophytes suggest that extant gymnosperms possess an essential component of the molecular machinery required for angiosperm endosperm development, and provide new insights into endosperm origin from a gymnospermous ancestor.
Collapse
Affiliation(s)
- Li Yuan
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zhenning Liu
- College of Agriculture and Forestry Science, Linyi University, Linyi, Shandong, 276000, China
- Department of Plant Biology, University of California, Davis, CA, 95616, USA
- Laboratory of Cell and Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058, China
| | - Xiaoya Song
- Department of Plant Biology, University of California, Davis, CA, 95616, USA
| | - Judy Jernstedt
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Venkatesan Sundaresan
- Department of Plant Biology, University of California, Davis, CA, 95616, USA
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| |
Collapse
|
33
|
Mo Z, Feng G, Su W, Liu Z, Peng F. Transcriptomic Analysis Provides Insights into Grafting Union Development in Pecan (Carya illinoinensis). Genes (Basel) 2018; 9:genes9020071. [PMID: 29401757 PMCID: PMC5852567 DOI: 10.3390/genes9020071] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 01/18/2018] [Accepted: 01/26/2018] [Indexed: 11/16/2022] Open
Abstract
Pecan (Carya illinoinensis), as a popular nut tree, has been widely planted in China in recent years. Grafting is an important technique for its cultivation. For a successful grafting, graft union development generally involves the formation of callus and vascular bundles at the graft union. To explore the molecular mechanism of graft union development, we applied high throughput RNA sequencing to investigate the transcriptomic profiles of graft union at four timepoints (0 days, 8 days, 15 days, and 30 days) during the pecan grafting process. After de novo assembly, 83,693 unigenes were obtained, and 40,069 of them were annotated. A total of 12,180 differentially expressed genes were identified between by grafting. Genes involved in hormone signaling, cell proliferation, xylem differentiation, cell elongation, secondary cell wall deposition, programmed cell death, and reactive oxygen species (ROS) scavenging showed significant differential expression during the graft union developmental process. In addition, we found that the content of auxin, cytokinin, and gibberellin were accumulated at the graft unions during the grafting process. These results will aid in our understanding of successful grafting in the future.
Collapse
Affiliation(s)
- Zhenghai Mo
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China.
| | - Gang Feng
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China.
| | - Wenchuan Su
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China.
| | - Zhuangzhuang Liu
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China.
| | - Fangren Peng
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China.
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
34
|
Gaillochet C, Stiehl T, Wenzl C, Ripoll JJ, Bailey-Steinitz LJ, Li L, Pfeiffer A, Miotk A, Hakenjos JP, Forner J, Yanofsky MF, Marciniak-Czochra A, Lohmann JU. Control of plant cell fate transitions by transcriptional and hormonal signals. eLife 2017; 6:30135. [PMID: 29058667 PMCID: PMC5693117 DOI: 10.7554/elife.30135] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 10/22/2017] [Indexed: 11/24/2022] Open
Abstract
Plant meristems carry pools of continuously active stem cells, whose activity is controlled by developmental and environmental signals. After stem cell division, daughter cells that exit the stem cell domain acquire transit amplifying cell identity before they are incorporated into organs and differentiate. In this study, we used an integrated approach to elucidate the role of HECATE (HEC) genes in regulating developmental trajectories of shoot stem cells in Arabidopsis thaliana. Our work reveals that HEC function stabilizes cell fate in distinct zones of the shoot meristem thereby controlling the spatio-temporal dynamics of stem cell differentiation. Importantly, this activity is concomitant with the local modulation of cellular responses to cytokinin and auxin, two key phytohormones regulating cell behaviour. Mechanistically, we show that HEC factors transcriptionally control and physically interact with MONOPTEROS (MP), a key regulator of auxin signalling, and modulate the autocatalytic stabilization of auxin signalling output. Unlike animals, plants continuously generate new organs that make up their body. At the core of this amazing capacity lie tissues called meristems, which are found at the growing tips of all plants. Meristems contain dividing stem cells. The daughters of these stem cells pass through nearby regions called transition domains. Over time, they change – or differentiate – to go on to become part of tissues like leaves, roots, stems, shoots, flowers or fruits. Stem cell differentiation has a direct impact on a plant’s architecture and eventually its reproductive success. For crops, these factors determine yield. This means that understanding this aspect of plant development is central to basic and applied plant biology. Many factors required for shoot meristem activity have been identified, with a focus so far on the processes that control the identity of the cells produced. Now, Gaillochet et al. have asked which genes are responsible for controlling when stem cells in meristems differentiate. The analysis focused on the meristem that makes all the above ground parts of model plant Arabidopsis thaliana – the shoot apical meristem. Gaillochet et al. found that HECATE genes (or HEC for short) control the timing of stem cell differentiation by regulating the balance between the activities of two plant hormones: cytokinin and auxin. These genes promote cytokinin signals at the centre of the meristem, and dampen auxin response at the edges. This acts to slow down cell differentiation in two key transition domains of the shoot meristem. These new findings provide a molecular framework that now can be further investigated in crop plants to try to improve their yield. The findings also lay the foundation for studies of animals that may define common principles shared among stem cell systems in organisms that diverged over a billion years ago.
Collapse
Affiliation(s)
- Christophe Gaillochet
- Department of Stem Cell Biology, Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | - Thomas Stiehl
- Institute of Applied Mathematics, Heidelberg University, Heidelberg, Germany.,Interdisciplinary Center for Scientific Computing, Heidelberg University, Heidelberg, Germany
| | - Christian Wenzl
- Department of Stem Cell Biology, Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | - Juan-José Ripoll
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, San Diego, United States
| | - Lindsay J Bailey-Steinitz
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, San Diego, United States
| | - Lanxin Li
- Department of Stem Cell Biology, Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | - Anne Pfeiffer
- Department of Stem Cell Biology, Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | - Andrej Miotk
- Department of Stem Cell Biology, Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | - Jana P Hakenjos
- Department of Stem Cell Biology, Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | - Joachim Forner
- Department of Stem Cell Biology, Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | - Martin F Yanofsky
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, San Diego, United States
| | - Anna Marciniak-Czochra
- Institute of Applied Mathematics, Heidelberg University, Heidelberg, Germany.,Interdisciplinary Center for Scientific Computing, Heidelberg University, Heidelberg, Germany.,Bioquant Center, Heidelberg University, Heidelberg, Germany
| | - Jan U Lohmann
- Department of Stem Cell Biology, Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
35
|
Mathan J, Bhattacharya J, Ranjan A. Enhancing crop yield by optimizing plant developmental features. Development 2017; 143:3283-94. [PMID: 27624833 DOI: 10.1242/dev.134072] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A number of plant features and traits, such as overall plant architecture, leaf structure and morphological features, vascular architecture and flowering time are important determinants of photosynthetic efficiency and hence the overall performance of crop plants. The optimization of such developmental traits thus has great potential to increase biomass and crop yield. Here, we provide a comprehensive review of these developmental traits in crop plants, summarizing their genetic regulation and highlighting the potential of manipulating these traits for crop improvement. We also briefly review the effects of domestication on the developmental features of crop plants. Finally, we discuss the potential of functional genomics-based approaches to optimize plant developmental traits to increase yield.
Collapse
Affiliation(s)
- Jyotirmaya Mathan
- National Institute of Plant Genome Research, New Delhi 110067, India
| | - Juhi Bhattacharya
- National Institute of Plant Genome Research, New Delhi 110067, India
| | - Aashish Ranjan
- National Institute of Plant Genome Research, New Delhi 110067, India
| |
Collapse
|
36
|
Ragni L, Greb T. Secondary growth as a determinant of plant shape and form. Semin Cell Dev Biol 2017; 79:58-67. [PMID: 28864343 DOI: 10.1016/j.semcdb.2017.08.050] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 07/26/2017] [Accepted: 08/28/2017] [Indexed: 02/06/2023]
Abstract
Plants are the primary producers of biomass on earth. As an almost stereotypic feature, higher plants generate continuously growing bodies mediated by the activity of different groups of stem cells, the meristems. Shoot and root thickening is one of the fundamental growth processes determining form and function of these bodies. Mediated by a group of cylindrical meristems located below organ surfaces, vascular and protective tissues are continuously generated in a highly plastic manner, a competence essential for the survival in an ever changing environment. Acknowledging the fundamental role of this process, which is overall designated as secondary growth, we discuss in this review our current knowledge about the evolution and molecular regulation of the vascular cambium. The cambium is the meristem responsible for the formation of wood and bast, the two types of vascular tissues important for long-distance transport of water and assimilates, respectively. Although regulatory patterns are only beginning to emerge, we show that cambium activity represents a highly rewarding model for studying cell fate decisions, tissue patterning and differentiation, which has experienced an outstanding phylogenetic diversification.
Collapse
Affiliation(s)
- Laura Ragni
- ZMBP, University of Tübingen, Auf der Morgenstelle 32, 72076 Tübingen, Germany.
| | - Thomas Greb
- Centre for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany.
| |
Collapse
|
37
|
Otrusinová O, Demo G, Padrta P, Jaseňáková Z, Pekárová B, Gelová Z, Szmitkowska A, Kadeřávek P, Jansen S, Zachrdla M, Klumpler T, Marek J, Hritz J, Janda L, Iwaï H, Wimmerová M, Hejátko J, Žídek L. Conformational dynamics are a key factor in signaling mediated by the receiver domain of a sensor histidine kinase from Arabidopsis thaliana. J Biol Chem 2017; 292:17525-17540. [PMID: 28860196 DOI: 10.1074/jbc.m117.790212] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 08/28/2017] [Indexed: 11/06/2022] Open
Abstract
Multistep phosphorelay (MSP) cascades mediate responses to a wide spectrum of stimuli, including plant hormonal signaling, but several aspects of MSP await elucidation. Here, we provide first insight into the key step of MSP-mediated phosphotransfer in a eukaryotic system, the phosphorylation of the receiver domain of the histidine kinase CYTOKININ-INDEPENDENT 1 (CKI1RD) from Arabidopsis thaliana We observed that the crystal structures of free, Mg2+-bound, and beryllofluoridated CKI1RD (a stable analogue of the labile phosphorylated form) were identical and similar to the active state of receiver domains of bacterial response regulators. However, the three CKI1RD variants exhibited different conformational dynamics in solution. NMR studies revealed that Mg2+ binding and beryllofluoridation alter the conformational equilibrium of the β3-α3 loop close to the phosphorylation site. Mutations that perturbed the conformational behavior of the β3-α3 loop while keeping the active-site aspartate intact resulted in suppression of CKI1 function. Mechanistically, homology modeling indicated that the β3-α3 loop directly interacts with the ATP-binding site of the CKI1 histidine kinase domain. The functional relevance of the conformational dynamics observed in the β3-α3 loop of CKI1RD was supported by a comparison with another A. thaliana histidine kinase, ETR1. In contrast to the highly dynamic β3-α3 loop of CKI1RD, the corresponding loop of the ETR1 receiver domain (ETR1RD) exhibited little conformational exchange and adopted a different orientation in crystals. Biochemical data indicated that ETR1RD is involved in phosphorylation-independent signaling, implying a direct link between conformational behavior and the ability of eukaryotic receiver domains to participate in MSP.
Collapse
Affiliation(s)
- Olga Otrusinová
- From the Central European Institute of Technology and.,Faculty of Science, National Centre for Biomolecular Research, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic and
| | - Gabriel Demo
- From the Central European Institute of Technology and
| | - Petr Padrta
- From the Central European Institute of Technology and.,Faculty of Science, National Centre for Biomolecular Research, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic and
| | - Zuzana Jaseňáková
- From the Central European Institute of Technology and.,Faculty of Science, National Centre for Biomolecular Research, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic and
| | - Blanka Pekárová
- From the Central European Institute of Technology and.,Faculty of Science, National Centre for Biomolecular Research, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic and
| | - Zuzana Gelová
- From the Central European Institute of Technology and.,Faculty of Science, National Centre for Biomolecular Research, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic and
| | - Agnieszka Szmitkowska
- From the Central European Institute of Technology and.,Faculty of Science, National Centre for Biomolecular Research, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic and
| | - Pavel Kadeřávek
- From the Central European Institute of Technology and.,Faculty of Science, National Centre for Biomolecular Research, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic and
| | - Séverine Jansen
- From the Central European Institute of Technology and.,Faculty of Science, National Centre for Biomolecular Research, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic and
| | - Milan Zachrdla
- From the Central European Institute of Technology and.,Faculty of Science, National Centre for Biomolecular Research, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic and
| | | | - Jaromír Marek
- From the Central European Institute of Technology and
| | - Jozef Hritz
- From the Central European Institute of Technology and
| | - Lubomír Janda
- From the Central European Institute of Technology and.,Faculty of Science, National Centre for Biomolecular Research, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic and
| | - Hideo Iwaï
- the Institute of Biotechnology, University of Helsinki, Viikinkaari 1 (P. O. Box 65), 00014 Helsinki, Finland
| | - Michaela Wimmerová
- From the Central European Institute of Technology and.,Faculty of Science, National Centre for Biomolecular Research, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic and
| | - Jan Hejátko
- From the Central European Institute of Technology and.,Faculty of Science, National Centre for Biomolecular Research, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic and
| | - Lukáš Žídek
- From the Central European Institute of Technology and .,Faculty of Science, National Centre for Biomolecular Research, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic and
| |
Collapse
|
38
|
Liu Z, Yuan L, Song X, Yu X, Sundaresan V. AHP2, AHP3, and AHP5 act downstream of CKI1 in Arabidopsis female gametophyte development. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68. [PMID: 28633292 PMCID: PMC5853337 DOI: 10.1093/jxb/erx181] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Histidine phosphotransfer proteins (HPs) are key elements of the two-component signaling system, which act as a shuttle to transfer phosphorylation signals from histidine kinases (HKs) to response regulators (RRs). CYTOKININ INDEPENDENT 1 (CKI1), a key regulator of central cell specification in the Arabidopsis female gametophyte, activates the cytokinin signaling pathway through the Arabidopsis histidine phosphotransfer proteins (AHPs). There are five HP genes in Arabidopsis, AHP1-AHP5, but it remains unknown which AHP genes act downstream of CKI1 in Arabidopsis female gametophyte development. Promoter activity analysis of AHP1-AHP5 in embryo sacs revealed AHP1, AHP2, AHP3, and AHP5 expression in the central cell. Phenotypic studies of various combinations of ahp mutants showed that triple mutations in AHP2, AHP3, and AHP5 resulted in defective embryo sac development. Using cell-specific single and double markers in the female gametophyte, the ahp2-2 ahp3 ahp5-2/+ triple mutant ovules showed loss of central cell and antipodal cell fates and gain of egg cell or synergid cell attributes, resembling the cki1 mutant phenotypes. These data suggest that AHP2, AHP3, and AHP5 are the major factors acting downstream of CKI1 in the two-component cytokinin signaling pathway to promote Arabidopsis female gametophyte development.
Collapse
Affiliation(s)
- Zhenning Liu
- College of Agriculture and Forestry Sciences, Linyi University, Linyi, Shandong, China
- Department of Plant Biology, University of California, Davis, CA, USA
- Institute of Vegetable Sciences, Zhejiang University, Hangzhou, China
| | - Li Yuan
- Department of Plant Biology, University of California, Davis, CA, USA
| | - Xiaoya Song
- Department of Plant Biology, University of California, Davis, CA, USA
| | - Xiaolin Yu
- Institute of Vegetable Sciences, Zhejiang University, Hangzhou, China
- Correspondence: or
| | - Venkatesan Sundaresan
- Department of Plant Biology, University of California, Davis, CA, USA
- Correspondence: or
| |
Collapse
|
39
|
Kang J, Lee Y, Sakakibara H, Martinoia E. Cytokinin Transporters: GO and STOP in Signaling. TRENDS IN PLANT SCIENCE 2017; 22:455-461. [PMID: 28372884 DOI: 10.1016/j.tplants.2017.03.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 02/23/2017] [Accepted: 03/02/2017] [Indexed: 05/04/2023]
Abstract
Cytokinins are phytohormones essential for cytokinesis and many other physiological and developmental processes in planta. Long-distance transport and intercellular transport have been postulated. For these processes, the existence of cytokinin transporters has been suggested. Recently, a transporter loading the xylem (AtABCG14) and another for cellular import (AtPUP14) have been discovered. AtABCG14 participates in the xylem loading process of cytokinins and contributes to the positive regulation of shoot growth. The cellular importer AtPUP14 is required to suppress cytokinin signaling. A role of a transporter as stop signal is a new paradigm for a hormone transporter.
Collapse
Affiliation(s)
- Joohyun Kang
- Institute of Plant and Microbial Biology, University Zurich, Zollikerstrasse 107, 8008 Zürich, Switzerland.
| | - Youngsook Lee
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Hitoshi Sakakibara
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan; RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro, Tsurumi, Yokohama 230-0045, Japan
| | - Enrico Martinoia
- Institute of Plant and Microbial Biology, University Zurich, Zollikerstrasse 107, 8008 Zürich, Switzerland
| |
Collapse
|
40
|
Dobisova T, Hrdinova V, Cuesta C, Michlickova S, Urbankova I, Hejatkova R, Zadnikova P, Pernisova M, Benkova E, Hejatko J. Light Controls Cytokinin Signaling via Transcriptional Regulation of Constitutively Active Sensor Histidine Kinase CKI1. PLANT PHYSIOLOGY 2017; 174:387-404. [PMID: 28292856 PMCID: PMC5411129 DOI: 10.1104/pp.16.01964] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 03/04/2017] [Indexed: 05/07/2023]
Abstract
In plants, the multistep phosphorelay (MSP) pathway mediates a range of regulatory processes, including those activated by cytokinins. The cross talk between cytokinin response and light has been known for a long time. However, the molecular mechanism underlying the interaction between light and cytokinin signaling remains elusive. In the screen for upstream regulators we identified a LONG PALE HYPOCOTYL (LPH) gene whose activity is indispensable for spatiotemporally correct expression of CYTOKININ INDEPENDENT1 (CKI1), encoding the constitutively active sensor His kinase that activates MSP signaling. lph is a new allele of HEME OXYGENASE1 (HY1) that encodes the key protein in the biosynthesis of phytochromobilin, a cofactor of photoconvertible phytochromes. Our analysis confirmed the light-dependent regulation of the CKI1 expression pattern. We show that CKI1 expression is under the control of phytochrome A (phyA), functioning as a dual (both positive and negative) regulator of CKI1 expression, presumably via the phyA-regulated transcription factors (TF) PHYTOCHROME INTERACTING FACTOR3 and CIRCADIAN CLOCK ASSOCIATED1. Changes in CKI1 expression observed in lph/hy1-7 and phy mutants correlate with misregulation of MSP signaling, changed cytokinin sensitivity, and developmental aberrations that were previously shown to be associated with cytokinin and/or CKI1 action. Besides that, we demonstrate a novel role of phyA-dependent CKI1 expression in the hypocotyl elongation and hook development during skotomorphogenesis. Based on these results, we propose that the light-dependent regulation of CKI1 provides a plausible mechanistic link underlying the well-known interaction between light- and cytokinin-controlled plant development.
Collapse
Affiliation(s)
- Tereza Dobisova
- CEITEC - Central European Institute of Technology and National Centre for Biomolecular Research, Masaryk University, CZ-62500, Brno, Czech Republic (T.D., V.H., S.M., I.U., R.H., P.Z., M.P., E.B., J.H.); and Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria (C.C., P.Z., E.B.)
| | - Vendula Hrdinova
- CEITEC - Central European Institute of Technology and National Centre for Biomolecular Research, Masaryk University, CZ-62500, Brno, Czech Republic (T.D., V.H., S.M., I.U., R.H., P.Z., M.P., E.B., J.H.); and Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria (C.C., P.Z., E.B.)
| | - Candela Cuesta
- CEITEC - Central European Institute of Technology and National Centre for Biomolecular Research, Masaryk University, CZ-62500, Brno, Czech Republic (T.D., V.H., S.M., I.U., R.H., P.Z., M.P., E.B., J.H.); and Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria (C.C., P.Z., E.B.)
| | - Sarka Michlickova
- CEITEC - Central European Institute of Technology and National Centre for Biomolecular Research, Masaryk University, CZ-62500, Brno, Czech Republic (T.D., V.H., S.M., I.U., R.H., P.Z., M.P., E.B., J.H.); and Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria (C.C., P.Z., E.B.)
| | - Ivana Urbankova
- CEITEC - Central European Institute of Technology and National Centre for Biomolecular Research, Masaryk University, CZ-62500, Brno, Czech Republic (T.D., V.H., S.M., I.U., R.H., P.Z., M.P., E.B., J.H.); and Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria (C.C., P.Z., E.B.)
| | - Romana Hejatkova
- CEITEC - Central European Institute of Technology and National Centre for Biomolecular Research, Masaryk University, CZ-62500, Brno, Czech Republic (T.D., V.H., S.M., I.U., R.H., P.Z., M.P., E.B., J.H.); and Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria (C.C., P.Z., E.B.)
| | - Petra Zadnikova
- CEITEC - Central European Institute of Technology and National Centre for Biomolecular Research, Masaryk University, CZ-62500, Brno, Czech Republic (T.D., V.H., S.M., I.U., R.H., P.Z., M.P., E.B., J.H.); and Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria (C.C., P.Z., E.B.)
| | - Marketa Pernisova
- CEITEC - Central European Institute of Technology and National Centre for Biomolecular Research, Masaryk University, CZ-62500, Brno, Czech Republic (T.D., V.H., S.M., I.U., R.H., P.Z., M.P., E.B., J.H.); and Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria (C.C., P.Z., E.B.)
| | - Eva Benkova
- CEITEC - Central European Institute of Technology and National Centre for Biomolecular Research, Masaryk University, CZ-62500, Brno, Czech Republic (T.D., V.H., S.M., I.U., R.H., P.Z., M.P., E.B., J.H.); and Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria (C.C., P.Z., E.B.)
| | - Jan Hejatko
- CEITEC - Central European Institute of Technology and National Centre for Biomolecular Research, Masaryk University, CZ-62500, Brno, Czech Republic (T.D., V.H., S.M., I.U., R.H., P.Z., M.P., E.B., J.H.); and Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria (C.C., P.Z., E.B.)
| |
Collapse
|
41
|
Li SW, Leng Y, Shi RF. Transcriptomic profiling provides molecular insights into hydrogen peroxide-induced adventitious rooting in mung bean seedlings. BMC Genomics 2017; 18:188. [PMID: 28212614 PMCID: PMC5316208 DOI: 10.1186/s12864-017-3576-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 02/09/2017] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Hydrogen peroxide (H2O2) has been known to function as a signalling molecule involved in the modulation of various physiological processes in plants. H2O2 has been shown to act as a promoter during adventitious root formation in hypocotyl cuttings. In this study, RNA-Seq was performed to reveal the molecular mechanisms underlying H2O2-induced adventitious rooting. RESULTS RNA-Seq data revealed that H2O2 treatment greatly increased the numbers of clean reads and expressed genes and abundance of gene expression relative to the water treatment. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses indicated that a profound change in gene function occurred in the 6-h H2O2 treatment and that H2O2 mainly enhanced gene expression levels at the 6-h time point but reduced gene expression levels at the 24-h time point compared with the water treatment. In total, 4579 differentially expressed (2-fold change > 2) unigenes (DEGs), of which 78.3% were up-regulated and 21.7% were down-regulated; 3525 DEGs, of which 64.0% were up-regulated and 36.0% were down-regulated; and 7383 DEGs, of which 40.8% were up-regulated and 59.2% were down-regulated were selected in the 6-h, 24-h, and from 6- to 24-h treatments, respectively. The number of DEGs in the 6-h treatment was 29.9% higher than that in the 24-h treatment. The functions of the most highly regulated genes were associated with stress response, cell redox homeostasis and oxidative stress response, cell wall loosening and modification, metabolic processes, and transcription factors (TFs), as well as plant hormone signalling, including auxin, ethylene, cytokinin, gibberellin, and abscisic acid pathways. Notably, a large number of genes encoding for heat shock proteins (HSPs) and heat shock transcription factors (HSFs) were significantly up-regulated during H2O2 treatments. Furthermore, real-time quantitative PCR (qRT-PCR) results showed that, during H2O2 treatments, the expression levels of ARFs, IAAs, AUXs, NACs, RD22, AHKs, MYBs, PIN1, AUX15A, LBD29, LBD41, ADH1b, and QORL were significantly up-regulated at the 6- and/or 24-h time points. In contrast, PER1 and PER2 were significantly down-regulated by H2O2 treatment. These qRT-PCR results strongly correlated with the RNA-Seq data. CONCLUSIONS Using RNA-Seq and qRT-PCR techniques, we analysed the global changes in gene expression and functional profiling during H2O2-induced adventitious rooting in mung bean seedlings. These results strengthen the current understanding of H2O2-induced adventitious rooting and the molecular traits of H2O2 priming in plants.
Collapse
Affiliation(s)
- Shi-Weng Li
- School of Environmental and Municipal Engineering, Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Gansu Province, Lanzhou Jiaotong University, 88 West Anning Road, Lanzhou, 730070 People’s Republic of China
| | - Yan Leng
- School of Environmental and Municipal Engineering, Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Gansu Province, Lanzhou Jiaotong University, 88 West Anning Road, Lanzhou, 730070 People’s Republic of China
| | - Rui-Fang Shi
- School of Environmental and Municipal Engineering, Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Gansu Province, Lanzhou Jiaotong University, 88 West Anning Road, Lanzhou, 730070 People’s Republic of China
| |
Collapse
|
42
|
Oles V, Panchenko A, Smertenko A. Modeling hormonal control of cambium proliferation. PLoS One 2017; 12:e0171927. [PMID: 28187161 PMCID: PMC5302410 DOI: 10.1371/journal.pone.0171927] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 01/29/2017] [Indexed: 12/14/2022] Open
Abstract
Rise of atmospheric CO2 is one of the main causes of global warming. Catastrophic climate change can be avoided by reducing emissions and increasing sequestration of CO2. Trees are known to sequester CO2 during photosynthesis, and then store it as wood biomass. Thus, breeding of trees with higher wood yield would mitigate global warming as well as augment production of renewable construction materials, energy, and industrial feedstock. Wood is made of cellulose-rich xylem cells produced through proliferation of a specialized stem cell niche called cambium. Importance of cambium in xylem cells production makes it an ideal target for the tree breeding programs; however our knowledge about control of cambium proliferation remains limited. The morphology and regulation of cambium are different from those of stem cell niches that control axial growth. For this reason, translating the knowledge about axial growth to radial growth has limited use. Furthermore, genetic approaches cannot be easily applied because overlaying tissues conceal cambium from direct observation and complicate identification of mutants. To overcome the paucity of experimental tools in cambium biology, we constructed a Boolean network CARENET (CAmbium REgulation gene NETwork) for modelling cambium activity, which includes the key transcription factors WOX4 and HD-ZIP III as well as their potential regulators. Our simulations predict that: (1) auxin, cytokinin, gibberellin, and brassinosteroids act cooperatively in promoting transcription of WOX4 and HD-ZIP III; (2) auxin and cytokinin pathways negatively regulate each other; (3) hormonal pathways act redundantly in sustaining cambium activity; (4) individual cambium cells can have diverse molecular identities. CARENET can be extended to include components of other signalling pathways and be integrated with models of xylem and phloem differentiation. Such extended models would facilitate breeding trees with higher wood yield.
Collapse
Affiliation(s)
- Vladyslav Oles
- Department of Mathematics, Washington State University, Pullman, Washington, United States of America
| | - Alexander Panchenko
- Department of Mathematics, Washington State University, Pullman, Washington, United States of America
- * E-mail: (AP); (AS)
| | - Andrei Smertenko
- Institute of Biological Chemistry, Washington State University, Pullman, Washington, United States of America
- * E-mail: (AP); (AS)
| |
Collapse
|
43
|
Cho H, Dang TVT, Hwang I. Emergence of plant vascular system: roles of hormonal and non-hormonal regulatory networks. CURRENT OPINION IN PLANT BIOLOGY 2017; 35:91-97. [PMID: 27918941 DOI: 10.1016/j.pbi.2016.11.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 11/16/2016] [Accepted: 11/22/2016] [Indexed: 06/06/2023]
Abstract
The divergence of land plants followed by vascular plants has entirely changed the terrestrial ecology. The vascular system is a prerequisite for this evolutionary event, providing upright stature and communication for sink demand-source capacity and facilitating the development of plants and colonization over a wide range of environmental habitats. Various hormonal and non-hormonal regulatory networks have been identified and reviewed as key processes for vascular formation; however, how these factors have evolutionarily emerged and interconnected to trigger the emergence of the vascular system still remains elusive. Here, to understand the intricacy of cross-talks among these factors, we highlight how core hormonal signaling and transcriptional networks are coalesced into the appearance of vascular plants during evolution.
Collapse
Affiliation(s)
- Hyunwoo Cho
- Department of Life Sciences, POSTECH Biotech Center, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| | - Tuong Vi T Dang
- Department of Life Sciences, POSTECH Biotech Center, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| | - Ildoo Hwang
- Department of Life Sciences, POSTECH Biotech Center, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea.
| |
Collapse
|
44
|
Abstract
The history of auxin and cytokinin biology including the initial discoveries by father-son duo Charles Darwin and Francis Darwin (1880), and Gottlieb Haberlandt (1919) is a beautiful demonstration of unceasing continuity of research. Novel findings are integrated into existing hypotheses and models and deepen our understanding of biological principles. At the same time new questions are triggered and hand to hand with this new methodologies are developed to address these new challenges.
Collapse
Affiliation(s)
- Andrej Hurný
- Institute of Science and Technology, Am Campus 1, 3400, Klosterneuburg, Austria
| | - Eva Benková
- Institute of Science and Technology, Am Campus 1, 3400, Klosterneuburg, Austria.
| |
Collapse
|
45
|
Kim H, Kojima M, Choi D, Park S, Matsui M, Sakakibara H, Hwang I. Overexpression of INCREASED CAMBIAL ACTIVITY, a putative methyltransferase, increases cambial activity and plant growth. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2016; 58:874-889. [PMID: 27322968 DOI: 10.1111/jipb.12486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 06/20/2016] [Indexed: 06/06/2023]
Abstract
Cambial activity is a prerequisite for secondary growth in plants; however, regulatory factors controlling the activity of the secondary meristem in radial growth remain elusive. Here, we identified INCREASED CAMBIAL ACTIVITY (ICA), a gene encoding a putative pectin methyltransferase, which could function as a modulator for the meristematic activity of fascicular and interfascicular cambium in Arabidopsis. An overexpressing transgenic line, 35S::ICA, showed accelerated stem elongation and radial thickening, resulting in increased accumulation of biomass, and increased levels of cytokinins (CKs) and gibberellins (GAs). Expression of genes encoding pectin methylesterases involved in pectin modification together with pectin methyltransferases was highly induced in 35S::ICA, which might contribute to an increase of methanol emission as a byproduct in 35S::ICA. Methanol treatment induced the expression of GA- or CK-responsive genes and stimulated plant growth. Overall, we propose that ectopic expression of ICA increases cambial activity by regulating CK and GA homeostasis, and methanol emission, eventually leading to stem elongation and radial growth in the inflorescence stem.
Collapse
Affiliation(s)
- Hyunsook Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Mikiko Kojima
- Riken Center for Sustainable Resource Science (CSRS), Tsurumi, Yokohama 230-0045, Japan
| | - Daeseok Choi
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Soyoung Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Minami Matsui
- Synthetic Genomics Research Team, Biomass Research Cooperation Division (BMEP), RIKEN Center for Sustainable Resource Science (CSRS), Tsurumi, Yokohama 230-0045, Japan
| | - Hitoshi Sakakibara
- Riken Center for Sustainable Resource Science (CSRS), Tsurumi, Yokohama 230-0045, Japan
| | - Ildoo Hwang
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Korea.
| |
Collapse
|
46
|
Abstract
The flowering plant female gametophyte carries two gametes, an egg cell and a central cell, whose double fertilization gives rise to embryo and endosperm, respectively. In this issue of Developmental Cell, Yuan et al. (2016) identify the protein CKI1 as a key switch that controls the differential female gamete identities.
Collapse
Affiliation(s)
- Dolf Weijers
- Laboratory of Biochemistry, Wageningen University, Dreijenlaan 3, 6703HA Wageningen, the Netherlands.
| |
Collapse
|
47
|
Davin N, Edger PP, Hefer CA, Mizrachi E, Schuetz M, Smets E, Myburg AA, Douglas CJ, Schranz ME, Lens F. Functional network analysis of genes differentially expressed during xylogenesis in soc1ful woody Arabidopsis plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 86:376-90. [PMID: 26952251 DOI: 10.1111/tpj.13157] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 02/29/2016] [Accepted: 03/03/2016] [Indexed: 05/21/2023]
Abstract
Many plant genes are known to be involved in the development of cambium and wood, but how the expression and functional interaction of these genes determine the unique biology of wood remains largely unknown. We used the soc1ful loss of function mutant - the woodiest genotype known in the otherwise herbaceous model plant Arabidopsis - to investigate the expression and interactions of genes involved in secondary growth (wood formation). Detailed anatomical observations of the stem in combination with mRNA sequencing were used to assess transcriptome remodeling during xylogenesis in wild-type and woody soc1ful plants. To interpret the transcriptome changes, we constructed functional gene association networks of differentially expressed genes using the STRING database. This analysis revealed functionally enriched gene association hubs that are differentially expressed in herbaceous and woody tissues. In particular, we observed the differential expression of genes related to mechanical stress and jasmonate biosynthesis/signaling during wood formation in soc1ful plants that may be an effect of greater tension within woody tissues. Our results suggest that habit shifts from herbaceous to woody life forms observed in many angiosperm lineages could have evolved convergently by genetic changes that modulate the gene expression and interaction network, and thereby redeploy the conserved wood developmental program.
Collapse
Affiliation(s)
- Nicolas Davin
- Naturalis Biodiversity Center, Leiden University, PO Box 9517, 2300 RA Leiden, The Netherlands
| | - Patrick P Edger
- Department of Horticulture, Michigan State University, East Lansing, MI, 48823, USA
| | - Charles A Hefer
- Department of Botany, University of British Columbia, Department of Botany, 6270 University Blvd, Vancouver BC V6T 1Z4, Canada
- Biotechnology Platform, Agricultural Research Council, Private Bag X5, Onderstepoort, 0110, South Africa
| | - Eshchar Mizrachi
- Department of Genetics, University of Pretoria, PO Box X20, Pretoria, 0028, South Africa
- Genomics Research Institute (GRI), University of Pretoria, Private Bag X20, Pretoria, 0028, South Africa
| | - Mathias Schuetz
- Department of Botany, University of British Columbia, Department of Botany, 6270 University Blvd, Vancouver BC V6T 1Z4, Canada
- Michael Smith Laboratories, University of British Columbia, 6270 University boulevard, V6T 1Z4, Vancouver, BC, Canada
| | - Erik Smets
- Naturalis Biodiversity Center, Leiden University, PO Box 9517, 2300 RA Leiden, The Netherlands
- Ecology, Evolution and Biodiversity Conservation Section, Katholieke Universiteit Leuven, Kasteelpark Arenberg 31 box 2435, 3001 Leuven, Belgium
| | - Alexander A Myburg
- Department of Genetics, University of Pretoria, PO Box X20, Pretoria, 0028, South Africa
- Genomics Research Institute (GRI), University of Pretoria, Private Bag X20, Pretoria, 0028, South Africa
| | - Carl J Douglas
- Department of Botany, University of British Columbia, Department of Botany, 6270 University Blvd, Vancouver BC V6T 1Z4, Canada
| | - Michael E Schranz
- Biosystematics Group, Wageningen University, PO Box 16, 6700AP Wageningen, The Netherlands
| | - Frederic Lens
- Naturalis Biodiversity Center, Leiden University, PO Box 9517, 2300 RA Leiden, The Netherlands
| |
Collapse
|
48
|
Zürcher E, Müller B. Cytokinin Synthesis, Signaling, and Function--Advances and New Insights. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 324:1-38. [PMID: 27017005 DOI: 10.1016/bs.ircmb.2016.01.001] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The plant hormones referred to as cytokinins are chemical signals that control numerous developmental processes throughout the plant life cycle, including gametogenesis, root meristem specification, vascular development, shoot and root growth, meristem homeostasis, senescence, and more. In addition, they mediate responses to environmental cues such as light, stress, and nutrient conditions. The core mechanistics of cytokinin metabolism and signaling have been elucidated, but more layers of regulation, additional functions, and interactions with other signals are continuously discovered and described. In this chapter, we recapitulate the highlights of over 100 years of cytokinin research covering its isolation, the elucidation of phosphorelay signaling, and how cytokinin functions in various developmental contexts including its interaction with other pathways. Additionally, given cytokinin's paracrine signaling mechanism, we postulate that cellular exporters for cytokinins exist.
Collapse
Affiliation(s)
- E Zürcher
- Department of Plant and Microbial Biology, Zurich-Basel Plant Science Center, University of Zurich Zurich, Switzerland
| | - B Müller
- Department of Plant and Microbial Biology, Zurich-Basel Plant Science Center, University of Zurich Zurich, Switzerland.
| |
Collapse
|
49
|
Pekárová B, Szmitkowska A, Dopitová R, Degtjarik O, Žídek L, Hejátko J. Structural Aspects of Multistep Phosphorelay-Mediated Signaling in Plants. MOLECULAR PLANT 2016; 9:71-85. [PMID: 26633861 DOI: 10.1016/j.molp.2015.11.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 11/17/2015] [Accepted: 11/18/2015] [Indexed: 05/16/2023]
Abstract
The multistep phosphorelay (MSP) is a central signaling pathway in plants integrating a wide spectrum of hormonal and environmental inputs and controlling numerous developmental adaptations. For the thorough comprehension of the molecular mechanisms underlying the MSP-mediated signal recognition and transduction, the detailed structural characterization of individual members of the pathway is critical. In this review we describe and discuss the recently known crystal and nuclear magnetic resonance structures of proteins acting in MSP signaling in higher plants, focusing particularly on cytokinin and ethylene signaling in Arabidopsis thaliana. We discuss the range of functional aspects of available structural information including determination of ligand specificity, activation of the receptor via its autophosphorylation, and downstream signal transduction through the phosphorelay. We compare the plant structures with their bacterial counterparts and show that although the overall similarity is high, the differences in structural details are frequent and functionally important. Finally, we discuss emerging knowledge on molecular recognition mechanisms in the MSP, and mention the latest findings regarding structural determinants of signaling specificity in the Arabidopsis MSP that could serve as a general model of this pathway in all higher plants.
Collapse
Affiliation(s)
- Blanka Pekárová
- Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Agnieszka Szmitkowska
- Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Radka Dopitová
- Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Oksana Degtjarik
- Faculty of Science, Institute of Chemistry and Biochemistry, University of South Bohemia, 370 05 České Budějovice, Czech Republic
| | - Lukáš Žídek
- Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Jan Hejátko
- Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic.
| |
Collapse
|
50
|
Shanks CM, Rice JH, Zubo Y, Schaller GE, Hewezi T, Kieber JJ. The Role of Cytokinin During Infection of Arabidopsis thaliana by the Cyst Nematode Heterodera schachtii. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2016; 29:57-68. [PMID: 26479273 DOI: 10.1094/mpmi-07-15-0156-r] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Plant-parasitic cyst nematodes induce the formation of hypermetabolic feeding sites, termed syncytia, as their sole source of nutrients. The formation of the syncytium is orchestrated by the nematode, in part, by modulation of phytohormone responses, including cytokinin. In response to infection by the nematode Heterodera schachtii, cytokinin signaling is transiently induced at the site of infection and in the developing syncytium. Arabidopsis lines with reduced cytokinin sensitivity show reduced susceptibility to nematode infection, indicating that cytokinin signaling is required for optimal nematode development. Furthermore, lines with increased cytokinin sensitivity also exhibit reduced nematode susceptibility. To ascertain why cytokinin hypersensitivity reduces nematode parasitism, we examined the transcriptomes in wild type and a cytokinin-hypersensitive type-A arr Arabidopsis mutant in response to H. schachtii infection. Genes involved in the response to biotic stress and defense response were elevated in the type-A arr mutant in the absence of nematodes and were hyperinduced following H. schachtii infection, which suggests that the Arabidopsis type-A arr mutants impede nematode development because they are primed to respond to pathogen infection. These results suggest that cytokinin signaling is required for optimal H. schachtii parasitism of Arabidopsis but that elevated cytokinin signaling triggers a heightened immune response to nematode infection.
Collapse
Affiliation(s)
- Carly M Shanks
- 1 Department of Biology, University of North Carolina, Chapel Hill, NC 27599, U.S.A
| | - J Hollis Rice
- 2 Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996, U.S.A
| | - Yan Zubo
- 3 Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, U.S.A
| | - G Eric Schaller
- 3 Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, U.S.A
| | - Tarek Hewezi
- 2 Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996, U.S.A
| | - Joseph J Kieber
- 1 Department of Biology, University of North Carolina, Chapel Hill, NC 27599, U.S.A
| |
Collapse
|