1
|
Fiorentini VHR, Wairich A, Costa MMDC, Brunetto G, Grynberg P, Togawa RC, Melo GWBD, Dos Santos HP, Revers LF, Ricachenevsky FK. Copper excess transcriptional responses in roots of grapevine (Vitis sp.) rootstocks. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136301. [PMID: 39504770 DOI: 10.1016/j.jhazmat.2024.136301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 10/03/2024] [Accepted: 10/24/2024] [Indexed: 11/08/2024]
Abstract
Copper (Cu) is an essential element for plants, participating in photosynthesis, oxidative metabolism and cell wall synthesis. However, excessive Cu may become toxic, as Cu participates in Fenton chemistry and cause oxidative stress. Grapevine (Vitis sp.) is an important perennial crop, used for in natura consumption as well as for wine and juice. Vineyards are susceptible to fungal diseases that are commonly controlled by using Cu-based fungicides, which can lead to Cu accumulation in the soil. Since grape production is based on grafting scions of consumed-friendly varieties onto rootstocks that can withstand soil-borne diseases and stresses, it is important to identify rootstock genotypes that are tolerant to Cu excess. In this work, we compared physiological and molecular responses of four Vitis sp. rootstock genotypes to Cu excess, namely IAC, IBCA, Paulsen and Isabel. While IAC, IBCA, Paulsen were similarly tolerant, Isabel was the most sensitive to Cu excess. IAC and IBCA showed higher Cu accumulation in shoots, suggesting distinct partitioning strategy. We identified core Cu excess-responsive genes in grapevine roots of all four genotypes, including a putative HMA vacuolar Cu transporter and Cu-binding proteins. Genes related to the homeostasis of other elements are altered, such as iron (Fe) and phosphorus (P), suggesting that Cu excess alters the ionome balance. IAC and IBCA had extensive changes in their laccase gene repertoire, suggesting that could be related to the distinct Cu partitioning. Moreover, genes associated specifically with Isabel could be related to the genotype Cu excess sensitivity. Our work provides a valuable dataset for understanding variation in Cu tolerance how roots respond transcriptionally to Cu stress, and provide candidate genes for engineering Cu tolerance in grapevines.
Collapse
Affiliation(s)
- Victor Hugo Rolla Fiorentini
- Graduate Program in Cell and Molecular Biology (PPGBCM), Center for Biotechnology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Andriele Wairich
- Laboratory of Plant Molecular Genetics, Embrapa Uva e Vinho, Bento Gonçalves, RS, Brazil; Department of Agronomy and Crop Physiology, Justus Liebig University Giessen, Germany
| | | | - Gustavo Brunetto
- Department of Soil, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | | | | | | | | | - Luis Fernando Revers
- Laboratory of Plant Molecular Genetics, Embrapa Uva e Vinho, Bento Gonçalves, RS, Brazil.
| | - Felipe Klein Ricachenevsky
- Graduate Program in Cell and Molecular Biology (PPGBCM), Center for Biotechnology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Botany Department, Institute of Biosciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
2
|
Li YR, Cai W, Zhang YX, Zhang NX, Huang QL, Lu YT, Yuan TT. A CC-Type Glutaredoxins GRX480 Functions in Cadmium Tolerance by Maintaining Redox Homeostasis in Arabidopsis. Int J Mol Sci 2024; 25:11455. [PMID: 39519008 PMCID: PMC11546484 DOI: 10.3390/ijms252111455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/26/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Cadmium (Cd) toxicity causes oxidative stress damage in plant cells. Glutaredoxins (GRXs), a type of small oxidoreductase, play a crucial role in modulating thiol redox states. However, whether GRXs act in Cd stress remains to be identified. Here, we reveal that Arabidopsis GRX480, a member of the CC-type family, enhances plant Cd stress tolerance. The GRX480 mutants exhibit enhanced sensitivity to Cd stress, manifested by shortened root, reduced biomass, lower chlorophyll and proline levels, and decreased photosynthetic efficiency compared with the wild type. The Cd concentration in GRX480 mutants is higher than the wild type, resulting from the inhibition of Cd efflux and transport genes transcription. Lower levels of GSH were detected in Cd-treated GRX480 mutants than in the wild type, indicating that GRX480 regulates plant Cd tolerance by influencing the balance between GSH and GSSG. Furthermore, the hyperaccumulation of reactive oxygen species (ROS) is associated with decreased expression of H2O2 scavenging genes in Cd-treated GRX480 mutants. Additionally, more toxic reactive carbonyl species (RCS), produced during oxidative stress, accumulate in Cd-treated GRX480 mutants than in wild type. Overall, our study establishes a critical role of GRX480 in response to Cd stress, highlighting its multifaceted contributions to detoxification and the maintenance of redox homeostasis.
Collapse
Affiliation(s)
- Ying-Rui Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Wei Cai
- Institute of Crop Science of Wuhan Academy of Agriculture Science, Wuhan 430345, China
| | - Ya-Xuan Zhang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Ning-Xin Zhang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Qiao-Ling Huang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Ying-Tang Lu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Ting-Ting Yuan
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
3
|
Beauchet A, Bollier N, Grison M, Rofidal V, Gévaudant F, Bayer E, Gonzalez N, Chevalier C. The CELL NUMBER REGULATOR FW2.2 protein regulates cell-to-cell communication in tomato by modulating callose deposition at plasmodesmata. PLANT PHYSIOLOGY 2024; 196:883-901. [PMID: 38588030 PMCID: PMC11444278 DOI: 10.1093/plphys/kiae198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 02/28/2024] [Accepted: 02/28/2024] [Indexed: 04/10/2024]
Abstract
FW2.2 (standing for FRUIT WEIGHT 2.2), the founding member of the CELL NUMBER REGULATOR (CNR) gene family, was the first cloned gene underlying a quantitative trait locus (QTL) governing fruit size and weight in tomato (Solanum lycopersicum). However, despite this discovery over 20 yr ago, the molecular mechanisms by which FW2.2 negatively regulates cell division during fruit growth remain undeciphered. In the present study, we confirmed that FW2.2 is a membrane-anchored protein whose N- and C-terminal ends face the apoplast. We unexpectedly found that FW2.2 is located at plasmodesmata (PD). FW2.2 participates in the spatiotemporal regulation of callose deposition at PD and belongs to a protein complex which encompasses callose synthases. These results suggest that FW2.2 has a regulatory role in cell-to-cell communication by modulating PD transport capacity and trafficking of signaling molecules during fruit development.
Collapse
Affiliation(s)
- Arthur Beauchet
- INRAE, UMR1332 Biologie du Fruit et Pathologie, Université Bordeaux, Villenave d'Ornon F-33140, France
| | - Norbert Bollier
- INRAE, UMR1332 Biologie du Fruit et Pathologie, Université Bordeaux, Villenave d'Ornon F-33140, France
| | - Magali Grison
- CNRS, UMR5200 Laboratoire de Biogenèse Membranaire, Université Bordeaux, Villenave d'Ornon F-33140, France
| | - Valérie Rofidal
- IPSiM, CNRS, INRAE, Institut Sup Agro, Université Montpellier, Montpellier F-34060, France
| | - Frédéric Gévaudant
- INRAE, UMR1332 Biologie du Fruit et Pathologie, Université Bordeaux, Villenave d'Ornon F-33140, France
| | - Emmanuelle Bayer
- CNRS, UMR5200 Laboratoire de Biogenèse Membranaire, Université Bordeaux, Villenave d'Ornon F-33140, France
| | - Nathalie Gonzalez
- INRAE, UMR1332 Biologie du Fruit et Pathologie, Université Bordeaux, Villenave d'Ornon F-33140, France
| | - Christian Chevalier
- INRAE, UMR1332 Biologie du Fruit et Pathologie, Université Bordeaux, Villenave d'Ornon F-33140, France
| |
Collapse
|
4
|
Muro K, Segami S, Kawachi M, Horikawa N, Namiki A, Hashiguchi K, Maeshima M, Takano J. Localization of the MTP4 transporter to trans-Golgi network in pollen tubes of Arabidopsis thaliana. JOURNAL OF PLANT RESEARCH 2024; 137:939-950. [PMID: 39069582 DOI: 10.1007/s10265-024-01559-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 06/17/2024] [Indexed: 07/30/2024]
Abstract
Zinc (Zn) is an essential element for plants. Numerous proteins in different cellular compartments require Zn for their structure and function. Zn can be toxic when it accumulates in high levels in the cytoplasm. Therefore, Zn homeostasis at tissue, cell, and organelle levels is vital for plant growth. A part of the metal tolerance protein (MTP) / Cation Diffusion Facilitator (CDF) transporters functions as Zn transporters, exporting Zn from the cytosol to various membrane compartments. In Arabidopsis thaliana, MTP1, MTP2, MTP3, MTP4, MTP5, and MTP12 are classified as Zn transporters (Zn-CDF). In this study, we systematically analyzed the localization of GFP-fused Zn-CDFs in the leaf epidermal cells of Nicotiana benthamiana. As previously reported, MTP1 and MTP3 were localized to tonoplast, MTP2 to endoplasmic reticulum, and MTP5 to Golgi. In addition, we identified the localization of MTP4 to trans-Golgi Network (TGN). Since MTP4 is specifically expressed in pollen, we analyzed the localization of MTP4-GFP in the Arabidopsis pollen tubes and confirmed that it is in the TGN. We also showed the Zn transport capability of MTP4 in yeast cells. We then analyzed the phenotype of an mtp4 T-DNA insertion mutant under both limited and excess Zn conditions. We found that their growth and fertility were not largely different from the wild-type. Our study has paved the way for investigating the possible roles of MTP4 in metallating proteins in the secretory pathway or in exporting excess Zn through exocytosis. In addition, our system of GFP-fused MTPs will help study the mechanisms for targeting transporters to specific membrane compartments.
Collapse
Affiliation(s)
- Keita Muro
- Graduate School of Agriculture, Osaka Metropolitan University, Sakai, Osaka, 599-8531, Japan
| | - Shoji Segami
- Division of Evolutionary Biology, National Institute for Basic Biology, Okazaki, Aichi, 444-8585, Japan
| | - Miki Kawachi
- Division of Crop Plant Genetics, Georg-August-Universität Göttingen, 37075, Göttingen, Germany
| | - Nodoka Horikawa
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, 37075, Japan
| | - Ayane Namiki
- Department of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, 599-8531, Japan
| | - Komachi Hashiguchi
- Department of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, 599-8531, Japan
| | - Masayoshi Maeshima
- College of Bioscience and Biotechnology, Chubu University, Kasugai, Aichi, 487-8501, Japan
| | - Junpei Takano
- Graduate School of Agriculture, Osaka Metropolitan University, Sakai, Osaka, 599-8531, Japan.
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, 37075, Japan.
- Department of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, 599-8531, Japan.
| |
Collapse
|
5
|
Krämer U. Metal Homeostasis in Land Plants: A Perpetual Balancing Act Beyond the Fulfilment of Metalloproteome Cofactor Demands. ANNUAL REVIEW OF PLANT BIOLOGY 2024; 75:27-65. [PMID: 38277698 DOI: 10.1146/annurev-arplant-070623-105324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
Abstract
One of life's decisive innovations was to harness the catalytic power of metals for cellular chemistry. With life's expansion, global atmospheric and biogeochemical cycles underwent dramatic changes. Although initially harmful, they permitted the evolution of multicellularity and the colonization of land. In land plants as primary producers, metal homeostasis faces heightened demands, in part because soil is a challenging environment for nutrient balancing. To avoid both nutrient metal limitation and metal toxicity, plants must maintain the homeostasis of metals within tighter limits than the homeostasis of other minerals. This review describes the present model of protein metalation and sketches its transfer from unicellular organisms to land plants as complex multicellular organisms. The inseparable connection between metal and redox homeostasis increasingly draws our attention to more general regulatory roles of metals. Mineral co-option, the use of nutrient or other metals for functions other than nutrition, is an emerging concept beyond that of nutritional immunity.
Collapse
Affiliation(s)
- Ute Krämer
- Molecular Genetics and Physiology of Plants, Ruhr University Bochum, Bochum, Germany;
| |
Collapse
|
6
|
Shi X, Du J, Wang X, Zhang X, Yan X, Yang Y, Jia H, Zhang S. NtGCN2 confers cadmium tolerance in Nicotiana tabacum L. by regulating cadmium uptake, efflux, and subcellular distribution. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 930:172695. [PMID: 38663613 DOI: 10.1016/j.scitotenv.2024.172695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/08/2024] [Accepted: 04/21/2024] [Indexed: 05/04/2024]
Abstract
General control non-derepressible-2 (GCN2) is widely expressed in eukaryotes and responds to biotic and abiotic stressors. However, the precise function and mechanism of action of GCN2 in response to cadmium (Cd) stress in Nicotiana tabacum L. (tobacco) remains unclear. We investigated the role of NtGCN2 in Cd tolerance and explored the mechanism by which NtGCN2 responds to Cd stress in tobacco by exposing NtGCN2 transgenic tobacco lines to different concentrations of CdCl2. NtGCN2 was activated under 50 μmol·L-1 CdCl2 stress and enhanced the Cd tolerance and photosynthetic capacities of tobacco by increasing chlorophyll content and antioxidant capacity by upregulating NtSOD, NtPOD, and NtCAT expression and corresponding enzyme activities and decreasing malondialdehyde and O2·- contents. NtGCN2 enhanced the osmoregulatory capacity of tobacco by elevating proline (Pro) and soluble sugar contents and maintaining low levels of relative conductivity. Finally, NtGCN2 enhanced Cd tolerance in tobacco by reducing Cd uptake and translocation, promoting Cd efflux, and regulating Cd subcellular distribution. In conclusion, NtGCN2 improves the tolerance of tobacco to Cd through a series of mechanisms, namely, increasing antioxidant, photosynthetic, and osmoregulation capacities and regulating Cd uptake, translocation, efflux, and subcellular distribution. This study provides a scientific basis for further exploration of the role of NtGCN2 in plant responses to Cd stress and enhancement of the Cd stress signaling network in tobacco.
Collapse
Affiliation(s)
- Xiaotian Shi
- Key Laboratory of Tobacco Cultivation in Tobacco Industry, National Tobacco Cultivation & Physiology & Biochemistry Research Centre, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - Jiao Du
- Key Laboratory of Tobacco Cultivation in Tobacco Industry, National Tobacco Cultivation & Physiology & Biochemistry Research Centre, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - Xu Wang
- Key Laboratory of Tobacco Cultivation in Tobacco Industry, National Tobacco Cultivation & Physiology & Biochemistry Research Centre, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - Xiaoquan Zhang
- Key Laboratory of Tobacco Cultivation in Tobacco Industry, National Tobacco Cultivation & Physiology & Biochemistry Research Centre, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - Xiaoxiao Yan
- Key Laboratory of Tobacco Cultivation in Tobacco Industry, National Tobacco Cultivation & Physiology & Biochemistry Research Centre, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - Yongxia Yang
- Key Laboratory of Tobacco Cultivation in Tobacco Industry, National Tobacco Cultivation & Physiology & Biochemistry Research Centre, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - Hongfang Jia
- Key Laboratory of Tobacco Cultivation in Tobacco Industry, National Tobacco Cultivation & Physiology & Biochemistry Research Centre, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, Henan, China.
| | - Songtao Zhang
- Key Laboratory of Tobacco Cultivation in Tobacco Industry, National Tobacco Cultivation & Physiology & Biochemistry Research Centre, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, Henan, China.
| |
Collapse
|
7
|
Wang D, Zhang H, Hu X, Zhang H, Feng S, Zhou A. Cell number regulator 8 from Salix linearistipularis enhances cadmium tolerance in poplar by reducing cadmium uptake and accumulation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 206:108216. [PMID: 38016370 DOI: 10.1016/j.plaphy.2023.108216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/01/2023] [Accepted: 11/20/2023] [Indexed: 11/30/2023]
Abstract
Trace metals have relatively high density and high toxicity at low concentrations. Willow (Salix genus) is an excellent phytoremediation species for soil contaminated by trace metal ions. This study identified a cell number regulator (CNR) gene family member in Salix linearistipularis exhibiting strong metal ion resistance: SlCNR8. SlCNR8 expression was affected by various metal ions, including cadmium (Cd), zinc (Zn), copper (Cu), iron (Fe), and manganese (Mn). SlCNR8 overexpression enhanced Cd, Zn, Cu, and Fe resistance in transgenic poplar seedlings (84K) compared with the wild-type (WT). Moreover, transgenic poplar seedlings showed lower root Cd uptake and less Cd accumulation than WT under Cd stress. SlCNR8 was primarily localized to the nucleus and the plasma membrane-like cell periphery. Furthermore, SlCNR8 had transcriptional activation activity in yeast. The transcript levels of multiple metal ion transporters were altered in the roots of transgenic poplar seedlings compared to WT roots under Cd stress. These results suggest that SlCNR8 may enhance Cd resistance in transgenic poplar by reducing Cd uptake and accumulation. This may be related to altered transcription levels of other transporters or to itself. Our study suggests that SlCNR8 can be used as a candidate gene for genetic improvement of phytostabilisation of trace metals by genetic engineering.
Collapse
Affiliation(s)
- Di Wang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Huaifang Zhang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Xuefei Hu
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Haizhen Zhang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Shuang Feng
- Large-Scale Instrument and Equipment Sharing Service Platform, Northeast Agricultural University, Harbin, 150030, China.
| | - Aimin Zhou
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
8
|
Qiao K, Shan Q, Zhang H, Lv F, Zhou A. Populus euphratica plant cadmium tolerance PePCR3 improves cadmium tolerance. TREE PHYSIOLOGY 2023; 43:1950-1963. [PMID: 37615479 DOI: 10.1093/treephys/tpad103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 07/17/2023] [Accepted: 08/20/2023] [Indexed: 08/25/2023]
Abstract
Contamination of soils with toxic heavy metals is a major environmental problem. Growing crop plants that can promote the efflux of heavy metals is an effective strategy in contaminated soils. The plant cadmium resistance (PCR) protein is involved in the translocation of heavy metals, specifically zinc and cadmium (Cd). In this study, yeast expressing Populus euphratica PCR3 (PePCR3) showed enhanced Cd tolerance and decreased Cd accumulation under Cd treatment. Real-time quantitative PCR analyses revealed up-regulation of PePCR3 in poplar seedlings under Cd stress. Localization analysis revealed that PePCR3 localizes at the plasma membrane. The plant growth and biomass were greater in PePCR3-overexpressing (OE) transgenic hybrid poplar lines than in wild type (WT). Physiological parameters analyses indicated that, compared with WT, PePCR3-OE transgenic lines were more tolerant to Cd. In addition, more Cd was excreted in the roots of the PePCR3-OE transgenic lines than in those of WT, but the remaining Cd in transgenic lines was more translocated into the stems and leaves. Eight genes encoding transporters showed increased transcript levels in PePCR3-OE transgenic lines under Cd treatment, implying that PePCR3 interacts with other transporters to translocate Cd. Thus, PePCR3 may be an important genetic resource for generating new lines that can enhance Cd translocation to phytoremediation in contaminated soils.
Collapse
Affiliation(s)
- Kun Qiao
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Changjiang Road No. 600, Xiangfang District, Harbin 150030, PR China
| | - Qinghua Shan
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Changjiang Road No. 600, Xiangfang District, Harbin 150030, PR China
| | - Haizhen Zhang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Changjiang Road No. 600, Xiangfang District, Harbin 150030, PR China
| | - Fuling Lv
- Chinese Academy of Forestry, Xiangshan Road east Xiaofu 1, Haidian District, Beijing 100091, PR China
| | - Aimin Zhou
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Changjiang Road No. 600, Xiangfang District, Harbin 150030, PR China
| |
Collapse
|
9
|
Lu M, Chen Z, Dang Y, Li J, Wang J, Zheng H, Li S, Wang X, Du X, Sui N. Identification of the MYB gene family in Sorghum bicolor and functional analysis of SbMYBAS1 in response to salt stress. PLANT MOLECULAR BIOLOGY 2023; 113:249-264. [PMID: 37964053 DOI: 10.1007/s11103-023-01386-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 10/06/2023] [Indexed: 11/16/2023]
Abstract
Salt stress adversely affects plant growth and development. It is necessary to understand the underlying salt response mechanism to improve salt tolerance in plants. MYB transcription factors can regulate plant responses to salt stress. However, only a few studies have explored the role of MYB TFs in Sorghum bicolor (L.) Moench. So we decided to make a systematic analysis and research on the sorghum MYB family. A total of 210 MYB genes in sorghum were identified in this study. Furthermore, 210 MYB genes were distributed across ten chromosomes, named SbMYB1-SbMYB210. To study the phylogeny of the identified TFs, 210 MYB genes were divided into six subfamilies. We further demonstrated that SbMYB genes have evolved under strong purifying selection. SbMYBAS1 (SbMYB119) was chosen as the study object, which the expression decreased under salt stress conditions. Further study of the SbMYBAS1 showed that SbMYBAS1 is located in the nucleus. Under salt stress conditions, Arabidopsis plants overexpressed SbMYBAS1 showed significantly lower dry/fresh weight and chlorophyll content but significantly higher membrane permeability, MDA content, and Na+/K+ ratio than the wild-type Arabidopsis plants. Yeast two-hybrid screening result showed that SbMYBAS1 might interact with proteins encoded by SORBI_302G184600, SORBI_3009G247900 and SORBI_3004G59600. Results also showed that SbMYBAS1 could regulate the expression of AtGSTU17, AtGSTU16, AtP5CS2, AtUGT88A1, AtUGT85A2, AtOPR2 and AtPCR2 under salt stress conditions. This work laid a foundation for the study of the response mechanism of sorghum MYB gene family to salt stress.
Collapse
Affiliation(s)
- Mei Lu
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, No.88, East Wenhua Road, Jinan, 250014, China
| | - Zengting Chen
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, No.88, East Wenhua Road, Jinan, 250014, China
- Dongying Institute, Shandong Normal University, Dongying, 257000, China
| | - Yingying Dang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, No.88, East Wenhua Road, Jinan, 250014, China
| | - Jinlu Li
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, No.88, East Wenhua Road, Jinan, 250014, China
| | - Jingyi Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, No.88, East Wenhua Road, Jinan, 250014, China
| | - Hongxiang Zheng
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, No.88, East Wenhua Road, Jinan, 250014, China
| | - Simin Li
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, No.88, East Wenhua Road, Jinan, 250014, China
| | - Xuemei Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, No.88, East Wenhua Road, Jinan, 250014, China
| | - Xihua Du
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, No.88, East Wenhua Road, Jinan, 250014, China.
| | - Na Sui
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, No.88, East Wenhua Road, Jinan, 250014, China.
| |
Collapse
|
10
|
Lv F, Shan Q, Qiao K, Zhang H, Zhou A. Populus euphratica plant cadmium resistance 2 mediates Cd tolerance by root efflux of Cd ions in poplar. PLANT CELL REPORTS 2023; 42:1777-1789. [PMID: 37740037 DOI: 10.1007/s00299-023-03065-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 08/20/2023] [Indexed: 09/24/2023]
Abstract
KEY MESSAGE Populus euphratica PePCR2 increases Cd resistance by functioning as a Cd extrusion pump and by mediating the expression of genes encoding other transporters. Cadmium (Cd) is a non-essential, toxic metal that negatively affects plant growth. Plant cadmium resistance (PCR) proteins play key roles in the response to heavy metal stress. In this study, we isolated the gene PePCR2 encoding a plant PCR from Populus euphratica. PePCR2 gene transcription was induced by Cd, and its transcript level peaked at 24 h after exposure, at a level approximately 18-fold higher than that at 0 h. The PePCR2 protein was localized to the plasma membrane. Compared with yeast cells harboring the empty vector, yeast cells expressing PePCR2 showed enhanced Cd tolerance and a lower Cd content. Compared with wild-type (WT) plants, poplar overexpressing PePCR2 showed higher Cd resistance. Net Cd2+ efflux measurements showed that Cd2+ efflux from the roots was 1.5 times higher in the PePCR2-overexpressing plants than in WT plants. Furthermore, compared with WT plants, the PePCR2-overexpressing plants showed increased transcript levels of ABCG29, HMA5, PDR2, YSL7, and ZIP1 and decreased transcript levels of NRAMP6, YSL3, and ZIP11 upon exposure to Cd. These data show that PePCR2 increased Cd resistance by acting as a Cd extrusion pump and/or by regulating other Cd2+ transporters to decrease Cd toxicity in the cytosol. The results of this study identify a novel plant gene with potential applications in Cd removal, and provide a theoretical basis for reducing Cd toxicity and protecting food safety.
Collapse
Affiliation(s)
- Fuling Lv
- Chinese Academy of Forestry, Beijing, 100091, People's Republic of China.
| | - Qinghua Shan
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Kun Qiao
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Haizhen Zhang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Aimin Zhou
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| |
Collapse
|
11
|
Cheng Y, Chen X, Liu W, Yang L, Wu J, Wang Y, Yu W, Zhou J, Fayyaz P, Luo ZB, Deng S, Shi W. Homolog of Human placenta-specific gene 8, PcPLAC8-10, enhances cadmium uptake by Populus roots. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132349. [PMID: 37657324 DOI: 10.1016/j.jhazmat.2023.132349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/15/2023] [Accepted: 08/17/2023] [Indexed: 09/03/2023]
Abstract
Cadmium (Cd) pollution of soil occurs worldwide. Phytoremediation is an effective approach for cleaning up Cd polluted soil. Fast growing Populus species with high Cd uptake capacities are desirable for phytoremediation. Thus, it is important to elucidate the molecular functions of genes involved in Cd uptake by poplars. In this study, PcPLAC8-10, a homolog of Human placenta-specific gene 8 (PLAC8) implicated in Cd transport was functionally characterized in Populus × canescens. PcPLAC8-10 was transcriptionally induced in Cd-treated roots and it encoded a plasma membrane-localized transporter. PcPLAC8-10 exhibited Cd uptake activity when expressed in yeast cells. No difference in growth was observed between wild type (WT) and PcPLAC8-10-overexpressing poplars. PcPLAC8-10-overexpressing poplars exhibited increases in net Cd2+ influxes by 192% and Cd accumulation by 57% in the roots. However, similar reductions in biomass were found in WT and transgenic poplars when exposed to Cd. The complete motif of CCXXXXCPC in PcPLAC8-10 was essential for its Cd transport activity. These results suggest that PcPLAC8-10 is a plasma membrane-localized transporter responsible for Cd uptake in the roots and the complete CCXXXXCPC motif of PcPLAC8-10 plays a key role in its Cd transport activity in poplars.
Collapse
Affiliation(s)
- Yao Cheng
- National Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, PR China
| | - Xin Chen
- National Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, PR China
| | - Wenzhe Liu
- National Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, PR China
| | - Lingyu Yang
- National Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, PR China
| | - Jiangting Wu
- National Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, PR China
| | - Yang Wang
- National Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, PR China
| | - Wenjian Yu
- National Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, PR China
| | - Jing Zhou
- National Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, PR China
| | - Payam Fayyaz
- Forest, Range and Watershed Management Department, Agriculture and Natural Resources Faculty, Yasouj University, Yasuj 75919 63179, Islamic Republic of Iran
| | - Zhi-Bin Luo
- National Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, PR China; Institute of Ecological Protection and Restoration, Chinese Academy of Forestry, Beijing 100091, PR China; Comprehensive Experimental Center of Chinese Academy of Forestry in Yellow River Delta, Dongying, Shandong Province 257000, PR China.
| | - Shurong Deng
- National Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, PR China.
| | - Wenguang Shi
- National Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, PR China.
| |
Collapse
|
12
|
Zhang LD, Song LY, Dai MJ, Liu JY, Li J, Xu CQ, Guo ZJ, Song SW, Liu JW, Zhu XY, Zheng HL. Inventory of cadmium-transporter genes in the root of mangrove plant Avicennia marina under cadmium stress. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132321. [PMID: 37597395 DOI: 10.1016/j.jhazmat.2023.132321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/07/2023] [Accepted: 08/15/2023] [Indexed: 08/21/2023]
Abstract
Mangrove Avicennia marina has the importantly potential for cadmium (Cd) pollution remediation in coastal wetlands. Unfortunately, the molecular mechanisms and transporter members for Cd uptake by the roots of A. marina are not well documented. In this study, photosynthetic and phenotypic analysis indicated that A. marina is particularly tolerant to Cd. The content and flux analysis indicated that Cd is mainly retained in the roots, with greater Cd influx in fine roots than that in coarse roots, and higher Cd influx in the root meristem zone as well. Using transcriptomic analysis, a total of 5238 differentially expressed genes were identified between the Cd treatment and control group. Moreover, we found that 54 genes were responsible for inorganic ion transport. Among these genes, AmHMA2, AmIRT1, and AmPCR2 were localized in the plasma membrane and AmZIP1 was localized in both plasma membrane and cytoplasm. All above gene encoding transporters showed significant Cd transport activities using function assay in yeast cells. In addition, the overexpression of AmZIP1 or AmPCR2 in Arabidopsis improved the Cd tolerance of transgenic plants. This is particularly significant as it provides insight into the molecular mechanism for Cd uptake by the roots of mangrove plants and a theoretical basis for coastal wetland phytoremediation.
Collapse
Affiliation(s)
- Lu-Dan Zhang
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, PR China
| | - Ling-Yu Song
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, PR China
| | - Ming-Jin Dai
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, PR China
| | - Jin-Yu Liu
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, PR China
| | - Jing Li
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, PR China
| | - Chao-Qun Xu
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, PR China
| | - Ze-Jun Guo
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, PR China
| | - Shi-Wei Song
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, PR China
| | - Jing-Wen Liu
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, PR China
| | - Xue-Yi Zhu
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, PR China
| | - Hai-Lei Zheng
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, PR China.
| |
Collapse
|
13
|
Guan J, Yang Y, Shan Q, Zhang H, Zhou A, Gong S, Chai T, Qiao K. Plant cadmium resistance 10 enhances tolerance to toxic heavy metals in poplar. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 203:108043. [PMID: 37734271 DOI: 10.1016/j.plaphy.2023.108043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/01/2023] [Accepted: 09/15/2023] [Indexed: 09/23/2023]
Abstract
Toxic heavy metals originating from human activities have caused irreversible harm to the environment. Toxic heavy metal ions absorbed by crop plants can seriously threaten human health. Therefore, decreasing heavy metal contents in crop plants is an urgent need. The plant cadmium resistance protein (PCR) is a heavy metal ion transporter. In this study, PePCR10 was cloned from Populus euphratica. Bioinformatics analyses revealed its transmembrane structure and gene sequence motifs. The transcript profile of PePCR10 was analyzed by RT-qPCR, and its transcript levels increased under toxic heavy metal (cadmium, lead, aluminum) treatments. Subcellular localization analyses in tobacco cells revealed that PePCR10 localizes at the plasma membrane. Compared with wild type (WT), PePCR10-overexpressing lines showed significantly higher values for plant height, root length, fresh weight, and dry weight under heavy metal stress. Electrolyte leakage, nitroblue tetrazolium staining, and chlorophyll fluorescence analyses indicated that Cd/Al tolerance in PePCR10-overexpressing lines was stronger than that in WT. The Cd/Al contents were lower in the PePCR10-overexpressing lines than in WT under Cd/Al stress. Our results show that PePCR10 can reduce the heavy metal content in poplar and enhance its Cd/Al tolerance. Hence, PePCR10 is a candidate genetic resource for effectively reducing heavy metal accumulation in crops.
Collapse
Affiliation(s)
- Jing Guan
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, PR China
| | - Yahan Yang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, PR China
| | - Qinghua Shan
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, PR China
| | - Haizhen Zhang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, PR China
| | - Aimin Zhou
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, PR China
| | - Shufang Gong
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, PR China
| | - Tuanyao Chai
- College of Life Science, University of the Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Kun Qiao
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
14
|
Saavedra Núñez G, González-Villanueva E, Ramos P. Floral Development on Vitis vinifera Is Associated with MADS-Box Transcription Factors through the Transcriptional Regulation of VviZIP3. PLANTS (BASEL, SWITZERLAND) 2023; 12:3322. [PMID: 37765487 PMCID: PMC10535425 DOI: 10.3390/plants12183322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/11/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023]
Abstract
Several grapevine (Vitis vinifera L.) cultivars show a tendency to develop parthenocarpic seedless grapes, affecting fruit yield and quality. This reproductive disorder originates in defective ovule fertilization due to a failure in pollen tube growth. Zinc (Zn) is a crucial trace element, playing a vital role in various physiological and metabolic processes. It is particularly essential for the healthy growth of flowers and fruits. Insufficient zinc has been suggested as a potential reason for issues in this development process. This microelement is taken up through a mechanism that involves transporters, including the ZRT-IRT-like protein (ZIP) gene family, associated with the influx of Zn into the cell. In grapevines, 20 genes for ZIP-type transporters have been described. In this study, we analyzed the expression pattern of VviZIP3 during flower development and employ transgenic methods to assess its transcriptional regulation. Furthermore, through computational examination of the promoter region, we identified two CArG boxes, recognized as responsive elements to MADS transcription factors. These factors play a key role in shaping various components of a flower, such as pollen. Our investigation of the VviZIP3 promoter confirms the functionality of these CArG boxes. Overall, our results suggest that the increased expression of VviZIP3 during flowering is likely under the influence of MADS transcription factors.
Collapse
Affiliation(s)
- Germán Saavedra Núñez
- Instituto de Ciencias Biológicas, Universidad de Talca, Talca 3460787, Chile; (G.S.N.); (E.G.-V.)
| | | | - Patricio Ramos
- Instituto de Ciencias Biológicas, Universidad de Talca, Talca 3460787, Chile; (G.S.N.); (E.G.-V.)
- Vicerrectoría de Investigación y Postgrado, Universidad Católica del Maule, Talca 3480112, Chile
| |
Collapse
|
15
|
Liu Y, Kong L, Gong C, Yang G, Xu E, Chen W, Zhang W, Chen X. Identification of plant cadmium resistance gene family in Brassica napus and functional analysis of BnPCR10.1 involved in cadmium and copper tolerance. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 202:107989. [PMID: 37651953 DOI: 10.1016/j.plaphy.2023.107989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/15/2023] [Accepted: 08/25/2023] [Indexed: 09/02/2023]
Abstract
The plant cadmium resistance (PCR) family proteins play important roles in maintaining metal homeostasis and detoxification. However, few functional PCR genes have been well-characterized in plants. In this study, we identified and cloned 26 BnPCR genes from the rapeseed (Brassica napus) genome. They were divided into four groups (I-IV) based on their phylogenetic relationship. Yeast functional complementation experiments showed that BnPCRs can transport copper (Cu) and cadmium (Cd) in yeast. The expression levels of the BnPCRs were variable among different organs. Moreover, most of the genes were induced by Cu2+ and Cd2+ stress. Among these genes, BnPCR10.1 was highly expressed in various organs and induced by Cu2+ and Cd2+. Therefore, we studied the function of BnPCR10.1 in more detail. BnPCR10.1 was localized to the plasma membrane (PM), and expression in yeast enhanced yeast cells to export Cu and Cd. Furthermore, overexpression of BnPCR10.1 transgenic lines pro35S::BnPCR10.1;athma5 had lower concentration of Cu in roots than athma5 mutants. In addition, transgenic plants pro35S::BnPCR10.1;atpdr8 had lower concentration of Cd in shoots and roots than atpdr8 mutants. Net Cu2+ and Cd2+ efflux assay showed that there was decreased absorption of Cu2+ and Cd2+ in the transgenic Arabidopsis elongation zone of roots than in athma5 and atpdr8 mutants, respectively. These results provide new information on BnPCRs and their roles in response to heavy metals and reveal the mechanism used by BnPCR10.1 to detoxify Cu and Cd. Our findings facilitate a theoretical basis for the genetic improvement of Cu-Cd tolerance in rapeseed.
Collapse
Affiliation(s)
- Yuanyuan Liu
- Department of Biochemistry & Molecular Biology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China.
| | - Linghui Kong
- Department of Biochemistry & Molecular Biology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China.
| | - Changyi Gong
- Department of Biochemistry & Molecular Biology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China.
| | - Guang Yang
- Department of Biochemistry & Molecular Biology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China.
| | - Ending Xu
- Department of Biochemistry & Molecular Biology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China.
| | - Weizhong Chen
- Department of Biochemistry & Molecular Biology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China.
| | - Wei Zhang
- Department of Biochemistry & Molecular Biology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China.
| | - Xi Chen
- Department of Biochemistry & Molecular Biology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China.
| |
Collapse
|
16
|
Ran C, Zhang Y, Chang F, Yang X, Liu Y, Wang Q, Zhu W. Genome-Wide Analyses of SlFWL Family Genes and Their Expression Profiles under Cold, Heat, Salt and Drought Stress in Tomato. Int J Mol Sci 2023; 24:11783. [PMID: 37511542 PMCID: PMC10380795 DOI: 10.3390/ijms241411783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/04/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
PLAC8 is a cysteine-rich protein that serves as a central mediator of tumor evolution in mammals. PLAC8 motif-containing proteins widely distribute in fungi, algae, higher plants and animals that have been described to be implicated in fruit size, cell number and the transport of heavy metals such as cadmium or zinc. In tomatoes, FW2.2 is a PLAC8 motif-containing gene that negatively controls fruit size by regulating cell division and expansion in the carpel ovary during fruit development. However, despite FW2.2, other FWL (FW2.2-Like) genes in tomatoes have not been investigated. In this study, we identified the 21 SlFWL genes, including FW2.2, examined their expression profiles under various abiotic adversity-related conditions. The SlFWL gene structures and motif compositions are conserved, indicating that tomato SlFWL genes may have similar roles. Cis-acting element analysis revealed that the SlFWL genes may participate in light and abiotic stress responses, and they also interacted with a variety of phytohormone-responsive proteins and plant development elements. Phylogenetic analyses were performed on five additional plant species, including Arabidopsis, pepper, soybean, rice and maize, these genes were classified into five subfamilies. Based on the results of collinearity analyses, the SlFWL genes have a tighter homologous evolutionary relationship with soybean, and these orthologous FWL gene pairs might have the common ancestor. Expression profiling of SlFWL genes show that they were all responsive to abiotic stresses, each subgroup of genes exhibited a different expression trend. Our findings provide a strong foundation for investigating the function and abiotic stress responses of the SlFWL family genes.
Collapse
Affiliation(s)
- Chunxia Ran
- Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
- Shanghai Key Laboratory of Protected Horticulture Technology, The Protected Horticulture Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Yingying Zhang
- Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
- Shanghai Key Laboratory of Protected Horticulture Technology, The Protected Horticulture Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Feifei Chang
- Shanghai Key Laboratory of Protected Horticulture Technology, The Protected Horticulture Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Xuedong Yang
- Shanghai Key Laboratory of Protected Horticulture Technology, The Protected Horticulture Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Yahui Liu
- Shanghai Key Laboratory of Protected Horticulture Technology, The Protected Horticulture Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Quanhua Wang
- Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Weimin Zhu
- Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
- Shanghai Key Laboratory of Protected Horticulture Technology, The Protected Horticulture Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| |
Collapse
|
17
|
Zhuang X, Wan H, Wang H, Qin S, He J, Lyu D. Characteristics of cadmium accumulation and tolerance in apple plants grown in different soils. FRONTIERS IN PLANT SCIENCE 2023; 14:1188241. [PMID: 37332693 PMCID: PMC10272767 DOI: 10.3389/fpls.2023.1188241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/18/2023] [Indexed: 06/20/2023]
Abstract
Cadmium (Cd) is a nonessential element and highly toxic to apple tree. However, Cd accumulation, translocation and tolerance in apple trees planted in different soils remain unknown. To investigate soil Cd bioavailability, plant Cd accumulation, physiological changes as well as gene expression patterns in apple trees grown in five different soils, 'Hanfu' apple seedlings were planted in orchard soils collected from Maliangou village (ML), Desheng village (DS), Xishan village (XS), Kaoshantun village (KS) and Qianertaizi village (QT), and subjected to 500 μM CdCl2 for 70 d. Results showed that soils of ML and XS had higher content of organic matter (OM), clay and silt, and cation exchange capacity (CEC) but lower sand content than the other soils, thereby reduced Cd bioavailability, which could be reflected by lower concentrations and proportions of acid-soluble Cd but higher concentrations and proportions of reducible and oxidizable Cd. The plants grown in soils of ML and XS had relatively lower Cd accumulation levels and bio-concentration factors than those grown in the other soils. Excess Cd reduced plant biomass, root architecture, and chlorophyll content in all plants but to relatively lesser degree in those grown in soils of ML and XS. The plants grown in soils of ML, XS and QT had comparatively lower reactive oxygen species (ROS) content, less membrane lipid peroxidation, and higher antioxidant content and enzyme activity than those grown in soils of DS and KS. Transcript levels of genes regulating Cd uptake, transport and detoxification such as HA11, VHA4, ZIP6, IRT1, NAS1, MT2, MHX, MTP1, ABCC1, HMA4 and PCR2 displayed significant differences in roots of plants grown in different soils. These results indicate that soil types affect Cd accumulation and tolerance in apple plants, and plants grown in soils with higher OM content, CEC, clay and silt content and lower sand content suffer less Cd toxicity.
Collapse
Affiliation(s)
- Xiaolei Zhuang
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning, China
- Key Lab of Fruit Quality Development and Regulation of Liaoning Province, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Huixue Wan
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning, China
- Key Lab of Fruit Quality Development and Regulation of Liaoning Province, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Hongyu Wang
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Sijun Qin
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning, China
- Key Lab of Fruit Quality Development and Regulation of Liaoning Province, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Jiali He
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning, China
- Key Lab of Fruit Quality Development and Regulation of Liaoning Province, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Deguo Lyu
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning, China
- Key Lab of Fruit Quality Development and Regulation of Liaoning Province, Shenyang Agricultural University, Shenyang, Liaoning, China
| |
Collapse
|
18
|
Ajeesh Krishna TP, Maharajan T, Antony Ceasar S. Significance and genetic control of membrane transporters to improve phytoremediation and biofortification processes. Mol Biol Rep 2023:10.1007/s11033-023-08521-2. [PMID: 37212961 DOI: 10.1007/s11033-023-08521-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 05/11/2023] [Indexed: 05/23/2023]
Abstract
Humans frequently consume plant-based foods in their daily life. Contamination of agricultural soils by heavy metals (HMs) is a major food and nutritional security issue. The crop plants grown in HM-contaminated agricultural soil may accumulate more HMs in their edible part, further transferring into the food chain. Consumption of HM-rich crops can cause severe health issues in humans. On the other hand, the low content of the essential HM in the edible part of the crop also causes health problems. Therefore, researchers must try to reduce the non-essential HM in the edible part of the crop plants and improve the essential HMs. Phytoremediation and biofortification are the two strategies for resolving this problem. The genetic component helps to improve the efficiency of phytoremediation and biofortification processes in plants. They help eliminate HMs from soil and improve essential HM content in crop plants. The membrane transporter genes (genetic components) are critical in these two strategies. Therefore, engineering membrane transporter genes may help reduce the non-essential HM content in the edible part of crop plants. Targeted gene editing by genome editing tools like CRISPR could help plants achieve efficient phytoremediation and biofortification. This article covers gene editing's scope, application, and implication to improve the phytoremediation and biofortification processes in non-crop and crop plants.
Collapse
Affiliation(s)
- T P Ajeesh Krishna
- Division of Plant Molecular Biology and Biotechnology, Department of Biosciences, Rajagiri College of Social Sciences, Kochi, Kerala, 683104, India
| | - Theivanayagam Maharajan
- Division of Plant Molecular Biology and Biotechnology, Department of Biosciences, Rajagiri College of Social Sciences, Kochi, Kerala, 683104, India
| | - S Antony Ceasar
- Division of Plant Molecular Biology and Biotechnology, Department of Biosciences, Rajagiri College of Social Sciences, Kochi, Kerala, 683104, India.
| |
Collapse
|
19
|
Fan P, Wu L, Wang Q, Wang Y, Luo H, Song J, Yang M, Yao H, Chen S. Physiological and molecular mechanisms of medicinal plants in response to cadmium stress: Current status and future perspective. JOURNAL OF HAZARDOUS MATERIALS 2023; 450:131008. [PMID: 36842201 DOI: 10.1016/j.jhazmat.2023.131008] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/08/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Medicinal plants have a wide range of uses worldwide. However, the quality of medicinal plants is affected by severe cadmium pollution. Cadmium can reduce photosynthetic capacity, lead to plant growth retardation and oxidative stress, and affect secondary metabolism. Medicinal plants have complex mechanisms to cope with cadmium stress. On the one hand, an antioxidant system can effectively scavenge excess reactive oxygen species produced by cadmium stress. On the other hand, cadmium chelates are formed by chelating peptides and then sequestered through vacuolar compartmentalization. Cadmium has no specific transporter in plants and is generally transferred to plant tissues through competition for the transporters of divalent metal ions, such as zinc, iron, and manganese. In recent years, progress has been achieved in exploring the physiological mechanisms by which medicinal plants responding to cadmium stress. The exogenous regulation of cadmium accumulation in medicinal plants has been studied, and the aim is reducing the toxicity of cadmium. However, research into molecular mechanisms is still lagging. In this paper, we review the physiological and molecular mechanisms and regulatory networks of medicinal plants exposed to cadmium, providing a reference for the study on the responses of medicinal plants to cadmium stress.
Collapse
Affiliation(s)
- Panhui Fan
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Liwei Wu
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Qing Wang
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Yu Wang
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Hongmei Luo
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Jingyuan Song
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Meihua Yang
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Hui Yao
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; Engineering Research Center of Chinese Medicine Resources, Ministry of Education, Beijing 100193, China.
| | - Shilin Chen
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
20
|
De Rosa A, McGaughey S, Magrath I, Byrt C. Molecular membrane separation: plants inspire new technologies. THE NEW PHYTOLOGIST 2023; 238:33-54. [PMID: 36683439 DOI: 10.1111/nph.18762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
Plants draw up their surrounding soil solution to gain water and nutrients required for growth, development and reproduction. Obtaining adequate water and nutrients involves taking up both desired and undesired elements from the soil solution and separating resources from waste. Desirable and undesirable elements in the soil solution can share similar chemical properties, such as size and charge. Plants use membrane separation mechanisms to distinguish between different molecules that have similar chemical properties. Membrane separation enables distribution or retention of resources and efflux or compartmentation of waste. Plants use specialised membrane separation mechanisms to adapt to challenging soil solution compositions and distinguish between resources and waste. Coordination and regulation of these mechanisms between different tissues, cell types and subcellular membranes supports plant nutrition, environmental stress tolerance and energy management. This review considers membrane separation mechanisms in plants that contribute to specialised separation processes and highlights mechanisms of interest for engineering plants with enhanced performance in challenging conditions and for inspiring the development of novel industrial membrane separation technologies. Knowledge gained from studying plant membrane separation mechanisms can be applied to developing precision separation technologies. Separation technologies are needed for harvesting resources from industrial wastes and transitioning to a circular green economy.
Collapse
Affiliation(s)
- Annamaria De Rosa
- Division of Plant Science, Research School of Biology, Australian National University, 2601, ACT, Acton, Australia
| | - Samantha McGaughey
- Division of Plant Science, Research School of Biology, Australian National University, 2601, ACT, Acton, Australia
| | - Isobel Magrath
- Division of Plant Science, Research School of Biology, Australian National University, 2601, ACT, Acton, Australia
| | - Caitlin Byrt
- Division of Plant Science, Research School of Biology, Australian National University, 2601, ACT, Acton, Australia
| |
Collapse
|
21
|
Kudo H, Qian Z, Inoue C, Chien MF. Temperature Dependence of Metals Accumulation and Removal Kinetics by Arabidopsis halleri ssp. gemmifera. PLANTS (BASEL, SWITZERLAND) 2023; 12:877. [PMID: 36840224 PMCID: PMC9966424 DOI: 10.3390/plants12040877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/11/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Cadmium (Cd), which is present in zinc (Zn) ore, is a toxic metal and causes contamination globally. Phytoremediation is a promising technology for the remediation of sites with low and moderate contamination. Temperature is an important factor in phytoremediation because it has an impact on both plant biomass and the accumulation of heavy metals. However, little is known about the influence of temperature on heavy metal accumulation by the Cd and Zn hyperaccumulator Arabidopsis halleri ssp. gemmifera. The effect of temperature on the distribution of Cd and Zn in A. halleri ssp. gemmifera and the mechanism of metal removal from solution were investigated in this study. Our results showed that the temperature dependence of the distribution of Cd and Zn in the plant was different, which may suggest that the mechanisms of xylem loading were different between Cd and Zn. Although Cd and Zn have partially similar transport pathways, the removal kinetics based on the first-order reaction rate constant revealed that the temperature which maximized rate of absorption was different between Cd and Zn. This study suggests a potential for efficient Cd phytoextraction using A. halleri ssp gemmifera in Cd and Zn co-existing environments.
Collapse
|
22
|
Banerjee S, Roy P, Nandi S, Roy S. Advanced biotechnological strategies towards the development of crops with enhanced micronutrient content. PLANT GROWTH REGULATION 2023; 100:355-371. [PMID: 36686885 PMCID: PMC9845834 DOI: 10.1007/s10725-023-00968-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 01/06/2023] [Indexed: 05/17/2023]
Abstract
Micronutrients are essential mineral elements required for both plant and human development.An integrated system involving soil, climatic conditions, and types of crop plants determines the level of micronutrient acquisition and utilization. Most of the staple food crops consumed globally predominantly include the cereal grains, tubers and roots, respectively and in many cases, particularly in the resource-poor countries they are grown in nutrient-deficient soils. These situations frequently lead to micronutrient deficiency in crops. Moreover, crop plants with micronutrient deficiency also show high level of susceptibility to various abiotic and biotic stress factors. Apart from this, climate change and soil pollution severely affect the accumulation of micronutrients, such as zinc (Zn), iron (Fe), selenium (Se), manganese (Mn), and copper (Cu) in food crops. Therefore, overcoming the issue of micronutrient deficiency in staple crops and to achieve the adequate level of food production with enriched nutrient value is one of the major global challenges at present. Conventional breeding approaches are not adequate to feed the increasing global population with nutrient-rich staple food crops. To address these issues, alongside traditional approaches, genetic modification strategies have been adopted during the past couple of years in order to enhance the transport, production, enrichment and bioavailability of micronutrients in staple crops. Recent advances in agricultural biotechnology and genome editing approaches have shown promising response in the development of micronutrient enriched biofortified crops. This review highlights the current advancement of our knowledge on the possible implications of various biotechnological tools for the enrichment and enhancement of bioavailability of micronutrients in crops.
Collapse
Affiliation(s)
- Samrat Banerjee
- Department of Botany, UGC Centre for Advanced Studies, The University of Burdwan, Golapbag Campus, 713104 Burdwan, West Bengal India
| | - Pinaki Roy
- Department of Botany, UGC Centre for Advanced Studies, The University of Burdwan, Golapbag Campus, 713104 Burdwan, West Bengal India
| | - Shreyashi Nandi
- Department of Botany, UGC Centre for Advanced Studies, The University of Burdwan, Golapbag Campus, 713104 Burdwan, West Bengal India
| | - Sujit Roy
- Department of Botany, UGC Centre for Advanced Studies, The University of Burdwan, Golapbag Campus, 713104 Burdwan, West Bengal India
| |
Collapse
|
23
|
Krishna TPA, Maharajan T, Ceasar SA. The Role of Membrane Transporters in the Biofortification of Zinc and Iron in Plants. Biol Trace Elem Res 2023; 201:464-478. [PMID: 35182385 DOI: 10.1007/s12011-022-03159-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 02/11/2022] [Indexed: 01/11/2023]
Abstract
Over three billion people suffer from various health issues due to the low supply of zinc (Zn) and iron (Fe) in their food. Low supply of micronutrients is the main cause of malnutrition and biofortification could help to solve this issue. Understanding the molecular mechanisms of biofortification is challenging. The membrane transporters are involved in the uptake, transport, storage, and redistribution of Zn and Fe in plants. These transporters are also involved in biofortification and help to load the Zn and Fe into the endosperm of the seeds. Very little knowledge is available on the role and functions of membrane transporters involved in seed biofortification. Understanding the mechanism and role of membrane transporters could be helpful to improve biofortification. In this review, we provide the details on membrane transporters involved in the uptake, transport, storage, and redistribution of Zn and Fe. We also discuss available information on transporters involved in seed biofortification. This review will help plant breeders and molecular biologists understand the importance and implications of membrane transporters for seed biofortification.
Collapse
Affiliation(s)
- T P Ajeesh Krishna
- Department of Biosciences, Rajagiri College of Social Sciences, Kochi, 683104, Kerala, India
| | - T Maharajan
- Department of Biosciences, Rajagiri College of Social Sciences, Kochi, 683104, Kerala, India
| | - S Antony Ceasar
- Department of Biosciences, Rajagiri College of Social Sciences, Kochi, 683104, Kerala, India.
| |
Collapse
|
24
|
Mentewab A, Mwaura BW, Kumbale CM, Rono C, Torres-Patarroyo N, Vlčko T, Ohnoutková L, Voit EO. A dynamic compartment model for xylem loading and long-distance transport of iron explains the effect of kanamycin on metal uptake in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2023; 14:1147598. [PMID: 37143881 PMCID: PMC10151686 DOI: 10.3389/fpls.2023.1147598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/24/2023] [Indexed: 05/06/2023]
Abstract
Arabidopsis plants exposed to the antibiotic kanamycin (Kan) display altered metal homeostasis. Further, mutation of the WBC19 gene leads to increased sensitivity to kanamycin and changes in iron (Fe) and zinc (Zn) uptake. Here we propose a model that explain this surprising relationship between metal uptake and exposure to Kan. We first use knowledge about the metal uptake phenomenon to devise a transport and interaction diagram on which we base the construction of a dynamic compartment model. The model has three pathways for loading Fe and its chelators into the xylem. One pathway, involving an unknown transporter, loads Fe as a chelate with citrate (Ci) into the xylem. This transport step can be significantly inhibited by Kan. In parallel, FRD3 transports Ci into the xylem where it can chelate with free Fe. A third critical pathway involves WBC19, which transports metal-nicotianamine (NA), mainly as Fe-NA chelate, and possibly NA itself. To permit quantitative exploration and analysis, we use experimental time series data to parameterize this explanatory and predictive model. Its numerical analysis allows us to predict responses by a double mutant and explain the observed differences between data from wildtype, mutants and Kan inhibition experiments. Importantly, the model provides novel insights into metal homeostasis by permitting the reverse-engineering of mechanistic strategies with which the plant counteracts the effects of mutations and of the inhibition of iron transport by kanamycin.
Collapse
Affiliation(s)
- Ayalew Mentewab
- Biology Department, Spelman College, Atlanta, GA, United States
- *Correspondence: Ayalew Mentewab,
| | | | - Carla M. Kumbale
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University Medical School, Atlanta, GA, United States
| | - Catherine Rono
- Biology Department, Spelman College, Atlanta, GA, United States
| | | | - Tomáš Vlčko
- Laboratory of Growth Regulators, Palacký University & Institute of Experimental Botany, Czech Academy of Sciences, Olomouc, Czechia
| | - Ludmila Ohnoutková
- Laboratory of Growth Regulators, Palacký University & Institute of Experimental Botany, Czech Academy of Sciences, Olomouc, Czechia
| | - Eberhard O. Voit
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University Medical School, Atlanta, GA, United States
| |
Collapse
|
25
|
Zhong K, Xie L, Hu S, Shao G, Sheng Z, Jiao G, Wang L, Chen Y, Tang S, Wei X, Zhang P, Hu P. Genome-Wide Association Study of Zinc Toxicity Tolerance within a Rice Core Collection ( Oryza sativa L.). PLANTS (BASEL, SWITZERLAND) 2022; 11:3138. [PMID: 36432867 PMCID: PMC9693275 DOI: 10.3390/plants11223138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/07/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
Zinc (Zn) is an essential micronutrient for rice, but it is toxic at a high concentration, especially in acid soils. It is yet unknown which genes regulate Zn tolerance in rice. In the present study, a genome-wide association study (GWAS) was performed for Zn tolerance in rice at the seedling stage within a rice core collection, named Ting's core collection, which showed extensive phenotypic variations in Zn toxicity with high-density single-nucleotide polymorphisms (SNPs). A total of 7 and 19 quantitative trait loci (QTL) were detected using root elongation (RE) and relative root elongation (RRE) under high Zn toxicity, respectively. Among them, 24 QTL were novel, and qRRE15 was located in the same region where 3 QTL were reported previously. In addition, qRE4 and qRRE9 were identical. Furthermore, we found eight candidate genes that are involved in abiotic and biotic stress, immunity, cell expansion, and phosphate transport in the loci of qRRE8, qRRE9, and qRRE15. Moreover, four candidate genes, i.e., Os01g0200700, Os06g0621900, Os06g0493600, and Os06g0622700, were verified correlating to Zn tolerance in rice by quantitative real time-PCR (qRT-PCR). Taken together, these results provide significant insight into the genetic basis for Zn toxicity tolerance and tolerant germplasm for developing rice tolerance to Zn toxicity and improving rice production in Zn-contaminated soils.
Collapse
Affiliation(s)
- Kaizhen Zhong
- College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Lihong Xie
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Shikai Hu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Gaoneng Shao
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Zhonghua Sheng
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Guiai Jiao
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Ling Wang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Ying Chen
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Shaoqing Tang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Xiangjin Wei
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Peng Zhang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Peisong Hu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| |
Collapse
|
26
|
Hu X, Wang S, Zhang H, Zhang H, Feng S, Qiao K, Lv F, Gong S, Zhou A. Plant cadmium resistance 6 from Salix linearistipularis (SlPCR6) affects cadmium and copper uptake in roots of transgenic Populus. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 245:114116. [PMID: 36174317 DOI: 10.1016/j.ecoenv.2022.114116] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 09/17/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Phytoextraction in phytoremediation is one of the environmentally friendly methods used for restoring soils contaminated by heavy metals (HMs). The screening and identification of HM-resistant plants and their regulatory genes associated with HM ion transport are the key research aims in this field. In this study, a plant cadmium (Cd) resistance (PCR) gene family member, SlPCR6, was identified in roots of Salix linearistipularis, which exhibits strong HM resistance. The results revealed that SlPCR6 expression was induced in S. linearistipularis roots in response to Cd stress. Furthermore, SlPCR6 was mainly localized on the plasma membrane. Compared with the wild type, SlPCR6 overexpression reduced the Cd and copper (Cu) contents in the transgenic poplar (84 K) and increased its Cd and Cu resistance. The roots of transgenic poplar seedlings had lower net Cd and Cu uptake rates than wild type roots. Further investigation revealed that the transcript levels of multiple HM ion transporters were not significantly different between the roots of the wild type and those of the transgenic poplar. These results suggest that SlPCR6 is directly involved in Cd and Cu transport in S. linearistipularis roots. Therefore, SlPCR6 can serve as a candidate gene to improve the phytoextraction of the HMs Cd and Cu through genetic engineering.
Collapse
Affiliation(s)
- Xuefei Hu
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Shunan Wang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Huaifang Zhang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Haizhen Zhang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Shuang Feng
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Kun Qiao
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Fuling Lv
- Chinese Academy of Forestry, Beijing 100091, China
| | - Shufang Gong
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China.
| | - Aimin Zhou
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
27
|
Jiang X, Dai J, Zhang X, Wu H, Tong J, Shi J, Fang W. Enhanced Cd efflux capacity and physiological stress resistance: The beneficial modulations of Metarhizium robertsii on plants under cadmium stress. JOURNAL OF HAZARDOUS MATERIALS 2022; 437:129429. [PMID: 35753299 DOI: 10.1016/j.jhazmat.2022.129429] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 06/07/2022] [Accepted: 06/18/2022] [Indexed: 06/15/2023]
Abstract
Due to the high migration capacity in agricultural soil-crop systems, cadmium (Cd) is accumulated in various crops and severely inhibits plant growth. In this study, we showed that, under Cd stress, the plant-symbiotic fungus Metarhizium robertsii reduced Cd accumulation in Arabidopsis thaliana shoots and roots by 21.8 % and 23.8 %, respectively. This is achieved by M. robertsii colonization-induced elevation of Cd efflux capacity via upregulation of three PCR genes, which is confirmed by the fact that the extent to which M. robertsii reduced Cd accumulation in the WT plants was greater than the inactivating mutants of the PCR genes. M. robertsii also alleviated Cd-induced leaf etiolation in A. thaliana by increasing the chlorophyll amount and modified plant physiological status to increase Cd stress tolerance via increasing production of catalase, peroxidase and glutathione and upregulating multiple HIPP proteins involved in sequestration of Cd. Notably, consistent with that in A. thaliana, the colonization of M. robertsii also reduced the Cd accumulation in Oryza sativa seedlings by upregulating the PCR gene OsPCR1, and increased chlorophyll amount and alleviated oxidative stress. Therefore, M. robertsii colonization reduced Cd accumulation in plants, and promoted plant growth and health by elevating Cd efflux capacity and modifying physiological status.
Collapse
Affiliation(s)
- Xiaohan Jiang
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jin Dai
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Institute of Microbiology, College of Life Science, Zhejiang University, Hangzhou 310058, China
| | - Xing Zhang
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Institute of Microbiology, College of Life Science, Zhejiang University, Hangzhou 310058, China
| | - Hanxin Wu
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - JianHao Tong
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jiyan Shi
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Weiguo Fang
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Institute of Microbiology, College of Life Science, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
28
|
Fanara S, Schloesser M, Hanikenne M, Motte P. Altered metal distribution in the sr45-1 Arabidopsis mutant causes developmental defects. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:1332-1352. [PMID: 35305053 DOI: 10.1111/tpj.15740] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 06/14/2023]
Abstract
The plant serine/arginine-rich (SR) splicing factor SR45 plays important roles in several biological processes, such as splicing, DNA methylation, innate immunity, glucose regulation, and abscisic acid signaling. A homozygous Arabidopsis sr45-1 null mutant is viable, but exhibits diverse phenotypic alterations, including delayed root development, late flowering, shorter siliques with fewer seeds, narrower leaves and petals, and unusual numbers of floral organs. Here, we report that the sr45-1 mutant presents an unexpected constitutive iron deficiency phenotype characterized by altered metal distribution in the plant. RNA-Sequencing highlighted severe perturbations in metal homeostasis, the phenylpropanoid pathway, oxidative stress responses, and reproductive development. Ionomic quantification and histochemical staining revealed strong iron accumulation in the sr45-1 root tissues accompanied by iron starvation in aerial parts. Mis-splicing of several key iron homeostasis genes, including BTS, bHLH104, PYE, FRD3, and ZIF1, was observed in sr45-1 roots. We showed that some sr45-1 developmental abnormalities can be complemented by exogenous iron supply. Our findings provide new insight into the molecular mechanisms governing the phenotypes of the sr45-1 mutant.
Collapse
Affiliation(s)
- Steven Fanara
- InBioS-PhytoSystems, Functional Genomics and Plant Molecular Imaging and Centre for Assistance in Technology of Microscopy (CAREm), University of Liège, 4000, Liège, Belgium
| | - Marie Schloesser
- InBioS-PhytoSystems, Functional Genomics and Plant Molecular Imaging and Centre for Assistance in Technology of Microscopy (CAREm), University of Liège, 4000, Liège, Belgium
| | - Marc Hanikenne
- InBioS-PhytoSystems, Functional Genomics and Plant Molecular Imaging and Centre for Assistance in Technology of Microscopy (CAREm), University of Liège, 4000, Liège, Belgium
| | - Patrick Motte
- InBioS-PhytoSystems, Functional Genomics and Plant Molecular Imaging and Centre for Assistance in Technology of Microscopy (CAREm), University of Liège, 4000, Liège, Belgium
| |
Collapse
|
29
|
Role of SaPCR2 in Zn Uptake in the Root Elongation Zone of the Zn/Cd Hyperaccumulator Sedum alfredii. Life (Basel) 2022; 12:life12050768. [PMID: 35629434 PMCID: PMC9146221 DOI: 10.3390/life12050768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/12/2022] [Accepted: 05/18/2022] [Indexed: 11/17/2022] Open
Abstract
Zn pollution is a potential toxicant for agriculture and the environment. Sedum alfredii is a Zn/Cd hyperaccumulator found in China and has been proven as a useful resource for the phytoremediation of Zn-contaminated sites. However, the molecular mechanism of Zn uptake in S. alfredii is limited. In this study, the function of SaPCR2 on Zn uptake in S. alfredii was identified by gene expression analysis, yeast function assays, Zn accumulation and root morphology analysis in transgenic lines to further elucidate the mechanisms of uptake and translocation of Zn in S. alfredii. The results showed that SaPCR2 was highly expressed in the root elongation zone of the hyperaccumulating ecotype (HE) S. alfredii, and high Zn exposure downregulated the expression of SaPCR2 in the HE S. alfredii root. The heterologous expression of SaPCR2 in yeast suggested that SaPCR2 was responsible for Zn influx. The overexpression of SaPCR2 in the non-hyperaccumulating ecotype (NHE) S. alfredii significantly increased the root uptake of Zn, but did not influence Mn, Cu or Fe. SR-μ-XRF technology showed that more Zn was distributed in the vascular buddle tissues, as well as in the cortex and epidermis in the transgenic lines. Root morphology was also altered after SaPCR2 overexpression, and a severe inhibition was observed. In the transgenic lines, the meristematic and elongation zones of the root were lower compared to the WT, and Zn accumulation in meristem cells was also reduced. These results indicate that SaPCR2 is responsible for Zn uptake, and mainly functions in the root elongation zone. This research on SaPCR2 could provide a theoretical basis for the use of genetic engineering technology in the modification of crops for their safe production and biological enhancement.
Collapse
|
30
|
Podar D, Maathuis FJM. The role of roots and rhizosphere in providing tolerance to toxic metals and metalloids. PLANT, CELL & ENVIRONMENT 2022; 45:719-736. [PMID: 34622470 DOI: 10.1111/pce.14188] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/23/2021] [Accepted: 08/28/2021] [Indexed: 06/13/2023]
Abstract
Human activity and natural processes have led to the widespread dissemination of metals and metalloids, many of which are toxic and have a negative impact on plant growth and development. Roots, as the first point of contact, are essential in endowing plants with tolerance to excess metal(loid) in the soil. The most important root processes that contribute to tolerance are: adaptation of transport processes that affect uptake efflux and long-distance transport of metal(loid)s; metal(loid) detoxification within root cells via conjugation to thiol rich compounds and subsequent sequestration in the vacuole; plasticity in root architecture; the presence of bacteria and fungi in the rhizosphere that impact on metal(loid) bioavailability; the role of root exudates. In this review, we provide details on these processes and assess their relevance on the detoxification of arsenic, cadmium, mercury and zinc in crops. Furthermore, we assess which of these strategies have been tested in field conditions and whether they are effective in terms of improving crop metal(loid) tolerance.
Collapse
Affiliation(s)
- Dorina Podar
- Department of Molecular Biology and Biotechnology, Faculty of Biology-Geology, Babeș-Bolyai University, Cluj, Romania
| | | |
Collapse
|
31
|
Yang Z, Yang F, Liu JL, Wu HT, Yang H, Shi Y, Liu J, Zhang YF, Luo YR, Chen KM. Heavy metal transporters: Functional mechanisms, regulation, and application in phytoremediation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 809:151099. [PMID: 34688763 DOI: 10.1016/j.scitotenv.2021.151099] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 10/15/2021] [Accepted: 10/16/2021] [Indexed: 05/22/2023]
Abstract
Heavy metal pollution in soil is a global problem with serious impacts on human health and ecological security. Phytoextraction in phytoremediation, in which plants uptake and transport heavy metals (HMs) to the tissues of aerial parts, is the most environmentally friendly method to reduce the total amount of HMs in soil and has wide application prospects. However, the molecular mechanism of phytoextraction is still under investigation. The uptake, translocation, and retention of HMs in plants are mainly mediated by a variety of transporter proteins. A better understanding of the accumulation strategy of HMs via transporters in plants is a prerequisite for the improvement of phytoextraction. In this review, the biochemical structure and functions of HM transporter families in plants are systematically summarized, with emphasis on their roles in phytoremediation. The accumulation mechanism and regulatory pathways related to hormones, regulators, and reactive oxygen species (ROS) of HMs concerning these transporters are described in detail. Scientific efforts and practices for phytoremediation carried out in recent years suggest that creation of hyperaccumulators by transgenic or gene editing techniques targeted to these transporters and their regulators is the ultimate powerful path for the phytoremediation of HM contaminated soils.
Collapse
Affiliation(s)
- Zi Yang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Fan Yang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jia-Lan Liu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Hai-Tao Wu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Hao Yang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yi Shi
- Guangdong Kaiyuan Environmental Technology Co., Ltd, Dongguan 523000, China
| | - Jie Liu
- Guangdong Kaiyuan Environmental Technology Co., Ltd, Dongguan 523000, China
| | - Yan-Feng Zhang
- Hybrid Rapeseed Research Center of Shaanxi Province, Yangling 712100, Shaanxi, China
| | - Yan-Rong Luo
- Guangdong Kaiyuan Environmental Technology Co., Ltd, Dongguan 523000, China.
| | - Kun-Ming Chen
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
32
|
Metalloprotein-Specific or Critical Amino Acid Residues: Perspectives on Plant-Precise Detoxification and Recognition Mechanisms under Cadmium Stress. Int J Mol Sci 2022; 23:ijms23031734. [PMID: 35163656 PMCID: PMC8836122 DOI: 10.3390/ijms23031734] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/26/2022] [Accepted: 02/02/2022] [Indexed: 12/15/2022] Open
Abstract
Cadmium (Cd) pollution in cultivated land is caused by irresistible geological factors and human activities; intense diffusion and migration have seriously affected the safety of food crops. Plants have evolved mechanisms to control excessive influx of Cd in the environment, such as directional transport, chelation and detoxification. This is done by some specific metalloproteins, whose key amino acid motifs have been investigated by scientists one by one. The application of powerful cell biology, crystal structure science, and molecular probe targeted labeling technology has identified a series of protein families involved in the influx, transport and detoxification of the heavy metal Cd. This review summarizes them as influx proteins (NRAMP, ZIP), chelating proteins (MT, PDF), vacuolar proteins (CAX, ABCC, MTP), long-distance transport proteins (OPT, HMA) and efflux proteins (PCR, ABCG). We selected representative proteins from each family, and compared their amino acid sequence, motif structure, subcellular location, tissue specific distribution and other characteristics of differences and common points, so as to summarize the key residues of the Cd binding target. Then, we explain its special mechanism of action from the molecular structure. In conclusion, this review is expected to provide a reference for the exploration of key amino acid targets of Cd, and lay a foundation for the intelligent design and breeding of crops with high/low Cd accumulation.
Collapse
|
33
|
Stanton C, Sanders D, Krämer U, Podar D. Zinc in plants: Integrating homeostasis and biofortification. MOLECULAR PLANT 2022; 15:65-85. [PMID: 34952215 DOI: 10.1016/j.molp.2021.12.008] [Citation(s) in RCA: 70] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/07/2021] [Accepted: 12/21/2021] [Indexed: 05/24/2023]
Abstract
Zinc plays many essential roles in life. As a strong Lewis acid that lacks redox activity under environmental and cellular conditions, the Zn2+ cation is central in determining protein structure and catalytic function of nearly 10% of most eukaryotic proteomes. While specific functions of zinc have been elucidated at a molecular level in a number of plant proteins, wider issues abound with respect to the acquisition and distribution of zinc by plants. An important challenge is to understand how plants balance between Zn supply in soil and their own nutritional requirement for zinc, particularly where edaphic factors lead to a lack of bioavailable zinc or, conversely, an excess of zinc that bears a major risk of phytotoxicity. Plants are the ultimate source of zinc in the human diet, and human Zn deficiency accounts for over 400 000 deaths annually. Here, we review the current understanding of zinc homeostasis in plants from the molecular and physiological perspectives. We provide an overview of approaches pursued so far in Zn biofortification of crops. Finally, we outline a "push-pull" model of zinc nutrition in plants as a simplifying concept. In summary, this review discusses avenues that can potentially deliver wider benefits for both plant and human Zn nutrition.
Collapse
Affiliation(s)
| | - Dale Sanders
- John Innes Centre, Colney Lane, Norwich, NR4 7UH, UK
| | - Ute Krämer
- Molecular Genetics and Physiology of Plants, Ruhr University Bochum, 44801 Bochum, Germany.
| | - Dorina Podar
- Department of Molecular Biology and Biotechnology and Centre for Systems Biology, Biodiversity and Bioresources, Babes-Bolyai University, 400084 Cluj-Napoca, Romania.
| |
Collapse
|
34
|
Li X, Wang Z, Fu Y, Cheng X, Zhang Y, Fan B, Zhu C, Chen Z. Two ubiquitin-associated ER proteins interact with COPT copper transporters and modulate their accumulation. PLANT PHYSIOLOGY 2021; 187:2469-2484. [PMID: 34618061 PMCID: PMC8644684 DOI: 10.1093/plphys/kiab381] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 07/13/2021] [Indexed: 06/02/2023]
Abstract
The endoplasmic reticulum (ER) contains an elaborate protein quality control network that promotes protein folding and prevents accumulation of misfolded proteins. Evolutionarily conserved UBIQUITIN-ASSOCIATED DOMAIN-CONTAINING PROTEIN 2 (UBAC2) is involved in ER-associated protein degradation in metazoans. We have previously reported that two close UBAC2 homologs from Arabidopsis (Arabidopsis thaliana) not only participate in selective autophagy of ER components but also interact with plant-specific PATHOGEN-ASSOCIATED MOLECULAR PATTERN (PAMP)-INDUCED COILED COIL (PICC) protein to increase the accumulation of POWDERY MILDEW-RESISTANT 4 callose synthase. Here, we report that UBAC2s also interacted with COPPER (Cu) TRANSPORTER 1 (COPT1) and plasma membrane-targeted members of the Cu transporter family. The ubac2 mutants were significantly reduced in both the accumulation of COPT proteins and Cu content, and also displayed increased sensitivity to a Cu chelator. Therefore, UBAC2s positively regulate the accumulation of COPT transporters, thereby increasing Cu uptake by plant cells. Unlike with POWDERY MILDEW RESISTANCE 4, however, the positive role of UBAC2s in the accumulation of COPT1 is not dependent on PICC or the UBA domain of UBAC2s. When COPT1 was overexpressed under the CaMV 35S promoter, the increased accumulation of COPT1 was strongly UBAC2-dependent, particularly when a signal peptide was added to the N-terminus of COPT1. Further analysis using inhibitors of protein synthesis and degradation strongly suggested that UBAC2s stabilize newly synthesized COPT proteins against degradation by the proteasome system. These results indicate that plant UBAC2s are multifunctional proteins that regulate the degradation and accumulation of specific ER-synthesized proteins.
Collapse
Affiliation(s)
- Xifeng Li
- College of Life Science, China Jiliang University, Hangzhou,
Zhejiang 310018, China
- Department of Botany and Plant Pathology and Center for Plant Biology, Purdue
University, West Lafayette, Indiana 47907-2054, USA
| | - Zhe Wang
- Department of Botany and Plant Pathology and Center for Plant Biology, Purdue
University, West Lafayette, Indiana 47907-2054, USA
| | - Yunting Fu
- College of Life Science, China Jiliang University, Hangzhou,
Zhejiang 310018, China
| | - Xi Cheng
- Department of Botany and Plant Pathology and Center for Plant Biology, Purdue
University, West Lafayette, Indiana 47907-2054, USA
| | - Yan Zhang
- Department of Botany and Plant Pathology and Center for Plant Biology, Purdue
University, West Lafayette, Indiana 47907-2054, USA
- College of Ecology, Lishui University, Lishui, Zhejiang 323000,
China
| | - Baofang Fan
- Department of Botany and Plant Pathology and Center for Plant Biology, Purdue
University, West Lafayette, Indiana 47907-2054, USA
| | - Cheng Zhu
- College of Life Science, China Jiliang University, Hangzhou,
Zhejiang 310018, China
| | - Zhixiang Chen
- College of Life Science, China Jiliang University, Hangzhou,
Zhejiang 310018, China
- Department of Botany and Plant Pathology and Center for Plant Biology, Purdue
University, West Lafayette, Indiana 47907-2054, USA
| |
Collapse
|
35
|
Mutation in OsFWL7 Affects Cadmium and Micronutrient Metal Accumulation in Rice. Int J Mol Sci 2021; 22:ijms222212583. [PMID: 34830475 PMCID: PMC8624461 DOI: 10.3390/ijms222212583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/17/2021] [Accepted: 11/19/2021] [Indexed: 11/17/2022] Open
Abstract
Micronutrient metals, such as Mn, Cu, Fe, and Zn, are essential heavy metals for plant growth and development, while Cd is a nonessential heavy metal that is highly toxic to both plants and humans. Our understanding of the molecular mechanisms underlying Cd and micronutrient metal accumulation in plants remains incomplete. Here, we show that OsFWL7, an FW2.2-like (FWL) family gene in Oryza sativa, is preferentially expressed in the root and encodes a protein localized to the cell membrane. The osfwl7 mutation reduces both the uptake and the root-to-shoot translocation of Cd in rice plants. Additionally, the accumulation of micronutrient metals, including Mn, Cu, and Fe, was lower in osfwl7 mutants than in the wildtype plants under normal growth conditions. Moreover, the osfwl7 mutation affects the expression of several heavy metal transporter genes. Protein interaction analyses reveal that rice FWL proteins interact with themselves and one another, and with several membrane microdomain marker proteins. Our results suggest that OsFWL7 is involved in Cd and micronutrient metal accumulation in rice. Additionally, rice FWL proteins may form oligomers and some of them may be located in membrane microdomains.
Collapse
|
36
|
Li X, Chen D, Yang Y, Liu Y, Luo L, Chen Q, Yang Y. Comparative transcriptomics analysis reveals differential Cd response processes in roots of two turnip landraces with different Cd accumulation capacities. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 220:112392. [PMID: 34102395 DOI: 10.1016/j.ecoenv.2021.112392] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/05/2021] [Accepted: 05/28/2021] [Indexed: 06/12/2023]
Abstract
Understanding the molecular mechanisms of cadmium (Cd) tolerance and accumulation in plants is important to address Cd pollution. In the present study, we performed comparative transcriptome analysis to identify the Cd response processes in the roots of two turnip landraces, KTRG-B14 (high-Cd accumulation) and KTRG-B36 (low-Cd accumulation). Two common enhanced processes, glutathione metabolism and antioxidant system, were identified in both landraces. However, some differential antioxidant processes are likely employed by two landraces, namely, several genes encoding peptide methionine sulfoxide reductases and thioredoxins were up-regulated in B14, whereas flavonoid synthesis was potentially induced to fight against oxidative stress in B36. In addition to the commonly upregulated ZINC INDUCED FACILITATOR 1-like gene in two landraces, different metal transporter-encoding genes identified in B14 (DETOXIFICATION 1) and B36 (PLANT CADMIUM RESISTANCE 2-like, probable zinc transporter 10, and ABC transporter C family member 3) were responsible for Cd accumulation and distribution in cells. Several genes that encode extensins were specifically upregulated in B14, which may improve Cd accumulation in cell walls or regulate root development to absorb more Cd. Meanwhile, the induced high-affinity nitrate transporter 2.1-like gene was also likely to contribute to the higher Cd accumulation in B14. However, Cd also caused some toxic symptoms in both landraces. Cd stress might inhibit iron uptake in both landraces whereas many apoenzyme-encoding genes were influenced in B36, which may be attributed to the interaction between Cd and other metal ions. This study provides novel insights into the molecular mechanism of plant root response to Cd at an early stage. The transporters and key enzymes identified in this study are helpful for the molecular-assisted breeding of low- or high-Cd-accumulating plant resources.
Collapse
Affiliation(s)
- Xiong Li
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.
| | - Di Chen
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Ya Yang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Yuanyuan Liu
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Landi Luo
- School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China
| | - Qian Chen
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Yongping Yang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Xishuangbanna 666303, China.
| |
Collapse
|
37
|
Verma PK, Verma S, Chakrabarty D, Pandey N. Biotechnological Approaches to Enhance Zinc Uptake and Utilization Efficiency in Cereal Crops. JOURNAL OF SOIL SCIENCE AND PLANT NUTRITION 2021; 21:2412-2424. [DOI: 10.1007/s42729-021-00532-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 06/08/2021] [Indexed: 06/27/2023]
|
38
|
Zhou T, Yue CP, Zhang TY, Liu Y, Huang JY, Hua YP. Integrated ionomic and transcriptomic dissection reveals the core transporter genes responsive to varying cadmium abundances in allotetraploid rapeseed. BMC PLANT BIOLOGY 2021; 21:372. [PMID: 34388971 PMCID: PMC8362225 DOI: 10.1186/s12870-021-03136-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 07/25/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Oilseed rape (B. napus L.) has great potential for phytoremediation of cadmium (Cd)-polluted soils due to its large plant biomass production and strong metal accumulation. Soil properties and the presence of other soluble compounds or ions, cause a heterogeneous distribution of Cd. RESULTS The aim of our study was to reveal the differential responses of B. napus to different Cd abundances. Herein, we found that high Cd (50 μM) severely inhibited the growth of B. napus, which was not repressed by low Cd (0.50 μM) under hydroponic culture system. ICP-MS assays showed that the Cd2+ concentrations in both shoots and roots under 50 μM Cd were over 10 times higher than those under 0.50 μM Cd. Under low Cd, the concentrations of only shoot Ca2+/Mn2+ and root Mn2+ were obviously changed (both reduced); under high Cd, the concentrations of most cations assayed were significantly altered in both shoots and roots except root Ca2+ and Mg2+. High-throughput transcriptomic profiling revealed a total of 18,021 and 1408 differentially expressed genes under high Cd and low Cd conditions, respectively. The biological categories related to the biosynthesis of plant cell wall components and response to external stimulus were over-accumulated under low Cd, whereas the terms involving photosynthesis, nitrogen transport and response, and cellular metal ion homeostasis were highly enriched under high Cd. Differential expression of the transporters responsible for Cd uptake (NRAMPs), transport (IRTs and ZIPs), sequestration (HMAs, ABCs, and CAXs), and detoxification (MTPs, PCR, MTs, and PCSs), and some other essential nutrient transporters were investigated, and gene co-expression network analysis revealed the core members of these Cd transporters. Some Cd transporter genes, especially NRAMPs and IRTs, showed opposite responsive patterns between high Cd and low Cd conditions. CONCLUSIONS Our findings would enrich our understanding of the interaction between essential nutrients and Cd, and might also provide suitable gene resources and important implications for the genetic improvement of plant Cd accumulation and resistance through molecular engineering of these core genes under varying Cd abundances in soils.
Collapse
Affiliation(s)
- Ting Zhou
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001 China
| | - Cai-peng Yue
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001 China
| | - Tian-yu Zhang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001 China
| | - Ying Liu
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001 China
| | - Jin-yong Huang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001 China
| | - Ying-peng Hua
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001 China
| |
Collapse
|
39
|
Beauchet A, Gévaudant F, Gonzalez N, Chevalier C. In search of the still unknown function of FW2.2/CELL NUMBER REGULATOR, a major regulator of fruit size in tomato. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:5300-5311. [PMID: 33974684 DOI: 10.1093/jxb/erab207] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 05/07/2021] [Indexed: 06/12/2023]
Abstract
The FW2.2 gene is associated with the major quantitative trait locus (QTL) governing fruit size in tomato, and acts by negatively controlling cell division during fruit development. FW2.2 belongs to a multigene family named the CELL NUMBER REGULATOR (CNR) family. CNR proteins harbour the uncharacterized PLAC8 motif made of two conserved cysteine-rich domains separated by a variable region that are predicted to be transmembrane segments, and indeed FW2.2 localizes to the plasma membrane. Although FW2.2 was cloned more than two decades ago, the molecular mechanisms of action remain unknown. In particular, how FW2.2 functions to regulate cell cycle and fruit growth, and thus fruit size, is as yet not understood. Here we review current knowledge on PLAC8-containing CNR/FWL proteins in plants, which are described to participate in organogenesis and the regulation of organ size, especially in fruits, and in cadmium resistance, ion homeostasis, and/or Ca2+ signalling. Within the plasma membrane FW2.2 and some CNR/FWLs are localized in microdomains, which is supported by recent data from interactomics studies. Hence FW2.2 and CNR/FWL could be involved in a transport function of signalling molecules across membranes, influencing organ growth via a cell to cell trafficking mechanism.
Collapse
Affiliation(s)
- Arthur Beauchet
- Université de Bordeaux, INRAE, UMR1332 Biologie du Fruit et Pathologie, F-33882 Villenave d'Ornon, France
| | - Frédéric Gévaudant
- Université de Bordeaux, INRAE, UMR1332 Biologie du Fruit et Pathologie, F-33882 Villenave d'Ornon, France
| | - Nathalie Gonzalez
- Université de Bordeaux, INRAE, UMR1332 Biologie du Fruit et Pathologie, F-33882 Villenave d'Ornon, France
| | - Christian Chevalier
- Université de Bordeaux, INRAE, UMR1332 Biologie du Fruit et Pathologie, F-33882 Villenave d'Ornon, France
| |
Collapse
|
40
|
Kintlová M, Vrána J, Hobza R, Blavet N, Hudzieczek V. Transcriptome Response to Cadmium Exposure in Barley ( Hordeum vulgare L.). FRONTIERS IN PLANT SCIENCE 2021; 12:629089. [PMID: 34335638 PMCID: PMC8321094 DOI: 10.3389/fpls.2021.629089] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 06/11/2021] [Indexed: 05/27/2023]
Abstract
Cadmium is an environmental pollutant with high toxicity that negatively affects plant growth and development. To understand the molecular mechanisms of plant response to cadmium stress, we have performed a genome-wide transcriptome analysis on barley plants treated with an increased concentration of cadmium. Differential gene expression analysis revealed 10,282 deregulated transcripts present in the roots and 7,104 in the shoots. Among them, we identified genes related to reactive oxygen species metabolism, cell wall formation and maintenance, ion membrane transport and stress response. One of the most upregulated genes was PLANT CADMIUM RESISTACE 2 (HvPCR2) known to be responsible for heavy metal detoxification in plants. Surprisingly, in the transcriptomic data we identified four different copies of the HvPCR2 gene with a specific pattern of upregulation in individual tissues. Heterologous expression of all five barley copies in a Cd-sensitive yeast mutant restored cadmium resistance. In addition, four HvPCR2 were located in tandem arrangement in a single genomic region of the barley 5H chromosome. To our knowledge, this is the first example showing multiplication of the PCR2 gene in plants.
Collapse
Affiliation(s)
- Martina Kintlová
- Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany, Olomouc, Czechia
| | - Jan Vrána
- Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany, Olomouc, Czechia
| | - Roman Hobza
- Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany, Olomouc, Czechia
- Czech Academy of Sciences, Institute of Biophysics, Brno, Czechia
| | - Nicolas Blavet
- Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany, Olomouc, Czechia
- Czech Academy of Sciences, Institute of Biophysics, Brno, Czechia
| | | |
Collapse
|
41
|
Liu J, Zhang J, Kim SH, Lee HS, Marinoia E, Song WY. Characterization of Brassica rapa metallothionein and phytochelatin synthase genes potentially involved in heavy metal detoxification. PLoS One 2021; 16:e0252899. [PMID: 34086824 PMCID: PMC8177407 DOI: 10.1371/journal.pone.0252899] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 05/24/2021] [Indexed: 11/18/2022] Open
Abstract
Brassica rapa is an important leafy vegetable that can potentially accumulate high concentrations of cadmium (Cd), posing a risk to human health. The aim of the present study was to identify cadmium detoxifying molecular mechanisms in B. rapa using a functional cloning strategy. A cDNA library constructed from roots of B. rapa plants treated with Cd was transformed into the Cd sensitive yeast mutant strain DTY167 that lacks the yeast cadmium factor (YCF1), and resistant yeast clones were selected on Cd containing media. Two hundred genes potentially conferring cadmium resistance were rescued from the surviving yeast clones and sequenced. Sequencing analysis revealed that genes encoding for metallothionein (MT)1, MT2a, MT2b and MT3, and phytochelatin synthase (PCS)1 and PCS2 accounted for 35.5%, 28.5%, 4%, 11.3%, 18.7% and 2%, respectively of the genes identified. MTs and PCSs expressing DTY167 cells showed resistance to Cd as well as to Zn. PCS1 expressing yeast cells were also more resistant to Pb compared to those expressing MTs or PCS2. RT-PCR results showed that Cd treatment strongly induced the expression levels of MTs in the root and shoot. Furthermore, the different MTs and PCSs exhibited tissue specific expression. The results indicate that MTs and PCS genes potentially play a central role in detoxifying Cd and other toxic metals in B. rapa.
Collapse
Affiliation(s)
- Jiayou Liu
- International Research Center for Environmental Membrane Biology, Department of Horticulture, Foshan University, Foshan, Guangdong, China
| | - Jie Zhang
- International Research Center for Environmental Membrane Biology, Department of Horticulture, Foshan University, Foshan, Guangdong, China
| | - Sun Ha Kim
- College of Agriculture and Life Sciences, Chungnam National University, Daejeon, Korea
| | - Hyun-Sook Lee
- College of Agriculture and Life Sciences, Chungnam National University, Daejeon, Korea
| | - Enrico Marinoia
- International Research Center for Environmental Membrane Biology, Department of Horticulture, Foshan University, Foshan, Guangdong, China
| | - Won-Yong Song
- International Research Center for Environmental Membrane Biology, Department of Horticulture, Foshan University, Foshan, Guangdong, China
- College of Agriculture and Life Sciences, Chungnam National University, Daejeon, Korea
- * E-mail:
| |
Collapse
|
42
|
Zeng H, Wu H, Yan F, Yi K, Zhu Y. Molecular regulation of zinc deficiency responses in plants. JOURNAL OF PLANT PHYSIOLOGY 2021; 261:153419. [PMID: 33915366 DOI: 10.1016/j.jplph.2021.153419] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/06/2021] [Accepted: 04/09/2021] [Indexed: 05/27/2023]
Abstract
Zinc (Zn) is an essential micronutrient for plants and animals. Because of its low availability in arable soils worldwide, Zn deficiency is becoming a serious agricultural problem resulting in decreases of crop yield and nutritional quality. Plants have evolved multiple responses to adapt to low levels of soil Zn supply, involving biochemical and physiological changes to improve Zn acquisition and utilization, and defend against Zn deficiency stress. In this review, we summarize the physiological and biochemical adaptations of plants to Zn deficiency, the roles of transporters and metal-binding compounds in Zn homeostasis regulation, and the recent progresses in understanding the sophisticated regulatory mechanisms of Zn deficiency responses that have been made by molecular and genetic analyses, as well as diverse 'omics' studies. Zn deficiency responses are tightly controlled by multiple layers of regulation, such as transcriptional regulation that is mediated by transcription factors like F-group bZIP proteins, epigenetic regulation at the level of chromatin, and post-transcriptional regulation mediated by small RNAs and alternative splicing. The insights into the regulatory network underlying Zn deficiency responses and the perspective for further understandings of molecular regulation of Zn deficiency responses have been discussed. The understandings of the regulatory mechanisms will be important for improving Zn deficiency tolerance, Zn use efficiency, and Zn biofortification in plants.
Collapse
Affiliation(s)
- Houqing Zeng
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China.
| | - Haicheng Wu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Feng Yan
- Institute of Agronomy and Plant Breeding, Justus Liebig University of Giessen, Giessen, 35392, Germany
| | - Keke Yi
- Key Laboratory of Plant Nutrition and Fertilizers, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yiyong Zhu
- Agricultural Resource and Environment Experiment Teaching Center, College of Resource and Environment Science, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
43
|
Abstract
This review highlights the most recent updated information available about Zn phytotoxicity at physiological, biochemical and molecular levels, uptake mechanisms as well as excess Zn homeostasis in plants. Zinc (Zn) is a natural component of soil in terrestrial environments and is a vital element for plant growth, as it performs imperative functions in numerous metabolic pathways. However, potentially noxious levels of Zn in soils can result in various alterations in plants like reduced growth, photosynthetic and respiratory rate, imbalanced mineral nutrition and enhanced generation of reactive oxygen species. Zn enters into soils through various sources, such as weathering of rocks, forest fires, volcanoes, mining and smelting activities, manure, sewage sludge and phosphatic fertilizers. The rising alarm in environmental facet, as well as, the narrow gap between Zn essentiality and toxicity in plants has drawn the attention of the scientific community to its effects on plants and crucial role in agricultural sustainability. Hence, this review focuses on the most recent updates about various physiological and biochemical functions perturbed by high levels of Zn, its mechanisms of uptake and transport as well as molecular aspects of surplus Zn homeostasis in plants. Moreover, this review attempts to understand the mechanisms of Zn toxicity in plants and to present novel perspectives intended to drive future investigations on the topic. The findings will further throw light on various mechanisms adopted by plants to cope with Zn stress which will be of great significance to breeders for enhancing tolerance to Zn contamination.
Collapse
Affiliation(s)
- Harmanjit Kaur
- Department of Botany, Akal University, Bathinda, 151302, Punjab, India
| | - Neera Garg
- Department of Botany, Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
44
|
DalCorso G, Martini F, Fasani E, Manara A, Visioli G, Furini A. Enhancement of Zn tolerance and accumulation in plants mediated by the expression of Saccharomyces cerevisiae vacuolar transporter ZRC1. PLANTA 2021; 253:117. [PMID: 33956221 PMCID: PMC8102461 DOI: 10.1007/s00425-021-03634-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 04/24/2021] [Indexed: 05/30/2023]
Abstract
Transgenic Arabidopsis thaliana and Populus alba plants overexpressing the zinc transporter ScZRC1 in shoots exhibit Zn tolerance. Increased Zn concentrations were observed in shoots of P. alba, a species suitable for phytoremediation. Genetic engineering of plants for phytoremediation is worth to consider if genes leading to heavy metal accumulation and tolerance are expressed in high biomass producing plants. The Saccharomyces cerevisiae ZRC1 gene encodes a zinc transporter which is primarily involved in the uptake of Zn into the vacuole. The ZRC1 gene was expressed in the model species A. thaliana and P. alba (cv. Villafranca). Both species were transformed with constructs carrying ScZRC1 under the control of either the CaMV35S promoter for constitutive expression or the active promoter region of the tobacco Rubisco small subunit (pRbcS) to limit the expression to the above-ground tissues. In hydroponic cultures, A. thaliana and poplar ScZRC1-expressing plants accumulated more Zn in vegetative tissues and were more tolerant than untransformed plants. No differences were found between plants carrying the CaMV35::ScZRC1 or pRbcS::ScZRC1 constructs. The higher Zn accumulation in transgenic plants was accompanied by an increased superoxide dismutase (SOD) activity, indicating the activation of defense mechanisms to prevent cellular damage. In the presence of cadmium in addition to Zn, plants did not show symptoms of metal toxicity, neither in hydroponic cultures nor in soil. Zn accumulation increased in shoots, while no differences were observed for Cd accumulation, in comparison to control plants. These data suggest that ectopic expression of ScZRC1 can increase the potential of poplar for the remediation of Zn-polluted soils, although further tests are required to assay its application in remediating multimetal polluted soils.
Collapse
Affiliation(s)
- Giovanni DalCorso
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134, Verona, Italy
| | - Flavio Martini
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134, Verona, Italy
| | - Elisa Fasani
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134, Verona, Italy
| | - Anna Manara
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134, Verona, Italy
| | - Giovanna Visioli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Antonella Furini
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134, Verona, Italy.
| |
Collapse
|
45
|
Liu Z, Lu T, Feng C, Zhang H, Xu Z, Correll JC, Qian W. Fine mapping and molecular marker development of the Fs gene controlling fruit spines in spinach (Spinacia oleracea L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:1319-1328. [PMID: 33515081 DOI: 10.1007/s00122-021-03772-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 01/09/2021] [Indexed: 06/12/2023]
Abstract
The Fs gene, which controls spinach fruit spines, was fine mapped to a 0.27 Mb interval encompassing four genes on chromosome 3. There are two types of fruit of spinach (Spinacia oleracea L.), spiny and spineless, which are visually distinguishable by the spines of fruit coat. In spinach breeding, the fruit characteristic is an important agronomic trait that have impacts on "seed" treatment and mechanized sowing. However, the gene(s) controlling the fruit spiny trait have not been characterized and the genetic mechanism of this trait remained unclear. The objectives of the study were to fine map the gene controlling fruit spines and develop molecular markers for marker-assisted selection purpose. Genetic analysis of the spiny trait in segregating populations indicated that fruit spines were controlled by a single dominant gene, designated as Fs. Using a super-BSA method and recombinants analysis in a BC1 population, Fs was mapped to a 1.9-Mb interval on chromosome 3. The Fs gene was further mapped to a 0.27-Mb interval using a recombinant inbred line (RIL) population with 120 lines. From this 0.27 Mb region, four candidate genes were identified in the reference genome. The structure and expression of the four genes were compared between the spiny and spineless parents. A co-dominant marker YC-15 was found to be co-segregating with the fruit spines trait, which produced a 129-bp fragment specific to spiny trait and a 108-bp fragment for spineless fruit. This marker can predict spiny trait with a 94.8% accuracy rate when tested with 100 diverse germplasm, suggesting that this marker would be valuable for marker-assisted selection in spinach breeding.
Collapse
Affiliation(s)
- Zhiyuan Liu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Tiantian Lu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chunda Feng
- University of Arkansas, Fayetteville, AR, USA
| | - Helong Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhaosheng Xu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | | | - Wei Qian
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
46
|
Mix and match: Patchwork domain evolution of the land plant-specific Ca2+-permeable mechanosensitive channel MCA. PLoS One 2021; 16:e0249735. [PMID: 33857196 PMCID: PMC8049495 DOI: 10.1371/journal.pone.0249735] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 03/23/2021] [Indexed: 11/19/2022] Open
Abstract
Multidomain proteins can have a complex evolutionary history that may involve de novo domain evolution, recruitment and / or recombination of existing domains and domain losses. Here, the domain evolution of the plant-specific Ca2+-permeable mechanosensitive channel protein, MID1-COMPLEMENTING ACTIVITY (MCA), was investigated. MCA, a multidomain protein, possesses a Ca2+-influx-MCAfunc domain and a PLAC8 domain. Profile Hidden Markov Models (HMMs) of domains were assessed in 25 viridiplantae proteomes. While PLAC8 was detected in plants, animals, and fungi, MCAfunc was found in streptophytes but not in chlorophytes. Full MCA proteins were only found in embryophytes. We identified the MCAfunc domain in all streptophytes including charophytes where it appeared in E3 ubiquitin ligase-like proteins. Our Maximum Likelihood (ML) analyses suggested that the MCAfunc domain evolved early in the history of streptophytes. The PLAC8 domain showed similarity to Plant Cadmium Resistance (PCR) genes, and the coupling of MCAfunc and PLAC8 seemed to represent a single evolutionary event. This combination is unique in MCA, and does not exist in other plant mechanosensitive channels. Within angiosperms, gene duplications increased the number of MCAs. Considering their role in mechanosensing in roots, MCA might be instrumental for the rise of land plants. This study provides a textbook example of de novo domain emergence, recombination, duplication, and losses, leading to the convergence of function of proteins in plants.
Collapse
|
47
|
Wang Y, Yang J, Miao R, Kang Y, Qi Z. A novel zinc transporter essential for Arabidopsis zinc and iron-dependent growth. JOURNAL OF PLANT PHYSIOLOGY 2021; 256:153296. [PMID: 33161180 DOI: 10.1016/j.jplph.2020.153296] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 10/03/2020] [Accepted: 10/04/2020] [Indexed: 06/11/2023]
Abstract
Zinc (Zn), an essential micronutrient, is absorbed by plant roots and redistributed to leaves. This process must be finely regulated in order to avoid toxic Zn2+ overaccumulation, which can arise due to Zn2+ oversupply or Zn2+ hyperaccumulation induced by Fe2+ deficiency. Although several proteins in Arabidopsis thaliana are essential for retaining Zn in the root and partitioning it from roots to leaves, how Zn2+ homeostasis in leaves is maintained is largely unknown. In this study, we identified a novel Golgi-localized protein named ZINC NUTRIENT ESSENTIAL1 (AtZNE1,At3g08650) in Arabidopsis. AtZNE1 contains 14 putative transmembrane domains. AtZNE1 promoter has strong activity in the root and leaf. Its expression complemented the increased sensitivity of a yeast mutant to excess Zn2+. The disruption of AtZNE1 in the T-DNA insertion mutant atzne1 caused growth defect under excess-Zn or Fe deficit conditions, but had no effects on the total Zn and Fe contents. We propose that AtZNE1 plays a vital role in plant adaptation to excess Zn or Fe deficiency.
Collapse
Affiliation(s)
- Yaohui Wang
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010010, PR China; State Key Laboratory of Reproductive Regulatory and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, 010010, PR China
| | - Ju Yang
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010010, PR China; State Key Laboratory of Reproductive Regulatory and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, 010010, PR China
| | - Ruiying Miao
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010010, PR China; State Key Laboratory of Reproductive Regulatory and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, 010010, PR China
| | - Yan Kang
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010010, PR China; State Key Laboratory of Reproductive Regulatory and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, 010010, PR China.
| | - Zhi Qi
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010010, PR China; State Key Laboratory of Reproductive Regulatory and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, 010010, PR China.
| |
Collapse
|
48
|
Isayenkov S, Hilo A, Rizzo P, Tandron Moya YA, Rolletschek H, Borisjuk L, Radchuk V. Adaptation Strategies of Halophytic Barley Hordeum marinum ssp. marinum to High Salinity and Osmotic Stress. Int J Mol Sci 2020; 21:ijms21239019. [PMID: 33260985 PMCID: PMC7730945 DOI: 10.3390/ijms21239019] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 02/07/2023] Open
Abstract
The adaptation strategies of halophytic seaside barley Hordeum marinum to high salinity and osmotic stress were investigated by nuclear magnetic resonance imaging, as well as ionomic, metabolomic, and transcriptomic approaches. When compared with cultivated barley, seaside barley exhibited a better plant growth rate, higher relative plant water content, lower osmotic pressure, and sustained photosynthetic activity under high salinity, but not under osmotic stress. As seaside barley is capable of controlling Na+ and Cl− concentrations in leaves at high salinity, the roots appear to play the central role in salinity adaptation, ensured by the development of thinner and likely lignified roots, as well as fine-tuning of membrane transport for effective management of restriction of ion entry and sequestration, accumulation of osmolytes, and minimization of energy costs. By contrast, more resources and energy are required to overcome the consequences of osmotic stress, particularly the severity of reactive oxygen species production and nutritional disbalance which affect plant growth. Our results have identified specific mechanisms for adaptation to salinity in seaside barley which differ from those activated in response to osmotic stress. Increased knowledge around salt tolerance in halophytic wild relatives will provide a basis for improved breeding of salt-tolerant crops.
Collapse
Affiliation(s)
- Stanislav Isayenkov
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Gatersleben, Germany; (A.H.); (P.R.); (Y.A.T.M.); (H.R.); (L.B.)
- Institute of Food Biotechnology and Genomics NAS of Ukraine, Osipovskogo Street, 2a, 04123 Kyiv, Ukraine
- Correspondence: (S.I.); (V.R.)
| | - Alexander Hilo
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Gatersleben, Germany; (A.H.); (P.R.); (Y.A.T.M.); (H.R.); (L.B.)
| | - Paride Rizzo
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Gatersleben, Germany; (A.H.); (P.R.); (Y.A.T.M.); (H.R.); (L.B.)
| | - Yudelsy Antonia Tandron Moya
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Gatersleben, Germany; (A.H.); (P.R.); (Y.A.T.M.); (H.R.); (L.B.)
| | - Hardy Rolletschek
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Gatersleben, Germany; (A.H.); (P.R.); (Y.A.T.M.); (H.R.); (L.B.)
| | - Ljudmilla Borisjuk
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Gatersleben, Germany; (A.H.); (P.R.); (Y.A.T.M.); (H.R.); (L.B.)
| | - Volodymyr Radchuk
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Gatersleben, Germany; (A.H.); (P.R.); (Y.A.T.M.); (H.R.); (L.B.)
- Correspondence: (S.I.); (V.R.)
| |
Collapse
|
49
|
Lin J, Gao X, Zhao J, Zhang J, Chen S, Lu L. Plant Cadmium Resistance 2 (SaPCR2) Facilitates Cadmium Efflux in the Roots of Hyperaccumulator Sedum alfredii Hance. FRONTIERS IN PLANT SCIENCE 2020; 11:568887. [PMID: 33193498 PMCID: PMC7661388 DOI: 10.3389/fpls.2020.568887] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 10/09/2020] [Indexed: 05/27/2023]
Abstract
Hyperaccumulators are the preferred materials for phytoremediation. Sedum alfredii Hance is a cadmium (Cd) hyperaccumulator plant in China, although its detoxification mechanism remains unresolved. In our study, we cloned a gene belonging to the plant cadmium resistance (PCR) family, named SaPCR2, from the hyperaccumulating ecotype (HE) of S. alfredii. Sequence analysis indicated that SaPCR2 contained a cysteine-rich domain highly conserved in the PCR family and played an important role in Cd detoxification. Based on the relative quantitative results, SaPCR2 was highly expressed in the roots of HE S. alfredii, but not the shoots and Cd exposure did not significantly affect SaPCR2 expression. In contrast, the expression level of SaPCR2 was very low in plants of its non-hyperaccumulating ecotype (NHE). The subcellular localization of SaPCR2 in tobacco leaves and yeasts showed that SaPCR2 was localized on the plasma membrane and the expression of the SaPCR2 protein in a Zn/Cd-sensitive yeast Δzrc1 significantly increased its tolerance to Cd stress by decreasing the Cd content in cells. Heterologous expression of SaPCR2 in plants of both Arabidopsis thaliana and NHE S. alfredii significantly reduced the Cd levels in the roots, but not in the shoots. These results suggest that the overexpression of SaPCR2 in plants provides a route for Cd leak out of the root cells and protects the root cells against phytotoxicity of Cd stress. To the best of our knowledge, this is the first study of transporter-mediated root efflux of Cd in hyperaccumulator S. alfredii.
Collapse
Affiliation(s)
- Jiayu Lin
- Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Science, Zhejiang University, Hangzhou, China
| | - Xiaoyu Gao
- Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Science, Zhejiang University, Hangzhou, China
| | - Jianqi Zhao
- Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Science, Zhejiang University, Hangzhou, China
| | - Jie Zhang
- Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Science, Zhejiang University, Hangzhou, China
| | - Shaoning Chen
- Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Science, Zhejiang University, Hangzhou, China
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Lingli Lu
- Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Science, Zhejiang University, Hangzhou, China
- Key Laboratory of Subtropic Soil and Plant Nutrition, College of Environmental & Resource Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
50
|
Valandro F, Menguer PK, Cabreira-Cagliari C, Margis-Pinheiro M, Cagliari A. Programmed cell death (PCD) control in plants: New insights from the Arabidopsis thaliana deathosome. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 299:110603. [PMID: 32900441 DOI: 10.1016/j.plantsci.2020.110603] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 05/28/2020] [Accepted: 07/14/2020] [Indexed: 06/11/2023]
Abstract
Programmed cell death (PCD) is a genetically controlled process that leads to cell suicide in both eukaryotic and prokaryotic organisms. In plants PCD occurs during development, defence response and when exposed to adverse conditions. PCD acts controlling the number of cells by eliminating damaged, old, or unnecessary cells to maintain cellular homeostasis. Unlike in animals, the knowledge about PCD in plants is limited. The molecular network that controls plant PCD is poorly understood. Here we present a review of the current mechanisms involved with the genetic control of PCD in plants. We also present an updated version of the AtLSD1 deathosome, which was previously proposed as a network controlling HR-mediated cell death in Arabidopsis thaliana. Finally, we discuss the unclear points and open questions related to the AtLSD1 deathosome.
Collapse
Affiliation(s)
- Fernanda Valandro
- Programa de Pós-Graduação em Genética e Biologia Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Universidade Federal do Rio Grande do Sul (UFRGS), RS, Brazil.
| | - Paloma Koprovski Menguer
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Universidade Federal do Rio Grande do Sul (UFRGS), RS, Brazil.
| | | | - Márcia Margis-Pinheiro
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Universidade Federal do Rio Grande do Sul (UFRGS), RS, Brazil.
| | - Alexandro Cagliari
- Programa de Pós-Graduação em Ambiente e Sustentabilidade, Universidade Estadual do Rio Grande do Sul, RS, Brazil; Universidade Estadual do Rio Grande do Sul (UERGS), RS, Brazil.
| |
Collapse
|