1
|
Ebert A, Alseekh S, D’Andrea L, Roessner U, Bock R, Kopka J. Detailed Profiling of 17-Hydroxygeranyllinalool Diterpene Glycosides from Nicotiana Species Reveals Complex Reaction Networks of Conjugation Isomers. Metabolites 2024; 14:562. [PMID: 39452943 PMCID: PMC11509208 DOI: 10.3390/metabo14100562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND Specialised anti-herbivory metabolites are abundant in the solanaceous genus Nicotiana. These metabolites include the large family of 17-hydroxygeranyllinalool diterpene glycosides (HGL-DTGs). Many HGL-DTGs occur exclusively within the Nicotiana genus, but information from the molecular model species N. tabacum, N. benthamiana, and the tree tobacco N. glauca is limited. OBJECTIVES We studied HGL-DTG occurrence and complexity in these species with the aim of providing in-depth reference annotations and comprehensive HGL-DTG inventories. METHODS We analysed polar metabolite extracts in comparison to the previously investigated wild reference species N. attenuata using positive ESI(+) and negative ESI(-) mode electrospray ionisation LC-MS and MS/MS. RESULTS We provide annotations of 66 HGL-DTGs with in-source and MS/MS fragmentation spectra for selected HGL-DTGs with exemplary fragment interpretations of ESI(+) as well as less studied ESI(-) spectra. We assemble a potential biosynthesis pathway comparing the presence of HGL-DTGs in N. tabacum, N. glauca, and N. benthamiana to N. attenuata. Approximately one-third of HGL-DTGs are chromatographically resolved isomers of hexose, deoxyhexose, or malonate conjugates. The number of isomers is especially high for conjugates with low numbers of deoxyhexose moieties. CONCLUSIONS We extend the number of known HGL-DTGs with a focus on Nicotiana model species and demonstrate that the HGL-DTG family of N. tabacum plants can be surprisingly complex. Our study provides an improved basis with detailed references to previous studies of wild Nicotiana species and enables inference of HGL-DTG pathways with required enzymes for the biosynthesis of this important family of specialised defence metabolites.
Collapse
Affiliation(s)
- Alina Ebert
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam, Germany
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Saleh Alseekh
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam, Germany
- Center for Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| | - Lucio D’Andrea
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Ute Roessner
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia
- Research School of Biology, Australian National University, Canberra, ACT 2601, Australia
| | - Ralph Bock
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Joachim Kopka
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam, Germany
| |
Collapse
|
2
|
Anaia RA, Chiocchio I, Sontowski R, Swinkels B, Vergara F, van Dam NM. Ontogeny and organ-specific steroidal glycoside diversity is associated with differential expression of steroidal glycoside pathway genes in two Solanum dulcamara leaf chemotypes. PLANT BIOLOGY (STUTTGART, GERMANY) 2024. [PMID: 39150982 DOI: 10.1111/plb.13704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 07/25/2024] [Indexed: 08/18/2024]
Abstract
Solanaceous plants, such as Solanum dulcamara, produce steroidal glycosides (SGs). Leaf SG profiles vary among S. dulcamara individuals, leading to distinct phytochemical phenotypes ('chemotypes') and intraspecific phytochemical diversity ('chemodiversity'). However, if and how SG chemodiversity varies among organs and across ontogeny, and how this relates to SG metabolism gene expression is unknown. Among organs and across ontogeny, S. dulcamara plants with saturated (S) and unsaturated (U) SG leaf chemotypes were selected and clonally propagated. Roots, stems and leaves were harvested from vegetative and flowering plants. Extracts were analysed using untargeted LC-MS. Expression of candidate genes in SG metabolism (SdGAME9, SdGAME4, SdGAME25, SdS5αR2 and SdDPS) was analysed using RT-qPCRs. Our analyses showed that SG chemodiversity varies among organs and across ontogeny in S. dulcamara; SG richness (Dmg) was higher in flowering than vegetative plants. In vegetative plants, Dmg was higher for leaves than for roots. Lack of SdGAME25 expression in U-chemotype leaves, while readily expressed in roots and stems, suggests a pivotal role for SdGAME25 in differentiation of leaf chemotypes in vegetative and flowering plants. By acting as an ontogeny-dependent chemotypic switch, differential regulation of SdGAME25 enables adaptive allocation of SGs, thereby increasing SG chemodiversity in leaves. This indicates that differential expression and/or regulation of glycoalkaloid metabolism genes, rather than their presence or absence, explains observed chemotypic variation in SG chemodiversity among organs and across ontogeny.
Collapse
Affiliation(s)
- R A Anaia
- Molecular Interaction Ecology, German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biodiversity, Friedrich Schiller University, Jena, Germany
- Plant and Animal Biology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, the Netherlands
| | - I Chiocchio
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - R Sontowski
- Molecular Interaction Ecology, German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biodiversity, Friedrich Schiller University, Jena, Germany
- Leibniz Institute for Vegetable and Ornamental Crops (IGZ), Großbeeren, Germany
| | - B Swinkels
- Molecular Interaction Ecology, German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Plant and Animal Biology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, the Netherlands
| | - F Vergara
- Molecular Interaction Ecology, German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biodiversity, Friedrich Schiller University, Jena, Germany
| | - N M van Dam
- Molecular Interaction Ecology, German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biodiversity, Friedrich Schiller University, Jena, Germany
- Leibniz Institute for Vegetable and Ornamental Crops (IGZ), Großbeeren, Germany
| |
Collapse
|
3
|
Guzmán LF, Tirado B, Cruz-Cárdenas CI, Rojas-Anaya E, Aragón-Magadán MA. De Novo Transcriptome Assembly of Cedar ( Cedrela odorata L.) and Differential Gene Expression Involved in Herbivore Resistance. Curr Issues Mol Biol 2024; 46:8794-8806. [PMID: 39194737 DOI: 10.3390/cimb46080520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/01/2024] [Accepted: 08/07/2024] [Indexed: 08/29/2024] Open
Abstract
Timber trees are targets of herbivorous attacks. The identification of genes associated with pest resistance can be accomplished through differential expression analysis using transcriptomes. We reported the de novo assembly of cedar (Cedrela odorata L.) transcriptome and the differential expression of genes involved in herbivore resistance. The assembly and annotation of the transcriptome were obtained using RNAseq from healthy cedar plants and those infested with Chrysobothris yucatanensis. A total of 325.6 million reads were obtained, and 127,031 (97.47%) sequences were successfully assembled. A total of 220 herbivory-related genes were detected, of which 170 genes were annotated using GO terms, and 161 genes with 245 functions were identified-165, 75, and 5 were molecular functions, biological processes, and cellular components, respectively. To protect against herbivorous infestation, trees produce toxins and volatile compounds which are modulated by signaling pathways and gene expression related to molecular functions and biological processes. The limited number of genes identified as cellular components suggests that there are minimal alterations in cellular structure in response to borer attack. The chitin recognition protein, jasmonate ZIM-domain (JAZ) motifs, and response regulator receiver domain were found to be overexpressed, whereas the terpene synthase, cytochrome P450, and protein kinase domain gene families were underexpressed. This is the first report of a cedar transcriptome focusing on genes that are overexpressed in healthy plants and underexpressed in infested plants. This method may be a viable option for identifying genes associated with herbivore resistance.
Collapse
Affiliation(s)
- Luis Felipe Guzmán
- National Genetic Resources Center, National Agricultural, Forestry and Livestock Researches Institute, Tepatitlán 47600, Jalisco, Mexico
| | - Bibiana Tirado
- Centro Universitario de los Altos, University of Guadalajara, Tepatitlán 47600, Jalisco, Mexico
| | - Carlos Iván Cruz-Cárdenas
- National Genetic Resources Center, National Agricultural, Forestry and Livestock Researches Institute, Tepatitlán 47600, Jalisco, Mexico
| | - Edith Rojas-Anaya
- National Genetic Resources Center, National Agricultural, Forestry and Livestock Researches Institute, Tepatitlán 47600, Jalisco, Mexico
| | - Marco Aurelio Aragón-Magadán
- National Genetic Resources Center, National Agricultural, Forestry and Livestock Researches Institute, Tepatitlán 47600, Jalisco, Mexico
| |
Collapse
|
4
|
Bai Y, Liu X, Baldwin IT. Using Synthetic Biology to Understand the Function of Plant Specialized Metabolites. ANNUAL REVIEW OF PLANT BIOLOGY 2024; 75:629-653. [PMID: 38424065 DOI: 10.1146/annurev-arplant-060223-013842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Plant specialized metabolites (PSMs) are variably distributed across taxa, tissues, and ecological contexts; this variability has inspired many theories about PSM function, which, to date, remain poorly tested because predictions have outpaced the available data. Advances in mass spectrometry-based metabolomics have enabled unbiased PSM profiling, and molecular biology techniques have produced PSM-free plants; the combination of these methods has accelerated our understanding of the complex ecological roles that PSMs play in plants. Synthetic biology techniques and workflows are producing high-value, structurally complex PSMs in quantities and purities sufficient for both medicinal and functional studies. These workflows enable the reengineering of PSM transport, externalization, structural diversity, and production in novel taxa, facilitating rigorous tests of long-standing theoretical predictions about why plants produce so many different PSMs in particular tissues and ecological contexts. Plants use their chemical prowess to solve ecological challenges, and synthetic biology workflows are accelerating our understanding of these evolved functions.
Collapse
Affiliation(s)
- Yuechen Bai
- State Key Laboratory of Genetic Engineering, Shanghai Engineering Research Center of Industrial Microorganisms, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, China; ,
| | - Xinyu Liu
- State Key Laboratory of Genetic Engineering, Shanghai Engineering Research Center of Industrial Microorganisms, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, China; ,
| | - Ian T Baldwin
- Max Planck Institute for Chemical Ecology, Jena, Germany;
| |
Collapse
|
5
|
Liu X, Liu Y, Xu X, Huang W, Yan Y, Wang Y, Tian W, Mo T, Cui X, Li J, Shi SP, Tu P. Molecular characterization and structure basis of a malonyltransferase with both substrate promiscuity and catalytic regiospecificity from Cistanche tubulosa. Acta Pharm Sin B 2024; 14:2333-2348. [PMID: 38799633 PMCID: PMC11121200 DOI: 10.1016/j.apsb.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/24/2024] [Accepted: 02/04/2024] [Indexed: 05/29/2024] Open
Abstract
Enzymatic malonylation of natural glycosides provides a promising alternative method for drug-like malonylated glycosides supply. However, the catalytic potential and structural basis of plant malonyltransferase are far from being fully elucidated. This work identified a new malonyltransferase CtMaT1 from Cistanche tubulosa. It displayed unprecedented mono- and/or di-malonylation activity toward diverse glucosides with different aglycons. A "one-pot" system by CtMaT1 and a malonyl-CoA synthetase was established to biosynthesize nine new malonylated glucosides. Structural investigations revealed that CtMaT1 possesses an adequately spacious acyl-acceptor pocket capable of accommodating diverse glucosides. Additionally, it recognizes malonyl-CoA through strong electrotactic and hydrogen interactions. QM/MM calculation revealed the H167-mediated SN2 reaction mechanism of CtMaT1, while dynamic simulations detected the formation of stable hydrogen bonds between the glucose-6-OH group and H167, resulting in its high malonylation regiospecificity. Calculated energy profiles of two isomeric glycosides highlighted lower reaction energy barriers towards glucoside substrates, emphasizing CtMaT1's preference for glucosides. Furthermore, a mutant CtMaT1H36A with notably increased di-malonylation activity was obtained. The underlying molecular mechanism was illuminated through MM/GBSA binding free energy calculation. This study significantly advances the understanding of plant acyltransferases from both functional and protein structural perspectives, while also providing a versatile tool for enzymatic malonylation applications in pharmacology.
Collapse
Affiliation(s)
- Xiao Liu
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yuyu Liu
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xiping Xu
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Wenqian Huang
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yaru Yan
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yingxia Wang
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Weisheng Tian
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Ting Mo
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xiaoxue Cui
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jun Li
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - She-Po Shi
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Pengfei Tu
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| |
Collapse
|
6
|
Zhang Y, Kashkooli AB, Blom S, Zhao T, Bouwmeester HJ, Kappers IF. The Capsicum terpenoid biosynthetic module is affected by spider-mite herbivory. PLANT MOLECULAR BIOLOGY 2023; 113:303-321. [PMID: 37995005 PMCID: PMC10721696 DOI: 10.1007/s11103-023-01390-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 10/16/2023] [Indexed: 11/24/2023]
Abstract
In response to herbivory, Capsicum annuum leaves adapt their specialized metabolome that may protect the plant against herbivore feeding either directly or indirectly through volatile metabolites acting as cues for natural enemies of the herbivore. The volatile blend of spider-mite infested leaves differs from non-challenged leaves predominantly by a higher contribution of mono- and sesquiterpenes. In addition to these terpenoids released into the headspace, the terpenoid composition of the leaves alters upon herbivory. All this suggests an important role for terpenoids and their biosynthetic machinery in the defence against herbivory. Here, we show that the C. annuum genome contains a terpene synthase (TPS) gene family of 103 putative members of which structural analysis revealed that 27 encode functional enzymes. Transcriptome analysis showed that several TPS loci were differentially expressed upon herbivory in leaves of two C. annuum genotypes, that differ in susceptibility towards spider mites. The relative expression of upstream biosynthetic genes from the mevalonate and the methylerythritol phosphate pathway also altered upon herbivory, revealing a shift in the metabolic flux through the terpene biosynthetic module. The expression of multiple genes potentially acting downstream of the TPSs, including cytochrome P450 monooxygenases, UDP-glucosyl transferases, and transcription factors strongly correlated with the herbivory-induced TPS genes. A selection of herbivory-induced TPS genes was functionally characterized through heterologous expression and the products that these enzymes catalysed matched with the volatile and non-volatile terpenoids induced in response to herbivory.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- Laboratory of Plant Physiology, Wageningen University, Wageningen, The Netherlands
- College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou, China
| | - Arman B Kashkooli
- Laboratory of Plant Physiology, Wageningen University, Wageningen, The Netherlands
- Tarbiat Modares University, Tehran, Iran
| | - Suze Blom
- Laboratory of Plant Physiology, Wageningen University, Wageningen, The Netherlands
- Laboratory of Molecular Biology, Wageningen University, Wageningen, The Netherlands
- Bioscience, Wageningen University & Research, Wageningen, The Netherlands
| | - Tao Zhao
- Biosystematics, Wageningen University, Wageningen, The Netherlands
- Northwest Agriculture and Forestry University, Xi'an, China
| | - Harro J Bouwmeester
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Iris F Kappers
- Laboratory of Plant Physiology, Wageningen University, Wageningen, The Netherlands.
| |
Collapse
|
7
|
Bulut M, Wendenburg R, Bitocchi E, Bellucci E, Kroc M, Gioia T, Susek K, Papa R, Fernie AR, Alseekh S. A comprehensive metabolomics and lipidomics atlas for the legumes common bean, chickpea, lentil and lupin. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:1152-1171. [PMID: 37285370 DOI: 10.1111/tpj.16329] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 05/09/2023] [Accepted: 05/24/2023] [Indexed: 06/09/2023]
Abstract
Legumes represent an important component of human and livestock diets; they are rich in macro- and micronutrients such as proteins, dietary fibers and polyunsaturated fatty acids. Whilst several health-promoting and anti-nutritional properties have been associated with grain content, in-depth metabolomics characterization of major legume species remains elusive. In this article, we used both gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-mass spectrometry (LC-MS) to assess the metabolic diversity in the five legume species commonly grown in Europe, including common bean (Phaseolus vulgaris), chickpea (Cicer arietinum), lentil (Lens culinaris), white lupin (Lupinus albus) and pearl lupin (Lupinus mutabilis), at the tissue level. We were able to detect and quantify over 3400 metabolites covering major nutritional and anti-nutritional compounds. Specifically, the metabolomics atlas includes 224 derivatized metabolites, 2283 specialized metabolites and 923 lipids. The data generated here will serve the community as a basis for future integration to metabolomics-assisted crop breeding and facilitate metabolite-based genome-wide association studies to dissect the genetic and biochemical bases of metabolism in legume species.
Collapse
Affiliation(s)
- Mustafa Bulut
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Regina Wendenburg
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Elena Bitocchi
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, via Brecce Bianche, Ancona, 60131, Italy
| | - Elisa Bellucci
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, via Brecce Bianche, Ancona, 60131, Italy
| | - Magdalena Kroc
- Legume Genomics Team, Institute of Plant Genetics, Polish Academy of Sciences, Strzeszynska 34, Poznan, 60-479, Poland
| | - Tania Gioia
- School of Agricultural, Forestry, Food and Environmental Sciences, University of Basilicata, Potenza, 85100, Italy
| | - Karolina Susek
- Legume Genomics Team, Institute of Plant Genetics, Polish Academy of Sciences, Strzeszynska 34, Poznan, 60-479, Poland
| | - Roberto Papa
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, via Brecce Bianche, Ancona, 60131, Italy
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
- Center for Plant Systems Biology and Biotechnology, 4000, Plovdiv, Bulgaria
| | - Saleh Alseekh
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
- Center for Plant Systems Biology and Biotechnology, 4000, Plovdiv, Bulgaria
| |
Collapse
|
8
|
Ray R, Halitschke R, Gase K, Leddy SM, Schuman MC, Rodde N, Baldwin IT. A persistent major mutation in canonical jasmonate signaling is embedded in an herbivory-elicited gene network. Proc Natl Acad Sci U S A 2023; 120:e2308500120. [PMID: 37607232 PMCID: PMC10466192 DOI: 10.1073/pnas.2308500120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 07/19/2023] [Indexed: 08/24/2023] Open
Abstract
When insect herbivores attack plants, elicitors from oral secretions and regurgitants (OS) enter wounds during feeding, eliciting defense responses. These generally require plant jasmonate (JA) signaling, specifically, a jasmonoyl-L-isoleucine (JA-Ile) burst, for their activation and are well studied in the native tobacco Nicotiana attenuata. We used intraspecific diversity captured in a 26-parent MAGIC population planted in nature and an updated genome assembly to impute natural variation in the OS-elicited JA-Ile burst linked to a mutation in the JA-Ile biosynthetic gene NaJAR4. Experiments revealed that NaJAR4 variants were associated with higher fitness in the absence of herbivores but compromised foliar defenses, with two NaJAR homologues (4 and 6) complementing each other spatially and temporally. From decade-long seed collections of natural populations, we uncovered enzymatically inactive variants occurring at variable frequencies, consistent with a balancing selection regime maintaining variants. Integrative analyses of OS-induced transcriptomes and metabolomes of natural accessions revealed that NaJAR4 is embedded in a nonlinear complex gene coexpression network orchestrating responses to OS, which we tested by silencing four hub genes in two connected coexpressed networks and examining their OS-elicited metabolic responses. Lines silenced in two hub genes (NaGLR and NaFB67) co-occurring in the NaJAR4/6 module showed responses proportional to JA-Ile accumulations; two from an adjacent module (NaERF and NaFB61) had constitutively expressed defenses with high resistance. We infer that mutations with large fitness consequences can persist in natural populations due to compensatory responses from gene networks, which allow for diversification in conserved signaling pathways and are generally consistent with predictions of an omnigene model.
Collapse
Affiliation(s)
- Rishav Ray
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, 07745Jena, Germany
| | - Rayko Halitschke
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, 07745Jena, Germany
| | - Klaus Gase
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, 07745Jena, Germany
| | - Sabrina M. Leddy
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY14850
| | - Meredith C. Schuman
- Department of Geography, University of Zurich, 8006Zurich, Switzerland
- Department of Chemistry, University of Zurich, 8006Zurich, Switzerland
| | - Nathalie Rodde
- Institut national de recherche pour l’agriculture, l’alimentation et l’environnement, Centre National de Resources Génomiques Végétales, French Plant Genomic Resource Center, Castanet TolosanF-31326, France
| | - Ian T. Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, 07745Jena, Germany
| |
Collapse
|
9
|
Razzaq MK, Hina A, Abbasi A, Karikari B, Ashraf HJ, Mohiuddin M, Maqsood S, Maqsood A, Haq IU, Xing G, Raza G, Bhat JA. Molecular and genetic insights into secondary metabolic regulation underlying insect-pest resistance in legumes. Funct Integr Genomics 2023; 23:217. [PMID: 37392308 DOI: 10.1007/s10142-023-01141-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 06/15/2023] [Accepted: 06/19/2023] [Indexed: 07/03/2023]
Abstract
Insect pests pose a major threat to agricultural production, resulting in significant economic losses for countries. A high infestation of insects in any given area can severely reduce crop yield and quality. This review examines the existing resources for managing insect pests and highlights alternative eco-friendly techniques to enhance insect pest resistance in legumes. Recently, the application of plant secondary metabolites has gained popularity in controlling insect attacks. Plant secondary metabolites encompass a wide range of compounds such as alkaloids, flavonoids, and terpenoids, which are often synthesized through intricate biosynthetic pathways. Classical methods of metabolic engineering involve manipulating key enzymes and regulatory genes to enhance or redirect the production of secondary metabolites in plants. Additionally, the role of genetic approaches, such as quantitative trait loci mapping, genome-wide association (GWAS) mapping, and metabolome-based GWAS in insect pest management is discussed, also, the role of precision breeding, such as genome editing technologies and RNA interference for identifying pest resistance and manipulating the genome to develop insect-resistant cultivars are explored, highlighting the positive contribution of plant secondary metabolites engineering-based resistance against insect pests. It is suggested that by understanding the genes responsible for beneficial metabolite compositions, future research might hold immense potential to shed more light on the molecular regulation of secondary metabolite biosynthesis, leading to advancements in insect-resistant traits in crop plants. In the future, the utilization of metabolic engineering and biotechnological methods may serve as an alternative means of producing biologically active, economically valuable, and medically significant compounds found in plant secondary metabolites, thereby addressing the challenge of limited availability.
Collapse
Affiliation(s)
- Muhammad Khuram Razzaq
- Soybean Research Institute & MARA National Centre for Soybean Improvement & MARA Key Laboratory of Biology and Genetic Improvement of Soybean & National Key Laboratory for Crop Genetics and Germplasm Enhancement & Jiangsu Collaborative Innovation Centre for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Aiman Hina
- Ministry of Agriculture (MOA) National Centre for Soybean Improvement, State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Asim Abbasi
- Department of Environmental Sciences, Kohsar University Murree, Murree, 47150, Pakistan
| | - Benjamin Karikari
- Department of Agricultural Biotechnology, Faculty of Agriculture, Food and Consumer Sciences, University for Development Studies, Tamale, Ghana
| | - Hafiza Javaria Ashraf
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Muhammad Mohiuddin
- Environmental Management Consultants (EMC) Private Limited, Islamabad, 44000, Pakistan
| | - Sumaira Maqsood
- Department of Environmental Sciences, Kohsar University Murree, Murree, 47150, Pakistan
| | - Aqsa Maqsood
- Department of Zoology, University of Central Punjab, Bahawalpur, 63100, Pakistan
| | - Inzamam Ul Haq
- College of Plant Protection, Gansu Agricultural University, Lanzhou, No. 1 Yingmen Village, Anning District, Lanzhou, 730070, China
| | - Guangnan Xing
- Soybean Research Institute & MARA National Centre for Soybean Improvement & MARA Key Laboratory of Biology and Genetic Improvement of Soybean & National Key Laboratory for Crop Genetics and Germplasm Enhancement & Jiangsu Collaborative Innovation Centre for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ghulam Raza
- National Institute for Biotechnology and Genetic Engineering Faisalabad, Faisalabad, Pakistan
| | - Javaid Akhter Bhat
- International Genome Center, Jiangsu University, Zhenjiang, 212013, China
| |
Collapse
|
10
|
Yang C, Bai Y, Halitschke R, Gase K, Baldwin G, Baldwin IT. Exploring the metabolic basis of growth/defense trade-offs in complex environments with Nicotiana attenuata plants cosilenced in NaMYC2a/b expression. THE NEW PHYTOLOGIST 2023; 238:349-366. [PMID: 36636784 DOI: 10.1111/nph.18732] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
In response to challenges from herbivores and competitors, plants use fitness-limiting resources to produce (auto)toxic defenses. Jasmonate signaling, mediated by MYC2 transcription factors (TF), is thought to reconfigure metabolism to minimize these formal costs of defense and optimize fitness in complex environments. To study the context-dependence of this metabolic reconfiguration, we cosilenced NaMYC2a/b by RNAi in Nicotiana attenuata and phenotyped plants in the field and increasingly realistic glasshouse setups with competitors and mobile herbivores. NaMYC2a/b had normal phytohormonal responses, and higher growth and fitness in herbivore-reduced environments, but were devastated in high herbivore-load environments in the field due to diminished accumulations of specialized metabolites. In setups with competitors and mobile herbivores, irMYC2a/b plants had lower fitness than empty vector (EV) in single-genotype setups but increased fitness in mixed-genotype setups. Correlational analyses of metabolic, resistance, and growth traits revealed the expected defense/growth associations for most sectors of primary and specialized metabolism. Notable exceptions were some HGL-DTGs and phenolamides that differed between single-genotype and mixed-genotype setups, consistent with expectations of a blurred functional trichotomy of metabolites. MYC2 TFs mediate the reconfiguration of primary and specialized metabolic sectors to allow plants to optimize their fitness in complex environments.
Collapse
Affiliation(s)
- Caiqiong Yang
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, Jena, D-07745, Germany
| | - Yuechen Bai
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, Jena, D-07745, Germany
| | - Rayko Halitschke
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, Jena, D-07745, Germany
| | - Klaus Gase
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, Jena, D-07745, Germany
| | - Gundega Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, Jena, D-07745, Germany
| | - Ian T Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, Jena, D-07745, Germany
| |
Collapse
|
11
|
Li Y, Tang J, Qi Y, Yang F, Su X, Fu J, Han X, He C, Xu Y, Zhan K, Xia H, Wu J, Wang L. Elevating herbivore-induced JA-Ile enhances potato resistance to the polyphagous beet armyworm but not to the oligophagous potato tuber moth. PEST MANAGEMENT SCIENCE 2023; 79:357-367. [PMID: 36176057 DOI: 10.1002/ps.7205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/23/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND The oligophagous potato tuber moth (PTM), Phthorimaea operculella, and the polyphagous beet armyworm (BAW), Spodoptera exigua, are two destructive pests of potato, and infestations can lead to serious reduction in potato yield. However, potato plant responses to the two herbivories are only poorly understood. Endogenous jasmonoyl-isoleucine (JA-Ile) is a signal responsible for the induction of plant anti-herbivore defenses. Elevation of JA-Ile by blocking its catabolism is considered to be an effective and sustainable approach to enhance plant resistance to insect pests. However, it is not clear whether this approach can enhance potato resistance to PTM and BAW. RESULTS We demonstrated that the transcriptional changes induced by simulated PTM and BAW feeding overlap to a large extent, and that 81.5% of the PTM- and 90.5% of the BAW-responsive genes were commonly regulated. We also generated potato transgenic lines, irStCYP94B3s, in which the three JA-Ile hydroxylases were all simultaneously silenced. These lines exhibited enhanced resistance only to BAW, but not to PTM, although levels of JA-Ile and its downstream induced defensive chemicals, including caffeoylputrescine, dicaffeoylspermidine, lyciumoside II, and the nicotianosides I, II, and VII, were all present at higher levels in PTM-infested than in BAW-infested irStCYP94B3s lines. CONCLUSION Our results provide support for the hypothesis that StCYP94B3 genes are able to act as potential targets for the control of polyphagous insect pests in potato, and reveal that the oligophagous PTM has evolved an effective mechanism to cope with JA-Ile-induced anti-herbivore defenses. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yi Li
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- College of Life Science, Shaanxi Normal University, Xi'an, China
| | - Jinxiang Tang
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Yuechen Qi
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- School of Ecology and Environmental Science, Yunnan University, Kunming, China
| | - Fei Yang
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Xiaohang Su
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jun Fu
- Yunnan State Farms Zhaotong Agricultural Investment Co., Ltd, Zhaotong, China
| | - Xiaonv Han
- Xuanwei Seed Potato Research and Development Center, Xuanwei, China
| | - Caihua He
- Xuanwei Seed Potato Research and Development Center, Xuanwei, China
| | - Youxian Xu
- Xuanwei Seed Potato Research and Development Center, Xuanwei, China
| | - Kang Zhan
- Xuanwei Seed Potato Research and Development Center, Xuanwei, China
| | - Haibin Xia
- College of Life Science, Shaanxi Normal University, Xi'an, China
| | - Jinsong Wu
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Lei Wang
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
12
|
Analysis of 17-Hydroxygeranyllinalool Diterpene Glycosides in Nicotiana tabacum by Using Heart-Cutting 2D-LC Coupled with Tandem MS Technique. Chromatographia 2022. [DOI: 10.1007/s10337-022-04188-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
Li J, Baldwin IT, Li D. Harmonizing biosynthesis with post-ingestive modifications to understand the ecological functions of plant natural products. Nat Prod Rep 2022; 39:1383-1392. [PMID: 35575224 PMCID: PMC9298679 DOI: 10.1039/d2np00019a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Indexed: 11/21/2022]
Abstract
Covering: up to 2022The recent dramatic advances in our understanding of the biosynthetic pathways that produce diverse bouquets of plant-derived natural products have far surpassed our understanding of the function of these compounds for plants: how they influence a plant's Darwinian fitness in nature. Our understanding of their mechanisms, the life-processes targeted by these compounds, is similarly poorly resolved. Many plant specialized metabolites (PSMs) are further modified after ingestion by herbivores, and these post-ingestive modifications are frequently essential for PSM function. Here we summarize the biosynthesis and functional mechanisms of 17-hydroxygeranyllinalool diterpene glycosides in the ecological model plant Nicotiana attenuata, and summarize the post-ingestive modifications known from other two-component PSMs. We propose that parallel comparisons of plant natural product biosynthetic pathways and insect post-ingestive metabolism of the same plant tissues ("frassomics") will facilitate the often-elusive identification of the molecular targets of these effective chemical defenses, contribute to elucidations of post-ingestive metabolite interactions in insect guts, and predicate the rapid evolutions of resistance against insecticides inspired by PSMs. We highlight the value of conducting these parallel investigations at the level of the entire metabolome so as to include the multiple interacting pathways in both natural product biosynthesis as well as their post-ingestive processing. We introduce the concept of frass metabolite QTL (fmQTL) analysis that integrates powerful forward genetic approaches with frassomics, and suggest that insect-guided high-throughput forward- and reverse-genetics approaches in natural habitats will advance our understanding of PSM biosynthesis and function.
Collapse
Affiliation(s)
- Jiancai Li
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.
| | - Ian T Baldwin
- Max Planck Institute for Chemical Ecology, Department of Molecular Ecology, 07745 Jena, Germany.
| | - Dapeng Li
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, CAS-JIC Center of Excellence for Plant and Microbial Sciences (CEPAMS), Shanghai, China.
| |
Collapse
|
14
|
Zhang CP, Zhang JL, Sun ZR, Liu XY, Shu LZ, Wu H, Song Y, He DH. Genome-wide identification and characterization of terpene synthase genes in Gossypium hirsutum. Gene X 2022; 828:146462. [PMID: 35413394 DOI: 10.1016/j.gene.2022.146462] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/03/2022] [Accepted: 03/25/2022] [Indexed: 11/27/2022] Open
Abstract
Terpenoids are widely distributed in plants and play important roles in the regulation of plant growth and development and in the interactions between plants and both the environment and other organisms. However, terpene synthase (TPS) genes have not been systematically investigated in the tetraploid Gossypium hirsutum. In this study, whole genome identification and characterization of the TPS family from G. hirsutum were carried out. Eighty-five TPS genes, including 47 previously unidentified genes, were identified in the G. hirsutum genome and classified into 5 subfamilies according to protein sequence similarities, as follows: 43 GhTPS-a, 29 GhTPS-b, 4 GhTPS-c, 7 GhTPS-e/f, and 2 GhTPS-g members. These 85 TPS genes were mapped onto 19 chromosomes of the G. hirsutum genome. Segmental duplications and tandem duplications contributed greatly to the expansion of TPS genes in G. hirsutum and were followed by intense purifying selection during evolution. Indentification of cis-acting regulatory elements suggest that the expression of TPS genes is regulated by a variety of hormones. RNA sequencing (RNA-seq) expression profile analysis revealed that the TPS genes had distinct spatiotemporal expression patterns, and several genes were highly and preferentially expressed in the leaves of cotton with gossypol glands (glanded cotton) versus a glandless strain. Virus-induced gene silencing (VIGS) of three TPS genes yielded plants characterized by fewer, smaller, and lighter gossypol glands, which indicated that these three genes were responsible for gland activity. Taken together, our results provide a solid basis for further elucidation of the biological functions of TPS genes in relation to gland activity and gossypol biosynthesis to develop cotton cultivars with low cottonseed gossypol contents.
Collapse
Affiliation(s)
- Cui-Ping Zhang
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Jin-Li Zhang
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Zheng-Ran Sun
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Xiu-Yan Liu
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Li-Zhe Shu
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Hao Wu
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Yin Song
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Dao-Hua He
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, People's Republic of China.
| |
Collapse
|
15
|
Heiling S, Li J, Halitschke R, Paetz C, Baldwin IT. The downside of metabolic diversity: Postingestive rearrangements by specialized insects. Proc Natl Acad Sci U S A 2022; 119:e2122808119. [PMID: 35666864 PMCID: PMC9214519 DOI: 10.1073/pnas.2122808119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 04/06/2022] [Indexed: 11/18/2022] Open
Abstract
Deploying toxins in complex mixtures is thought to be advantageous and is observed during antagonistic interactions in nature. Toxin mixtures are widely utilized in medicine and pest control, as they are thought to slow the evolution of detoxification counterresponses in the targeted organisms. Here we show that caterpillars rearrange key constituents of two distinct plant defense pathways to postingestively disable the defensive properties of both pathways. Specifically, phenolic esters of quinic acid, chlorogenic acids (CAs), potent herbivore and ultraviolet (UV) defenses, are reesterified to decorate particular sugars of 17-hydroxygeranyllinalool diterpene glycosides (HGL-DTGs) and prevent their respective anti–herbivore defense functions. This was discovered through the employment of comparative metabolomics of the leaves of Nicotiana attenuata and the frass of this native tobacco’s specialist herbivore, Manduca sexta larvae. Feeding caterpillars on leaves of transgenic plants abrogated in each of the two pathways, separately and together, revealed that one of the fully characterized frass conjugates, caffeoylated HGL-DTG, originated from ingested CA and HGL-DTGs and that both had negative effects on the defensive function of the other compound class, as revealed by rates of larval mass gain. This negative defensive synergy was further explored in 183 N. attenuata natural accessions, which revealed a strong negative covariance between the two defense pathways. Further mapping analyses in a biparental recombinant inbred line (RIL) population imputed quantitative trait loci (QTLs) for the two pathways at distinct genomic locations. The postingestive repurposing of defense metabolism constituents reveals a downside of deploying toxins in mixtures, a downside which plants in nature have evolved to counter.
Collapse
Affiliation(s)
- Sven Heiling
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Jiancai Li
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032 China
| | - Rayko Halitschke
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Christian Paetz
- Department of Biosynthesis/NMR, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Ian T. Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| |
Collapse
|
16
|
Mittal R, Srivastava G, Ganjewala D. An update on the progress of microbial biotransformation of commercial monoterpenes. Z NATURFORSCH C 2022; 77:225-240. [PMID: 34881551 DOI: 10.1515/znc-2021-0192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 11/14/2021] [Indexed: 01/05/2023]
Abstract
Monoterpenes, a class of isoprenoid compounds, are extensively used in flavor, fragrance, perfumery, and cosmetics. They display many astonishing bioactive properties of biological and pharmacological significance. All monoterpenes are derived from universal precursor geranyl diphosphate. The demand for new monoterpenoids has been increasing in flavor, fragrances, perfumery, and pharmaceuticals. Chemical methods, which are harmful for human and the environment, synthesize most of these products. Over the years, researchers have developed alternative methods for the production of newer monoterpenoids. Microbial biotransformation is one of them, which relied on microbes and their enzymes. It has produced many new desirable commercially important monoterpenoids. A growing number of reports reflect an ever-expanding scope of microbial biotransformation in food and aroma industries. Simultaneously, our knowledge of the enzymology of monoterpene biosynthetic pathways has been increasing, which facilitated the biotransformation of monoterpenes. In this article, we have covered the progress made on microbial biotransformation of commercial monoterpenes with a brief introduction to their biosynthesis. We have collected several reports from authentic web sources, including Google Scholar, Pubmed, Web of Science, and Scopus published in the past few years to extract information on the topic.
Collapse
Affiliation(s)
- Ruchika Mittal
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Sector-125, Noida 201303, UP, India
| | - Gauri Srivastava
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Sector-125, Noida 201303, UP, India
| | - Deepak Ganjewala
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Sector-125, Noida 201303, UP, India
| |
Collapse
|
17
|
Phytocompounds as an Alternative Antimicrobial Approach in Aquaculture. Antibiotics (Basel) 2022; 11:antibiotics11040469. [PMID: 35453220 PMCID: PMC9031819 DOI: 10.3390/antibiotics11040469] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/02/2022] [Accepted: 03/04/2022] [Indexed: 02/04/2023] Open
Abstract
Despite culturing the fastest-growing animal in animal husbandry, fish farmers are often adversely economically affected by pathogenic disease outbreaks across the world. Although there are available solutions such as the application of antibiotics to mitigate this phenomenon, the excessive and injudicious use of antibiotics has brought with it major concerns to the community at large, mainly due to the rapid development of resistant bacteria. At present, the use of natural compounds such as phytocompounds that can be an alternative to antibiotics is being explored to address the issue of antimicrobial resistance (AMR). These phytocompounds are bioactive agents that can be found in many species of plants and hold much potential. In this review, we will discuss phytocompounds extracted from plants that have been evidenced to contain antimicrobial, antifungal, antiviral and antiparasitic activities. Further, it has also been found that compounds such as terpenes, phenolics, saponins and alkaloids can be beneficial to the aquaculture industry when applied. This review will focus mainly on compounds that have been identified between 2000 and 2021. It is hoped this review will shed light on promising phytocompounds that can potentially and effectively mitigate AMR.
Collapse
|
18
|
Bai Y, Yang C, Halitschke R, Paetz C, Kessler D, Burkard K, Gaquerel E, Baldwin IT, Li D. Natural history-guided omics reveals plant defensive chemistry against leafhopper pests. Science 2022; 375:eabm2948. [PMID: 35113706 DOI: 10.1126/science.abm2948] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Although much is known about plant traits that function in nonhost resistance against pathogens, little is known about nonhost resistance against herbivores, despite its agricultural importance. Empoasca leafhoppers, serious agricultural pests, identify host plants by eavesdropping on unknown outputs of jasmonate (JA)-mediated signaling. Forward- and reverse-genetics lines of a native tobacco plant were screened in native habitats with native herbivores using high-throughput genomic, transcriptomic, and metabolomic tools to reveal an Empoasca-elicited JA-JAZi module. This module induces an uncharacterized caffeoylputrescine-green leaf volatile compound, catalyzed by a polyphenol oxidase in a Michael addition reaction, which we reconstitute in vitro; engineer in crop plants, where it requires a berberine bridge enzyme-like 2 (BBL2) for its synthesis; and show that it confers resistance to leafhoppers. Natural history-guided forward genetics reveals a conserved nonhost resistance mechanism useful for crop protection.
Collapse
Affiliation(s)
- Yuechen Bai
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany
| | - Caiqiong Yang
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany
| | - Rayko Halitschke
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany
| | - Christian Paetz
- Department of Biosynthesis/NMR, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany
| | - Danny Kessler
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany
| | - Konrad Burkard
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany
| | - Emmanuel Gaquerel
- Institut de Biologie Moléculaire des Plantes du CNRS, Université de Strasbourg, Strasbourg, France
| | - Ian T Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany
| | - Dapeng Li
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- CAS-JIC Center of Excellence for Plant and Microbial Sciences (CEPAMS), Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
19
|
Kallure GS, Kumari A, Shinde BA, Giri AP. Characterized constituents of insect herbivore oral secretions and their influence on the regulation of plant defenses. PHYTOCHEMISTRY 2022; 193:113008. [PMID: 34768189 DOI: 10.1016/j.phytochem.2021.113008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 10/09/2021] [Accepted: 11/04/2021] [Indexed: 06/13/2023]
Abstract
For more than 350 million years, there have been ongoing dynamic interactions between plants and insects. In several cases, insects cause-specific feeding damage with ensuing herbivore-associated molecular patterns that invoke characteristic defense responses. During feeding on plant tissue, insects release oral secretions (OSs) containing a repertoire of molecules affecting plant defense (effectors). Some of these OS components might elicit a defense response to combat insect attacks (elicitors), while some might curb the plant defenses (suppressors). Few reports suggest that the synthesis and function of OS components might depend on the host plant and associated microorganisms. We review these intricate plant-insect interactions, during which there is a continuous exchange of molecules between plants and feeding insects along with the associated microorganisms. We further provide a list of commonly identified inducible plant produced defensive molecules released upon insect attack as well as in response to OS treatments of the plants. Thus, we describe how plants specialized and defense-related metabolism is modulated at innumerable phases by OS during plant-insect interactions. A molecular understanding of these complex interactions will provide a means to design eco-friendly crop protection strategies.
Collapse
Affiliation(s)
- Gopal S Kallure
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, 411 008, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Archana Kumari
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, 411 008, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India.
| | - Balkrishna A Shinde
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, 411 008, Maharashtra, India; Department of Biotechnology, Shivaji University, Vidya Nagar, Kolhapur, 416004, Maharashtra, India
| | - Ashok P Giri
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, 411 008, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India.
| |
Collapse
|
20
|
Sugimoto K, Iijima Y, Takabayashi J, Matsui K. Processing of Airborne Green Leaf Volatiles for Their Glycosylation in the Exposed Plants. FRONTIERS IN PLANT SCIENCE 2021; 12:721572. [PMID: 34868107 PMCID: PMC8636985 DOI: 10.3389/fpls.2021.721572] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 10/14/2021] [Indexed: 05/30/2023]
Abstract
Green leaf volatiles (GLVs), the common constituents of herbivore-infested plant volatiles (HIPVs), play an important role in plant defense and function as chemical cues to communicate with other individuals in nature. Reportedly, in addition to endogenous GLVs, the absorbance of airborne GLVs emitted by infested neighboring plants also play a major role in plant defense. For example, the exclusive accumulation of (Z)-3-hexenyl vicianoside in the HIPV-exposed tomato plants occurs by the glycosylation of airborne (Z)-3-hexenol (Z3HOL); however, it is unclear how plants process the other absorbed GLVs. This study demonstrates that tomato plants dominantly accumulated GLV-glycosides after exposure to green leaf alcohols [Z3HOL, (E)-2-hexenol, and n-hexanol] using non-targeted LC-MS analysis. Three types of green leaf alcohols were independently glycosylated without isomerization or saturation/desaturation. Airborne green leaf aldehydes and esters were also glycosylated, probably through converting aldehydes and esters into alcohols. Further, we validated these findings in Arabidopsis mutants- (Z)-3-hexenal (Z3HAL) reductase (chr) mutant that inhibits the conversion of Z3HAL to Z3HOL and the acetyl-CoA:(Z)-3-hexen-1-ol acetyltransferase (chat) mutant that impairs the conversion of Z3HOL to (Z)-3-hexenyl acetate. Exposure of the chr and chat mutants to Z3HAL accumulated lower and higher amounts of glycosides than their corresponding wild types (Col-0 and Ler), respectively. These findings suggest that plants process the exogenous GLVs by the reductase(s) and the esterase(s), and a part of the processed GLVs contribute to glycoside accumulation. Overall, the study provides insights into the understanding of the communication of the plants within their ecosystem, which could help develop strategies to protect the crops and maintain a balanced ecosystem.
Collapse
Affiliation(s)
- Koichi Sugimoto
- Tsukuba-Plant Innovation Research Center, University of Tsukuba, Tsukuba, Japan
| | - Yoko Iijima
- Department of Applied Chemistry, Kogakuin University, Tokyo, Japan
| | | | - Kenji Matsui
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan
| |
Collapse
|
21
|
Heiling S, Llorca LC, Li J, Gase K, Schmidt A, Schäfer M, Schneider B, Halitschke R, Gaquerel E, Baldwin IT. Specific decorations of 17-hydroxygeranyllinalool diterpene glycosides solve the autotoxicity problem of chemical defense in Nicotiana attenuata. THE PLANT CELL 2021; 33:1748-1770. [PMID: 33561278 PMCID: PMC8254506 DOI: 10.1093/plcell/koab048] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 02/03/2021] [Indexed: 05/30/2023]
Abstract
The native diploid tobacco Nicotiana attenuata produces abundant, potent anti-herbivore defense metabolites known as 17-hydroxygeranyllinalool diterpene glycosides (HGL-DTGs) whose glycosylation and malonylation biosynthetic steps are regulated by jasmonate signaling. To characterize the biosynthetic pathway of HGL-DTGs, we conducted a genome-wide analysis of uridine diphosphate glycosyltransferases (UGTs) and identified 107 family-1 UGT members. The transcript levels of three UGTs were highly correlated with the transcript levels two key HGL-DTG biosynthetic genes: geranylgeranyl diphosphate synthase (NaGGPPS) and geranyllinalool synthase (NaGLS). NaGLS's role in HGL-DTG biosynthesis was confirmed by virus-induced gene silencing. Silencing the Uridine diphosphate (UDP)-rhamnosyltransferase gene UGT91T1 demonstrated its role in the rhamnosylation of HGL-DTGs. In vitro enzyme assays revealed that UGT74P3 and UGT74P4 use UDP-glucose for the glucosylation of 17-hydroxygeranyllinalool (17-HGL) to lyciumoside I. Plants with stable silencing of UGT74P3 and UGT74P5 were severely developmentally deformed, pointing to a phytotoxic effect of the aglycone. The application of synthetic 17-HGL and silencing of the UGTs in HGL-DTG-free plants confirmed this phytotoxic effect. Feeding assays with tobacco hornworm (Manduca sexta) larvae revealed the defensive functions of the glucosylation and rhamnosylation steps in HGL-DTG biosynthesis. Glucosylation of 17-HGL is therefore a critical step that contributes to the resulting metabolites' defensive function and solves the autotoxicity problem of this potent chemical defense.
Collapse
Affiliation(s)
- Sven Heiling
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Lucas Cortes Llorca
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Jiancai Li
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Klaus Gase
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Axel Schmidt
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Martin Schäfer
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Bernd Schneider
- Research Group Biosynthesis/NMR, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Rayko Halitschke
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Emmanuel Gaquerel
- Centre for Organismal Studies Heidelberg, 69120 Heidelberg, Germany
- Institut de Biologie Moléculaire des Plantes, CNRS UPR 2357 Université de Strasbourg, 67084 Strasbourg, France
| | - Ian Thomas Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| |
Collapse
|
22
|
van Haperen P, Voorrips RE, van Kaauwen M, van Eekelen HDLM, de Vos RCH, van Loon JJA, Vosman B. Fine mapping of a thrips resistance QTL in Capsicum and the role of diterpene glycosides in the underlying mechanism. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:1557-1573. [PMID: 33609141 PMCID: PMC8081677 DOI: 10.1007/s00122-021-03790-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 02/05/2021] [Indexed: 05/27/2023]
Abstract
A major thrips resistance QTL in Capsicum was fine-mapped to a region of 0.4 Mbp, and a multidisciplinary approach has been used to study putative underlying mechanisms. Resistance to thrips is an important trait for pepper growers. These insects can cause extensive damage to fruits, flowers and leaves on field and greenhouse grown plants worldwide. Two independent studies in Capsicum identified diterpene glycosides as metabolites that are correlated with thrips resistance. In this study, we fine-mapped a previously defined thrips resistance QTL on chromosome 6, to a region of 0.4 Mbp harbouring 15 genes. Two of these 15 candidate genes showed differences in gene expression upon thrips induction, when comparing plants carrying the resistance allele in homozygous state to plants with the susceptibility allele in homozygous state for the QTL region. Three genes, including the two genes that showed difference in gene expression, contained a SNP that was predicted to lead to changes in protein structure. Therefore, these three genes, i.e. an acid phosphatase 1 (APS1), an organic cation/carnitine transporter 7 (OCT7) and an uncharacterized locus LOC107874801, are the most likely candidates for playing a role in thrips resistance and are a first step in elucidating the genetic basis of thrips resistance in Capsicum. In addition, we show that the diterpene glycoside profiles did not differ between plants with the resistance and susceptibility allele for the chromosome 6 QTL, suggesting that these compounds do not play a role in the resistance conferred by the genes located in the major thrips resistance QTL studied.
Collapse
Affiliation(s)
- Pauline van Haperen
- Plant Breeding, Wageningen University and Research, P.O. Box 386, 6700 AJ, Wageningen, The Netherlands
- Laboratory of Entomology, Wageningen University and Research, P.O. Box 16, 6700 AA, Wageningen, The Netherlands
- Keygene N.V, P.O. Box 216, 6700 AE, Wageningen, The Netherlands
| | - Roeland E Voorrips
- Plant Breeding, Wageningen University and Research, P.O. Box 386, 6700 AJ, Wageningen, The Netherlands
| | - Martijn van Kaauwen
- Plant Breeding, Wageningen University and Research, P.O. Box 386, 6700 AJ, Wageningen, The Netherlands
| | | | - Ric C H de Vos
- Bioscience, Wageningen University and Research, PO Box 16, 6700 AA, Wageningen, The Netherlands
| | - Joop J A van Loon
- Laboratory of Entomology, Wageningen University and Research, P.O. Box 16, 6700 AA, Wageningen, The Netherlands
| | - Ben Vosman
- Plant Breeding, Wageningen University and Research, P.O. Box 386, 6700 AJ, Wageningen, The Netherlands.
| |
Collapse
|
23
|
Li J, Halitschke R, Li D, Paetz C, Su H, Heiling S, Xu S, Baldwin IT. Controlled hydroxylations of diterpenoids allow for plant chemical defense without autotoxicity. Science 2021; 371:255-260. [PMID: 33446550 DOI: 10.1126/science.abe4713] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/16/2020] [Indexed: 12/17/2023]
Abstract
Many plant specialized metabolites function in herbivore defense, and abrogating particular steps in their biosynthetic pathways frequently causes autotoxicity. However, the molecular mechanisms underlying their defense and autotoxicity remain unclear. Here, we show that silencing two cytochrome P450s involved in diterpene biosynthesis in the wild tobacco Nicotiana attenuata causes severe autotoxicity symptoms that result from the inhibition of sphingolipid biosynthesis by noncontrolled hydroxylated diterpene derivatives. Moreover, the diterpenes' defensive function is achieved by inhibiting herbivore sphingolipid biosynthesis through postingestive backbone hydroxylation products. Thus, by regulating metabolic modifications, tobacco plants avoid autotoxicity and gain herbivore defense. The postdigestive duet that occurs between plants and their insect herbivores can reflect the plant's solutions to the "toxic waste dump" problem of using potent chemical defenses.
Collapse
Affiliation(s)
- Jiancai Li
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, D-07745 Jena, Germany
| | - Rayko Halitschke
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, D-07745 Jena, Germany
| | - Dapeng Li
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, D-07745 Jena, Germany
| | - Christian Paetz
- Department of Biosynthesis/NMR, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, D-07745 Jena, Germany
| | - Haichao Su
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, D-07745 Jena, Germany
| | - Sven Heiling
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, D-07745 Jena, Germany
| | - Shuqing Xu
- Institute for Evolution and Biodiversity, University of Münster, Hüfferstrasse 1, D-48161 Münster, Germany.
| | - Ian T Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, D-07745 Jena, Germany.
| |
Collapse
|
24
|
Du J, Song XY, Shi XB, Tang X, Chen JB, Zhang ZH, Chen G, Zhang Z, Zhou XG, Liu Y, Zhang DY. NSs, the Silencing Suppressor of Tomato Spotted Wilt Orthotospovirus, Interferes With JA-Regulated Host Terpenoids Expression to Attract Frankliniella occidentalis. Front Microbiol 2020; 11:590451. [PMID: 33362737 PMCID: PMC7758462 DOI: 10.3389/fmicb.2020.590451] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 11/13/2020] [Indexed: 01/04/2023] Open
Abstract
Tomato spotted wilt orthotospovirus (TSWV) causes serious crop losses worldwide and is transmitted by Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae). NSs protein is the silencing suppressor of TSWV and plays an important role in virus infection, cycling, and transmission process. In this research, we investigated the influences of NSs protein on the interaction of TSWV, plants, and F. occidentalis with the transgenic Arabidopsis thaliana. Compared with the wild-type Col-0 plant, F. occidentalis showed an increased number and induced feeding behavior on transgenic Arabidopsis thaliana expressing exogenous NSs. Further analysis showed that NSs reduced the expression of terpenoids synthesis-related genes and the content of monoterpene volatiles in Arabidopsis. These monoterpene volatiles played a repellent role in respect to F. occidentalis. In addition, the expression level of plant immune-related genes and the content of the plant resistance hormone jasmonic acid (JA) in transgenic Arabidopsis were reduced. The silencing suppressor of TSWV NSs alters the emission of plant volatiles and reduces the JA-regulated plant defenses, resulting in enhanced attractiveness of plants to F. occidentalis and may increase the transmission probability of TSWV.
Collapse
Affiliation(s)
- Jiao Du
- College of Plant Protection, Hunan Agricultural University, Changsha, China.,Hunan Academy of Agricultural Sciences, Institute of Plant Protection, Changsha, China
| | - Xiao-Yu Song
- Hunan Academy of Agricultural Sciences, Institute of Plant Protection, Changsha, China.,High & New Technology Research Center of Henan Academy of Sciences, Zhengzhou, China
| | - Xiao-Bin Shi
- Hunan Academy of Agricultural Sciences, Institute of Plant Protection, Changsha, China
| | - Xin Tang
- Hunan Academy of Agricultural Sciences, Institute of Plant Protection, Changsha, China
| | - Jian-Bin Chen
- Hunan Academy of Agricultural Sciences, Institute of Plant Protection, Changsha, China
| | - Zhan-Hong Zhang
- Hunan Academy of Agricultural Sciences, Institute of Vegetable, Changsha, China
| | - Gong Chen
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Zhuo Zhang
- Hunan Academy of Agricultural Sciences, Institute of Plant Protection, Changsha, China
| | - Xu-Guo Zhou
- Department of Entomology, University of Kentucky, Lexington, KY, United States
| | - Yong Liu
- College of Plant Protection, Hunan Agricultural University, Changsha, China.,Hunan Academy of Agricultural Sciences, Institute of Plant Protection, Changsha, China
| | - De-Yong Zhang
- College of Plant Protection, Hunan Agricultural University, Changsha, China.,Hunan Academy of Agricultural Sciences, Institute of Plant Protection, Changsha, China
| |
Collapse
|
25
|
Li S, Joo Y, Cao D, Li R, Lee G, Halitschke R, Baldwin G, Baldwin IT, Wang M. Strigolactone signaling regulates specialized metabolism in tobacco stems and interactions with stem-feeding herbivores. PLoS Biol 2020; 18:e3000830. [PMID: 32810128 PMCID: PMC7478753 DOI: 10.1371/journal.pbio.3000830] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 09/08/2020] [Accepted: 07/31/2020] [Indexed: 01/15/2023] Open
Abstract
Plants are attacked by herbivores, which often specialize on different tissues, and in response, have evolved sophisticated resistance strategies that involve different types of chemical defenses frequently targeted to different tissues. Most known phytohormones have been implicated in regulating these defenses, with jasmonates (JAs) playing a pivotal role in complex regulatory networks of signaling interactions, often generically referred to as "cross talk." The newly identified class of phytohormones, strigolactones (SLs), known to regulate the shoot architecture, remain unstudied with regard to plant-herbivore interactions. We explored the role of SL signaling in resistance to a specialist weevil (Trichobaris mucorea) herbivore of the native tobacco, Nicotiana attenuata, that attacks the root-shoot junction (RSJ), the part of the plant most strongly influenced by alterations in SL signaling (increased branching). As SL signaling shares molecular components, such as the core F-box protein MORE AXILLARY GROWTH 2 (MAX2), with another new class of phytohormones, the karrikins (KARs), which promote seed germination and seedling growth, we generated transformed lines, individually silenced in the expression of NaMAX2, DWARF 14 (NaD14: the receptor for SL) and CAROTENOID CLEAVAGE DIOXYGENASE 7 (NaCCD7: a key enzyme in SL biosynthesis), and KARRIKIN INSENSITIVE 2 (NaKAI2: the KAR receptor). The mature stems of all transgenic lines impaired in the SL, but not the KAR signaling pathway, overaccumulated anthocyanins, as did the stems of plants attacked by the larvae of weevil, which burrow into the RSJs to feed on the pith of N. attenuata stems. T. mucorea larvae grew larger in the plants silenced in the SL pathway, but again, not in the KAI2-silenced plants. These phenotypes were associated with elevated JA and auxin (indole-3-acetic acid [IAA]) levels and significant changes in the accumulation of defensive compounds, including phenolamides and nicotine. The overaccumulation of phenolamides and anthocyanins in the SL pathway-silenced plants likely resulted from antagonism between the SL and JA pathway in N. attenuata. We show that the repressors of SL signaling, suppressor of max2-like (NaSMXL6/7), and JA signaling, jasmonate zim-domain (NaJAZs), physically interact, promoting NaJAZb degradation and releasing JASMONATE INSENSITIVE 1 (JIN1/MYC2) (NaMYC2), a critical transcription factor promoting JA responses. However, the increased performance of T. mucorea larvae resulted from lower pith nicotine levels, which were inhibited by increased IAA levels in SL pathway-silenced plants. This inference was confirmed by decapitation and auxin transport inhibitor treatments that decreased pith IAA and increased nicotine levels. In summary, SL signaling tunes specific sectors of specialized metabolism in stems, such as phenylpropanoid and nicotine biosynthesis, by tailoring the cross talk among phytohormones, including JA and IAA, to mediate herbivore resistance of stems. The metabolic consequences of the interplay of SL, JA, and IAA signaling revealed here could provide a mechanism for the commonly observed pattern of herbivore tolerance/resistance trade-offs.
Collapse
Affiliation(s)
- Suhua Li
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Youngsung Joo
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Yuseong-gu, Daejeon, South Korea
| | - Dechang Cao
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Ran Li
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
- State Key Laboratory of Rice Biology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Gisuk Lee
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Yuseong-gu, Daejeon, South Korea
| | - Rayko Halitschke
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Gundega Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Ian T. Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Ming Wang
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
26
|
Li D, Halitschke R, Baldwin IT, Gaquerel E. Information theory tests critical predictions of plant defense theory for specialized metabolism. SCIENCE ADVANCES 2020; 6:eaaz0381. [PMID: 32577508 PMCID: PMC7286674 DOI: 10.1126/sciadv.aaz0381] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 04/14/2020] [Indexed: 05/15/2023]
Abstract
Different plant defense theories have provided important theoretical guidance in explaining patterns in plant specialized metabolism, but their critical predictions remain to be tested. Here, we systematically explored the metabolomes of Nicotiana attenuata, from single plants to populations, as well as of closely related species, using unbiased tandem mass spectrometry (MS/MS) analyses and processed the abundances of compound spectrum-based MS features within an information theory framework to test critical predictions of optimal defense (OD) and moving target (MT) theories. Information components of plant metabolomes were consistent with the OD theory but contradicted the main prediction of the MT theory for herbivory-induced dynamics of metabolome compositions. From micro- to macroevolutionary scales, jasmonate signaling was confirmed as the master determinant of OD, while ethylene signaling provided fine-tuning for herbivore-specific responses annotated via MS/MS molecular networks.
Collapse
Affiliation(s)
- Dapeng Li
- Max Planck Institute for Chemical Ecology, Department of Molecular Ecology, Jena, Germany
| | - Rayko Halitschke
- Max Planck Institute for Chemical Ecology, Department of Molecular Ecology, Jena, Germany
| | - Ian T. Baldwin
- Max Planck Institute for Chemical Ecology, Department of Molecular Ecology, Jena, Germany
- Corresponding author. (E.G.); (I.T.B)
| | - Emmanuel Gaquerel
- Institut de Biologie Moléculaire des Plantes du CNRS, Université de Strasbourg, Strasbourg, France
- Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany
- Corresponding author. (E.G.); (I.T.B)
| |
Collapse
|
27
|
Tebayashi S, Moriyama R, Arakawa R, Sato M. Induction of 2-cyanoethyl-isoxazolin-5-one as an antifeedant against the tobacco cutworm ( Spodoptera litura) by jasmonic acid in sweet pea leaf. Biosci Biotechnol Biochem 2020; 84:1105-1112. [PMID: 32013735 DOI: 10.1080/09168451.2020.1724072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 01/27/2020] [Indexed: 10/25/2022]
Abstract
Although sweet pea (Lathyrus odoratus) beans contain toxic β-aminopropionitrile, the plant itself is readily attacked by insects and is, therefore, protected through the use of pesticides. Consequently, the induction of L. odoratus resistance to insect attack via exogenous treatment is promising for pest control development. Screening of inducible elicitor effects showed that treatment of sweet pea foliage with jasmonic acid (JA) can induce antifeeding-based resistance to tobacco cutworm (Spodoptera litura) larvae. Spectroscopic analysis identified 2-cyanoethyl-isoxazolin-5-one (2-CEIX) as the antifeedant with a half-maximal effective concentration of 33.6 µmol/g fr. wt., i.e., exogenous JA treatment induced antifeeding activity due to the accumulation of 2-CEIX. Moreover, 2-CEIX-induced mortality of S. litura larvae was evaluated by a dipping test and the half-maximal lethal dose was determined to be 5.9 mg/mL. Therefore, 2-CEIX was concluded to be a suitable induced resistance target for elicitors or a lead compound for insecticide development.
Collapse
Affiliation(s)
- Shinichi Tebayashi
- Faculty of Agriculture and Marine Science, Kochi University, Nankoku, Japan
| | - Ruri Moriyama
- Faculty of Agriculture and Marine Science, Kochi University, Nankoku, Japan
| | - Ryo Arakawa
- Faculty of Agriculture and Marine Science, Kochi University, Nankoku, Japan
| | - Masashi Sato
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki, Japan
| |
Collapse
|
28
|
Wei Z, Arazi T, Hod N, Zohar M, Isaacson T, Doron-Faigenboim A, Reznik N, Yedidia I. Transcriptome Profiling of Ornithogalum dubium Leaves and Flowers to Identify Key Carotenoid Genes for CRISPR Gene Editing. PLANTS 2020; 9:plants9040540. [PMID: 32326260 PMCID: PMC7238968 DOI: 10.3390/plants9040540] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/12/2020] [Accepted: 04/20/2020] [Indexed: 11/16/2022]
Abstract
Ornithogalum dubium is a popular ornamental monocot native to South Africa with flower colors ranging from pure white to deep orange. Gene editing based on the CRISPR/Cas9 system has recently been shown to hold potential for color improvement in ornamental flower crops. To apply this approach to Ornithogalum color manipulation, genomic or transcriptomic data must first be collected. Here, cDNA libraries of O. dubium leaves and flowers were constructed and sequenced using the Illumina HiSeq 2500. Over 155 million 100-bp paired-end reads were assembled into a transcriptome database of 360,689 contigs, of which 18,660 contigs were differentially expressed between leaves and flowers. Carotenoids are the main pigment imparting spectrum of orange hues to O. dubium flowers. By querying our database, we identified a total of 16 unique transcripts (unigenes) predicted to be involved in the carotenoid biosynthesis pathway of Ornithogalum. Combining carotenoid profiles, we further inferred several key unigenes responsible for floral coloration and accumulation in O. dubium, of which the gene LCYB/comp146645_c0 was found as a suitable target to generate potentially red flower varieties of O. dubium. Our research thus provides a framework for the application of CRISPR/Cas9 technology to improve this ornamental crop.
Collapse
Affiliation(s)
- Zunzheng Wei
- Institute of Plant Science, The Volcani Center, Agricultural Research Organization, Bet Dagan 50250, Israel; (Z.W.); (T.A.); (N.H.); (A.D.-F.); (N.R.)
| | - Tzahi Arazi
- Institute of Plant Science, The Volcani Center, Agricultural Research Organization, Bet Dagan 50250, Israel; (Z.W.); (T.A.); (N.H.); (A.D.-F.); (N.R.)
| | - Nofar Hod
- Institute of Plant Science, The Volcani Center, Agricultural Research Organization, Bet Dagan 50250, Israel; (Z.W.); (T.A.); (N.H.); (A.D.-F.); (N.R.)
| | - Matat Zohar
- Newe Yaar Research Center, Agricultural Research Organization, Ramat Yishay 30095, Israel; (M.Z.); (T.I.)
| | - Tal Isaacson
- Newe Yaar Research Center, Agricultural Research Organization, Ramat Yishay 30095, Israel; (M.Z.); (T.I.)
| | - Adi Doron-Faigenboim
- Institute of Plant Science, The Volcani Center, Agricultural Research Organization, Bet Dagan 50250, Israel; (Z.W.); (T.A.); (N.H.); (A.D.-F.); (N.R.)
| | - Noam Reznik
- Institute of Plant Science, The Volcani Center, Agricultural Research Organization, Bet Dagan 50250, Israel; (Z.W.); (T.A.); (N.H.); (A.D.-F.); (N.R.)
| | - Iris Yedidia
- Institute of Plant Science, The Volcani Center, Agricultural Research Organization, Bet Dagan 50250, Israel; (Z.W.); (T.A.); (N.H.); (A.D.-F.); (N.R.)
- Correspondence:
| |
Collapse
|
29
|
Tang J, Yang D, Wu J, Chen S, Wang L. Silencing JA hydroxylases in Nicotiana attenuata enhances jasmonic acid-isoleucine-mediated defenses against Spodoptera litura. PLANT DIVERSITY 2020; 42:111-119. [PMID: 32373769 PMCID: PMC7195586 DOI: 10.1016/j.pld.2019.11.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 10/23/2019] [Accepted: 11/25/2019] [Indexed: 05/23/2023]
Abstract
Jasmonic acid (JA) plays important roles in plant resistance to insect herbivores. One important derivative of JA is 12-OH-JA, which is produced by two independent pathways: direct hydroxylation of JA by jasmonate-induced oxygenases (JOXs) or hydrolyzation of 12-OH-JA-Ile.Yet the function of 12-OH-JA in plant-herbivore interactions remains largely unknown. In this study, we silenced four JOX homologs independently in the wild tobacco Nicotiana attenuata by virus-induced gene silencing (VIGS), and found that all four JOX homologs are involved in JA hydroxylation. Simultaneously silencing the four JA hydroxylases in VIGS-NaJOXs plants decreased herbivory-induced 12-OH-JA by 33%, but JA and JA-Ile levels increased by 45% and 30%, respectively, compared to those in control plants. Compared to direct hydroxylation from JA, hydrolyzation from 12-OH-JA-Ile is equally important for herbivory-induced 12-OH-JA accumulation: in the 12-OH-JA-Ile deficient irJAR4/6 plants, 12-OH-JA decreased 34%. Moreover, VIGS-NaJOXs plants exhibited enhanced resistance to the generalist herbivore Spodoptera litura. The poor larval performance was strongly correlated with high levels of several JA-Ile-dependent direct defense metabolites in the VIGS-NaJOXs plants. When we simultaneously silenced all four JA hydroxylases in the JA-Ile-deficient irJAR4/6 background, the enhanced herbivore resistance diminished, demonstrating that enhanced herbivore resistance resulted from elevated JA-Ile levels. Given that silencing these NaJOX-like genes did not detectably alter plant growth but highly increased plant defense levels, we propose that JOX genes are potential targets for genetic improvement of herbivore-resistant crops.
Collapse
Affiliation(s)
- Jinxiang Tang
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- School of Life Science, Yunnan University, Kunming, 650091, China
| | - Dahai Yang
- Tobacco Breeding and Biotechnology Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Key Laboratory of Tobacco Biotechnological Breeding, National Tobacco Genetic Engineering Research Center, Kunming, 650021, China
| | - Jianqiang Wu
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Suiyun Chen
- School of Life Science, Yunnan University, Kunming, 650091, China
| | - Lei Wang
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| |
Collapse
|
30
|
Naake T, Gaquerel E, Fernie AR. Annotation of Specialized Metabolites from High-Throughput and High-Resolution Mass Spectrometry Metabolomics. Methods Mol Biol 2020; 2104:209-225. [PMID: 31953820 DOI: 10.1007/978-1-0716-0239-3_12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
High-throughput mass spectrometry (MS) metabolomics profiling of highly complex samples allows the comprehensive detection of hundreds to thousands of metabolites under a given condition and point in time and produces information-rich data sets on known and unknown metabolites. One of the main challenges is the identification and annotation of metabolites from these complex data sets since the number of authentic standards available for specialized metabolites is far lower than an account for the number of mass spectral features. Previously, we reported two novel tools, MetNet and MetCirc, for putative annotation and structural prediction on unknown metabolites using known metabolites as baits. MetNet employs differences between m/z values of MS1 features, which correspond to metabolic transformations, and statistical associations, while MetCirc uses MS/MS features as input and calculates similarity scores of aligned spectra between features to guide the annotation of metabolites. Here, we showcase the use of MetNet and MetCirc to putatively annotate metabolites and provide detailed instructions as to how those can be used. While our case studies are from plants, the tools find equal utility in studies on bacterial, fungal, or mammalian xenobiotic samples.
Collapse
Affiliation(s)
- Thomas Naake
- Central Metabolism, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Emmanuel Gaquerel
- Institute of Plant Molecular Biology, University of Strasbourg, Strasbourg, France.,Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | - Alisdair R Fernie
- Central Metabolism, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany.
| |
Collapse
|
31
|
Qin Y, Zhang J, Hettenhausen C, Liu H, Li S, Shen G, Cao G, Wu J. The host jasmonic acid pathway regulates the transcriptomic changes of dodder and host plant under the scenario of caterpillar feeding on dodder. BMC PLANT BIOLOGY 2019; 19:540. [PMID: 31801469 PMCID: PMC6894313 DOI: 10.1186/s12870-019-2161-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 11/26/2019] [Indexed: 05/04/2023]
Abstract
BACKGROUND Dodder (Cuscuta spp., Convolvulaceae) species are obligate leaf- and rootless parasites that totally depend on hosts to survive. Dodders naturally graft themselves to host stems to form vascular fusion, from which they obtain nutrients and water. In addition, dodders and their hosts also exchange various other molecules, including proteins, mRNAs, and small RNAs. It is very likely that vascular fusion also allows inter-plant translocation of systemic signals between dodders and host plants and these systemic signals may have profound impacts on the physiology of dodder and host plants. Herbivory is a common biotic stress for plants. When a dodder parasite is attacked by lepidopteran insects, how dodder responds to caterpillar feeding and whether there are inter-plant communications between the host plants and the parasites is still poorly understood. RESULTS Here, wild-type (WT) tobacco and a tobacco line in which jasmonic acid (JA) biosynthesis was silenced (AOC-RNAi) were used as the hosts, and the responses of dodders and their host plants to herbivory by Spodoptera litura caterpillars on the dodders were investigated. It was found that after caterpillar attack, dodders grown on AOC-RNAi tobacco showed much a smaller number of differentially expressed genes, although the genotypes of the tobacco plants did not have an effect on the simulated S. litura feeding-induced JA accumulation in dodders. We further show that S. litura herbivory on dodder also led to large changes in transcriptome and defensive metabolites in the host tobacco, leading to enhanced resistance to S. litura, and the JA pathway of tobacco host is critical for these systemic responses. CONCLUSIONS Our findings indicate that during caterpillar attack on dodder, the JA pathway of host plant is required for the proper transcriptomic responses of both dodder and host plants. This study highlights the importance of the host JA pathway in regulating the inter-plant systemic signaling between dodder and hosts.
Collapse
Affiliation(s)
- Yan Qin
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, the Innovative Academy of Seed Design, Chinese Academy of Sciences, Kunming, 650201, China
- Xingyi Normal University for Nationalities, No.1 Xingyi Road, Xingyi City, 562400, Guizhou, China
| | - Jingxiong Zhang
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, the Innovative Academy of Seed Design, Chinese Academy of Sciences, Kunming, 650201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Christian Hettenhausen
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, the Innovative Academy of Seed Design, Chinese Academy of Sciences, Kunming, 650201, China
| | - Hui Liu
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, the Innovative Academy of Seed Design, Chinese Academy of Sciences, Kunming, 650201, China
| | - Shalan Li
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, the Innovative Academy of Seed Design, Chinese Academy of Sciences, Kunming, 650201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guojing Shen
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, the Innovative Academy of Seed Design, Chinese Academy of Sciences, Kunming, 650201, China
| | - Guoyan Cao
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, the Innovative Academy of Seed Design, Chinese Academy of Sciences, Kunming, 650201, China
| | - Jianqiang Wu
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, the Innovative Academy of Seed Design, Chinese Academy of Sciences, Kunming, 650201, China.
| |
Collapse
|
32
|
Song Y, Wang M, Zeng R, Groten K, Baldwin IT. Priming and filtering of antiherbivore defences among Nicotiana attenuata plants connected by mycorrhizal networks. PLANT, CELL & ENVIRONMENT 2019; 42:2945-2961. [PMID: 31348534 DOI: 10.1111/pce.13626] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 07/14/2019] [Indexed: 06/10/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) establish symbiotic associations with a majority of terrestrial plants to form underground common mycorrhizal networks (CMNs) that connect neighbouring plants. Because Nicotiana attenuata plants do not respond to herbivory-elicited volatiles from neighbours, we used this ecological model system to evaluate if CMNs function in interplant transmission of herbivory-elicited responses. A mesocosm system was designed to establish and remove CMNs linking N. attenuata plants to examine the herbivory-elicited metabolic and hormone responses in CMNs-connected "receiver" plants after the elicitation of "donor" plants by wounding (W) treated with Manduca sexta larval oral secretions (OS). AMF colonization increased constitutive jasmonate (JA and JA-Ile) levels in N. attenuata roots but did not affect well-characterized JAs-regulated defensive metabolites in systemic leaves. Interestingly, larger JAs bursts, and higher levels of several amino acids and particular sectors of hydroxygeranyllinalool diterpene glycoside metabolism were elevated in the leaves of W + OS-elicited "receivers" with CMN connections with "donors" that had been W + OS-elicited 6 hr previously. Our results demonstrate that AMF colonization alone does not enhance systemic defence responses but that sectors of systemic responses in leaves can be primed by CMNs, suggesting that CMNs can transmit and even filter defence signalling among connected plants.
Collapse
Affiliation(s)
- Yuanyuan Song
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, 07745, Germany
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Ming Wang
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, 07745, Germany
| | - Rensen Zeng
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Karin Groten
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, 07745, Germany
| | - Ian T Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, 07745, Germany
| |
Collapse
|
33
|
Ray R, Li D, Halitschke R, Baldwin IT. Using natural variation to achieve a whole-plant functional understanding of the responses mediated by jasmonate signaling. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 99:414-425. [PMID: 30927293 DOI: 10.1111/tpj.14331] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 02/25/2019] [Accepted: 02/27/2019] [Indexed: 06/09/2023]
Abstract
The dramatic advances in our understanding of the molecular biology and biochemistry of jasmonate (JA) signaling have been the subject of several excellent recent reviews that have highlighted the phytohormonal function of this signaling pathway. Here, we focus on the responses mediated by JA signaling which have consequences for a plant's Darwinian fitness, i.e. the organism-level function of JA signaling. The most diverse module in the signaling cascade, the JAZ proteins, and their interactions with other proteins and transcription factors, allow this canonical signaling cascade to mediate a bewildering array of traits in different tissues at different times; the functional coherence of these diverse responses are best appreciated in an organismal/ecological context. From published work, it appears that jasmonates can function as the 'Swiss Army knife' of plant signaling, mediating many different biotic and abiotic stress and developmental responses that allow plants to contextualize their responses to their frequently changing local environments and optimize their fitness. We propose that a deeper analysis of the natural variation in both within-plant and within-population JA signaling components is a profitable means of attaining a coherent whole-plant functional perspective of this signaling cascade, and provide examples of this approach from the Nicotiana attenuata system.
Collapse
Affiliation(s)
- Rishav Ray
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745, Jena, Germany
| | - Dapeng Li
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745, Jena, Germany
| | - Rayko Halitschke
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745, Jena, Germany
| | - Ian T Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745, Jena, Germany
| |
Collapse
|
34
|
Pan X, Li Y, Pan G, Yang A. Bioinformatics study of 1-deoxy-D-xylulose-5-phosphate synthase (DXS) genes in Solanaceae. Mol Biol Rep 2019; 46:5175-5184. [PMID: 31313133 DOI: 10.1007/s11033-019-04975-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 07/10/2019] [Indexed: 02/06/2023]
Abstract
Isoprenoids, the largest and most diverse class of secondary metabolites in plants, play an important role in plant growth and development. Isoprenoids can be synthesized by two distinct pathways: the methylerythritol-4-phosphate (MEP) pathway and the mevalonate (MVA) pathway. 1-Deoxy-D-xylulose-5-phosphate synthase (DXS) is the first step and a key regulatory enzyme of the MEP pathway in plants. The DXS gene has been reported to play a key role in seedling development, flowering, and fruit quality in plants of the Solanaceae, such as tomato, potato and tobacco. However, to improve our understanding and utilization of DXS genes, a thorough bioinformatics study is needed. In this study, 48 DXS genes were aligned and analyzed by computational tools to predict their protein properties, including molecular mass, theoretical isoelectric point (pI), signal peptides, transmembrane and conserved domains, and expression patterns. Sequence comparison analysis revealed strong conservation among the 48 DXS genes. Phylogenetic analysis indicated that all DXS genes were derived from one ancestor and could be classified into three groups with different expression patterns. Moreover, the functional divergence of DXS was restricted after gene duplication. The results suggested that the function and evolution of the DXS gene family were highly conserved and that the DXS genes of Group I may play a more important role than those of other groups.
Collapse
Affiliation(s)
- Xuhao Pan
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, People's Republic of China.
| | - Yiting Li
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, People's Republic of China
| | - Guangtang Pan
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China
| | - Aiguo Yang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, People's Republic of China.
| |
Collapse
|
35
|
Macel M, Visschers IGS, Peters JL, Kappers IF, de Vos RCH, van Dam NM. Metabolomics of Thrips Resistance in Pepper (Capsicum spp.) Reveals Monomer and Dimer Acyclic Diterpene Glycosides as Potential Chemical Defenses. J Chem Ecol 2019; 45:490-501. [PMID: 31175497 PMCID: PMC6570690 DOI: 10.1007/s10886-019-01074-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 05/09/2019] [Accepted: 05/13/2019] [Indexed: 12/16/2022]
Abstract
The development of pesticide resistance in insects and recent bans on pesticides call for the identification of natural sources of resistance in crops. Here, we used natural variation in pepper (Capsicum spp.) resistance combined with an untargeted metabolomics approach to detect secondary metabolites related to thrips (Frankliniella occidentalis) resistance. Using leaf disc choice assays, we tested 11 Capsicum accessions of C. annuum and C. chinense in both vegetative and flowering stages for thrips resistance. Metabolites in the leaves of these 11 accessions were analyzed using LC-MS based untargeted metabolomics. The choice assays showed significant differences among the accessions in thrips feeding damage. The level of resistance depended on plant developmental stage. Metabolomics analyses showed differences in metabolomes among the Capsicum species and plant developmental stages. Moreover, metabolomic profiles of resistant and susceptible accessions differed. Monomer and dimer acyclic diterpene glycosides (capsianosides) were pinpointed as metabolites that were related to thrips resistance. Sucrose and malonylated flavone glycosides were related to susceptibility. To our knowledge, this is the first time that dimer capsianosides of pepper have been linked to insect resistance. Our results show the potential of untargeted metabolomics as a tool for discovering metabolites that are important in plant - insect interactions.
Collapse
Affiliation(s)
- Mirka Macel
- Molecular Interaction Ecology, Institute of Water and Wetland Research (IWWR), Radboud University, P.O. Box 9010, 6500 GL, Nijmegen, The Netherlands.
| | - Isabella G S Visschers
- Molecular Interaction Ecology, Institute of Water and Wetland Research (IWWR), Radboud University, P.O. Box 9010, 6500 GL, Nijmegen, The Netherlands
| | - Janny L Peters
- Molecular Plant Physiology, Institute of Water and Wetland Research (IWWR), Radboud University, P. O. Box 9010, 6500 GL, Nijmegen, The Netherlands
| | - Iris F Kappers
- Laboratory of Plant Physiology, Wageningen University and Research, P.O. Box 658, 6700 AR, Wageningen, The Netherlands
| | - Ric C H de Vos
- Wageningen Plant Research, Bioscience, Wageningen University and Research, P.O. Box 16, 6700 AA, Wageningen, The Netherlands
| | - Nicole M van Dam
- Molecular Interaction Ecology, Institute of Water and Wetland Research (IWWR), Radboud University, P.O. Box 9010, 6500 GL, Nijmegen, The Netherlands
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103, Leipzig, Germany
- Institute of Biodiversity, Friedrich Schiller University Jena, Dornburger-Str. 159, 07743, Jena, Germany
| |
Collapse
|
36
|
Visschers IGS, Peters JL, van de Vondervoort JAH, Hoogveld RHM, van Dam NM. Thrips Resistance Screening Is Coming of Age: Leaf Position and Ontogeny Are Important Determinants of Leaf-Based Resistance in Pepper. FRONTIERS IN PLANT SCIENCE 2019; 10:510. [PMID: 31105720 PMCID: PMC6491929 DOI: 10.3389/fpls.2019.00510] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 04/02/2019] [Indexed: 06/09/2023]
Abstract
Capsicum is a genus containing important crop species, many of which severely suffer from thrips infestation. Thrips feeding damages leaves and fruits, and often results in virus infections. Only a few insecticides are still effective against thrips, underlining the importance of finding natural resistance in crops. Capsicum is a perennial plant which is usually cultivated for several months, during which time the fruits are harvested. From the young vegetative stage to the mature fruit bearing stage, the plants are at risk to thrips infestation. Constitutive resistance to thrips over the entire ontogenetic development is therefore a key trait for a more sustainable and successful cultivation of the hot and sweet pepper. In addition to ontogeny, leaf position can affect the level of thrips resistance. Pest resistance levels are known to differ between young and old leaves. To our knowledge, no studies have explicitly considered ontogeny and leaf position when screening for constitutive resistance to thrips in Capsicum. In this study we analyze whether ontogeny and leaf position affect leaf-based resistance to Frankliniella occidentalis and Thrips tabaci, in 40 Capsicum accessions, comprising five different species. Our results show that resistance to both thrips species in Capsicum varies with ontogenetic stage. This variation in resistance among ontogenetic stages was not consistent among the accessions. However, accessions with constitutive resistance in both the flowering and fruit ripening stage could be identified. In addition, we found that thrips resistance is overall similar at different leaf positions within the ontogenetic stage. This implies that resistance mechanisms, such as defense compounds, are constitutively present at sufficient levels on all leaf positions. Finally, we found that resistance to F. occidentalis and resistance to T. tabaci were not correlated. This indicates that leaf-based resistance in Capsicum is thrips species-specific. Because of the variation in resistance over ontogeny, identifying Capsicum accessions with resistance over their entire lifespan is challenging. For resistance screening, accounting for leaf position may be less of a concern. To identify the defense mechanisms responsible for thrips resistance, it is important to further analyze and compare resistant and susceptible accessions.
Collapse
Affiliation(s)
- Isabella G. S. Visschers
- Department of Molecular Interaction Ecology, Institute for Water and Wetland Research, Radboud University, Nijmegen, Netherlands
| | - Janny L. Peters
- Department of Molecular Plant Physiology, Institute for Water and Wetland Research, Radboud University, Nijmegen, Netherlands
| | - Joep A. H. van de Vondervoort
- Department of Molecular Interaction Ecology, Institute for Water and Wetland Research, Radboud University, Nijmegen, Netherlands
| | - Rick H. M. Hoogveld
- Department of Molecular Interaction Ecology, Institute for Water and Wetland Research, Radboud University, Nijmegen, Netherlands
| | - Nicole M. van Dam
- Department of Molecular Interaction Ecology, Institute for Water and Wetland Research, Radboud University, Nijmegen, Netherlands
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biodiversity, Friedrich Schiller University Jena, Jena, Germany
| |
Collapse
|
37
|
A Complete Survey of Glycoalkaloids Using LC-FTICR-MS and IRMPD in a Commercial Variety and a Local Landrace of Eggplant ( Solanum melongena L.) and their Anticholinesterase and Antioxidant Activities. Toxins (Basel) 2019; 11:toxins11040230. [PMID: 31010145 PMCID: PMC6521288 DOI: 10.3390/toxins11040230] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/10/2019] [Accepted: 04/15/2019] [Indexed: 01/03/2023] Open
Abstract
Eggplant contains glycoalkaloids (GAs), a class of nitrogen-containing secondary metabolites of great structural variety that may have both adverse and beneficial biological effects. In this study, we performed a complete survey of GAs and their malonylated form, in two genotypes of eggplants: A commercial cultivated type, Mirabella (Mir), with purple peel and bitter taste and a local landrace, named Melanzana Bianca di Senise (Sen), characterized by white peel with purple strip and a typical sweet aroma. Besides the analysis of their morphological traits, nineteen glycoalkaloids were tentatively identified in eggplant berry extracts based upon LC-ESI-FTICR-MS analysis using retention times, elution orders, high-resolution mass spectra, as well as high-resolution fragmentation by IRMPD. The relative signal intensities (i.e., ion counts) of the GAs identified in Mir and Sen pulp extracts showed as solamargine, and its isomers are the most abundant. In addition, anticholinesterase and antioxidant activities of the extracts were evaluated. Pulp tissue was found to be more active in inhibiting acetylcholinesterase enzyme than peel showing an inhibitory effect higher than 20% for Mir pulp. The identification of new malonylated GAs in eggplant is proposed.
Collapse
|
38
|
Pichersky E, Raguso RA. Why do plants produce so many terpenoid compounds? THE NEW PHYTOLOGIST 2018; 220:692-702. [PMID: 27604856 DOI: 10.1111/nph.14178] [Citation(s) in RCA: 306] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 08/02/2016] [Indexed: 05/19/2023]
Abstract
All plants synthesize a suite of several hundred terpenoid compounds with roles that include phytohormones, protein modification reagents, anti-oxidants, and more. Different plant lineages also synthesize hundreds of distinct terpenoids, with the total number of such specialized plant terpenoids estimated in the scores of thousands. Phylogenetically restricted terpenoids are implicated in defense or in the attraction of beneficial organisms. A popular hypothesis is that the ability of plants to synthesize new compounds arose incrementally by selection when, as a result of gradual changes in their biotic partners and enemies, the 'old' plant compounds were no longer effective, a process dubbed the 'coevolutionary arms race'. Another hypothesis posits that often the sheer diversity of such compounds provides benefits that a single compound cannot. In this article, we review the unique features of the biosynthetic apparatus of terpenes in plants that facilitate the production of large numbers of distinct terpenoids in each species and how facile genetic and biochemical changes can lead to the further diversification of terpenoids. We then discuss evidence relating to the hypotheses that given ecological functions may be enhanced by the presence of mixtures of terpenes and that the acquisition of new functions by terpenoids may favor their retention once the original functions are lost.
Collapse
Affiliation(s)
- Eran Pichersky
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Michigan, MI, 48109, USA
| | - Robert A Raguso
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
39
|
Li J, Schuman MC, Halitschke R, Li X, Guo H, Grabe V, Hammer A, Baldwin IT. The decoration of specialized metabolites influences stylar development. eLife 2018; 7:e38611. [PMID: 30289384 PMCID: PMC6192696 DOI: 10.7554/elife.38611] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 09/23/2018] [Indexed: 01/05/2023] Open
Abstract
Plants produce many different specialized (secondary) metabolites that function in solving ecological challenges; few are known to function in growth or other primary processes. 17-Hydroxygeranylinalool diterpene glycosides (DTGs) are abundant herbivory-induced, structurally diverse and commonly malonylated defense metabolites in Nicotiana attenuata plants. By identifying and silencing a malonyltransferase, NaMaT1, involved in DTG malonylation, we found that DTG malonylation percentages are normally remarkably uniform, but when disrupted, result in DTG-dependent reduced floral style lengths, which in turn result from reduced stylar cell sizes, IAA contents, and YUC activity; phenotypes that could be restored by IAA supplementation or by silencing the DTG pathway. Moreover, the Nicotiana genus-specific JA-deficient short-style phenotype also results from alterations in DTG malonylation patterns. Decorations of plant specialized metabolites can be tuned to remarkably uniform levels, and this regulation plays a central but poorly understood role in controlling the development of specific plant parts, such as floral styles.
Collapse
Affiliation(s)
- Jiancai Li
- Department of Molecular EcologyMax Planck Institute for Chemical EcologyJenaGermany
| | - Meredith C Schuman
- Department of Molecular EcologyMax Planck Institute for Chemical EcologyJenaGermany
- Department of GeographyUniversity of ZurichZurichSwitzerland
| | - Rayko Halitschke
- Department of Molecular EcologyMax Planck Institute for Chemical EcologyJenaGermany
| | - Xiang Li
- Department of Molecular EcologyMax Planck Institute for Chemical EcologyJenaGermany
| | - Han Guo
- Department of Molecular EcologyMax Planck Institute for Chemical EcologyJenaGermany
| | - Veit Grabe
- Department of Evolutionary NeuroethologyMax Planck Institute for Chemical EcologyJenaGermany
| | - Austin Hammer
- Department of BiologyBrigham Young UniversityProvoUnited States
| | - Ian T Baldwin
- Department of Molecular EcologyMax Planck Institute for Chemical EcologyJenaGermany
| |
Collapse
|
40
|
Qi J, Malook SU, Shen G, Gao L, Zhang C, Li J, Zhang J, Wang L, Wu J. Current understanding of maize and rice defense against insect herbivores. PLANT DIVERSITY 2018; 40:189-195. [PMID: 30740564 PMCID: PMC6137261 DOI: 10.1016/j.pld.2018.06.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 06/28/2018] [Accepted: 06/28/2018] [Indexed: 05/25/2023]
Abstract
Plants have sophisticated defense systems to fend off insect herbivores. How plants defend against herbivores in dicotyledonous plants, such as Arabidopsis and tobacco, have been relatively well studied, yet little is known about the defense responses in monocotyledons. Here, we review the current understanding of rice (Oryza sativa) and maize (Zea mays) defense against insects. In rice and maize, elicitors derived from insect herbivore oral secretions or oviposition fluids activate phytohormone signaling, and transcriptomic changes mediated mainly by transcription factors lead to accumulation of defense-related secondary metabolites. Direct defenses, such as trypsin protein inhibitors in rice and benzoxazinoids in maize, have anti-digestive or toxic effects on insect herbivores. Herbivory-induced plant volatiles, such as terpenes, are indirect defenses, which attract the natural enemies of herbivores. R gene-mediated defenses against herbivores are also discussed.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Jianqiang Wu
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| |
Collapse
|
41
|
Adam N, Kallenbach M, Meldau S, Veit D, van Dam NM, Baldwin IT, Schuman MC. Functional variation in a key defense gene structures herbivore communities and alters plant performance. PLoS One 2018; 13:e0197221. [PMID: 29874269 PMCID: PMC5991399 DOI: 10.1371/journal.pone.0197221] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 04/28/2018] [Indexed: 11/19/2022] Open
Abstract
Plant genetic diversity structures animal communities and affects plant population productivity. However, few studies have investigated which traits are involved and the mechanisms mediating these effects. We studied the consequences of varying the expression of a single biosynthetic gene in jasmonate (JA) defense hormones, which are essential for defense against herbivores but constrain plant growth, in experimental mesocosm populations of wild tobacco (Nicotiana attenuata) plants under attack from three native herbivores. Empoasca leafhoppers preferentially attack JA-deficient N. attenuata plants in nature, and the specialist Tupiocoris notatus mirids avoid Empoasca-damaged plants. However, in experimental mesocosm populations having equal numbers of wild-type (WT) and JA-deficient plants that are silenced in the expression of the biosynthetic gene lipoxygenase 3 (LOX3), Empoasca sp. attacked both genotypes. Empoasca sp. damage, rather than JA, determined T. notatus damage, which was reduced in mixed populations. The growth of specialist Manduca sexta larvae was reduced on WT vs. asLOX3 monocultures, but differed in mixtures depending on caterpillar density. However, seed capsule number remained similar for WT and asLOX3 plants in mixtures, not in monocultures, in two experimental scenarios reflecting high and low caterpillar attack. At high caterpillar density, WT plants growing in mixtures produced more seed capsules than those growing in monocultures while seed production of asLOX3 plants did not differ by population type. However, at low caterpillar density, asLOX3 plants growing in mixed populations produced more seed capsules than those growing in monoculture, while seed capsule production did not differ for WT by population type. Thus, mixed populations had a more stable output of seed capsules under the two scenarios. This may result from a balance between JA-mediated herbivore defense and plant competitive ability in mixed populations.
Collapse
Affiliation(s)
- Nora Adam
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
- German Centre for Integrative Biodiversity Research (iDiv), Leipzig, Germany
| | - Mario Kallenbach
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Stefan Meldau
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Daniel Veit
- Technical Service, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Nicole M. van Dam
- German Centre for Integrative Biodiversity Research (iDiv), Leipzig, Germany
| | - Ian T. Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Meredith C. Schuman
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
- German Centre for Integrative Biodiversity Research (iDiv), Leipzig, Germany
| |
Collapse
|
42
|
Li R, Llorca LC, Schuman MC, Wang Y, Wang L, Joo Y, Wang M, Vassão DG, Baldwin IT. ZEITLUPE in the Roots of Wild Tobacco Regulates Jasmonate-Mediated Nicotine Biosynthesis and Resistance to a Generalist Herbivore. PLANT PHYSIOLOGY 2018; 177:833-846. [PMID: 29720557 PMCID: PMC6001341 DOI: 10.1104/pp.18.00315] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 04/25/2018] [Indexed: 05/26/2023]
Abstract
The jasmonate (JA) phytohormone signaling system is an important mediator of plant defense against herbivores. Plants deficient in JA signaling are more susceptible to herbivory as a result of deficiencies in defensive trait expression. Recent studies have implicated the circadian clock in regulating JA-mediated defenses, but the molecular mechanisms linking the clock to JA signaling are unclear. Here, we report that wild tobacco (Nicotiana attenuata) plants rendered deficient in the clock component ZEITLUPE (ZTL) by RNA interference have attenuated resistance to the generalist herbivore Spodoptera littoralis This effect can be attributed in part to reduced concentrations of nicotine, an abundant JA-regulated toxin produced in N. attenuata roots and transported to shoots. RNA interference targeting ZTL dramatically affects the root circadian clock and reduces the expression of nicotine biosynthetic genes. Protein-protein interaction experiments demonstrate that ZTL regulates JA signaling by directly interacting with JASMONATE ZIM domain (JAZ) proteins in a CORONATINE-INSENSITIVE1- and jasmonoyl-isoleucine conjugate-independent manner, thereby regulating a JAZ-MYC2 module that is required for nicotine biosynthesis. Our study reveals new functions for ZTL and proposes a mechanism by which a clock component directly influences JA signaling to regulate plant defense against herbivory.
Collapse
Affiliation(s)
- Ran Li
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany
| | - Lucas Cortés Llorca
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany
| | - Meredith C Schuman
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany
| | - Yang Wang
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany
| | - Lanlan Wang
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany
| | - Youngsung Joo
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany
| | - Ming Wang
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany
| | - Daniel Giddings Vassão
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany
| | - Ian T Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany
| |
Collapse
|
43
|
Shinya T, Yasuda S, Hyodo K, Tani R, Hojo Y, Fujiwara Y, Hiruma K, Ishizaki T, Fujita Y, Saijo Y, Galis I. Integration of danger peptide signals with herbivore-associated molecular pattern signaling amplifies anti-herbivore defense responses in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 94:626-637. [PMID: 29513388 DOI: 10.1111/tpj.13883] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 02/09/2018] [Accepted: 02/14/2018] [Indexed: 05/22/2023]
Abstract
Plant defense against herbivores is modulated by herbivore-associated molecular patterns (HAMPs) from oral secretions (OS) and/or saliva of insects. Furthermore, feeding wounds initiate plant self-damage responses modulated by danger-associated molecular patterns (DAMPs) such as immune defense-promoting plant elicitor peptides (Peps). While temporal and spatial co-existence of both patterns during herbivory implies a possibility of their close interaction, the molecular mechanisms remain undetermined. Here we report that exogenous application of rice (Oryza sativa) peptides (OsPeps) can elicit multiple defense responses in rice cell cultures. Specific activation of OsPROPEP3 gene transcripts in rice leaves by wounding and OS treatments further suggests a possible involvement of the OsPep3 peptide in rice-herbivore interactions. Correspondingly, we found that simultaneous application of OsPep3 and Mythimna loreyi OS significantly amplifies an array of defense responses in rice cells, including mitogen-activated protein kinase activation, and generation of defense-related hormones and metabolites. The induction of OsPROPEP3/4 by OsPep3 points to a positive auto-feedback loop in OsPep signaling which may contribute to additional enhancement of defense signal(s). Finally, the overexpression of the OsPep receptor OsPEPR1 increases the sensitivity of rice plants not only to the cognate OsPeps but also to OS signals. Our findings collectively suggest that HAMP-DAMP signal integration provides a critical step in the amplification of defense signaling in plants.
Collapse
Affiliation(s)
- Tomonori Shinya
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama, 710-0046, Japan
| | - Shigetaka Yasuda
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan
| | - Kiwamu Hyodo
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama, 710-0046, Japan
| | - Rena Tani
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan
| | - Yuko Hojo
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama, 710-0046, Japan
| | - Yuka Fujiwara
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama, 710-0046, Japan
| | - Kei Hiruma
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan
- Japan Science and Technology (JST), Precursory Research for Embryonic Science and Technology (PRESTO), Kawaguchi, Saitama, 332-0012, Japan
| | - Takuma Ishizaki
- Tropical Agriculture Research Front, Japan International Research Center for Agricultural Sciences (JIRCAS), Ishigaki, Okinawa, 907-0002, Japan
| | - Yasunari Fujita
- Biological Resources and Post-Harvest Division, Japan International Research Center for Agricultural Sciences (JIRCAS), Tsukuba, Ibaraki, 305-8686, Japan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan
| | - Yusuke Saijo
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan
- Japan Science and Technology (JST), Precursory Research for Embryonic Science and Technology (PRESTO), Kawaguchi, Saitama, 332-0012, Japan
| | - Ivan Galis
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama, 710-0046, Japan
| |
Collapse
|
44
|
Yahyaa M, Ibdah M, Marzouk S, Ibdah M. Profiling of the Terpene Metabolome in Carrot Fruits of Wild ( Daucus carota L. ssp. carota) Accessions and Characterization of a Geraniol Synthase. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:2378-2386. [PMID: 27673494 DOI: 10.1021/acs.jafc.6b03596] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Fruits from wild carrot ( Daucus carota L. ssp. carota) have been used for medicinal purposes since ancient times. The oil of its seeds, with their abundant monoterpenes and sesquiterpenes, has drawn attention in recent years because of its potential pharmaceutical application. A combined chemical, biochemical, and molecular study was conducted to evaluate the differential accumulation of terpene volatiles in carrot fruits of wild accessions. This work reports a similarity-based cloning strategy identification and functional characterization of one carrot monoterpene terpene synthase, WtDcTPS1. Recombinant WtDcTPS1 protein produces mainly geraniol, the predominant monoterpene in carrot seeds of wild accession 23727. The results suggest a role for the WtDcTPS1 gene in the biosynthesis of carrot fruit aroma and flavor compounds.
Collapse
Affiliation(s)
- Mosaab Yahyaa
- Newe Yaar Research Center , Agriculture Research Organization , P.O. Box 1021, Ramat Yishay 30095 , Israel
| | - Muhammad Ibdah
- Sakhnin College Academic College for Teacher Education , Sakhnin , Israel
| | - Sally Marzouk
- Newe Yaar Research Center , Agriculture Research Organization , P.O. Box 1021, Ramat Yishay 30095 , Israel
| | - Mwafaq Ibdah
- Newe Yaar Research Center , Agriculture Research Organization , P.O. Box 1021, Ramat Yishay 30095 , Israel
| |
Collapse
|
45
|
Annotation of the Corymbia terpene synthase gene family shows broad conservation but dynamic evolution of physical clusters relative to Eucalyptus. Heredity (Edinb) 2018. [PMID: 29523839 DOI: 10.1038/s41437-018-0058-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Terpenes are economically and ecologically important phytochemicals. Their synthesis is controlled by the terpene synthase (TPS) gene family, which is highly diversified throughout the plant kingdom. The plant family Myrtaceae are characterised by especially high terpene concentrations, and considerable variation in terpene profiles. Many Myrtaceae are grown commercially for terpene products including the eucalypts Corymbia and Eucalyptus. Eucalyptus grandis has the largest TPS gene family of plants currently sequenced, which is largely conserved in the closely related E. globulus. However, the TPS gene family has been well studied only in these two eucalypt species. The recent assembly of two Corymbia citriodora subsp. variegata genomes presents an opportunity to examine the conservation of this important gene family across more divergent eucalypt lineages. Manual annotation of the TPS gene family in C. citriodora subsp. variegata revealed a similar overall number, and relative subfamily representation, to that previously reported in E. grandis and E. globulus. Many of the TPS genes were in physical clusters that varied considerably between Eucalyptus and Corymbia, with several instances of translocation, expansion/contraction and loss. Notably, there was greater conservation in the subfamilies involved in primary metabolism than those involved in secondary metabolism, likely reflecting different selective constraints. The variation in cluster size within subfamilies and the broad conservation between the eucalypts in the face of this variation are discussed, highlighting the potential contribution of selection, concerted evolution and stochastic processes. These findings provide the foundation to better understand terpene evolution within the ecologically and economically important Myrtaceae.
Collapse
|
46
|
Erb M. Plant Defenses against Herbivory: Closing the Fitness Gap. TRENDS IN PLANT SCIENCE 2018; 23:187-194. [PMID: 29223923 DOI: 10.1016/j.tplants.2017.11.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 11/10/2017] [Accepted: 11/15/2017] [Indexed: 05/03/2023]
Abstract
Many morphological and chemical features of plants are classified as plant defenses against herbivores. By definition, plant defenses should increase a plant's fitness (i.e., its contribution to the gene pool of the next generation) as a function of herbivory. Over the past years, substantial progress has been made in understanding and manipulating the mechanistic basis of many putative plant defense traits. However, most plant defenses are still characterized by proximate variables such as herbivore performance or plant damage rather than actual fitness. Determining fitness benefits as a function of herbivory therefore remains a major knowledge gap that must be filled to understand the ecology and evolution of plant defenses.
Collapse
Affiliation(s)
- Matthias Erb
- Institute of Plant Sciences, University of Bern, Bern, Switzerland.
| |
Collapse
|
47
|
Schuman MC, Meldau S, Gaquerel E, Diezel C, McGale E, Greenfield S, Baldwin IT. The Active Jasmonate JA-Ile Regulates a Specific Subset of Plant Jasmonate-Mediated Resistance to Herbivores in Nature. FRONTIERS IN PLANT SCIENCE 2018; 9:787. [PMID: 29963064 PMCID: PMC6010948 DOI: 10.3389/fpls.2018.00787] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 05/24/2018] [Indexed: 05/20/2023]
Abstract
The jasmonate hormones are essential regulators of plant defense against herbivores and include several dozen derivatives of the oxylipin jasmonic acid (JA). Among these, the conjugate jasmonoyl isoleucine (JA-Ile) has been shown to interact directly with the jasmonate co-receptor complex to regulate responses to jasmonate signaling. However, functional studies indicate that some aspects of jasmonate-mediated defense are not regulated by JA-Ile. Thus, it is not clear whether JA-Ile is best characterized as the master jasmonate regulator of defense, or if it regulates more specific aspects. We investigated possible functions of JA-Ile in anti-herbivore resistance of the wild tobacco Nicotiana attenuata, a model system for plant-herbivore interactions. We first analyzed the soluble and volatile secondary metabolomes of irJAR4xirJAR6, asLOX3, and WT plants, as well as an RNAi line targeting the jasmonate co-receptor CORONATINE INSENSITIVE 1 (irCOI1), following a standardized herbivory treatment. irJAR4xirJAR6 were the most similar to WT plants, having a ca. 60% overlap in differentially regulated metabolites with either asLOX3 or irCOI1. In contrast, while at least 25 volatiles differed between irCOI1 or asLOX3 and WT plants, there were few or no differences in herbivore-induced volatile emission between irJAR4xirJAR6 and WT plants, in glasshouse- or field-collected samples. We then measured the susceptibility of jasmonate-deficient vs. JA-Ile-deficient plants in nature, in comparison to wild-type (WT) controls, and found that JA-Ile-deficient plants (irJAR4xirJAR6) are much better defended even than a mildly jasmonate-deficient line (asLOX3). The differences among lines could be attributed to differences in damage from specific herbivores, which appeared to prefer either one or the other jasmonate-deficient phenotype. We further investigated the elicitation of one herbivore-induced volatile known to be jasmonate-regulated and to mediate resistance to herbivores: (E)-α-bergamotene. We found that JA was a more potent elicitor of (E)-α-bergamotene emission than was JA-Ile, and when treated with JA, irJAR4xirJAR6 plants emitted 20- to 40-fold as much (E)-α-bergamotene than WT. We conclude that JA-Ile regulates specific aspects of herbivore resistance in N. attenuata. This specificity may allow plants flexibility in their responses to herbivores and in managing trade-offs between resistance, vs. growth and reproduction, over the course of ontogeny.
Collapse
Affiliation(s)
- Meredith C. Schuman
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
- *Correspondence: Meredith C. Schuman
| | - Stefan Meldau
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Emmanuel Gaquerel
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Celia Diezel
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Erica McGale
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Sara Greenfield
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
- Plant Genetics, Brigham Young University, Provo, UT, United States
| | - Ian T. Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
| |
Collapse
|
48
|
Salvagnin U, Malnoy M, Thöming G, Tasin M, Carlin S, Martens S, Vrhovsek U, Angeli S, Anfora G. Adjusting the scent ratio: using genetically modified Vitis vinifera plants to manipulate European grapevine moth behaviour. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:264-271. [PMID: 28574666 PMCID: PMC5785346 DOI: 10.1111/pbi.12767] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 05/08/2017] [Accepted: 05/26/2017] [Indexed: 05/04/2023]
Abstract
Herbivorous insects use olfactory cues to locate their host plant within a complex olfactory landscape. One such example is the European grapevine moth Lobesia botrana, a key pest of the grape in the Palearctic region, which recently expanded both its geographical and host plant range. Previous studies have showed that a synthetic blend of the three terpenoids, (E)-β-caryophyllene, (E)-β-farnesene and (E)-4,8-dimethyl-1,3,7-nonatriene (DMNT), was as attractive for the moth as the complete grape odour profile in laboratory conditions. The same studies also showed that the specific ratio of these compounds in the grape bouquet was crucial because a percentage variation in any of the three volatiles resulted in almost complete inhibition of the blend's attractiveness. Here, we report on the creation of stable grapevine transgenic lines, with modified (E)-β-caryophyllene and (E)-β-farnesene emission and thus with an altered ratio compared to the original plants. When headspace collections from these plants were tested in wind tunnel behavioural assays, they were less attractive than control extracts. This result was confirmed by testing synthetic blends imitating the ratio found on natural and transformed plants, as well as by testing the plants themselves. With this evidence, we suggest that a strategy based on volatile ratio modification may also interfere with the host-finding behaviour of L. botrana in the field, creating avenues for new pest control methods.
Collapse
Affiliation(s)
- Umberto Salvagnin
- Faculty of Science and TechnologyFree University of Bozen‐BolzanoBolzanoItaly
- Research and Innovation CentreFondazione Edmund MachS. Michele all'Adige (TN)Italy
| | - Mickael Malnoy
- Research and Innovation CentreFondazione Edmund MachS. Michele all'Adige (TN)Italy
| | - Gunda Thöming
- Norwegian Institute of Bioeconomy Research, NIBIOÅsNorway
| | - Marco Tasin
- Norwegian Institute of Bioeconomy Research, NIBIOÅsNorway
- Swedish University of Agricultural SciencesAlnarpSweden
| | - Silvia Carlin
- Research and Innovation CentreFondazione Edmund MachS. Michele all'Adige (TN)Italy
| | - Stefan Martens
- Research and Innovation CentreFondazione Edmund MachS. Michele all'Adige (TN)Italy
| | - Urska Vrhovsek
- Research and Innovation CentreFondazione Edmund MachS. Michele all'Adige (TN)Italy
| | - Sergio Angeli
- Faculty of Science and TechnologyFree University of Bozen‐BolzanoBolzanoItaly
| | - Gianfranco Anfora
- Research and Innovation CentreFondazione Edmund MachS. Michele all'Adige (TN)Italy
- Center Agriculture Food Environment (CAFE)University of TrentoS. Michele all'Adige (TN)Italy
| |
Collapse
|
49
|
Poreddy S, Li J, Baldwin IT. Plant-mediated RNAi silences midgut-expressed genes in congeneric lepidopteran insects in nature. BMC PLANT BIOLOGY 2017; 17:199. [PMID: 29132300 PMCID: PMC5683459 DOI: 10.1186/s12870-017-1149-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 11/02/2017] [Indexed: 05/21/2023]
Abstract
BACKGROUND Plant-mediated RNAi (PMRi) silencing of insect genes has enormous potential for crop protection, but whether it works robustly under field conditions, particularly with lepidopteran pests, remains controversial. Wild tobacco Nicotiana attenuata and cultivated tobacco (N. tabacum) (Solanaceae) is attacked by two closely related specialist herbivores Manduca sexta and M. quinquemaculata (Lepidoptera, Sphingidae). When M. sexta larvae attack transgenic N. attenuata plants expressing double-stranded RNA(dsRNA) targeting M. sexta's midgut-expressed genes, the nicotine-ingestion induced cytochrome P450 monooxygenase (invert repeat (ir)CYP6B46-plants) and the lyciumoside-IV-ingestion induced β-glucosidase1 (irBG1-plants), these larval genes which are important for the larvae's response to ingested host toxins, are strongly silenced. RESULTS Here we show that the PMRi procedure also silences the homologous genes in native M. quinquemaculata larvae feeding on irCYP6B46 and irBG1-transgenic N. attenuata plants in nature. The PMRi lines shared 98 and 96% sequence similarity with M. quinquemaculata homologous coding sequences, and CYP6B46 and BG1 transcripts were reduced by ca. 90 and 80%, without reducing the transcripts of the larvae's most similar, potential off-target genes. CONCLUSIONS We conclude that the PMRi procedure can robustly and specifically silence genes in native congeneric insects that share sufficient sequence similarity and with the careful selection of targets, might protect crops from attack by congeneric-groups of insect pests.
Collapse
Affiliation(s)
- Spoorthi Poreddy
- Department of Molecular Ecology, Max-Planck-Institute for Chemical Ecology, Hans-Knöll-Str. 8, D-07745, Jena, Germany
- Present address: Department of Plant and Microbial Biology, University of Zurich, Zollikerstrasse 107, CH-8008, Zurich, Switzerland
| | - Jiancai Li
- Department of Molecular Ecology, Max-Planck-Institute for Chemical Ecology, Hans-Knöll-Str. 8, D-07745, Jena, Germany
| | - Ian T Baldwin
- Department of Molecular Ecology, Max-Planck-Institute for Chemical Ecology, Hans-Knöll-Str. 8, D-07745, Jena, Germany.
| |
Collapse
|
50
|
Lee G, Joo Y, Kim SG, Baldwin IT. What happens in the pith stays in the pith: tissue-localized defense responses facilitate chemical niche differentiation between two spatially separated herbivores. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 92:414-425. [PMID: 28805339 DOI: 10.1111/tpj.13663] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 07/28/2017] [Accepted: 08/01/2017] [Indexed: 05/09/2023]
Abstract
Herbivore attack is known to elicit systemic defense responses that spread throughout the host plant and influence the performance of other herbivores. While these plant-mediated indirect competitive interactions are well described, and the co-existence of herbivores from different feeding guilds is common, the mechanisms of co-existence are poorly understood. In both field and glasshouse experiments with a native tobacco, Nicotiana attenuata, we found no evidence of negative interactions when plants were simultaneously attacked by two spatially separated herbivores: a leaf chewer Manduca sexta and a stem borer Trichobaris mucorea. T. mucorea attack elicited jasmonic acid (JA) and jasmonoyl-l-isoleucine bursts in the pith of attacked stems similar to those that occur in leaves when M. sexta attacks N. attenuata leaves. Pith chlorogenic acid (CGA) levels increased 1000-fold to levels 6-fold higher than leaf levels after T. mucorea attack; these increases in pith CGA levels, which did not occur in M. sexta-attacked leaves, required JA signaling. With plants silenced in CGA biosynthesis (irHQT plants), CGA, as well as other caffeic acid conjugates, was demonstrated in both glasshouse and field experiments to function as a direct defense protecting piths against T. mucorea attack, but not against leaf chewers or sucking insects. T. mucorea attack does not systemically activate JA signaling in leaves, while M. sexta leaf-attack transiently induces detectable but minor pith JA levels that are dwarfed by local responses. We conclude that tissue-localized defense responses allow tissue-specialized herbivores to share the same host and occupy different chemical defense niches in the same hostplant.
Collapse
Affiliation(s)
- Gisuk Lee
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straβe 8, Jena, D-07745, Germany
| | - Youngsung Joo
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straβe 8, Jena, D-07745, Germany
| | - Sang-Gyu Kim
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straβe 8, Jena, D-07745, Germany
| | - Ian T Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straβe 8, Jena, D-07745, Germany
| |
Collapse
|