1
|
An C, Ye K, Jiang R, Chen J, Yao Y, Lu L, Cheng Y, Liu R, Liu X, Zhao H, Qin Y, Zheng P. Cytological analysis of flower development, insights into suitable growth area and genomic background: implications for Glehnia littoralis conservation and sustainable utilization. BMC PLANT BIOLOGY 2024; 24:895. [PMID: 39343913 PMCID: PMC11441262 DOI: 10.1186/s12870-024-05585-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 09/11/2024] [Indexed: 10/01/2024]
Abstract
BACKGROUND Glehnia littoralis F. Schmidt ex Miq., an endangered plant species with significant medicinal, edible, and ecological value, is now a central concern for conservation and sustainable utilization. Investigating the physiological and ecological mechanisms leading to its endangerment and elucidating its genetic background constitutes the foundation for conducting in-depth research on G. littoralis. RESULTS Our observations have revealed a significant degree of floral sterility in wild populations of G. littoralis. The inflorescences of G. littoralis are classified into three types: completely fertile, completely sterile, and partially fertile compound umbels. Moreover, the flowers of G. littoralis can be categorized into fertile and sterile types. Sterile flowers exhibited abnormalities in the stigma, ovary, and ovules. This study is the first to discover that the presence or absence of a giant cell at the funiculus during the initiation of ovule primordium determines whether the flower can develop normally, providing cytological evidence for female sterility in G. littoralis. Conversely, both fertile and sterile flowers produced normally developed pollen. Field observations have suggested that robust plants bear more fertile umbels, while weaker ones have fewer or even no fertile umbels, indicating a close relationship between flower fertility and plant nutritional status. Our model correctly predicted that the eastern coastal regions of China, as well as prospective areas in Neimenggu and Sichuan, are suitable environments for its cultivation. Additionally, Using flow cytometry and genome survey, we estimated the genome size of G. littoralis to be 3.06 Gb and the heterozygosity to be 4.58%. CONCLUSION The observations and findings presented in this study were expected to provide valuable insights for further conserving its genetic resources and sustainable utilization of G. littoralis.
Collapse
Affiliation(s)
- Chang An
- Fujian Provincial Key laboratory of Haixia applied plant systems biology, Haixia Institute of Science and Technology and College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Kangzhuo Ye
- Fujian Provincial Key laboratory of Haixia applied plant systems biology, Haixia Institute of Science and Technology and College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Runfa Jiang
- Fujian Key Laboratory of Island Monitoring and Ecological Development (Island Research Center, MNR), Fuzhou, 350002, China
| | - Jiayi Chen
- Fujian Provincial Key laboratory of Haixia applied plant systems biology, Haixia Institute of Science and Technology and College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yixin Yao
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Lin Lu
- Fujian Provincial Key laboratory of Haixia applied plant systems biology, Haixia Institute of Science and Technology and College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yan Cheng
- Fujian Provincial Key laboratory of Haixia applied plant systems biology, Haixia Institute of Science and Technology and College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Ruoyu Liu
- Pingtan Science and Technology Research Institute, College of marine sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xiaofen Liu
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Heming Zhao
- Fujian Provincial Key laboratory of Haixia applied plant systems biology, Haixia Institute of Science and Technology and College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yuan Qin
- Fujian Provincial Key laboratory of Haixia applied plant systems biology, Haixia Institute of Science and Technology and College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
- Pingtan Science and Technology Research Institute, College of marine sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Ping Zheng
- Fujian Provincial Key laboratory of Haixia applied plant systems biology, Haixia Institute of Science and Technology and College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
- Pingtan Science and Technology Research Institute, College of marine sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
2
|
Losada JM. Concluding Embryogenesis After Diaspora: Seed Germination in Illicium Parviflorum. Integr Comp Biol 2023; 63:1352-1363. [PMID: 37349968 PMCID: PMC10755177 DOI: 10.1093/icb/icad078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/07/2023] [Accepted: 06/13/2023] [Indexed: 06/24/2023] Open
Abstract
Albuminous seeds, dispersed with a minimally developed embryo surrounded by nutrient storage tissue, are pervasive across extinct and extant early diverging angiosperm lineages. Typically, seed ontogenic studies have focused on the time between fertilization and seed release, but in albuminous seeds, embryogenesis is incomplete at the time of seed dispersal. Here, I studied the morphological and nutritional relationships between the embryo and the endosperm after seed dispersal in Illicium parviflorum (Austrobaileyales). Seeds of I. parviflorum germinate over a period of three months. Different stages during the germination process were anatomically evaluated using a combination of histochemistry and immunocytochemistry. At dispersal, the seeds of Illicium contain a tiny achlorophyllous embryo with minimal histological differentiation, surrounded by copious amounts of lipo-protein globules stored in the endosperm within cell walls rich in un-esterified pectins. Six weeks later, the embryo expanded and differentiated the vascular tissues before the emergence of the radicle through the seed coat, as the stored lipids and proteins coalesced within cells. Six weeks later, the cotyledons contained starch and complex lipids intracellularly, and accumulated low-esterified pectins in their cell walls. The proteolipid-rich albuminous seeds of Illicium exemplify how woody angiosperms of the Austrobaileyales, Amborellales, and many magnoliids release seeds with high-energy storage compounds that are reprocessed by embryos that complete development during germination. Seedlings of these lineages thrive in the understory of tropical environments, which match with the predicted habitats where angiosperms evolved.
Collapse
Affiliation(s)
- Juan M Losada
- Institute of Subtropical and Mediterranean Hortofruticulture La Mayora – CSIC – UMA. Avda. Dr. Wienberg s/n., Algarrobo-Costa, Málaga, 29750, Spain
| |
Collapse
|
3
|
Kim ES, Han JH, Olejar KJ, Park SH. Degeneration of oil bodies by rough endoplasmic reticulum -associated protein during seed germination in Cannabis sativa. AOB PLANTS 2023; 15:plad082. [PMID: 38094511 PMCID: PMC10718813 DOI: 10.1093/aobpla/plad082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 11/21/2023] [Indexed: 02/15/2024]
Abstract
Oil bodies serve as a vital energy source of embryos during germination and contribute to sustaining the initial growth of seedlings until photosynthesis initiation. Despite high stability in chemical properties, how oil bodies break down and go into the degradation process during germination is still unknown. This study provides a morphological understanding of the mobilization of stored compounds in the seed germination of Cannabis. The achenes of fibrous hemp cultivar (Cannabis sativa cv. 'Chungsam') were examined in this study using light microscopy, scanning electron microscopy and transmission electron microscopy. Oil bodies in Cannabis seeds appeared spherical and sporadically distributed in the cotyledonary cells. Protein bodies contained electron-dense globoid and heterogeneous protein matrices. During seed germination, rough endoplasmic reticulum (rER) and high electron-dense substances were present adjacent to the oil bodies. The border of the oil bodies became a dense cluster region and appeared as a sinuous outline. Later, irregular hyaline areas were distributed throughout oil bodies, showing the destabilized emulsification of oil bodies. Finally, the oil bodies lost their morphology and fused with each other. The storage proteins were concentrated in the centre of the protein body as a dense homogenous circular mass surrounded by a light heterogeneous area. Some storage proteins are considered emulsifying agents on the surface region of oil bodies, enabling them to remain stable and distinct within and outside cotyledon cells. At the early germination stage, rER appeared and dense substances aggregated adjacent to the oil bodies. Certain proteins were synthesized within the rER and then translocated into the oil bodies by crossing the half membrane of oil bodies. Our data suggest that rER-associated proteins function as enzymes to lyse the emulsifying proteins, thereby weakening the emulsifying agent on the surface of the oil bodies. This process plays a key role in the degeneration of oil bodies and induces coalescence during seed germination.
Collapse
Affiliation(s)
- Eun-Soo Kim
- Institute of Cannabis Research, Colorado State University-Pueblo, 2200 Bonforte Blvd. Pueblo, CO 81001-4901, USA
| | - Joon-Hee Han
- Institute of Biological Resources, Chuncheon Bioindustry Foundation, 32, Soyanggang-ro, Chuncheon-si, Gangwon-do 24232, Republic of Korea
| | - Kenneth J Olejar
- Department of Chemistry, Colorado State University-Pueblo, 2200 Bonforte Blvd. Pueblo, CO 81001-4901, USA
| | - Sang-Hyuck Park
- Institute of Cannabis Research, Colorado State University-Pueblo, 2200 Bonforte Blvd. Pueblo, CO 81001-4901, USA
| |
Collapse
|
4
|
Jentoft IMA, Bäuerlein FJB, Welp LM, Cooper BH, Petrovic A, So C, Penir SM, Politi AZ, Horokhovskyi Y, Takala I, Eckel H, Moltrecht R, Lénárt P, Cavazza T, Liepe J, Brose N, Urlaub H, Fernández-Busnadiego R, Schuh M. Mammalian oocytes store proteins for the early embryo on cytoplasmic lattices. Cell 2023; 186:5308-5327.e25. [PMID: 37922900 DOI: 10.1016/j.cell.2023.10.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 08/01/2023] [Accepted: 10/02/2023] [Indexed: 11/07/2023]
Abstract
Mammalian oocytes are filled with poorly understood structures called cytoplasmic lattices. First discovered in the 1960s and speculated to correspond to mammalian yolk, ribosomal arrays, or intermediate filaments, their function has remained enigmatic to date. Here, we show that cytoplasmic lattices are sites where oocytes store essential proteins for early embryonic development. Using super-resolution light microscopy and cryoelectron tomography, we show that cytoplasmic lattices are composed of filaments with a high surface area, which contain PADI6 and subcortical maternal complex proteins. The lattices associate with many proteins critical for embryonic development, including proteins that control epigenetic reprogramming of the preimplantation embryo. Loss of cytoplasmic lattices by knocking out PADI6 or the subcortical maternal complex prevents the accumulation of these proteins and results in early embryonic arrest. Our work suggests that cytoplasmic lattices enrich maternally provided proteins to prevent their premature degradation and cellular activity, thereby enabling early mammalian development.
Collapse
Affiliation(s)
- Ida M A Jentoft
- Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany
| | - Felix J B Bäuerlein
- Institute for Neuropathology, University Medical Center Göttingen, 37077 Göttingen, Germany; Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, 37077 Göttingen, Germany
| | - Luisa M Welp
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany; Institute of Clinical Chemistry, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Benjamin H Cooper
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, 37075 Göttingen, Germany
| | - Arsen Petrovic
- Institute for Neuropathology, University Medical Center Göttingen, 37077 Göttingen, Germany; Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, 37077 Göttingen, Germany
| | - Chun So
- Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany
| | - Sarah Mae Penir
- Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany
| | - Antonio Z Politi
- Facility for Light Microscopy, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany
| | - Yehor Horokhovskyi
- Quantitative and Systems Biology Group, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany
| | - Iina Takala
- Quantitative and Systems Biology Group, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany
| | - Heike Eckel
- Kinderwunschzentrum Göttingen, 37081 Göttingen, Germany
| | | | - Peter Lénárt
- Facility for Light Microscopy, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany
| | - Tommaso Cavazza
- Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany
| | - Juliane Liepe
- Quantitative and Systems Biology Group, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany
| | - Nils Brose
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, 37077 Göttingen, Germany; Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, 37075 Göttingen, Germany
| | - Henning Urlaub
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, 37077 Göttingen, Germany; Bioanalytical Mass Spectrometry Group, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany; Institute of Clinical Chemistry, University Medical Center Göttingen, 37075 Göttingen, Germany; Göttingen Center for Molecular Biosciences, Georg-August University Göttingen, 37077 Göttingen, Germany
| | - Rubén Fernández-Busnadiego
- Institute for Neuropathology, University Medical Center Göttingen, 37077 Göttingen, Germany; Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, 37077 Göttingen, Germany; Faculty of Physics, Georg-August-Universität Göttingen, 37077 Göttingen, Germany
| | - Melina Schuh
- Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany; Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, 37077 Göttingen, Germany.
| |
Collapse
|
5
|
Escudero-Feliu J, Lima-Cabello E, Rodríguez de Haro E, Morales-Santana S, Jimenez-Lopez JC. Functional Association between Storage Protein Mobilization and Redox Signaling in Narrow-Leafed Lupin ( Lupinus angustifolius L.) Seed Germination and Seedling Development. Genes (Basel) 2023; 14:1889. [PMID: 37895238 PMCID: PMC10606504 DOI: 10.3390/genes14101889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/22/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023] Open
Abstract
(1) Background: Seed storage mobilization, together with oxidative metabolism, with the ascorbate-glutathione (AsA-GSH) cycle as a crucial signaling and metabolic functional crossroad, is one of the main regulators of the control of cell morphogenesis and division, a fundamental physiological process driving seed germination and seedling growth. This study aims to characterize the cellular changes, composition, and patterns of the protein mobilization and ROS-dependent gene expression of redox metabolism in Lupinus angustifolius L. (narrow-leafed lupin, NLL) cotyledons during seed germination. (2) Methods: We performed gene expression analyses via RT-qPCR for conglutins α (1, 2, and 3), β (1, 2, and 5), γ (1, 2), and δ (2 and 4), including a ubiquitin gene as a control, and for redox metabolism-related genes; GADPH was used as a control gene. A microscopic study was developed on cotyledon samples from different germination stages, including as IMB (imbibition), and 2-5, 7, 9, and 11 DAI (days after imbibition), which were processed for light microscopy. SDS-PAGE and immunocytochemistry assays were performed using an anti-β-conglutin antibody (Agrisera), and an anti-rabbit IgG Daylight 488-conjugated secondary antibody. The controls were made while omitting primary Ab. (3) Results and Discussion: Our results showed that a large amount of seed storage protein (SSP) accumulates in protein bodies (PBs) and mobilizes during germination. Families of conglutins (β and γ) may play important roles as functional and signaling molecules, beyond the storage function, at intermediate steps of the seed germination process. In this regard, metabolic activities are closely associated with the regulation of oxidative homeostasis through AsA-GSH activities (γ-L-Glutamyl-L-cysteine synthetase, NOS, Catalase, Cu/Zn-SOD, GPx, GR, GS, GsT) after the imbibition of NLL mature seeds, metabolism activation, and dormancy breakage, which are key molecular and regulatory signaling pathways with particular importance in morphogenesis and developmental processes. (4) Conclusions: The knowledge generated in this study provides evidence for the functional changes and cellular tightly regulated events occurring in the NLL seed cotyledon, orchestrated by the oxidative-related metabolic machinery involved in seed germination advancement.
Collapse
Affiliation(s)
- Julia Escudero-Feliu
- Department of Stress, Development and Signaling in Plants, Estacion Experimental del Zaidin, Spanish National Research Council (CSIC), 18008 Granada, Spain; (J.E.-F.); (E.L.-C.); (E.R.d.H.)
| | - Elena Lima-Cabello
- Department of Stress, Development and Signaling in Plants, Estacion Experimental del Zaidin, Spanish National Research Council (CSIC), 18008 Granada, Spain; (J.E.-F.); (E.L.-C.); (E.R.d.H.)
| | - Esther Rodríguez de Haro
- Department of Stress, Development and Signaling in Plants, Estacion Experimental del Zaidin, Spanish National Research Council (CSIC), 18008 Granada, Spain; (J.E.-F.); (E.L.-C.); (E.R.d.H.)
| | - Sonia Morales-Santana
- Proteomic Research Unit, Biosanitary Research Institute of Granada (ibs.Granada), 18012 Granada, Spain;
| | - Jose C. Jimenez-Lopez
- Department of Stress, Development and Signaling in Plants, Estacion Experimental del Zaidin, Spanish National Research Council (CSIC), 18008 Granada, Spain; (J.E.-F.); (E.L.-C.); (E.R.d.H.)
- The UWA Institute of Agriculture, The University of Western Australia, Crawley, Perth 6009, Australia
| |
Collapse
|
6
|
Mangiarotti A, Siri M, Tam NW, Zhao Z, Malacrida L, Dimova R. Biomolecular condensates modulate membrane lipid packing and hydration. Nat Commun 2023; 14:6081. [PMID: 37770422 PMCID: PMC10539446 DOI: 10.1038/s41467-023-41709-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 09/15/2023] [Indexed: 09/30/2023] Open
Abstract
Membrane wetting by biomolecular condensates recently emerged as a key phenomenon in cell biology, playing an important role in a diverse range of processes across different organisms. However, an understanding of the molecular mechanisms behind condensate formation and interaction with lipid membranes is still missing. To study this, we exploited the properties of the dyes ACDAN and LAURDAN as nano-environmental sensors in combination with phasor analysis of hyperspectral and lifetime imaging microscopy. Using glycinin as a model condensate-forming protein and giant vesicles as model membranes, we obtained vital information on the process of condensate formation and membrane wetting. Our results reveal that glycinin condensates display differences in water dynamics when changing the salinity of the medium as a consequence of rearrangements in the secondary structure of the protein. Remarkably, analysis of membrane-condensates interaction with protein as well as polymer condensates indicated a correlation between increased wetting affinity and enhanced lipid packing. This is demonstrated by a decrease in the dipolar relaxation of water across all membrane-condensate systems, suggesting a general mechanism to tune membrane packing by condensate wetting.
Collapse
Affiliation(s)
- Agustín Mangiarotti
- Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14476, Potsdam, Germany.
| | - Macarena Siri
- Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14476, Potsdam, Germany
| | - Nicky W Tam
- Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14476, Potsdam, Germany
| | - Ziliang Zhao
- Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14476, Potsdam, Germany
- Leibniz Institute of Photonic Technology e.V., Albert-Einstein-Straße 9, 07745, Jena, Germany
- Institute of Applied Optics and Biophysics, Friedrich-Schiller-University Jena, Max-Wien Platz 1, 07743, Jena, Germany
| | - Leonel Malacrida
- Departamento de Fisiopatología, Hospital de Clínicas, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay.
- Advanced Bioimaging Unit, Institut Pasteur of Montevideo and Universidad de la República, Montevideo, Uruguay.
| | - Rumiana Dimova
- Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14476, Potsdam, Germany.
| |
Collapse
|
7
|
Rojas BE, Iglesias AA. Integrating multiple regulations on enzyme activity: the case of phospho enolpyruvate carboxykinases. AOB PLANTS 2023; 15:plad053. [PMID: 37608926 PMCID: PMC10441589 DOI: 10.1093/aobpla/plad053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 07/27/2023] [Indexed: 08/24/2023]
Abstract
Data on protein post-translational modifications (PTMs) increased exponentially in the last years due to the refinement of mass spectrometry techniques and the development of databases to store and share datasets. Nevertheless, these data per se do not create comprehensive biochemical knowledge. Complementary studies on protein biochemistry are necessary to fully understand the function of these PTMs at the molecular level and beyond, for example, designing rational metabolic engineering strategies to improve crops. Phosphoenolpyruvate carboxykinases (PEPCKs) are critical enzymes for plant metabolism with diverse roles in plant development and growth. Multiple lines of evidence showed the complex regulation of PEPCKs, including PTMs. Herein, we present PEPCKs as an example of the integration of combined mechanisms modulating enzyme activity and metabolic pathways. PEPCK studies strongly advanced after the production of the recombinant enzyme and the establishment of standardized biochemical assays. Finally, we discuss emerging open questions for future research and the challenges in integrating all available data into functional biochemical models.
Collapse
Affiliation(s)
- Bruno E Rojas
- Instituto de Agrobiotecnología del Litoral, UNL, CONICET, FBCB, Santa Fe, Argentina
| | - Alberto A Iglesias
- Instituto de Agrobiotecnología del Litoral, UNL, CONICET, FBCB, Santa Fe, Argentina
| |
Collapse
|
8
|
Zhang X, Blennow A, Jekle M, Zörb C. Climate-Nutrient-Crop Model: Novel Insights into Grain-Based Food Quality. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37384408 DOI: 10.1021/acs.jafc.3c01076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
Mineral nutrients spatiotemporally participate in the biosynthesis and accumulation of storage biopolymers, which directly determines the harvested grain yield and quality. Optimizing fertilizer nutrient availability improves the grain yield, but quality aspects are often underestimated. We hypothesize that extensive mineral nutrients have significant effects on the biosynthesis, content, and composition of storage proteins, ultimately determining physicochemical properties and food quality, particularly in the context of climate change. To investigate this, we hierarchized 16 plant mineral nutrients and developed a novel climate-nutrient-crop model to address the fundamental question of the roles of protein and starch in grain-based food quality. Finally, we recommend increasing the added value of mineral nutrients as a socioeconomic strategy to enhance agro-food profitability, promote environmental sustainability, and improve climate resilience.
Collapse
Affiliation(s)
- Xudong Zhang
- Institute of Crop Science, Quality of Plant Products, University of Hohenheim, 70599 Stuttgart, Germany
| | - Andreas Blennow
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, 1871 Frederiksberg C, Denmark
| | - Mario Jekle
- Department of Plant-Based Foods, Institute of Food Science and Biotechnology, University of Hohenheim, 70599 Stuttgart, Germany
| | - Christian Zörb
- Institute of Crop Science, Quality of Plant Products, University of Hohenheim, 70599 Stuttgart, Germany
| |
Collapse
|
9
|
Mangiarotti A, Chen N, Zhao Z, Lipowsky R, Dimova R. Wetting and complex remodeling of membranes by biomolecular condensates. Nat Commun 2023; 14:2809. [PMID: 37217523 DOI: 10.1038/s41467-023-37955-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 04/05/2023] [Indexed: 05/24/2023] Open
Abstract
Cells compartmentalize parts of their interiors into liquid-like condensates, which can be reconstituted in vitro. Although these condensates interact with membrane-bound organelles, their potential for membrane remodeling and the underlying mechanisms of such interactions are not well-understood. Here, we demonstrate that interactions between protein condensates - including hollow ones, and membranes can lead to remarkable morphological transformations and provide a theoretical framework to describe them. Modulation of solution salinity or membrane composition drives the condensate-membrane system through two wetting transitions, from dewetting, through a broad regime of partial wetting, to complete wetting. When sufficient membrane area is available, fingering or ruffling of the condensate-membrane interface is observed, an intriguing phenomenon producing intricately curved structures. The observed morphologies are governed by the interplay of adhesion, membrane elasticity, and interfacial tension. Our results highlight the relevance of wetting in cell biology, and pave the way for the design of synthetic membrane-droplet based biomaterials and compartments with tunable properties.
Collapse
Affiliation(s)
- Agustín Mangiarotti
- Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14476, Potsdam, Germany
| | - Nannan Chen
- Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14476, Potsdam, Germany
- Department of Nutrition and Food Hygiene, Guangzhou Medical University, Guangzhou, 511436, China
| | - Ziliang Zhao
- Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14476, Potsdam, Germany
- Leibniz Institute of Photonic Technology e.V., Albert-Einstein-Straße 9, 07745, Jena, Germany
- Institute of Applied Optics and Biophysics, Friedrich-Schiller-University Jena, Max-Wien Platz 1, 07743, Jena, Germany
| | - Reinhard Lipowsky
- Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14476, Potsdam, Germany
| | - Rumiana Dimova
- Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14476, Potsdam, Germany.
| |
Collapse
|
10
|
Liu S, Liu Z, Hou X, Li X. Genetic mapping and functional genomics of soybean seed protein. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2023; 43:29. [PMID: 37313523 PMCID: PMC10248706 DOI: 10.1007/s11032-023-01373-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 03/25/2023] [Indexed: 06/15/2023]
Abstract
Soybean is an utterly important crop for high-quality meal protein and vegetative oil. Soybean seed protein content has become a key factor in nutrients for livestock feed as well as human dietary consumption. Genetic improvement of soybean seed protein is highly desired to meet the demands of rapidly growing world population. Molecular mapping and genomic analysis in soybean have identified many quantitative trait loci (QTL) underlying seed protein content control. Exploring the mechanisms of seed storage protein regulation will be helpful to achieve the improvement of protein content. However, the practice of breeding higher protein soybean is challenging because soybean seed protein is negatively correlated with seed oil content and yield. To overcome the limitation of such inverse relationship, deeper insights into the property and genetic control of seed protein are required. Recent advances of soybean genomics have strongly enhanced the understandings for molecular mechanisms of soybean with better seed quality. Here, we review the research progress in the genetic characteristics of soybean storage protein, and up-to-date advances of molecular mappings and genomics of soybean protein. The key factors underlying the mechanisms of the negative correlation between protein and oil in soybean seeds are elaborated. We also briefly discuss the future prospects of breaking the bottleneck of the negative correlation to develop high protein soybean without penalty of oil and yield. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-023-01373-5.
Collapse
Affiliation(s)
- Shu Liu
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Zhaojun Liu
- Heilongjiang Academy of Agricultural Sciences, Harbin, 150086 China
| | - Xingliang Hou
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650 China
- Hainan Yazhou Bay Seed Laboratory, Sanya, 572025 China
| | - Xiaoming Li
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650 China
- Hainan Yazhou Bay Seed Laboratory, Sanya, 572025 China
| |
Collapse
|
11
|
Sanyal R, Kumar S, Pattanayak A, Kar A, Bishi SK. Optimizing raffinose family oligosaccharides content in plants: A tightrope walk. FRONTIERS IN PLANT SCIENCE 2023; 14:1134754. [PMID: 37056499 PMCID: PMC10088399 DOI: 10.3389/fpls.2023.1134754] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 03/08/2023] [Indexed: 06/19/2023]
Abstract
Plants synthesize various compounds for their growth, metabolism, and stress mitigation, and one such group of compounds is the raffinose family of oligosaccharides (RFOs). RFOs are non-reducing oligosaccharides having galactose residues attached to a sucrose moiety. They act as carbohydrate reserves in plants, assisting in seed germination, desiccation tolerance, and biotic/abiotic stress tolerance. Although legumes are among the richest sources of dietary proteins, the direct consumption of legumes is hindered by an excess of RFOs in the edible parts of the plant, which causes flatulence in humans and monogastric animals. These opposing characteristics make RFOs manipulation a complicated tradeoff. An in-depth knowledge of the chemical composition, distribution pattern, tissue mobilization, and metabolism is required to optimize the levels of RFOs. The most recent developments in our understanding of RFOs distribution, physiological function, genetic regulation of their biosynthesis, transport, and degradation in food crops have been covered in this review. Additionally, we have suggested a few strategies that can sustainably reduce RFOs in order to solve the flatulence issue in animals. The comprehensive information in this review can be a tool for researchers to precisely control the level of RFOs in crops and create low antinutrient, nutritious food with wider consumer acceptability.
Collapse
Affiliation(s)
- Rajarshi Sanyal
- School of Genomics and Molecular Breeding, ICAR-Indian Institute of Agricultural Biotechnology, Ranchi, Jharkhand, India
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, Pusa, New Delhi, India
| | - Sandeep Kumar
- Automation & Plant Engineering Division, ICAR-National Institute of Secondary Agriculture, Ranchi, Jharkhand, India
| | - Arunava Pattanayak
- School of Genomics and Molecular Breeding, ICAR-Indian Institute of Agricultural Biotechnology, Ranchi, Jharkhand, India
| | - Abhijit Kar
- Automation & Plant Engineering Division, ICAR-National Institute of Secondary Agriculture, Ranchi, Jharkhand, India
| | - Sujit K. Bishi
- School of Genomics and Molecular Breeding, ICAR-Indian Institute of Agricultural Biotechnology, Ranchi, Jharkhand, India
| |
Collapse
|
12
|
Wleklik K, Borek S. Vacuolar Processing Enzymes in Plant Programmed Cell Death and Autophagy. Int J Mol Sci 2023; 24:ijms24021198. [PMID: 36674706 PMCID: PMC9862320 DOI: 10.3390/ijms24021198] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/02/2023] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
Vacuolar processing enzymes (VPEs) are plant cysteine proteases that are subjected to autoactivation in an acidic pH. It is presumed that VPEs, by activating other vacuolar hydrolases, are in control of tonoplast rupture during programmed cell death (PCD). Involvement of VPEs has been indicated in various types of plant PCD related to development, senescence, and environmental stress responses. Another pathway induced during such processes is autophagy, which leads to the degradation of cellular components and metabolite salvage, and it is presumed that VPEs may be involved in the degradation of autophagic bodies during plant autophagy. As both PCD and autophagy occur under similar conditions, research on the relationship between them is needed, and VPEs, as key vacuolar proteases, seem to be an important factor to consider. They may even constitute a potential point of crosstalk between cell death and autophagy in plant cells. This review describes new insights into the role of VPEs in plant PCD, with an emphasis on evidence and hypotheses on the interconnections between autophagy and cell death, and indicates several new research opportunities.
Collapse
|
13
|
Hairunnaja MA, Aziz MAA, Hamid NB. Fundamental study on the raw material selection for the formulation of novel dolomite A+ concentrated solution. ADVANCES IN FRACTURE AND DAMAGE MECHANICS XX 2023. [DOI: 10.1063/5.0133354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
14
|
Hooker JC, Nissan N, Luckert D, Charette M, Zapata G, Lefebvre F, Mohr RM, Daba KA, Warkentin TD, Hadinezhad M, Barlow B, Hou A, Golshani A, Cober ER, Samanfar B. A Multi-Year, Multi-Cultivar Approach to Differential Expression Analysis of High- and Low-Protein Soybean ( Glycine max). Int J Mol Sci 2022; 24:ijms24010222. [PMID: 36613666 PMCID: PMC9820483 DOI: 10.3390/ijms24010222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/12/2022] [Accepted: 12/15/2022] [Indexed: 12/25/2022] Open
Abstract
Soybean (Glycine max (L.) Merr.) is among the most valuable crops based on its nutritious seed protein and oil. Protein quality, evaluated as the ratio of glycinin (11S) to β-conglycinin (7S), can play a role in food and feed quality. To help uncover the underlying differences between high and low protein soybean varieties, we performed differential expression analysis on high and low total protein soybean varieties and high and low 11S soybean varieties grown in four locations across Eastern and Western Canada over three years (2018-2020). Simultaneously, ten individual differential expression datasets for high vs. low total protein soybeans and ten individual differential expression datasets for high vs. low 11S soybeans were assessed, for a total of 20 datasets. The top 15 most upregulated and the 15 most downregulated genes were extracted from each differential expression dataset and cross-examination was conducted to create shortlists of the most consistently differentially expressed genes. Shortlisted genes were assessed for gene ontology to gain a global appreciation of the commonly differentially expressed genes. Genes with roles in the lipid metabolic pathway and carbohydrate metabolic pathway were differentially expressed in high total protein and high 11S soybeans in comparison to their low total protein and low 11S counterparts. Expression differences were consistent between East and West locations with the exception of one, Glyma.03G054100. These data are important for uncovering the genes and biological pathways responsible for the difference in seed protein between high and low total protein or 11S cultivars.
Collapse
Affiliation(s)
- Julia C. Hooker
- Agriculture and Agri-Food Canada, 960 Carling Ave, Ottawa, ON K1A 0C6, Canada
- Department of Biology, Ottawa Institute of Systems Biology, Carleton University, 1125 Colonel By Dr., Ottawa, ON K1S 5B6, Canada
| | - Nour Nissan
- Agriculture and Agri-Food Canada, 960 Carling Ave, Ottawa, ON K1A 0C6, Canada
- Department of Biology, Ottawa Institute of Systems Biology, Carleton University, 1125 Colonel By Dr., Ottawa, ON K1S 5B6, Canada
| | - Doris Luckert
- Agriculture and Agri-Food Canada, 960 Carling Ave, Ottawa, ON K1A 0C6, Canada
| | - Martin Charette
- Agriculture and Agri-Food Canada, 960 Carling Ave, Ottawa, ON K1A 0C6, Canada
| | - Gerardo Zapata
- Canadian Centre for Computational Genomics, 740 Dr. Penfield Ave, Montréal, QC H3A 0G1, Canada
| | - François Lefebvre
- Canadian Centre for Computational Genomics, 740 Dr. Penfield Ave, Montréal, QC H3A 0G1, Canada
| | - Ramona M. Mohr
- Agriculture and Agri-Food Canada, 2701 Grand Valley Road, Brandon, MB R7A 5Y3, Canada
| | - Ketema A. Daba
- Crop Development Centre, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
| | - Thomas D. Warkentin
- Crop Development Centre, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
| | - Mehri Hadinezhad
- Agriculture and Agri-Food Canada, 960 Carling Ave, Ottawa, ON K1A 0C6, Canada
| | - Brent Barlow
- Crop Development Centre, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
| | - Anfu Hou
- Agriculture and Agri-Food Canada, Morden, MB R6M 1Y5, Canada
| | - Ashkan Golshani
- Department of Biology, Ottawa Institute of Systems Biology, Carleton University, 1125 Colonel By Dr., Ottawa, ON K1S 5B6, Canada
| | - Elroy R. Cober
- Agriculture and Agri-Food Canada, 960 Carling Ave, Ottawa, ON K1A 0C6, Canada
| | - Bahram Samanfar
- Agriculture and Agri-Food Canada, 960 Carling Ave, Ottawa, ON K1A 0C6, Canada
- Department of Biology, Ottawa Institute of Systems Biology, Carleton University, 1125 Colonel By Dr., Ottawa, ON K1S 5B6, Canada
- Correspondence:
| |
Collapse
|
15
|
Ozber N, Carr SC, Morris JS, Liang S, Watkins JL, Caldo KM, Hagel JM, Ng KKS, Facchini PJ. Alkaloid binding to opium poppy major latex proteins triggers structural modification and functional aggregation. Nat Commun 2022; 13:6768. [PMID: 36351903 PMCID: PMC9646721 DOI: 10.1038/s41467-022-34313-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 10/20/2022] [Indexed: 11/11/2022] Open
Abstract
Opium poppy accumulates copious amounts of several benzylisoquinoline alkaloids including morphine, noscapine, and papaverine, in the specialized cytoplasm of laticifers, which compose an internal secretory system associated with phloem throughout the plant. The contiguous latex includes an abundance of related proteins belonging to the pathogenesis-related (PR)10 family known collectively as major latex proteins (MLPs) and representing at least 35% of the total cellular protein content. Two latex MLP/PR10 proteins, thebaine synthase and neopione isomerase, have recently been shown to catalyze late steps in morphine biosynthesis previously assigned as spontaneous reactions. Using a combination of sucrose density-gradient fractionation-coupled proteomics, differential scanning fluorimetry, isothermal titration calorimetry, and X-ray crystallography, we show that the major latex proteins are a family of alkaloid-binding proteins that display altered conformation in the presence of certain ligands. Addition of MLP/PR10 proteins to yeast strains engineered with morphine biosynthetic genes from the plant significantly enhanced the conversion of salutaridine to morphinan alkaloids.
Collapse
Affiliation(s)
- Natali Ozber
- grid.22072.350000 0004 1936 7697Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4 Canada
| | - Samuel C. Carr
- grid.22072.350000 0004 1936 7697Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4 Canada
| | - Jeremy S. Morris
- grid.22072.350000 0004 1936 7697Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4 Canada ,grid.4367.60000 0001 2355 7002Present Address: Department of Biology, Washington University, St. Louis, MO 63130-4899 USA
| | - Siyu Liang
- grid.22072.350000 0004 1936 7697Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4 Canada
| | - Jacinta L. Watkins
- grid.22072.350000 0004 1936 7697Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4 Canada
| | - Kristian M. Caldo
- grid.22072.350000 0004 1936 7697Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4 Canada
| | - Jillian M. Hagel
- grid.22072.350000 0004 1936 7697Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4 Canada
| | - Kenneth K. S. Ng
- grid.22072.350000 0004 1936 7697Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4 Canada ,grid.267455.70000 0004 1936 9596Present Address: Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario N9B 3P4 Canada
| | - Peter J. Facchini
- grid.22072.350000 0004 1936 7697Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4 Canada
| |
Collapse
|
16
|
Roy S, Sarkar T, Chakraborty R. Vegetable seeds: A new perspective in future food development. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.17118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Sarita Roy
- Department of Food Technology and Biochemical Engineering Jadavpur University Kolkata India
| | - Tanmay Sarkar
- Malda Polytechnic West Bengal State Council of Technical Education, Govt. of West Bengal Malda India
| | - Runu Chakraborty
- Department of Food Technology and Biochemical Engineering Jadavpur University Kolkata India
| |
Collapse
|
17
|
Upadhyay A, Sundaria N, Dhiman R, Prajapati VK, Prasad A, Mishra A. Complex Inclusion Bodies and Defective Proteome Hubs in Neurodegenerative Disease: New Clues, New Challenges. Neuroscientist 2022; 28:271-282. [PMID: 33530848 DOI: 10.1177/1073858421989582] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A healthy physiological environment of cells represents the dynamic homeostasis of crowded molecules. A subset of cellular proteome forms protein quality control (PQC) machinery to maintain an uninterrupted synthesis of new polypeptides and targeted elimination of old or defective proteins. The process of PQC may get overwhelmed under specific genetic mutations, environmental stress conditions, and aging-associated perturbances. Many of these conditions may lead to the generation of various types of aberrant protein species that may or may not accumulate as large cellular inclusions. These proteinaceous formations, referred to as inclusion bodies (IBs), could be membrane-bound or membrane-less, cytoplasmic, or nuclear. Most importantly, they could either be toxic or protective. Under acute stress conditions, the formation of aggregates may cause proteostasis failure, leading to large-scale changes in the cellular proteome compositions. However, the large insoluble IBs may act as reservoirs for many soluble proteins with high aggregation propensities, which can overwhelm the cellular chaperoning capacity and protein degradation machinery. The kinetic equilibrium between folding and unfolding, misfolding, and refolding; aggregation and degradation is perturbed in one or many neurodegenerative disorders (NDDs) associated with dementia, cognitive impairments, movement, and behavioural losses. However, a detailed interplay of IBs into the manifestation of the NDDs is unknown, and a very primitive knowledge of structural compositions of amyloid inclusions is present. The present article presents a brief evolutionary background of IBs; their functional relevance for prokaryotes, plants, and animals; and associated involvement in neuronal proteostasis.
Collapse
Affiliation(s)
- Arun Upadhyay
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan, India
| | - Naveen Sundaria
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan, India
| | - Rohan Dhiman
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Vijay Kumar Prajapati
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Amit Prasad
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan, India
| |
Collapse
|
18
|
Ren Y, Wang Y, Zhang Y, Pan T, Duan E, Bao X, Zhu J, Teng X, Zhang P, Gu C, Dong H, Wang F, Wang Y, Bao Y, Wang Y, Wan J. Endomembrane-mediated storage protein trafficking in plants: Golgi-dependent or Golgi-independent? FEBS Lett 2022; 596:2215-2230. [PMID: 35615915 DOI: 10.1002/1873-3468.14374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/18/2022] [Accepted: 04/27/2022] [Indexed: 11/11/2022]
Abstract
Seed storage proteins (SSPs) accumulated within plant seeds constitute the major protein nutrition sources for human and livestock. SSPs are synthesized on the endoplasmic reticulum (ER) and then deposited in plant-specific protein bodies (PBs), including ER-derived PBs and protein storage vacuoles (PSVs). Plant seeds have evolved a distinct endomembrane system to accomplish SSP transport. There are two distinct types of trafficking pathways contributing to SSP delivery to PSVs, one Golgi-dependent and the other Golgi-independent. In recent years, molecular, genetic and biochemical studies have shed light on the complex network controlling SSP trafficking, to which both evolutionarily conserved molecular machineries and plant-unique regulators contribute. In this review, we discuss current knowledge of PB biogenesis and endomembrane-mediated SSP transport, focusing on ER export and post-Golgi traffic. These knowledges support a dominant role for the Golgi-dependent pathways in SSP transport in Arabidopsis and rice. In addition, we describe cutting-edge strategies to dissect the endomembrane trafficking system in plant seeds to advance the field.
Collapse
Affiliation(s)
- Yulong Ren
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yongfei Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yu Zhang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Tian Pan
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Erchao Duan
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiuhao Bao
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jianping Zhu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xuan Teng
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Pengcheng Zhang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chuanwei Gu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hui Dong
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Fan Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yunlong Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yiqun Bao
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yihua Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jianmin Wan
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.,State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
19
|
Krishnan HB, Jurkevich A. Confocal Fluorescence Microscopy Investigation for the Existence of Subdomains within Protein Storage Vacuoles in Soybean Cotyledons. Int J Mol Sci 2022; 23:3664. [PMID: 35409024 PMCID: PMC8999119 DOI: 10.3390/ijms23073664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/21/2022] [Accepted: 03/25/2022] [Indexed: 01/27/2023] Open
Abstract
In legumes, the seed storage proteins accumulate within specialized organelles called protein storage vacuoles (PSVs). In several plant species, PSVs are differentiated into subdomains that accumulate different kinds of proteins. Even though the existence of subdomains is common in cereals and legumes, it has not been reported in soybean PSVs. The two most abundant seed proteins of soybean, 7S and 11S globulins, have different temporal accumulation patterns and exhibit considerable solubility differences that could result in differential accretion of these proteins within the PSVs. Here, we employed confocal fluorescent microscopy to examine the presence or absence of subdomains within the soybean PSVs. Eosin-stained sections of FAA-fixed paraffin embedded soybean seeds, when viewed by confocal fluorescence microscopy, revealed the presence of intricate subdomains within the PSVs. However, fluorescence immunolabeling studies demonstrated that the 7S and 11S globulins were evenly distributed within the PSVs and failed to corroborate the existence of subdomains within the PSVs. Similarly, confocal scanning microscopy examination of free-hand, vibratome and cryostat sections also failed to demonstrate the existence of subdomains within PSVs. The subdomains, which were prominently seen in PSVs of FAA-fixed soybean seeds, were not observed when the seeds were fixed either in glutaraldehyde/paraformaldehyde or glutaraldehyde. Our studies demonstrate that the apparent subdomains observed in FAA-fixed seeds may be a fixation artifact.
Collapse
Affiliation(s)
- Hari B. Krishnan
- Plant Genetics Research Unit, US Department of Agriculture-Agricultural Research Service, Columbia, MO 65211, USA
- Division of Plant Science and Technology, University of Missouri, Columbia, MO 65211, USA
| | - Alexander Jurkevich
- Advanced Light Microscopy Core, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA;
| |
Collapse
|
20
|
Cao H, Duncan O, Millar AH. Protein turnover in the developing Triticum aestivum grain. THE NEW PHYTOLOGIST 2022; 233:1188-1201. [PMID: 34846755 PMCID: PMC9299694 DOI: 10.1111/nph.17756] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 09/14/2021] [Indexed: 06/13/2023]
Abstract
Protein abundance in cereal grains is determined by the relative rates of protein synthesis and protein degradation during grain development but quantitation of these rates is lacking. Through combining in vivo stable isotope labelling and in-depth quantitative proteomics, we have measured the turnover of 1400 different types of proteins during wheat grain development. We demonstrate that there is a spatiotemporal pattern to protein turnover rates which explain part of the variation in protein abundances that is not attributable to differences in wheat gene expression. We show that c. 20% of total grain adenosine triphosphate (ATP) production is used for grain proteome biogenesis and maintenance, and nearly half of this budget is invested exclusively in storage protein synthesis. We calculate that 25% of newly synthesized storage proteins are turned over during grain development rather than stored. This approach to measure protein turnover rates at proteome scale reveals how different functional categories of grain proteins accumulate, calculates the costs of protein turnover during wheat grain development and identifies the most and the least stable proteins in the developing wheat grain.
Collapse
Affiliation(s)
- Hui Cao
- ARC Centre of Excellence in Plant Energy Biology and School of Molecular ScienceThe University of Western AustraliaBayliss Building M316CrawleyWA6009Australia
| | - Owen Duncan
- ARC Centre of Excellence in Plant Energy Biology and School of Molecular ScienceThe University of Western AustraliaBayliss Building M316CrawleyWA6009Australia
- Western Australia Proteomics FacilityThe University of Western AustraliaBayliss Building M316CrawleyWA6009Australia
| | - A. Harvey Millar
- ARC Centre of Excellence in Plant Energy Biology and School of Molecular ScienceThe University of Western AustraliaBayliss Building M316CrawleyWA6009Australia
- Western Australia Proteomics FacilityThe University of Western AustraliaBayliss Building M316CrawleyWA6009Australia
| |
Collapse
|
21
|
Feng Y, Ma Y, Feng F, Chen X, Qi W, Ma Z, Song R. Accumulation of 22 kDa α-zein-mediated nonzein protein in protein body of maize endosperm. THE NEW PHYTOLOGIST 2022; 233:265-281. [PMID: 34637530 DOI: 10.1111/nph.17796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 10/01/2021] [Indexed: 06/13/2023]
Abstract
Protein bodies (PBs), the major protein storage organelle in maize (Zea mays) endosperm, comprise zeins and numerous nonzein proteins (NZPs). Unlike zeins, how NZPs accumulate in PBs remains unclear. We characterized a maize miniature kernel mutant, mn*, that produces small kernels and is embryo-lethal. After cloning the Mn* locus, we determined that it encodes the mitochondrial 50S ribosomal protein L10 (mRPL10). MN* localized to mitochondria and PBs as an NZP; therefore, we renamed MN* Non-zein Protein 1 (NZP1). Like other mutations affecting mitochondrial proteins, mn* impaired mitochondrial function and morphology. To investigate its accumulation mechanism to PBs, we performed protein interaction assays between major zein proteins and NZP1, and found that NZP1 interacts with 22 kDa α-zein. Levels of NZP1 and 22 kDa α-zein in various opaque mutants were correlated. Furthermore, NZP1 accumulation in induced PBs depended on its interaction with 22 kDa α-zein. Comparative proteomic analysis of PBs between wild-type and opaque2 revealed additional NZPs. A new NZP with plastidial localization was also found to accumulate in induced PBs via interaction with 22 kDa α-zein. This study thus reveals a mechanism for accumulation of NZPs in PBs and suggests a potential application for the accumulation of foreign proteins in maize PBs.
Collapse
Affiliation(s)
- Yang Feng
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Beijing Key Laboratory of Crop Genetic Improvement, Joint International Research Laboratory of Crop Molecular Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Yafei Ma
- Shanghai Key Laboratory of Bio-Energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Fan Feng
- Shanghai Key Laboratory of Bio-Energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Xinze Chen
- Shanghai Key Laboratory of Bio-Energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Weiwei Qi
- Shanghai Key Laboratory of Bio-Energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Zeyang Ma
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Beijing Key Laboratory of Crop Genetic Improvement, Joint International Research Laboratory of Crop Molecular Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Rentao Song
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Beijing Key Laboratory of Crop Genetic Improvement, Joint International Research Laboratory of Crop Molecular Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
22
|
Hinderink EB, Boire A, Renard D, Riaublanc A, Sagis LM, Schroën K, Bouhallab S, Famelart MH, Gagnaire V, Guyomarc'h F, Berton-Carabin CC. Combining plant and dairy proteins in food colloid design. Curr Opin Colloid Interface Sci 2021. [DOI: 10.1016/j.cocis.2021.101507] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
23
|
Liu X, Mo L, Guo X, Zhang Q, Li H, Liu D, Lu H. How Cysteine Protease Gene PtCP5 Affects Seed Germination by Mobilizing Storage Proteins in Populus trichocarpa. Int J Mol Sci 2021; 22:ijms222312637. [PMID: 34884443 PMCID: PMC8657902 DOI: 10.3390/ijms222312637] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/16/2021] [Accepted: 11/18/2021] [Indexed: 11/16/2022] Open
Abstract
In higher plants, seed storage proteins are deposited in protein storage vacuoles (PSVs) and degraded by protease, especially cysteine proteases, as a source of nitrogen for seed germination. In this study, a cathepsin B-like cysteine protease PtCP5, which is important for seed germination and pollen development, was first cloned in Populus trichocarpa. The GUS staining of the ProPtCP5-GUS reporter line showed that PtCP5 is expressed in the roots, stems, leaves, flowers, siliques and seeds of Arabidopsis. We reveal that PtCP5 is present in plasma membrane and co-localizes with the plasma membrane marker REM1.3. Both seed germination and early seedling development are slower in OX-PtCP5 transgenic Arabidopsis when compared with the wild-type. Further analysis revealed that, when stained with toluidine blue, the observed storage protein accumulation was lower in OX-PtCP5 than in the wild-type. Our results also show that the number of abnormal pollen grains is higher and the germination rate of pollen is lower in OX-PtCP5 than in the wild-type. These results indicate that PtCP5 is an important factor in mobilizing storage proteins and that the proper expression of PtCP5 is necessary for both pollen and seed maturation and germination. This study sheds further light on the biological functions of cysteine proteases and provides further reference for seed development research on woody plants.
Collapse
Affiliation(s)
- Xiatong Liu
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; (X.L.); (L.M.); (X.G.); (Q.Z.); (H.L.)
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Lijie Mo
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; (X.L.); (L.M.); (X.G.); (Q.Z.); (H.L.)
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Xiaorui Guo
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; (X.L.); (L.M.); (X.G.); (Q.Z.); (H.L.)
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Qiang Zhang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; (X.L.); (L.M.); (X.G.); (Q.Z.); (H.L.)
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Hui Li
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; (X.L.); (L.M.); (X.G.); (Q.Z.); (H.L.)
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Di Liu
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; (X.L.); (L.M.); (X.G.); (Q.Z.); (H.L.)
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
- Correspondence: (D.L.); (H.L.)
| | - Hai Lu
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; (X.L.); (L.M.); (X.G.); (Q.Z.); (H.L.)
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
- Correspondence: (D.L.); (H.L.)
| |
Collapse
|
24
|
Breeding Canola ( Brassica napus L.) for Protein in Feed and Food. PLANTS 2021; 10:plants10102220. [PMID: 34686029 PMCID: PMC8539702 DOI: 10.3390/plants10102220] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/03/2021] [Accepted: 10/11/2021] [Indexed: 01/12/2023]
Abstract
Interest in canola (Brassica napus L.). In response to this interest, scientists have been tasked with altering and optimizing the protein production chain to ensure canola proteins are safe for consumption and economical to produce. Specifically, the role of plant breeders in developing suitable varieties with the necessary protein profiles is crucial to this interdisciplinary endeavour. In this article, we aim to provide an overarching review of the canola protein chain from the perspective of a plant breeder, spanning from the genetic regulation of seed storage proteins in the crop to advancements of novel breeding technologies and their application in improving protein quality in canola. A review on the current uses of canola meal in animal husbandry is presented to underscore potential limitations for the consumption of canola meal in mammals. General discussions on the allergenic potential of canola proteins and the regulation of novel food products are provided to highlight some of the challenges that will be encountered on the road to commercialization and general acceptance of canola protein as a dietary protein source.
Collapse
|
25
|
Abstract
Salt stress causes several damaging effects in plant cells. These commonly observed effects are the results of oxidative, osmotic, and toxic stresses. To ensure normal growth and development of tissues, the cellular compartments of multicellular plants have a unique system that provides the specified parameters of growth and differentiation. The cell shape and the direction of division support the steady development of the organism, the habit, and the typical shape of the organs and the whole plant. When dividing, daughter cells evenly or unevenly distribute the components of cytoplasm. Factors such as impaired osmotic regulation, exposure to toxic compounds, and imbalance in the antioxidant system cause disorders associated with the moving of organelles, distribution transformations of the endoplasmic reticulum, and the vacuolar compartment. In some cases, one can observe a different degree of plasmolysis manifestation, local changes in the density of cytoplasm. Together, these processes can cause disturbances in the direction of cell division, the formation of a phragmoplast, the formation of nuclei of daughter cells, and a violation of their fine structural organization. These processes are often accompanied by significant damage to the cytoskeleton, the formation of nonspecific structures formed by proteins of the cytoskeleton. The consequences of these processes can lead to the death of some cells or to a significant change in their morphology and properties, deformation of newly formed tissues and organs, and changes in the plant phenotype. Thus, as a result of significant violations of the cytoskeleton, causing critical destabilization of the symmetric distribution of the cell content, disturbances in the distribution of chromosomes, especially in polyploid cells, may occur, resulting in the appearance of micronuclei. Hence, the asymmetry of a certain component of the plant cell is a marker of susceptibility to abiotic damage.
Collapse
|
26
|
Zhang X, Li H, Lu H, Hwang I. The trafficking machinery of lytic and protein storage vacuoles: how much is shared and how much is distinct? JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:3504-3512. [PMID: 33587748 DOI: 10.1093/jxb/erab067] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 02/10/2021] [Indexed: 05/10/2023]
Abstract
Plant cells contain two types of vacuoles, the lytic vacuole (LV) and protein storage vacuole (PSV). LVs are present in vegetative cells, whereas PSVs are found in seed cells. The physiological functions of the two types of vacuole differ. Newly synthesized proteins must be transported to these vacuoles via protein trafficking through the endomembrane system for them to function. Recently, significant advances have been made in elucidating the molecular mechanisms of protein trafficking to these organelles. Despite these advances, the relationship between the trafficking mechanisms to the LV and PSV remains unclear. Some aspects of the trafficking mechanisms are common to both types of vacuole, but certain aspects are specific to trafficking to either the LV or PSV. In this review, we summarize recent findings on the components involved in protein trafficking to both the LV and PSV and compare them to examine the extent of overlap in the trafficking mechanisms. In addition, we discuss the interconnection between the LV and PSV provided by the protein trafficking machinery and the implications for the identity of these organelles.
Collapse
Affiliation(s)
- Xiuxiu Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Hui Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Hai Lu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Inhwan Hwang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
- Department of Life Sciences, Pohang University of Science and Technology, 37673 Pohang, South Korea
| |
Collapse
|
27
|
Microparticles and Nanoparticles from Plants-The Benefits of Bioencapsulation. Vaccines (Basel) 2021; 9:vaccines9040369. [PMID: 33920425 PMCID: PMC8069552 DOI: 10.3390/vaccines9040369] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/04/2021] [Accepted: 04/09/2021] [Indexed: 11/25/2022] Open
Abstract
The efficacy of drugs and vaccines depends on their stability and ability to interact with their targets in vivo. Many drugs benefit from encapsulation, which protects them from harsh conditions and allows targeted delivery and controlled release. Although many encapsulation methods are inexpensive, such as the formulation of tablets for oral delivery, others require complex procedures that add significantly to production costs and require low-temperature transport and storage, making them inaccessible in developing countries. In this review we consider the benefits of encapsulation technologies based on plants. Plant-derived biopolymers such as starch and the maize storage protein zein are already used as protective coatings, but plant cells used as production host provide natural in vivo bioencapsulation that survives passage through the stomach and releases drugs in the intestine, due to the presence of microbes that can digest the cell wall. Proteins can also be encapsulated in subcellular compartments such as protein bodies, which ensure stability and activity while often conferring additional immunomodulatory effects. Finally, we consider the incorporation of drugs and vaccines into plant-derived nanoparticles assembled from the components of viruses. These are extremely versatile, allowing the display of epitopes and targeting peptides as well as carrying cargoes of drugs and imaging molecules.
Collapse
|
28
|
Abstract
Proteins obtained from alternative sources such as plants, microorganisms, and insects have attracted considerable interest in the formulation of new food products that have a lower environmental footprint and offer means to feed a growing world population. In contrast to many established proteins, and protein fractions for which a substantial amount of knowledge has accumulated over the years, much less information is available on these emerging proteins. This article reviews the current state of knowledge on alternative proteins and their sources, highlighting gaps that currently pose obstacles to their more widespread application in the food industry. The compositional, structural, and functional properties of alternative proteins from various sources, including plants, algae, fungi, and insects, are critically reviewed. In particular, we focus on the factors associated with the creation of protein-rich functional ingredients from alternative sources. The various protein fractions in these sources are described as well as their behavior under different environmental conditions (e.g., pH, ionic strength, and temperature). The extraction approaches available to produce functional protein ingredients from these alternative sources are introduced as well as challenges associated with designing large-scale commercial processes. The key technofunctional properties of alternative proteins, such as solubility, interfacial activity, emulsification, foaming, and gelation properties, are introduced. In particular, we focus on the formation of isotropic and anisotropic structures suitablefor creating meat and dairy product analogs using various structuring techniques. Finally, selected studies on consumer acceptance and sustainability of alternative protein products are considered.
Collapse
Affiliation(s)
- Lutz Grossmann
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | - Jochen Weiss
- Department of Food Material Science, Institute of Food Science and Biotechnology, University of Hohenheim, 70599 Stuttgart, Germany;
| |
Collapse
|
29
|
Mao P, Duan F, Zheng Y, Yang Q. Blue and UV-A light wavelengths positively affected accumulation profiles of healthy compounds in pak-choi. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:1676-1684. [PMID: 32888328 DOI: 10.1002/jsfa.10788] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 08/23/2020] [Accepted: 09/05/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Recently, it become an important strategy using light to regulate plant growth and quality, especially on daily edible leafy vegetable. Pak-choi is rich in healthy functional compounds, e.g. flavonoid and glucosinolate. Many studies have focused on the plant response to increased radiation and transformed visible light quality, however, we know less about different blue and UV-A light wavelengths. Therefore, the goal of this study was to identify whether different blue and UV-A light wavelengths could improve quality in two cultivars of pak-choi and further cultivate potentially healthy functional plants. RESULTS The different blue and UV-A light wavelength treatments significantly increased the fresh and dry weight in two cultivars of pak-choi. Compared with control, the content of soluble protein was higher after the different blue and UV-A light treatments. Similarly, the contents of total phenolics and total flavonoids increased significantly under the light treatments, and the highest content presented under T430 (supplemental blue light at 430 nm) in red-leaf pak-choi and under T400 (supplemental UV-A light at 400 nm) in green-leaf pak-choi. The total anthocyanins content and 2,2-diphenyl-1-picrylhydrazyl (DPPH) of two pak-choi cultivars improved positively with decreasing treatment wavelength, and other healthy compounds were affected to varying degrees under supplemental light treatments. CONCLUSION The growth and healthy compound contents of pak-choi were significantly improved by supplemental blue and UV-A light, and there were wavelength- and cultivar-dependent effects. Compared with control, T430 presented the higher biomass and the contents of total phenolics, flavonoids and pigment in two pak-choi cultivars, and T380 was an efficient strategy to increase antioxidants and health-promoting compounds of red-leaf pak-choi. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Pengpeng Mao
- Institute of Urban Agriculture, Chinese Academy of Agricultural Science, Chengdu, China
- National Agricultural Science & Technology Center, Chengdu, China
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Famin Duan
- Institute of Urban Agriculture, Chinese Academy of Agricultural Science, Chengdu, China
- National Agricultural Science & Technology Center, Chengdu, China
| | - Yinjian Zheng
- Institute of Urban Agriculture, Chinese Academy of Agricultural Science, Chengdu, China
- National Agricultural Science & Technology Center, Chengdu, China
| | - Qichang Yang
- Institute of Urban Agriculture, Chinese Academy of Agricultural Science, Chengdu, China
- National Agricultural Science & Technology Center, Chengdu, China
| |
Collapse
|
30
|
Sesame water-soluble proteins fraction contains endopeptidases and exopeptidases with high activity: A natural source for plant proteases. Food Chem 2021; 353:129519. [PMID: 33740507 DOI: 10.1016/j.foodchem.2021.129519] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/26/2021] [Accepted: 03/01/2021] [Indexed: 11/22/2022]
Abstract
Recently, the interest in the plant proteases has greatly increased. However, only a few of proteases are isolated from the hugely produced oilseeds for the practical utilizations. In this study, the raw sesame milk prepared from peeled sesame seeds was separated into floating, skim, and precipitate fractions by centrifugation. The predominant aspartic endopeptidases and serine carboxypeptidases, which exerted high synergetic activity at pH 4.5-5 and 50-60 °C, were identified in the skim by the liquid chromatography tandem mass spectrometry, Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis, protease inhibitor assay, trichloroacetic acid-nitrogen soluble index (TCA-NSI), and free amino acid analyses. By incubating the mixture (protein content, 2%) of skim and precipitate at pH 4.5 and 50 °C for 6 h, the TCA-NSI and free amino acids achieved to 38.42% and 3148 mg/L, respectively. Moreover, these proteases efficiently degraded the proteins from soybean, peanut, and bovine milk.
Collapse
|
31
|
Buyel JF, Stöger E, Bortesi L. Targeted genome editing of plants and plant cells for biomanufacturing. Transgenic Res 2021; 30:401-426. [PMID: 33646510 PMCID: PMC8316201 DOI: 10.1007/s11248-021-00236-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 02/03/2021] [Indexed: 02/07/2023]
Abstract
Plants have provided humans with useful products since antiquity, but in the last 30 years they have also been developed as production platforms for small molecules and recombinant proteins. This initially niche area has blossomed with the growth of the global bioeconomy, and now includes chemical building blocks, polymers and renewable energy. All these applications can be described as “plant molecular farming” (PMF). Despite its potential to increase the sustainability of biologics manufacturing, PMF has yet to be embraced broadly by industry. This reflects a combination of regulatory uncertainty, limited information on process cost structures, and the absence of trained staff and suitable manufacturing capacity. However, the limited adaptation of plants and plant cells to the requirements of industry-scale manufacturing is an equally important hurdle. For example, the targeted genetic manipulation of yeast has been common practice since the 1980s, whereas reliable site-directed mutagenesis in most plants has only become available with the advent of CRISPR/Cas9 and similar genome editing technologies since around 2010. Here we summarize the applications of new genetic engineering technologies to improve plants as biomanufacturing platforms. We start by identifying current bottlenecks in manufacturing, then illustrate the progress that has already been made and discuss the potential for improvement at the molecular, cellular and organism levels. We discuss the effects of metabolic optimization, adaptation of the endomembrane system, modified glycosylation profiles, programmable growth and senescence, protease inactivation, and the expression of enzymes that promote biodegradation. We outline strategies to achieve these modifications by targeted gene modification, considering case-by-case examples of individual improvements and the combined modifications needed to generate a new general-purpose “chassis” for PMF.
Collapse
Affiliation(s)
- J F Buyel
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstrasse 6, 52074, Aachen, Germany. .,Institute for Molecular Biotechnology, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany.
| | - E Stöger
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - L Bortesi
- Aachen-Maastricht Institute for Biobased Materials (AMIBM), Maastricht University, Brightlands Chemelot Campus, Urmonderbaan 22, 6167 RD, Geleen, The Netherlands
| |
Collapse
|
32
|
Latha M, Dolui AK, Vijayaraj P. Proteoform of Arabidopsis seed storage protein identified by functional proteomics approach exhibits acyl hydrolase activity during germination. Int J Biol Macromol 2021; 172:452-463. [PMID: 33454325 DOI: 10.1016/j.ijbiomac.2021.01.074] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 01/08/2021] [Accepted: 01/12/2021] [Indexed: 02/01/2023]
Abstract
Lipases play a crucial role in the life cycle of seed plants and the oil content of the seed is highly regulated by the lipase activity. Hence, understanding the role of lipases during germination and post-germination will provide insights into lipid mobilization. However, to date, no lipase gene has been identified in seeds except, Sugar-dependent-1 in Arabidopsis. Hence, in the present study, we employed a functional proteomic approach for the identification of seed-specific lipase. Activity-Based Proteome Profiling (ABPP) of Arabidopsis mature and germinating seeds revealed the expression of a functional serine hydrolase exclusively during germination. The mass-spectrometry analysis reveals the identity and amino acid sequence of the protein correspond to AT4G28520 gene, a canonical 12S Seed Storage Protein (SSP). Interestingly, the identified SSP was a proteoform of AT4G28520 (SL-AT4G28520) and exhibited >90% identity with the canonical AT4G28520 (FL-AT4G28520). Heterologous expression and enzyme assays indicated that SL-AT4G28520 protein indeed possesses monoacylglycerol lipase activity, while the FL-AT4G28520 protein didn't exhibit any detectable activity. Functional proteomics and lipidomics analysis demonstrated a catalytic function of this SSP. Collectively, this is the first report, which suggests that SL-AT4G28520 encodes a lipase, and the activity is depending on the physiological condition.
Collapse
Affiliation(s)
- Mahadev Latha
- Lipid and Nutrition Laboratory, Department of Lipid Science, Council of Scientific and Industrial Research-Central Food Technological Research Institute, Mysore, Karnataka 570020, India; Academy of Scientific and Innovative Research, Ghaziabad 201002, Uttar Pradesh, India
| | - Achintya Kumar Dolui
- Lipid and Nutrition Laboratory, Department of Lipid Science, Council of Scientific and Industrial Research-Central Food Technological Research Institute, Mysore, Karnataka 570020, India; Academy of Scientific and Innovative Research, Ghaziabad 201002, Uttar Pradesh, India
| | - Panneerselvam Vijayaraj
- Lipid and Nutrition Laboratory, Department of Lipid Science, Council of Scientific and Industrial Research-Central Food Technological Research Institute, Mysore, Karnataka 570020, India; Academy of Scientific and Innovative Research, Ghaziabad 201002, Uttar Pradesh, India.
| |
Collapse
|
33
|
Romanchuk S. Protein bodies of the endoplasmic reticulum in Arabidopsis thaliana (Brassicaceae): origin, structural and biochemical features, functional significance. UKRAINIAN BOTANICAL JOURNAL 2020. [DOI: 10.15407/ukrbotj77.06.480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
History of the discovery, formation, structural and biochemical traits of the protein bodies, derivatives of the granular endoplasmic reticulum (GER) that are known as ER-bodies, are reviewed. The functions of ER-bodies in cell vital activity mainly in Arabidopsis thaliana are reported. The highly specific component of ER-bodies, β-glucosidase enzyme, is described and its protecting role for plants under effect of abiotic and biotic factors is characterized. Based on the analytical review of the literature, it is shown that ER-bodies and the transcription factor NAI2 are unique to species of the family Brassicaceae. The specificity of the system GER – ER-bodies for Brassicaceae and thus the fundamental and applied importance of future research of mechanisms of its functioning in A. thaliana and other Brassicaceae species are emphasized.
Collapse
|
34
|
Benedetti M, Vecchi V, Guardini Z, Dall’Osto L, Bassi R. Expression of a Hyperthermophilic Cellobiohydrolase in Transgenic Nicotiana tabacum by Protein Storage Vacuole Targeting. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1799. [PMID: 33353085 PMCID: PMC7767180 DOI: 10.3390/plants9121799] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 11/30/2020] [Accepted: 12/15/2020] [Indexed: 02/01/2023]
Abstract
Plant expression of microbial Cell Wall Degrading Enzymes (CWDEs) is a valuable strategy to produce industrial enzymes at affordable cost. Unfortunately, the constitutive expression of CWDEs may affect plant fitness to variable extents, including developmental alterations, sterility and even lethality. In order to explore novel strategies for expressing CWDEs in crops, the cellobiohydrolase CBM3GH5, from the hyperthermophilic bacterium Caldicellulosiruptor saccharolyticus, was constitutively expressed in N. tabacum by targeting the enzyme both to the apoplast and to the protein storage vacuole. The apoplast targeting failed to isolate plants expressing the recombinant enzyme despite a large number of transformants being screened. On the opposite side, the targeting of the cellobiohydrolase to the protein storage vacuole led to several transgenic lines expressing CBM3GH5, with an enzyme yield of up to 0.08 mg g DW-1 (1.67 Units g DW-1) in the mature leaf tissue. The analysis of CBM3GH5 activity revealed that the enzyme accumulated in different plant organs in a developmental-dependent manner, with the highest abundance in mature leaves and roots, followed by seeds, stems and leaf ribs. Notably, both leaves and stems from transgenic plants were characterized by an improved temperature-dependent saccharification profile.
Collapse
Affiliation(s)
- Manuel Benedetti
- Dipartimento di Medicina Clinica, Sanità Pubblica, Scienze della Vita e dell’Ambiente, Università dell’Aquila, Piazzale Salvatore Tommasi 1, 67100 L’Aquila, Italy;
| | - Valeria Vecchi
- Dipartimento di Biotecnologie, Università di Verona, Strada Le Grazie 15, 37134 Verona, Italy; (V.V.); (Z.G.); (L.D.)
| | - Zeno Guardini
- Dipartimento di Biotecnologie, Università di Verona, Strada Le Grazie 15, 37134 Verona, Italy; (V.V.); (Z.G.); (L.D.)
| | - Luca Dall’Osto
- Dipartimento di Biotecnologie, Università di Verona, Strada Le Grazie 15, 37134 Verona, Italy; (V.V.); (Z.G.); (L.D.)
| | - Roberto Bassi
- Dipartimento di Biotecnologie, Università di Verona, Strada Le Grazie 15, 37134 Verona, Italy; (V.V.); (Z.G.); (L.D.)
| |
Collapse
|
35
|
Valdes C, Cota-Ruiz K, Flores K, Ye Y, Hernandez-Viezcas JA, Gardea-Torresdey JL. Antioxidant and defense genetic expressions in corn at early-developmental stage are differentially modulated by copper form exposure (nano, bulk, ionic): Nutrient and physiological effects. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 206:111197. [PMID: 32882572 DOI: 10.1016/j.ecoenv.2020.111197] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 08/14/2020] [Accepted: 08/17/2020] [Indexed: 05/04/2023]
Abstract
In the present study, Zea mays seedlings grown under nano Cu(OH)2 (nCu), bulk Cu(OH)2 (bCu), and ionic CuSO4 (iCu) compound exposure were harvested after six days. The nutritional profile was determined to be significantly disrupted in the roots by 1000 ppm bCu treatment, resulting in a 58.7% reduction in potassium compared to the control. In the shoots, a significant decrease of manganese was observed for 10 and 1000 ppm iCu treatments with 55.7% and 64.2% reductions, respectively. The overall protein content and catalase (CAT) enzymatic activity, however, remained unaffected in either roots or shoots, while an absence of polyphenol oxidase (PPO) activity was observed for all samples. The genetic expression of defense-related genes, metallothionein (MT), CAT, ascorbate peroxidase (APX), and PPO was assessed. The genetic expression of MT was upregulated 50-fold in roots treated with 1000 ppm bCu. There were no significant differences in CAT transcripts among the various treatments, while APX was upregulated 28 and 19-fold in shoots treated with 10 ppm bCu and 10 ppm nCu, respectively. Meanwhile, APX mRNA levels were downregulated five-fold in shoots treated with 1000 ppm iCu. Thus, indicating that the role of APX in plant defense was reinforced in seedlings exposed to low concentration of particulate Cu compounds. Remarkably, no PPO expression was found in any of the treatments and controls, which suggests this enzyme is expressed only under specific external factors or seedlings have an "immature" cascade signaling activation of the PPO system. Taken together, these results show that bCu and nCu treatments at a low concentration do not compromise vital cell machinery but rather elicit the enhancement of defense responses as observed through the increase in APX expression. Furthermore, under optimal concentrations, these Cu treatments show promise in enhancing corn defense responses, which can ultimately lead to increases in future global crop yields.
Collapse
Affiliation(s)
- Carolina Valdes
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX, 79968, USA.
| | - Keni Cota-Ruiz
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX, 79968, USA.
| | - Kenneth Flores
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX, 79968, USA.
| | - Yuqing Ye
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX, 79968, USA.
| | - Jose A Hernandez-Viezcas
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX, 79968, USA.
| | - Jorge L Gardea-Torresdey
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX, 79968, USA; Environmental Science and Engineering Ph.D. Program, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX, 79968, USA.
| |
Collapse
|
36
|
Characterization of Quinoa Seeds Milling Fractions and Their Effect on the Rheological Properties of Wheat Flour Dough. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10207225] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Replacement of refined wheat flour with milling fractions of quinoa seeds represents a useful way for the formulation of value-added baked products with beneficial characteristics to consumers. The aim of this study was to assess the chemical composition and physical properties of different particle sizes of quinoa flour on Falling number index (FN) and dough rheological properties determined by Mixolab in a planned research based on design of experiment by using full factorial design. The ash and protein contents were higher in medium particle size, whereas the carbohydrates presented a lower value, this fraction having also the highest water absorption and water retention capacity. The reduction of particles led to an increased swelling capacity and a decreased bulk density. The particle size significantly influenced the FN values in linear and quadratic terms (p < 0.05), showing a decrease with the particle size increasing. Particle size decrease significantly increased water absorption and the rate of protein weakening due to heat (C1–2), whereas starch gelatinization rate (C3–2), starch breakdown rate related to amylase activity (C3–4) and starch retrogradation speed (C5–4) decreased. By increasing the amount of quinoa flour (QF) in wheat flour, the dough stability and the torques C2, C3, C4 and C5 followed a decreased trend, whereas water absorption and dough development time rose. Optimization, determined by particle size and level of QF added in wheat flour based on which of the combination gives the best rheological properties, showed that the composite flour containing 8.98% quinoa flour of medium particle size was the most suitable.
Collapse
|
37
|
Krishnan HB, Kim WS, Oehrle NW, Smith JR, Gillman JD. Effect of Heat Stress on Seed Protein Composition and Ultrastructure of Protein Storage Vacuoles in the Cotyledonary Parenchyma Cells of Soybean Genotypes That Are Either Tolerant or Sensitive to Elevated Temperatures. Int J Mol Sci 2020; 21:E4775. [PMID: 32635665 PMCID: PMC7370294 DOI: 10.3390/ijms21134775] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 06/24/2020] [Accepted: 07/04/2020] [Indexed: 12/17/2022] Open
Abstract
High growth temperatures negatively affect soybean (Glycine max (L.) Merr) yields and seed quality. Soybean plants, heat stressed during seed development, produce seed that exhibit wrinkling, discoloration, poor seed germination, and have an increased potential for incidence of pathogen infection and an overall decrease in economic value. Soybean breeders have identified a heat stress tolerant exotic landrace genotype, which has been used in traditional hybridization to generate experimental genotypes, with improved seed yield and heat tolerance. Here, we have investigated the seed protein composition and ultrastructure of cotyledonary parenchyma cells of soybean genotypes that are either susceptible or tolerant to high growth temperatures. Biochemical analyses of seed proteins isolated from heat-tolerant and heat-sensitive genotypes produced under 28/22 °C (control), 36/24 °C (moderate), and 42/26 °C (extreme) day/night temperatures revealed that the accumulation in soybean seeds of lipoxygenase, the β-subunit of β-conglycinin, sucrose binding protein and Bowman-Birk protease inhibitor were negatively impacted by extreme heat stress in both genotypes, but these effects were less pronounced in the heat-tolerant genotype. Western blot analysis showed elevated accumulation of heat shock proteins (HSP70 and HSP17.6) in both lines in response to elevated temperatures during seed fill. Transmission electron microscopy showed that heat stress caused dramatic structural changes in the storage parenchyma cells. Extreme heat stress disrupted the structure and the membrane integrity of protein storage vacuoles, organelles that accumulate seed storage proteins. The detachment of the plasma membrane from the cell wall (plasmolysis) was commonly observed in the cells of the sensitive line. In contrast, these structural changes were less pronounced in the tolerant genotype, even under extreme heat stress, cells, for the most part, retained their structural integrity. The results of our study demonstrate the contrasting effects of heat stress on the seed protein composition and ultrastructural alterations that contribute to the tolerant genotype's ability to tolerate high temperatures during seed development.
Collapse
Affiliation(s)
- Hari B. Krishnan
- Plant Genetics Research Unit, USDA-Agricultural Research Service, Columbia, MO 65211, USA; (N.W.O.); (J.D.G.)
- Plant Science Division, University of Missouri, Columbia, MO 65211, USA;
| | - Won-Seok Kim
- Plant Science Division, University of Missouri, Columbia, MO 65211, USA;
| | - Nathan W. Oehrle
- Plant Genetics Research Unit, USDA-Agricultural Research Service, Columbia, MO 65211, USA; (N.W.O.); (J.D.G.)
| | | | - Jason D. Gillman
- Plant Genetics Research Unit, USDA-Agricultural Research Service, Columbia, MO 65211, USA; (N.W.O.); (J.D.G.)
- Plant Science Division, University of Missouri, Columbia, MO 65211, USA;
| |
Collapse
|
38
|
Ohanenye IC, Tsopmo A, Ejike CE, Udenigwe CC. Germination as a bioprocess for enhancing the quality and nutritional prospects of legume proteins. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.05.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
39
|
Yobi A, Bagaza C, Batushansky A, Shrestha V, Emery ML, Holden S, Turner-Hissong S, Miller ND, Mawhinney TP, Angelovici R. The complex response of free and bound amino acids to water stress during the seed setting stage in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 102:838-855. [PMID: 31901179 DOI: 10.1111/tpj.14668] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 12/20/2019] [Indexed: 06/10/2023]
Abstract
Free amino acids (FAAs) and protein-bound amino acids (PBAAs) in seeds play an important role in seed desiccation, longevity, and germination. However, the effect that water stress has on these two functional pools, especially when imposed during the crucial seed setting stage is unclear. To better understand these effects, we exposed Arabidopsis plants at the seed setting stage to a range of water limitation and water deprivation conditions and then evaluated physiological, metabolic, and proteomic parameters, with special focus on FAAs and PBAAs. We found that in response to severe water limitation, seed yield decreased, while seed weight, FAA, and PBAA content per seed increased. Nevertheless, the composition of FAAs and PBAAs remained unaltered. In response to severe water deprivation, however, both seed yield and weight were reduced. In addition, major alterations were observed in both FAA and proteome compositions, which indicated that both osmotic adjustment and proteomic reprogramming occurred in these naturally desiccation-tolerant organs. However, despite the major proteomic alteration, the PBAA composition did not change, suggesting that the proteomic reprogramming was followed by a proteomic rebalancing. Proteomic rebalancing has not been observed previously in response to stress, but its occurrence under stress strongly suggests its natural function. Together, our data show that the dry seed PBAA composition plays a key role in seed fitness and therefore is rigorously maintained even under severe water stress, while the FAA composition is more plastic and adaptable to changing environments, and that both functional pools are distinctly regulated.
Collapse
Affiliation(s)
- Abou Yobi
- Division of Biological Sciences, Interdisciplinary Plant Group, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| | - Clement Bagaza
- Division of Biological Sciences, Interdisciplinary Plant Group, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| | - Albert Batushansky
- Division of Biological Sciences, Interdisciplinary Plant Group, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| | - Vivek Shrestha
- Division of Biological Sciences, Interdisciplinary Plant Group, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| | - Marianne L Emery
- Division of Biological Sciences, Interdisciplinary Plant Group, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| | - Samuel Holden
- Division of Biological Sciences, Interdisciplinary Plant Group, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| | - Sarah Turner-Hissong
- Division of Biological Sciences, Interdisciplinary Plant Group, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| | - Nathan D Miller
- Department of Botany, University of Wisconsin, Madison, WI, 53706, USA
| | - Thomas P Mawhinney
- Department of Biochemistry, University of Missouri, Columbia, MO, 65211, USA
| | - Ruthie Angelovici
- Division of Biological Sciences, Interdisciplinary Plant Group, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| |
Collapse
|
40
|
Li C, Song R. The regulation of zein biosynthesis in maize endosperm. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:1443-1453. [PMID: 31897513 DOI: 10.1007/s00122-019-03520-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 12/18/2019] [Indexed: 05/06/2023]
Abstract
We review the current knowledge regarding the regulation of zein storage proteins biosynthesis and protein body formation, which are crucial processes for the successful accumulation of nutrients in maize kernels. Storage proteins in the seeds of crops in the grass family (Poaceae) are a major source of dietary protein for humans. In maize (Zea mays), proteins are the second largest nutrient component in the kernels, accounting for ~ 10% of the kernel weight. Over half of the storage proteins in maize kernels are zeins, which lack two essential amino acids, lysine and tryptophan. This deficiency limits the use of maize proteins in the food and feed industries. Zeins are encoded by a large super-gene family. During endosperm development, zeins accumulate in protein bodies, which are derived from the rough endoplasmic reticulum. In recent years, our knowledge of the pathways of zein biosynthesis and their deposition within the endosperm has been greatly expanded. In this review, we summarize the current understanding of zeins, including the genes encoding these proteins, their expression patterns and transcriptional regulation, the process of protein body formation, and other biological processes affecting zein accumulation.
Collapse
Affiliation(s)
- Chaobin Li
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Beijing Key Laboratory of Crop Genetic Improvement, Joint International Research Laboratory of Crop Molecular Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Rentao Song
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Beijing Key Laboratory of Crop Genetic Improvement, Joint International Research Laboratory of Crop Molecular Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
41
|
Ren Y, Wang Y, Pan T, Wang Y, Wang Y, Gan L, Wei Z, Wang F, Wu M, Jing R, Wang J, Wan G, Bao X, Zhang B, Zhang P, Zhang Y, Ji Y, Lei C, Zhang X, Cheng Z, Lin Q, Zhu S, Zhao Z, Wang J, Wu C, Qiu L, Wang H, Wan J. GPA5 Encodes a Rab5a Effector Required for Post-Golgi Trafficking of Rice Storage Proteins. THE PLANT CELL 2020; 32:758-777. [PMID: 31949008 PMCID: PMC7054044 DOI: 10.1105/tpc.19.00863] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/16/2019] [Accepted: 01/13/2020] [Indexed: 05/18/2023]
Abstract
Dense vesicles (DVs) are vesicular carriers, unique to plants, that mediate post-Golgi trafficking of storage proteins to protein storage vacuoles (PSVs) in seeds. However, the molecular mechanisms regulating the directional targeting of DVs to PSVs remain elusive. Here, we show that the rice (Oryza sativa) glutelin precursor accumulation5 (gpa5) mutant is defective in directional targeting of DVs to PSVs, resulting in discharge of its cargo proteins into the extracellular space. Molecular cloning revealed that GPA5 encodes a plant-unique phox-homology domain-containing protein homologous to Arabidopsis (Arabidopsis thaliana) ENDOSOMAL RAB EFFECTOR WITH PX-DOMAIN. We show that GPA5 is a membrane-associated protein capable of forming homodimers and that it is specifically localized to DVs in developing endosperm. Colocalization, biochemical, and genetic evidence demonstrates that GPA5 acts in concert with Rab5a and VPS9a to regulate DV-mediated post-Golgi trafficking to PSVs. Furthermore, we demonstrated that GPA5 physically interacts with a class C core vacuole/endosome tethering complex and a seed plant-specific VAMP727-containing R-soluble N-ethylmaleimide sensitive factor attachment protein receptor complex. Collectively, our results suggest that GPA5 functions as a plant-specific effector of Rab5a required for mediating tethering and membrane fusion of DVs with PSVs in rice endosperm.
Collapse
Affiliation(s)
- Yulong Ren
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yihua Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Tian Pan
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Yunlong Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Yongfei Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Lu Gan
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhongyan Wei
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Fan Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Mingming Wu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Ruonan Jing
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiachang Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Gexing Wan
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiuhao Bao
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Binglei Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Pengcheng Zhang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Yu Zhang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Yi Ji
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Cailin Lei
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xin Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhijun Cheng
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Qibing Lin
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shanshan Zhu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhichao Zhao
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jie Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chuanyin Wu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Lijuan Qiu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Haiyang Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jianmin Wan
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
42
|
Iwabuchi K, Shimada TL, Yamada T, Hara-Nishimura I. A space-saving visual screening method, Glycine max FAST, for generating transgenic soybean. PLANT SIGNALING & BEHAVIOR 2020; 15:1722911. [PMID: 32019401 PMCID: PMC7053950 DOI: 10.1080/15592324.2020.1722911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 01/23/2020] [Accepted: 01/23/2020] [Indexed: 05/27/2023]
Abstract
Establishing homozygous transgenic lines of Glycine max is time-consuming and laborious. To overcome the difficulties, we developed a powerful method for selecting transgenic soybean plants, Fluorescence-Accumulating Seed Technology (GmFAST). GmFAST uses a marker composed of a soybean seed-specific promoter coupled to the OLE1-GFP gene, which encodes a GFP fusion of the oil-body membrane protein OLEOSIN1 of Arabidopsis thaliana. We introduced the marker gene into cotyledonary nodes of G. max Kariyutaka via Agrobacterium-mediated transformation and regenerated heterozygous transgenic plants. OLE1-GFP-expressing soybean seeds can be selected nondestructively with a fluorescence stereomicroscope. Among T2 seeds, the most strongly fluorescent seeds were homozygous. GmFAST enables to reduce the growing space by one-tenth compared with the conventional method. With this method, we obtained the soybean line that had higher levels of seed pods and oil production. The phenotypes are presumably caused by overexpression of Glyma13g30950, suggesting that Glyma13g30950 regulates seed pod formation in soybean plants. An increase in seed pod number was confirmed in A. thaliana plants that overexpressed the Arabidopsis ortholog of Glyma13g30950, E6L1.Taken together, GmFAST provides a space-saving visual and nondestructive screening method for soybean transformation, thereby increasing the chance of developing useful soybean lines.
Collapse
Affiliation(s)
- Kosei Iwabuchi
- Graduate School of Science, Kyoto University, Kyoto, Japan
- Faculty of Science and Engineering, Konan University, Kobe, Japan
| | | | - Tetsuya Yamada
- Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
| | - Ikuko Hara-Nishimura
- Graduate School of Science, Kyoto University, Kyoto, Japan
- Faculty of Science and Engineering, Konan University, Kobe, Japan
| |
Collapse
|
43
|
Wei Z, Pan T, Zhao Y, Su B, Ren Y, Qiu L. The small GTPase Rab5a and its guanine nucleotide exchange factors are involved in post-Golgi trafficking of storage proteins in developing soybean cotyledon. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:808-822. [PMID: 31624827 DOI: 10.1093/jxb/erz454] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 09/30/2019] [Indexed: 06/10/2023]
Abstract
Storage protein is the most abundant nutritional component in soybean seed. Morphology-based evidence has verified that storage proteins are initially synthesized on the endoplasmic reticulum, and then follow the Golgi-mediated pathway to the protein storage vacuole. However, the molecular mechanisms of storage protein trafficking in soybean remain unknown. Here, we clone the soybean homologs of Rab5 and its guanine nucleotide exchange factor (GEF) VPS9. GEF activity combined with yeast two-hybrid assays demonstrated that GmVPS9a2 might specifically act as the GEF of the canonical Rab5, while GmVPS9b functions as a common activator for all Rab5s. Subcellular localization experiments showed that GmRab5a was dually localized to the trans-Golgi network and pre-vacuolar compartments in developing soybean cotyledon cells. Expression of a dominant negative variant of Rab5a, or RNAi of either Rab5a or GmVPS9s, significantly disrupted trafficking of mRFP-CT10, a cargo marker for storage protein sorting, to protein storage vacuoles in maturing soybean cotyledons. Together, our results systematically revealed the important role of GmRab5a and its GEFs in storage protein trafficking, and verified the transient expression system as an efficient approach for elucidating storage protein trafficking mechanisms in seed.
Collapse
Affiliation(s)
- Zhongyan Wei
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
| | - Tian Pan
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, P.R. China
| | - Yuyang Zhao
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
| | - Bohong Su
- College of Agronomy, Northeast Agricultural University, Harbin, P.R. China
| | - Yulong Ren
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
| | - Lijuan Qiu
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
| |
Collapse
|
44
|
Khan MS, Joyia FA, Mustafa G. Seeds as Economical Production Platform for Recombinant Proteins. Protein Pept Lett 2020; 27:89-104. [DOI: 10.2174/0929866526666191014151237] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 05/13/2019] [Accepted: 08/02/2019] [Indexed: 11/22/2022]
Abstract
:
The cost-effective production of high-quality and biologically active recombinant
molecules especially proteins is extremely desirable. Seed-based recombinant protein production
platforms are considered as superior choice owing to lack of human/animal pathogenic organisms,
lack of cold chain requirements for transportation and long-term storage, easy scalability and
development of edible biopharmaceuticals in plants with objective to be used in purified or partially
processed form is desirable. This review article summarizes the exceptional features of seed-based
biopharming and highlights the needs of exploiting it for commercial purposes. Plant seeds offer a
perfect production platform for high-value molecules of industrial as well as therapeutic nature
owing to lower water contents, high protein storage capacity, weak protease activity and long-term
storage ability at ambient temperature. Exploiting extraordinarily high protein accumulation
potential, vaccine antigens, antibodies and other therapeutic proteins can be stored without effecting
their stability and functionality up to years in seeds. Moreover, ability of direct oral consumption
and post-harvest stabilizing effect of seeds offer unique feature of oral delivery of pharmaceutical
proteins and vaccine antigens for immunization and disease treatment through mucosal as well as
oral route.
Collapse
Affiliation(s)
- Muhammad Sarwar Khan
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad, Pakistan
| | - Faiz Ahmad Joyia
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad, Pakistan
| | - Ghulam Mustafa
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
45
|
Phosphorylation of TIP3 Aquaporins during Phaseolus vulgaris Embryo Development. Cells 2019; 8:cells8111362. [PMID: 31683651 PMCID: PMC6912600 DOI: 10.3390/cells8111362] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 10/22/2019] [Accepted: 10/23/2019] [Indexed: 11/19/2022] Open
Abstract
The membrane phosphoproteome in plant seed changes dynamically during embryo development. We examined the patterns of Phaseolus vulgaris (common bean) seed membrane protein phosphorylation from the mid-maturation stage until two days after germination. Serine and threonine phosphorylation declined during seed maturation while tyrosine phosphorylation remained relatively constant. We discovered that the aquaporin PvTIP3;1 is the primary seed membrane phosphoprotein, and PvTIP3;2 shows a very low level of expression. The level of phosphorylated Ser7 in PvTIP3;1 increased four-fold after seed maturation. Since phosphorylation increases water channel activity, we infer that water transport by PvTIP3;1 is highest in dry and germinating seeds, which would be optimal for seed imbibition. By the use of isoform-specific, polyclonal peptide antibodies, we found that PvTIP3;2 is expressed in a developmental pattern similar to PvTIP3;1. Unexpectedly, PvTIP3;2 is tyrosine phosphorylated following seed maturation, which may suggest a mechanism for the regulation of PvTIP3;2 following seed germination. Analysis of protein secondary structure by circular dichroism spectroscopy indicated that the amino-terminal domain of PvTIP3;1 is generally unstructured, and phosphorylation increases polyproline II (PPII) helical structure. The carboxy-terminal domain also gains PPII character, but in a pH-dependent manner. These structural changes are a first step to understand TIP3 aquaporin regulation.
Collapse
|
46
|
Tan X, Li K, Wang Z, Zhu K, Tan X, Cao J. A Review of Plant Vacuoles: Formation, Located Proteins, and Functions. PLANTS 2019; 8:plants8090327. [PMID: 31491897 PMCID: PMC6783984 DOI: 10.3390/plants8090327] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/22/2019] [Accepted: 09/04/2019] [Indexed: 12/19/2022]
Abstract
Vacuoles, cellular membrane-bound organelles, are the largest compartments of cells, occupying up to 90% of the volume of plant cells. Vacuoles are formed by the biosynthetic and endocytotic pathways. In plants, the vacuole is crucial for growth and development and has a variety of functions, including storage and transport, intracellular environmental stability, and response to injury. Depending on the cell type and growth conditions, the size of vacuoles is highly dynamic. Different types of cell vacuoles store different substances, such as alkaloids, protein enzymes, inorganic salts, sugars, etc., and play important roles in multiple signaling pathways. Here, we summarize vacuole formation, types, vacuole-located proteins, and functions.
Collapse
Affiliation(s)
- Xiaona Tan
- Institute of Life Sciences, Jiangsu University, Zhenjiang 212013, China.
| | - Kaixia Li
- Institute of Life Sciences, Jiangsu University, Zhenjiang 212013, China.
| | - Zheng Wang
- Institute of Life Sciences, Jiangsu University, Zhenjiang 212013, China.
| | - Keming Zhu
- Institute of Life Sciences, Jiangsu University, Zhenjiang 212013, China.
| | - Xiaoli Tan
- Institute of Life Sciences, Jiangsu University, Zhenjiang 212013, China.
| | - Jun Cao
- Institute of Life Sciences, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
47
|
Ibbett R, White R, Tucker G, Foster T. Hydro-mechanical processing of brewer's spent grain as a novel route for separation of protein products with differentiated techno-functional properties. INNOV FOOD SCI EMERG 2019. [DOI: 10.1016/j.ifset.2019.102184] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
48
|
Eroglu S, Karaca N, Vogel-Mikus K, Kavčič A, Filiz E, Tanyolac B. The Conservation of VIT1-Dependent Iron Distribution in Seeds. FRONTIERS IN PLANT SCIENCE 2019; 10:907. [PMID: 31354774 PMCID: PMC6640190 DOI: 10.3389/fpls.2019.00907] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 06/26/2019] [Indexed: 05/31/2023]
Abstract
One third of people suffer from anemia, with iron (Fe) deficiency being the most common reason. The human diet includes seeds of staple crops, which contain Fe that is poorly bioavailable. One reason for low bioavailability is that these seeds store Fe in cellular compartments that also contain antinutrients, such as phytate. Thus, several studies have focused on decreasing phytate concentrations. In theory, as an alternative approach, Fe reserves might be directed to cellular compartments that are free of phytate, such as plastids. However, it is not known if seed plastid can represent a major Fe storage compartment in nature. To discover distinct types of Fe storage in nature, we investigated metal localizations in the seeds of more than twenty species using histochemical or X-ray based techniques. Results showed that in Rosids, the largest clade of eudicots, Fe reserves were primarily confined to the embryo of the seeds. Furthermore, inside the embryos, Fe accumulated specifically in the endodermal cell layer, a well-known feature that is mediated by VACUOLAR IRON TRANSPORTER1 (VIT1) in model plant Arabidopsis thaliana. In rice, Fe enrichment is lost around the provasculature in the mutants of VIT1 orthologs. Finally, in Carica papaya, Fe accumulated in numerous organelles resembling plastids; however, these organelles accumulated reserve proteins but not ferritin, failing to prove to be plastids. By investigating Fe distribution in distinct plant lineages, this study failed to discover distinct Fe storage patterns that can be useful for biofortification. However, it revealed Fe enrichment is widely conserved in the endodermal cell layer in a VIT1-dependent manner in the plant kingdom.
Collapse
Affiliation(s)
- Seckin Eroglu
- Department of Genetics and Bioengineering, Izmir University of Economics, Izmir, Turkey
| | - Nur Karaca
- Department of Bioengineering, Ege University, Izmir, Turkey
| | - Katarina Vogel-Mikus
- Department of Biology, University of Ljubljana, Ljubljana, Slovenia
- Jozef Stefan Institute, Ljubljana, Slovenia
| | - Anja Kavčič
- Department of Biology, University of Ljubljana, Ljubljana, Slovenia
| | - Ertugrul Filiz
- Department of Crop and Animal Production, Cilimli Vocational School, Duzce University, Duzce, Turkey
| | | |
Collapse
|
49
|
Wada H, Hatakeyama Y, Onda Y, Nonami H, Nakashima T, Erra-Balsells R, Morita S, Hiraoka K, Tanaka F, Nakano H. Multiple strategies for heat adaptation to prevent chalkiness in the rice endosperm. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:1299-1311. [PMID: 30508115 PMCID: PMC6382329 DOI: 10.1093/jxb/ery427] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 11/27/2018] [Indexed: 05/03/2023]
Abstract
Heat-induced chalkiness of rice grains is a major concern for rice production, particularly with respect to climate change. Although the formation of chalkiness in the endosperm is suppressed by nitrogen, little is known about the cell-specific dynamics of this process. Here, using picolitre pressure-probe electrospray-ionization mass spectrometry together with transmission electron microscopy and turgor measurements, we examine heat-induced chalkiness in single endosperm cells of intact rice seeds produced under controlled environmental conditions. Exposure to heat stress decreased turgor pressure and increased the cytosolic accumulation of sugars, glutathione, and amino acids, particularly cysteine. Heat stress also led to a significant enlargement of the protein storage vacuoles but with little accumulation of storage proteins. Crucially, this heat-induced partial arrest of amyloplast development led to formation of chalkiness. Whilst increased nitrogen availability also resulted in increased accumulation of amino acids, there was no decrease in turgor pressure. The heat-induced accumulation of cysteine and glutathione was much less marked in the presence of nitrogen, and storage proteins were produced without chalkiness. These data provide important information on the cell dynamics of heat acclimation that underpin the formation of chalkiness in the rice endosperm. We conclude that rice seeds employ multiple strategies to mitigate the adverse effects of heat stress in a manner that is dependent on nitrogen availability, and that the regulation of protein synthesis may play a crucial role in optimizing organelle compartmentation during heat adaption.
Collapse
Affiliation(s)
- Hiroshi Wada
- Kyushu Okinawa Agricultural Research Center, National Agriculture and Food Research Organization, Chikugo, Fukuoka, Japan
- Correspondence:
| | - Yuto Hatakeyama
- Kyushu Okinawa Agricultural Research Center, National Agriculture and Food Research Organization, Chikugo, Fukuoka, Japan
| | - Yayoi Onda
- Graduate School of Agriculture, Ehime University, Matsuyama, Ehime, Japan
| | - Hiroshi Nonami
- Graduate School of Agriculture, Ehime University, Matsuyama, Ehime, Japan
| | - Taiken Nakashima
- Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Rosa Erra-Balsells
- Department of Organic Chemistry, University of Buenos Aires, Buenos Aires, Argentina
| | - Satoshi Morita
- Kyushu Okinawa Agricultural Research Center, National Agriculture and Food Research Organization, Chikugo, Fukuoka, Japan
| | - Kenzo Hiraoka
- Clean Energy Research Center, The University of Yamanashi, Kofu, Yamanashi, Japan
| | - Fukuyo Tanaka
- Central Region Agricultural Research Center, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| | - Hiroshi Nakano
- Kyushu Okinawa Agricultural Research Center, National Agriculture and Food Research Organization, Chikugo, Fukuoka, Japan
| |
Collapse
|
50
|
Arcalis E, Ibl V, Hilscher J, Rademacher T, Avesani L, Morandini F, Bortesi L, Pezzotti M, Vitale A, Pum D, De Meyer T, Depicker A, Stoger E. Russell-Like Bodies in Plant Seeds Share Common Features With Prolamin Bodies and Occur Upon Recombinant Protein Production. FRONTIERS IN PLANT SCIENCE 2019; 10:777. [PMID: 31316529 PMCID: PMC6611407 DOI: 10.3389/fpls.2019.00777] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 05/28/2019] [Indexed: 05/06/2023]
Abstract
Although many recombinant proteins have been produced in seeds at high yields without adverse effects on the plant, endoplasmic reticulum (ER) stress and aberrant localization of endogenous or recombinant proteins have also been reported. The production of murine interleukin-10 (mIL-10) in Arabidopsis thaliana seeds resulted in the de novo formation of ER-derived structures containing a large fraction of the recombinant protein in an insoluble form. These bodies containing mIL-10 were morphologically similar to Russell bodies found in mammalian cells. We confirmed that the compartment containing mIL-10 was enclosed by ER membranes, and 3D electron microscopy revealed that these structures have a spheroidal shape. Another feature shared with Russell bodies is the continued viability of the cells that generate these organelles. To investigate similarities in the formation of Russell-like bodies and the plant-specific protein bodies formed by prolamins in cereal seeds, we crossed plants containing ectopic ER-derived prolamin protein bodies with a line accumulating mIL-10 in Russell-like bodies. This resulted in seeds containing only one population of protein bodies in which mIL-10 inclusions formed a central core surrounded by the prolamin-containing matrix, suggesting that both types of protein aggregates are together removed from the secretory pathway by a common mechanism. We propose that, like mammalian cells, plant cells are able to form Russell-like bodies as a self-protection mechanism, when they are overloaded with a partially transport-incompetent protein, and we discuss the resulting challenges for recombinant protein production.
Collapse
Affiliation(s)
- Elsa Arcalis
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Verena Ibl
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Julia Hilscher
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Thomas Rademacher
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
| | - Linda Avesani
- Department of Biotechnology, University of Verona, Verona, Italy
| | | | - Luisa Bortesi
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Mario Pezzotti
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Alessandro Vitale
- Institute of Agricultural Biology and Biotechnology, CNR, Milan, Italy
| | - Dietmar Pum
- Department of Nanobiotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Thomas De Meyer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Ann Depicker
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Eva Stoger
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
- *Correspondence: Eva Stoger, ;
| |
Collapse
|