1
|
Chung KP, Frieboese D, Waltz F, Engel BD, Bock R. Identification and characterization of the COPII vesicle-forming GTPase Sar1 in Chlamydomonas. PLANT DIRECT 2024; 8:e614. [PMID: 38887666 PMCID: PMC11180857 DOI: 10.1002/pld3.614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 05/29/2024] [Indexed: 06/20/2024]
Abstract
Eukaryotic cells are highly compartmentalized, requiring elaborate transport mechanisms to facilitate the movement of proteins between membrane-bound compartments. Most proteins synthesized in the endoplasmic reticulum (ER) are transported to the Golgi apparatus through COPII-mediated vesicular trafficking. Sar1, a small GTPase that facilitates the formation of COPII vesicles, plays a critical role in the early steps of this protein secretory pathway. Sar1 was characterized in yeast, animals and plants, but no Sar1 homolog has been identified and functionally analyzed in algae. Here we identified a putative Sar1 homolog (CrSar1) in the model green alga Chlamydomonas reinhardtii through amino acid sequence similarity. We employed site-directed mutagenesis to generate a dominant-negative mutant of CrSar1 (CrSar1DN). Using protein secretion assays, we demonstrate the inhibitory effect of CrSar1DN on protein secretion. However, different from previously studied organisms, ectopic expression of CrSar1DN did not result in collapse of the ER-Golgi interface in Chlamydomonas. Nonetheless, our data suggest a largely conserved role of CrSar1 in the ER-to-Golgi protein secretory pathway in green algae.
Collapse
Affiliation(s)
- Kin Pan Chung
- Max‐Planck‐Institut für Molekulare PflanzenphysiologiePotsdamGermany
| | - Daniel Frieboese
- Max‐Planck‐Institut für Molekulare PflanzenphysiologiePotsdamGermany
| | | | | | - Ralph Bock
- Max‐Planck‐Institut für Molekulare PflanzenphysiologiePotsdamGermany
| |
Collapse
|
2
|
Shen Y, Gu HM, Qin S, Zhang DW. Surf4, cargo trafficking, lipid metabolism, and therapeutic implications. J Mol Cell Biol 2023; 14:6852946. [PMID: 36574593 PMCID: PMC9929512 DOI: 10.1093/jmcb/mjac063] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/30/2022] [Accepted: 09/06/2022] [Indexed: 12/03/2022] Open
Abstract
Surfeit 4 is a polytopic transmembrane protein that primarily resides in the endoplasmic reticulum (ER) membrane. It is ubiquitously expressed and functions as a cargo receptor, mediating cargo transport from the ER to the Golgi apparatus via the canonical coat protein complex II (COPII)-coated vesicles or specific vesicles. It also participates in ER-Golgi protein trafficking through a tubular network. Meanwhile, it facilitates retrograde transportation of cargos from the Golgi apparatus to the ER through COPI-coated vesicles. Surf4 can selectively mediate export of diverse cargos, such as PCSK9 very low-density lipoprotein (VLDL), progranulin, α1-antitrypsin, STING, proinsulin, and erythropoietin. It has been implicated in facilitating VLDL secretion, promoting cell proliferation and migration, and increasing replication of positive-strand RNA viruses. Therefore, Surf4 plays a crucial role in various physiological and pathophysiological processes and emerges as a promising therapeutic target. However, the molecular mechanisms by which Surf4 selectively sorts diverse cargos for ER-Golgi protein trafficking remain elusive. Here, we summarize the most recent advances in Surf4, focusing on its role in lipid metabolism.
Collapse
Affiliation(s)
- Yishi Shen
- Group on the Molecular and Cell Biology of Lipids and Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6R 2G3, Canada
| | - Hong-Mei Gu
- Group on the Molecular and Cell Biology of Lipids and Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6R 2G3, Canada
| | - Shucun Qin
- Institute of Atherosclerosis in Shandong First Medical University (Shandong Academy of Medical Sciences), Taian 271016, China
| | - Da-Wei Zhang
- Group on the Molecular and Cell Biology of Lipids and Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6R 2G3, Canada
| |
Collapse
|
3
|
Tilsner J, Kriechbaumer V. Reticulons 3 and 6 interact with viral movement proteins. MOLECULAR PLANT PATHOLOGY 2022; 23:1807-1814. [PMID: 35987858 PMCID: PMC9644274 DOI: 10.1111/mpp.13261] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 08/05/2022] [Accepted: 08/05/2022] [Indexed: 05/06/2023]
Abstract
Plant reticulon (RTN) proteins are capable of constricting membranes and are vital for creating and maintaining tubules in the endoplasmic reticulum (ER), making them prime candidates for the formation of the desmotubule in plasmodesmata (PD). RTN3 and RTN6 have previously been detected in an Arabidopsis PD proteome and have been shown to be present in primary PD at cytokinesis. It has been suggested that RTN proteins form protein complexes with proteins in the PD plasma membrane and desmotubule to stabilize the desmotubule constriction and regulate PD aperture. Viral movement proteins (vMPs) enable the transport of viruses through PD and can be ER-integral membrane proteins or interact with the ER. Some vMPs can themselves constrict ER membranes or localize to RTN-containing tubules; RTN proteins and vMPs could be functionally linked or potentially interact. Here we show that different vMPs are capable of interacting with RTN3 and RTN6 in a membrane yeast two-hybrid assay, coimmunoprecipitation, and Förster resonance energy transfer measured by donor excited-state fluorescence lifetime imaging microscopy. Furthermore, coexpression of the vMP CMV-3a and RTN3 results in either the vMP or the RTN changing subcellular localization and reduces the ability of CMV-3a to open PD, further indicating interactions between the two proteins.
Collapse
Affiliation(s)
- Jens Tilsner
- Biomedical Sciences Research ComplexSchool of Biology, Willie Russell LaboratoriesFifeUK
- Cell & Molecular SciencesThe James Hutton InstituteDundeeUK
| | - Verena Kriechbaumer
- Endomembrane Structure and Function Research Group, Department of Biological and Medical SciencesOxford Brookes UniversityOxfordUK
| |
Collapse
|
4
|
Demaretz S, Seaayfan E, Bakhos-Douaihy D, Frachon N, Kömhoff M, Laghmani K. Golgi Alpha1,2-Mannosidase IA Promotes Efficient Endoplasmic Reticulum-Associated Degradation of NKCC2. Cells 2021; 11:cells11010101. [PMID: 35011665 PMCID: PMC8750359 DOI: 10.3390/cells11010101] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/24/2021] [Accepted: 12/27/2021] [Indexed: 12/18/2022] Open
Abstract
Mutations in the apically located kidney Na-K-2Cl cotransporter NKCC2 cause type I Bartter syndrome, a life-threatening kidney disorder. We previously showed that transport from the ER represents the limiting phase in NKCC2 journey to the cell surface. Yet very little is known about the ER quality control components specific to NKCC2 and its disease-causing mutants. Here, we report the identification of Golgi alpha1, 2-mannosidase IA (ManIA) as a novel binding partner of the immature form of NKCC2. ManIA interaction with NKCC2 takes place mainly at the cis-Golgi network. ManIA coexpression decreased total NKCC2 protein abundance whereas ManIA knock-down produced the opposite effect. Importantly, ManIA coexpression had a more profound effect on NKCC2 folding mutants. Cycloheximide chase assay showed that in cells overexpressing ManIA, NKCC2 stability and maturation are heavily hampered. Deleting the cytoplasmic region of ManIA attenuated its interaction with NKCC2 and inhibited its effect on the maturation of the cotransporter. ManIA-induced reductions in NKCC2 expression were offset by the proteasome inhibitor MG132. Likewise, kifunensine treatment greatly reduced ManIA effect, strongly suggesting that mannose trimming is involved in the enhanced ERAD of the cotransporter. Moreover, depriving ManIA of its catalytic domain fully abolished its effect on NKCC2. In summary, our data demonstrate the presence of a ManIA-mediated ERAD pathway in renal cells promoting retention and degradation of misfolded NKCC2 proteins. They suggest a model whereby Golgi ManIA contributes to ERAD of NKCC2, by promoting the retention, recycling, and ERAD of misfolded proteins that initially escape protein quality control surveillance within the ER.
Collapse
Affiliation(s)
- Sylvie Demaretz
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université de Paris, F-75006 Paris, France; (S.D.); (E.S.); (D.B.-D.); (N.F.)
- CNRS, ERL8228, F-75006 Paris, France
| | - Elie Seaayfan
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université de Paris, F-75006 Paris, France; (S.D.); (E.S.); (D.B.-D.); (N.F.)
- CNRS, ERL8228, F-75006 Paris, France
| | - Dalal Bakhos-Douaihy
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université de Paris, F-75006 Paris, France; (S.D.); (E.S.); (D.B.-D.); (N.F.)
- CNRS, ERL8228, F-75006 Paris, France
| | - Nadia Frachon
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université de Paris, F-75006 Paris, France; (S.D.); (E.S.); (D.B.-D.); (N.F.)
- CNRS, ERL8228, F-75006 Paris, France
| | - Martin Kömhoff
- Division of Pediatric Nephrology and Transplantation, University Children’s Hospital, Philipps-University, 35043 Marburg, Germany;
| | - Kamel Laghmani
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université de Paris, F-75006 Paris, France; (S.D.); (E.S.); (D.B.-D.); (N.F.)
- CNRS, ERL8228, F-75006 Paris, France
- Correspondence:
| |
Collapse
|
5
|
Siriwattananon K, Manopwisedjaroen S, Shanmugaraj B, Rattanapisit K, Phumiamorn S, Sapsutthipas S, Trisiriwanich S, Prompetchara E, Ketloy C, Buranapraditkun S, Wijagkanalan W, Tharakhet K, Kaewpang P, Leetanasaksakul K, Kemthong T, Suttisan N, Malaivijitnond S, Ruxrungtham K, Thitithanyanont A, Phoolcharoen W. Plant-Produced Receptor-Binding Domain of SARS-CoV-2 Elicits Potent Neutralizing Responses in Mice and Non-human Primates. FRONTIERS IN PLANT SCIENCE 2021; 12:682953. [PMID: 34054909 PMCID: PMC8158422 DOI: 10.3389/fpls.2021.682953] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 04/15/2021] [Indexed: 05/11/2023]
Abstract
The emergence of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has affected global public health and economy. Despite the substantial efforts, only few vaccines are currently approved and some are in the different stages of clinical trials. As the disease rapidly spreads, an affordable and effective vaccine is urgently needed. In this study, we investigated the immunogenicity of plant-produced receptor-binding domain (RBD) of SARS-CoV-2 in order to use as a subunit vaccine. In this regard, RBD of SARS-CoV-2 was fused with Fc fragment of human IgG1 and transiently expressed in Nicotiana benthamiana by agroinfiltration. The plant-produced RBD-Fc fusion protein was purified from the crude extract by using protein A affinity column chromatography. Two intramuscular administration of plant-produced RBD-Fc protein formulated with alum as an adjuvant have elicited high neutralization titers in immunized mice and cynomolgus monkeys. Further it has induced a mixed Th1/Th2 immune responses and vaccine-specific T-lymphocyte responses which was confirmed by interferon-gamma (IFN-γ) enzyme-linked immunospot assay. Altogether, our results demonstrated that the plant-produced SARS-CoV-2 RBD has the potential to be used as an effective vaccine candidate against SARS-CoV-2. To our knowledge, this is the first report demonstrating the immunogenicity of plant-produced SARS-CoV-2 RBD protein in mice and non-human primates.
Collapse
Affiliation(s)
- Konlavat Siriwattananon
- Research Unit for Plant-produced Pharmaceuticals, Chulalongkorn University, Bangkok, Thailand
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | | | | | | | - Supaporn Phumiamorn
- Department of Medical Sciences, Ministry of Public Health, Institute of Biological Products, Nonthaburi, Thailand
| | - Sompong Sapsutthipas
- Department of Medical Sciences, Ministry of Public Health, Institute of Biological Products, Nonthaburi, Thailand
| | - Sakalin Trisiriwanich
- Department of Medical Sciences, Ministry of Public Health, Institute of Biological Products, Nonthaburi, Thailand
| | - Eakachai Prompetchara
- Faculty of Medicine, Center of Excellence in Vaccine Research and Development (Chula Vaccine Research Center, Chula VRC), Chulalongkorn University, Bangkok, Thailand
- Department of Laboratory Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Chutitorn Ketloy
- Faculty of Medicine, Center of Excellence in Vaccine Research and Development (Chula Vaccine Research Center, Chula VRC), Chulalongkorn University, Bangkok, Thailand
- Department of Laboratory Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Supranee Buranapraditkun
- Faculty of Medicine, Center of Excellence in Vaccine Research and Development (Chula Vaccine Research Center, Chula VRC), Chulalongkorn University, Bangkok, Thailand
- Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | | | - Kittipan Tharakhet
- Faculty of Medicine, Center of Excellence in Vaccine Research and Development (Chula Vaccine Research Center, Chula VRC), Chulalongkorn University, Bangkok, Thailand
| | - Papatsara Kaewpang
- Faculty of Medicine, Center of Excellence in Vaccine Research and Development (Chula Vaccine Research Center, Chula VRC), Chulalongkorn University, Bangkok, Thailand
| | - Kantinan Leetanasaksakul
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Taratorn Kemthong
- National Primate Research Center of Thailand-Chulalongkorn University, Saraburi, Thailand
| | - Nutchanat Suttisan
- National Primate Research Center of Thailand-Chulalongkorn University, Saraburi, Thailand
| | | | - Kiat Ruxrungtham
- Faculty of Medicine, Center of Excellence in Vaccine Research and Development (Chula Vaccine Research Center, Chula VRC), Chulalongkorn University, Bangkok, Thailand
- Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | | | - Waranyoo Phoolcharoen
- Research Unit for Plant-produced Pharmaceuticals, Chulalongkorn University, Bangkok, Thailand
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
6
|
Differential Effects of STCH and Stress-Inducible Hsp70 on the Stability and Maturation of NKCC2. Int J Mol Sci 2021. [PMID: 33672238 DOI: 10.3390/ijms22042207.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Mutations in the Na-K-2Cl co-transporter NKCC2 lead to type I Bartter syndrome, a life-threatening kidney disease. We previously showed that export from the ER constitutes the limiting step in NKCC2 maturation and cell surface expression. Yet, the molecular mechanisms involved in this process remain obscure. Here, we report the identification of chaperone stress 70 protein (STCH) and the stress-inducible heat shock protein 70 (Hsp70), as two novel binding partners of the ER-resident form of NKCC2. STCH knock-down increased total NKCC2 expression whereas Hsp70 knock-down or its inhibition by YM-01 had the opposite effect. Accordingly, overexpressing of STCH and Hsp70 exerted opposite actions on total protein abundance of NKCC2 and its folding mutants. Cycloheximide chase assay showed that in cells over-expressing STCH, NKCC2 stability and maturation are heavily impaired. In contrast to STCH, Hsp70 co-expression increased NKCC2 maturation. Interestingly, treatment by protein degradation inhibitors revealed that in addition to the proteasome, the ER associated degradation (ERAD) of NKCC2 mediated by STCH, involves also the ER-to-lysosome-associated degradation pathway. In summary, our data are consistent with STCH and Hsp70 having differential and antagonistic effects with regard to NKCC2 biogenesis. These findings may have an impact on our understanding and potential treatment of diseases related to aberrant NKCC2 trafficking and expression.
Collapse
|
7
|
Differential Effects of STCH and Stress-Inducible Hsp70 on the Stability and Maturation of NKCC2. Int J Mol Sci 2021; 22:ijms22042207. [PMID: 33672238 PMCID: PMC7926544 DOI: 10.3390/ijms22042207] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 02/13/2021] [Accepted: 02/20/2021] [Indexed: 12/16/2022] Open
Abstract
Mutations in the Na-K-2Cl co-transporter NKCC2 lead to type I Bartter syndrome, a life-threatening kidney disease. We previously showed that export from the ER constitutes the limiting step in NKCC2 maturation and cell surface expression. Yet, the molecular mechanisms involved in this process remain obscure. Here, we report the identification of chaperone stress 70 protein (STCH) and the stress-inducible heat shock protein 70 (Hsp70), as two novel binding partners of the ER-resident form of NKCC2. STCH knock-down increased total NKCC2 expression whereas Hsp70 knock-down or its inhibition by YM-01 had the opposite effect. Accordingly, overexpressing of STCH and Hsp70 exerted opposite actions on total protein abundance of NKCC2 and its folding mutants. Cycloheximide chase assay showed that in cells over-expressing STCH, NKCC2 stability and maturation are heavily impaired. In contrast to STCH, Hsp70 co-expression increased NKCC2 maturation. Interestingly, treatment by protein degradation inhibitors revealed that in addition to the proteasome, the ER associated degradation (ERAD) of NKCC2 mediated by STCH, involves also the ER-to-lysosome-associated degradation pathway. In summary, our data are consistent with STCH and Hsp70 having differential and antagonistic effects with regard to NKCC2 biogenesis. These findings may have an impact on our understanding and potential treatment of diseases related to aberrant NKCC2 trafficking and expression.
Collapse
|
8
|
Ghag SB, Adki VS, Ganapathi TR, Bapat VA. Plant Platforms for Efficient Heterologous Protein Production. BIOTECHNOL BIOPROC E 2021; 26:546-567. [PMID: 34393545 PMCID: PMC8346785 DOI: 10.1007/s12257-020-0374-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/14/2021] [Accepted: 01/16/2021] [Indexed: 02/07/2023]
Abstract
Production of recombinant proteins is primarily established in cultures of mammalian, insect and bacterial cells. Concurrently, concept of using plants to produce high-value pharmaceuticals such as vaccines, antibodies, and dietary proteins have received worldwide attention. Newer technologies for plant transformation such as plastid engineering, agroinfiltration, magnifection, and deconstructed viral vectors have been used to enhance the protein production in plants along with the inherent advantage of speed, scale, and cost of production in plant systems. Production of therapeutic proteins in plants has now a more pragmatic approach when several plant-produced vaccines and antibodies successfully completed Phase I clinical trials in humans and were further scheduled for regulatory approvals to manufacture clinical grade products on a large scale which are safe, efficacious, and meet the quality standards. The main thrust of this review is to summarize the data accumulated over the last two decades and recent development and achievements of the plant derived therapeutics. It also attempts to discuss different strategies employed to increase the production so as to make plants more competitive with the established production systems in this industry.
Collapse
Affiliation(s)
- Siddhesh B. Ghag
- School of Biological Sciences, UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai campus, Kalina, Santacruz, Mumbai, 400098 India
| | - Vinayak S. Adki
- V. G. Shivdare College of Arts, Commerce and Science, Solapur, Maharashtra 413004 India
| | - Thumballi R. Ganapathi
- Plant Cell Culture Technology Section, Nuclear Agriculture & Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085 India
| | - Vishwas A. Bapat
- Department of Biotechnology, Shivaji University, Vidyanagar, Kolhapur, Maharashtra 416004 India
| |
Collapse
|
9
|
Expression Kinetics of Regulatory Genes Involved in the Vesicle Trafficking Processes Operating in Tomato Flower Abscission Zone Cells during Pedicel Abscission. Life (Basel) 2020; 10:life10110273. [PMID: 33172002 PMCID: PMC7694662 DOI: 10.3390/life10110273] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 10/31/2020] [Accepted: 11/03/2020] [Indexed: 01/19/2023] Open
Abstract
The abscission process occurs in a specific abscission zone (AZ) as a consequence of the middle lamella dissolution, cell wall degradation, and formation of a defense layer. The proteins and metabolites related to these processes are secreted by vesicle trafficking through the plasma membrane to the cell wall and middle lamella of the separating cells in the AZ. We investigated this process, since the regulation of vesicle trafficking in abscission systems is poorly understood. The data obtained describe, for the first time, the kinetics of the upregulated expression of genes encoding the components involved in vesicle trafficking, occurring specifically in the tomato (Solanum lycopersicum) flower AZ (FAZ) during pedicel abscission induced by flower removal. The genes encoding vesicle trafficking components included soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs), SNARE regulators, and small GTPases. Our results clearly show how the processes of protein secretion by vesicle trafficking are regulated, programmed, and orchestrated at the level of gene expression in the FAZ. The data provide evidence for target proteins, which can be further used for affinity purification of plant vesicles in their natural state. Such analyses and dissection of the complex vesicle trafficking networks are essential for further elucidating the mechanism of organ abscission.
Collapse
|
10
|
Moidu NA, A Rahman NS, Syafruddin SE, Low TY, Mohtar MA. Secretion of pro-oncogenic AGR2 protein in cancer. Heliyon 2020; 6:e05000. [PMID: 33005802 PMCID: PMC7519367 DOI: 10.1016/j.heliyon.2020.e05000] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 08/25/2020] [Accepted: 09/17/2020] [Indexed: 12/12/2022] Open
Abstract
Anterior gradient-2 (AGR2) protein mediates the formation, breakage and isomerization of disulphide bonds during protein maturation in the endoplasmic reticulum (ER) and contributes to the homoeostasis of the secretory pathway. AGR2 promotes tumour development and metastasis and its elevated expression is almost completely restricted to malignant tumours. Interestingly, this supposedly ER-resident protein can be localised to other compartments of cancer cells and can also be secreted into the extracellular milieu. There are emerging evidences that describe the gain-of-function activities of the extracellular AGR2, particularly in cancer development. Here, we reviewed studies detailing the expression, pathological and physiological roles associated with AGR2 and compared the duality of localization, intracellular and extracellular, with special emphasis on the later. We also discussed the possible mechanisms of AGR2 secretion as well as deliberating the functional impacts of AGR2 in cancer settings. Last, we deliberate the current therapeutic strategies and posit the potential use AGR2, as a prognosis and diagnosis marker in cancer.
Collapse
Affiliation(s)
- Nurshahirah Ashikin Moidu
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Cheras 56000 Kuala Lumpur, Malaysia
| | - Nisa Syakila A Rahman
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Cheras 56000 Kuala Lumpur, Malaysia
| | - Saiful Effendi Syafruddin
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Cheras 56000 Kuala Lumpur, Malaysia
| | - Teck Yew Low
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Cheras 56000 Kuala Lumpur, Malaysia
| | - M Aiman Mohtar
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Cheras 56000 Kuala Lumpur, Malaysia
| |
Collapse
|
11
|
Zhou B, Benbow HR, Brennan CJ, Arunachalam C, Karki SJ, Mullins E, Feechan A, Burke JI, Doohan FM. Wheat Encodes Small, Secreted Proteins That Contribute to Resistance to Septoria Tritici Blotch. Front Genet 2020; 11:469. [PMID: 32477410 PMCID: PMC7235427 DOI: 10.3389/fgene.2020.00469] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 04/16/2020] [Indexed: 11/23/2022] Open
Abstract
During plant-pathogen interactions, pathogens secrete many rapidly evolving, small secreted proteins (SSPs) that can modify plant defense and permit pathogens to colonize plant tissue. The fungal pathogen Zymoseptoria tritici is the causal agent of Septoria tritici blotch (STB), one of the most important foliar diseases of wheat, globally. Z. tritici is a strictly apoplastic pathogen that can secrete numerous proteins into the apoplast of wheat leaves to promote infection. We sought to determine if, during STB infection, wheat also secretes small proteins into the apoplast to mediate the recognition of pathogen proteins and/or induce defense responses. To explore this, we developed an SSP-discovery pipeline to identify small, secreted proteins from wheat genomic data. Using this pipeline, we identified 6,998 SSPs, representing 2.3% of all proteins encoded by the wheat genome. We then mined a microarray dataset, detailing a resistant and susceptible host response to STB, and identified 141 Z. tritici- responsive SSPs, representing 4.7% of all proteins encoded by Z. tritici - responsive genes. We demonstrate that a subset of these SSPs have a functional signal peptide and can interact with Z. tritici SSPs. Transiently silencing two of these wheat SSPs using virus-induced gene silencing (VIGS) shows an increase in susceptibility to STB, confirming their role in defense against Z. tritici.
Collapse
Affiliation(s)
- Binbin Zhou
- UCD School of Biology and Environmental Science, UCD Earth Institute, UCD O’Brien Centre for Science (East), University College Dublin, Dublin, Ireland
| | - Harriet R. Benbow
- UCD School of Biology and Environmental Science, UCD Earth Institute, UCD O’Brien Centre for Science (East), University College Dublin, Dublin, Ireland
| | - Ciarán J. Brennan
- UCD School of Biology and Environmental Science, UCD Earth Institute, UCD O’Brien Centre for Science (East), University College Dublin, Dublin, Ireland
| | - Chanemougasoundharam Arunachalam
- UCD School of Biology and Environmental Science, UCD Earth Institute, UCD O’Brien Centre for Science (East), University College Dublin, Dublin, Ireland
| | - Sujit J. Karki
- UCD School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - Ewen Mullins
- Department of Crop Science, Teagasc, Carlow, Ireland
| | - Angela Feechan
- UCD School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - James I. Burke
- UCD School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - Fiona M. Doohan
- UCD School of Biology and Environmental Science, UCD Earth Institute, UCD O’Brien Centre for Science (East), University College Dublin, Dublin, Ireland
| |
Collapse
|
12
|
Han Y, Watanabe S, Shimada H, Sakamoto A. Dynamics of the leaf endoplasmic reticulum modulate β-glucosidase-mediated stress-activated ABA production from its glucosyl ester. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:2058-2071. [PMID: 31761937 PMCID: PMC7094080 DOI: 10.1093/jxb/erz528] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 11/21/2019] [Indexed: 05/18/2023]
Abstract
The phytohormone abscisic acid (ABA) is produced via a multistep de novo biosynthesis pathway or via single-step hydrolysis of inactive ABA-glucose ester (ABA-GE). The hydrolysis reaction is catalyzed by β-glucosidase (BG, or BGLU) isoforms localized to various organelles, where they become activated upon stress, but the mechanisms underlying this organelle-specific activation remain unclear. We investigated the relationship between the subcellular distribution and stress-induced activation of BGLU18 (BG1), an endoplasmic reticulum enzyme critical for abiotic stress responses, in Arabidopsis thaliana leaves. High BGLU18 levels were present in leaf petioles, primarily in endoplasmic reticulum bodies. These Brassicaceae-specific endoplasmic reticulum-derived organelles responded dynamically to abiotic stress, particularly drought-induced dehydration, by changing in number and size. Under stress, BGLU18 distribution shifted toward microsomes, which was accompanied by increasing BGLU18-mediated ABA-GE hydrolytic activity and ABA levels in leaf petioles. Under non-stress conditions, impaired endoplasmic reticulum body formation caused a microsomal shift of BGLU18 and increased its enzyme activity; however, ABA levels increased only under stress, probably because ABA-GE is supplied to the endoplasmic reticulum only under these conditions. Loss of BGLU18 delayed dehydration-induced ABA accumulation, suggesting that ABA-GE hydrolysis precedes the biosynthesis. We propose that dynamics of the endoplasmic reticulum modulate ABA homeostasis and abiotic stress responses by activating BGLU18-mediated ABA-GE hydrolysis.
Collapse
Affiliation(s)
- Yiping Han
- Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Japan
| | - Shunsuke Watanabe
- RIKEN Center for Sustainable Resource Science, Tsurumi-ku, Yokohama, Japan
| | - Hiroshi Shimada
- Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Japan
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | - Atsushi Sakamoto
- Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Japan
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
- Correspondence:
| |
Collapse
|
13
|
Yamada K, Goto-Yamada S, Nakazaki A, Kunieda T, Kuwata K, Nagano AJ, Nishimura M, Hara-Nishimura I. Endoplasmic reticulum-derived bodies enable a single-cell chemical defense in Brassicaceae plants. Commun Biol 2020; 3:21. [PMID: 31937912 PMCID: PMC6959254 DOI: 10.1038/s42003-019-0739-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 12/10/2019] [Indexed: 01/23/2023] Open
Abstract
Brassicaceae plants have a dual-cell type of chemical defense against herbivory. Here, we show a novel single-cell defense involving endoplasmic reticulum (ER)-derived organelles (ER bodies) and the vacuoles. We identify various glucosinolates as endogenous substrates of the ER-body β-glucosidases BGLU23 and BGLU21. Woodlice strongly prefer to eat seedlings of bglu23 bglu21 or a glucosinolate-deficient mutant over wild-type seedlings, confirming that the β-glucosidases have a role in chemical defense: production of toxic compounds upon organellar damage. Deficiency of the Brassicaceae-specific protein NAI2 prevents ER-body formation, which results in a loss of BGLU23 and a loss of resistance to woodlice. Hence, NAI2 that interacts with BGLU23 is essential for sequestering BGLU23 in ER bodies and preventing its degradation. Artificial expression of NAI2 and BGLU23 in non-Brassicaceae plants results in the formation of ER bodies, indicating that acquisition of NAI2 by Brassicaceae plants is a key step in developing their single-cell defense system. Kenji Yamada et al. describe a single-cell chemical defense strategy in Brassicaceae plants that requires formation of endoplasmic reticulum-derived organelles for the accumulation of β-glucosidases. They find that seedlings lacking a specific β-glucosidase lose their resistance to predation by woodlice.
Collapse
Affiliation(s)
- Kenji Yamada
- Malopolska Centre of Biotechnology, Jagiellonian University, 30-387, Krakow, Poland. .,Department of Cell Biology, National Institute for Basic Biology, Okazaki, 444-8585, Japan. .,Graduate School of Science, Kyoto University, Kyoto, 606-8502, Japan.
| | - Shino Goto-Yamada
- Malopolska Centre of Biotechnology, Jagiellonian University, 30-387, Krakow, Poland.,Department of Cell Biology, National Institute for Basic Biology, Okazaki, 444-8585, Japan.,Graduate School of Science, Kyoto University, Kyoto, 606-8502, Japan
| | - Akiko Nakazaki
- Graduate School of Science, Kyoto University, Kyoto, 606-8502, Japan
| | - Tadashi Kunieda
- Graduate School of Science, Kyoto University, Kyoto, 606-8502, Japan.,Faculty of Science and Engineering, Konan University, Kobe, 658-8501, Japan.,Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, 630-0192, Japan
| | - Keiko Kuwata
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, 464-8601, Japan
| | - Atsushi J Nagano
- Faculty of Agriculture, Ryukoku University, Otsu, Shiga, 520-2194, Japan
| | - Mikio Nishimura
- Department of Cell Biology, National Institute for Basic Biology, Okazaki, 444-8585, Japan. .,Faculty of Science and Engineering, Konan University, Kobe, 658-8501, Japan.
| | - Ikuko Hara-Nishimura
- Graduate School of Science, Kyoto University, Kyoto, 606-8502, Japan. .,Faculty of Science and Engineering, Konan University, Kobe, 658-8501, Japan.
| |
Collapse
|
14
|
Abstract
Birch pollen allergy is a common cause of spring pollinosis in China. However, there is little research on birch pollen allergen in China and only the major allergen (Bet v 1) has been fully characterized. Chinese birch pollen-induced airway inflammation models in BALB/c mice were developed and administered subcutaneous immunotherapy (SCIT). BALB/c mice were sensitized subcutaneously on days 1, 8, and 15 with 25 μg/μL birch pollen extract. On days 24-26, the mice were challenged with 0.1% birch pollen aerosol. To investigate the efficacy of SCIT, mice were subcutaneously injected 0.3 mg birch pollen extract (BPE) with or without being adsorbed to alum. Airway hyper-responsiveness (AHR) to methacholine and immunological parameters was detected. Western blot analysis was applied with mice serum and mass spectrometry was used to identify the IgE-binding bands in birch pollen. Compared with PBS group, birch pollen sensitization and challenge BALB/c mice developed AHR, and IL4, IL5, IL6, IL10, and IL17 were significantly higher. Mice sensitized by birch pollen showed increased plasma levels of anti-BPE IgE, IgG1, and IgG2a. Histologic analyses showed that mice had peribranchial infiltration of inflammatory cells and mucosal hyperplasia. After SCIT, allergic symptoms effectively alleviated and kept for a long time. Interestingly, mice serum pool showed strong reactions to 70-kDa proteins. Mass spectrometry data suggests that the 70-kDa protein belongs to the HSP 70 family. SCIT inhibited the inflammatory response in the long term and a 70-kDa protein potentially belonging to the HSP 70 family plays a significant role in Chinese birch pollen-induced mice model.
Collapse
Affiliation(s)
- Zhijuan Xie
- Department of Allergy, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuai Fu Yuan, Wang Fu Jing Street, Beijing, 100730, China
| | - Jia Yin
- Department of Allergy, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuai Fu Yuan, Wang Fu Jing Street, Beijing, 100730, China.
| |
Collapse
|
15
|
Han B, Wang H, Zhang J, Tian J. FNDC3B is associated with ER stress and poor prognosis in cervical cancer. Oncol Lett 2019; 19:406-414. [PMID: 31897153 PMCID: PMC6924122 DOI: 10.3892/ol.2019.11098] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 09/20/2019] [Indexed: 01/03/2023] Open
Abstract
Currently, the occurrence and mortality rate of cervical cancer is high, particularly in low-to-middle-income countries. Therefore, the development of novel diagnostic and treatment strategies for cervical cancer is urgently required. The aim of the present study was to assess the prognostic significance of fibronectin type III domain containing 3B (FNDC3B) expression in patients with cervical cancer and to determine the underlying mechanism of FNDC3 in tumor development. Analysis of the ONCOMINE database revealed that FNDC3B was significantly upregulated in cervical cancer tissue compared with normal tissue. Additionally, FNDC3B expression data and the clinical characteristics of patients with cervical cancer were obtained from the cBioPortal database. Correlations between FNDC3B expression and overall survival were subsequently investigated. The results revealed that increased FNDC3B expression was significantly correlated with a lower overall survival in patients with cervical cancer. A co-expression network was subsequently constructed to elucidate the function of FNDC3B in cervical cancer. Co-expression genes for FNDC3B were obtained from the cBioPortal database and were subjected to Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses. The results demonstrated that the genes were enriched in pathways associated with migration, invasion, endoplasmic reticulum (ER) stress and the unfolded protein response (UPR). Furthermore, immunofluorescence results obtained from the Human Protein Atlas revealed that the FNDC3B protein was localized to the ER. The results revealed that upregulated FNDC3B expression may be a biomarker for poor prognosis for patients with cervical cancer. Additionally, the results revealed that FNDC3B may serve an oncogenic role in cancer development via ER stress, UPR, cell migration and invasion. However, further studies are required to determine the exact molecular mechanism of FNDC3B in the development of cervical cancer and to assess its potential as a novel therapeutic target for the treatment of this disease.
Collapse
Affiliation(s)
- Bing Han
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, School of Pharmacy, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai, Shandong 264005, P.R. China
| | - Hongbo Wang
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, School of Pharmacy, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai, Shandong 264005, P.R. China
| | - Jianzhao Zhang
- College of Life Sciences, Yantai University, Yantai, Shandong 264005, P.R. China
| | - Jingwei Tian
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, School of Pharmacy, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai, Shandong 264005, P.R. China
| |
Collapse
|
16
|
Abstract
All proteins end with a carboxyl terminus that has unique biophysical properties and is often disordered. Although there are examples of important C-termini functions, a more global role for the C-terminus is not yet established. In this review, we summarize research on C-termini, a unique region in proteins that cells exploit. Alternative splicing and proteolysis increase the diversity of proteins and peptides in cells with unique C-termini. The C-termini of proteins contain minimotifs, short peptides with an encoded function generally characterized as binding, posttranslational modifications, and trafficking. Many of these activities are specific to minimotifs on the C-terminus. Approximately 13% of C-termini in the human proteome have a known minimotif, and the majority, if not all of the remaining termini have conserved motifs inferring a function that remains to be discovered. C-termini, their predictions, and their functions are collated in the C-terminome, Proteus, and Terminus Oriented Protein Function INferred Database (TopFIND) database/web systems. Many C-termini are well conserved, and some have a known role in health and disease. We envision that this summary of C-termini will guide future investigation of their biochemical and physiological significance.
Collapse
Affiliation(s)
- Surbhi Sharma
- a Nevada Institute of Personalized Medicine and School of Life Sciences , University of Nevada , Las Vegas , NV , USA
| | - Martin R Schiller
- a Nevada Institute of Personalized Medicine and School of Life Sciences , University of Nevada , Las Vegas , NV , USA
| |
Collapse
|
17
|
Wang Z, Li X, Liu N, Peng Q, Wang Y, Fan B, Zhu C, Chen Z. A Family of NAI2-Interacting Proteins in the Biogenesis of the ER Body and Related Structures. PLANT PHYSIOLOGY 2019; 180:212-227. [PMID: 30770459 PMCID: PMC6501091 DOI: 10.1104/pp.18.01500] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 02/05/2019] [Indexed: 05/16/2023]
Abstract
Plants produce different types of endoplasmic reticulum (ER)-derived vesicles that accumulate and transport proteins, lipids, and metabolites. In the Brassicales, a distinct ER-derived structure called the ER body is found throughout the epidermis of cotyledons, hypocotyls, and roots. NAI2 is a key factor for ER body formation in Arabidopsis (Arabidopsis thaliana). Homologs of NAI2 are found only in the Brassicales and therefore may have evolved specifically to enable ER body formation. Here, we report that three related Arabidopsis NAI2-interacting proteins (NAIP1, NAIP2, and NAIP3) play a critical role in the biogenesis of ER bodies and related structures. Analysis using GFP fusions revealed that all three NAIPs are components of the ER bodies found in the cotyledons, hypocotyls, and roots. Genetic analysis with naip mutants indicates that they have a critical and redundant role in ER body formation. NAIP2 and NAIP3 are also components of other vesicular structures likely derived from the ER that are formed independent of NAI2 and are present not only in the cotyledons, hypocotyls, and roots, but also in the rosettes. Thus, while NAIP1 is a specialized ER body component, NAIP2 and NAIP3 are components of different types of ER-derived structures. Analysis of chimeric NAIP proteins revealed that their N-terminal domains play a major role in the functional specialization between NAIP1 and NAIP3. Unlike NAI2, NAIPs have homologs in all plants; therefore, NAIP-containing ER structures, from which the ER bodies in the Brassicales may have evolved, are likely to be present widely in plants.
Collapse
Affiliation(s)
- Zhe Wang
- Department of Botany and Plant Pathology and Center for Plant Biology, 915 W. State Street, Purdue University, West Lafayette, Indiana 47907-2054
| | - Xifeng Li
- Department of Botany and Plant Pathology and Center for Plant Biology, 915 W. State Street, Purdue University, West Lafayette, Indiana 47907-2054
- College of Life Science, China Jiliang University, Hangzhou 310018, China
| | - Nana Liu
- Department of Botany and Plant Pathology and Center for Plant Biology, 915 W. State Street, Purdue University, West Lafayette, Indiana 47907-2054
- College of Science, China Agricultural University, Beijing 100193, China
| | - Qi Peng
- Department of Botany and Plant Pathology and Center for Plant Biology, 915 W. State Street, Purdue University, West Lafayette, Indiana 47907-2054
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Yuexia Wang
- Department of Botany and Plant Pathology and Center for Plant Biology, 915 W. State Street, Purdue University, West Lafayette, Indiana 47907-2054
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
| | - Baofang Fan
- Department of Botany and Plant Pathology and Center for Plant Biology, 915 W. State Street, Purdue University, West Lafayette, Indiana 47907-2054
| | - Cheng Zhu
- College of Life Science, China Jiliang University, Hangzhou 310018, China
| | - Zhixiang Chen
- Department of Botany and Plant Pathology and Center for Plant Biology, 915 W. State Street, Purdue University, West Lafayette, Indiana 47907-2054
- College of Life Science, China Jiliang University, Hangzhou 310018, China
| |
Collapse
|
18
|
Calderan-Rodrigues MJ, Guimarães Fonseca J, de Moraes FE, Vaz Setem L, Carmanhanis Begossi A, Labate CA. Plant Cell Wall Proteomics: A Focus on Monocot Species, Brachypodium distachyon, Saccharum spp. and Oryza sativa. Int J Mol Sci 2019; 20:E1975. [PMID: 31018495 PMCID: PMC6514655 DOI: 10.3390/ijms20081975] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 03/06/2019] [Accepted: 03/07/2019] [Indexed: 12/13/2022] Open
Abstract
Plant cell walls mostly comprise polysaccharides and proteins. The composition of monocots' primary cell walls differs from that of dicots walls with respect to the type of hemicelluloses, the reduction of pectin abundance and the presence of aromatic molecules. Cell wall proteins (CWPs) differ among plant species, and their distribution within functional classes varies according to cell types, organs, developmental stages and/or environmental conditions. In this review, we go deeper into the findings of cell wall proteomics in monocot species and make a comparative analysis of the CWPs identified, considering their predicted functions, the organs analyzed, the plant developmental stage and their possible use as targets for biofuel production. Arabidopsis thaliana CWPs were considered as a reference to allow comparisons among different monocots, i.e., Brachypodium distachyon, Saccharum spp. and Oryza sativa. Altogether, 1159 CWPs have been acknowledged, and specificities and similarities are discussed. In particular, a search for A. thaliana homologs of CWPs identified so far in monocots allows the definition of monocot CWPs characteristics. Finally, the analysis of monocot CWPs appears to be a powerful tool for identifying candidate proteins of interest for tailoring cell walls to increase biomass yield of transformation for second-generation biofuels production.
Collapse
Affiliation(s)
- Maria Juliana Calderan-Rodrigues
- Department of Genetics, Max Feffer Laboratory of Plant Genetics, "Luiz de Queiroz" College of Agriculture, University of São Paulo, CP 83, 13400-970 Piracicaba, SP, Brazil.
| | - Juliana Guimarães Fonseca
- Department of Genetics, Max Feffer Laboratory of Plant Genetics, "Luiz de Queiroz" College of Agriculture, University of São Paulo, CP 83, 13400-970 Piracicaba, SP, Brazil.
| | - Fabrício Edgar de Moraes
- Department of Genetics, Max Feffer Laboratory of Plant Genetics, "Luiz de Queiroz" College of Agriculture, University of São Paulo, CP 83, 13400-970 Piracicaba, SP, Brazil.
| | - Laís Vaz Setem
- Department of Genetics, Max Feffer Laboratory of Plant Genetics, "Luiz de Queiroz" College of Agriculture, University of São Paulo, CP 83, 13400-970 Piracicaba, SP, Brazil.
| | - Amanda Carmanhanis Begossi
- Department of Genetics, Max Feffer Laboratory of Plant Genetics, "Luiz de Queiroz" College of Agriculture, University of São Paulo, CP 83, 13400-970 Piracicaba, SP, Brazil.
| | - Carlos Alberto Labate
- Department of Genetics, Max Feffer Laboratory of Plant Genetics, "Luiz de Queiroz" College of Agriculture, University of São Paulo, CP 83, 13400-970 Piracicaba, SP, Brazil.
| |
Collapse
|
19
|
Adnan M, Islam W, Zhang J, Zheng W, Lu GD. Diverse Role of SNARE Protein Sec22 in Vesicle Trafficking, Membrane Fusion, and Autophagy. Cells 2019; 8:E337. [PMID: 30974782 PMCID: PMC6523435 DOI: 10.3390/cells8040337] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 04/02/2019] [Accepted: 04/05/2019] [Indexed: 01/09/2023] Open
Abstract
Protein synthesis begins at free ribosomes or ribosomes attached with the endoplasmic reticulum (ER). Newly synthesized proteins are transported to the plasma membrane for secretion through conventional or unconventional pathways. In conventional protein secretion, proteins are transported from the ER lumen to Golgi lumen and through various other compartments to be secreted at the plasma membrane, while unconventional protein secretion bypasses the Golgi apparatus. Soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNARE) proteins are involved in cargo vesicle trafficking and membrane fusion. The ER localized vesicle associated SNARE (v-SNARE) protein Sec22 plays a major role during anterograde and retrograde transport by promoting efficient membrane fusion and assisting in the assembly of higher order complexes by homodimer formation. Sec22 is not only confined to ER-Golgi intermediate compartments (ERGIC) but also facilitates formation of contact sites between ER and plasma membranes. Sec22 mutation is responsible for the development of atherosclerosis and symptoms in the brain in Alzheimer's disease and aging in humans. In the fruit fly Drosophila melanogaster, Sec22 is essential for photoreceptor morphogenesis, the wingless signaling pathway, and normal ER, Golgi, and endosome morphology. In the plant Arabidopsis thaliana, it is involved in development, and in the nematode Caenorhabditis elegans, it is in involved in the RNA interference (RNAi) pathway. In filamentous fungi, it affects cell wall integrity, growth, reproduction, pathogenicity, regulation of reactive oxygen species (ROS), expression of extracellular enzymes, and transcriptional regulation of many development related genes. This review provides a detailed account of Sec22 function, summarizes its domain structure, discusses its genetic redundancy with Ykt6, discusses what is known about its localization to discrete membranes, its contributions in conventional and unconventional autophagy, and a variety of other roles across different cellular systems ranging from higher to lower eukaryotes, and highlights some of the surprises that have originated from research on Sec22.
Collapse
Affiliation(s)
- Muhammad Adnan
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, and Key Laboratory of Bio-pesticides and Chemical Biology Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Waqar Islam
- College of Geographical Sciences, Fujian Normal University, Fuzhou 350007, Fujian, China.
| | - Jing Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, and Key Laboratory of Bio-pesticides and Chemical Biology Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Wenhui Zheng
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, and Key Laboratory of Bio-pesticides and Chemical Biology Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Guo-Dong Lu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, and Key Laboratory of Bio-pesticides and Chemical Biology Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
20
|
Yin Y, Garcia MR, Novak AJ, Saunders AM, Ank RS, Nam AS, Fisher LW. Surf4 (Erv29p) binds amino-terminal tripeptide motifs of soluble cargo proteins with different affinities, enabling prioritization of their exit from the endoplasmic reticulum. PLoS Biol 2018; 16:e2005140. [PMID: 30086131 PMCID: PMC6097701 DOI: 10.1371/journal.pbio.2005140] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 08/17/2018] [Accepted: 07/17/2018] [Indexed: 01/16/2023] Open
Abstract
Some secreted proteins that assemble into large complexes, such as extracellular matrices or hormones and enzymes in storage granules, must be kept at subaggregation concentrations during intracellular trafficking. We show surfeit locus protein 4 (Surf4) is the cargo receptor that establishes different steady-state concentrations for a variety of soluble cargo proteins within the endoplasmic reticulum (ER) through interaction with the amino-terminal tripeptides exposed after removal of leader sequences. We call this motif the ER-Exit by Soluble Cargo using Amino-terminal Peptide-Encoding motif (ER-ESCAPE motif). Proteins that most readily aggregate in the ER lumen (e.g., dentin sialophosphoprotein [DSPP] and amelogenin, X-linked [AMELX]) have strong ER-ESCAPE motifs to inhibit aggregate formation, while less susceptible cargo exhibits weaker motifs. Specific changes in a single amino acid of the tripeptide result in aggregate formation and failure to efficiently traffic cargo out of the ER. A logical subset of 8,000 possible tripeptides starting a model soluble cargo protein (growth hormone) established a continuum of steady-state ER concentrations ranging from low (i.e., high affinity for receptor) to the highest concentrations associated with bulk flow-limited trafficking observed for nonbinding motifs. Human cells lacking Surf4 no longer preferentially trafficked cargo expressing strong ER-ESCAPE motifs. Reexpression of Surf4 or expression of yeast's ortholog, ER-derived vesicles protein 29 (Erv29p), rescued enhanced ER trafficking in Surf4-null cells. Hence our work describes a new way of preferentially exporting soluble cargo out of the ER that maintains proteins below the concentrations at which they form damaging aggregates.
Collapse
Affiliation(s)
- Ying Yin
- Matrix Biochemistry Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Mekka R. Garcia
- Matrix Biochemistry Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Alexander J. Novak
- Matrix Biochemistry Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Allison M. Saunders
- Matrix Biochemistry Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Raira S. Ank
- Matrix Biochemistry Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Anna S. Nam
- Matrix Biochemistry Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Larry W. Fisher
- Matrix Biochemistry Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
21
|
Salicylic acid-independent role of NPR1 is required for protection from proteotoxic stress in the plant endoplasmic reticulum. Proc Natl Acad Sci U S A 2018; 115:E5203-E5212. [PMID: 29760094 DOI: 10.1073/pnas.1802254115] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The unfolded protein response (UPR) is an ancient signaling pathway designed to protect cells from the accumulation of unfolded and misfolded proteins in the endoplasmic reticulum (ER). Because misregulation of the UPR is potentially lethal, a stringent surveillance signaling system must be in place to modulate the UPR. The major signaling arms of the plant UPR have been discovered and rely on the transcriptional activity of the transcription factors bZIP60 and bZIP28 and on the kinase and ribonuclease activity of IRE1, which splices mRNA to activate bZIP60. Both bZIP28 and bZIP60 modulate UPR gene expression to overcome ER stress. In this study, we demonstrate at a genetic level that the transcriptional role of bZIP28 and bZIP60 in ER-stress responses is antagonized by nonexpressor of PR1 genes 1 (NPR1), a critical redox-regulated master regulator of salicylic acid (SA)-dependent responses to pathogens, independently of its role in SA defense. We also establish that the function of NPR1 in the UPR is concomitant with ER stress-induced reduction of the cytosol and translocation of NPR1 to the nucleus where it interacts with bZIP28 and bZIP60. Our results support a cellular role for NPR1 as well as a model for plant UPR regulation whereby SA-independent ER stress-induced redox activation of NPR1 suppresses the transcriptional role of bZIP28 and bZIP60 in the UPR.
Collapse
|
22
|
Aboulela M, Nakagawa T, Oshima A, Nishimura K, Tanaka Y. The Arabidopsis COPII components, AtSEC23A and AtSEC23D, are essential for pollen wall development and exine patterning. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:1615-1633. [PMID: 29390074 PMCID: PMC5889017 DOI: 10.1093/jxb/ery015] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 01/16/2018] [Indexed: 05/04/2023]
Abstract
The specialized multilayered pollen wall plays multiple roles to ensure normal microspore development. The major components of the pollen wall (e.g. sporopollenin and lipidic precursors) are provided from the tapetum. Material export from the endoplasmic reticulum (ER) is mediated by coat protein complex II (COPII) vesicles. The Arabidopsis thaliana genome encodes seven homologs of SEC23, a COPII component. However, the functional importance of this diversity remains elusive. Here, we analyzed knockout and knockdown lines for AtSEC23A and AtSEC23D, two of the A. thaliana SEC23 homologs, respectively. Single atsec23a and atsec23d mutant plants, despite normal fertility, showed an impaired exine pattern. Double atsec23ad mutant plants were semi-sterile and exhibited developmental defects in pollen and tapetal cells. Pollen grains of atsec23ad had defective exine and intine, and showed signs of cell degeneration. Moreover, the development of tapetal cells was altered, with structural abnormalities in organelles. AtSEC23A and AtSEC23D exhibited the characteristic localization pattern of COPII proteins and were highly expressed in the tapetum. Our work suggests that AtSEC23A and AtSEC23D may organize pollen wall development and exine patterning by regulating ER export of lipids and proteins necessary for pollen wall formation. Also, our results shed light on the functional heterogeneity of SEC23 homologs.
Collapse
Affiliation(s)
- Mostafa Aboulela
- Department of Molecular and Functional Genomics, Interdisciplinary Center for Science Research, Shimane University, Matsue, Japan
- Bioresources Science, The United Graduate School of Agricultural Sciences, Tottori University, Tottori, Japan
- Department of Botany and Microbiology, Faculty of Science, Assiut University, Assiut, Egypt
| | - Tsuyoshi Nakagawa
- Department of Molecular and Functional Genomics, Interdisciplinary Center for Science Research, Shimane University, Matsue, Japan
- Bioresources Science, The United Graduate School of Agricultural Sciences, Tottori University, Tottori, Japan
| | - Akinobu Oshima
- Department of Biological Science, Faculty of Life and Environmental Science, Shimane University, Matsue, Japan
| | - Kohji Nishimura
- Department of Molecular and Functional Genomics, Interdisciplinary Center for Science Research, Shimane University, Matsue, Japan
- Bioresources Science, The United Graduate School of Agricultural Sciences, Tottori University, Tottori, Japan
| | - Yuji Tanaka
- Department of Molecular and Functional Genomics, Interdisciplinary Center for Science Research, Shimane University, Matsue, Japan
- Department of Applied Bioscience and Biotechnology, Faculty of Life and Environmental Science, Shimane University, Matsue, Japan
| |
Collapse
|
23
|
Li DD, Xie B, Wu XJ, Li JJ, Ding Y, Wen XZ, Zhang X, Zhu SG, Liu W, Zhang XS, Peng RQ. Late-stage inhibition of autophagy enhances calreticulin surface exposure. Oncotarget 2018; 7:80842-80854. [PMID: 27825129 PMCID: PMC5348359 DOI: 10.18632/oncotarget.13099] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 10/13/2016] [Indexed: 12/22/2022] Open
Abstract
Calreticulin (CRT) exposure on the cell surface is essential for inducing immunogenic cell death by chemotherapy. Recent studies have shown conflicting effects of chemotherapy-induced autophagy on CRT exposure in cancer cells. Our data revealed that surface-exposed CRT (Ecto-CRT) emission was attenuated by inhibition of autophagy at early stages; however, inhibition of autophagy at late stages resulted in increased Ecto-CRT. Furthermore, neither autophagy activation nor endoplasmic reticulum (ER) stress induction alone was sufficient for CRT surface exposure. Moreover, chemotherapeutic agents that only activated autophagy without inducing ER stress could not increase Ecto-CRT; therefore, combined use of an autophagy activator and ER stress inducer could effectively promote CRT translocation to the plasma membrane. Together, our results highlight the potential of the combined use of ER stress inducers and autophagy late-stage inhibitors to reestablish and strengthen both the CRT exposure and immunogenicity of chemotherapeutic agents induced death cells.
Collapse
Affiliation(s)
- Dan-Dan Li
- Biotherapy Center, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Bo Xie
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| | - Xiao-Jun Wu
- Department of Colorectal Surgery, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Jing-Jing Li
- Biotherapy Center, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Ya Ding
- Biotherapy Center, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Xi-Zhi Wen
- Biotherapy Center, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Xing Zhang
- Biotherapy Center, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Shu-Guang Zhu
- Department of Hepatic Surgery, Liver Transplant Center, Third Affiliated Hospital of Sun Yat-Sen University, TianHe District, Guangzhou 510630, China.,Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Wei Liu
- Department of Hepatic Surgery, Liver Transplant Center, Third Affiliated Hospital of Sun Yat-Sen University, TianHe District, Guangzhou 510630, China.,Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Xiao-Shi Zhang
- Biotherapy Center, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Rui-Qing Peng
- Biotherapy Center, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| |
Collapse
|
24
|
Kriechbaumer V, Maneta-Peyret L, Fouillen L, Botchway SW, Upson J, Hughes L, Richardson J, Kittelmann M, Moreau P, Hawes C. The odd one out: Arabidopsis reticulon 20 does not bend ER membranes but has a role in lipid regulation. Sci Rep 2018; 8:2310. [PMID: 29396477 PMCID: PMC5797236 DOI: 10.1038/s41598-018-20840-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 01/22/2018] [Indexed: 12/19/2022] Open
Abstract
Reticulons are integral ER membrane proteins characterised by a reticulon homology domain comprising four transmembrane domains which results in the proteins sitting in the membrane in a W-topology. Here we report on a novel subgroup of reticulons with an extended N-terminal domain and in particular on arabidopsis reticulon 20. Using high resolution confocal microscopy we show that reticulon 20 is located in a unique punctate pattern on the ER membrane. Its closest homologue reticulon 19 labels the whole ER. Other than demonstrated for the other members of the reticulon protein family RTN20 and 19 do not display ER constriction phenotypes on over expression. We show that mutants in RTN20 or RTN19, respectively, display a significant change in sterol composition in roots indicating a role in lipid regulation. A third homologue in this family -3BETAHSD/D1- is unexpectedly localised to ER exit sites resulting in an intriguing location difference for the three proteins.
Collapse
Affiliation(s)
- Verena Kriechbaumer
- Plant Cell Biology, Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, United Kingdom.
| | - Lilly Maneta-Peyret
- Laboratoire Biogenèse Membranaire, UMR 5200 CNRS-Université de Bordeaux, Villenave d'Ornon, France
| | - Laetitia Fouillen
- Laboratoire Biogenèse Membranaire, UMR 5200 CNRS-Université de Bordeaux, Villenave d'Ornon, France.,MetaboHub-Metabolome Facility of Bordeaux, Functional Genomics Center, Bordeaux, France
| | - Stanley W Botchway
- Central Laser Facility, Science and Technology Facilities Council (STFC) Rutherford Appleton Laboratory, Research Complex at Harwell, Didcot, OX11 0QX, United Kingdom
| | - Jessica Upson
- Plant Cell Biology, Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, United Kingdom.,J.U.: The Sainsbury Laboratory, Norwich, United Kingdom
| | - Louise Hughes
- Plant Cell Biology, Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, United Kingdom
| | - Jake Richardson
- Plant Cell Biology, Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, United Kingdom
| | - Maike Kittelmann
- Plant Cell Biology, Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, United Kingdom
| | - Patrick Moreau
- Laboratoire Biogenèse Membranaire, UMR 5200 CNRS-Université de Bordeaux, Villenave d'Ornon, France
| | - Chris Hawes
- Plant Cell Biology, Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, United Kingdom
| |
Collapse
|
25
|
Stefano G, Brandizzi F. Advances in Plant ER Architecture and Dynamics. PLANT PHYSIOLOGY 2018; 176:178-186. [PMID: 28986423 PMCID: PMC5761816 DOI: 10.1104/pp.17.01261] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 10/01/2017] [Indexed: 05/18/2023]
Abstract
Recent advances highlight mechanisms that enable the morphological integrity of the plant ER in relation to the other organelles and the cytoskeleton.
Collapse
Affiliation(s)
- Giovanni Stefano
- MSU-DOE Plant Research Lab and Plant Biology Department, Michigan State University, East Lansing, Michigan 48824
| | - Federica Brandizzi
- MSU-DOE Plant Research Lab and Plant Biology Department, Michigan State University, East Lansing, Michigan 48824
| |
Collapse
|
26
|
Dinh SN, Kang H. An endoplasmic reticulum-localized Coffea arabica BURP domain-containing protein affects the response of transgenic Arabidopsis plants to diverse abiotic stresses. PLANT CELL REPORTS 2017; 36:1829-1839. [PMID: 28803325 DOI: 10.1007/s00299-017-2197-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 08/05/2017] [Indexed: 06/07/2023]
Abstract
The Coffea arabica BURP domain-containing gene plays an important role in the response of transgenic Arabidopsis plants to abiotic stresses via regulating the level of diverse proteins. Although the functions of plant-specific BURP domain-containing proteins (BDP) have been determined for a few plants, their roles in the growth, development, and stress responses of most plant species, including coffee plant (Coffea arabica), are largely unknown. In this study, the function of a C. arabica BDP, designated CaBDP1, was investigated in transgenic Arabidopsis plants. The expression of CaBDP1 was highly modulated in coffee plants subjected to drought, cold, salt, or ABA. Confocal analysis of CaBDP1-GFP fusion proteins revealed that CaBDP1 is localized in the endoplasmic reticulum. The ectopic expression of CaBDP1 in Arabidopsis resulted in delayed germination of the transgenic plants under abiotic stress and in the presence of ABA. Cotyledon greening and seedling growth of the transgenic plants were inhibited in the presence of ABA due to the upregulation of ABA signaling-related genes like ABI3, ABI4, and ABI5. Proteome analysis revealed that the levels of several proteins are modulated in CaBDP1-expressing transgenic plants. The results of this study underscore the importance of BURP domain proteins in plant responses to diverse abiotic stresses.
Collapse
Affiliation(s)
- Sy Nguyen Dinh
- Department of Plant Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, Korea
- Institute of Environment and Biotechnology, Taynguyen University, 567 Le Duan Street, Buon Ma Thuot, Daklak Province, Vietnam
| | - Hunseung Kang
- Department of Plant Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, Korea.
| |
Collapse
|
27
|
Angelos E, Ruberti C, Kim SJ, Brandizzi F. Maintaining the factory: the roles of the unfolded protein response in cellular homeostasis in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 90:671-682. [PMID: 27943485 PMCID: PMC5415411 DOI: 10.1111/tpj.13449] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 11/23/2016] [Accepted: 12/02/2016] [Indexed: 05/07/2023]
Abstract
Much like a factory, the endoplasmic reticulum (ER) assembles simple cellular building blocks into complex molecular machines known as proteins. In order to protect the delicate protein folding process and ensure the proper cellular delivery of protein products under environmental stresses, eukaryotes have evolved a set of signaling mechanisms known as the unfolded protein response (UPR) to increase the folding capacity of the ER. This process is particularly important in plants, because their sessile nature commands adaptation for survival rather than escape from stress. As such, plants make special use of the UPR, and evidence indicates that the master regulators and downstream effectors of the UPR have distinct roles in mediating cellular processes that affect organism growth and development as well as stress responses. In this review we outline recent developments in this field that support a strong relevance of the UPR to many areas of plant life.
Collapse
Affiliation(s)
- Evan Angelos
- MSU-DOE Plant Research Lab and Plant Biology Department, Michigan State University, East Lansing, MI 48824, USA
| | - Cristina Ruberti
- MSU-DOE Plant Research Lab and Plant Biology Department, Michigan State University, East Lansing, MI 48824, USA
| | - Sang-Jin Kim
- MSU-DOE Plant Research Lab and Plant Biology Department, Michigan State University, East Lansing, MI 48824, USA
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI 48824, USA
| | - Federica Brandizzi
- MSU-DOE Plant Research Lab and Plant Biology Department, Michigan State University, East Lansing, MI 48824, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
28
|
Floyd BE, Mugume Y, Morriss SC, MacIntosh GC, Bassham DC. Localization of RNS2 ribonuclease to the vacuole is required for its role in cellular homeostasis. PLANTA 2017; 245:779-792. [PMID: 28025674 DOI: 10.1007/s00425-016-2644-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 12/21/2016] [Indexed: 05/28/2023]
Abstract
Localization of the RNase RNS2 to the vacuole via a C-terminal targeting signal is essential for its function in rRNA degradation and homeostasis. RNase T2 ribonucleases are highly conserved enzymes present in the genomes of nearly all eukaryotes and many microorganisms. Their constitutive expression in different tissues and cell types of many organisms suggests a housekeeping role in RNA homeostasis. The Arabidopsis thaliana class II RNase T2, RNS2, is encoded by a single gene and functions in rRNA degradation. Loss of RNS2 results in RNA accumulation and constitutive activation of autophagy, possibly as a compensatory mechanism. While the majority of RNase T2 enzymes is secreted, RNS2 is located within the vacuole and in the endoplasmic reticulum (ER), possibly within ER bodies. As RNS2 has a neutral pH optimum, and the endomembrane organelles are connected by vesicle transport, the site within the endomembrane system at which RNS2 functions is unclear. Here we demonstrate that localization to the vacuole is essential for the physiological function of RNS2. A mutant allele of RNS2, rns2-1, results in production of an active RNS2 RNase but with a mutation that removes a putative C-terminal vacuolar targeting signal. The mutant protein is, therefore, secreted from the cell. This results in a constitutive autophagy phenotype similar to that observed in rns2 null mutants. These findings illustrate that the intracellular retention of RNS2 and localization within the vacuole are critical for its cellular function.
Collapse
Affiliation(s)
- Brice E Floyd
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, 50011, USA
| | - Yosia Mugume
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, 50011, USA
| | - Stephanie C Morriss
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, 50011, USA
| | - Gustavo C MacIntosh
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, 50011, USA.
| | - Diane C Bassham
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, 50011, USA.
| |
Collapse
|
29
|
Pompa A, De Marchis F, Pallotta MT, Benitez-Alfonso Y, Jones A, Schipper K, Moreau K, Žárský V, Di Sansebastiano GP, Bellucci M. Unconventional Transport Routes of Soluble and Membrane Proteins and Their Role in Developmental Biology. Int J Mol Sci 2017; 18:ijms18040703. [PMID: 28346345 PMCID: PMC5412289 DOI: 10.3390/ijms18040703] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 03/22/2017] [Accepted: 03/23/2017] [Indexed: 12/30/2022] Open
Abstract
Many proteins and cargoes in eukaryotic cells are secreted through the conventional secretory pathway that brings proteins and membranes from the endoplasmic reticulum to the plasma membrane, passing through various cell compartments, and then the extracellular space. The recent identification of an increasing number of leaderless secreted proteins bypassing the Golgi apparatus unveiled the existence of alternative protein secretion pathways. Moreover, other unconventional routes for secretion of soluble or transmembrane proteins with initial endoplasmic reticulum localization were identified. Furthermore, other proteins normally functioning in conventional membrane traffic or in the biogenesis of unique plant/fungi organelles or in plasmodesmata transport seem to be involved in unconventional secretory pathways. These alternative pathways are functionally related to biotic stress and development, and are becoming more and more important in cell biology studies in yeast, mammalian cells and in plants. The city of Lecce hosted specialists working on mammals, plants and microorganisms for the inaugural meeting on “Unconventional Protein and Membrane Traffic” (UPMT) during 4–7 October 2016. The main aim of the meeting was to include the highest number of topics, summarized in this report, related to the unconventional transport routes of protein and membranes.
Collapse
Affiliation(s)
- Andrea Pompa
- Institute of Biosciences and Bioresources-Research Division of Perugia, National Research Council (CNR), via della Madonna Alta 130, 06128 Perugia, Italy.
| | - Francesca De Marchis
- Institute of Biosciences and Bioresources-Research Division of Perugia, National Research Council (CNR), via della Madonna Alta 130, 06128 Perugia, Italy.
| | | | | | - Alexandra Jones
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK.
| | - Kerstin Schipper
- Institute for Microbiology, Heinrich Heine University Düsseldorf, Düsseldorf 40225, Germany.
| | - Kevin Moreau
- Clinical Biochemistry, Institute of Metabolic Science, University of Cambridge, Cambridge CB2 1TN, UK.
| | - Viktor Žárský
- Department of Experimental Plant Biology, Faculty of Science, Charles University, 12844, Prague 2, Czech Republic.
- Institute of Experimental Botany, v.v.i., the Czech Academy of Sciences, 16502, Prague 6, Czech Republic.
| | - Gian Pietro Di Sansebastiano
- Department of Biological and Environmental Sciences and Technologies (DISTEBA), University of Salento, S.P. 6, 73100 Lecce, Italy.
| | - Michele Bellucci
- Institute of Biosciences and Bioresources-Research Division of Perugia, National Research Council (CNR), via della Madonna Alta 130, 06128 Perugia, Italy.
| |
Collapse
|
30
|
The Proline/Arginine Dipeptide from Hexanucleotide Repeat Expanded C9ORF72 Inhibits the Proteasome. eNeuro 2017; 4:eN-NWR-0249-16. [PMID: 28197542 PMCID: PMC5282547 DOI: 10.1523/eneuro.0249-16.2017] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 01/05/2017] [Accepted: 01/12/2017] [Indexed: 12/11/2022] Open
Abstract
An intronic hexanucleotide repeat expansion (HRE) mutation in the C9ORF72 gene is the most common cause of familial ALS and frontotemporal dementia (FTD) and is found in ∼7% of individuals with apparently sporadic disease. Several different diamino acid peptides can be generated from the HRE by noncanonical translation (repeat-associated non-ATG translation, or RAN translation), and some of these peptides can be toxic. Here, we studied the effects of two arginine containing RAN translation products [proline/arginine repeated 20 times (PR20) and glycine/arginine repeated 20 times (GR20)] in primary rat spinal cord neuron cultures grown on an astrocyte feeder layer. We find that PR20 kills motor neurons with an LD50 of 2 µM, but in contrast to the effects of other ALS-causing mutant proteins (i.e., SOD or TDP43), PR20 does not evoke the biochemical signature of mitochondrial dysfunction, ER stress, or mTORC down-regulation. PR20 does result in a time-dependent build-up of ubiquitylated substrates, and this is associated with a reduction of flux through both autophagic and proteasomal degradation pathways. GR20, however, does not have these effects. The effects of PR20 on the proteasome are likely to be direct because (1) PR20 physically associates with proteasomes in biochemical assays, and (2) PR20 inhibits the degradation of a ubiquitylated test substrate when presented to purified proteasomes. Application of a proteasomal activator (IU1) blocks the toxic effects of PR20 on motor neuron survival. This work suggests that proteasomal activators have therapeutic potential in individuals with C9ORF72 HRE.
Collapse
|
31
|
Liu DYT, Smith PMC, Barton DA, Day DA, Overall RL. Characterisation of Arabidopsis calnexin 1 and calnexin 2 in the endoplasmic reticulum and at plasmodesmata. PROTOPLASMA 2017; 254:125-136. [PMID: 26680228 DOI: 10.1007/s00709-015-0921-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 12/01/2015] [Indexed: 05/06/2023]
Abstract
Calnexin (CNX) is a highly conserved endoplasmic reticulum (ER) chaperone protein. Both calnexin and the homologous ER-lumenal protein, calreticulin, bind calcium ions and participate in protein folding. There are two calnexins in Arabidopsis thaliana, CNX1 and CNX2. GUS expression demonstrated that these are expressed in most Arabidopsis tissues throughout development. Calnexin transfer DNA (T-DNA) mutant lines exhibited increased transcript abundances of a number of other ER chaperones, including calreticulins, suggesting a degree of redundancy. CNX1 and CNX2 localised to the ER membrane including that within plasmodesmata, the intercellular channels connecting plant cells. This is comparable with the previous localisations of calreticulin in the ER lumen and at plasmodesmata. However, from green fluorescent protein (GFP) diffusion studies in single and double T-DNA insertion mutant lines, as well as overexpression lines, we found no evidence that CNX1 or CNX2 play a role in intercellular transport through plasmodesmata. In addition, calnexin T-DNA mutant lines showed no change in transcript abundance of a number of plasmodesmata-related proteins. CNX1 and CNX2 do not appear to have a specific localisation or function at plasmodesmata-rather the association of calnexin with the ER is simply maintained as the ER passes through plasmodesmata.
Collapse
Affiliation(s)
- Danny Y T Liu
- School of Biological Sciences, University of Sydney, Macleay Building A12, Sydney, NSW, 2006, Australia
- Learning and Teaching Centre, Macquarie University, Building C3B 417, Sydney, NSW, 2109, Australia
| | - Penelope M C Smith
- School of Biological Sciences, University of Sydney, Macleay Building A12, Sydney, NSW, 2006, Australia
| | - Deborah A Barton
- School of Biological Sciences, University of Sydney, Macleay Building A12, Sydney, NSW, 2006, Australia
| | - David A Day
- School of Biological Sciences, University of Sydney, Macleay Building A12, Sydney, NSW, 2006, Australia
- School of Biological Sciences, Flinders University, GPO Box 2100, Adelaide, SA, 5001, Australia
| | - Robyn L Overall
- School of Biological Sciences, University of Sydney, Macleay Building A12, Sydney, NSW, 2006, Australia.
| |
Collapse
|
32
|
Slazak B, Kapusta M, Malik S, Bohdanowicz J, Kuta E, Malec P, Göransson U. Immunolocalization of cyclotides in plant cells, tissues and organ supports their role in host defense. PLANTA 2016; 244:1029-1040. [PMID: 27394154 PMCID: PMC5052299 DOI: 10.1007/s00425-016-2562-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 06/20/2016] [Indexed: 05/02/2023]
Abstract
The distribution of cyclotides was visualized in plant cells, tissues and organs using immunohistochemistry. Finding of cyclotides in tissues potentially vulnerable to pathogen attacks supports their role as defense molecules. The cyclotide family of plant peptides is characterized by the cyclic cystine knot motif and its diverse biological activities. Given their insecticidal and antimicrobial properties, the role of cyclotides in planta is probably associated with host defense. Our current understanding of the cellular compartmentalization of cyclotides in the vacuole is based on indirect studies on transgenic model plants that do not express cyclotides naturally. Matrix-assisted laser desorption ionization (MALDI) imaging has also been used to study the distribution of cyclotides, but the technique's resolution was insufficient to determine their tissue or cell distribution. To avoid the limitations of these approaches, immunohistochemical visualization methods were used. Antibodies were raised in rabbits using cycloviolacin O2 (cyO2), and their specificity was determined by Western and dot blot experiments. Slides for immunohistochemical analysis were prepared from leaf, petiole and root fragments of Viola odorata and Viola uliginosa, and specimens were visualized using indirect epifluorescence microscopy. The antibodies against cyclotides were specific against selected bracelet cyclotides with high similarity (cyO2, cyO3, cyO8, cyO13) and suitable for immunohistochemistry. The tissue distribution of the cyclotides visualized in this way is consistent with their proposed role in host defense-relatively large quantities were observed in the leaf and petiole epidermis in both Viola species. Cyclotides were also found in vascular tissue in all the assessed plant organs. The vacuole storage of cyclotides was directly shown.
Collapse
Affiliation(s)
- Blazej Slazak
- W. Szafer Institute of Botany, Polish Academy of Science, 46 Lubicz St, 31-512, Cracow, Poland.
- Division of Pharmacognosy, Department of Medicinal Chemistry, Uppsala University, Biomedical Center, Box 574, 751 23, Uppsala, Sweden.
| | - Małgorzata Kapusta
- Department of Plant Cytology and Embryology, Faculty of Biology, University of Gdańsk, 59 Wita Stwosza St, 80-308, Gdańsk, Poland
| | - Sohaib Malik
- Division of Pharmacognosy, Department of Medicinal Chemistry, Uppsala University, Biomedical Center, Box 574, 751 23, Uppsala, Sweden
| | - Jerzy Bohdanowicz
- Department of Plant Cytology and Embryology, Faculty of Biology, University of Gdańsk, 59 Wita Stwosza St, 80-308, Gdańsk, Poland
| | - Elżbieta Kuta
- Department of Plant Cytology and Embryology, Institute of Botany, Jagiellonian University, 9 Gronostajowa St, 30-387, Cracow, Poland
| | - Przemysław Malec
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 7 Gronostajowa St, 30-387, Cracow, Poland
| | - Ulf Göransson
- Division of Pharmacognosy, Department of Medicinal Chemistry, Uppsala University, Biomedical Center, Box 574, 751 23, Uppsala, Sweden
| |
Collapse
|
33
|
Slazak B, Kapusta M, Malik S, Bohdanowicz J, Kuta E, Malec P, Göransson U. Immunolocalization of cyclotides in plant cells, tissues and organ supports their role in host defense. PLANTA 2016. [PMID: 27394154 DOI: 10.1016/10.1007/s00425-016-2562-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The distribution of cyclotides was visualized in plant cells, tissues and organs using immunohistochemistry. Finding of cyclotides in tissues potentially vulnerable to pathogen attacks supports their role as defense molecules. The cyclotide family of plant peptides is characterized by the cyclic cystine knot motif and its diverse biological activities. Given their insecticidal and antimicrobial properties, the role of cyclotides in planta is probably associated with host defense. Our current understanding of the cellular compartmentalization of cyclotides in the vacuole is based on indirect studies on transgenic model plants that do not express cyclotides naturally. Matrix-assisted laser desorption ionization (MALDI) imaging has also been used to study the distribution of cyclotides, but the technique's resolution was insufficient to determine their tissue or cell distribution. To avoid the limitations of these approaches, immunohistochemical visualization methods were used. Antibodies were raised in rabbits using cycloviolacin O2 (cyO2), and their specificity was determined by Western and dot blot experiments. Slides for immunohistochemical analysis were prepared from leaf, petiole and root fragments of Viola odorata and Viola uliginosa, and specimens were visualized using indirect epifluorescence microscopy. The antibodies against cyclotides were specific against selected bracelet cyclotides with high similarity (cyO2, cyO3, cyO8, cyO13) and suitable for immunohistochemistry. The tissue distribution of the cyclotides visualized in this way is consistent with their proposed role in host defense-relatively large quantities were observed in the leaf and petiole epidermis in both Viola species. Cyclotides were also found in vascular tissue in all the assessed plant organs. The vacuole storage of cyclotides was directly shown.
Collapse
Affiliation(s)
- Blazej Slazak
- W. Szafer Institute of Botany, Polish Academy of Science, 46 Lubicz St, 31-512, Cracow, Poland.
- Division of Pharmacognosy, Department of Medicinal Chemistry, Uppsala University, Biomedical Center, Box 574, 751 23, Uppsala, Sweden.
| | - Małgorzata Kapusta
- Department of Plant Cytology and Embryology, Faculty of Biology, University of Gdańsk, 59 Wita Stwosza St, 80-308, Gdańsk, Poland
| | - Sohaib Malik
- Division of Pharmacognosy, Department of Medicinal Chemistry, Uppsala University, Biomedical Center, Box 574, 751 23, Uppsala, Sweden
| | - Jerzy Bohdanowicz
- Department of Plant Cytology and Embryology, Faculty of Biology, University of Gdańsk, 59 Wita Stwosza St, 80-308, Gdańsk, Poland
| | - Elżbieta Kuta
- Department of Plant Cytology and Embryology, Institute of Botany, Jagiellonian University, 9 Gronostajowa St, 30-387, Cracow, Poland
| | - Przemysław Malec
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 7 Gronostajowa St, 30-387, Cracow, Poland
| | - Ulf Göransson
- Division of Pharmacognosy, Department of Medicinal Chemistry, Uppsala University, Biomedical Center, Box 574, 751 23, Uppsala, Sweden
| |
Collapse
|
34
|
Hafidh S, Potěšil D, Fíla J, Čapková V, Zdráhal Z, Honys D. Quantitative proteomics of the tobacco pollen tube secretome identifies novel pollen tube guidance proteins important for fertilization. Genome Biol 2016; 17:81. [PMID: 27139692 PMCID: PMC4853860 DOI: 10.1186/s13059-016-0928-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 03/24/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND As in animals, cell-cell communication plays a pivotal role in male-female recognition during plant sexual reproduction. Prelaid peptides secreted from the female reproductive tissues guide pollen tubes towards ovules for fertilization. However, the elaborate mechanisms for this dialogue have remained elusive, particularly from the male perspective. RESULTS We performed genome-wide quantitative liquid chromatography-tandem mass spectrometry analysis of a pistil-stimulated pollen tube secretome and identified 801 pollen tube-secreted proteins. Interestingly, in silico analysis reveals that the pollen tube secretome is dominated by proteins that are secreted unconventionally, representing 57 % of the total secretome. In support, we show that an unconventionally secreted protein, translationally controlled tumor protein, is secreted to the apoplast. Remarkably, we discovered that this protein could be secreted by infiltrating through the initial phases of the conventional secretory pathway and could reach the apoplast via exosomes, as demonstrated by co-localization with Oleisin1 exosome marker. We demonstrate that translationally controlled tumor protein-knockdown Arabidopsis thaliana plants produce pollen tubes that navigate poorly to the target ovule and that the mutant allele is poorly transmitted through the male. Further, we show that regulators of the endoplasmic reticulum-trans-Golgi network protein secretory pathway control secretion of Nicotiana tabacum Pollen tube-secreted cysteine-rich protein 2 and Lorelei-like GPI-anchor protein 3 and that a regulator of endoplasmic reticulum-trans-Golgi protein translocation is essential for pollen tube growth, pollen tube guidance and ovule-targeting competence. CONCLUSIONS This work, the first study on the pollen tube secretome, identifies novel genome-wide pollen tube-secreted proteins with potential functions in pollen tube guidance towards ovules for sexual reproduction. Functional analysis highlights a potential mechanism for unconventional secretion of pollen tube proteins and reveals likely regulators of conventional pollen tube protein secretion. The association of pollen tube-secreted proteins with marker proteins shown to be secreted via exosomes in other species suggests exosome secretion is a possible mechanism for cell-cell communication between the pollen tube and female reproductive cells.
Collapse
Affiliation(s)
- Said Hafidh
- Laboratory of Pollen Biology, Institute of Experimental Botany ASCR, Rozvojová 263, 165 02, Prague 6, Czech Republic.
| | - David Potěšil
- Research group Proteomics, CEITEC-MU, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Jan Fíla
- Laboratory of Pollen Biology, Institute of Experimental Botany ASCR, Rozvojová 263, 165 02, Prague 6, Czech Republic
| | - Věra Čapková
- Laboratory of Pollen Biology, Institute of Experimental Botany ASCR, Rozvojová 263, 165 02, Prague 6, Czech Republic
| | - Zbyněk Zdráhal
- Research group Proteomics, CEITEC-MU, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - David Honys
- Laboratory of Pollen Biology, Institute of Experimental Botany ASCR, Rozvojová 263, 165 02, Prague 6, Czech Republic.
| |
Collapse
|
35
|
Seaayfan E, Defontaine N, Demaretz S, Zaarour N, Laghmani K. OS9 Protein Interacts with Na-K-2Cl Co-transporter (NKCC2) and Targets Its Immature Form for the Endoplasmic Reticulum-associated Degradation Pathway. J Biol Chem 2016. [PMID: 26721884 DOI: 10.1074/jbc.m115.702514.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Mutations in the renal specific Na-K-2Cl co-transporter (NKCC2) lead to type I Bartter syndrome, a life-threatening kidney disease featuring arterial hypotension along with electrolyte abnormalities. We have previously shown that NKCC2 and its disease-causing mutants are subject to regulation by endoplasmic reticulum-associated degradation (ERAD). The aim of the present study was to identify the protein partners specifically involved in ERAD of NKCC2. To this end, we screened a kidney cDNA library through a yeast two-hybrid assay using NKCC2 C terminus as bait. We identified OS9 (amplified in osteosarcomas) as a novel and specific binding partner of NKCC2. Co-immunoprecipitation assays in renal cells revealed that OS9 association involves mainly the immature form of NKCC2. Accordingly, immunocytochemistry analysis showed that NKCC2 and OS9 co-localize at the endoplasmic reticulum. In cells overexpressing OS9, total cellular NKCC2 protein levels were markedly decreased, an effect blocked by the proteasome inhibitor MG132. Pulse-chase and cycloheximide-chase assays demonstrated that the marked reduction in the co-transporter protein levels was essentially due to increased protein degradation of the immature form of NKCC2. Conversely, knockdown of OS9 by small interfering RNA increased NKCC2 expression by increasing the co-transporter stability. Inactivation of the mannose 6-phosphate receptor homology domain of OS9 had no effect on its action on NKCC2. In contrast, mutations of NKCC2 N-glycosylation sites abolished the effects of OS9, indicating that OS9-induced protein degradation is N-glycan-dependent. In summary, our results demonstrate the presence of an OS9-mediated ERAD pathway in renal cells that degrades immature NKCC2 proteins. The identification and selective modulation of ERAD components specific to NKCC2 and its disease-causing mutants might provide novel therapeutic strategies for the treatment of type I Bartter syndrome.
Collapse
Affiliation(s)
- Elie Seaayfan
- From INSERM, Centre de Recherche des Cordeliers, U1138, Paris 75006, France, CNRS, ERL8228, Paris 75006, France, Université Pierre et Marie Curie, Paris 75006, France, and Université Paris-Descartes, Paris 75005, France
| | - Nadia Defontaine
- From INSERM, Centre de Recherche des Cordeliers, U1138, Paris 75006, France, CNRS, ERL8228, Paris 75006, France, Université Pierre et Marie Curie, Paris 75006, France, and Université Paris-Descartes, Paris 75005, France
| | - Sylvie Demaretz
- From INSERM, Centre de Recherche des Cordeliers, U1138, Paris 75006, France, CNRS, ERL8228, Paris 75006, France, Université Pierre et Marie Curie, Paris 75006, France, and Université Paris-Descartes, Paris 75005, France
| | - Nancy Zaarour
- From INSERM, Centre de Recherche des Cordeliers, U1138, Paris 75006, France, CNRS, ERL8228, Paris 75006, France, Université Pierre et Marie Curie, Paris 75006, France, and Université Paris-Descartes, Paris 75005, France
| | - Kamel Laghmani
- From INSERM, Centre de Recherche des Cordeliers, U1138, Paris 75006, France, CNRS, ERL8228, Paris 75006, France, Université Pierre et Marie Curie, Paris 75006, France, and Université Paris-Descartes, Paris 75005, France
| |
Collapse
|
36
|
Calderan-Rodrigues MJ, Jamet E, Douché T, Bonassi MBR, Cataldi TR, Fonseca JG, San Clemente H, Pont-Lezica R, Labate CA. Cell wall proteome of sugarcane stems: comparison of a destructive and a non-destructive extraction method showed differences in glycoside hydrolases and peroxidases. BMC PLANT BIOLOGY 2016; 16:14. [PMID: 26754199 PMCID: PMC4709929 DOI: 10.1186/s12870-015-0677-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 12/05/2015] [Indexed: 05/25/2023]
Abstract
BACKGROUND Sugarcane has been used as the main crop for ethanol production for more than 40 years in Brazil. Recently, the production of bioethanol from bagasse and straw, also called second generation (2G) ethanol, became a reality with the first commercial plants started in the USA and Brazil. However, the industrial processes still need to be improved to generate a low cost fuel. One possibility is the remodeling of cell walls, by means of genetic improvement or transgenesis, in order to make the bagasse more accessible to hydrolytic enzymes. We aimed at characterizing the cell wall proteome of young sugarcane culms, to identify proteins involved in cell wall biogenesis. Proteins were extracted from the cell walls of 2-month-old culms using two protocols, non-destructive by vacuum infiltration vs destructive. The proteins were identified by mass spectrometry and bioinformatics. RESULTS A predicted signal peptide was found in 84 different proteins, called cell wall proteins (CWPs). As expected, the non-destructive method showed a lower percentage of proteins predicted to be intracellular than the destructive one (33% vs 44%). About 19% of CWPs were identified with both methods, whilst the infiltration protocol could lead to the identification of 75% more CWPs. In both cases, the most populated protein functional classes were those of proteins related to lipid metabolism and oxido-reductases. Curiously, a single glycoside hydrolase (GH) was identified using the non-destructive method whereas 10 GHs were found with the destructive one. Quantitative data analysis allowed the identification of the most abundant proteins. CONCLUSIONS The results highlighted the importance of using different protocols to extract proteins from cell walls to expand the coverage of the cell wall proteome. Ten GHs were indicated as possible targets for further studies in order to obtain cell walls less recalcitrant to deconstruction. Therefore, this work contributed to two goals: enlarge the coverage of the sugarcane cell wall proteome, and provide target proteins that could be used in future research to facilitate 2G ethanol production.
Collapse
Affiliation(s)
- Maria Juliana Calderan-Rodrigues
- Departamento de Genética, Laboratório Max Feffer de Genética de Plantas, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Av. Pádua Dias 11, CP 83, 13400-970, Piracicaba, SP, Brazil.
| | - Elisabeth Jamet
- Université de Toulouse; UPS; UMR 5546, Laboratoire de Recherche en Sciences Végétales, BP 42617, F-31326, Castanet-Tolosan, France.
- CNRS; UMR 5546, BP 42617, F-31326, Castanet-Tolosan, France.
| | - Thibaut Douché
- Université de Toulouse; UPS; UMR 5546, Laboratoire de Recherche en Sciences Végétales, BP 42617, F-31326, Castanet-Tolosan, France.
- CNRS; UMR 5546, BP 42617, F-31326, Castanet-Tolosan, France.
| | - Maria Beatriz Rodrigues Bonassi
- Departamento de Genética, Laboratório Max Feffer de Genética de Plantas, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Av. Pádua Dias 11, CP 83, 13400-970, Piracicaba, SP, Brazil.
| | - Thaís Regiani Cataldi
- Departamento de Genética, Laboratório Max Feffer de Genética de Plantas, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Av. Pádua Dias 11, CP 83, 13400-970, Piracicaba, SP, Brazil.
| | - Juliana Guimarães Fonseca
- Departamento de Genética, Laboratório Max Feffer de Genética de Plantas, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Av. Pádua Dias 11, CP 83, 13400-970, Piracicaba, SP, Brazil.
| | - Hélène San Clemente
- Université de Toulouse; UPS; UMR 5546, Laboratoire de Recherche en Sciences Végétales, BP 42617, F-31326, Castanet-Tolosan, France.
- CNRS; UMR 5546, BP 42617, F-31326, Castanet-Tolosan, France.
| | - Rafael Pont-Lezica
- Université de Toulouse; UPS; UMR 5546, Laboratoire de Recherche en Sciences Végétales, BP 42617, F-31326, Castanet-Tolosan, France
- CNRS; UMR 5546, BP 42617, F-31326, Castanet-Tolosan, France
| | - Carlos Alberto Labate
- Departamento de Genética, Laboratório Max Feffer de Genética de Plantas, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Av. Pádua Dias 11, CP 83, 13400-970, Piracicaba, SP, Brazil.
| |
Collapse
|
37
|
Seaayfan E, Defontaine N, Demaretz S, Zaarour N, Laghmani K. OS9 Protein Interacts with Na-K-2Cl Co-transporter (NKCC2) and Targets Its Immature Form for the Endoplasmic Reticulum-associated Degradation Pathway. J Biol Chem 2015; 291:4487-502. [PMID: 26721884 DOI: 10.1074/jbc.m115.702514] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Indexed: 01/25/2023] Open
Abstract
Mutations in the renal specific Na-K-2Cl co-transporter (NKCC2) lead to type I Bartter syndrome, a life-threatening kidney disease featuring arterial hypotension along with electrolyte abnormalities. We have previously shown that NKCC2 and its disease-causing mutants are subject to regulation by endoplasmic reticulum-associated degradation (ERAD). The aim of the present study was to identify the protein partners specifically involved in ERAD of NKCC2. To this end, we screened a kidney cDNA library through a yeast two-hybrid assay using NKCC2 C terminus as bait. We identified OS9 (amplified in osteosarcomas) as a novel and specific binding partner of NKCC2. Co-immunoprecipitation assays in renal cells revealed that OS9 association involves mainly the immature form of NKCC2. Accordingly, immunocytochemistry analysis showed that NKCC2 and OS9 co-localize at the endoplasmic reticulum. In cells overexpressing OS9, total cellular NKCC2 protein levels were markedly decreased, an effect blocked by the proteasome inhibitor MG132. Pulse-chase and cycloheximide-chase assays demonstrated that the marked reduction in the co-transporter protein levels was essentially due to increased protein degradation of the immature form of NKCC2. Conversely, knockdown of OS9 by small interfering RNA increased NKCC2 expression by increasing the co-transporter stability. Inactivation of the mannose 6-phosphate receptor homology domain of OS9 had no effect on its action on NKCC2. In contrast, mutations of NKCC2 N-glycosylation sites abolished the effects of OS9, indicating that OS9-induced protein degradation is N-glycan-dependent. In summary, our results demonstrate the presence of an OS9-mediated ERAD pathway in renal cells that degrades immature NKCC2 proteins. The identification and selective modulation of ERAD components specific to NKCC2 and its disease-causing mutants might provide novel therapeutic strategies for the treatment of type I Bartter syndrome.
Collapse
Affiliation(s)
- Elie Seaayfan
- From INSERM, Centre de Recherche des Cordeliers, U1138, Paris 75006, France, CNRS, ERL8228, Paris 75006, France, Université Pierre et Marie Curie, Paris 75006, France, and Université Paris-Descartes, Paris 75005, France
| | - Nadia Defontaine
- From INSERM, Centre de Recherche des Cordeliers, U1138, Paris 75006, France, CNRS, ERL8228, Paris 75006, France, Université Pierre et Marie Curie, Paris 75006, France, and Université Paris-Descartes, Paris 75005, France
| | - Sylvie Demaretz
- From INSERM, Centre de Recherche des Cordeliers, U1138, Paris 75006, France, CNRS, ERL8228, Paris 75006, France, Université Pierre et Marie Curie, Paris 75006, France, and Université Paris-Descartes, Paris 75005, France
| | - Nancy Zaarour
- From INSERM, Centre de Recherche des Cordeliers, U1138, Paris 75006, France, CNRS, ERL8228, Paris 75006, France, Université Pierre et Marie Curie, Paris 75006, France, and Université Paris-Descartes, Paris 75005, France
| | - Kamel Laghmani
- From INSERM, Centre de Recherche des Cordeliers, U1138, Paris 75006, France, CNRS, ERL8228, Paris 75006, France, Université Pierre et Marie Curie, Paris 75006, France, and Université Paris-Descartes, Paris 75005, France
| |
Collapse
|
38
|
Kriechbaumer V, Botchway SW, Slade SE, Knox K, Frigerio L, Oparka K, Hawes C. Reticulomics: Protein-Protein Interaction Studies with Two Plasmodesmata-Localized Reticulon Family Proteins Identify Binding Partners Enriched at Plasmodesmata, Endoplasmic Reticulum, and the Plasma Membrane. PLANT PHYSIOLOGY 2015; 169:1933-45. [PMID: 26353761 PMCID: PMC4634090 DOI: 10.1104/pp.15.01153] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 09/08/2015] [Indexed: 05/19/2023]
Abstract
The endoplasmic reticulum (ER) is a ubiquitous organelle that plays roles in secretory protein production, folding, quality control, and lipid biosynthesis. The cortical ER in plants is pleomorphic and structured as a tubular network capable of morphing into flat cisternae, mainly at three-way junctions, and back to tubules. Plant reticulon family proteins (RTNLB) tubulate the ER by dimerization and oligomerization, creating localized ER membrane tensions that result in membrane curvature. Some RTNLB ER-shaping proteins are present in the plasmodesmata (PD) proteome and may contribute to the formation of the desmotubule, the axial ER-derived structure that traverses primary PD. Here, we investigate the binding partners of two PD-resident reticulon proteins, RTNLB3 and RTNLB6, that are located in primary PD at cytokinesis in tobacco (Nicotiana tabacum). Coimmunoprecipitation of green fluorescent protein-tagged RTNLB3 and RTNLB6 followed by mass spectrometry detected a high percentage of known PD-localized proteins as well as plasma membrane proteins with putative membrane-anchoring roles. Förster resonance energy transfer by fluorescence lifetime imaging microscopy assays revealed a highly significant interaction of the detected PD proteins with the bait RTNLB proteins. Our data suggest that RTNLB proteins, in addition to a role in ER modeling, may play important roles in linking the cortical ER to the plasma membrane.
Collapse
Affiliation(s)
- Verena Kriechbaumer
- Plant Cell Biology, Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, United Kingdom (V.K., C.H.);Central Laser Facility, Science and Technology Facilities Council (STFC) Rutherford Appleton Laboratory, Research Complex at Harwell, Didcot OX11 0QX, United Kingdom (S.W.B.);Warwickshire Private Hospital (WPH) Proteomics Facility Research Technology Platform (S.E.S.) and School of Life Sciences (S.E.S., L.F.), University of Warwick, Coventry CV4 7AL, United Kingdom; andInstitute of Molecular Plant Sciences, University of Edinburgh, Edinburgh EH9 3JR, United Kingdom (K.K., K.O.)
| | - Stanley W Botchway
- Plant Cell Biology, Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, United Kingdom (V.K., C.H.);Central Laser Facility, Science and Technology Facilities Council (STFC) Rutherford Appleton Laboratory, Research Complex at Harwell, Didcot OX11 0QX, United Kingdom (S.W.B.);Warwickshire Private Hospital (WPH) Proteomics Facility Research Technology Platform (S.E.S.) and School of Life Sciences (S.E.S., L.F.), University of Warwick, Coventry CV4 7AL, United Kingdom; andInstitute of Molecular Plant Sciences, University of Edinburgh, Edinburgh EH9 3JR, United Kingdom (K.K., K.O.)
| | - Susan E Slade
- Plant Cell Biology, Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, United Kingdom (V.K., C.H.);Central Laser Facility, Science and Technology Facilities Council (STFC) Rutherford Appleton Laboratory, Research Complex at Harwell, Didcot OX11 0QX, United Kingdom (S.W.B.);Warwickshire Private Hospital (WPH) Proteomics Facility Research Technology Platform (S.E.S.) and School of Life Sciences (S.E.S., L.F.), University of Warwick, Coventry CV4 7AL, United Kingdom; andInstitute of Molecular Plant Sciences, University of Edinburgh, Edinburgh EH9 3JR, United Kingdom (K.K., K.O.)
| | - Kirsten Knox
- Plant Cell Biology, Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, United Kingdom (V.K., C.H.);Central Laser Facility, Science and Technology Facilities Council (STFC) Rutherford Appleton Laboratory, Research Complex at Harwell, Didcot OX11 0QX, United Kingdom (S.W.B.);Warwickshire Private Hospital (WPH) Proteomics Facility Research Technology Platform (S.E.S.) and School of Life Sciences (S.E.S., L.F.), University of Warwick, Coventry CV4 7AL, United Kingdom; andInstitute of Molecular Plant Sciences, University of Edinburgh, Edinburgh EH9 3JR, United Kingdom (K.K., K.O.)
| | - Lorenzo Frigerio
- Plant Cell Biology, Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, United Kingdom (V.K., C.H.);Central Laser Facility, Science and Technology Facilities Council (STFC) Rutherford Appleton Laboratory, Research Complex at Harwell, Didcot OX11 0QX, United Kingdom (S.W.B.);Warwickshire Private Hospital (WPH) Proteomics Facility Research Technology Platform (S.E.S.) and School of Life Sciences (S.E.S., L.F.), University of Warwick, Coventry CV4 7AL, United Kingdom; andInstitute of Molecular Plant Sciences, University of Edinburgh, Edinburgh EH9 3JR, United Kingdom (K.K., K.O.)
| | - Karl Oparka
- Plant Cell Biology, Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, United Kingdom (V.K., C.H.);Central Laser Facility, Science and Technology Facilities Council (STFC) Rutherford Appleton Laboratory, Research Complex at Harwell, Didcot OX11 0QX, United Kingdom (S.W.B.);Warwickshire Private Hospital (WPH) Proteomics Facility Research Technology Platform (S.E.S.) and School of Life Sciences (S.E.S., L.F.), University of Warwick, Coventry CV4 7AL, United Kingdom; andInstitute of Molecular Plant Sciences, University of Edinburgh, Edinburgh EH9 3JR, United Kingdom (K.K., K.O.)
| | - Chris Hawes
- Plant Cell Biology, Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, United Kingdom (V.K., C.H.);Central Laser Facility, Science and Technology Facilities Council (STFC) Rutherford Appleton Laboratory, Research Complex at Harwell, Didcot OX11 0QX, United Kingdom (S.W.B.);Warwickshire Private Hospital (WPH) Proteomics Facility Research Technology Platform (S.E.S.) and School of Life Sciences (S.E.S., L.F.), University of Warwick, Coventry CV4 7AL, United Kingdom; andInstitute of Molecular Plant Sciences, University of Edinburgh, Edinburgh EH9 3JR, United Kingdom (K.K., K.O.)
| |
Collapse
|
39
|
Huang LF, Tan CC, Yeh JF, Liu HY, Liu YK, Ho SL, Lu CA. Efficient Secretion of Recombinant Proteins from Rice Suspension-Cultured Cells Modulated by the Choice of Signal Peptide. PLoS One 2015; 10:e0140812. [PMID: 26473722 PMCID: PMC4608814 DOI: 10.1371/journal.pone.0140812] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 09/29/2015] [Indexed: 11/25/2022] Open
Abstract
Plant-based expression systems have emerged as a competitive platform in the large-scale production of recombinant proteins. By adding a signal peptide, αAmy3sp, the desired recombinant proteins can be secreted outside transgenic rice cells, making them easy to harvest. In this work, to improve the secretion efficiency of recombinant proteins in rice expression systems, various signal peptides including αAmy3sp, CIN1sp, and 33KDsp have been fused to the N-terminus of green fluorescent protein (GFP) and introduced into rice cells to explore the efficiency of secretion of foreign proteins. 33KDsp had better efficiency than αAmy3sp and CIN1sp for the secretion of GFP from calli and suspension-cultured cells. 33KDsp was further applied for the secretion of mouse granulocyte-macrophage colony-stimulating factor (mGM-CSF) from transgenic rice suspension-cultured cells; approximately 76%–92% of total rice-derived mGM-CSF (rmGM-CSF) was detected in the culture medium. The rmGM-CSF was bioactive and could stimulate the proliferation of a murine myeloblastic leukemia cell line, NSF-60. The extracellular yield of rmGM-CSF reached 31.7 mg/L. Our study indicates that 33KDsp is better at promoting the secretion of recombinant proteins in rice suspension-cultured cell systems than the commonly used αAmy3sp.
Collapse
Affiliation(s)
- Li-Fen Huang
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, 135 Yuan-Tung Road, Taoyuan, Taiwan, ROC
- * E-mail: (L-FH); (C-AL)
| | - Chia-Chun Tan
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, 135 Yuan-Tung Road, Taoyuan, Taiwan, ROC
| | - Ju-Fang Yeh
- Department of Life Science, National Central University, Taoyuan, Taiwan, ROC
| | - Hsin-Yi Liu
- Department of Life Science, National Central University, Taoyuan, Taiwan, ROC
| | - Yu-Kuo Liu
- Graduate Institute of Biochemical and Biomedical Engineering, Chang Gung University, Taoyuan, Taiwan, ROC
| | - Shin-Lon Ho
- Department of Agronomy, National Chi-Yi University, Chiayi, Taiwan, ROC
| | - Chung-An Lu
- Department of Life Science, National Central University, Taoyuan, Taiwan, ROC
- * E-mail: (L-FH); (C-AL)
| |
Collapse
|
40
|
Ozgur R, Uzilday B, Sekmen AH, Turkan I. The effects of induced production of reactive oxygen species in organelles on endoplasmic reticulum stress and on the unfolded protein response in arabidopsis. ANNALS OF BOTANY 2015; 116:541-53. [PMID: 26070642 PMCID: PMC4577994 DOI: 10.1093/aob/mcv072] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 02/02/2015] [Accepted: 04/15/2015] [Indexed: 05/20/2023]
Abstract
BACKGROUND AND AIMS Accumulation of unfolded proteins caused by inefficient chaperone activity in the endoplasmic reticulum (ER) is termed 'ER stress', and it is perceived by a complex gene network. Induction of these genes triggers a response termed the 'unfolded protein response' (UPR). If a cell cannot overcome the accumulation of unfolded proteins, the ER-associated degradation (ERAD) system is induced to degrade those proteins. In addition to other factors, reactive oxygen species (ROS) are also produced during oxidative protein-folding in the ER. It has been shown in animal systems that there is a tight association between mitochondrial ROS and ER stress. However, in plants there are no reports concerning how induced ROS production in mitochondria and chloroplasts affects ER stress and if there is a possible role of organelle-originated ROS as a messenger molecule in the unfolded protein response. To address this issue, electron transport in chloroplasts and mitochondria and carnitine acetyl transferase (CAT) activity in peroxisomes were inhibited in wild-type Arabidopsis thaliana to induce ROS production. Expression of UPR genes was then investigated. METHODS Plants of A. thaliana ecotype Col-0 were treated with various H2O2- and ROS-producing agents specific to different organelles, including the mitochondria, chloroplasts and peroxisomes. The expression of ER stress sensor/transducer genes (bZIP28, bZIP17, IRE1A, IRE1B, BiP1, BiP3), genes related to protein folding (CNX, ERO1) and ERAD genes (HRD1, SEL1, DER1, UBC32) were evaluated by qRT-PCR analysis. KEY RESULTS Relatively low concentrations of ROS were more effective for induction of the ER stress response. Mitochondrial and chloroplastic ROS production had different induction mechanisms for the UPR and ER stress responses. CONCLUSIONS Chloroplast- and mitochondria-originated ROS have distinct roles in triggering the ER stress response. In general, low concentrations of ROS induced the transcription of ER stress-related genes, which can be attributed to the roles of ROS as secondary messengers. This is the first time that ROS production in organelles has been shown to affect the ER stress response in a plant system.
Collapse
Affiliation(s)
- Rengin Ozgur
- Department of Biology, Faculty of Science, Ege University, Bornova, Izmir, 35100, Turkey
| | - Baris Uzilday
- Department of Biology, Faculty of Science, Ege University, Bornova, Izmir, 35100, Turkey
| | - A Hediye Sekmen
- Department of Biology, Faculty of Science, Ege University, Bornova, Izmir, 35100, Turkey
| | - Ismail Turkan
- Department of Biology, Faculty of Science, Ege University, Bornova, Izmir, 35100, Turkey
| |
Collapse
|
41
|
Smith SJ, Kroon JTM, Simon WJ, Slabas AR, Chivasa S. A Novel Function for Arabidopsis CYCLASE1 in Programmed Cell Death Revealed by Isobaric Tags for Relative and Absolute Quantitation (iTRAQ) Analysis of Extracellular Matrix Proteins. Mol Cell Proteomics 2015; 14:1556-68. [PMID: 25862728 PMCID: PMC4458720 DOI: 10.1074/mcp.m114.045054] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Indexed: 11/06/2022] Open
Abstract
Programmed cell death is essential for plant development and stress adaptation. A detailed understanding of the signal transduction pathways that regulate plant programmed cell death requires identification of the underpinning protein networks. Here, we have used a protagonist and antagonist of programmed cell death triggered by fumonisin B1 as probes to identify key cell death regulatory proteins in Arabidopsis. Our hypothesis was that changes in the abundance of cell death-regulatory proteins induced by the protagonist should be blocked or attenuated by concurrent treatment with the antagonist. We focused on proteins present in the mobile phase of the extracellular matrix on the basis that they are important for cell-cell communications during growth and stress-adaptive responses. Salicylic acid, a plant hormone that promotes programmed cell death, and exogenous ATP, which can block fumonisin B1-induced cell death, were used to treat Arabidopsis cell suspension cultures prior to isobaric-tagged relative and absolute quantitation analysis of secreted proteins. A total of 33 proteins, whose response to salicylic acid was suppressed by ATP, were identified as putative cell death-regulatory proteins. Among these was CYCLASE1, which was selected for further analysis using reverse genetics. Plants in which CYCLASE1 gene expression was knocked out by insertion of a transfer-DNA sequence manifested dramatically increased cell death when exposed to fumonisin B1 or a bacterial pathogen that triggers the defensive hypersensitive cell death. Although pathogen inoculation altered CYCLASE1 gene expression, multiplication of bacterial pathogens was indistinguishable between wild type and CYCLASE1 knockout plants. However, remarkably severe chlorosis symptoms developed on gene knockout plants in response to inoculation with either a virulent bacterial pathogen or a disabled mutant that is incapable of causing disease in wild type plants. These results show that CYCLASE1, which had no known function hitherto, is a negative regulator of cell death and regulates pathogen-induced symptom development in Arabidopsis.
Collapse
Affiliation(s)
- Sarah J Smith
- From the ‡School of Biological and Biomedical Sciences, Durham University, Durham DH1 3LE, United Kingdom
| | - Johan T M Kroon
- From the ‡School of Biological and Biomedical Sciences, Durham University, Durham DH1 3LE, United Kingdom
| | - William J Simon
- From the ‡School of Biological and Biomedical Sciences, Durham University, Durham DH1 3LE, United Kingdom
| | - Antoni R Slabas
- From the ‡School of Biological and Biomedical Sciences, Durham University, Durham DH1 3LE, United Kingdom
| | - Stephen Chivasa
- From the ‡School of Biological and Biomedical Sciences, Durham University, Durham DH1 3LE, United Kingdom
| |
Collapse
|
42
|
CCAAT/enhancer binding protein β in relation to ER stress, inflammation, and metabolic disturbances. BIOMED RESEARCH INTERNATIONAL 2015; 2015:324815. [PMID: 25699273 PMCID: PMC4324884 DOI: 10.1155/2015/324815] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 12/12/2014] [Accepted: 12/12/2014] [Indexed: 12/12/2022]
Abstract
The prevalence of the metabolic syndrome and underlying metabolic disturbances increase rapidly in developed countries. Various molecular targets are currently under investigation to unravel the molecular mechanisms that cause these disturbances. This is done in attempt to counter or prevent the negative health consequences of the metabolic disturbances. Here, we reviewed the current knowledge on the role of C/EBP-β in these metabolic disturbances. C/EBP-β deletion in mice resulted in downregulation of hepatic lipogenic genes and increased expression of β-oxidation genes in brown adipose tissue. Furthermore, C/EBP-β is important in the differentiation and maturation of adipocytes and is increased during ER stress and proinflammatory conditions. So far, studies were only conducted in animals and in cell systems. The results found that C/EBP-β is an important transcription factor within the metabolic disturbances of the metabolic system. Therefore, it is interesting to examine the potential role of C/EBP-β at molecular and physiological level in humans.
Collapse
|
43
|
Stefano G, Hawes C, Brandizzi F. ER - the key to the highway. CURRENT OPINION IN PLANT BIOLOGY 2014; 22:30-38. [PMID: 25259957 PMCID: PMC4250414 DOI: 10.1016/j.pbi.2014.09.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 09/03/2014] [Accepted: 09/04/2014] [Indexed: 05/18/2023]
Abstract
The endoplasmic reticulum (ER) is the key organelle at the start of the secretory pathway and the list of its functions is continually growing. The ER organization as a tubular/cisternal network at the cortex of plant cells has recently been shown to be governed by the membrane tubulation proteins of the reticulon family working alongside plant atlastin homologues, members of the RHD3 group of proteins. Such a network has intimate connections with other organelles such as peroxisomes via peroxules, chloroplasts, Golgi bodies and at the cell cortex to the plasma membrane with cytoskeleton at so called 'anchor/contact sites'. The ER network is by no means static displaying a range of different movements and acting as a subcellular highway supports the motility of organelles such as peroxisomes, mitochondria and Golgi bodies plus the transport of macromolecules such as viral movement proteins, nucleocapsid proteins and RNA. Here we highlight recent and exciting discoveries on the maintenance of the ER structure and its role on movement and biology of other organelles.
Collapse
Affiliation(s)
- Giovanni Stefano
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI 48824, United States; Department of Plant Biology, Michigan State University, East Lansing, MI 48824, United States
| | - Chris Hawes
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, United Kingdom
| | - Federica Brandizzi
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI 48824, United States; Department of Plant Biology, Michigan State University, East Lansing, MI 48824, United States.
| |
Collapse
|
44
|
Hooper SL, Burstein HJ. Minimization of extracellular space as a driving force in prokaryote association and the origin of eukaryotes. Biol Direct 2014; 9:24. [PMID: 25406691 PMCID: PMC4289276 DOI: 10.1186/1745-6150-9-24] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 11/03/2014] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Internalization-based hypotheses of eukaryotic origin require close physical association of host and symbiont. Prior hypotheses of how these associations arose include chance, specific metabolic couplings between partners, and prey-predator/parasite interactions. Since these hypotheses were proposed, it has become apparent that mixed-species, close-association assemblages (biofilms) are widespread and predominant components of prokaryotic ecology. Which forces drove prokaryotes to evolve the ability to form these assemblages are uncertain. Bacteria and archaea have also been found to form membrane-lined interconnections (nanotubes) through which proteins and RNA pass. These observations, combined with the structure of the nuclear envelope and an energetic benefit of close association (see below), lead us to propose a novel hypothesis of the driving force underlying prokaryotic close association and the origin of eukaryotes. RESULTS Respiratory proton transport does not alter external pH when external volume is effectively infinite. Close physical association decreases external volume. For small external volumes, proton transport decreases external pH, resulting in each transported proton increasing proton motor force to a greater extent. We calculate here that in biofilms this effect could substantially decrease how many protons need to be transported to achieve a given proton motor force. Based as it is solely on geometry, this energetic benefit would occur for all prokaryotes using proton-based respiration. CONCLUSIONS This benefit may be a driving force in biofilm formation. Under this hypothesis a very wide range of prokaryotic species combinations could serve as eukaryotic progenitors. We use this observation and the discovery of prokaryotic nanotubes to propose that eukaryotes arose from physically distinct, functionally specialized (energy factory, protein factory, DNA repository/RNA factory), obligatorily symbiotic prokaryotes in which the protein factory and DNA repository/RNA factory cells were coupled by nanotubes and the protein factory ultimately internalized the other two. This hypothesis naturally explains many aspects of eukaryotic physiology, including the nuclear envelope being a folded single membrane repeatedly pierced by membrane-bound tubules (the nuclear pores), suggests that species analogous or homologous to eukaryotic progenitors are likely unculturable as monocultures, and makes a large number of testable predictions. REVIEWERS This article was reviewed by Purificación López-García and Toni Gabaldón.
Collapse
Affiliation(s)
- Scott L Hooper
- Department of Biological Sciences, Ohio University, Athens, OH 45701 USA
| | - Helaine J Burstein
- Department of Biological Sciences, Ohio University, Athens, OH 45701 USA
| |
Collapse
|
45
|
Zhang Z, Shrestha J, Tateda C, Greenberg JT. Salicylic acid signaling controls the maturation and localization of the arabidopsis defense protein ACCELERATED CELL DEATH6. MOLECULAR PLANT 2014; 7:1365-1383. [PMID: 24923602 PMCID: PMC4168298 DOI: 10.1093/mp/ssu072] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
ACCELERATED CELL DEATH6 (ACD6) is a multipass membrane protein with an ankyrin domain that acts in a positive feedback loop with the defense signal salicylic acid (SA). This study implemented biochemical approaches to infer changes in ACD6 complexes and localization. In addition to forming endoplasmic reticulum (ER)- and plasma membrane (PM)-localized complexes, ACD6 forms soluble complexes, where it is bound to cytosolic HSP70, ubiquitinated, and degraded via the proteasome. Thus, ACD6 constitutively undergoes ER-associated degradation. During SA signaling, the soluble ACD6 pool decreases, whereas the PM pool increases. Similarly, ACD6-1, an activated version of ACD6 that induces SA, is present at low levels in the soluble fraction and high levels in the PM. However, ACD6 variants with amino acid substitutions in the ankyrin domain form aberrant, inactive complexes, are induced by a SA agonist, but show no PM localization. SA signaling also increases the PM pools of FLAGELLIN SENSING2 (FLS2) and BRI1-ASSOCIATED RECEPTOR KINASE 1 (BAK1). FLS2 forms complexes ACD6; both FLS2 and BAK1 require ACD6 for maximal accumulation at the PM in response to SA signaling. A plausible scenario is that SA increases the efficiency of productive folding and/or complex formation in the ER, such that ACD6, together with FLS2 and BAK1, reaches the cell surface to more effectively promote immune responses.
Collapse
Affiliation(s)
- Zhongqin Zhang
- Department of Molecular Genetics and Cell Biology, University of Chicago, 929 East 57 Street, GCIS W524, Chicago, IL 60637, USA
| | - Jay Shrestha
- Department of Molecular Genetics and Cell Biology, University of Chicago, 929 East 57 Street, GCIS W524, Chicago, IL 60637, USA
| | - Chika Tateda
- Department of Molecular Genetics and Cell Biology, University of Chicago, 929 East 57 Street, GCIS W524, Chicago, IL 60637, USA
| | - Jean T Greenberg
- Department of Molecular Genetics and Cell Biology, University of Chicago, 929 East 57 Street, GCIS W524, Chicago, IL 60637, USA.
| |
Collapse
|
46
|
Candat A, Paszkiewicz G, Neveu M, Gautier R, Logan DC, Avelange-Macherel MH, Macherel D. The ubiquitous distribution of late embryogenesis abundant proteins across cell compartments in Arabidopsis offers tailored protection against abiotic stress. THE PLANT CELL 2014; 26:3148-66. [PMID: 25005920 PMCID: PMC4145138 DOI: 10.1105/tpc.114.127316] [Citation(s) in RCA: 134] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Late embryogenesis abundant (LEA) proteins are hydrophilic, mostly intrinsically disordered proteins, which play major roles in desiccation tolerance. In Arabidopsis thaliana, 51 genes encoding LEA proteins clustered into nine families have been inventoried. To increase our understanding of the yet enigmatic functions of these gene families, we report the subcellular location of each protein. Experimental data highlight the limits of in silico predictions for analysis of subcellular localization. Thirty-six LEA proteins localized to the cytosol, with most being able to diffuse into the nucleus. Three proteins were exclusively localized in plastids or mitochondria, while two others were found dually targeted to these organelles. Targeting cleavage sites could be determined for five of these proteins. Three proteins were found to be endoplasmic reticulum (ER) residents, two were vacuolar, and two were secreted. A single protein was identified in pexophagosomes. While most LEA protein families have a unique subcellular localization, members of the LEA_4 family are widely distributed (cytosol, mitochondria, plastid, ER, and pexophagosome) but share the presence of the class A α-helix motif. They are thus expected to establish interactions with various cellular membranes under stress conditions. The broad subcellular distribution of LEA proteins highlights the requirement for each cellular compartment to be provided with protective mechanisms to cope with desiccation or cold stress.
Collapse
Affiliation(s)
- Adrien Candat
- Université d'Angers, UMR 1345 Institut de Recherche en Horticulture et Semences, F-49045 Angers, France INRA, UMR 1345 Institut de Recherche en Horticulture et Semences, F-49045 Angers, France
| | - Gaël Paszkiewicz
- Université d'Angers, UMR 1345 Institut de Recherche en Horticulture et Semences, F-49045 Angers, France
| | - Martine Neveu
- INRA, UMR 1345 Institut de Recherche en Horticulture et Semences, F-49045 Angers, France
| | - Romain Gautier
- Institut de Pharmacologie Moléculaire et Cellulaire, Université de Nice Sophia-Antipolis and Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7275, F-06560 Valbonne, France
| | - David C Logan
- Université d'Angers, UMR 1345 Institut de Recherche en Horticulture et Semences, F-49045 Angers, France
| | | | - David Macherel
- Université d'Angers, UMR 1345 Institut de Recherche en Horticulture et Semences, F-49045 Angers, France
| |
Collapse
|
47
|
Dorion S, Rivoal J. Clues to the functions of plant NDPK isoforms. Naunyn Schmiedebergs Arch Pharmacol 2014; 388:119-32. [PMID: 24964975 DOI: 10.1007/s00210-014-1009-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2014] [Accepted: 06/15/2014] [Indexed: 12/20/2022]
Abstract
This review describes the five nucleoside diphosphate kinase (NDPK) genes found in both model plants Arabidopsis thaliana (thale cress) and Oryza sativa L. (rice). Phylogenetic and sequence analyses of these genes allow the definition of four types of NDPK isoforms with different predicted subcellular localization. These predictions are supported by experimental evidence for most NDPK types. Data mining also provides evidence for the existence of a novel NDPK type putatively localized in the endoplasmic reticulum. Phylogenic analyses indicate that plant types I, II, and III belong to the previously identified Nme group I whereas type IV belongs to Nme group II. Additional analysis of the literature offers clues supporting the idea that the various plant NDPK types have different functions. Hence, cytosolic type I NDPKs are involved in metabolism, growth, and stress responses. Type II NDPKs are localized in the chloroplast and mainly involved in photosynthetic development and oxidative stress management. Type III NDPKs have dual targeting to the mitochondria and the chloroplast and are principally involved in energy metabolism. The subcellular localization and precise function of the novel type IV NDPKs, however, will require further investigations.
Collapse
Affiliation(s)
- Sonia Dorion
- IRBV, Université de Montréal, 4101 rue Sherbrooke est, Montréal, QC, H1X 2B2, Canada
| | | |
Collapse
|
48
|
Cadmium stress disrupts the endomembrane organelles and endocytosis during Picea wilsonii pollen germination and tube growth. PLoS One 2014; 9:e94721. [PMID: 24722362 PMCID: PMC3983259 DOI: 10.1371/journal.pone.0094721] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 03/19/2014] [Indexed: 11/19/2022] Open
Abstract
As one of the most severe pollutants, cadmium has been reported to be harmful to plant cells, but the effects of cadmium on gymnosperm pollen germination and tube growth and the mechanism of this involvement are still unclear. Here, we report that cadmium not only strongly inhibited P. wilsonii pollen germination and tube growth, but also significantly altered tube morphology in a dose-dependent manner. Time-lapse images obtained with a laser scanning confocal microscope revealed that endocytosis was dramatically inhibited by cadmium stress. Further investigation with ER-Tracker dye indicated that cadmium stress reduced the number of the Golgi apparatus, and induced dilation of ER. Additionally, Lyso-Tracker staining showed that cadmium distinctly promoted the formation of acidic organelles in pollen tubes, likely derived from the dilated ER. Taken together, our studies indicated that P. wilsonii pollens were highly susceptible to cadmium stress, and that cadmium stress strongly inhibited pollen germination and tube growth by disrupting the endomembrane organelles, inhibiting endo/exocytosis, and forming acidic vacuoles, resulting in swollen tube tips and irregularly broadened tube diameters. These findings provide a new insight into the effects of cadmium toxicity on the tip growth of pollen tubes.
Collapse
|
49
|
Safra M, Henis-Korenblit S. A new tool in C. elegans reveals changes in secretory protein metabolism in ire-1-deficient animals. WORM 2014; 3:e27733. [PMID: 25191629 PMCID: PMC4152325 DOI: 10.4161/worm.27733] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 12/15/2013] [Accepted: 01/03/2014] [Indexed: 12/24/2022]
Abstract
We recently showed that the ire-1/xbp-1 arm of the UPR plays a crucial role in maintaining basic endoplasmic reticulum (ER) functions required for the metabolism of secreted proteins even during unstressed growth conditions. During these studies we realized that although C. elegans is a powerful system to study the genetics of many cellular processes; it lacks effective tools for tracking the metabolism of secreted proteins at the cell and organism levels. Here, we outline how genetic manipulations and expression analysis of a DAF-28::GFP translational fusion transgene can be combined to infer different steps in the life cycle of secretory proteins. We demonstrate how we have used this tool to reveal folding defects, clearance defects, and secretion defects in ire-1 and xbp-1 mutants. We believe that further studies using this tool will deepen the understanding of secretory protein metabolism.
Collapse
Affiliation(s)
- Modi Safra
- The Mina and Everard Goodman Faculty of Life Sciences; Bar-Ilan University; Ramat Gan, Israel
| | - Sivan Henis-Korenblit
- The Mina and Everard Goodman Faculty of Life Sciences; Bar-Ilan University; Ramat Gan, Israel
| |
Collapse
|
50
|
Viotti C. ER and vacuoles: never been closer. FRONTIERS IN PLANT SCIENCE 2014; 5:20. [PMID: 24550928 PMCID: PMC3913007 DOI: 10.3389/fpls.2014.00020] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 01/17/2014] [Indexed: 05/02/2023]
Abstract
The endoplasmic reticulum (ER) represents the gateway for intracellular trafficking of membrane proteins, soluble cargoes and lipids. In all eukaryotes, the best described mechanism of exiting the ER is via COPII-coated vesicles, which transport both membrane proteins and soluble cargoes to the cis-Golgi. The vacuole, together with the plasma membrane, is the most distal point of the secretory pathway, and many vacuolar proteins are transported from the ER through intermediate compartments. However, past results and recent findings demonstrate the presence of alternative transport routes from the ER towards the tonoplast, which are independent of Golgi- and post-Golgi trafficking. Moreover, the transport mechanism of the vacuolar proton pumps VHA-a3 and AVP1 challenges the current model of vacuole biogenesis, pointing to the endoplasmic reticulum for being the main membrane source for the biogenesis of the plant lytic compartment. This review gives an overview of the current knowledge on the transport routes towards the vacuole and discusses the possible mechanism of vacuole biogenesis in plants.
Collapse
Affiliation(s)
- Corrado Viotti
- *Correspondence: Corrado Viotti, Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Linnéusväg 6, 90187 Umeå, Sweden e-mail:
| |
Collapse
|