1
|
Wang YC, Liu XL, Zhang Z, Zhou L, Zhang YF, Zhu BS, Yang YM, Zhong X, Su ZX, Ma PY, Huang XH, Yang ZN, Zhu J. The Residual Activity of Fatty Acyl-CoA Reductase Underlies Thermo-Sensitive Genic Male Sterility in Rice. PLANT, CELL & ENVIRONMENT 2025; 48:1273-1285. [PMID: 39440542 DOI: 10.1111/pce.15230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/13/2024] [Accepted: 10/07/2024] [Indexed: 10/25/2024]
Abstract
Photoperiod/thermo-sensitive genic male sterility (P/TGMS) is critical for rice two-line hybrid system. Previous studies showed that slow development of pollen is a general mechanism for sterility-to-fertility conversion of TGMS in Arabidopsis. However, whether this mechanism still exists in rice is unknown. Here, we identified a novel rice TGMS line, ostms16, which exhibits abnormal pollen exine under high temperature and fertility restoration under low temperature. In mutant, a single base mutation of OsTMS16, a fatty acyl-CoA reductase (FAR), reduced its enzyme activity, leading to defective pollen wall. Under high temperature, the mOsTMS16M549I couldn't provide sufficient protection for the microspores. Under low temperature, the enzyme activity of mOsTMS16M549I is closer to that of OsTMS16, so that the imperfect exine could still protect microspore development. These results indicated whether the residual enzyme activity in mutant could meet the requirement in different temperature is a determinant factor for fertility conversion of P/TGMS lines. Additionally, we previously found that res2, the mutant of a polygalacturonase for tetrad pectin wall degradation, restored multiple TGMS lines in Arabidopsis. In this study, we proved that the osres2 in rice restored the fertility of ostms16, indicating the slow development is also suitable for the fertility restoration in rice.
Collapse
Affiliation(s)
- Yi-Chen Wang
- Shanghai Engineering Research Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Xing-Lu Liu
- Shanghai Key Laboratory of Plant Molecular Sciences, Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Zheng Zhang
- Shanghai Engineering Research Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Lei Zhou
- Shanghai Engineering Research Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Yan-Fei Zhang
- Shanghai Engineering Research Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Ben-Shun Zhu
- Shanghai Engineering Research Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Yan-Ming Yang
- Shanghai Key Laboratory of Plant Molecular Sciences, Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Xiang Zhong
- Shanghai Engineering Research Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Zhen-Xin Su
- Shanghai Key Laboratory of Plant Molecular Sciences, Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Pei-Yang Ma
- Shanghai Engineering Research Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Xue-Hui Huang
- Shanghai Key Laboratory of Plant Molecular Sciences, Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Zhong-Nan Yang
- Shanghai Engineering Research Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Jun Zhu
- Shanghai Key Laboratory of Plant Molecular Sciences, Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai, China
| |
Collapse
|
2
|
Sun Z, Cheng B, Zhang Y, Meng L, Yao Y, Liang Y. SlTDF1: A key regulator of tapetum degradation and pollen development in tomato. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 351:112321. [PMID: 39550036 DOI: 10.1016/j.plantsci.2024.112321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 11/12/2024] [Accepted: 11/13/2024] [Indexed: 11/18/2024]
Abstract
Pollen formation and development during the life cycle of flowering plant are crucial for maintaining reproductive and genetic diversity. In this study, an R2R3MYB family transcription factor, SlTDF1 (SlMYB35), was predominantly expressed in stamens. Repressed expression of SlTDF1 results in a delay in the degradation of the anther tapetum in tomatoes, which in turn leads to the formation of abnormal pollen, including a reduction in the number of single-fruit seeds and fertility when compared to wild-type plants. Analysis of paraffin sections demonstrated that SlTDF1 is a crucial factor in the maturation of tomato pollen. Further analysis of the transcriptomic data revealed that downregulation of the SlTDF1 gene significantly suppressed the expression of genes related to sugar metabolism and anther development. The findings of this study indicated that SlTDF1 plays a pivotal role in regulating tomato pollen development. Moreover, these findings provide a genetic resource for male sterility in tomato plants.
Collapse
Affiliation(s)
- Zhengliang Sun
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, PR China; State Agriculture Ministry Laboratory of Northwest Horticultural Plant Germplasm Resources & Genetic Improvement, Northwest A&F University, Shaanxi 712100, China
| | - Baohui Cheng
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, PR China; State Agriculture Ministry Laboratory of Northwest Horticultural Plant Germplasm Resources & Genetic Improvement, Northwest A&F University, Shaanxi 712100, China
| | - Yanhong Zhang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, PR China; State Agriculture Ministry Laboratory of Northwest Horticultural Plant Germplasm Resources & Genetic Improvement, Northwest A&F University, Shaanxi 712100, China
| | - Liangzhe Meng
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, PR China; State Agriculture Ministry Laboratory of Northwest Horticultural Plant Germplasm Resources & Genetic Improvement, Northwest A&F University, Shaanxi 712100, China
| | - Yuhe Yao
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, PR China; State Agriculture Ministry Laboratory of Northwest Horticultural Plant Germplasm Resources & Genetic Improvement, Northwest A&F University, Shaanxi 712100, China
| | - Yan Liang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, PR China; State Agriculture Ministry Laboratory of Northwest Horticultural Plant Germplasm Resources & Genetic Improvement, Northwest A&F University, Shaanxi 712100, China.
| |
Collapse
|
3
|
Liang S, Wen Q, Lu W, Yang G, Yao Y, Cai H, Wang J, Huang M, Wang H, Guo T. The haploid induction ability analysis of various mutation of OsMATL and OsDMPs in rice. BMC Biol 2025; 23:30. [PMID: 39875930 PMCID: PMC11776126 DOI: 10.1186/s12915-025-02140-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 01/23/2025] [Indexed: 01/30/2025] Open
Abstract
BACKGROUND The high-frequency induction rate of haploid is crucial for double haploid (DH) breeding. The combination of multiple haploid-induced genes, such as ZmPLA1/MATL/NLD and ZmDMP, can synergistically enhance the haploid induction rate (HIR) in maize. However, the potential synergistic effects between OsMATL and OsDMP genes in rice remain unclear. RESULTS Knocking out OsMATL in both HuaHang No.48 (HH48) and Nipponbare (NIP) cultivars resulted in reduced seed setting rate (SSR) and haploid induction (HI). Notably, in this study, the HI capacity of OsMATL knockout mutants in indica rice surpassed that of japonica rice knockout mutants, with the proton active site in the third exon exhibiting a higher HIR compared to the first and fourth exons. Furthermore, when OsDMP1 or OsDMP3 was combined with OsMATL, they increased HIR, and an antagonistic relationship was observed between HIR and SSR in HH48 matl4dmp1 and HH48 matl4dmp3. CONCLUSIONS In rice, the proton active site in the third exon of OsMATL exhibited higher induction efficiency, and OsDMP1 or OsDMP3 exerted a synergistic effect with OsMATL. These findings provide a foundation for further research on DH breeding in rice.
Collapse
Affiliation(s)
- Siyi Liang
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Qin Wen
- The People's Government of Leidashi Town, Tianyuan District, Zhuzhou City, 412103, China
| | - Wenyu Lu
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Guili Yang
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Yingyun Yao
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Hairong Cai
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Jiafeng Wang
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Ming Huang
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Hui Wang
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Tao Guo
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
4
|
Renzetti M, Funck D, Trovato M. Proline and ROS: A Unified Mechanism in Plant Development and Stress Response? PLANTS (BASEL, SWITZERLAND) 2024; 14:2. [PMID: 39795262 PMCID: PMC11723217 DOI: 10.3390/plants14010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 12/16/2024] [Accepted: 12/19/2024] [Indexed: 01/13/2025]
Abstract
The proteinogenic amino acid proline plays crucial roles in both plant development and stress responses, far exceeding its role in protein synthesis. However, the molecular mechanisms and the relative importance of these additional functions of proline remain under study. It is well documented that both stress responses and developmental processes are associated with proline accumulation. Under stress conditions, proline is believed to confer stress tolerance, while under physiological conditions, it assists in developmental processes, particularly during the reproductive phase. Due to proline's properties as a compatible osmolyte and potential reactive oxygen species (ROS) scavenger, most of its beneficial effects have historically been attributed to the physicochemical consequences of its accumulation in plants. However, emerging evidence points to proline metabolism as the primary driver of these beneficial effects. Recent reports have shown that proline metabolism, in addition to supporting reproductive development, can modulate root meristem size by controlling ROS accumulation and distribution in the root meristem. The dynamic interplay between proline and ROS highlights a sophisticated regulatory network essential for plant resilience and survival. This fine-tuning mechanism, enabled by the pro-oxidant and antioxidant properties of compartmentalized proline metabolism, can modulate redox balance and ROS homeostasis, potentially explaining many of the multiple roles attributed to proline. This review uniquely integrates recent findings on the dual role of proline in both ROS scavenging and signaling, provides an updated overview of the most recent research published to date, and proposes a unified mechanism that could account for many of the multiple roles assigned to proline in plant development and stress defense. By focusing on the interplay between proline and ROS, we aim to provide a comprehensive understanding of this proposed mechanism and highlight the potential applications in improving crop resilience to environmental stress. Additionally, we address current gaps in understanding and suggest future research directions to further elucidate the complex roles of proline in plant biology.
Collapse
Affiliation(s)
- Marco Renzetti
- Department of Biology and Biotechnology, Sapienza University of Rome, 00185 Rome, Italy;
| | - Dietmar Funck
- Department of Chemistry, University of Konstanz, 78464 Konstanz, Germany;
| | - Maurizio Trovato
- Department of Biology and Biotechnology, Sapienza University of Rome, 00185 Rome, Italy;
| |
Collapse
|
5
|
Li W, Cheng W, Jiang H, Fang C, Peng L, Tao L, Zhan Y, Huang X, Ma B, Chen X, Wu Y, Liu B, Fu X, Wu K, Ye Y. Mutation of rice EARLY LEAF LESION AND SENESCENCE 1 (ELS1), which encodes an anthranilate synthase α-subunit, induces ROS accumulation and cell death through activating the tryptophan synthesis pathway in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:2723-2737. [PMID: 39540877 DOI: 10.1111/tpj.17141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/03/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Lesion-mimic mutants (LMMs) serve as valuable resources for uncovering the molecular mechanisms that govern programmed cell death (PCD) in plants. Despite extensive research, the regulatory mechanisms of PCD and lesion formation in various LMMs remain to be fully elucidated. In this study, we identified a rice LMM named early leaf lesion and senescence 1 (els1), cloned the causal gene through map-based cloning, and confirmed its function through complementation. ELS1 encodes an anthranilate synthase α-subunit involved in anthranilate biosynthesis. It is predominantly localized in chloroplasts and is primarily expressed in light-exposed tissues. Mutation of ELS1 triggers upregulation of its homologous gene, ASA1, via a genetic compensation response, leading to the activation of the tryptophan (Trp) synthesis pathway and amino acid metabolism. The accumulation of abnormal Trp-derived intermediate metabolites results in reactive oxygen species (ROS) production and abnormal PCD in the els1 mutant, ultimately causing the leaf lesion phenotype. The els1 mutant also exhibits reduced chlorophyll content, upregulation of genes related to chloroplast degradation and leaf senescence, and decreased activity of photosynthetic proteins, indicating that ELS1 plays a role in chloroplast development. These factors collectively contribute to the premature leaf senescence observed in the els1 mutant. Our findings shed light on the role of ELS1 in regulating ROS accumulation and PCD in rice, providing further genetic insights into the molecular mechanisms governing leaf lesions and senescence.
Collapse
Affiliation(s)
- Wenhao Li
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Weimin Cheng
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
| | - Hongrui Jiang
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
| | - Cheng Fang
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
| | - Lingling Peng
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Liangzhi Tao
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
| | - Yue Zhan
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
| | - Xianzhong Huang
- Center for Crop Biotechnology, College of Agriculture, Anhui Science and Technology University, Chuzhou, 239000, China
| | - Bojun Ma
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Xifeng Chen
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Yuejin Wu
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
| | - Binmei Liu
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
| | - Xiangdong Fu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Kun Wu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yafeng Ye
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
| |
Collapse
|
6
|
Wang R, Shi YC, Zhang B, Liu WR, Tan FQ, Lu F, Jiang N, Cheng LC, Xie KD, Wu XM, Guo WW. Gene expression profiles and metabolic pathways responsible for male sterility in cybrid pummelo. PLANT CELL REPORTS 2024; 43:262. [PMID: 39407042 DOI: 10.1007/s00299-024-03357-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 10/03/2024] [Indexed: 11/15/2024]
Abstract
KEY MESSAGE Abnormal expression of genes regulating anther and pollen development and insufficient accumulation of male sterility (MS)- related metabolites lead to MS in cybrid pummelo Male sterility (MS) is a major cause of seedlessness in citrus, which is an important trait for fresh fruit. Understanding the mechanism of MS is important for breeding seedless citrus cultivars. In this study, we dissected the transcriptional, metabolic and physiological mechanisms of MS in somatic cybrid of pummelo (G1 + HBP). G1 + HBP exhibited severe male sterility, manifesting as retarded anther differentiation, abnormal anther wall development (especially tapetum and endothecium), and deficient pollen wall formation. In the anthers of G1 + HBP, the expression of genes regulating anther differentiation and tapetum development was abnormal, and the expression of genes regulating endothecium secondary lignification thickening and pollen wall formation was down-regulated. The transcription of genes involved in MS-related biological processes, such as jasmonic acid (JA) signaling pathway, primary metabolism, flavonoid metabolism, and programmed cell death, was altered in G1 + HBP anthers, and the accumulation of MS-associated metabolites, including fatty acids, amino acids, sugars, ATP, flavonols and reactive oxygen species (ROS), was down-regulated in G1 + HBP anthers. In summary, abnormal expression of key genes regulating anther and pollen development, altered transcription of key genes involved in MS-related metabolic pathways, and insufficient accumulation of MS-related metabolites together lead to MS in G1 + HBP. The critical genes and the metabolism pathways identified herein provide new insights into the formation mechanism of MS in citrus and candidate genes for breeding seedless citrus.
Collapse
Affiliation(s)
- Rong Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
- College of Horticulture and Landscape, Yunnan Agricultural University, Kunming, 650201, China
| | - Yang-Cao Shi
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Bo Zhang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wan-Rong Liu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Feng-Quan Tan
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Fang Lu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Nan Jiang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lai-Chao Cheng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Kai-Dong Xie
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiao-Meng Wu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Wen-Wu Guo
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China.
- Hubei Hongshan Laboratory, Wuhan, 430070, China.
| |
Collapse
|
7
|
Ma L, Zhang T, Zhu QH, Zhang X, Sun J, Liu F. HSP70 and APX1 play important roles in cotton male fertility by mediating ROS homeostasis. Int J Biol Macromol 2024; 278:134856. [PMID: 39168224 DOI: 10.1016/j.ijbiomac.2024.134856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/22/2024] [Accepted: 08/17/2024] [Indexed: 08/23/2024]
Abstract
Male sterility is used in the production of hybrid seeds and can improve the breeding efficiency of cotton hybrids. Reactive oxygen species is closely associated with the tapetum and pollen development, but their relationship in cotton male fertility remains unclear. In this study, we comprehensively compared the cytology and proteome of the anthers from an Upland cotton (Gossypium hirsutum) material, Shida 98 (WT), and its nearly-isogenic male sterile line Shida 98A (MS). Cytology indicated delayed PCD in the tapetum and defects in microspores in MS anthers. And further studies revealed disruption of ROS homeostasis. Proteomic analysis identified proteins with differential abundance mainly being related to redox homeostasis, protein folding, and apoptotic signaling pathways. GhAPX1 interacted with GhHSP70 and played a crucial role in the development of cotton anthers. Exogenous application of HSP70 inhibitor increased H2O2 content and decreased the activity of APX1 and pollen viability. The GhAPX1 mutants generated by CRISPR/Cas9-mediated gene editing exhibited premature degradation of the tapetum, significant decrease in pollen viability, and significant increase in H2O2 content. Altogether, our results imply HSP70 and APX1 being the key players jointly regulating male fertility by mediating ROS homeostasis. These results provide insights into the proteins associated with male fertility.
Collapse
Affiliation(s)
- Lihong Ma
- Key Laboratory of Oasis Eco-agriculture, College of Agriculture, Shihezi University, Shihezi 832000, Xinjiang, China
| | - Tao Zhang
- Key Laboratory of Oasis Eco-agriculture, College of Agriculture, Shihezi University, Shihezi 832000, Xinjiang, China
| | - Qian-Hao Zhu
- CSIRO Agriculture and Food, GPO Box 1700, Canberra 2601, Australia
| | - Xinyu Zhang
- Key Laboratory of Oasis Eco-agriculture, College of Agriculture, Shihezi University, Shihezi 832000, Xinjiang, China
| | - Jie Sun
- Key Laboratory of Oasis Eco-agriculture, College of Agriculture, Shihezi University, Shihezi 832000, Xinjiang, China.
| | - Feng Liu
- Key Laboratory of Oasis Eco-agriculture, College of Agriculture, Shihezi University, Shihezi 832000, Xinjiang, China.
| |
Collapse
|
8
|
Sun Y, Ang Y, Fu M, Bai Y, Chen J, He Y, Zeng H. Temperature change regulates pollen fertility of a PTGMS rice line PA64S by modulating the ROS homeostasis and PCD within the tapetum. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:615-636. [PMID: 39226401 DOI: 10.1111/tpj.17004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/12/2024] [Accepted: 08/16/2024] [Indexed: 09/05/2024]
Abstract
Photoperiod and temperature-sensitive male sterility rice is an important line for two-line hybrid rice, and the changes in the cultivation temperature strictly control its pollen fertility. However, the mechanism by which temperature variation regulates pollen fertility is still unclear. This study obtained stable fertile PA64S(F) and sterile PA64S(S) rice from PA64S by controlling temperature changes. PA64S(F) shows a normal anther development and fertile pollen under low temperature (21°C), and PA64S(S) shows delayed degradation of the tapetum cells, leading to abnormal pollen wall formation and ubisch development under normal temperature (28°C). The accumulation of reactive oxygen species (ROS) positively correlates with the programmed cell death (PCD) process of tapetum cells. The delayed accumulation of ROS in the PA64S(S) tapetum at early stages leads to a delayed initiation of the PCD process. Importantly, we localized ascorbic acid (ASA) accumulation in the tapetum cells and determined that ASA is a major antioxidant for ROS homeostasis. ROS-inhibited accumulation plants (PA64S-ASA) demonstrated pollen sterility, higher ASA and lower ROS accumulation in the tapetum, and the absence of PCD processes in the tapetum cell. Abnormal changes in the tapetum of PA64S(S) rice disrupted metabolic pathways such as lipid metabolism, cutin and wax synthesis, sugar accumulation, and phenylpropane, affecting pollen wall formation and substance accumulation, suggesting that the timely accumulation of ROS is critical for male fertility. This study highlights the central role of ROS homeostasis in fertility alteration and also provides an avenue to address the effect of environmental temperature changes on pollen fertility in rice.
Collapse
Affiliation(s)
- Yujun Sun
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yina Ang
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Ming Fu
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yunxiu Bai
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jiasheng Chen
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Ying He
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Hanlai Zeng
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
9
|
Shi C, Yang S, Cui Y, Xu Z, Zhang B, Guo M, Zhu Y, Yang Y, Wang F, Liu H, Zhang Y, Qian Q, Shang L. Oxidative burst causes loss of tapetal Ubisch body and male sterility in rice. THE NEW PHYTOLOGIST 2024; 244:10-15. [PMID: 39091149 DOI: 10.1111/nph.20023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 07/09/2024] [Indexed: 08/04/2024]
Affiliation(s)
- Chuanlin Shi
- Institute of Biotechnology, Fujian Academy of Agricultural Sciences/Fujian Provincial Key Laboratory of Genetic Engineering for Agriculture, Fuzhou, 350003, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Shaohua Yang
- Institute of Biotechnology, Fujian Academy of Agricultural Sciences/Fujian Provincial Key Laboratory of Genetic Engineering for Agriculture, Fuzhou, 350003, China
| | - Yan Cui
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
- Shenzhen Research Institute of Henan University, Shenzhen, 518000, China
| | - Zhan Xu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Bin Zhang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Mingliang Guo
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Yiwang Zhu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Ying Yang
- Yunnan Key Laboratory for Rice Genetic Improvement, Food Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650000, China
| | - Feng Wang
- Institute of Biotechnology, Fujian Academy of Agricultural Sciences/Fujian Provincial Key Laboratory of Genetic Engineering for Agriculture, Fuzhou, 350003, China
| | - Huaqing Liu
- Institute of Biotechnology, Fujian Academy of Agricultural Sciences/Fujian Provincial Key Laboratory of Genetic Engineering for Agriculture, Fuzhou, 350003, China
| | - Yu Zhang
- Yunnan Key Laboratory for Rice Genetic Improvement, Food Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650000, China
| | - Qian Qian
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, Zhejiang, China
- Yazhouwan National Laboratory, No. 8 Huanjin Road, Yazhou District, Sanya, Hainan Province, 572024, China
| | - Lianguang Shang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
- Yazhouwan National Laboratory, No. 8 Huanjin Road, Yazhou District, Sanya, Hainan Province, 572024, China
| |
Collapse
|
10
|
Thiruvengadam R, Venkidasamy B, Easwaran M, Chi HY, Thiruvengadam M, Kim SH. Dynamic interplay of reactive oxygen and nitrogen species (ROS and RNS) in plant resilience: unveiling the signaling pathways and metabolic responses to biotic and abiotic stresses. PLANT CELL REPORTS 2024; 43:198. [PMID: 39023775 DOI: 10.1007/s00299-024-03281-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 07/09/2024] [Indexed: 07/20/2024]
Abstract
KEY MESSAGE Plants respond to environmental challenges by producing reactive species such as ROS and RNS, which play critical roles in signaling pathways that lead to adaptation and survival strategies. Understanding these pathways, as well as their detection methods and effects on plant development and metabolism, provides insight into increasing crop tolerance to combined stresses. Plants encounter various environmental stresses (abiotic and biotic) that affect plant growth and development. Plants sense biotic and abiotic stresses by producing different molecules, including reactive species, that act as signaling molecules and stimulate secondary messengers and subsequent gene transcription. Reactive oxygen and nitrogen species (ROS and RNS) are produced in both physiological and pathological conditions in the plasma membranes, chloroplasts, mitochondria, and endoplasmic reticulum. Various techniques, including spectroscopy, chromatography, and fluorescence methods, are used to detect highly reactive, short-half-life ROS and RNS either directly or indirectly. In this review, we highlight the roles of ROS and RNS in seed germination, root development, senescence, mineral nutrition, and post-harvest control. In addition, we provide information on the specialized metabolism involved in plant growth and development. Secondary metabolites, including alkaloids, flavonoids, and terpenoids, are produced in low concentrations in plants for signaling and metabolism. Strategies for improving crop performance under combined drought and pathogen stress conditions are discussed in this review.
Collapse
Affiliation(s)
- Rekha Thiruvengadam
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 602105, Tamil Nadu, India
| | - Baskar Venkidasamy
- Department of Oral and Maxillofacial Surgery, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Tamil Nadu, Chennai, 600077, India
| | - Maheswaran Easwaran
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Tamil Nadu, Chennai, 600077, India
| | - Hee Youn Chi
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul, Republic of Korea
| | - Muthu Thiruvengadam
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul, Republic of Korea.
| | - Seung-Hyun Kim
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul, Republic of Korea.
| |
Collapse
|
11
|
Zhou L, Mao Y, Yang Y, Wang J, Zhong X, Han Y, Zhang Y, Shi Q, Huang X, Meyers BC, Zhu J, Yang Z. Temperature and light reverse the fertility of rice P/TGMS line ostms19 via reactive oxygen species homeostasis. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:2020-2032. [PMID: 38421616 PMCID: PMC11182586 DOI: 10.1111/pbi.14322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/30/2024] [Accepted: 02/17/2024] [Indexed: 03/02/2024]
Abstract
P/TGMS (Photo/thermo-sensitive genic male sterile) lines are crucial resources for two-line hybrid rice breeding. Previous studies revealed that slow development is a general mechanism for sterility-fertility conversion of P/TGMS in Arabidopsis. However, the difference in P/TGMS genes between rice and Arabidopsis suggests the presence of a distinct P/TGMS mechanism in rice. In this study, we isolated a novel P/TGMS line, ostms19, which shows sterility under high-temperature conditions and fertility under low-temperature conditions. OsTMS19 encodes a novel pentatricopeptide repeat (PPR) protein essential for pollen formation, in which a point mutation GTA(Val) to GCA(Ala) leads to ostms19 P/TGMS phenotype. It is highly expressed in the tapetum and localized to mitochondria. Under high temperature or long-day photoperiod conditions, excessive ROS accumulation in ostms19 anthers during pollen mitosis disrupts gene expression and intine formation, causing male sterility. Conversely, under low temperature or short-day photoperiod conditions, ROS can be effectively scavenged in anthers, resulting in fertility restoration. This indicates that ROS homeostasis is critical for fertility conversion. This relationship between ROS homeostasis and fertility conversion has also been observed in other tested rice P/TGMS lines. Therefore, we propose that ROS homeostasis is a general mechanism for the sterility-fertility conversion of rice P/TGMS lines.
Collapse
Affiliation(s)
- Lei Zhou
- Shanghai Engineering Research Center of Plant Germplasm Resources, College of Life SciencesShanghai Normal UniversityShanghaiChina
| | - Yi‐Chen Mao
- Shanghai Key Laboratory of Plant Molecular Sciences, Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life SciencesShanghai Normal UniversityShanghaiChina
| | - Yan‐Ming Yang
- Shanghai Key Laboratory of Plant Molecular Sciences, Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life SciencesShanghai Normal UniversityShanghaiChina
| | - Jun‐Jie Wang
- Shanghai Key Laboratory of Plant Molecular Sciences, Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life SciencesShanghai Normal UniversityShanghaiChina
| | - Xiang Zhong
- Shanghai Engineering Research Center of Plant Germplasm Resources, College of Life SciencesShanghai Normal UniversityShanghaiChina
| | - Yu Han
- Shanghai Engineering Research Center of Plant Germplasm Resources, College of Life SciencesShanghai Normal UniversityShanghaiChina
| | - Yan‐Fei Zhang
- Shanghai Engineering Research Center of Plant Germplasm Resources, College of Life SciencesShanghai Normal UniversityShanghaiChina
| | - Qiang‐Sheng Shi
- Jiangxi Yangtze River Economic Zone Research InstituteJiujiang UniversityJiujiangJiangxiChina
| | - Xue‐hui Huang
- Shanghai Key Laboratory of Plant Molecular Sciences, Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life SciencesShanghai Normal UniversityShanghaiChina
| | | | - Jun Zhu
- Shanghai Key Laboratory of Plant Molecular Sciences, Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life SciencesShanghai Normal UniversityShanghaiChina
| | - Zhong‐Nan Yang
- Shanghai Engineering Research Center of Plant Germplasm Resources, College of Life SciencesShanghai Normal UniversityShanghaiChina
| |
Collapse
|
12
|
Lu Z, Zhu L, Liang G, Li X, Li Q, Li Y, He S, Wu J, Liu X, Zhang J. MORE FLORET1 controls anther development by negatively regulating key tapetal genes in both diploid and tetraploid rice. PLANT PHYSIOLOGY 2024; 195:1981-1994. [PMID: 38507615 DOI: 10.1093/plphys/kiae145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/06/2024] [Accepted: 02/11/2024] [Indexed: 03/22/2024]
Abstract
Polyploid hybrid rice (Oryza sativa) has great potential for increasing yields. However, hybrid rice depends on male fertility and its regulation, which is less well studied in polyploid rice than in diploid rice. We previously identified an MYB transcription factor, MORE FLORET1 (MOF1), whose mutation causes male sterility in neo-tetraploid rice. MOF1 expression in anthers peaks at anther Stage 7 (S7) and progressively decreases to low levels at S10. However, it remains unclear how the dynamics of MOF1 expression contribute to male fertility. Here, we carefully examined anther development in both diploid and tetraploid mof1 rice mutants, as well as lines ectopically expressing MOF1 in a temporal manner. MOF1 mutations caused delayed degeneration of the tapetum and middle layer of anthers and aberrant pollen wall organization. Ectopic MOF1 expression at later stages of anther development led to retarded cytoplasmic reorganization of tapetal cells. In both cases, pollen grains were aborted and seed production was abolished, indicating that precise control of MOF1 expression is essential for male reproduction. We demonstrated that 5 key tapetal genes, CYP703A3 (CYTOCHROME P450 HYDROXYLASE 703A3), OsABCG26 (O. sativa ATP BINDING CASSETTE G26), PTC1 (PERSISTENT TAPETAL CELL1), PKS2 (POLYKETIDE SYNTHASE 2), and OsABCG15 (O. sativa ATP BINDING CASSETTE G15), exhibit expression patterns opposite to those of MOF1 and are negatively regulated by MOF1. Moreover, DNA affinity purification sequencing (DAP-seq), luciferase activity assays, and electrophoretic mobility shift assays indicated that MOF1 binds directly to the PKS2 promoter for transcriptional repression. Our results provide a mechanistic basis for the regulation of male reproduction by MOF1 in both diploid and tetraploid rice. This study will facilitate the development of polyploid male sterile lines, which are useful for breeding of polyploid hybrid rice.
Collapse
Affiliation(s)
- Zijun Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
- Henry Fok School of Biology and Agriculture, Shaoguan University, Shaoguan 512005, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
- College of Agriculture, South China Agricultural University, Guangzhou 510642, China
- Guangdong Base Bank for Lingnan Rice Germplasm Resources, Guangzhou 510642, China
| | - Lianjun Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
- College of Agriculture, South China Agricultural University, Guangzhou 510642, China
- Guangdong Base Bank for Lingnan Rice Germplasm Resources, Guangzhou 510642, China
| | - Guobin Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
- College of Agriculture, South China Agricultural University, Guangzhou 510642, China
- Guangdong Base Bank for Lingnan Rice Germplasm Resources, Guangzhou 510642, China
| | - Xiaoxia Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
- College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Qihang Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
- College of Agriculture, South China Agricultural University, Guangzhou 510642, China
- Guangdong Base Bank for Lingnan Rice Germplasm Resources, Guangzhou 510642, China
| | - Yajing Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Shengbo He
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
- College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Jinwen Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
- College of Agriculture, South China Agricultural University, Guangzhou 510642, China
- Guangdong Base Bank for Lingnan Rice Germplasm Resources, Guangzhou 510642, China
| | - Xiangdong Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
- College of Agriculture, South China Agricultural University, Guangzhou 510642, China
- Guangdong Base Bank for Lingnan Rice Germplasm Resources, Guangzhou 510642, China
| | - Jingyi Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
- College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
13
|
Liu J, Ye Q, Jiang W, Liu S, Wu Z, Hu X, Wang X, Zhang Z, Guo D, Chen X, He H, Hu L. Abnormal Degraded Tapetum 1 (ADT1) is required for tapetal cell death and pollen development in rice. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:170. [PMID: 38913206 DOI: 10.1007/s00122-024-04677-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 06/14/2024] [Indexed: 06/25/2024]
Abstract
The timely degradation of tapetum, the innermost somatic anther cell layer in flowering plants, is critical for pollen development. Although several genes involved in tapetum development have been characterized, the molecular mechanisms underlying tapetum degeneration remain elusive. Here, we showed that mutation in Abnormal Degraded Tapetum 1 (ADT1) resulted in overaccumulation of Reactive Oxygen Species (ROS) and abnormal anther development, causing earlier tapetum Programmed Cell Death (PCD) and pollen abortion. ADT1 encodes a nuclear membrane localized protein, which is strongly expressed in the developing microspores and tapetal cells during early anther development. Moreover, ADT1 could interact with metallothionein MT2b, which was related to ROS scavenging and cell death regulation. These findings indicate that ADT1 is required for proper timing of tapetum PCD by regulating ROS homeostasis, expanding our understanding of the regulatory network of male reproductive development in rice.
Collapse
Affiliation(s)
- Jialin Liu
- College of Agriculture, Jiangxi Agricultural University, Nanchang, 330045, China
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045, China
- School of Advanced Agricultural Sciences, Weifang University, Weifang, 261000, China
| | - Qing Ye
- College of Agriculture, Jiangxi Agricultural University, Nanchang, 330045, China
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Wenxiang Jiang
- College of Agriculture, Jiangxi Agricultural University, Nanchang, 330045, China
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Shiqiang Liu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045, China
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Zheng Wu
- College of Agriculture, Jiangxi Agricultural University, Nanchang, 330045, China
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Xiafei Hu
- College of Agriculture, Jiangxi Agricultural University, Nanchang, 330045, China
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Xiaoqing Wang
- College of Agriculture, Jiangxi Agricultural University, Nanchang, 330045, China
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Zelin Zhang
- College of Agriculture, Jiangxi Agricultural University, Nanchang, 330045, China
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Dandan Guo
- College of Agriculture, Jiangxi Agricultural University, Nanchang, 330045, China
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Xiaorong Chen
- College of Agriculture, Jiangxi Agricultural University, Nanchang, 330045, China
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Haohua He
- College of Agriculture, Jiangxi Agricultural University, Nanchang, 330045, China.
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Lifang Hu
- College of Agriculture, Jiangxi Agricultural University, Nanchang, 330045, China.
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045, China.
| |
Collapse
|
14
|
Ali MF, Muday GK. Reactive oxygen species are signaling molecules that modulate plant reproduction. PLANT, CELL & ENVIRONMENT 2024; 47:1592-1605. [PMID: 38282262 DOI: 10.1111/pce.14837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/04/2024] [Accepted: 01/15/2024] [Indexed: 01/30/2024]
Abstract
Reactive oxygen species (ROS) can serve as signaling molecules that are essential for plant growth and development but abiotic stress can lead to ROS increases to supraoptimal levels resulting in cellular damage. To ensure efficient ROS signaling, cells have machinery to locally synthesize ROS to initiate cellular responses and to scavenge ROS to prevent it from reaching damaging levels. This review summarizes experimental evidence revealing the role of ROS during multiple stages of plant reproduction. Localized ROS synthesis controls the formation of pollen grains, pollen-stigma interactions, pollen tube growth, ovule development, and fertilization. Plants utilize ROS-producing enzymes such as respiratory burst oxidase homologs and organelle metabolic pathways to generate ROS, while the presence of scavenging mechanisms, including synthesis of antioxidant proteins and small molecules, serves to prevent its escalation to harmful levels. In this review, we summarized the function of ROS and its synthesis and scavenging mechanisms in all reproductive stages from gametophyte development until completion of fertilization. Additionally, we further address the impact of elevated temperatures induced ROS on impairing these reproductive processes and of flavonol antioxidants in maintaining ROS homeostasis to minimize temperature stress to combat the impact of global climate change on agriculture.
Collapse
Affiliation(s)
- Mohammad Foteh Ali
- Department of Biology and Center for Molecular Signaling, Wake Forest University, Winston Salem, NC, United States
| | - Gloria K Muday
- Department of Biology and Center for Molecular Signaling, Wake Forest University, Winston Salem, NC, United States
| |
Collapse
|
15
|
Xie S, Luo H, Huang W, Jin W, Dong Z. Striking a growth-defense balance: Stress regulators that function in maize development. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:424-442. [PMID: 37787439 DOI: 10.1111/jipb.13570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 10/01/2023] [Indexed: 10/04/2023]
Abstract
Maize (Zea mays) cultivation is strongly affected by both abiotic and biotic stress, leading to reduced growth and productivity. It has recently become clear that regulators of plant stress responses, including the phytohormones abscisic acid (ABA), ethylene (ET), and jasmonic acid (JA), together with reactive oxygen species (ROS), shape plant growth and development. Beyond their well established functions in stress responses, these molecules play crucial roles in balancing growth and defense, which must be finely tuned to achieve high yields in crops while maintaining some level of defense. In this review, we provide an in-depth analysis of recent research on the developmental functions of stress regulators, focusing specifically on maize. By unraveling the contributions of these regulators to maize development, we present new avenues for enhancing maize cultivation and growth while highlighting the potential risks associated with manipulating stress regulators to enhance grain yields in the face of environmental challenges.
Collapse
Affiliation(s)
- Shiyi Xie
- Maize Engineering and Technology Research Center of Hunan Province, College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China
| | - Hongbing Luo
- Maize Engineering and Technology Research Center of Hunan Province, College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| | - Wei Huang
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China
| | - Weiwei Jin
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China
- Tianjin Key Laboratory of Intelligent Breeding of Major Crops, Fresh Corn Research Center of BTH, College of Agronomy & Resources and Environment, Tianjin Agricultural University, Tianjin, 300384, China
| | - Zhaobin Dong
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
16
|
Singh SP, Verma RK, Goel R, Kumar V, Singh RR, Sawant SV. Arabidopsis BECLIN1-induced autophagy mediates reprogramming in tapetal programmed cell death by altering the gross cellular homeostasis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 208:108471. [PMID: 38503186 DOI: 10.1016/j.plaphy.2024.108471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 02/14/2024] [Accepted: 02/23/2024] [Indexed: 03/21/2024]
Abstract
In flowering plants, the tapetum degeneration in post-meiotic anther occurs through developmental programmed cell death (dPCD), which is one of the most critical and sensitive steps for the proper development of male gametophytes and fertility. Yet the pathways of dPCD, its regulation, and its interaction with autophagy remain elusive. Here, we report that high-level expression of Arabidopsis autophagy-related gene BECLIN1 (BECN1 or AtATG6) in the tobacco tapetum prior to their dPCD resulted in developmental defects. BECN1 induces severe autophagy and multiple cytoplasm-to-vacuole pathways, which alters tapetal cell reactive oxygen species (ROS)-homeostasis that represses the tapetal dPCD. The transcriptome analysis reveals that BECN1- expression caused major changes in the pathway, resulting in altered cellular homeostasis in the tapetal cell. Moreover, BECN1-mediated autophagy reprograms the execution of tapetal PCD by altering the expression of the key developmental PCD marker genes: SCPL48, CEP1, DMP4, BFN1, MC9, EXI1, and Bcl-2 member BAG5, and BAG6. This study demonstrates that BECN1-mediated autophagy is inhibitory to the dPCD of the tapetum, but the severity of autophagy leads to autophagic death in the later stages. The delayed and altered mode of tapetal degeneration resulted in male sterility.
Collapse
Affiliation(s)
- Surendra Pratap Singh
- Plant Molecular Biology Laboratory, CSIR National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, India; Department of Botany, University of Lucknow, Lucknow, 226007, India.
| | - Rishi Kumar Verma
- Plant Molecular Biology Laboratory, CSIR National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| | - Ridhi Goel
- Plant Molecular Biology Laboratory, CSIR National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| | - Verandra Kumar
- Plant Molecular Biology Laboratory, CSIR National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, India.
| | | | - Samir V Sawant
- Plant Molecular Biology Laboratory, CSIR National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
17
|
Liang J, Lu L, Zhang W, Chi M, Shen M, An C, Chen S, Wang X, Liu R, Qin Y, Zheng P. Comprehensive characterization and expression analysis of enzymatic antioxidant gene families in passion fruit ( Passiflora edulis). iScience 2023; 26:108329. [PMID: 38026217 PMCID: PMC10656276 DOI: 10.1016/j.isci.2023.108329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/15/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023] Open
Abstract
Passion fruit, a valuable tropical fruit, faces climate-related growth challenges. Antioxidant enzymes are vital for both stress protection and growth regulation in plants. We first provided systemic analysis of enzymatic antioxidant gene families in passion fruit, identifying 90 members including 11 PeSODs, 45 PeAPXs, 8 PeCATs, 7 PeGPXs, 6 PeMDHARs, 8 PeDHARs, and 5 PeGRs. Gene members in each gene family with same subcellular localization showed closer phylogenetic relationship. Many antioxidant genes exhibited tissue- or developmental stage-specific expression patterns during floral and fruit development, with some widely expressed. Their co-expressed genes were linked to photosynthesis and energy metabolism, suggesting roles in protecting highly proliferating tissues from oxidative damage. Potential genes for enhancing temperature stress resistance were identified. The involvement of diverse regulatory factors including miRNAs, transcription factors, and CREs might contribute to the complex roles of antioxidant genes. This study informs future research on antioxidant genes and passion fruit breeding.
Collapse
Affiliation(s)
- Jianxiang Liang
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Center for Viticulture and Enology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lin Lu
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wenbin Zhang
- Xinluo Breeding Center for Excellent Germplasms, Longyan 361000, China
| | - Ming Chi
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Mengqian Shen
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chang An
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shengzhen Chen
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaomei Wang
- Horticulture Research Institute, Guangxi Academy of Agricultural Sciences, Nanning Investigation Station of South Subtropical Fruit Trees, Ministry of Agriculture, Nanning 530004, China
| | - Ruoyu Liu
- Pingtan Science and Technology Research Institute, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuan Qin
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Pingtan Science and Technology Research Institute, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ping Zheng
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Pingtan Science and Technology Research Institute, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
18
|
Zhang M, Zhang X, Wang R, Zang R, Guo L, Qi T, Tang H, Chen L, Wang H, Qiao X, Wu J, Xing C. Heat-responsive microRNAs participate in regulating the pollen fertility stability of CMS-D2 restorer line under high-temperature stress. Biol Res 2023; 56:58. [PMID: 37941013 PMCID: PMC10634144 DOI: 10.1186/s40659-023-00465-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 10/12/2023] [Indexed: 11/10/2023] Open
Abstract
Anther development and pollen fertility of cytoplasmic male sterility (CMS) conditioned by Gossypium harknessii cytoplasm (CMS-D2) restorer lines are susceptible to continuous high-temperature (HT) stress in summer, which seriously hinders the large-scale application of "three-line" hybrids in production. Here, integrated small RNA, transcriptome, degradome, and hormone profiling was performed to explore the roles of microRNAs (miRNAs) in regulating fertility stability in mature pollens of isonuclear alloplasmic near-isogenic restorer lines NH and SH under HT stress at two environments. A total of 211 known and 248 novel miRNAs were identified, of which 159 were differentially expressed miRNAs (DEMs). Additionally, 45 DEMs in 39 miRNA clusters (PmCs) were also identified, and most highly expressed miRNAs were significantly induced in SH under extreme HT, especially four MIR482 and six MIR6300 family miRNAs. PmC28 was located in the fine-mapped interval of the Rf1 gene and contained two DEMs, gra-miR482_L-2R + 2 and gma-miR2118a-3p_R + 1_1ss18TG. Transcriptome sequencing identified 6281 differentially expressed genes, of which heat shock protein (HSP)-related genes, such as HSP70, HSP22, HSP18.5-C, HSP18.2 and HSP17.3-B, presented significantly reduced expression levels in SH under HT stress. Through integrating multi-omics data, we constructed a comprehensive molecular network of miRNA-mRNA-gene-KEGG containing 35 pairs of miRNA/target genes involved in regulating the pollen development in response to HT, among which the mtr-miR167a_R + 1, tcc-miR167c and ghr-miR390a, tcc-miR396c_L-1 and ghr-MIR169b-p3_1ss6AG regulated the pollen fertility by influencing ARF8 responsible for the auxin signal transduction, ascorbate and aldarate metabolism, and the sugar and lipid metabolism and transport pathways, respectively. Further combination with hormone analysis revealed that HT-induced jasmonic acid signaling could activate the expression of downstream auxin synthesis-related genes and cause excessive auxin accumulation, followed by a cascade of auxin signal transduction, ultimately resulting in pollen abortion. The results provide a new understanding of how heat-responsive miRNAs regulate the stability of fertility restoration for CMS-D2 cotton under heat stress.
Collapse
Affiliation(s)
- Meng Zhang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, 38 Huanghe Dadao, Anyang, 455000, Henan, China
| | - Xuexian Zhang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, 38 Huanghe Dadao, Anyang, 455000, Henan, China
| | - Ruijie Wang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, 38 Huanghe Dadao, Anyang, 455000, Henan, China
| | - Rong Zang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, 38 Huanghe Dadao, Anyang, 455000, Henan, China
| | - Liping Guo
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, 38 Huanghe Dadao, Anyang, 455000, Henan, China
| | - Tingxiang Qi
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, 38 Huanghe Dadao, Anyang, 455000, Henan, China
| | - Huini Tang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, 38 Huanghe Dadao, Anyang, 455000, Henan, China
| | - Liangliang Chen
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, 38 Huanghe Dadao, Anyang, 455000, Henan, China
| | - Hailin Wang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, 38 Huanghe Dadao, Anyang, 455000, Henan, China
| | - Xiuqin Qiao
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, 38 Huanghe Dadao, Anyang, 455000, Henan, China
| | - Jianyong Wu
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, 38 Huanghe Dadao, Anyang, 455000, Henan, China.
| | - Chaozhu Xing
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, 38 Huanghe Dadao, Anyang, 455000, Henan, China.
| |
Collapse
|
19
|
Liu E, Zhu S, Du M, Lyu H, Zeng S, Liu Q, Wu G, Jiang J, Dang X, Dong Z, Hong D. LAX1, functioning with MADS-box genes, determines normal palea development in rice. Gene 2023; 883:147635. [PMID: 37442304 DOI: 10.1016/j.gene.2023.147635] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/19/2023] [Accepted: 07/10/2023] [Indexed: 07/15/2023]
Abstract
Normal floral organ development in rice is necessary for grain formation. Many MADS-box family genes that belong to ABCDE model have been widely implicated in rice flower development. The LAX1 allele encodes a plant-specific basic helix-loop-helix (bHLH) transcription factor, which is the main regulator of axillary meristem formation in rice. However, the molecular mechanisms of LAX1 allele together with MADS-box family genes underlying palea development have not been reported. We found a short palea mutant plant in a population of indica rice variety 9311 treated with cobalt 60. We report the map-based cloning and characterization of lax1-7, identified as a new mutant allele of the LAX1 locus, and the role of its wild-type allele LAX1 in rice palea development. Through complementary experiments, combined with genetic and molecular biological analyses, the function of the LAX1 allele was determined. We showed that LAX1 allele is expressed specifically in young spikelets and encodes a nucleus-localized protein. In vitro and in vivo experiments revealed that the LAX1 protein physically interacts with OsMADS1, OsMADS6 and OsMADS7. The LAX1 allele is pleiotropic for the maintenance of rice palea identity via cooperation with MADS-box genes and other traits, including axillary meristem initiation, days to heading, plant height, panicle length and spikelet fertility.
Collapse
Affiliation(s)
- Erbao Liu
- College of Agriculture, Anhui Agricultural University, Hefei 230036, China
| | - Shangshang Zhu
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Mingyu Du
- College of Agriculture, Anhui Agricultural University, Hefei 230036, China
| | - Huineng Lyu
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Siyuan Zeng
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Qiangming Liu
- Chongqing Academy of Agricultural Sciences, Chongqing 401329, China
| | - Guocan Wu
- Ningde Institute of Agricultural Sciences, Ningde 355017, China
| | - Jianhua Jiang
- Anhui Academy of Agricultural Sciences, Hefei 230001, China
| | - Xiaojing Dang
- Anhui Academy of Agricultural Sciences, Hefei 230001, China
| | - Zhiyao Dong
- College of Life Sciences, Jilin Normal University, Jilin 136000, China
| | - Delin Hong
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
20
|
Peng G, Liu M, Zhu L, Luo W, Wang Q, Wang M, Chen H, Luo Z, Xiao Y, Zhang Y, Hong H, Liu Z, Zhou L, Guo G, Wang Y, Zhuang C, Zhou H. The E3 ubiquitin ligase CSIT1 regulates critical sterility-inducing temperature by ribosome-associated quality control to safeguard two-line hybrid breeding in rice. MOLECULAR PLANT 2023; 16:1695-1709. [PMID: 37743625 DOI: 10.1016/j.molp.2023.09.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 08/28/2023] [Accepted: 09/21/2023] [Indexed: 09/26/2023]
Abstract
Two-line hybrid breeding can fully utilize heterosis in crops. In thermo-sensitive genic male sterile (TGMS) lines, low critical sterility-inducing temperature (CSIT) is vital to safeguard the production of two-line hybrid seeds in rice (Oryza sativa), but the molecular mechanism determining CSIT is unclear. Here, we report the cloning of CSIT1, which encodes an E3 ubiquitin ligase, and show that CSIT1 modulates the CSIT of thermo-sensitive genic male sterility 5 (tms5)-based TGMS lines through ribosome-associated quality control (RQC). Biochemical assays demonstrated that CSIT1 binds to the 80S ribosomes and ubiquitinates abnormal nascent polypeptides for degradation in the RQC process. Loss of CSIT1 function inhibits the possible damage of tms5 to the ubiquitination system and protein translation, resulting in enhanced accumulation of anther-related proteins such as catalase to suppress abnormal accumulation of reactive oxygen species and premature programmed cell death in the tapetum, thereby leading to a much higher CSIT in the tms5-based TGMS lines. Taken together, our findings reveal a regulatory mechanism of CSIT, providing new insights into RQC and potential targets for future two-line hybrid breeding.
Collapse
Affiliation(s)
- Guoqing Peng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory for Enhancing Resource Use Efficiency of Crops in South China, Ministry of Agriculture and Rural Affairs, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; College of Agriculture & Biology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Minglong Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory for Enhancing Resource Use Efficiency of Crops in South China, Ministry of Agriculture and Rural Affairs, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Liya Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory for Enhancing Resource Use Efficiency of Crops in South China, Ministry of Agriculture and Rural Affairs, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Wenlong Luo
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Qinghua Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory for Enhancing Resource Use Efficiency of Crops in South China, Ministry of Agriculture and Rural Affairs, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Mumei Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory for Enhancing Resource Use Efficiency of Crops in South China, Ministry of Agriculture and Rural Affairs, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Huiqiong Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory for Enhancing Resource Use Efficiency of Crops in South China, Ministry of Agriculture and Rural Affairs, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Ziliang Luo
- Agronomy Department, University of Florida, Gainesville, FL 32610, USA
| | - Yueping Xiao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory for Enhancing Resource Use Efficiency of Crops in South China, Ministry of Agriculture and Rural Affairs, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Yongjie Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory for Enhancing Resource Use Efficiency of Crops in South China, Ministry of Agriculture and Rural Affairs, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Haona Hong
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory for Enhancing Resource Use Efficiency of Crops in South China, Ministry of Agriculture and Rural Affairs, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Zhenlan Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory for Enhancing Resource Use Efficiency of Crops in South China, Ministry of Agriculture and Rural Affairs, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Lingyan Zhou
- College of Agriculture & Biology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Guoqiang Guo
- Hengyang Academy of Agricultural Sciences, Hengyang 421101, China
| | - Yingxiang Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory for Enhancing Resource Use Efficiency of Crops in South China, Ministry of Agriculture and Rural Affairs, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Chuxiong Zhuang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory for Enhancing Resource Use Efficiency of Crops in South China, Ministry of Agriculture and Rural Affairs, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China.
| | - Hai Zhou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory for Enhancing Resource Use Efficiency of Crops in South China, Ministry of Agriculture and Rural Affairs, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
21
|
Zhang C, Zhang C, Xu X, Liao M, Tong N, Zhang Z, Chen Y, Xu Han X, Lin Y, Lai Z. Transcriptome analysis provides insight into the regulatory mechanisms underlying pollen germination recovery at normal high ambient temperature in wild banana ( Musa itinerans). FRONTIERS IN PLANT SCIENCE 2023; 14:1255418. [PMID: 37822335 PMCID: PMC10562711 DOI: 10.3389/fpls.2023.1255418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 09/11/2023] [Indexed: 10/13/2023]
Abstract
Introduction Cultivated banana are polyploid, with low pollen fertility, and most cultivars are male sterile, which leads to difficulties in banana breeding research. The selection of male parent with excellent resistance and pollen fertility is therefore essential for banana breeding. Wild banana (Musa itinerans) have developed many good characteristics during natural selection and constitute an excellent gene pool for breeding. Therefore, research on wild banana breeding is very important for banana breeding. Results In the current analysis, we examined the changes in viability of wild banana pollens at different temperatures by in vitro germination, and found that the germination ability of wild banana pollens cultured at 28°C for 2 days was higher than that of pollens cultured at 23°C (pollens that could not germinate normally under low temperature stress), 24°C (cultured at a constant temperature for 2 days) and 32°C (cultured at a constant temperature for 2 days). To elucidate the molecular mechanisms underlying the germination restoration process in wild banana pollens, we selected the wild banana pollens that had lost its germination ability under low temperature stress (23°C) as the control group (CK) and the wild banana pollens that had recovered its germination ability under constant temperature incubation of 28°C for 2 days as the treatment group (T) for transcriptome sequencing. A total of 921 differentially expressed genes (DEGs) were detected in CK vs T, of which 265 were up-regulated and 656 were down-regulated. The combined analysis of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) revealed that the activation, metabolism of various substances (lipids, sugars, amino acids) play a major role in restoring pollen germination capacity. TCA cycle and the sesquiterpenoid and triterpenoid biosynthetic pathways were also significantly enriched in the KEGG pathway. And we found that some DEGs may be associated with pollen wall formation, DNA methylation and DNA repair. The cysteine content, free fatty acid (FFA) content, H2O2 content, fructose content, and sucrose content of pollen were increased at treatment of 28°C, while D-Golactose content was decreased. Finally, the GO pathway was enriched for a total of 24 DEGs related to pollen germination, of which 16 DEGs received targeted regulation by 14 MYBs. Discussions Our study suggests that the balance between various metabolic processes, pollen wall remodelling, DNA methylation, DNA repairs and regulation of MYBs are essential for germination of wild banana pollens.
Collapse
Affiliation(s)
- Chunyu Zhang
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Chengyu Zhang
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaoqiong Xu
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Minzhang Liao
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ning Tong
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zihao Zhang
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yukun Chen
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xu Xu Han
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
- Institut de la Recherche Interdisciplinaire de Toulouse, IRIT-ARI, Toulouse, France
| | - Yuling Lin
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhongxiong Lai
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
22
|
Singh A, Pandey H, Pandey S, Lal D, Chauhan D, Aparna, Antre SH, B S, Kumar A. Drought stress in maize: stress perception to molecular response and strategies for its improvement. Funct Integr Genomics 2023; 23:296. [PMID: 37697159 DOI: 10.1007/s10142-023-01226-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/29/2023] [Accepted: 08/31/2023] [Indexed: 09/13/2023]
Abstract
Given the future demand for food crops, increasing crop productivity in drought-prone rainfed areas has become essential. Drought-tolerant varieties are warranted to solve this problem in major crops, with drought tolerance as a high-priority trait for future research. Maize is one such crop affected by drought stress, which limits production, resulting in substantial economic losses. It became a more serious issue due to global climate change. The most drought sensitive among all stages of maize is the reproductive stages and the most important for overall maize production. The exact molecular basis of reproductive drought sensitivity remains unclear due to genes' complex regulation of drought stress. Understanding the molecular biology and signaling of the unexplored area of reproductive drought tolerance will provide an opportunity to develop climate-smart drought-tolerant next-generation maize cultivars. In recent decades, significant progress has been made in maize to understand the drought tolerance mechanism. However, improving maize drought tolerance through breeding is ineffective due to the complex nature and multigenic control of drought traits. With the help of advanced breeding techniques, molecular genetics, and a precision genome editing approach like CRISPR-Cas, candidate genes for drought-tolerant maize can be identified and targeted. This review summarizes the effects of drought stress on each growth stage of maize, potential genes, and transcription factors that determine drought tolerance. In addition, we discussed drought stress sensing, its molecular mechanisms, different approaches to developing drought-resistant maize varieties, and how molecular breeding and genome editing will help with the current unpredictable climate change.
Collapse
Affiliation(s)
- Ashutosh Singh
- Centre for Advanced Studies On Climate Change, Dr. Rajendra Prasad Central Agricultural University, Pusa, Samastipur, Bihar, 848125, India.
| | | | - Saurabh Pandey
- Department of Agriculture, Guru Nanak Dev University, Amritsar, Punjab, 143005, India.
| | - Dalpat Lal
- College of Agriculture, Jodhpur Agriculture University, Jodhpur, Rajasthan, 342304, India
| | - Divya Chauhan
- Banasthali University, Radha Kishanpura, Rajasthan, 304022, India
| | - Aparna
- Departments of Agriculture, Jagan Nath University, Jaipur, Rajasthan, 303901, India
| | - Suresh H Antre
- Advanced Centre of Plant Biotechnology, UAS, GKVK, Bangalore, Karnataka, 560065, India
| | - Santhosh B
- Centre for Advanced Studies On Climate Change, Dr. Rajendra Prasad Central Agricultural University, Pusa, Samastipur, Bihar, 848125, India
| | - Amarjeet Kumar
- Department of Genetics and Plant Breeding, MTTC & VTC, Selesih, CAU, Imphal, 795001, India
| |
Collapse
|
23
|
Chen H, Zhang S, Li R, Peng G, Chen W, Rautengarten C, Liu M, Zhu L, Xiao Y, Song F, Ni J, Huang J, Wu A, Liu Z, Zhuang C, Heazlewood JL, Xie Y, Chu Z, Zhou H. BOTRYOID POLLEN 1 regulates ROS-triggered PCD and pollen wall development by controlling UDP-sugar homeostasis in rice. THE PLANT CELL 2023; 35:3522-3543. [PMID: 37352123 PMCID: PMC10473207 DOI: 10.1093/plcell/koad181] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 05/16/2023] [Accepted: 06/01/2023] [Indexed: 06/25/2023]
Abstract
Uridine diphosphate (UDP)-sugars are important metabolites involved in the biosynthesis of polysaccharides and may be important signaling molecules. UDP-glucose 4-epimerase (UGE) catalyzes the interconversion between UDP-Glc and UDP-Gal, whose biological function in rice (Oryza sativa) fertility is poorly understood. Here, we identify and characterize the botryoid pollen 1 (bp1) mutant and show that BP1 encodes a UGE that regulates UDP-sugar homeostasis, thereby controlling the development of rice anthers. The loss of BP1 function led to massive accumulation of UDP-Glc and imbalance of other UDP-sugars. We determined that the higher levels of UDP-Glc and its derivatives in bp1 may induce the expression of NADPH oxidase genes, resulting in a premature accumulation of reactive oxygen species (ROS), thereby advancing programmed cell death (PCD) of anther walls but delaying the end of tapetal degradation. The accumulation of UDP-Glc as metabolites resulted in an abnormal degradation of callose, producing an adhesive microspore. Furthermore, the UDP-sugar metabolism pathway is not only involved in the formation of intine but also in the formation of the initial framework for extine. Our results reveal how UDP-sugars regulate anther development and provide new clues for cellular ROS accumulation and PCD triggered by UDP-Glc as a signaling molecule.
Collapse
Affiliation(s)
- Huiqiong Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou 510640, China
| | - Shuqing Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Ruiqi Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Guoqing Peng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Weipan Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Carsten Rautengarten
- School of BioSciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Minglong Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Liya Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Yueping Xiao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Fengshun Song
- Key Laboratory of Rice Genetics Breeding of Anhui Province, Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230001, China
| | - Jinlong Ni
- Key Laboratory of Rice Genetics Breeding of Anhui Province, Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230001, China
| | - Jilei Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Aimin Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Zhenlan Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Chuxiong Zhuang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Joshua L Heazlewood
- School of BioSciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Yongyao Xie
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Zhizhan Chu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Hai Zhou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
24
|
Wang C, Zhang P, He Y, Huang F, Wang X, Li H, Yuan L, Hou J, Chen G, Wang W, Wu J, Tang X. Exogenous spraying of IAA improved the efficiency of microspore embryogenesis in Wucai (Brassica campestris L.) by affecting the balance of endogenous hormones, energy metabolism, and cell wall degradation. BMC Genomics 2023; 24:380. [PMID: 37415142 DOI: 10.1186/s12864-023-09483-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 06/23/2023] [Indexed: 07/08/2023] Open
Abstract
BACKGROUND Microspore embryogenesis is an extraordinarily complicated process, comprehensively regulated by a composite network of physiological and molecular factors, among which hormone is one of the most crucial factors. Auxin is required for stress-induced microspore reprogramming, however, the mechanism of its regulation of microspore embryogenesis is still unclear. RESULTS In this study, we found exogenously spraying 100 mg·L- 1 IAA on the buds of Wucai significantly increased the rate of microspore embryogenesis, and moreover accelerated the process of embryogenesis. Physiological and biochemical tests showed that the contents of amino acids, soluble total sugar, soluble protein, and starch were significantly increased after IAA treatment. Furthermore, exogenously spraying 100 mg·L- 1 IAA significantly enhanced IAA, GA4, and GA9 content, increased catalase (CAT) and malondialdehyde (MDA) activity, and reduced abscisic acid (ABA), MDA and soluble protopectin content, H2O2 and O2·- production rate in the bud with the largest population of late-uninucleate-stage microspores. Transcriptome sequencing was performed on buds respectively treated with 100 mg·L- 1 IAA and fresh water. A total of 2004 DEGs were identified, of which 79 were involved in micropores development, embryonic development and cell wall formation and modification, most of which were upregulated. KEGG and GO analysis revealed that 9.52% of DEGs were enriched in plant hormone synthesis and signal transduction pathways, pentose and glucuronic acid exchange pathways, and oxidative phosphorylation pathways. CONCLUSIONS These findings indicated that exogenous IAA altered the contents of endogenous hormone content, total soluble sugar, amino acid, starch, soluble protein, MDA and protopectin, the activities of CAT and peroxidase (POD), and the production rate of H2O2 and O2·-. Combined with transcriptome analysis, it was found that most genes related to gibberellin (GA) and Auxin (IAA) synthesis and signal transduction, pectin methylase (PME) and polygalacturonase (PGs) genes and genes related to ATP synthesis and electron transport chain were upregulated, and genes related to ABA synthesis and signal transduction were downregulated. These results indicated that exogenous IAA treatment could change the balance of endogenous hormones, accelerate cell wall degradation, promote ATP synthesis and nutrient accumulation, inhibit ROS accumulation, which ultimately promote microspore embryogenesis.
Collapse
Affiliation(s)
- Chenggang Wang
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei, 230036, Anhui, China
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, 130 West of Changjiang Road, Hefei, 230036, Anhui, China
| | - Peiyu Zhang
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei, 230036, Anhui, China
| | - Yun He
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei, 230036, Anhui, China
| | - Furong Huang
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei, 230036, Anhui, China
| | - Xu Wang
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei, 230036, Anhui, China
| | - Hong Li
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei, 230036, Anhui, China
| | - Lingyun Yuan
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei, 230036, Anhui, China
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, 130 West of Changjiang Road, Hefei, 230036, Anhui, China
- Wanjiang Vegetable Industrial Technology Institute, Maanshan, 238200, Anhui, China
| | - Jinfeng Hou
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei, 230036, Anhui, China
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, 130 West of Changjiang Road, Hefei, 230036, Anhui, China
- Wanjiang Vegetable Industrial Technology Institute, Maanshan, 238200, Anhui, China
| | - Guohu Chen
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei, 230036, Anhui, China
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, 130 West of Changjiang Road, Hefei, 230036, Anhui, China
- Wanjiang Vegetable Industrial Technology Institute, Maanshan, 238200, Anhui, China
| | - Wenjie Wang
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei, 230036, Anhui, China
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, 130 West of Changjiang Road, Hefei, 230036, Anhui, China
- Wanjiang Vegetable Industrial Technology Institute, Maanshan, 238200, Anhui, China
| | - Jianqiang Wu
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei, 230036, Anhui, China
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, 130 West of Changjiang Road, Hefei, 230036, Anhui, China
- Wanjiang Vegetable Industrial Technology Institute, Maanshan, 238200, Anhui, China
| | - Xiaoyan Tang
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei, 230036, Anhui, China.
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, 130 West of Changjiang Road, Hefei, 230036, Anhui, China.
- Wanjiang Vegetable Industrial Technology Institute, Maanshan, 238200, Anhui, China.
| |
Collapse
|
25
|
Gao H, Suo X, Zhao L, Ma X, Cheng R, Wang G, Zhang H. Molecular evolution, diversification, and expression assessment of MADS gene family in Setaria italica, Setaria viridis, and Panicum virgatum. PLANT CELL REPORTS 2023; 42:1003-1024. [PMID: 37012438 DOI: 10.1007/s00299-023-03009-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 03/20/2023] [Indexed: 05/12/2023]
Abstract
KEY MESSAGE This paper sheds light on the evolution and expression patterns of MADS genes in Setaria and Panicum virgatum. SiMADS51 and SiMADS64 maybe involved in the ABA-dependent pathway of drought response. The MADS gene family is a key regulatory factor family that controls growth, reproduction, and response to abiotic stress in plants. However, the molecular evolution of this family is rarely reported. Here, a total of 265 MADS genes were identified in Setaria italica (foxtail millet), Setaria viridis (green millet), and Panicum virgatum (switchgrass) and analyzed by bioinformatics, including physicochemical characteristics, subcellular localization, chromosomal position and duplicate, motif distribution, genetic structure, genetic evolvement, and expression patterns. Phylogenetic analysis was used to categorize these genes into M and MIKC types. The distribution of motifs and gene structure were similar for the corresponding types. According to a collinearity study, the MADS genes have been mostly conserved during evolution. The principal cause of their expansion is segmental duplication. However, the MADS gene family tends to shrink in foxtail millet, green millet, and switchgrass. The MADS genes were subjected to purifying selection, but several positive selection sites were also identified in three species. And most of the promoters of MADS genes contain cis-elements related to stress and hormonal response. RNA-seq and quantitative Real-time PCR (qRT-PCR) analysis also were examined. SiMADS genes expression levels are considerably changed in reaction to various treatments, following qRT-PCR analysis. This sheds fresh light on the evolution and expansion of the MADS family in foxtail millet, green millet, and switchgrass, and lays the foundation for further research on their functions.
Collapse
Affiliation(s)
- Hui Gao
- Hebei Key Laboratory of Crop Stress Biology (in Preparation), Department of Life Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, 066600, Hebei, China
- Institute of Millet Crops, Hebei Academy of Agriculture and Forestry Sciences/Key Laboratory of Genetic Improvement and Utilization for Featured Coarse Cereals (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs/National Foxtail Millet Improvement Center/Key Laboratory of Minor Cereal Crops of Hebei Province, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
| | - Xiaoman Suo
- Hebei Key Laboratory of Crop Stress Biology (in Preparation), Department of Life Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, 066600, Hebei, China
| | - Ling Zhao
- Institute of Millet Crops, Hebei Academy of Agriculture and Forestry Sciences/Key Laboratory of Genetic Improvement and Utilization for Featured Coarse Cereals (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs/National Foxtail Millet Improvement Center/Key Laboratory of Minor Cereal Crops of Hebei Province, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
| | - Xinlei Ma
- Hebei Key Laboratory of Crop Stress Biology (in Preparation), Department of Life Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, 066600, Hebei, China
| | - Ruhong Cheng
- Institute of Millet Crops, Hebei Academy of Agriculture and Forestry Sciences/Key Laboratory of Genetic Improvement and Utilization for Featured Coarse Cereals (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs/National Foxtail Millet Improvement Center/Key Laboratory of Minor Cereal Crops of Hebei Province, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China.
| | - Genping Wang
- Institute of Millet Crops, Hebei Academy of Agriculture and Forestry Sciences/Key Laboratory of Genetic Improvement and Utilization for Featured Coarse Cereals (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs/National Foxtail Millet Improvement Center/Key Laboratory of Minor Cereal Crops of Hebei Province, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China.
| | - Haoshan Zhang
- Institute of Millet Crops, Hebei Academy of Agriculture and Forestry Sciences/Key Laboratory of Genetic Improvement and Utilization for Featured Coarse Cereals (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs/National Foxtail Millet Improvement Center/Key Laboratory of Minor Cereal Crops of Hebei Province, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China.
- Chinese Academy of Agricultural Sciences Institute of Crop Sciences, Beijing, 100081, China.
| |
Collapse
|
26
|
Wu SY, Hou LL, Zhu J, Wang YC, Zheng YL, Hou JQ, Yang ZN, Lou Y. Ascorbic acid-mediated reactive oxygen species homeostasis modulates the switch from tapetal cell division to cell differentiation in Arabidopsis. THE PLANT CELL 2023; 35:1474-1495. [PMID: 36781400 PMCID: PMC10118275 DOI: 10.1093/plcell/koad037] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
The major antioxidant L-ascorbic acid (AsA) plays important roles in plant growth, development, and stress responses. However, the importance of AsA concentration and the regulation of AsA metabolism in plant reproduction remain unclear. In Arabidopsis (Arabidopsis thaliana) anthers, the tapetum monolayer undergoes cell differentiation to support pollen development. Here, we report that a transcription factor, DEFECTIVE IN TAPETAL DEVELOPMENT AND FUNCTION 1 (TDF1), inhibits tapetal cell division leading to cell differentiation. We identified SKEWED5-SIMILAR 18 (SKS18) as a downstream target of TDF1. Enzymatic assays showed that SKS18, annotated as a multicopper oxidase-like protein, has ascorbate oxidase activity, leading to AsA oxidation. We also show that VITAMIN C DEFECTIVE1 (VTC1), an AsA biosynthetic enzyme, is negatively controlled by TDF1 to maintain proper AsA contents. Consistently, either knockout of SKS18 or VTC1 overexpression raised AsA concentrations, resulting in extra tapetal cells, while SKS18 overexpression in tdf1 or the vtc1-3 tdf1 double mutant mitigated their defective tapetum. We observed that high AsA concentrations caused lower accumulation of reactive oxygen species (ROS) in tapetal cells. Overexpression of ROS scavenging genes in tapetum restored excess cell divisions. Thus, our findings demonstrate that TDF1-regulated AsA balances cell division and cell differentiation in the tapetum through governing ROS homeostasis.
Collapse
Affiliation(s)
| | | | - Jun Zhu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Yi-Chen Wang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Yu-Ling Zheng
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Jian-Qiao Hou
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Zhong-Nan Yang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | | |
Collapse
|
27
|
Tariq N, Yaseen M, Xu D, Rehman HM, Bibi M, Uzair M. Rice anther tapetum: a vital reproductive cell layer for sporopollenin biosynthesis and pollen exine patterning. PLANT BIOLOGY (STUTTGART, GERMANY) 2023; 25:233-245. [PMID: 36350096 DOI: 10.1111/plb.13485] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
The tapetum is the innermost layer of the four layers of the rice anther that provides protection and essential nutrients to pollen grain development and delivers precursors for pollen exine formation. The tapetum has a key role in the normal development of pollen grains and tapetal programmed cell death (PCD) that is linked with sporopollenin biosynthesis and transport. Recently, many genes have been identified that are involved in tapetum formation in rice and Arabidopsis. Genetic mutation in PCD-associated genes could affect normal tapetal PCD, which finally leads to aborted pollen grains and male sterility in rice. In this review, we discuss the most recent research on rice tapetum development, including genomic, transcriptomic and proteomic studies. Furthermore, tapetal PCD, sporopollenin biosynthesis, ROS activity for tapetum function and its role in male reproductive development are discussed in detail. This will improve our understanding of the role of the tapetum in male fertility using rice as a model system, and provide information that can be applied in rice hybridization and that of other major crops.
Collapse
Affiliation(s)
- N Tariq
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad, Pakistan
| | - M Yaseen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Institute of Rice Research, Sichuan Agricultural University, Sichuan, China
| | - D Xu
- School of Agronomy, Anhui Agricultural University, Hefei, China
| | - H M Rehman
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - M Bibi
- Department of Bioindustry and Bioresource Engineering, Sejong University, Seoul, Korea
| | - M Uzair
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, USA
| |
Collapse
|
28
|
Wu M, Zhang Q, Wu G, Zhang L, Xu X, Hu X, Gong Z, Chen Y, Li Z, Li H, Deng W. SlMYB72 affects pollen development by regulating autophagy in tomato. HORTICULTURE RESEARCH 2023; 10:uhac286. [PMID: 36938568 PMCID: PMC10015339 DOI: 10.1093/hr/uhac286] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 12/15/2022] [Indexed: 06/18/2023]
Abstract
The formation and development of pollen are among the most critical processes for reproduction and genetic diversity in the life cycle of flowering plants. The present study found that SlMYB72 was highly expressed in the pollen and tapetum of tomato flowers. Downregulation of SlMYB72 led to a decrease in the amounts of seeds due to abnormal pollen development compared with wild-type plants. Downregulation of SlMYB72 delayed tapetum degradation and inhibited autophagy in tomato anther. Overexpression of SlMYB72 led to abnormal pollen development and delayed tapetum degradation. Expression levels of some autophagy-related genes (ATGs) were decreased in SlMYB72 downregulated plants and increased in overexpression plants. SlMYB72 was directly bound to ACCAAC/ACCAAA motif of the SlATG7 promoter and activated its expression. Downregulation of SlATG7 inhibited the autophagy process and tapetum degradation, resulting in abnormal pollen development in tomatoes. These results indicated SlMYB72 affects the tapetum degradation and pollen development by transcriptional activation of SlATG7 and autophagy in tomato anther. The study expands the understanding of the regulation of autophagy by SlMYB72, uncovers the critical role that autophagy plays in pollen development, and provides potential candidate genes for the production of male-sterility in plants.
Collapse
Affiliation(s)
| | | | - Guanle Wu
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 400044, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, 401331 Chongqing, China
| | - Lu Zhang
- Department of Horticulture and Landscape Architecture, Oklahoma State University, Stillwater, OK 74078, USA
| | - Xin Xu
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 400044, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, 401331 Chongqing, China
| | - Xiaowei Hu
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 400044, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, 401331 Chongqing, China
| | - Zehao Gong
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 400044, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, 401331 Chongqing, China
| | - Yulin Chen
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 400044, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, 401331 Chongqing, China
| | - Zhengguo Li
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 400044, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, 401331 Chongqing, China
| | | | - Wei Deng
- Corresponding authors. E-mails: ;
| |
Collapse
|
29
|
Yu J, Zhang J, Hong H. Characterization and Expression Analysis of Four Cadmium-Tolerance-Associated Genes of Avicennia marina (Forsk.). BIOLOGY 2023; 12:216. [PMID: 36829494 PMCID: PMC9952839 DOI: 10.3390/biology12020216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/31/2022] [Accepted: 01/09/2023] [Indexed: 01/31/2023]
Abstract
Mangroves colonize the intertidal area of estuaries (e.g., Pichavaram, Payardia, and Mai Po) with remarkable cadmium (Cd) pollution. A study on the mechanism of mangrove plant response to Cd pollution can help to understand the adaptive characteristics of plants under Cd stress. This study explored the roles of peroxidase (PRX), pectate lyase (PL), and phytosulfokine (PSK) genes in cadmium tolerance of mangrove Avicennia marina. Full-length sequences of four genes (i.e., AmPRX1, AmPRX2, AmPL, and AmPSK) associated with metal tolerance were identified with suppression subtractive hybridization and rapid amplification of cDNA ends. These genes showed the characteristic features of the respective protein family, indicating functions similar to other plant proteins. Real-time quantitative PCR analysis demonstrated that cadmium exposure resulted in differences in expression patterns among the tissues. Our findings emphasize the complex regulatory mechanism of these four genes in response to trace metal pollution and reveal their functions in metabolic signaling during the stress response.
Collapse
Affiliation(s)
- Jinfeng Yu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen 361102, China
- Xiamen Innovax Biotech, Xiamen 361022, China
| | - Jicheng Zhang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen 361102, China
- Frasergen, Wuhan 430075, China
| | - Hualong Hong
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen 361102, China
| |
Collapse
|
30
|
Chen F, Zhang H, Li H, Lian L, Wei Y, Lin Y, Wang L, He W, Cai Q, Xie H, Zhang H, Zhang J. IPA1 improves drought tolerance by activating SNAC1 in rice. BMC PLANT BIOLOGY 2023; 23:55. [PMID: 36698063 PMCID: PMC9875436 DOI: 10.1186/s12870-023-04062-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 01/13/2023] [Indexed: 05/27/2023]
Abstract
Drought is a major abiotic stress to rice (Oryza sativa) during growth. Ideal Plant Architecture (IPA1), the first cloned gene controlling the ideal plant type in rice, has been reported to function in both ideal rice plant architecture and biotic resistance. Here, we report that the IPA1/OsSPL14, encoding a transcriptional factor, positively regulates drought tolerance in rice. The IPA1 is constitutively expressed and regulated by H2O2, abscisic acid, NaCl and polyethylene glycol 6000 treatments in rice. Furthermore, the IPA1-knockout plants showed much greater accumulation of H2O2 as measured by 3,3'-diaminobenzidine staining in leaves compared with WT plants. Yeast one-hybrid, dual-luciferase and electrophoretic mobility shift assays indicated that the IPA1 directly activates the promoter of SNAC1. Expression of SNAC1 is significantly down-regulated in IPA1 knockout plants. Further investigation indicated that the IPA1 plays a positive role in drought-stress tolerance by inducing reactive oxygen species scavenging in rice. Together, these findings indicated that the IPA1 played important roles in drought tolerance by regulating SNAC1, thus activating the antioxidant system in rice.
Collapse
Affiliation(s)
- Feihe Chen
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350018, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops/Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs, P.R. China/Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology/Fuzhou Branch, National Rice Improvement Center of China/Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou, 350003, China
| | - Haomin Zhang
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350018, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops/Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs, P.R. China/Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology/Fuzhou Branch, National Rice Improvement Center of China/Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou, 350003, China
| | - Hong Li
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350018, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops/Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs, P.R. China/Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology/Fuzhou Branch, National Rice Improvement Center of China/Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou, 350003, China
| | - Ling Lian
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350018, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops/Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs, P.R. China/Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology/Fuzhou Branch, National Rice Improvement Center of China/Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou, 350003, China
| | - Yidong Wei
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350018, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops/Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs, P.R. China/Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology/Fuzhou Branch, National Rice Improvement Center of China/Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou, 350003, China
| | - Yuelong Lin
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350018, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops/Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs, P.R. China/Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology/Fuzhou Branch, National Rice Improvement Center of China/Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou, 350003, China
| | - Lanning Wang
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350018, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops/Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs, P.R. China/Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology/Fuzhou Branch, National Rice Improvement Center of China/Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou, 350003, China
| | - Wei He
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350018, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops/Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs, P.R. China/Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology/Fuzhou Branch, National Rice Improvement Center of China/Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou, 350003, China
| | - Qiuhua Cai
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350018, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops/Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs, P.R. China/Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology/Fuzhou Branch, National Rice Improvement Center of China/Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou, 350003, China
| | - Hongguang Xie
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350018, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops/Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs, P.R. China/Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology/Fuzhou Branch, National Rice Improvement Center of China/Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou, 350003, China
| | - Hua Zhang
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jianfu Zhang
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350018, China.
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops/Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs, P.R. China/Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology/Fuzhou Branch, National Rice Improvement Center of China/Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou, 350003, China.
| |
Collapse
|
31
|
Dreni L. The ABC of Flower Development in Monocots: The Model of Rice Spikelet. Methods Mol Biol 2023; 2686:59-82. [PMID: 37540354 DOI: 10.1007/978-1-0716-3299-4_3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
The initial seminal studies of flower developmental genetics were made from observations in several eudicot model species, particularly Arabidopsis and Antirrhinum. However, an increasing amount of research in monocot model and crop species is finally giving the credit that monocots deserve for their position in the evolutionary history of Angiosperms, their astonishing diversification and adaptation, their diversified floral structures, their pivotal function in most ecosystems on Earth and, finally, their importance in agriculture and farming, economy, landscaping and feeding mankind. Rice is a staple crop and the major monocot model to study the reproductive phase and flower evolution. Inspired by this, this chapter reviews a story of highly conserved functions related to the ABC model of flower development. Nevertheless, this model is complicated in rice by cases of gene neofunctionalization, like the recruitment of MADS-box genes for the development of the unique organs known as lemma and palea, subfunctionalization, and rewiring of conserved molecular pathways.
Collapse
Affiliation(s)
- Ludovico Dreni
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, Valencia, Spain
| |
Collapse
|
32
|
Aloryi KD, Okpala NE, Amo A, Bello SF, Akaba S, Tian X. A meta-quantitative trait loci analysis identified consensus genomic regions and candidate genes associated with grain yield in rice. FRONTIERS IN PLANT SCIENCE 2022; 13:1035851. [PMID: 36466247 PMCID: PMC9709451 DOI: 10.3389/fpls.2022.1035851] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 10/19/2022] [Indexed: 06/17/2023]
Abstract
Improving grain yield potential in rice is an important step toward addressing global food security challenges. The meta-QTL analysis offers stable and robust QTLs irrespective of the genetic background of mapping populations and phenotype environment and effectively narrows confidence intervals (CI) for candidate gene (CG) mining and marker-assisted selection improvement. To achieve these aims, a comprehensive bibliographic search for grain yield traits (spikelet fertility, number of grains per panicle, panicles number per plant, and 1000-grain weight) QTLs was conducted, and 462 QTLs were retrieved from 47 independent QTL research published between 2002 and 2022. QTL projection was performed using a reference map with a cumulative length of 2,945.67 cM, and MQTL analysis was conducted on 313 QTLs. Consequently, a total of 62 MQTLs were identified with reduced mean CI (up to 3.40 fold) compared to the mean CI of original QTLs. However, 10 of these MQTLs harbored at least six of the initial QTLs from diverse genetic backgrounds and environments and were considered the most stable and robust MQTLs. Also, MQTLs were compared with GWAS studies and resulted in the identification of 16 common significant loci modulating the evaluated traits. Gene annotation, gene ontology (GO) enrichment, and RNA-seq analyses of chromosome regions of the stable MQTLs detected 52 potential CGs including those that have been cloned in previous studies. These genes encode proteins known to be involved in regulating grain yield including cytochrome P450, zinc fingers, MADs-box, AP2/ERF domain, F-box, ubiquitin ligase domain protein, homeobox domain, DEAD-box ATP domain, and U-box domain. This study provides the framework for molecular dissection of grain yield in rice. Moreover, the MQTLs and CGs identified could be useful for fine mapping, gene cloning, and marker-assisted selection to improve rice productivity.
Collapse
Affiliation(s)
- Kelvin Dodzi Aloryi
- Hubei Collaborative Innovation Centre for Grain Industry, College of Agriculture, Yangtze University, Jingzhou, China
| | - Nnaemeka Emmanuel Okpala
- Hubei Collaborative Innovation Centre for Grain Industry, College of Agriculture, Yangtze University, Jingzhou, China
| | - Aduragbemi Amo
- Institute of Plant Breeding, Genetics and Genomics University of Georgia, Athens, GA, United States
| | - Semiu Folaniyi Bello
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Selorm Akaba
- School of Agriculture, University of Cape Coast, Cape Coast, Ghana
| | - Xiaohai Tian
- Hubei Collaborative Innovation Centre for Grain Industry, College of Agriculture, Yangtze University, Jingzhou, China
| |
Collapse
|
33
|
Shen L, Tian F, Cheng Z, Zhao Q, Feng Q, Zhao Y, Han B, Fang Y, Lin Y, Chen R, Wang D, Sun W, Sun J, Zeng H, Yao N, Gao G, Luo J, Xu Z, Bai S. OsMADS58 Stabilizes Gene Regulatory Circuits during Rice Stamen Development. PLANTS (BASEL, SWITZERLAND) 2022; 11:2899. [PMID: 36365352 PMCID: PMC9658454 DOI: 10.3390/plants11212899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
Rice (Oryza sativa) OsMADS58 is a C-class MADS box protein, and characterization of a transposon insertion mutant osmads58 suggested that OsMADS58 plays a role in stamen development. However, as no null mutation has been obtained, its role has remained unclear. Here, we report that the CRISPR knockout mutant osmads58 exhibits complex altered phenotypes, including anomalous diploid germ cells, aberrant meiosis, and delayed tapetum degeneration. This CRISPR mutant line exhibited stronger changes in expression of OsMADS58 target genes compared with the osmads58 dSpm (transposon insertion) line, along with changes in multiple pathways related to early stamen development. Notably, transcriptional regulatory circuits in young panicles covering the stamen at stages 4-6 were substantially altered in the CRISPR line compared to the dSpm line. These findings strongly suggest that the pleiotropic effects of OsMADS58 on stamen development derive from a potential role in stabilizing gene regulatory circuits during early stamen development. Thus, this work opens new avenues for viewing and deciphering the regulatory mechanisms of early stamen development from a network perspective.
Collapse
Affiliation(s)
- Liping Shen
- State Key Laboratory of Protein & Plant Gene Research, Peking University, Beijing 100871, China
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Feng Tian
- State Key Laboratory of Protein & Plant Gene Research, Peking University, Beijing 100871, China
- College of Life Sciences, Peking University, Beijing 100871, China
- Biomedical Pioneering Innovation Center (BIOPIC), Beijing Advanced Innovation Center for Genomics (ICG), Center for Bioinformatics (CBI), Peking University, Beijing 100871, China
- Center for Bioinformatics, Peking University, Beijing 100871, China
| | - Zhukuan Cheng
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Qiang Zhao
- National Center for Gene Research, State Key Laboratory of Plant Molecular Genetics, CAS Center of Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200233, China
| | - Qi Feng
- National Center for Gene Research, State Key Laboratory of Plant Molecular Genetics, CAS Center of Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200233, China
| | - Yan Zhao
- National Center for Gene Research, State Key Laboratory of Plant Molecular Genetics, CAS Center of Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200233, China
| | - Bin Han
- National Center for Gene Research, State Key Laboratory of Plant Molecular Genetics, CAS Center of Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200233, China
| | - Yuhan Fang
- State Key Laboratory of Protein & Plant Gene Research, Peking University, Beijing 100871, China
| | - Yanan Lin
- State Key Laboratory of Protein & Plant Gene Research, Peking University, Beijing 100871, China
| | - Rui Chen
- State Key Laboratory of Protein & Plant Gene Research, Peking University, Beijing 100871, China
| | - Donghui Wang
- State Key Laboratory of Protein & Plant Gene Research, Peking University, Beijing 100871, China
| | | | - Jiaqi Sun
- School of Life Science, Sun Yat-sen University, Guangzhou 510260, China
| | - Hongyun Zeng
- School of Life Science, Sun Yat-sen University, Guangzhou 510260, China
| | - Nan Yao
- School of Life Science, Sun Yat-sen University, Guangzhou 510260, China
| | - Ge Gao
- State Key Laboratory of Protein & Plant Gene Research, Peking University, Beijing 100871, China
- College of Life Sciences, Peking University, Beijing 100871, China
- Biomedical Pioneering Innovation Center (BIOPIC), Beijing Advanced Innovation Center for Genomics (ICG), Center for Bioinformatics (CBI), Peking University, Beijing 100871, China
- Center for Bioinformatics, Peking University, Beijing 100871, China
| | - Jingchu Luo
- State Key Laboratory of Protein & Plant Gene Research, Peking University, Beijing 100871, China
- College of Life Sciences, Peking University, Beijing 100871, China
- Center for Bioinformatics, Peking University, Beijing 100871, China
| | - Zhihong Xu
- State Key Laboratory of Protein & Plant Gene Research, Peking University, Beijing 100871, China
| | - Shunong Bai
- State Key Laboratory of Protein & Plant Gene Research, Peking University, Beijing 100871, China
- College of Life Sciences, Peking University, Beijing 100871, China
- Center of Quantitative Biology, Peking University, Beijing 100871, China
| |
Collapse
|
34
|
Sun W, Wei J, Wu G, Xu H, Chen Y, Yao M, Zhan J, Yan J, Wu N, Chen H, Bu T, Tang Z, Li Q. CqZF-HD14 enhances drought tolerance in quinoa seedlings through interaction with CqHIPP34 and CqNAC79. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 323:111406. [PMID: 35931235 DOI: 10.1016/j.plantsci.2022.111406] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/28/2022] [Accepted: 07/30/2022] [Indexed: 06/15/2023]
Abstract
Drought stress is a key agricultural problem that restricts plant development and crop yield. Research on quinoa (Chenopodium quinoa), a nutrient-rich crop with strong stress resistance, has been limited in terms of the molecular regulation of its adaptation to drought stress. This study identified the zinc finger-homeodomain (ZF-HD) family in quinoa and a drought-responsive Chenopodium quinoa ZF-HD14 (CqZF-HD14) through expression profiles. Transient overexpression of CqZF-HD14 promotes photosynthetic pigment accumulation under drought stress, strengthens the antioxidant system, and in turn enhances drought tolerance. Comprehensive genome-wide family analysis and expression profiling identified CqNAC79 and CqHIPP34 regulated by CqZF-HD14, and their interactions were further determined by bimolecular fluorescence complementation (BIFC). Moreover, physiological and biochemical analyses and transient overexpression also revealed that CqNAC79 and CqHIPP34 resist drought by promoting the accumulation of photosynthetic pigments and maintaining antioxidant capacity under drought stress. The synergistic effect of CqZF-HD14 with CqNAC79 or CqHIPP34 further enhanced the drought tolerance of quinoa seedlings. Taken together, the results indicate that CqZF-HD14, CqNAC79 and CqHIPP34 may be important contributors to the drought tolerance regulatory network in quinoa, and these findings add new members to the drought tolerance gene pool.
Collapse
Affiliation(s)
- Wenjun Sun
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, China.
| | - Jianglan Wei
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, China.
| | - Guoming Wu
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, China.
| | - Haishen Xu
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, China.
| | - Ying Chen
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, China.
| | - Min Yao
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, China.
| | - Junyi Zhan
- College of Life Science, Nanjing Agricultural University, Nanjing 210032, China.
| | - Jun Yan
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, China.
| | - Na Wu
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, China.
| | - Hui Chen
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, China.
| | - Tongliang Bu
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, China.
| | - Zizong Tang
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, China.
| | - Qingfeng Li
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, China.
| |
Collapse
|
35
|
Liu J, Xia C, Dong H, Liu P, Yang R, Zhang L, Liu X, Jia J, Kong X, Sun J. Wheat male-sterile 2 reduces ROS levels to inhibit anther development by deactivating ROS modulator 1. MOLECULAR PLANT 2022; 15:1428-1439. [PMID: 35864748 DOI: 10.1016/j.molp.2022.07.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 06/28/2022] [Accepted: 07/18/2022] [Indexed: 05/22/2023]
Abstract
Ms2 is an important dominant male-sterile gene in wheat, but the biochemical function of Ms2 and the mechanism by which it causes male sterility remain elusive. Here, we report the molecular basis underlying Ms2-induced male sterility in wheat. We found that activated Ms2 specifically reduces the reactive oxygen species (ROS) signals in anthers and thereby induces termination of wheat anther development at an early stage. Furthermore, our results indicate that Ms2 is localized in mitochondria, where it physically interacts with a wheat homolog of ROS modulator 1 (TaRomo1). Romo1 positively regulates the ROS levels in humans but has never been studied in plants. We found that single amino acid substitutions in the Ms2 protein that rescue the ms2 male-sterile phenotype abolish the interaction between Ms2 and TaRomo1. Significantly, Ms2 promotes the transition of TaRomo1 proteins from active monomers to inactive oligomers. Taken together, our findings unravel the molecular basis of Ms2-induced male sterility and reveal a regulatory mechanism in which ROS act as essential signals guiding the anther development program in wheat.
Collapse
Affiliation(s)
- Jie Liu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Chuan Xia
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Huixue Dong
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Pan Liu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ruizhen Yang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Lichao Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xu Liu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jizeng Jia
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiuying Kong
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Jiaqiang Sun
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
36
|
Yu JC, Lu JZ, Cui XY, Guo L, Wang ZJ, Liu YD, Wang F, Qi MF, Liu YF, Li TL. Melatonin mediates reactive oxygen species homeostasis via SlCV to regulate leaf senescence in tomato plants. J Pineal Res 2022; 73:e12810. [PMID: 35620796 DOI: 10.1111/jpi.12810] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/08/2022] [Accepted: 05/21/2022] [Indexed: 11/28/2022]
Abstract
Melatonin (MT) functions in removing reactive oxygen species (ROS) and delaying plant senescence, thereby acting as an antioxidant; however, the molecular mechanism underlying the specific action of MT is unclear. Herein, we used the mutant plants carrying the MT decomposition gene melatonin 3-hydroxylase (M3H) in tomato to elucidate the specific mechanism of action of MT. SlM3H-OE accelerated senescence by decreasing the content of endogenous MT in plants. SlM3H is a senescence-related gene that positively regulates aging. MT inhibited the expression of the senescence-related gene SlCV to scavenge ROS, induced stable chloroplast structure, and delayed leaf senescence. Simultaneously, MT weakened the interaction between SlCV and SlPsbO/SlCAT3, reduced ROS production in photosystem II, and promoted ROS elimination. In conclusion, MT regulates ROS homeostasis and delays leaf aging in tomato plants through SlCV expression modulation.
Collapse
Affiliation(s)
- Jun-Chi Yu
- College of Horticulture, Shenyang Agricultural University, Shenyang, People's Republic of China
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang, People's Republic of China
| | - Jia-Zhi Lu
- College of Horticulture, Shenyang Agricultural University, Shenyang, People's Republic of China
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang, People's Republic of China
| | - Xiao-Yu Cui
- College of Horticulture, Shenyang Agricultural University, Shenyang, People's Republic of China
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang, People's Republic of China
| | - Lei Guo
- College of Horticulture, Shenyang Agricultural University, Shenyang, People's Republic of China
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang, People's Republic of China
| | - Zhi-Jun Wang
- College of Horticulture, Shenyang Agricultural University, Shenyang, People's Republic of China
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang, People's Republic of China
| | - Yu-Dong Liu
- Agricultural Department, Shihezi University, Shihezi, People's Republic of China
| | - Feng Wang
- College of Horticulture, Shenyang Agricultural University, Shenyang, People's Republic of China
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang, People's Republic of China
| | - Ming-Fang Qi
- College of Horticulture, Shenyang Agricultural University, Shenyang, People's Republic of China
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang, People's Republic of China
| | - Yu-Feng Liu
- College of Horticulture, Shenyang Agricultural University, Shenyang, People's Republic of China
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang, People's Republic of China
| | - Tian-Lai Li
- College of Horticulture, Shenyang Agricultural University, Shenyang, People's Republic of China
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang, People's Republic of China
| |
Collapse
|
37
|
Cui X, Liu S, Zhang L, Guo X, Li T, Zhang X, Wang Q, Zeng W, Huang J, Duan Q, Cao Y. Endophytic extract Zhinengcong alleviates heat stress-induced reproductive defect in Solanum lycopersicum. FRONTIERS IN PLANT SCIENCE 2022; 13:977881. [PMID: 36092397 PMCID: PMC9454194 DOI: 10.3389/fpls.2022.977881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
High temperature negatively affects reproductive process significantly, leading to tremendous losses in crop quality and yield. Zhinengcong (ZNC), a crude extract from the endophytic fungus Paecilomyces variotii, has been shown to improve plant growth and resistance to biotic and abiotic stresses. We show here that ZNC can also alleviate heat stress-induced reproductive defects in Solanum lycopersicum, such as short-term heat-induced inhibition on pollen viability, germination and tube growth, and long-term heat stress-induced pollen developmental defects. We further demonstrated that ZNC alleviates heat stress by downregulating the expressions of ROS production-related genes, RBOHs, and upregulating antioxidant related genes and the activities of the corresponding enzymes, thus preventing the over accumulation of heat-induced reactive oxygen species (ROS) in anther, pollen grain and pollen tube. Furthermore, spraying application of ZNC onto tomato plants under long-term heat stress promotes fruit and seed bearing in the field. In summary, plant endophytic fungus extract ZNC promotes the reproductive process and yield of tomato plants under heat stress and presents excellent potential in agricultural applications.
Collapse
Affiliation(s)
- Xiaoshuang Cui
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, Shandong, China
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, Shandong, China
| | - Shangjia Liu
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, Shandong, China
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, Shandong, China
| | - Lina Zhang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, Shandong, China
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, Shandong, China
| | - Xinping Guo
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, Shandong, China
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, Shandong, China
| | - Ting Li
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, Shandong, China
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, Shandong, China
| | - Xiaoyu Zhang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, Shandong, China
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, Shandong, China
| | - Qingbin Wang
- Shandong Pengbo Biotechnology Co., Ltd., Tai’an, China
| | - Weiqing Zeng
- Trait Discovery, Corteva Agriscience, Johnston, IA, United States
| | - Jiabao Huang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, Shandong, China
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, Shandong, China
| | - Qiaohong Duan
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, Shandong, China
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, Shandong, China
| | - Yunyun Cao
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, Shandong, China
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, Shandong, China
| |
Collapse
|
38
|
Receptor for Activated C Kinase1B (OsRACK1B) Impairs Fertility in Rice through NADPH-Dependent H2O2 Signaling Pathway. Int J Mol Sci 2022; 23:ijms23158455. [PMID: 35955593 PMCID: PMC9368841 DOI: 10.3390/ijms23158455] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 07/25/2022] [Accepted: 07/25/2022] [Indexed: 11/16/2022] Open
Abstract
The scaffold protein receptor for Activated C Kinase1 (RACK1) regulates multiple aspects of plants, including seed germination, growth, environmental stress responses, and flowering. Recent studies have revealed that RACK1 is associated with NADPH-dependent reactive oxygen species (ROS) signaling in plants. ROS, as a double-edged sword, can modulate several developmental pathways in plants. Thus, the resulting physiological consequences of perturbing the RACK1 expression-induced ROS balance remain to be explored. Herein, we combined molecular, pharmacological, and ultrastructure analysis approaches to investigate the hypothesized connection using T-DNA-mediated activation-tagged RACK1B overexpressed (OX) transgenic rice plants. In this study, we find that OsRACK1B-OX plants display reduced pollen viability, defective anther dehiscence, and abnormal spikelet morphology, leading to partial spikelet sterility. Microscopic observation of the mature pollen grains from the OX plants revealed abnormalities in the exine and intine structures and decreased starch granules in the pollen, resulting in a reduced number of grains per locule from the OX rice plants as compared to that of the wild-type (WT). Histochemical staining revealed a global increase in hydrogen peroxide (H2O2) in the leaves and roots of the transgenic lines overexpressing OsRACK1B compared to that of the WT. However, the elevated H2O2 in tissues from the OX plants can be reversed by pre-treatment with diphenylidonium (DPI), an NADPH oxidase inhibitor, indicating that the source of H2O2 could be, in part, NADPH oxidase. Expression analysis showed a differential expression of the NADPH/respiratory burst oxidase homolog D (RbohD) and antioxidant enzyme-related genes, suggesting a homeostatic mechanism of H2O2 production and antioxidant enzyme activity. BiFC analysis demonstrated that OsRACK1B interacts with the N-terminal region of RbohD in vivo. Taken together, these data indicate that elevated OsRACK1B accumulates a threshold level of ROS, in this case H2O2, which negatively regulates pollen development and fertility. In conclusion, we hypothesized that an optimal expression of RACK1 is critical for fertility in rice plants.
Collapse
|
39
|
Li Z, Liu S, Zhu T, An X, Wei X, Zhang J, Wu S, Dong Z, Long Y, Wan X. The Loss-Function of the Male Sterile Gene ZmMs33/ZmGPAT6 Results in Severely Oxidative Stress and Metabolic Disorder in Maize Anthers. Cells 2022; 11:cells11152318. [PMID: 35954161 PMCID: PMC9367433 DOI: 10.3390/cells11152318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/23/2022] [Accepted: 07/25/2022] [Indexed: 02/04/2023] Open
Abstract
In plants, oxidative stress and metabolic reprogramming frequently induce male sterility, however our knowledge of the underlying molecular mechanism is far from complete. Here, a maize genic male-sterility (GMS) mutant (ms33-6038) with a loss-of-function of the ZmMs33 gene encoding glycerol-3-phosphate acyltransferase 6 (GPAT6) displayed severe deficiencies in the development of a four-layer anther wall and microspores and excessive reactive oxygen species (ROS) content in anthers. In ms33-6038 anthers, transcriptome analysis identified thousands of differentially expressed genes that were functionally enriched in stress response and primary metabolism pathways. Further investigation revealed that 64 genes involved in ROS production, scavenging, and signaling were specifically changed in expression levels in ms33-6038 anthers compared to the other five investigated GMS lines. The severe oxidative stress triggered premature tapetal autophagy and metabolic reprogramming mediated mainly by the activated SnRK1-bZIP pathway, as well as the TOR and PP2AC pathways, proven by transcriptome analysis. Furthermore, 20 reported maize GMS genes were altered in expression levels in ms33-6038 anthers. The excessive oxidative stress and the metabolic reprogramming resulted in severe phenotypic deficiencies in ms33-6038 anthers. These findings enrich our understanding of the molecular mechanisms by which ROS and metabolic homeostasis impair anther and pollen development in plants.
Collapse
Affiliation(s)
- Ziwen Li
- Shunde Graduate School, Zhongzhi International Institute of Agricultural Biosciences, Research Center of Biology and Agriculture, University of Science and Technology Beijing, Beijing 100024, China; (Z.L.); (S.L.); (T.Z.); (X.A.); (X.W.); (J.Z.); (S.W.); (Z.D.)
| | - Shuangshuang Liu
- Shunde Graduate School, Zhongzhi International Institute of Agricultural Biosciences, Research Center of Biology and Agriculture, University of Science and Technology Beijing, Beijing 100024, China; (Z.L.); (S.L.); (T.Z.); (X.A.); (X.W.); (J.Z.); (S.W.); (Z.D.)
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co., Ltd., Beijing 100192, China
| | - Taotao Zhu
- Shunde Graduate School, Zhongzhi International Institute of Agricultural Biosciences, Research Center of Biology and Agriculture, University of Science and Technology Beijing, Beijing 100024, China; (Z.L.); (S.L.); (T.Z.); (X.A.); (X.W.); (J.Z.); (S.W.); (Z.D.)
| | - Xueli An
- Shunde Graduate School, Zhongzhi International Institute of Agricultural Biosciences, Research Center of Biology and Agriculture, University of Science and Technology Beijing, Beijing 100024, China; (Z.L.); (S.L.); (T.Z.); (X.A.); (X.W.); (J.Z.); (S.W.); (Z.D.)
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co., Ltd., Beijing 100192, China
| | - Xun Wei
- Shunde Graduate School, Zhongzhi International Institute of Agricultural Biosciences, Research Center of Biology and Agriculture, University of Science and Technology Beijing, Beijing 100024, China; (Z.L.); (S.L.); (T.Z.); (X.A.); (X.W.); (J.Z.); (S.W.); (Z.D.)
| | - Juan Zhang
- Shunde Graduate School, Zhongzhi International Institute of Agricultural Biosciences, Research Center of Biology and Agriculture, University of Science and Technology Beijing, Beijing 100024, China; (Z.L.); (S.L.); (T.Z.); (X.A.); (X.W.); (J.Z.); (S.W.); (Z.D.)
| | - Suowei Wu
- Shunde Graduate School, Zhongzhi International Institute of Agricultural Biosciences, Research Center of Biology and Agriculture, University of Science and Technology Beijing, Beijing 100024, China; (Z.L.); (S.L.); (T.Z.); (X.A.); (X.W.); (J.Z.); (S.W.); (Z.D.)
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co., Ltd., Beijing 100192, China
| | - Zhenying Dong
- Shunde Graduate School, Zhongzhi International Institute of Agricultural Biosciences, Research Center of Biology and Agriculture, University of Science and Technology Beijing, Beijing 100024, China; (Z.L.); (S.L.); (T.Z.); (X.A.); (X.W.); (J.Z.); (S.W.); (Z.D.)
| | - Yan Long
- Shunde Graduate School, Zhongzhi International Institute of Agricultural Biosciences, Research Center of Biology and Agriculture, University of Science and Technology Beijing, Beijing 100024, China; (Z.L.); (S.L.); (T.Z.); (X.A.); (X.W.); (J.Z.); (S.W.); (Z.D.)
- Correspondence: (Y.L.); (X.W.); Tel.: +86-158-1133-2686 (Y.L.); +86-186-0056-1850 (X.W.)
| | - Xiangyuan Wan
- Shunde Graduate School, Zhongzhi International Institute of Agricultural Biosciences, Research Center of Biology and Agriculture, University of Science and Technology Beijing, Beijing 100024, China; (Z.L.); (S.L.); (T.Z.); (X.A.); (X.W.); (J.Z.); (S.W.); (Z.D.)
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co., Ltd., Beijing 100192, China
- Correspondence: (Y.L.); (X.W.); Tel.: +86-158-1133-2686 (Y.L.); +86-186-0056-1850 (X.W.)
| |
Collapse
|
40
|
Xu J, Jansma SY, Wolters-Arts M, de Groot PFM, Jansen MJ, Rieu I. Long-Term Mild Heat Causes Post-Mitotic Pollen Abortion Through a Local Effect on Flowers. FRONTIERS IN PLANT SCIENCE 2022; 13:925754. [PMID: 35898227 PMCID: PMC9310381 DOI: 10.3389/fpls.2022.925754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
Crop reproductive success is significantly challenged by heatwaves, which are increasing in frequency and severity globally. Heat-induced male sterility is mainly due to aborted pollen development, but it is not clear whether this is through direct or systemic effects. Here, long-term mild heat (LTMH) treatment, mimicking a heatwave, was applied locally to tomato flowers or whole plants and followed up by cytological, transcriptomic, and biochemical analyses. By analyzing pollen viability, LTMH was shown to act directly on the flowers and not via effects on other plant tissue. The meiosis to early microspore stage of pollen development was the most sensitive to LTMH and 3 days of exposure around this period was sufficient to significantly reduce pollen viability at the flower anthesis stage. Extensive cytological analysis showed that abnormalities in pollen development could first be observed after pollen mitosis I, while no deviations in tapetum development were observed. Transcriptomic and biochemical analyses suggested that pollen development suffered from tapetal ER stress and that there was a limited role for oxidative stress. Our results provide the first evidence that heat acts directly on flowers to induce pollen sterility, and that the molecular-physiological responses of developing anthers to the LTMH are different from those to severe heat shock.
Collapse
|
41
|
Chen Y, Feng J, Qu Y, Zhang J, Zhang L, Liang D, Yang Y, Huang J. Genome-wide identification and functional analysis of class III peroxidases in Gossypium hirsutum. PeerJ 2022; 10:e13635. [PMID: 35795174 PMCID: PMC9252181 DOI: 10.7717/peerj.13635] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 06/06/2022] [Indexed: 01/17/2023] Open
Abstract
Class III peroxidase (PRX) genes play essential roles in various processes, such as auxin catabolism, removal of H2O2, crosslinking cell wall components, and response to biotic and abiotic stresses. In this study, we identified 166, 78 and 89 PRX genes from G. hirsutum, G. arboretum and G. raimondii, respectively. These PRX genes were classified into seven subfamilies based on phylogenetic tree analysis and the classification of PRX genes in Arabidopsis. Segmental duplication and purifying selection were the major factors driving the evolution of GhPRXs. GO and KEGG enrichment analysis revealed that GhPRX genes were mainly associated with responding to oxidative stresses, peroxidase activities and phenylpropanoid biosynthesis pathways. Transcriptome data analysis showed that GhPRX genes expression were significantly different in microspore development between the sterility line-JinA and the maintainer line MB177. We confirmed the up-regulation of GhPRX107 and down-regulation of GhPRX128 in the sterile line compared to its maintainer line using qRT-PCR, suggesting their roles in pollen fertility. In addition, silencing GhPRX107 in cotton showed a significant decrease of the reactive oxygen species (ROS) levels of microsporocyte stage anthers compared to control. Overexpressing GhPRX107 in Arabidopsis significantly increased the ROS levels of anthers compared to wild type. In conclusion, we identified GhPRX107 as a determinant of ROS levels in anther. This work sets a foundation for PRX studies in pollen development.
Collapse
|
42
|
Zhang J, Ma H, Liu Y. Analysis on characteristics of female gametophyte and functional identification of genes related to inflorescences development of Kentucky bluegrass. PROTOPLASMA 2022; 259:1061-1079. [PMID: 34743240 DOI: 10.1007/s00709-021-01720-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 10/21/2021] [Indexed: 06/13/2023]
Abstract
The inflorescence is composed of spikes, and the spike is the carrier of grass seed formation and development, so the development status of inflorescence implies grass seed yield and quality. So far, the systematic analysis of inflorescence development of Kentucky bluegrass has not been reported. The development process of the female gametophyte of wild germplasm materials of Kentucky bluegrass in Gannan, Gansu Province of China (KB-GN), was observed. Based on this, the key developmental stages of inflorescence in KB-GN were divided into premeiosis (GPreM), meiosis (GM), postmeiosis (GPostM), and anthesis (GA), and four stages of inflorescence were selected to analyze the transcriptome expression profile. We found that its sexual reproduction formed a polygonum-type embryo sac. Transcriptome analysis showed that 4256, 1125, 1699, and 3127 genes were highly expressed in GPreM, GM, GPostM, and GA, respectively. And a large number of transcription factors (TFs) such as MADS-box, MYB and NAC, AP2, C2H2, FAR1, B3, bHLH, WRKY, and TCP were highly expressed throughout the inflorescence development stages. KEGG enrichment and MapMan analysis showed that genes involved in plant hormone metabolism were also highly expressed at the entire stages of inflorescence development. However, a few TFs belong to stage-specific genes, such as TRAF proteins with unknown function in plants was screened firstly, which was specifically and highly expressed in the GPreM, indicating that TRAF may regulate the preparatory events of meiosis or be essential for the development of megaspore mother cell (MMC). The expression patterns of 15 MADS-box genes were analyzed by qRT-PCR, and the expression results were consistent with that of the transcriptome. The study on the inflorescence development of KB-GN will be great significant works and contribution to illustrate the basic mechanism of grass seeds formation and development.
Collapse
Affiliation(s)
- Jinqing Zhang
- College of Pratacultural Science, Gansu Agricultural University, Key Laboratory of Grassland Ecosystem, Ministry of Education, Pratacultural Engineering Laboratory of Gansu Province, Sino-U.S. Center for Grazingland Ecosystem Sustainability, Lanzhou, Gansu, 730070, China
| | - Huiling Ma
- College of Pratacultural Science, Gansu Agricultural University, Key Laboratory of Grassland Ecosystem, Ministry of Education, Pratacultural Engineering Laboratory of Gansu Province, Sino-U.S. Center for Grazingland Ecosystem Sustainability, Lanzhou, Gansu, 730070, China.
| | - Yan Liu
- College of Pratacultural Science, Gansu Agricultural University, Key Laboratory of Grassland Ecosystem, Ministry of Education, Pratacultural Engineering Laboratory of Gansu Province, Sino-U.S. Center for Grazingland Ecosystem Sustainability, Lanzhou, Gansu, 730070, China
| |
Collapse
|
43
|
Integrative Analysis of Transcriptomic and Proteomic Changes Related to Cytoplasmic Male Sterility in Spring Stem Mustard ( Brassica juncea var. tumida Tsen et Lee). Int J Mol Sci 2022; 23:ijms23116248. [PMID: 35682925 PMCID: PMC9180981 DOI: 10.3390/ijms23116248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/27/2022] [Accepted: 05/30/2022] [Indexed: 02/04/2023] Open
Abstract
The development of flower and pollen is a complex biological process that involves multiple metabolic pathways in plants. In revealing novel insights into flower and pollen development underlying male sterility (MS), we conducted an integrated profiling of gene and protein activities in developing buds in cytoplasmic male sterile (CMS) mutants of mustard (Brassica juncea). Using RNA-Seq and label-free quantitative proteomics, 11,832 transcripts and 1780 protein species were identified with significant differential abundance between the male sterile line 09-05A and its maintainer line 09-05B at the tetrad stage and bi-nucleate stage of B. juncea. A large number of differentially expressed genes (DEGs) and differentially abundant proteins (DAPs) involved in carbohydrate and energy metabolism, including starch and sucrose metabolism, tricarboxylic acid (TCA) cycle, glycolysis, and oxidoreductase activity pathways, were significantly downregulated in 09-05A buds. The low expression of these DEGs or functional loss of DAPs, which can lead to an insufficient supply of critical substrates and ATP, could be associated with flower development, pollen development, and changes in fertility in B. juncea. Therefore, this study provided transcriptomic and proteomic information of pollen abortion for B. juncea and a basis for further research on the molecular regulatory mechanism of MS in plants.
Collapse
|
44
|
Zheng S, Dong J, Lu J, Li J, Jiang D, Yu H, Ye S, Bu W, Liu Z, Zhou H, Ding Y, Zhuang C. A cytosolic pentatricopeptide repeat protein is essential for tapetal plastid development by regulating OsGLK1 transcript levels in rice. THE NEW PHYTOLOGIST 2022; 234:1678-1695. [PMID: 35306663 DOI: 10.1111/nph.18105] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 03/03/2022] [Indexed: 06/14/2023]
Abstract
Most plant pentatricopeptide repeat (PPR) proteins localize to and function inside plastids and mitochondria. However, the function of PPRs that only localize to the cytoplasm remains unknown. Here, we demonstrated that the rice (Oryza sativa) PPR protein CYTOPLASM-LOCALIZED PPR1 (OsCPPR1) contributes to pollen development and localizes to the cytoplasm. Knocking down OsCPPR1 led to abnormal plastid development in tapetal cells, prolonged tapetal programmed cell death (PCD) and tapetum degradation, and significantly reduced pollen fertility. Transcriptome analysis revealed that the transcript level of OsGOLDEN-LIKE1 (OsGLK1), which encodes a transcription factor that regulates plastid development and maintenance, was significantly higher in the OsCPPR1 knockdown plants compared to wild-type plants. We further determined that OsCPPR1 downregulates OsGLK1 transcription by directly binding to the single-stranded regions of OsGLK1 mRNAs. Overexpression of OsGLK1 resulted in abnormal tapetum and plastid development, similar to that seen in OsCPPR1 knockdown plants, and suppression of OsGLK1 partially restored pollen fertility in the OsCPPR1 knockdown plants. We therefore conclude that OsCPPR1 suppresses OsGLK1 in the regulation of plastid development and PCD in the tapetum. Our work revealed novel functions for a cytosolic PPR, demonstrating the diverse roles of PPRs in plants and identifying a new regulatory mechanism for regulating pollen development in rice.
Collapse
Affiliation(s)
- Shaoyan Zheng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Jingfang Dong
- Guangdong Key Laboratory of New Technology in Rice Breeding, Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Jingqin Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Jing Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Dagang Jiang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Haopeng Yu
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Simiao Ye
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Wenli Bu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Zhenlan Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Hai Zhou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Yiliang Ding
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Chuxiong Zhuang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| |
Collapse
|
45
|
Xu J, Ji Z, Wang C, Xu F, Wang F, Zheng Y, Tang Y, Wei Z, Zhao T, Zhao K. WATER-SOAKED SPOT1 Controls Chloroplast Development and Leaf Senescence via Regulating Reactive Oxygen Species Homeostasis in Rice. FRONTIERS IN PLANT SCIENCE 2022; 13:918673. [PMID: 35693165 PMCID: PMC9178249 DOI: 10.3389/fpls.2022.918673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 04/26/2022] [Indexed: 06/15/2023]
Abstract
Transmembrane kinases (TMKs) play important roles in plant growth and signaling cascades of phytohormones. However, its function in the regulation of early leaf senescence (ELS) of plants remains unknown. Here, we report the molecular cloning and functional characterization of the WATER-SOAKED SPOT1 gene which encodes a protein belongs to the TMK family and controls chloroplast development and leaf senescence in rice (Oryza sativa L.). The water-soaked spot1 (oswss1) mutant displays water-soaked spots which subsequently developed into necrotic symptoms at the tillering stage. Moreover, oswss1 exhibits slightly rolled leaves with irregular epidermal cells, decreased chlorophyll contents, and defective stomata and chloroplasts as compared with the wild type. Map-based cloning revealed that OsWSS1 encodes transmembrane kinase TMK1. Genetic complementary experiments verified that a Leu396Pro amino acid substitution, residing in the highly conserved region of leucine-rich repeat (LRR) domain, was responsible for the phenotypes of oswss1. OsWSS1 was constitutively expressed in all tissues and its encoded protein is localized to the plasma membrane. Mutation of OsWSS1 led to hyper-accumulation of reactive oxygen species (ROS), more severe DNA fragmentation, and cell death than that of the wild-type control. In addition, we found that the expression of senescence-associated genes (SAGs) was significantly higher, while the expression of genes associated with chloroplast development and photosynthesis was significantly downregulated in oswss1 as compared with the wild type. Taken together, our results demonstrated that OsWSS1, a member of TMKs, plays a vital role in the regulation of ROS homeostasis, chloroplast development, and leaf senescence in rice.
Collapse
Affiliation(s)
- Jiangmin Xu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Xianyang, China
| | - Zhiyuan Ji
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chunlian Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Feifei Xu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fujun Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Yuhan Zheng
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yongchao Tang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zheng Wei
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Tianyong Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Xianyang, China
| | - Kaijun Zhao
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
46
|
Chot E, Reddy MS. Role of Ectomycorrhizal Symbiosis Behind the Host Plants Ameliorated Tolerance Against Heavy Metal Stress. Front Microbiol 2022; 13:855473. [PMID: 35418968 PMCID: PMC8996229 DOI: 10.3389/fmicb.2022.855473] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 02/15/2022] [Indexed: 12/05/2022] Open
Abstract
Soil heavy metal (HM) pollution, which arises from natural and anthropogenic sources, is a prime threat to the environment due to its accumulative property and non-biodegradability. Ectomycorrhizal (ECM) symbiosis is highly efficient in conferring enhanced metal tolerance to their host plants, enabling their regeneration on metal-contaminated lands for bioremediation programs. Numerous reports are available regarding ECM fungal potential to colonize metal-contaminated lands and various defense mechanisms of ECM fungi and plants against HM stress separately. To utilize ECM–plant symbiosis successfully for bioremediation of metal-contaminated lands, understanding the fundamental regulatory mechanisms through which ECM symbiosis develops an enhanced metal tolerance in their host plants has prime importance. As this field is highly understudied, the present review emphasizes how plant’s various defense systems and their nutrient dynamics with soil are affected by ECM fungal symbiosis under metal stress, ultimately leading to their host plants ameliorated tolerance and growth. Overall, we conclude that ECM symbiosis improves the plant growth and tolerance against metal stress by (i) preventing their roots direct exposure to toxic soil HMs, (ii) improving plant antioxidant activity and intracellular metal sequestration potential, and (iii) altering plant nutrient uptake from the soil in such a way to enhance their tolerance against metal stress. In some cases, ECM symbiosis promotes HM accumulation in metal stressed plants simultaneous to improved growth under the HM dilution effect.
Collapse
Affiliation(s)
- Eetika Chot
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, India
| | - Mondem Sudhakara Reddy
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, India
| |
Collapse
|
47
|
Sheng C, Yu D, Li X, Yu H, Zhang Y, Saqib Bilal M, Ma H, Zhang X, Baig A, Nie P, Zhao H. OsAPX1 Positively Contributes to Rice Blast Resistance. FRONTIERS IN PLANT SCIENCE 2022; 13:843271. [PMID: 35386681 PMCID: PMC8978999 DOI: 10.3389/fpls.2022.843271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
Ascorbate peroxidases (APXs) maintain cellular reactive oxygen species (ROS) homeostasis through their peroxidase activity. Here, we report that OsAPX1 also promotes ROS production such that a delicate cellular ROS homeostasis is achieved temporally after Magnaporthe oryzae infection. OsAPX1 specifically induces ROS production through increasing respiratory burst oxidase homologs (OsRBOHs) expression and can be inhibited by DPI, a ROS inhibitor. The time-course experiment data show that the simultaneous induction of OsAPX1 and OsRBOHs leads to ROS accumulation at an early stage; whereas a more durable expression of OsAPX1 leads to ROS scavenging at a later stage. By the temporal switching between ROS inducer and eliminator, OsAPX1 triggers an instant ROS burst upon M. oryzae infection and then a timely elimination of ROS toxicity. We find that OsAPX1 is under the control of the miR172a-OsIDS1 regulatory module. OsAPX1 also affects salicylic acid (SA) synthesis and signaling, which contribute to blast resistance. In conclusion, we show that OsAPX1 is a key factor that connects the upstream gene silencing and transcription regulatory routes with the downstream phytohormone and redox pathway, which provides an insight into the sophisticated regulatory network of rice innate immunity.
Collapse
Affiliation(s)
- Cong Sheng
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Laboratory of Bio-interactions and Crop Health, Nanjing Agricultural University, Nanjing, China
| | - Dongli Yu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Laboratory of Bio-interactions and Crop Health, Nanjing Agricultural University, Nanjing, China
| | - Xuan Li
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Laboratory of Bio-interactions and Crop Health, Nanjing Agricultural University, Nanjing, China
| | - Hanxi Yu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Laboratory of Bio-interactions and Crop Health, Nanjing Agricultural University, Nanjing, China
| | - Yimai Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Laboratory of Bio-interactions and Crop Health, Nanjing Agricultural University, Nanjing, China
| | - Muhammad Saqib Bilal
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Laboratory of Bio-interactions and Crop Health, Nanjing Agricultural University, Nanjing, China
| | - Hongyu Ma
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Xin Zhang
- Institute of Industrial Crops, Shanxi Agricultural University, Taiyuan, China
| | - Ayesha Baig
- Department of Biotechnology, COMSATS University Islamabad Abbottabad Campus, Abbottabad, Pakistan
| | - Pingping Nie
- College of Life Sciences, Zaozhuang University, Zaozhuang, China
| | - Hongwei Zhao
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Laboratory of Bio-interactions and Crop Health, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
48
|
Lewandowska D, Orr J, Schreiber M, Colas I, Ramsay L, Zhang R, Waugh R. The proteome of developing barley anthers during meiotic prophase I. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:1464-1482. [PMID: 34758083 PMCID: PMC8890616 DOI: 10.1093/jxb/erab494] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 11/08/2021] [Indexed: 05/11/2023]
Abstract
Flowering plants reproduce sexually by combining a haploid male and female gametophyte during fertilization. Male gametophytes are localized in the anthers, each containing reproductive (meiocyte) and non-reproductive tissue necessary for anther development and maturation. Meiosis, where chromosomes pair and exchange their genetic material during a process called recombination, is one of the most important and sensitive stages in breeding, ensuring genetic diversity. Most anther development studies have focused on transcript variation, but very few have been correlated with protein abundance. Taking advantage of a recently published barley anther transcriptomic (BAnTr) dataset and a newly developed sensitive mass spectrometry-based approach to analyse the barley anther proteome, we conducted high-resolution mass spectrometry analysis of barley anthers, collected at six time points and representing their development from pre-meiosis to metaphase. Each time point was carefully staged using immunocytology, providing a robust and accurate staging mirroring our previous BAnTr dataset. We identified >6100 non-redundant proteins including 82 known and putative meiotic proteins. Although the protein abundance was relatively stable throughout prophase I, we were able to quantify the dynamic variation of 336 proteins. We present the first quantitative comparative proteomics study of barley anther development during meiotic prophase I when the important process of homologous recombination is taking place.
Collapse
Affiliation(s)
- Dominika Lewandowska
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Jamie Orr
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Miriam Schreiber
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Isabelle Colas
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Luke Ramsay
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Runxuan Zhang
- Information and Computational Sciences, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Robbie Waugh
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
- Division of Plant Sciences, University of Dundee, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
- School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Waite Research Precinct, Glen Osmond, SA 5064, Australia
- Correspondence:
| |
Collapse
|
49
|
Sun G, Geng S, Zhang H, Jia M, Wang Z, Deng Z, Tao S, Liao R, Wang F, Kong X, Fu M, Liu S, Li A, Mao L. Matrilineal empowers wheat pollen with haploid induction potency by triggering postmitosis reactive oxygen species activity. THE NEW PHYTOLOGIST 2022; 233:2405-2414. [PMID: 35015909 DOI: 10.1111/nph.17963] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 12/21/2021] [Indexed: 06/14/2023]
Abstract
Reactive oxygen species (ROS) play important roles during anther and pollen development. DNA damage may cause chromosome fragmentation that is considered to underlie chromosome elimination for haploid induction by matrilineal pollen, a key step in MATRILINEAL-based double haploid breeding technology. But when and how DNA damage occurs is unknown. We performed comparative studies of wheat pollens from the wild-type and the CRISPR/Cas9 edited matrilineal mutant (mMTL). Chemical assays detected a second wave of ROS in mMTL pollen at the three-nuclei-stage and subsequently, along with reduced antioxidant enzyme activities. RNA-seq analysis revealed disturbed expression of genes for fatty acid biosynthesis and ROS homoeostasis. Gas chromatography-mass spectrometry measurement identified abnormal fatty acid metabolism that may contribute to defective mMTL pollen walls as observed using electron microscopy, consistent with the function of MTL as a phospholipase. Moreover, DNA damage was identified using TdT-mediated dUTP nick-end labelling and quantified using comet assays. Velocity patterns showed that ROS increments preceded that of DNA damage over the course of pollen maturation. Our work hypothesises that mMTL-triggered later-stage-specific ROS causes DNA damage that may contribute to chromosome fragmentation and hence chromosome elimination during haploid induction. These findings may provide more ways to accelerate double haploid-based plant breeding.
Collapse
Affiliation(s)
- Guoliang Sun
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Shuaifeng Geng
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Hongjie Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Meiling Jia
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zhenyu Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zhongyin Deng
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Shu Tao
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Ruyi Liao
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Fang Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xingchen Kong
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Mingxue Fu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Shaoshuai Liu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Aili Li
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Long Mao
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
50
|
Xu W, Zhu W, Yang L, Liang W, Li H, Yang L, Chen M, Luo Z, Huang G, Duan L, Dreni L, Zhang D. SMALL REPRODUCTIVE ORGANS, a SUPERMAN-like transcription factor, regulates stamen and pistil growth in rice. THE NEW PHYTOLOGIST 2022; 233:1701-1718. [PMID: 34761379 DOI: 10.1111/nph.17849] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 10/28/2021] [Indexed: 06/13/2023]
Abstract
Organ size is determined mainly by cell division and cell expansion. Several genetic factors regulating development of plant lateral organs have been characterized, but those involved in determining reproductive organ size and separation in rice (Oryza sativa) remain unknown. We have isolated the rice gene SMALL REPRODUCTIVE ORGANS (SRO) encoding a nucleus-localized Cys2His2 (C2 H2 ) zinc finger protein orthologous to Arabidopsis transcription factor (TF) SUPERMAN (SUP). Combined developmental, genetic, histological and transcriptomic analyses were used to determine the function of SRO in regulating reproductive organ size. SRO affects genes involved in cell division, cell expansion and phytohormone signalling in the rice flower. SRO is specifically expressed in the first stages of stamen filament development to regulate their correct formation and separation. In addition, SRO noncell-autonomously regulates the size and functionality of male and female reproductive organs. The B-class MADS-box gene OsMADS16/SPW1 is epistatic to SRO, whereas SRO regulates reproductive organ specification and floral meristem determinacy synergistically with C-class genes OsMADS3 and OsMADS58. These findings provide insights into how an evolutionarily conserved TF has a pivotal role in reproductive organ development in core eudicots and monocots, through partially conserved expression, function and regulatory network.
Collapse
Affiliation(s)
- Wei Xu
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wanwan Zhu
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Liu Yang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wanqi Liang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hui Li
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, 200032, China
| | - Li Yang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Mingjiao Chen
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhijing Luo
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Guoqiang Huang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Lei Duan
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ludovico Dreni
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Dabing Zhang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA, 5064, Australia
| |
Collapse
|