1
|
Nguyen TH, Kang BY, Kim HH. Chromosomal dynamics in Senna: comparative PLOP-FISH analysis of tandem repeats and flow cytometric nuclear genome size estimations. FRONTIERS IN PLANT SCIENCE 2023; 14:1288220. [PMID: 38173930 PMCID: PMC10762312 DOI: 10.3389/fpls.2023.1288220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/08/2023] [Indexed: 01/05/2024]
Abstract
Introduction Tandem repeats (TRs) occur abundantly in plant genomes. They play essential roles that affect genome organization and evolution by inducing or generating chromosomal rearrangements such as duplications, deletions, inversions, and translocations. These impact gene expression and chromosome structure and even contribute to the emergence of new species. Method We investigated the effects of TRs on speciation in Senna genus by performing a comparative analysis using fluorescence in situ hybridization (FISH) with S. tora-specific TR probes. We examined the chromosomal distribution of these TRs and compared the genome sizes of seven Senna species (estimated using flow cytometry) to better understand their evolutionary relationships. Results Two (StoTR03_159 and StoTR04_55) of the nine studied TRs were not detected in any of the seven Senna species, whereas the remaining seven were found in all or some species with patterns that were similar to or contrasted with those of S. tora. Of these studies species, only S. angulata showed significant genome rearrangements and dysploid karyotypes resembling those of S. tora. The genome sizes varied among these species and did not positively correlate with chromosome number. Notably, S. angulata had the fewest chromosomes (2n = 22) but a relatively large genome size. Discussion These findings reveal the dynamics of TRs and provide a cytogenetic depiction of chromosomal rearrangements during speciation in Senna. To further elucidate the dynamics of repeat sequences in Senna, future studies must include related species and extensive repeatomic studies, including those on transposable elements.
Collapse
Affiliation(s)
| | | | - Hyun Hee Kim
- Chromosome Research Institute, Department of Chemistry & Life Science, Sahmyook University, Seoul, Republic of Korea
| |
Collapse
|
2
|
Ptáček J, Ekrt L, Hornych O, Urfus T. Interploidy gene flow via a 'pentaploid bridge' and ploidy reduction in Cystopteris fragilis fern complex (Cystopteridaceae: Polypodiales). PLANT REPRODUCTION 2023; 36:321-331. [PMID: 37532893 DOI: 10.1007/s00497-023-00476-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 07/15/2023] [Indexed: 08/04/2023]
Abstract
KEY MESSAGE Our results indicate the existence of interploidy gene flow in Cystopteris fragilis, resulting in sexual triploid and diploid gametophytes from pentaploid parents. Similar evolutionary dynamics might operate in other fern complexes and need further investigation. Polyploidization and hybridization are a key evolutionary processes in ferns. Here, we outline an interploidy gene flow pathway operating in the polyploid Cystopteris fragilis complex. The conditions necessary for the existence of this pathway were tested. A total of 365 C. fragilis individuals were collected covering representatives of all three predominant ploidy levels (tetraploid, pentaploid, and hexaploid), cultivated, had their ploidy level estimated by flow cytometry, and their spores collected. The spores, as well as gametophytes and sporophytes established from them, were analysed by flow cytometry. Spore abortion rate was also estimated. In tetraploids, we observed the formation of unreduced (tetraploid) spores (ca 2%). Collected pentaploid individuals indicate ongoing hybridization between ploidy levels. Pentaploids formed up to 52% viable spores, ca 79% of them reduced, i.e. diploid and triploid. Reduced spores formed viable gametophytes, and, in the case of triploids, filial hexaploid sporophytes, showing evidence of sexual reproduction. Some tetraploid sporophytes reproduce apomictically (based on uniform ploidy of their metagenesis up to filial sporophytes). Triploid and diploid gametophytes from pentaploid parents are able to mate among themselves, or with "normal" reduced gametophytes from the sexual tetraploid sporophytes (the dominant ploidy level in the sporophytes in this populations), to produce tetraploid, pentaploid, and hexaploid sporophytes, allowing for geneflow from the pentaploids to both the tetraploid and hexaploid populations. Similar evolutionary dynamics might operate in other fern complexes and need further investigation.
Collapse
Affiliation(s)
- Jan Ptáček
- Department of Botany, Faculty of Science, Charles University, Benátská 2, , 128 00, Praha, Czech Republic
| | - Libor Ekrt
- Department of Botany, Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05, České Budějovice, Czech Republic
| | - Ondřej Hornych
- Department of Botany, Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05, České Budějovice, Czech Republic
| | - Tomáš Urfus
- Department of Botany, Faculty of Science, Charles University, Benátská 2, , 128 00, Praha, Czech Republic.
| |
Collapse
|
3
|
Farhat P, Mandáková T, Divíšek J, Kudoh H, German DA, Lysak MA. The evolution of the hypotetraploid Catolobus pendulus genome - the poorly known sister species of Capsella. FRONTIERS IN PLANT SCIENCE 2023; 14:1165140. [PMID: 37223809 PMCID: PMC10200890 DOI: 10.3389/fpls.2023.1165140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 04/04/2023] [Indexed: 05/25/2023]
Abstract
The establishment of Arabidopsis as the most important plant model has also brought other crucifer species into the spotlight of comparative research. While the genus Capsella has become a prominent crucifer model system, its closest relative has been overlooked. The unispecific genus Catolobus is native to temperate Eurasian woodlands, from eastern Europe to the Russian Far East. Here, we analyzed chromosome number, genome structure, intraspecific genetic variation, and habitat suitability of Catolobus pendulus throughout its range. Unexpectedly, all analyzed populations were hypotetraploid (2n = 30, ~330 Mb). Comparative cytogenomic analysis revealed that the Catolobus genome arose by a whole-genome duplication in a diploid genome resembling Ancestral Crucifer Karyotype (ACK, n = 8). In contrast to the much younger Capsella allotetraploid genomes, the presumably autotetraploid Catolobus genome (2n = 32) arose early after the Catolobus/Capsella divergence. Since its origin, the tetraploid Catolobus genome has undergone chromosomal rediploidization, including a reduction in chromosome number from 2n = 32 to 2n = 30. Diploidization occurred through end-to-end chromosome fusion and other chromosomal rearrangements affecting a total of six of 16 ancestral chromosomes. The hypotetraploid Catolobus cytotype expanded toward its present range, accompanied by some longitudinal genetic differentiation. The sister relationship between Catolobus and Capsella allows comparative studies of tetraploid genomes of contrasting ages and different degrees of genome diploidization.
Collapse
Affiliation(s)
- Perla Farhat
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czechia
| | - Terezie Mandáková
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czechia
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Jan Divíšek
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Hiroshi Kudoh
- Center for Ecological Research, Kyoto University, Otsu, Japan
| | - Dmitry A. German
- South-Siberian Botanical Garden, Altai State University, Barnaul, Russia
| | - Martin A. Lysak
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czechia
- National Centre for Biomolecular Research (NCBR), Faculty of Science, Masaryk University, Brno, Czechia
| |
Collapse
|
4
|
Windham MD, Picard KT, Pryer KM. An in-depth investigation of cryptic taxonomic diversity in the rare endemic mustard Draba maguirei. AMERICAN JOURNAL OF BOTANY 2023; 110:1-22. [PMID: 36779544 DOI: 10.1002/ajb2.16138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 01/14/2023] [Accepted: 01/17/2023] [Indexed: 05/11/2023]
Abstract
PREMISE Previously published evidence suggests that Draba maguirei, a mustard endemic to a few localities in the Bear River, Wellsville, and Wasatch Mountains of northern Utah, may represent a cryptic species complex rather than a single species. Conservation concerns prompted an in-depth systematic study of this taxon and its putative relatives. METHODS Sampling most known populations of D. maguirei s.l. (D. maguirei var. maguirei and D. maguirei var. burkei), we integrate data from geography, ecology, morphology, cytogenetics and pollen, enzyme electrophoresis, and the phylogenetic analysis of nuclear internal transcribed spacer sequences to explore potential taxonomic diversity in the species complex. RESULTS Draba maguirei var. burkei is shown here to be a distinct species (D. burkei) most closely related to D. globosa, rather than to D. maguirei. Within D. maguirei s.s., the northern (high elevation) and southern (low elevation) population clusters are genetically isolated and morphologically distinguishable, leading to the recognition here of the southern taxon as D. maguirei subsp. stonei. CONCLUSIONS Our study reveals that plants traditionally assigned to D. maguirei comprise three genetically divergent lineages (D. burkei and two newly recognized subspecies of D. maguirei), each exhibiting a different chromosome number and occupying a discrete portion of the geographic range. Although previously overlooked and underappreciated taxonomically, the three taxa are morphologically recognizable based on the distribution and types of trichomes present on the leaves, stems, and fruit. Our clarification of the diversity and distribution of these taxa provides an improved framework for conservation efforts.
Collapse
Affiliation(s)
- Michael D Windham
- Department of Biology, Duke University, Durham, North Carolina, 27708, USA
| | - Kathryn T Picard
- Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington, District of Columbia, 20560, USA
| | - Kathleen M Pryer
- Department of Biology, Duke University, Durham, North Carolina, 27708, USA
| |
Collapse
|
5
|
Joshi P, Ansari H, Dickson R, Ellison NW, Skema C, Tate JA. Polyploidy on islands - concerted evolution and gene loss amid chromosomal stasis. ANNALS OF BOTANY 2023; 131:33-44. [PMID: 35390127 PMCID: PMC9904340 DOI: 10.1093/aob/mcac051] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 04/04/2022] [Indexed: 05/25/2023]
Abstract
BACKGROUND AND AIMS Polyploidy is an important process that often generates genomic diversity within lineages, but it can also cause changes that result in loss of genomic material. Island lineages, while often polyploid, typically show chromosomal stasis but have not been investigated in detail regarding smaller-scale gene loss. Our aim was to investigate post-polyploidization genome dynamics in a chromosomally stable lineage of Malvaceae endemic to New Zealand. METHODS We determined chromosome numbers and used fluorescence in situ hybridization to localize 18S and 5S rDNA. Gene sequencing of 18S rDNA, the internal transcribed spacers (ITS) with intervening 5.8S rDNA, and a low-copy nuclear gene, GBSSI-1, was undertaken to determine if gene loss occurred in the New Zealand lineage following polyploidy. KEY RESULTS The chromosome number for all species investigated was 2n = 42, with the first published report for the monotypic Australian genus Asterotrichion. The five species investigated all had two 5S rDNA signals localized interstitially on the long arm of one of the largest chromosome pairs. All species, except Plagianthus regius, had two 18S rDNA signals localized proximally on the short arm of one of the smallest chromosome pairs. Plagianthus regius had two additional 18S rDNA signals on a separate chromosome, giving a total of four. Sequencing of nuclear ribosomal 18S rDNA and the ITS cistron indicated loss of historical ribosomal repeats. Phylogenetic analysis of a low-copy nuclear gene, GBSSI-1, indicated that some lineages maintained three copies of the locus, while others have lost one or two copies. CONCLUSIONS Although island endemic lineages show chromosomal stasis, with no additional changes in chromosome number, they may undergo smaller-scale processes of gene loss and concerted evolution ultimately leading to further genome restructuring and downsizing.
Collapse
Affiliation(s)
- Prashant Joshi
- School of Natural Sciences, Massey University, Palmerston North, New Zealand
| | - Helal Ansari
- AgResearch Grasslands Research Centre, Palmerston North, New Zealand
| | - Rowan Dickson
- School of Natural Sciences, Massey University, Palmerston North, New Zealand
| | | | - Cynthia Skema
- School of Natural Sciences, Massey University, Palmerston North, New Zealand
- Morris Arboretum of the University of Pennsylvania, Philadelphia, PA, USA
| | | |
Collapse
|
6
|
Roudaire T, Marzari T, Landry D, Löffelhardt B, Gust AA, Jermakow A, Dry I, Winckler P, Héloir MC, Poinssot B. The grapevine LysM receptor-like kinase VvLYK5-1 recognizes chitin oligomers through its association with VvLYK1-1. FRONTIERS IN PLANT SCIENCE 2023; 14:1130782. [PMID: 36818830 PMCID: PMC9932513 DOI: 10.3389/fpls.2023.1130782] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
The establishment of defense reactions to protect plants against pathogens requires the recognition of invasion patterns (IPs), mainly detected by plasma membrane-bound pattern recognition receptors (PRRs). Some IPs, also termed elicitors, are used in several biocontrol products that are gradually being developed to reduce the use of chemicals in agriculture. Chitin, the major component of fungal cell walls, as well as its deacetylated derivative, chitosan, are two elicitors known to activate plant defense responses. However, recognition of chitooligosaccharides (COS) in Vitis vinifera is still poorly understood, hampering the improvement and generalization of protection tools for this important crop. In contrast, COS perception in the model plant Arabidopsis thaliana is well described and mainly relies on a tripartite complex formed by the cell surface lysin motif receptor-like kinases (LysM-RLKs) AtLYK1/CERK1, AtLYK4 and AtLYK5, the latter having the strongest affinity for COS. In grapevine, COS perception has for the moment only been demonstrated to rely on two PRRs VvLYK1-1 and VvLYK1-2. Here, we investigated additional players by overexpressing in Arabidopsis the two putative AtLYK5 orthologs from grapevine, VvLYK5-1 and VvLYK5-2. Expression of VvLYK5-1 in the atlyk4/5 double mutant background restored COS sensitivity, such as chitin-induced MAPK activation, defense gene expression, callose deposition and conferred non-host resistance to grapevine downy mildew (Erysiphe necator). Protein-protein interaction studies conducted in planta revealed a chitin oligomer-triggered interaction between VvLYK5-1 and VvLYK1-1. Interestingly, our results also indicate that VvLYK5-1 mediates the perception of chitin but not chitosan oligomers showing a part of its specificity.
Collapse
Affiliation(s)
- Thibault Roudaire
- Agroécologie, CNRS, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, France
| | - Tania Marzari
- Agroécologie, CNRS, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, France
| | - David Landry
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
| | - Birgit Löffelhardt
- Department of Plant Biochemistry, University of Tübingen, Center for Plant Molecular Biology, Tübingen, Germany
| | - Andrea A. Gust
- Department of Plant Biochemistry, University of Tübingen, Center for Plant Molecular Biology, Tübingen, Germany
| | - Angelica Jermakow
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Adelaide, SA, Australia
| | - Ian Dry
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Adelaide, SA, Australia
| | - Pascale Winckler
- Dimacell Imaging Facility, PAM UMR A 02.102, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, France
| | - Marie-Claire Héloir
- Agroécologie, CNRS, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, France
| | - Benoit Poinssot
- Agroécologie, CNRS, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, France
| |
Collapse
|
7
|
Mandáková TM, Lysak MA. Chromosome Painting Using Chromosome-Specific BAC Clones. Methods Mol Biol 2023; 2672:303-313. [PMID: 37335485 DOI: 10.1007/978-1-0716-3226-0_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
Chromosome painting (CP) refers to visualization of large chromosome regions, chromosome arms or entire chromosomes via fluorescence in situ hybridization (FISH) of chromosome-specific DNA sequences. For CP in crucifers (Brassicaceae), typically contigs of chromosome-specific bacterial artificial chromosomes (BAC) from Arabidopsis thaliana are applied as painting probes on chromosomes of A. thaliana or other species (comparative chromosome painting, CCP). CP/CCP enables to identify and trace particular chromosome regions and/or chromosomes throughout all mitotic and meiotic stages as well as corresponding interphase chromosome territories. However, extended pachytene chromosomes provide the highest resolution of CP/CCP. Fine-scale chromosome structure, structural chromosome rearrangements (such as inversions, translocations, centromere repositioning), and chromosome breakpoints can be investigated by CP/CCP. BAC DNA probes can be accompanied by other types of DNA probes, such as repetitive DNA, genomic DNA, or synthetic oligonucleotide probes. Here, we describe a robust step-by-step protocol of CP and CCP which proved to be efficient across the family Brassicaceae, but which is also applicable to other angiosperm families.
Collapse
Affiliation(s)
- Terezie M Mandáková
- CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic.
| | - Martin A Lysak
- CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic.
| |
Collapse
|
8
|
Conant GC. POInT: Modeling Polyploidy in the Era of Ubiquitous Genomics. Methods Mol Biol 2023; 2545:77-90. [PMID: 36720808 DOI: 10.1007/978-1-0716-2561-3_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Thirteen years ago, we described an evolutionary modeling tool that could resolve the orthology relationships among the homologous genomic regions created by a whole-genome duplication. This tool, which we subsequently named POInT (the Polyploid Orthology Inference Tool), was originally only useful for studying a genome duplication known from bakers' yeast and its relatives. Now, with hundreds of genome sequences that contain the relicts of ancient polyploidy available, POInT can be used to study dozens of different polyploidies, asking both questions about the history of individual events and about the commonalities and differences seen between those events. In this chapter, I give a brief history of the development of POInT as an illustration of the interconnected nature of computational biology research. I then further describe how POInT operates and some of the strengths and drawbacks of its structure. I close with a few examples of discoveries we have made using it.
Collapse
Affiliation(s)
- Gavin C Conant
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA.
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC, USA.
- Program in Genetics, North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
9
|
De Silva NP, Lee C, Battlay P, Fournier-Level A, Moore JL, Hodgins KA. Genome assembly of an Australian native grass species reveals a recent whole-genome duplication and biased gene retention of genes involved in stress response. Gigascience 2022; 12:giad034. [PMID: 37171129 PMCID: PMC10176504 DOI: 10.1093/gigascience/giad034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 01/04/2023] [Accepted: 04/24/2023] [Indexed: 05/13/2023] Open
Abstract
BACKGROUND The adaptive significance of polyploidy has been extensively debated, and chromosome-level genome assemblies of polyploids can provide insight into this. The Australian grass Bothriochloa decipiens belongs to the BCD clade, a group with a complex history of hybridization and polyploid. This is the first genome assembly and annotation of a species that belongs to this fascinating yet complex group. FINDINGS Using Illumina short reads, 10X Genomics linked reads, and Hi-C sequencing data, we assembled a highly contiguous genome of B. decipiens, with a total length of 1,218.22 Mb and scaffold N50 of 42.637 Mb. Comparative analysis revealed that the species experienced a relatively recent whole-genome duplication. We clustered the 20 major scaffolds, representing the 20 chromosomes, into the 2 subgenomes of the parental species using unique repeat signatures. We found evidence of biased fractionation and differences in the activity of transposable elements between the subgenomes prior to hybridization. Duplicates were enriched for genes involved in transcription and response to external stimuli, supporting a biased retention of duplicated genes following whole-genome duplication. CONCLUSIONS Our results support the hypotheses of a biased retention of duplicated genes following polyploidy and point to differences in repeat activity associated with subgenome dominance. B. decipiens is a widespread species with the ability to establish across many soil types, making it a prime candidate for climate change- resilient ecological restoration of Australian grasslands. This reference genome is a valuable resource for future population genomic research on Australian grasses.
Collapse
Affiliation(s)
- Nissanka P De Silva
- School of Biological Sciences, Monash University, Clayton, 3800 Victoria, Australia
| | - Christopher Lee
- School of Biological Sciences, Monash University, Clayton, 3800 Victoria, Australia
| | - Paul Battlay
- School of Biological Sciences, Monash University, Clayton, 3800 Victoria, Australia
| | - A Fournier-Level
- School of BioSciences, University of Melbourne, Melbourne, 3010 Victoria, Australia
| | - Joslin L Moore
- School of Biological Sciences, Monash University, Clayton, 3800 Victoria, Australia
- Arthur Rylah Institute for Environment Research, Heidelberg, 3084 Victoria, Australia
| | - Kathryn A Hodgins
- School of Biological Sciences, Monash University, Clayton, 3800 Victoria, Australia
| |
Collapse
|
10
|
Gnutikov AA, Nosov NN, Koroleva TM, Punina EO, Probatova NS, Shneyer VS, Rodionov AV. Origin of the Rare Hybrid Genus × Trisetokoeleria Tzvelev ( Poaceae) According to Molecular Phylogenetic Data. PLANTS (BASEL, SWITZERLAND) 2022; 11:3533. [PMID: 36559646 PMCID: PMC9782799 DOI: 10.3390/plants11243533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/01/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
In our article, we analyzed new data on the origin of the hybrid genus ×Trisetokoeleria. According to the morphological criteria ×T. jurtzevii is a hybrid between Koeleria asiatica s. l. and Trisetum spicatum, ×T. taimyrica, and originated from Koeleria asiatica s. l. and Trisetum subalpestre, ×T. gorodkowii, a hybrid between Koeleria asiatica and Trisetum ruprechtianum. Later ×T. taimyrica was transferred to Koeleria. Parental taxa are prone to active hybridization themselves, thus, new methods of next-generation sequencing (NGS) were needed to clarify the relationships of these genera. For NGS we used the fragment 18S rDNA (part)-ITS1-5.8S rDNA (totally 441 accessions). We analyzed ITS1-5.8S rDNA-ITS2 region, trnL-trnF and trnK-rps16 from eight samples of the five species, using the Sanger method: ×Trisetokoeleria jurtzevii, ×T. taimyrica, Koeleria asiatica, Sibirotrisetum sibiricum (=Trisetum sibiricum), and Trisetum spicatum. We also studied the pollen fertility of ×Trisetokoeleria and its possible progenitors. Our data partly contradicted previous assumptions, based on morphological grounds, and showed us a picture of developed introgression within and between Koeleria and Trisetum. ×T. jurtzevii, a totally sterile hybrid formed rather recently. We can suppose that ×T. jurtzevii is a hybrid between K. asiatica and some Trisetum s. str. Species, but not T. spicatum. ×T. gorodkowii, a hybrid in the stage of primary stabilization; it has one unique ribotype related to T. spicatum s. l. The second parental species is unrelated to Trisetum ruprechtianum. ×T. taimyrica and is a stabilized hybrid species; it shares major ribotypes with the T. spicatum/T. wrangelense group and has a minor fraction of rDNA related to genus Deyeuxia s. l.
Collapse
Affiliation(s)
- Alexander A. Gnutikov
- Department of Genetic Resources of Oat, Barley, Rye, Federal Research Center N. I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR), 190000 St. Petersburg, Russia
| | - Nikolai N. Nosov
- Laboratory of Biosystematics and Cytology, Komarov Botanical Institute of the Russian Academy of Sciences, 197376 St. Petersburg, Russia
| | - Tatiana M. Koroleva
- Laboratory of Geography and Vegetation Mapping, Komarov Botanical Institute of the Russian Academy of Sciences, 197376 St. Petersburg, Russia
| | - Elizaveta O. Punina
- Laboratory of Biosystematics and Cytology, Komarov Botanical Institute of the Russian Academy of Sciences, 197376 St. Petersburg, Russia
| | - Nina S. Probatova
- Laboratory of Botany, Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, 690022 Vladivostok, Russia
| | - Victoria S. Shneyer
- Laboratory of Biosystematics and Cytology, Komarov Botanical Institute of the Russian Academy of Sciences, 197376 St. Petersburg, Russia
| | - Alexander V. Rodionov
- Laboratory of Biosystematics and Cytology, Komarov Botanical Institute of the Russian Academy of Sciences, 197376 St. Petersburg, Russia
| |
Collapse
|
11
|
Dysin AP, Shcherbakov YS, Nikolaeva OA, Terletskii VP, Tyshchenko VI, Dementieva NV. Salmonidae Genome: Features, Evolutionary and Phylogenetic Characteristics. Genes (Basel) 2022; 13:genes13122221. [PMID: 36553488 PMCID: PMC9778375 DOI: 10.3390/genes13122221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/19/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
The salmon family is one of the most iconic and economically important fish families, primarily possessing meat of excellent taste as well as irreplaceable nutritional and biological value. One of the most common and, therefore, highly significant members of this family, the Atlantic salmon (Salmo salar L.), was not without reason one of the first fish species for which a high-quality reference genome assembly was produced and published. Genomic advancements are becoming increasingly essential in both the genetic enhancement of farmed salmon and the conservation of wild salmon stocks. The salmon genome has also played a significant role in influencing our comprehension of the evolutionary and functional ramifications of the ancestral whole-genome duplication event shared by all Salmonidae species. Here we provide an overview of the current state of research on the genomics and phylogeny of the various most studied subfamilies, genera, and individual salmonid species, focusing on those studies that aim to advance our understanding of salmonid ecology, physiology, and evolution, particularly for the purpose of improving aquaculture production. This review should make potential researchers pay attention to the current state of research on the salmonid genome, which should potentially attract interest in this important problem, and hence the application of new technologies (such as genome editing) in uncovering the genetic and evolutionary features of salmoniforms that underlie functional variation in traits of commercial and scientific importance.
Collapse
Affiliation(s)
- Artem P. Dysin
- Russian Research Institute of Farm Animal Genetics and Breeding-Branch of the L.K. Ernst Federal Research Center for Animal Husbandry, Pushkin, 196601 St. Petersburg, Russia
- Correspondence:
| | - Yuri S. Shcherbakov
- Russian Research Institute of Farm Animal Genetics and Breeding-Branch of the L.K. Ernst Federal Research Center for Animal Husbandry, Pushkin, 196601 St. Petersburg, Russia
| | - Olga A. Nikolaeva
- Russian Research Institute of Farm Animal Genetics and Breeding-Branch of the L.K. Ernst Federal Research Center for Animal Husbandry, Pushkin, 196601 St. Petersburg, Russia
| | - Valerii P. Terletskii
- All-Russian Research Veterinary Institute of Poultry Science-Branch of the Federal Scientific Center, All-Russian Research and Technological Poultry Institute (ARRVIPS), Lomonosov, 198412 St. Petersburg, Russia
| | - Valentina I. Tyshchenko
- Russian Research Institute of Farm Animal Genetics and Breeding-Branch of the L.K. Ernst Federal Research Center for Animal Husbandry, Pushkin, 196601 St. Petersburg, Russia
| | - Natalia V. Dementieva
- Russian Research Institute of Farm Animal Genetics and Breeding-Branch of the L.K. Ernst Federal Research Center for Animal Husbandry, Pushkin, 196601 St. Petersburg, Russia
| |
Collapse
|
12
|
Hoang PTN, Fuchs J, Schubert V, Tran TBN, Schubert I. Chromosome Numbers and Genome Sizes of All 36 Duckweed Species ( Lemnaceae). PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11202674. [PMID: 36297698 PMCID: PMC9608876 DOI: 10.3390/plants11202674] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/27/2022] [Accepted: 10/08/2022] [Indexed: 06/12/2023]
Abstract
Usually, chromosome sets (karyotypes) and genome sizes are rather stable for distinct species and therefore of diagnostic value for taxonomy. In combination with (cyto)genomics, both features provide essential cues for genome evolution and phylogenetic relationship studies within and between taxa above the species level. We present for the first time a survey on chromosome counts and genome size measurement for one or more accessions from all 36 duckweed species and discuss the evolutionary impact and peculiarities of both parameters in duckweeds.
Collapse
|
13
|
Zuo (左胜) S, Guo (郭新异) X, Mandáková T, Edginton M, Al-Shehbaz IA, Lysak MA. Genome diploidization associates with cladogenesis, trait disparity, and plastid gene evolution. PLANT PHYSIOLOGY 2022; 190:403-420. [PMID: 35670733 PMCID: PMC9434143 DOI: 10.1093/plphys/kiac268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 05/09/2022] [Indexed: 05/20/2023]
Abstract
Angiosperm genome evolution was marked by many clade-specific whole-genome duplication events. The Microlepidieae is one of the monophyletic clades in the mustard family (Brassicaceae) formed after an ancient allotetraploidization. Postpolyploid cladogenesis has resulted in the extant c. 17 genera and 60 species endemic to Australia and New Zealand (10 species). As postpolyploid genome diploidization is a trial-and-error process under natural selection, it may proceed with different intensity and be associated with speciation events. In Microlepidieae, different extents of homoeologous recombination between the two parental subgenomes generated clades marked by slow ("cold") versus fast ("hot") genome diploidization. To gain a deeper understanding of postpolyploid genome evolution in Microlepidieae, we analyzed phylogenetic relationships in this tribe using complete chloroplast sequences, entire 35S rDNA units, and abundant repetitive sequences. The four recovered intra-tribal clades mirror the varied diploidization of Microlepidieae genomes, suggesting that the intrinsic genomic features underlying the extent of diploidization are shared among genera and species within one clade. Nevertheless, even congeneric species may exert considerable morphological disparity (e.g. in fruit shape), whereas some species within different clades experience extensive morphological convergence despite the different pace of their genome diploidization. We showed that faster genome diploidization is positively associated with mean morphological disparity and evolution of chloroplast genes (plastid-nuclear genome coevolution). Higher speciation rates in perennials than in annual species were observed. Altogether, our results confirm the potential of Microlepidieae as a promising subject for the analysis of postpolyploid genome diploidization in Brassicaceae.
Collapse
Affiliation(s)
| | | | - Terezie Mandáková
- CEITEC – Central European Institute of Technology, Masaryk University, Brno, CZ-625 00, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, CZ-625 00, Czech Republic
| | - Mark Edginton
- Queensland Herbarium, Department of Environment and Science, Brisbane Botanic Gardens, Mt Coot-tha Road, Toowong, QLD 4066, Australia
| | | | | |
Collapse
|
14
|
Schilbert HM, Glover BJ. Analysis of flavonol regulator evolution in the Brassicaceae reveals MYB12, MYB111 and MYB21 duplications and MYB11 and MYB24 gene loss. BMC Genomics 2022; 23:604. [PMID: 35986242 PMCID: PMC9392221 DOI: 10.1186/s12864-022-08819-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 08/03/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Flavonols are the largest subgroup of flavonoids, possessing multiple functions in plants including protection against ultraviolet radiation, antimicrobial activities, and flower pigmentation together with anthocyanins. They are of agronomical and economical importance because the major off-taste component in rapeseed protein isolates is a flavonol derivative, which limits rapeseed protein use for human consumption. Flavonol production in Arabidopsis thaliana is mainly regulated by the subgroup 7 (SG7) R2R3-MYB transcription factors MYB11, MYB12, and MYB111. Recently, the SG19 MYBs MYB21, MYB24, and MYB57 were shown to regulate flavonol accumulation in pollen and stamens. The members of each subgroup are closely related, showing gene redundancy and tissue-specific expression in A. thaliana. However, the evolution of these flavonol regulators inside the Brassicaceae, especially inside the Brassiceae, which include the rapeseed crop species, is not fully understood. RESULTS We studied the SG7 and SG19 MYBs in 44 species, including 31 species of the Brassicaceae, by phylogenetic analyses followed by synteny and gene expression analyses. Thereby we identified a deep MYB12 and MYB111 duplication inside the Brassicaceae, which likely occurred before the divergence of Brassiceae and Thelypodieae. These duplications of SG7 members were followed by the loss of MYB11 after the divergence of Eruca vesicaria from the remaining Brassiceae species. Similarly, MYB21 experienced duplication before the emergence of the Brassiceae tribe, where the gene loss of MYB24 is also proposed to have happened. The members of each subgroup revealed frequent overlapping spatio-temporal expression patterns in the Brassiceae member B. napus, which are assumed to compensate for the loss of MYB11 and MYB24 in the analysed tissues. CONCLUSIONS We identified a duplication of MYB12, MYB111, and MYB21 inside the Brassicaceae and MYB11 and MYB24 gene loss inside the tribe Brassiceae. We propose that polyploidization events have shaped the evolution of the flavonol regulators in the Brassicaceae, especially in the Brassiceae.
Collapse
Affiliation(s)
- Hanna M Schilbert
- Department of Plant Sciences, University of Cambridge, Cambridge, UK.
- Genetics and Genomics of Plants, CeBiTec & Faculty of Biology, Bielefeld University, Bielefeld, Germany.
| | - Beverley J Glover
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| |
Collapse
|
15
|
Dogan M, Mandáková T, Guo X, Lysak MA. Idahoa and Subularia: Hidden polyploid origins of two enigmatic genera of crucifers. AMERICAN JOURNAL OF BOTANY 2022; 109:1273-1289. [PMID: 35912547 DOI: 10.1002/ajb2.16042] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 07/10/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
PREMISE The monotypic Idahoa (I. scapigera) and the bispecific Subularia (S. aquatica and S. monticola) belong to Brassicaceae with unclear phylogenetic relationships and no tribal assignment. To fill this knowledge gap, we investigated these species and their closest relatives by combining cytogenomic and phylogenomic methods. METHODS We used whole plastome sequences in maximum likelihood and Bayesian inference analyses. We tested the phylogenetic informativeness of shared genomic repeats. We combined nuclear gene tree reconciliation and comparative chromosome painting (CCP) to examine the occurrence of past whole-genome duplications (WGDs). RESULTS The plastid data set corroborated the sister relationship between Idahoa and Subularia within the crucifer Lineage V but failed to resolve consistent topologies using both inference methods. The shared repetitive sequences provided conflicting pwhylogenetic signals. CCP analysis unexpectedly revealed that Idahoa (2n = 16) has a diploidized mesotetraploid genome, whereas two Subularia species (2n = 28 and 30) have diploidized mesoctoploid genomes. Several ancient allopolyploidy events have also been detected in closely related taxa (Chamira circaeoides, Cremolobeae, Eudemeae, and Notothlaspideae). CONCLUSIONS Our results suggest that the contentious phylogenetic placement of Idahoa and Subularia is best explained by two WGDs involving one or more shared parental genomes. The newly identified mesopolyploid genomes highlight the challenges of studying plant clades with complex polyploidy histories and provide a better framework for understanding genome evolution in the crucifer family.
Collapse
Affiliation(s)
- Mert Dogan
- CEITEC-Central European Institute of Technology, Masaryk University, Brno, CZ-625 00, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, CZ-625 00, Czech Republic
| | - Terezie Mandáková
- CEITEC-Central European Institute of Technology, Masaryk University, Brno, CZ-625 00, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, CZ-625 00, Czech Republic
| | - Xinyi Guo
- CEITEC-Central European Institute of Technology, Masaryk University, Brno, CZ-625 00, Czech Republic
| | - Martin A Lysak
- CEITEC-Central European Institute of Technology, Masaryk University, Brno, CZ-625 00, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, CZ-625 00, Czech Republic
| |
Collapse
|
16
|
Hofstatter PG, Thangavel G, Lux T, Neumann P, Vondrak T, Novak P, Zhang M, Costa L, Castellani M, Scott A, Toegelová H, Fuchs J, Mata-Sucre Y, Dias Y, Vanzela AL, Huettel B, Almeida CC, Šimková H, Souza G, Pedrosa-Harand A, Macas J, Mayer KF, Houben A, Marques A. Repeat-based holocentromeres influence genome architecture and karyotype evolution. Cell 2022; 185:3153-3168.e18. [DOI: 10.1016/j.cell.2022.06.045] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 05/24/2022] [Accepted: 06/24/2022] [Indexed: 01/30/2023]
|
17
|
Zhang Y, Tang M, Huang M, Xie J, Cheng J, Fu Y, Jiang D, Yu X, Li B. Dynamic enhancer transcription associates with reprogramming of immune genes during pattern triggered immunity in Arabidopsis. BMC Biol 2022; 20:165. [PMID: 35864475 PMCID: PMC9301868 DOI: 10.1186/s12915-022-01362-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 06/24/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Enhancers are cis-regulatory elements present in eukaryote genomes, which constitute indispensable determinants of gene regulation by governing the spatiotemporal and quantitative expression dynamics of target genes, and are involved in multiple life processes, for instance during development and disease states. The importance of enhancer activity has additionally been highlighted for immune responses in animals and plants; however, the dynamics of enhancer activities and molecular functions in plant innate immunity are largely unknown. Here, we investigated the involvement of distal enhancers in early innate immunity in Arabidopsis thaliana. RESULTS A group of putative distal enhancers producing low-abundance transcripts either unidirectionally or bidirectionally are identified. We show that enhancer transcripts are dynamically modulated in plant immunity triggered by microbe-associated molecular patterns and are strongly correlated with open chromatin, low levels of methylated DNA, and increases in RNA polymerase II targeting and acetylated histone marks. Dynamic enhancer transcription is correlated with target early immune gene expression patterns. Cis motifs that are bound by immune-related transcription factors, such as WRKYs and SARD1, are highly enriched within upregulated enhancers. Moreover, a subset of core pattern-induced enhancers are upregulated by multiple patterns from diverse pathogens. The expression dynamics of putative immunity-related enhancers and the importance of WRKY binding motifs for enhancer function were also validated. CONCLUSIONS Our study demonstrates the general occurrence of enhancer transcription in plants and provides novel information on the distal regulatory landscape during early plant innate immunity, providing new insights into immune gene regulation and ultimately improving the mechanistic understanding of the plant immune system.
Collapse
Affiliation(s)
- Ying Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- Hubei Key Lab of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, 430070, Hubei, China
| | - Meng Tang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- Hubei Key Lab of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, 430070, Hubei, China
| | - Mengling Huang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- Hubei Key Lab of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, 430070, Hubei, China
| | - Jiatao Xie
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- Hubei Key Lab of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, 430070, Hubei, China
| | - Jiasen Cheng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- Hubei Key Lab of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Yanping Fu
- Hubei Key Lab of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Daohong Jiang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- Hubei Key Lab of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, 430070, Hubei, China
| | - Xiao Yu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- Hubei Key Lab of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, 430070, Hubei, China
| | - Bo Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
- Hubei Key Lab of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
- Hubei Hongshan Laboratory, Wuhan, 430070, Hubei, China.
| |
Collapse
|
18
|
Lysak MA. Celebrating Mendel, McClintock, and Darlington: On end-to-end chromosome fusions and nested chromosome fusions. THE PLANT CELL 2022; 34:2475-2491. [PMID: 35441689 PMCID: PMC9252491 DOI: 10.1093/plcell/koac116] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 04/13/2022] [Indexed: 05/04/2023]
Abstract
The evolution of eukaryotic genomes is accompanied by fluctuations in chromosome number, reflecting cycles of chromosome number increase (polyploidy and centric fissions) and decrease (chromosome fusions). Although all chromosome fusions result from DNA recombination between two or more nonhomologous chromosomes, several mechanisms of descending dysploidy are exploited by eukaryotes to reduce their chromosome number. Genome sequencing and comparative genomics have accelerated the identification of inter-genome chromosome collinearity and gross chromosomal rearrangements and have shown that end-to-end chromosome fusions (EEFs) and nested chromosome fusions (NCFs) may have played a more important role in the evolution of eukaryotic karyotypes than previously thought. The present review aims to summarize the limited knowledge on the origin, frequency, and evolutionary implications of EEF and NCF events in eukaryotes and especially in land plants. The interactions between nonhomologous chromosomes in interphase nuclei and chromosome (mis)pairing during meiosis are examined for their potential importance in the origin of EEFs and NCFs. The remaining open questions that need to be addressed are discussed.
Collapse
Affiliation(s)
- Martin A Lysak
- CEITEC—Central European Institute of Technology, Masaryk University, Brno, CZ-625 00, Czech Republic
| |
Collapse
|
19
|
Zuo S, Mandáková T, Kubová M, Lysak MA. Genomes, repeatomes and interphase chromosome organization in the meadowfoam family (Limnanthaceae, Brassicales). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:1462-1475. [PMID: 35352402 DOI: 10.1111/tpj.15750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/17/2022] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
The meadowfoam family (Limnanthaceae) is one of the smallest and genomically underexplored families of the Brassicales. The Limnanthaceae harbor about seven species in the genus Limnanthes (meadowfoam) and Floerkea proserpinacoides (false mermaidweed), all native to North America. Because all Limnanthes and Floerkea species have only five chromosome pairs, i.e., a chromosome number rare in Brassicales and shared with Arabidopsis thaliana (Arabidopsis), we examined the Limnanthaceae genomes as a potential model system. Using low-coverage whole-genome sequencing data, we reexamined phylogenetic relationships and characterized the repeatomes of Limnanthaceae genomes. Phylogenies based on complete chloroplast and 35S rDNA sequences corroborated the sister relationship between Floerkea and Limnanthes and two major clades in the latter genus. The genome size of Limnanthaceae species ranges from 1.5 to 2.1 Gb, apparently due to the large increase in DNA repeats, which constitute 60-70% of their genomes. Repeatomes are dominated by long terminal repeat retrotransposons, while tandem repeats represent only less than 0.5% of the genomes. The average chromosome size in Limnanthaceae species (340-420 Mb) is more than 10 times larger than in Arabidopsis (32 Mb). A three-dimensional fluorescence in situ hybridization analysis demonstrated that the five chromosome pairs in interphase nuclei of Limnanthes species adopt the Rabl-like configuration.
Collapse
Affiliation(s)
- Sheng Zuo
- CEITEC - Central European Institute of Technology, Masaryk University, Brno, CZ-625 00, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, CZ-625 00, Czech Republic
| | - Terezie Mandáková
- CEITEC - Central European Institute of Technology, Masaryk University, Brno, CZ-625 00, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, CZ-625 00, Czech Republic
| | - Michaela Kubová
- CEITEC - Central European Institute of Technology, Masaryk University, Brno, CZ-625 00, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, CZ-625 00, Czech Republic
| | - Martin A Lysak
- CEITEC - Central European Institute of Technology, Masaryk University, Brno, CZ-625 00, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, CZ-625 00, Czech Republic
| |
Collapse
|
20
|
Borowska-Zuchowska N, Senderowicz M, Trunova D, Kolano B. Tracing the Evolution of the Angiosperm Genome from the Cytogenetic Point of View. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11060784. [PMID: 35336666 PMCID: PMC8953110 DOI: 10.3390/plants11060784] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 03/14/2022] [Accepted: 03/14/2022] [Indexed: 05/05/2023]
Abstract
Cytogenetics constitutes a branch of genetics that is focused on the cellular components, especially chromosomes, in relation to heredity and genome structure, function and evolution. The use of modern cytogenetic approaches and the latest microscopes with image acquisition and processing systems enables the simultaneous two- or three-dimensional, multicolour visualisation of both single-copy and highly-repetitive sequences in the plant genome. The data that is gathered using the cytogenetic methods in the phylogenetic background enable tracing the evolution of the plant genome that involve changes in: (i) genome sizes; (ii) chromosome numbers and morphology; (iii) the content of repetitive sequences and (iv) ploidy level. Modern cytogenetic approaches such as FISH using chromosome- and genome-specific probes have been widely used in studies of the evolution of diploids and the consequences of polyploidy. Nowadays, modern cytogenetics complements analyses in other fields of cell biology and constitutes the linkage between genetics, molecular biology and genomics.
Collapse
|
21
|
Feng L, Lin H, Kang M, Ren Y, Yu X, Xu Z, Wang S, Li T, Yang W, Hu Q. A chromosome-level genome assembly of an alpine plant Crucihimalaya lasiocarpa provides insights into high-altitude adaptation. DNA Res 2022; 29:dsac004. [PMID: 35094078 PMCID: PMC8801980 DOI: 10.1093/dnares/dsac004] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Indexed: 11/23/2022] Open
Abstract
It remains largely unknown how plants adapt to high-altitude habitats. Crucihimalaya (Brassicaceae) is an alpine genus occurring in the Qinghai-Tibet Plateau characterized by cold temperatures and strong ultraviolet radiation. Here, we generated a chromosome-level genome for C. lasiocarpa with a total size of 255.8 Mb and a scaffold N50 size of 31.9 Mb. We first examined the karyotype origin of this species and found that the karyotype of five chromosomes resembled the ancestral karyotype of the Brassicaceae family, while the other three showed strong chromosomal structural variations. In combination with the rough genome sequence of another congener (C. himalaica), we found that the significantly expanded gene families and positively selected genes involved in alpine adaptation have occurred since the origin of this genus. Our new findings provide valuable information for the chromosomal karyotype evolution of Brassicaceae and investigations of high-altitude environment adaptation of the genus.
Collapse
Affiliation(s)
- Landi Feng
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Hao Lin
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Minghui Kang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Yumeng Ren
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Xi Yu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Zhanpeng Xu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Shuo Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Ting Li
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Wenjie Yang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Quanjun Hu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| |
Collapse
|
22
|
Hörandl E. Novel Approaches for Species Concepts and Delimitation in Polyploids and Hybrids. PLANTS (BASEL, SWITZERLAND) 2022; 11:204. [PMID: 35050093 PMCID: PMC8781807 DOI: 10.3390/plants11020204] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/07/2022] [Accepted: 01/10/2022] [Indexed: 05/08/2023]
Abstract
Hybridization and polyploidization are important processes for plant evolution. However, classification of hybrid or polyploid species has been notoriously difficult because of the complexity of processes and different evolutionary scenarios that do not fit with classical species concepts. Polyploid complexes are formed via combinations of allopolyploidy, autopolyploidy and homoploid hybridization with persisting sexual reproduction, resulting in many discrete lineages that have been classified as species. Polyploid complexes with facultative apomixis result in complicated net-work like clusters, or rarely in agamospecies. Various case studies illustrate the problems that apply to traditional species concepts to hybrids and polyploids. Conceptual progress can be made if lineage formation is accepted as an inevitable consequence of meiotic sex, which is established already in the first eukaryotes as a DNA restoration tool. The turnaround of the viewpoint that sex forms species as lineages helps to overcome traditional thinking of species as "units". Lineage formation and self-sustainability is the prerequisite for speciation and can also be applied to hybrids and polyploids. Species delimitation is aided by the improved recognition of lineages via various novel -omics methods, by understanding meiosis functions, and by recognizing functional phenotypes by considering morphological-physiological-ecological adaptations.
Collapse
Affiliation(s)
- Elvira Hörandl
- Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), University of Goettingen, 37073 Göttingen, Germany
| |
Collapse
|
23
|
Bayat S, Lysak MA, Mandáková T. Genome structure and evolution in the cruciferous tribe Thlaspideae (Brassicaceae). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:1768-1785. [PMID: 34661331 DOI: 10.1111/tpj.15542] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 09/30/2021] [Accepted: 10/11/2021] [Indexed: 06/13/2023]
Abstract
Whole-genome duplications (WGDs) and chromosome rearrangements (CRs) play the key role in driving the diversification and evolution of plant lineages. Although the direct link between WGDs and plant diversification is well documented, relatively few studies focus on the evolutionary significance of CRs. The cruciferous tribe Thlaspideae represents an ideal model system to address the role of large-scale chromosome alterations in genome evolution, as most Thlaspideae species share the same diploid chromosome number (2n = 2x = 14). Here we constructed the genome structure in 12 Thlaspideae species, including field pennycress (Thlaspi arvense) and garlic mustard (Alliaria petiolata). We detected and precisely characterized genus- and species-specific CRs, mostly pericentric inversions, as the main genome-diversifying drivers in the tribe. We reconstructed the structure of seven chromosomes of an ancestral Thlaspideae genome, identified evolutionary stable chromosomes versus chromosomes prone to CRs, estimated the rate of CRs, and uncovered an allohexaploid origin of garlic mustard from diploid taxa closely related to A. petiolata and Parlatoria cakiloidea. Furthermore, we performed detailed bioinformatic analysis of the Thlaspideae repeatomes, and identified repetitive elements applicable as unique species- and genus-specific barcodes and chromosome landmarks. This study deepens our general understanding of the evolutionary role of CRs, particularly pericentric inversions, in plant genome diversification, and provides a robust base for follow-up whole-genome sequencing efforts.
Collapse
Affiliation(s)
- Soheila Bayat
- CEITEC, Masaryk University, Brno, 62500, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, 62500, Czech Republic
| | - Martin A Lysak
- CEITEC, Masaryk University, Brno, 62500, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, 62500, Czech Republic
| | - Terezie Mandáková
- CEITEC, Masaryk University, Brno, 62500, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, 62500, Czech Republic
| |
Collapse
|
24
|
Watson JM, Trieb J, Troestl M, Renfrew K, Mandakova T, Fulnecek J, Shippen DE, Riha K. A hypomorphic allele of telomerase uncovers the minimal functional length of telomeres in Arabidopsis. Genetics 2021; 219:6339584. [PMID: 34849882 DOI: 10.1093/genetics/iyab126] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 07/23/2021] [Indexed: 12/23/2022] Open
Abstract
Despite the essential requirement of telomeric DNA for genome stability, the length of telomere tracts between species substantially differs, raising the question of the minimal length of telomeric DNA necessary for proper function. Here, we address this question using a hypomorphic allele of the telomerase catalytic subunit, TERT. We show that although this construct partially restored telomerase activity to a tert mutant, telomeres continued to shorten over several generations, ultimately stabilizing at a bimodal size distribution. Telomeres on two chromosome arms were maintained at a length of 1 kb, while the remaining telomeres were maintained at 400 bp. The longest telomeres identified in this background were also significantly longer in wild-type populations, suggesting cis-acting elements on these arms either promote telomerase processivity or recruitment. Genetically disrupting telomerase processivity in this background resulted in immediate lethality. Thus, telomeres of 400 bp are both necessary and sufficient for Arabidopsis viability. As this length is the estimated minimal length for t-loop formation, our data suggest that telomeres long enough to form a t-loop constitute the minimal functional length.
Collapse
Affiliation(s)
- J Matthew Watson
- Gregor Mendel Institute of Plant Molecular Biology, Austrian Academy of Sciences, 1030 Vienna, Austria
| | - Johanna Trieb
- Gregor Mendel Institute of Plant Molecular Biology, Austrian Academy of Sciences, 1030 Vienna, Austria
| | - Martina Troestl
- Gregor Mendel Institute of Plant Molecular Biology, Austrian Academy of Sciences, 1030 Vienna, Austria
| | - Kyle Renfrew
- Department of Biochemistry, Texas A&M University, College Station, TX 77840, USA
| | - Terezie Mandakova
- Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic
| | - Jaroslav Fulnecek
- Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic
| | - Dorothy E Shippen
- Department of Biochemistry, Texas A&M University, College Station, TX 77840, USA
| | - Karel Riha
- Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic
| |
Collapse
|
25
|
Meng Z, Wang Q, Khurshid H, Raza G, Han J, Wang B, Wang K. Chromosome Painting Provides Insights Into the Genome Structure and Evolution of Sugarcane. FRONTIERS IN PLANT SCIENCE 2021; 12:731664. [PMID: 34512706 PMCID: PMC8429501 DOI: 10.3389/fpls.2021.731664] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Abstract
The genus Saccharum is composed of species with high polyploidy and highly varied chromosome numbers, laying a challenge for uncovering its genomic structure and evolution. We developed a chromosome 2 painting (CP2) probe by designing oligonucleotides covering chromosome 2 of Saccharum spontaneum (2n = 8x = 64). Fluorescence in situ hybridization (FISH) using this CP2 probe revealed six types of ploidies from twenty S. spontaneum clones, including 6x, 8x, 10x, 11x, 12x, and 13x clones. The finding of S. spontaneum clones with uneven of ploid suggested that certain S. spontaneum clones come from hybridization. It renews our knowledge that S. spontaneum is derived from autopolyploidization. Combined with a S. spontaneum-specific probe, chromosome 2-derived chromosome or fragments from either S. spontaneum or Saccharum officinarum can be identified in sugarcane modern cultivars. We revealed unexpected high level of interspecific recombination from introgressive S. spontaneum chromosomes (>50.0%) in cultivars ROC22 and ZZ1, indicating frequent chromosome exchange in cultivars. Intriguingly, we observed interspecific recombination recurring among either homoeologous or non-homoeologous chromosomes in sugarcane cultivars. These results demonstrated that chromosome painting FISH is a powerful tool in the genome dissection of sugarcane and provide new insights into the genome structure and evolution of the complex genus Saccharum.
Collapse
Affiliation(s)
- Zhuang Meng
- School of Life Sciences, Nantong University, Nantong, China
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops (MOE), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qinnan Wang
- Institute of Bioengineering, Guangdong Academy of Sciences, Guangzhou, China
| | - Haris Khurshid
- Oilseeds Research Program, National Agricultural Research Centre, Islamabad, Pakistan
| | - Ghulam Raza
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
| | - Jinlei Han
- School of Life Sciences, Nantong University, Nantong, China
| | - Baohua Wang
- School of Life Sciences, Nantong University, Nantong, China
| | - Kai Wang
- School of Life Sciences, Nantong University, Nantong, China
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops (MOE), Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
26
|
Hufford MB, Seetharam AS, Woodhouse MR, Chougule KM, Ou S, Liu J, Ricci WA, Guo T, Olson A, Qiu Y, Della Coletta R, Tittes S, Hudson AI, Marand AP, Wei S, Lu Z, Wang B, Tello-Ruiz MK, Piri RD, Wang N, Kim DW, Zeng Y, O'Connor CH, Li X, Gilbert AM, Baggs E, Krasileva KV, Portwood JL, Cannon EKS, Andorf CM, Manchanda N, Snodgrass SJ, Hufnagel DE, Jiang Q, Pedersen S, Syring ML, Kudrna DA, Llaca V, Fengler K, Schmitz RJ, Ross-Ibarra J, Yu J, Gent JI, Hirsch CN, Ware D, Dawe RK. De novo assembly, annotation, and comparative analysis of 26 diverse maize genomes. Science 2021; 373:655-662. [PMID: 34353948 PMCID: PMC8733867 DOI: 10.1126/science.abg5289] [Citation(s) in RCA: 249] [Impact Index Per Article: 83.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 06/24/2021] [Indexed: 12/24/2022]
Abstract
We report de novo genome assemblies, transcriptomes, annotations, and methylomes for the 26 inbreds that serve as the founders for the maize nested association mapping population. The number of pan-genes in these diverse genomes exceeds 103,000, with approximately a third found across all genotypes. The results demonstrate that the ancient tetraploid character of maize continues to degrade by fractionation to the present day. Excellent contiguity over repeat arrays and complete annotation of centromeres revealed additional variation in major cytological landmarks. We show that combining structural variation with single-nucleotide polymorphisms can improve the power of quantitative mapping studies. We also document variation at the level of DNA methylation and demonstrate that unmethylated regions are enriched for cis-regulatory elements that contribute to phenotypic variation.
Collapse
Affiliation(s)
- Matthew B Hufford
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA
| | - Arun S Seetharam
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA
- Genome Informatics Facility, Iowa State University, Ames, IA 50011, USA
| | - Margaret R Woodhouse
- USDA-ARS Corn Insects and Crop Genetics Research Unit, Iowa State University, Ames, IA 50011, USA
| | | | - Shujun Ou
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA
| | - Jianing Liu
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - William A Ricci
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| | - Tingting Guo
- Department of Agronomy, Iowa State University, Ames, IA 50011, USA
| | - Andrew Olson
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Yinjie Qiu
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN 55108, USA
| | - Rafael Della Coletta
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN 55108, USA
| | - Silas Tittes
- Center for Population Biology, University of California, Davis, CA 95616, USA
- Department of Evolution and Ecology, University of California, Davis, CA 95616, USA
| | - Asher I Hudson
- Center for Population Biology, University of California, Davis, CA 95616, USA
- Department of Evolution and Ecology, University of California, Davis, CA 95616, USA
| | | | - Sharon Wei
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Zhenyuan Lu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Bo Wang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | | | - Rebecca D Piri
- Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA
| | - Na Wang
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| | - Dong Won Kim
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| | - Yibing Zeng
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Christine H O'Connor
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN 55108, USA
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, MN 55108, USA
| | - Xianran Li
- Department of Agronomy, Iowa State University, Ames, IA 50011, USA
| | - Amanda M Gilbert
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN 55108, USA
| | - Erin Baggs
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Ksenia V Krasileva
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - John L Portwood
- USDA-ARS Corn Insects and Crop Genetics Research Unit, Iowa State University, Ames, IA 50011, USA
| | - Ethalinda K S Cannon
- USDA-ARS Corn Insects and Crop Genetics Research Unit, Iowa State University, Ames, IA 50011, USA
| | - Carson M Andorf
- USDA-ARS Corn Insects and Crop Genetics Research Unit, Iowa State University, Ames, IA 50011, USA
| | - Nancy Manchanda
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA
| | - Samantha J Snodgrass
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA
| | - David E Hufnagel
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA
- Virus and Prion Research Unit, National Animal Disease Center, USDA-ARS, Ames, IA, 50010, USA
| | - Qiuhan Jiang
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA
| | - Sarah Pedersen
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA
| | - Michael L Syring
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA
| | - David A Kudrna
- Arizona Genomics Institute, School of Plant Sciences, University of Arizona, Tucson, AZ 85721, USA
| | | | | | - Robert J Schmitz
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Jeffrey Ross-Ibarra
- Center for Population Biology, University of California, Davis, CA 95616, USA
- Department of Evolution and Ecology, University of California, Davis, CA 95616, USA
- Genome Center, University of California, Davis, CA 95616, USA
| | - Jianming Yu
- Department of Agronomy, Iowa State University, Ames, IA 50011, USA
| | - Jonathan I Gent
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| | - Candice N Hirsch
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN 55108, USA
| | - Doreen Ware
- USDA-ARS NAA Robert W. Holley Center for Agriculture and Health, Agricultural Research Service, Ithaca, NY 14853, USA
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - R Kelly Dawe
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA.
| |
Collapse
|
27
|
Domínguez-Delgado JJ, López-Jurado J, Mateos-Naranjo E, Balao F. Phenotypic diploidization in plant functional traits uncovered by synthetic neopolyploids in Dianthus broteri. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:5522-5533. [PMID: 33909906 PMCID: PMC8760854 DOI: 10.1093/jxb/erab179] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 04/26/2021] [Indexed: 05/27/2023]
Abstract
Whole-genome duplication and post-polyploidization genome downsizing play key roles in the evolution of land plants; however, the impact of genomic diploidization on functional traits still remains poorly understood. Using Dianthus broteri as a model, we compared the ecophysiological behaviour of colchicine-induced neotetraploids (4xNeo) to diploids (2x) and naturally occurring tetraploids (4xNat). Leaf gas-exchange and chlorophyll fluorescence analyses were performed in order to asses to what extent post-polyploidization evolutionary processes have affected 4xNat. Genomic diploidization and phenotypic novelty were evident. Distinct patterns of variation revealed that post-polyploidization processes altered the phenotypic shifts directly mediated by genome doubling. The photosynthetic phenotype was affected in several ways but the main effect was phenotypic diploidization (i.e. 2x and 4xNat were closer to each other than to 4xNeo). Overall, our results show the potential benefits of considering experimentally synthetized versus naturally established polyploids when exploring the role of polyploidization in promoting functional divergence.
Collapse
Affiliation(s)
| | - Javier López-Jurado
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Apdo. 1095, 41080-Sevilla, Spain
| | - Enrique Mateos-Naranjo
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Apdo. 1095, 41080-Sevilla, Spain
| | - Francisco Balao
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Apdo. 1095, 41080-Sevilla, Spain
| |
Collapse
|
28
|
Winkelmüller TM, Entila F, Anver S, Piasecka A, Song B, Dahms E, Sakakibara H, Gan X, Kułak K, Sawikowska A, Krajewski P, Tsiantis M, Garrido-Oter R, Fukushima K, Schulze-Lefert P, Laurent S, Bednarek P, Tsuda K. Gene expression evolution in pattern-triggered immunity within Arabidopsis thaliana and across Brassicaceae species. THE PLANT CELL 2021; 33:1863-1887. [PMID: 33751107 PMCID: PMC8290292 DOI: 10.1093/plcell/koab073] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 02/24/2021] [Indexed: 05/20/2023]
Abstract
Plants recognize surrounding microbes by sensing microbe-associated molecular patterns (MAMPs) to activate pattern-triggered immunity (PTI). Despite their significance for microbial control, the evolution of PTI responses remains largely uncharacterized. Here, by employing comparative transcriptomics of six Arabidopsis thaliana accessions and three additional Brassicaceae species to investigate PTI responses, we identified a set of genes that commonly respond to the MAMP flg22 and genes that exhibit species-specific expression signatures. Variation in flg22-triggered transcriptome responses across Brassicaceae species was incongruent with their phylogeny, while expression changes were strongly conserved within A. thaliana. We found the enrichment of WRKY transcription factor binding sites in the 5'-regulatory regions of conserved and species-specific responsive genes, linking the emergence of WRKY-binding sites with the evolution of gene expression patterns during PTI. Our findings advance our understanding of the evolution of the transcriptome during biotic stress.
Collapse
Affiliation(s)
- Thomas M Winkelmüller
- Department of Plant–Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Frederickson Entila
- Department of Plant–Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Shajahan Anver
- Department of Plant–Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
- Present address: Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Anna Piasecka
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
| | - Baoxing Song
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
- Present address: Institute for Genomic Diversity, Cornell University, Ithaca, New York
| | - Eik Dahms
- Department of Plant–Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Hitoshi Sakakibara
- RIKEN Center for Sustainable Resource Science, 230-0045 Yokohama, Japan
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Xiangchao Gan
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Karolina Kułak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
- Present address: Department of Computational Biology, Adam Mickiewicz University, 61-614 Poznań, Poland
| | - Aneta Sawikowska
- Department of Mathematical and Statistical Methods, Poznań University of Life Sciences, 60-628 Poznań, Poland
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznań, Poland
| | - Paweł Krajewski
- Institute of Plant Genetics, Polish Academy of Sciences, 60-479 Poznań, Poland
| | - Miltos Tsiantis
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Ruben Garrido-Oter
- Department of Plant–Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Kenji Fukushima
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, 97082 Würzburg, Germany
| | - Paul Schulze-Lefert
- Department of Plant–Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Stefan Laurent
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Paweł Bednarek
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
| | - Kenichi Tsuda
- State Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Interdisciplinary Science Research Institute, Huazhong Agricultural University, 430070 Wuhan, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, Huazhong Agricultural University, 430070 Wuhan, China
- Department of Plant–Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
- Author for correspondence:
| |
Collapse
|
29
|
Functional divergence of Brassica napus BnaABI1 paralogs in the structurally conserved PP2CA gene subfamily of Brassicaceae. Genomics 2021; 113:3185-3197. [PMID: 34182082 DOI: 10.1016/j.ygeno.2021.06.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 05/26/2021] [Accepted: 06/23/2021] [Indexed: 11/21/2022]
Abstract
Group A PP2C (PP2CA) genes form a gene subfamily whose members play an important role in regulating many biological processes by dephosphorylation of target proteins. In this study we examined the effects of evolutionary changes responsible for functional divergence of BnaABI1 paralogs in Brassica napus against the background of the conserved PP2CA gene subfamily in Brassicaceae. We performed comprehensive phylogenetic analyses of 192 PP2CA genes in 15 species in combination with protein structure homology modeling. Fundamentally, the number of PP2CA genes remained relatively constant in these taxa, except in the Brassica genus and Camelina sativa. The expansion of this gene subfamily in these species has resulted from whole genome duplication. We demonstrated a high degree of structural conservation of the PP2CA genes, with a few minor variations between the different PP2CA groups. Furthermore, the pattern of conserved sequence motifs in the PP2CA proteins and their secondary and 3D structures revealed strong conservation of the key ion-binding sites. Syntenic analysis of triplicated regions including ABI1 paralogs revealed significant structural rearrangements of the Brassica genomes. The functional and syntenic data clearly show that triplication of BnaABI1 in B. napus has had an impact on its functions, as well as the positions of adjacent genes in the corresponding chromosomal regions. The expression profiling of BnaABI1 genes showed functional divergence, i.e. subfunctionalization, potentially leading to neofunctionalization. These differences in expression are likely due to changes in the promoters of the BnaABI1 paralogs. Our results highlight the complexity of PP2CA gene subfamily evolution in Brassicaceae.
Collapse
|
30
|
Li Z, McKibben MTW, Finch GS, Blischak PD, Sutherland BL, Barker MS. Patterns and Processes of Diploidization in Land Plants. ANNUAL REVIEW OF PLANT BIOLOGY 2021; 72:387-410. [PMID: 33684297 DOI: 10.1146/annurev-arplant-050718-100344] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Most land plants are now known to be ancient polyploids that have rediploidized. Diploidization involves many changes in genome organization that ultimately restore bivalent chromosome pairing and disomic inheritance, and resolve dosage and other issues caused by genome duplication. In this review, we discuss the nature of polyploidy and its impact on chromosome pairing behavior. We also provide an overview of two major and largely independent processes of diploidization: cytological diploidization and genic diploidization/fractionation. Finally, we compare variation in gene fractionation across land plants and highlight the differences in diploidization between plants and animals. Altogether, we demonstrate recent advancements in our understanding of variation in the patterns and processes of diploidization in land plants and provide a road map for future research to unlock the mysteries of diploidization and eukaryotic genome evolution.
Collapse
Affiliation(s)
- Zheng Li
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721, USA; , , , , ,
| | - Michael T W McKibben
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721, USA; , , , , ,
| | - Geoffrey S Finch
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721, USA; , , , , ,
| | - Paul D Blischak
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721, USA; , , , , ,
| | - Brittany L Sutherland
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721, USA; , , , , ,
| | - Michael S Barker
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721, USA; , , , , ,
| |
Collapse
|
31
|
Oliveira VCS, Altmanová M, Viana PF, Ezaz T, Bertollo LAC, Ráb P, Liehr T, Al-Rikabi A, Feldberg E, Hatanaka T, Scholz S, Meurer A, de Bello Cioffi M. Revisiting the Karyotypes of Alligators and Caimans (Crocodylia, Alligatoridae) after a Half-Century Delay: Bridging the Gap in the Chromosomal Evolution of Reptiles. Cells 2021; 10:cells10061397. [PMID: 34198806 PMCID: PMC8228166 DOI: 10.3390/cells10061397] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/01/2021] [Accepted: 06/02/2021] [Indexed: 12/16/2022] Open
Abstract
Although crocodilians have attracted enormous attention in other research fields, from the cytogenetic point of view, this group remains understudied. Here, we analyzed the karyotypes of eight species formally described from the Alligatoridae family using differential staining, fluorescence in situ hybridization with rDNA and repetitive motifs as a probe, whole chromosome painting (WCP), and comparative genome hybridization. All Caimaninae species have a diploid chromosome number (2n) 42 and karyotypes dominated by acrocentric chromosomes, in contrast to both species of Alligatorinae, which have 2n = 32 and karyotypes that are predominantly metacentric, suggesting fusion/fission rearrangements. Our WCP results supported this scenario by revealing the homeology of the largest metacentric pair present in both Alligator spp. with two smaller pairs of acrocentrics in Caimaninae species. The clusters of 18S rDNA were found on one chromosome pair in all species, except for Paleosuchus spp., which possessed three chromosome pairs bearing these sites. Similarly, comparative genomic hybridization demonstrated an advanced stage of sequence divergence among the caiman genomes, with Paleosuchus standing out as the most divergent. Thus, although Alligatoridae exhibited rather low species diversity and some level of karyotype stasis, their genomic content indicates that they are not as conserved as previously thought. These new data deepen the discussion of cytotaxonomy in this family.
Collapse
Affiliation(s)
- Vanessa C. S. Oliveira
- Laboratório de Citogenética de Peixes, Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos 13565-905, Brazil; (V.C.S.O.); (L.A.C.B.); (T.H.); (M.d.B.C.)
| | - Marie Altmanová
- Department of Ecology, Faculty of Science, Charles University, 12844 Prague, Czech Republic;
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 27721 Liběchov, Czech Republic;
| | - Patrik F. Viana
- Laboratório de Genética Animal, Coordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazônia, Manaus 69083-000, Brazil; (P.F.V.); (E.F.)
| | - Tariq Ezaz
- Institute for Applied Ecology, Faculty of Science and Technology, University of Canberra, Bruce, ACT 2617, Australia;
| | - Luiz A. C. Bertollo
- Laboratório de Citogenética de Peixes, Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos 13565-905, Brazil; (V.C.S.O.); (L.A.C.B.); (T.H.); (M.d.B.C.)
| | - Petr Ráb
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 27721 Liběchov, Czech Republic;
| | - Thomas Liehr
- Institute of Human Genetics, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany;
- Correspondence: ; Tel.: +49-36-41-939-68-50; Fax: +49-3641-93-96-852
| | - Ahmed Al-Rikabi
- Institute of Human Genetics, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany;
| | - Eliana Feldberg
- Laboratório de Genética Animal, Coordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazônia, Manaus 69083-000, Brazil; (P.F.V.); (E.F.)
| | - Terumi Hatanaka
- Laboratório de Citogenética de Peixes, Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos 13565-905, Brazil; (V.C.S.O.); (L.A.C.B.); (T.H.); (M.d.B.C.)
| | | | | | - Marcelo de Bello Cioffi
- Laboratório de Citogenética de Peixes, Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos 13565-905, Brazil; (V.C.S.O.); (L.A.C.B.); (T.H.); (M.d.B.C.)
| |
Collapse
|
32
|
Guo X, Mandáková T, Trachtová K, Özüdoğru B, Liu J, Lysak MA. Linked by Ancestral Bonds: Multiple Whole-Genome Duplications and Reticulate Evolution in a Brassicaceae Tribe. Mol Biol Evol 2021; 38:1695-1714. [PMID: 33331908 PMCID: PMC8097306 DOI: 10.1093/molbev/msaa327] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Pervasive hybridization and whole-genome duplications (WGDs) influenced genome evolution in several eukaryotic lineages. Although frequent and recurrent hybridizations may result in reticulate phylogenies, the evolutionary events underlying these reticulations, including detailed structure of the ancestral diploid and polyploid genomes, were only rarely reconstructed. Here, we elucidate the complex genomic history of a monophyletic clade from the mustard family (Brassicaceae), showing contentious relationships to the early-diverging clades of this model plant family. Genome evolution in the crucifer tribe Biscutelleae (∼60 species, 5 genera) was dominated by pervasive hybridizations and subsequent genome duplications. Diversification of an ancestral diploid genome into several divergent but crossable genomes was followed by hybridizations between these genomes. Whereas a single genus (Megadenia) remained diploid, the four remaining genera originated by allopolyploidy (Biscutella, Lunaria, Ricotia) or autopolyploidy (Heldreichia). The contentious relationships among the Biscutelleae genera, and between the tribe and other early diverged crucifer lineages, are best explained by close genomic relatedness among the recurrently hybridizing ancestral genomes. By using complementary cytogenomics and phylogenomics approaches, we demonstrate that the origin of a monophyletic plant clade can be more complex than a parsimonious assumption of a single WGD spurring postpolyploid cladogenesis. Instead, recurrent hybridization among the same and/or closely related parental genomes may phylogenetically interlink diploid and polyploid genomes despite the incidence of multiple independent WGDs. Our results provide new insights into evolution of early-diverging Brassicaceae lineages and elucidate challenges in resolving the contentious relationships within and between land plant lineages with pervasive hybridization and WGDs.
Collapse
Affiliation(s)
- Xinyi Guo
- CEITEC—Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Terezie Mandáková
- CEITEC—Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Karolína Trachtová
- CEITEC—Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Barış Özüdoğru
- Department of Biology, Faculty of Science, Hacettepe University, Beytepe, Ankara, Turkey
| | - Jianquan Liu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Martin A Lysak
- CEITEC—Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| |
Collapse
|
33
|
do Vale Martins L, de Oliveira Bustamante F, da Silva Oliveira AR, da Costa AF, de Lima Feitoza L, Liang Q, Zhao H, Benko-Iseppon AM, Muñoz-Amatriaín M, Pedrosa-Harand A, Jiang J, Brasileiro-Vidal AC. BAC- and oligo-FISH mapping reveals chromosome evolution among Vigna angularis, V. unguiculata, and Phaseolus vulgaris. Chromosoma 2021; 130:133-147. [PMID: 33909141 DOI: 10.1007/s00412-021-00758-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 02/17/2021] [Accepted: 04/05/2021] [Indexed: 01/29/2023]
Abstract
Cytogenomic resources have accelerated synteny and chromosome evolution studies in plant species, including legumes. Here, we established the first cytogenetic map of V. angularis (Va, subgenus Ceratotropis) and compared this new map with those of V. unguiculata (Vu, subgenus Vigna) and P. vulgaris (Pv) by BAC-FISH and oligopainting approaches. We mapped 19 Vu BACs and 35S rDNA probes to the 11 chromosome pairs of Va, Vu, and Pv. Vigna angularis shared a high degree of macrosynteny with Vu and Pv, with five conserved syntenic chromosomes. Additionally, we developed two oligo probes (Pv2 and Pv3) used to paint Vigna orthologous chromosomes. We confirmed two reciprocal translocations (chromosomes 2 and 3 and 1 and 8) that have occurred after the Vigna and Phaseolus divergence (~9.7 Mya). Besides, two inversions (2 and 4) and one translocation (1 and 5) have occurred after Vigna and Ceratotropis subgenera separation (~3.6 Mya). We also observed distinct oligopainting patterns for chromosomes 2 and 3 of Vigna species. Both Vigna species shared similar major rearrangements compared to Pv: one translocation (2 and 3) and one inversion (chromosome 3). The sequence synteny identified additional inversions and/or intrachromosomal translocations involving pericentromeric regions of both orthologous chromosomes. We propose chromosomes 2 and 3 as hotspots for chromosomal rearrangements and de novo centromere formation within and between Vigna and Phaseolus. Our BAC- and oligo-FISH mapping contributed to physically trace the chromosome evolution of Vigna and Phaseolus and its application in further studies of both genera.
Collapse
Affiliation(s)
| | | | | | | | | | - Qihua Liang
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, USA
| | - Hainan Zhao
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
| | | | - María Muñoz-Amatriaín
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, USA
| | | | - Jiming Jiang
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA.,Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA
| | | |
Collapse
|
34
|
Lee Y, Szymanski DB. Multimerization variants as potential drivers of neofunctionalization. SCIENCE ADVANCES 2021; 7:eabf0984. [PMID: 33771868 PMCID: PMC7997512 DOI: 10.1126/sciadv.abf0984] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 01/29/2021] [Indexed: 05/05/2023]
Abstract
Whole-genome duplications are common during evolution, creating genetic redundancy that can enable cellular innovations. Novel protein-protein interactions provide a route to diversified gene functions, but, at present, there is limited proteome-scale knowledge on the extent to which variability in protein complex formation drives neofunctionalization. Here, we used protein correlation profiling to test for variability in apparent mass among thousands of orthologous proteins isolated from diverse species and cell types. Variants in protein complex size were unexpectedly common, in some cases appearing after relatively recent whole-genome duplications or an allopolyploidy event. In other instances, variants such as those in the carbonic anhydrase orthologous group reflected the neofunctionalization of ancient paralogs that have been preserved in extant species. Our results demonstrate that homo- and heteromer formation have the potential to drive neofunctionalization in diverse classes of enzymes, signaling, and structural proteins.
Collapse
Affiliation(s)
- Youngwoo Lee
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA
- Center for Plant Biology, Purdue University, West Lafayette, IN 47907, USA
| | - Daniel B Szymanski
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA.
- Center for Plant Biology, Purdue University, West Lafayette, IN 47907, USA
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
35
|
Xiong Z, Gaeta RT, Edger PP, Cao Y, Zhao K, Zhang S, Pires JC. Chromosome inheritance and meiotic stability in allopolyploid Brassica napus. G3-GENES GENOMES GENETICS 2021; 11:6044140. [PMID: 33704431 PMCID: PMC8022990 DOI: 10.1093/g3journal/jkaa011] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 11/05/2020] [Indexed: 12/23/2022]
Abstract
Homoeologous recombination, aneuploidy, and other genetic changes are common in resynthesized allopolyploid Brassica napus. In contrast, the chromosomes of cultivars have long been considered to be meiotically stable. To gain a better understanding of the underlying mechanisms leading to stabilization in the allopolyploid, the behavior of chromosomes during meiosis can be compared by unambiguous chromosome identification between resynthesized and natural B. napus. Compared with natural B. napus, resynthesized lines show high rates of nonhomologous centromere association, homoeologous recombination leading to translocation, homoeologous chromosome replacement, and association and breakage of 45S rDNA loci. In both natural and resynthesized B. napus, we observed low rates of univalents, A–C bivalents, and early sister chromatid separations. Reciprocal homoeologous chromosome exchanges and double reductions were photographed for the first time in meiotic telophase I. Meiotic errors were non-uniformly distributed across the genome in resynthesized B. napus, and in particular homoeologs sharing synteny along their entire length exhibited multivalents at diakinesis and polysomic inheritance at telophase I. Natural B. napus appeared to resolve meiotic errors mainly by suppressing homoeologous pairing, resolving nonhomologous centromere associations and 45S rDNA associations before diakinesis, and reducing homoeologous cross-overs.
Collapse
Affiliation(s)
- Zhiyong Xiong
- Key Laboratory of Herbage and Endemic Crop Biotechnology, Ministry of Education, College of Life Science, Inner Mongolia University, Hohhot, Inner Mongolia 010021, PR China.,Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Robert T Gaeta
- Bayer's Crop Science Division, Chesterfield, MO 63017, USA
| | - Patrick P Edger
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA.,Department of Horticulture, Michigan State University, East Lansing, MI 48823, USA
| | - Yao Cao
- Key Laboratory of Herbage and Endemic Crop Biotechnology, Ministry of Education, College of Life Science, Inner Mongolia University, Hohhot, Inner Mongolia 010021, PR China
| | - Kanglu Zhao
- Key Laboratory of Herbage and Endemic Crop Biotechnology, Ministry of Education, College of Life Science, Inner Mongolia University, Hohhot, Inner Mongolia 010021, PR China
| | - Siqi Zhang
- Key Laboratory of Herbage and Endemic Crop Biotechnology, Ministry of Education, College of Life Science, Inner Mongolia University, Hohhot, Inner Mongolia 010021, PR China
| | - J Chris Pires
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
36
|
Waminal NE, Pellerin RJ, Kang SH, Kim HH. Chromosomal Mapping of Tandem Repeats Revealed Massive Chromosomal Rearrangements and Insights Into Senna tora Dysploidy. FRONTIERS IN PLANT SCIENCE 2021; 12:629898. [PMID: 33643358 PMCID: PMC7902697 DOI: 10.3389/fpls.2021.629898] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/21/2021] [Indexed: 05/16/2023]
Abstract
Tandem repeats can occupy a large portion of plant genomes and can either cause or result from chromosomal rearrangements, which are important drivers of dysploidy-mediated karyotype evolution and speciation. To understand the contribution of tandem repeats in shaping the extant Senna tora dysploid karyotype, we analyzed the composition and abundance of tandem repeats in the S. tora genome and compared the chromosomal distribution of these repeats between S. tora and a closely related euploid, Senna occidentalis. Using a read clustering algorithm, we identified the major S. tora tandem repeats and visualized their chromosomal distribution by fluorescence in situ hybridization. We identified eight independent repeats covering ~85 Mb or ~12% of the S. tora genome. The unit lengths and copy numbers had ranges of 7-5,833 bp and 325-2.89 × 106, respectively. Three short duplicated sequences were found in the 45S rDNA intergenic spacer, one of which was also detected at an extra-NOR locus. The canonical plant telomeric repeat (TTTAGGG)n was also detected as very intense signals in numerous pericentromeric and interstitial loci. StoTR05_180, which showed subtelomeric distribution in Senna occidentalis, was predominantly pericentromeric in S. tora. The unusual chromosomal distribution of tandem repeats in S. tora not only enabled easy identification of individual chromosomes but also revealed the massive chromosomal rearrangements that have likely played important roles in shaping its dysploid karyotype.
Collapse
Affiliation(s)
- Nomar Espinosa Waminal
- Department of Chemistry and Life Science, BioScience Institute, Sahmyook University, Seoul, South Korea
| | - Remnyl Joyce Pellerin
- Department of Chemistry and Life Science, BioScience Institute, Sahmyook University, Seoul, South Korea
| | - Sang-Ho Kang
- Genomics Division, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, South Korea
| | - Hyun Hee Kim
- Department of Chemistry and Life Science, BioScience Institute, Sahmyook University, Seoul, South Korea
- *Correspondence: Hyun Hee Kim
| |
Collapse
|
37
|
Yang Q, Bi H, Yang W, Li T, Jiang J, Zhang L, Liu J, Hu Q. The Genome Sequence of Alpine Megacarpaea delavayi Identifies Species-Specific Whole-Genome Duplication. Front Genet 2020; 11:812. [PMID: 32849811 PMCID: PMC7416671 DOI: 10.3389/fgene.2020.00812] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 07/06/2020] [Indexed: 11/18/2022] Open
Abstract
Megacarpaea delavayi (Brassicaceae), a plant found the high mountains of southwest China at high altitudes (3000–4800 m), is used as a vegetable or medicine. Here, we report a draft genome for this species. The assembly genome of M. delavayi is 883 Mb, and 61.59% of the genome is composed of repeat sequences. Annotation of the genome identified a total of 41,114 protein-coding genes. We found that M. delavayi experienced an independent whole-genome duplication (WGD), paralleling those independent WGDs in Iberis, Biscutella, and Anastatica in the early Miocene. Phylogenetic analyses based on the single-copy genes confirmed the position of the genus Megacarpaea within the expanded lineage II of the family and resolved its basal divergence to a subclade consisting of Anastatica, Iberis, and Biscutella. Species-specific and fast-evolving genes in M. delavayi are mainly involved in “DNA repair” and “response to UV-B radiation.” These genetic changes may together help this species survive in high-altitude environments. The reference genome reported here provides a valuable resource for studying adaptation of this and other alpine plants to the high-altitude habitats.
Collapse
Affiliation(s)
- Qiao Yang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, State Key Laboratory of Hydraulics and Mountain River Engineering, College of Life Sciences, Sichuan University, Chengdu, China
| | - Hao Bi
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, State Key Laboratory of Hydraulics and Mountain River Engineering, College of Life Sciences, Sichuan University, Chengdu, China
| | - Wenjie Yang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, State Key Laboratory of Hydraulics and Mountain River Engineering, College of Life Sciences, Sichuan University, Chengdu, China
| | - Ting Li
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, State Key Laboratory of Hydraulics and Mountain River Engineering, College of Life Sciences, Sichuan University, Chengdu, China
| | - Jiebei Jiang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, State Key Laboratory of Hydraulics and Mountain River Engineering, College of Life Sciences, Sichuan University, Chengdu, China
| | - Lei Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, State Key Laboratory of Hydraulics and Mountain River Engineering, College of Life Sciences, Sichuan University, Chengdu, China
| | - Jianquan Liu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, State Key Laboratory of Hydraulics and Mountain River Engineering, College of Life Sciences, Sichuan University, Chengdu, China.,State Key Laboratory of Grassland Agro-Ecosystem, Institute of Innovation Ecology, Lanzhou University, Lanzhou, China
| | - Quanjun Hu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, State Key Laboratory of Hydraulics and Mountain River Engineering, College of Life Sciences, Sichuan University, Chengdu, China
| |
Collapse
|
38
|
Walden N, German DA, Wolf EM, Kiefer M, Rigault P, Huang XC, Kiefer C, Schmickl R, Franzke A, Neuffer B, Mummenhoff K, Koch MA. Nested whole-genome duplications coincide with diversification and high morphological disparity in Brassicaceae. Nat Commun 2020. [PMID: 32732942 DOI: 10.1038/s41467-020-1760.5-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023] Open
Abstract
Angiosperms have become the dominant terrestrial plant group by diversifying for ~145 million years into a broad range of environments. During the course of evolution, numerous morphological innovations arose, often preceded by whole genome duplications (WGD). The mustard family (Brassicaceae), a successful angiosperm clade with ~4000 species, has been diversifying into many evolutionary lineages for more than 30 million years. Here we develop a species inventory, analyze morphological variation, and present a maternal, plastome-based genus-level phylogeny. We show that increased morphological disparity, despite an apparent absence of clade-specific morphological innovations, is found in tribes with WGDs or diversification rate shifts. Both are important processes in Brassicaceae, resulting in an overall high net diversification rate. Character states show frequent and independent gain and loss, and form varying combinations. Therefore, Brassicaceae pave the way to concepts of phylogenetic genome-wide association studies to analyze the evolution of morphological form and function.
Collapse
Affiliation(s)
- Nora Walden
- Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 345, 69120, Heidelberg, Germany
| | - Dmitry A German
- Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 345, 69120, Heidelberg, Germany
- South-Siberian Botanical Garden, Altai State University, Lenina Ave. 61, 656049, Barnaul, Russia
| | - Eva M Wolf
- Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 345, 69120, Heidelberg, Germany
| | - Markus Kiefer
- Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 345, 69120, Heidelberg, Germany
| | - Philippe Rigault
- Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 345, 69120, Heidelberg, Germany
- GYDLE, 1135 Grande Allée Ouest, Québec, QC, G1S 1E7, Canada
| | - Xiao-Chen Huang
- Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 345, 69120, Heidelberg, Germany
- School of Life Sciences, Nanchang University, 330031, Nanchang, China
| | - Christiane Kiefer
- Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 345, 69120, Heidelberg, Germany
| | - Roswitha Schmickl
- Department of Botany, Faculty of Science, Charles University, Benátská 2, 128 01, Prague, Czech Republic
| | - Andreas Franzke
- Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 345, 69120, Heidelberg, Germany
| | - Barbara Neuffer
- Department of Biology, Systematic Botany, University of Osnabrück, Barbarastraße 11, 49076, Osnabrück, Germany
| | - Klaus Mummenhoff
- Department of Biology, Systematic Botany, University of Osnabrück, Barbarastraße 11, 49076, Osnabrück, Germany
| | - Marcus A Koch
- Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 345, 69120, Heidelberg, Germany.
| |
Collapse
|
39
|
Walden N, German DA, Wolf EM, Kiefer M, Rigault P, Huang XC, Kiefer C, Schmickl R, Franzke A, Neuffer B, Mummenhoff K, Koch MA. Nested whole-genome duplications coincide with diversification and high morphological disparity in Brassicaceae. Nat Commun 2020; 11:3795. [PMID: 32732942 PMCID: PMC7393125 DOI: 10.1038/s41467-020-17605-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 07/09/2020] [Indexed: 01/24/2023] Open
Abstract
Angiosperms have become the dominant terrestrial plant group by diversifying for ~145 million years into a broad range of environments. During the course of evolution, numerous morphological innovations arose, often preceded by whole genome duplications (WGD). The mustard family (Brassicaceae), a successful angiosperm clade with ~4000 species, has been diversifying into many evolutionary lineages for more than 30 million years. Here we develop a species inventory, analyze morphological variation, and present a maternal, plastome-based genus-level phylogeny. We show that increased morphological disparity, despite an apparent absence of clade-specific morphological innovations, is found in tribes with WGDs or diversification rate shifts. Both are important processes in Brassicaceae, resulting in an overall high net diversification rate. Character states show frequent and independent gain and loss, and form varying combinations. Therefore, Brassicaceae pave the way to concepts of phylogenetic genome-wide association studies to analyze the evolution of morphological form and function.
Collapse
Affiliation(s)
- Nora Walden
- Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 345, 69120, Heidelberg, Germany
| | - Dmitry A German
- Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 345, 69120, Heidelberg, Germany
- South-Siberian Botanical Garden, Altai State University, Lenina Ave. 61, 656049, Barnaul, Russia
| | - Eva M Wolf
- Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 345, 69120, Heidelberg, Germany
| | - Markus Kiefer
- Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 345, 69120, Heidelberg, Germany
| | - Philippe Rigault
- Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 345, 69120, Heidelberg, Germany
- GYDLE, 1135 Grande Allée Ouest, Québec, QC, G1S 1E7, Canada
| | - Xiao-Chen Huang
- Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 345, 69120, Heidelberg, Germany
- School of Life Sciences, Nanchang University, 330031, Nanchang, China
| | - Christiane Kiefer
- Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 345, 69120, Heidelberg, Germany
| | - Roswitha Schmickl
- Department of Botany, Faculty of Science, Charles University, Benátská 2, 128 01, Prague, Czech Republic
| | - Andreas Franzke
- Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 345, 69120, Heidelberg, Germany
| | - Barbara Neuffer
- Department of Biology, Systematic Botany, University of Osnabrück, Barbarastraße 11, 49076, Osnabrück, Germany
| | - Klaus Mummenhoff
- Department of Biology, Systematic Botany, University of Osnabrück, Barbarastraße 11, 49076, Osnabrück, Germany
| | - Marcus A Koch
- Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 345, 69120, Heidelberg, Germany.
| |
Collapse
|
40
|
Zwyrtková J, Němečková A, Čížková J, Holušová K, Kapustová V, Svačina R, Kopecký D, Till BJ, Doležel J, Hřibová E. Comparative analyses of DNA repeats and identification of a novel Fesreba centromeric element in fescues and ryegrasses. BMC PLANT BIOLOGY 2020; 20:280. [PMID: 32552738 PMCID: PMC7302162 DOI: 10.1186/s12870-020-02495-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 06/15/2020] [Indexed: 05/10/2023]
Abstract
BACKGROUND Cultivated grasses are an important source of food for domestic animals worldwide. Increased knowledge of their genomes can speed up the development of new cultivars with better quality and greater resistance to biotic and abiotic stresses. The most widely grown grasses are tetraploid ryegrass species (Lolium) and diploid and hexaploid fescue species (Festuca). In this work, we characterized repetitive DNA sequences and their contribution to genome size in five fescue and two ryegrass species as well as one fescue and two ryegrass cultivars. RESULTS Partial genome sequences produced by Illumina sequencing technology were used for genome-wide comparative analyses with the RepeatExplorer pipeline. Retrotransposons were the most abundant repeat type in all seven grass species. The Athila element of the Ty3/gypsy family showed the most striking differences in copy number between fescues and ryegrasses. The sequence data enabled the assembly of the long terminal repeat (LTR) element Fesreba, which is highly enriched in centromeric and (peri)centromeric regions in all species. A combination of fluorescence in situ hybridization (FISH) with a probe specific to the Fesreba element and immunostaining with centromeric histone H3 (CENH3) antibody showed their co-localization and indicated a possible role of Fesreba in centromere function. CONCLUSIONS Comparative repeatome analyses in a set of fescues and ryegrasses provided new insights into their genome organization and divergence, including the assembly of the LTR element Fesreba. A new LTR element Fesreba was identified and found in abundance in centromeric regions of the fescues and ryegrasses. It may play a role in the function of their centromeres.
Collapse
Affiliation(s)
- Jana Zwyrtková
- Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, CZ-77900 Olomouc, Czech Republic
| | - Alžběta Němečková
- Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, CZ-77900 Olomouc, Czech Republic
| | - Jana Čížková
- Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, CZ-77900 Olomouc, Czech Republic
| | - Kateřina Holušová
- Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, CZ-77900 Olomouc, Czech Republic
| | - Veronika Kapustová
- Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, CZ-77900 Olomouc, Czech Republic
| | - Radim Svačina
- Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, CZ-77900 Olomouc, Czech Republic
| | - David Kopecký
- Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, CZ-77900 Olomouc, Czech Republic
| | - Bradley John Till
- Centro de Genómica Nutricional Agroacuícola, Las Heras 350, Temuco, Chile
| | - Jaroslav Doležel
- Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, CZ-77900 Olomouc, Czech Republic
| | - Eva Hřibová
- Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, CZ-77900 Olomouc, Czech Republic
| |
Collapse
|
41
|
Adamusová K, Khosravi S, Fujimoto S, Houben A, Matsunaga S, Fajkus J, Fojtová M. Two combinatorial patterns of telomere histone marks in plants with canonical and non-canonical telomere repeats. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 102:678-687. [PMID: 31834959 DOI: 10.1111/tpj.14653] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 11/21/2019] [Accepted: 11/28/2019] [Indexed: 05/24/2023]
Abstract
Telomeres, nucleoprotein structures at the ends of linear eukaryotic chromosomes, are crucial for the maintenance of genome integrity. In most plants, telomeres consist of conserved tandem repeat units comprising the TTTAGGG motif. Recently, non-canonical telomeres were described in several plants and plant taxons, including the carnivorous plant Genlisea hispidula (TTCAGG/TTTCAGG), the genus Cestrum (Solanaceae; TTTTTTAGGG), and plants from the Asparagales order with either a vertebrate-type telomere repeat TTAGGG or Allium genus-specific CTCGGTTATGGG repeat. We analyzed epigenetic modifications of telomeric histones in plants with canonical and non-canonical telomeres, and further in telomeric chromatin captured from leaves of Nicotiana benthamiana transiently transformed by telomere CRISPR-dCas9-eGFP, and of Arabidopsis thaliana stably transformed with TALE_telo C-3×GFP. Two combinatorial patterns of telomeric histone modifications were identified: (i) an Arabidopsis-like pattern (A. thaliana, G. hispidula, Genlisea nigrocaulis, Allium cepa, Narcissus pseudonarcissus, Petunia hybrida, Solanum tuberosum, Solanum lycopersicum) with telomeric histones decorated predominantly by H3K9me2; (ii) a tobacco-like pattern (Nicotiana tabacum, N. benthamiana, C. elegans) with a strong H3K27me3 signal. Our data suggest that epigenetic modifications of plant telomere-associated histones are related neither to the sequence of the telomere motif nor to the lengths of the telomeres. Nor the phylogenetic position of the species plays the role; representatives of the Solanaceae family are included in both groups. As both patterns of histone marks are compatible with fully functional telomeres in respective plants, we conclude that the described specific differences in histone marks are not critical for telomere functions.
Collapse
Affiliation(s)
- Kateřina Adamusová
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, 625 00, Brno, Czech Republic
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, 611 37, Brno, Czech Republic
| | - Solmaz Khosravi
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, 06466, Seeland, Germany
| | - Satoru Fujimoto
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Andreas Houben
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, 06466, Seeland, Germany
| | - Sachihiro Matsunaga
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Jiří Fajkus
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, 625 00, Brno, Czech Republic
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, 611 37, Brno, Czech Republic
| | - Miloslava Fojtová
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, 625 00, Brno, Czech Republic
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, 611 37, Brno, Czech Republic
| |
Collapse
|
42
|
Bi Y, Zhao Q, Yan W, Li M, Liu Y, Cheng C, Zhang L, Yu X, Li J, Qian C, Wu Y, Chen J, Lou Q. Flexible chromosome painting based on multiplex PCR of oligonucleotides and its application for comparative chromosome analyses in Cucumis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 102:178-186. [PMID: 31692131 DOI: 10.1111/tpj.14600] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 10/09/2019] [Accepted: 10/21/2019] [Indexed: 05/07/2023]
Abstract
Chromosome painting is a powerful technique for chromosome and genome studies. We developed a flexible chromosome painting technique based on multiplex PCR of a synthetic oligonucleotide (oligo) library in cucumber (Cucumis sativus L., 2n = 14). Each oligo in the library was associated with a universal as well as nested specific primers for amplification, which allow the generation of different probes from the same oligo library. We were also able to generate double-stranded labelled oligos, which produced much stronger signals than single-stranded labelled oligos, by amplification using fluorophore-conjugated primer pairs. Oligos covering cucumber chromosome 1 (Chr1) and chromosome 4 (Chr4) consisting of eight segments were synthesized in one library. Different oligo probes generated from the library painted the corresponding chromosomes/segments unambiguously, especially on pachytene chromosomes. This technique was then applied to study the homoeologous relationships among cucumber, C. hystrix and C. melo chromosomes based on cross-species chromosome painting using Chr4 probes. We demonstrated that the probe was feasible to detect interspecies chromosome homoeologous relationships and chromosomal rearrangement events. Based on its advantages and great convenience, we anticipate that this flexible oligo-painting technique has great potential for the studies of the structure, organization, and evolution of chromosomes in any species with a sequenced genome.
Collapse
Affiliation(s)
- Yunfei Bi
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qinzheng Zhao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wenkai Yan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Bioinformatics Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Mengxue Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuxi Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chunyan Cheng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lu Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaqing Yu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ji Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chuntao Qian
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yufeng Wu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Bioinformatics Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jinfeng Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qunfeng Lou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
43
|
Park S, An B, Park S. Recurrent gene duplication in the angiosperm tribe Delphinieae (Ranunculaceae) inferred from intracellular gene transfer events and heteroplasmic mutations in the plastid matK gene. Sci Rep 2020; 10:2720. [PMID: 32066766 PMCID: PMC7026143 DOI: 10.1038/s41598-020-59547-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 01/30/2020] [Indexed: 01/08/2023] Open
Abstract
The study of intracellular gene transfer may allow for the detection of interesting evolutionary processes such as ancient polyploidization. We compared 24 plastid genomes (plastomes) from tribe Delphinieae, one from tribe Nigelleae and one from tribe Ranunculeae, including five newly sequenced genomes. The functional transfers of the plastids rpl32 and rps16 to the nucleus in tribe Delphinieae were identified. Unexpectedly, we discovered multiple divergent copies of the nuclear-encoded plastid rpl32 in the genus Aconitum. Phylogenetic and synonymous substitution rate analyses revealed that the nuclear-encoded plastid rpl32 underwent two major duplication events. These ancient gene duplication events probably occurred via multiple polyploidization events in Aconitum between 11.9 and 24.7 Mya. Furthermore, our sequence rate analysis indicated that the eight plastid-encoded rpl subunits in Aconitum had a significantly accelerated evolutionary rate compared to those in other genera, suggesting that highly divergent paralogs targeted to the plastid may contribute to an elevated rate of evolution in plastid rpl genes. In addition, heteroplasmy of the plastid matK from two Aconitum species suggested the existence of potentially functional plastid maturases in its plastome. Our results provide insight into the evolutionary history of the tribe Delphinieae.
Collapse
Affiliation(s)
- Seongjun Park
- Institute of Natural Science, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, South Korea
- Department of Life Sciences, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, South Korea
| | - Boram An
- Department of Life Sciences, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, South Korea
| | - SeonJoo Park
- Department of Life Sciences, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, South Korea.
| |
Collapse
|
44
|
Lee H, Chawla HS, Obermeier C, Dreyer F, Abbadi A, Snowdon R. Chromosome-Scale Assembly of Winter Oilseed Rape Brassica napus. FRONTIERS IN PLANT SCIENCE 2020; 11:496. [PMID: 32411167 PMCID: PMC7202327 DOI: 10.3389/fpls.2020.00496] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 04/01/2020] [Indexed: 05/19/2023]
Abstract
Rapeseed (Brassica napus), the second most important oilseed crop globally, originated from an interspecific hybridization between B. rapa and B. oleracea. After this genome collision, B. napus underwent extensive genome restructuring, via homoeologous chromosome exchanges, resulting in widespread segmental deletions and duplications. Illicit pairing among genetically similar homoeologous chromosomes during meiosis is common in recent allopolyploids like B. napus, and post-polyploidization restructuring compounds the difficulties of assembling a complex polyploid plant genome. Specifically, genomic rearrangements between highly similar chromosomes are challenging to detect due to the limitation of sequencing read length and ambiguous alignment of reads. Recent advances in long read sequencing technologies provide promising new opportunities to unravel the genome complexities of B. napus by encompassing breakpoints of genomic rearrangements with high specificity. Moreover, recent evidence revealed ongoing genomic exchanges in natural B. napus, highlighting the need for multiple reference genomes to capture structural variants between accessions. Here we report the first long-read genome assembly of a winter B. napus cultivar. We sequenced the German winter oilseed rape accession 'Express 617' using 54.5x of long reads. Short reads, linked reads, optical map data and high-density genetic maps were used to further correct and scaffold the assembly to form pseudochromosomes. The assembled Express 617 genome provides another valuable resource for Brassica genomics in understanding the genetic consequences of polyploidization, crop domestication, and breeding of recently-formed crop species.
Collapse
Affiliation(s)
- HueyTyng Lee
- Department of Plant Breeding, Justus Liebig University Giessen, Giessen, Germany
| | - Harmeet Singh Chawla
- Department of Plant Breeding, Justus Liebig University Giessen, Giessen, Germany
| | - Christian Obermeier
- Department of Plant Breeding, Justus Liebig University Giessen, Giessen, Germany
| | | | | | - Rod Snowdon
- Department of Plant Breeding, Justus Liebig University Giessen, Giessen, Germany
- *Correspondence: Rod Snowdon,
| |
Collapse
|
45
|
Lee H, Chawla HS, Obermeier C, Dreyer F, Abbadi A, Snowdon R. Chromosome-Scale Assembly of Winter Oilseed Rape Brassica napus. FRONTIERS IN PLANT SCIENCE 2020; 11:496. [PMID: 32411167 DOI: 10.3389/fpls.2020.00496/full] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 04/01/2020] [Indexed: 05/21/2023]
Abstract
Rapeseed (Brassica napus), the second most important oilseed crop globally, originated from an interspecific hybridization between B. rapa and B. oleracea. After this genome collision, B. napus underwent extensive genome restructuring, via homoeologous chromosome exchanges, resulting in widespread segmental deletions and duplications. Illicit pairing among genetically similar homoeologous chromosomes during meiosis is common in recent allopolyploids like B. napus, and post-polyploidization restructuring compounds the difficulties of assembling a complex polyploid plant genome. Specifically, genomic rearrangements between highly similar chromosomes are challenging to detect due to the limitation of sequencing read length and ambiguous alignment of reads. Recent advances in long read sequencing technologies provide promising new opportunities to unravel the genome complexities of B. napus by encompassing breakpoints of genomic rearrangements with high specificity. Moreover, recent evidence revealed ongoing genomic exchanges in natural B. napus, highlighting the need for multiple reference genomes to capture structural variants between accessions. Here we report the first long-read genome assembly of a winter B. napus cultivar. We sequenced the German winter oilseed rape accession 'Express 617' using 54.5x of long reads. Short reads, linked reads, optical map data and high-density genetic maps were used to further correct and scaffold the assembly to form pseudochromosomes. The assembled Express 617 genome provides another valuable resource for Brassica genomics in understanding the genetic consequences of polyploidization, crop domestication, and breeding of recently-formed crop species.
Collapse
Affiliation(s)
- HueyTyng Lee
- Department of Plant Breeding, Justus Liebig University Giessen, Giessen, Germany
| | - Harmeet Singh Chawla
- Department of Plant Breeding, Justus Liebig University Giessen, Giessen, Germany
| | - Christian Obermeier
- Department of Plant Breeding, Justus Liebig University Giessen, Giessen, Germany
| | | | | | - Rod Snowdon
- Department of Plant Breeding, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
46
|
Mandáková T, Zozomová-Lihová J, Kudoh H, Zhao Y, Lysak MA, Marhold K. The story of promiscuous crucifers: origin and genome evolution of an invasive species, Cardamine occulta (Brassicaceae), and its relatives. ANNALS OF BOTANY 2019; 124:209-220. [PMID: 30868165 PMCID: PMC6758578 DOI: 10.1093/aob/mcz019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 01/24/2019] [Indexed: 05/16/2023]
Abstract
BACKGROUND AND AIMS Cardamine occulta (Brassicaceae) is an octoploid weedy species (2n = 8x = 64) originated in Eastern Asia. It has been introduced to other continents including Europe and considered to be an invasive species. Despite its wide distribution, the polyploid origin of C. occulta remained unexplored. The feasibility of comparative chromosome painting (CCP) in crucifers allowed us to elucidate the origin and genome evolution in Cardamine species. We aimed to investigate the genome structure of C. occulta in comparison with its tetraploid (2n = 4x = 32, C. kokaiensis and C. scutata) and octoploid (2n = 8x = 64, C. dentipetala) relatives. METHODS Genomic in situ hybridization (GISH) and large-scale CCP were applied to uncover the parental genomes and chromosome composition of the investigated Cardamine species. KEY RESULTS All investigated species descended from a common ancestral Cardamine genome (n = 8), structurally resembling the Ancestral Crucifer Karyotype (n = 8), but differentiated by a translocation between chromosomes AK6 and AK8. Allotetraploid C. scutata originated by hybridization between two diploid species, C. parviflora and C. amara (2n = 2x = 16). By contrast, C. kokaiensis has an autotetraploid origin from a parental genome related to C. parviflora. Interestingly, octoploid C. occulta probably originated through hybridization between the tetraploids C. scutata and C. kokaiensis. The octoploid genome of C. dentipetala probably originated from C. scutata via autopolyploidization. Except for five species-specific centromere repositionings and one pericentric inversion post-dating the polyploidization events, the parental subgenomes remained stable in the tetra- and octoploids. CONCLUSIONS Comparative genome structure, origin and evolutionary history was reconstructed in C. occulta and related species. For the first time, whole-genome cytogenomic maps were established for octoploid plants. Post-polyploid evolution in Asian Cardamine polyploids has not been associated with descending dysploidy and intergenomic rearrangements. The combination of different parental (sub)genomes adapted to distinct habitats provides an evolutionary advantage to newly formed polyploids by occupying new ecological niches.
Collapse
Affiliation(s)
- Terezie Mandáková
- Plant Cytogenomics research group, CEITEC – Central European Institute of Technology, and Faculty of Science, Masaryk University, Kamenice, Czech Republic
| | - Judita Zozomová-Lihová
- Plant Science and Biodiversity Centre, Institute of Botany, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Hiroshi Kudoh
- Center for Ecological Research, Kyoto University, Hirano, Japan
| | - Yunpeng Zhao
- The Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, College of Life Sciences, Zhejiang University, Hangzhou, China
- Laboratory of Systematic and Evolutionary Botany and Biodiversity, Institute of Ecology and Conservation Centre for Gene Resources of Endangered Wildlife, Zhejiang University, Hangzhou, China
| | - Martin A Lysak
- Plant Cytogenomics research group, CEITEC – Central European Institute of Technology, and Faculty of Science, Masaryk University, Kamenice, Czech Republic
| | - Karol Marhold
- Plant Science and Biodiversity Centre, Institute of Botany, Slovak Academy of Sciences, Bratislava, Slovak Republic
- Department of Botany, Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
47
|
Finke A, Mandáková T, Nawaz K, Vu GTH, Novák P, Macas J, Lysak MA, Pecinka A. Genome invasion by a hypomethylated satellite repeat in Australian crucifer Ballantinia antipoda. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 99:1066-1079. [PMID: 31074166 DOI: 10.1111/tpj.14380] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 04/02/2019] [Accepted: 04/24/2019] [Indexed: 06/09/2023]
Abstract
Repetitive sequences are ubiquitous components of all eukaryotic genomes. They contribute to genome evolution and the regulation of gene transcription. However, the uncontrolled activity of repetitive sequences can negatively affect genome functions and stability. Therefore, repetitive DNAs are embedded in a highly repressive heterochromatic environment in plant cell nuclei. Here, we analyzed the sequence, composition and the epigenetic makeup of peculiar non-pericentromeric heterochromatic segments in the genome of the Australian crucifer Ballantinia antipoda. By the combination of high throughput sequencing, graph-based clustering and cytogenetics, we found that the heterochromatic segments consist of a mixture of unique sequences and an A-T-rich 174 bp satellite repeat (BaSAT1). BaSAT1 occupies about 10% of the B. antipoda nuclear genome in >250 000 copies. Unlike many other highly repetitive sequences, BaSAT1 repeats are hypomethylated; this contrasts with the normal patterns of DNA methylation in the B. antipoda genome. Detailed analysis of several copies revealed that these non-methylated BaSAT1 repeats were also devoid of heterochromatic histone H3K9me2 methylation. However, the factors decisive for the methylation status of BaSAT1 repeats remain currently unknown. In summary, we show that even highly repetitive sequences can exist as hypomethylated in the plant nuclear genome.
Collapse
Affiliation(s)
- Andreas Finke
- Max Planck Institute for Plant Breeding Research (MPIPZ), Cologne, 50829, Germany
| | - Terezie Mandáková
- Plant Cytogenomics Research Group, CEITEC - Central-European Institute of Technology, Masaryk University, Brno, 62500, Czech Republic
| | - Kashif Nawaz
- Max Planck Institute for Plant Breeding Research (MPIPZ), Cologne, 50829, Germany
- The Czech Academy of Sciences, Institute of Experimental Botany (IEB), Centre of the Region Haná for Agricultural and Biotechnological Research (CRH), Olomouc, 77900, Czech Republic
| | - Giang T H Vu
- Max Planck Institute for Plant Breeding Research (MPIPZ), Cologne, 50829, Germany
| | - Petr Novák
- Biology Centre, The Czech Academy of Sciences, České Budejovice, 37005, Czech Republic
| | - Jiri Macas
- Biology Centre, The Czech Academy of Sciences, České Budejovice, 37005, Czech Republic
| | - Martin A Lysak
- Plant Cytogenomics Research Group, CEITEC - Central-European Institute of Technology, Masaryk University, Brno, 62500, Czech Republic
| | - Ales Pecinka
- Max Planck Institute for Plant Breeding Research (MPIPZ), Cologne, 50829, Germany
- The Czech Academy of Sciences, Institute of Experimental Botany (IEB), Centre of the Region Haná for Agricultural and Biotechnological Research (CRH), Olomouc, 77900, Czech Republic
| |
Collapse
|
48
|
Rejlová L, Chrtek J, Trávníček P, Lučanová M, Vít P, Urfus T. Polyploid evolution: The ultimate way to grasp the nettle. PLoS One 2019; 14:e0218389. [PMID: 31260474 PMCID: PMC6602185 DOI: 10.1371/journal.pone.0218389] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 06/01/2019] [Indexed: 11/18/2022] Open
Abstract
Polyploidy is one of the major forces of plant evolution and widespread mixed-ploidy species offer an opportunity to evaluate its significance. We therefore selected the cosmopolitan species Urtica dioica (stinging nettle), examined its cytogeography and pattern of absolute genome size, and assessed correlations with bioclimatic and ecogeographic data (latitude, longitude, elevation). We evaluated variation in ploidy level using an extensive dataset of 7012 samples from 1317 populations covering most of the species' distribution area. The widespread tetraploid cytotype (87%) was strongly prevalent over diploids (13%). A subsequent analysis of absolute genome size proved a uniform Cx-value of core U. dioica (except for U. d. subsp. cypria) whereas other closely related species, namely U. bianorii, U. kioviensis and U. simensis, differed significantly. We detected a positive correlation between relative genome size and longitude and latitude in the complete dataset of European populations and a positive correlation between relative genome size and longitude in a reduced dataset of diploid accessions (the complete dataset of diploids excluding U. d. subsp. kurdistanica). In addition, our data indicate an affinity of most diploids to natural and near-natural habitats and that the tetraploid cytotype and a small part of diploids (population from the Po river basin in northern Italy) tend to inhabit synanthropic sites. To sum up, the pattern of ploidy variation revealed by our study is in many aspects unique to the stinging nettle, being most likely first of all driven by the greater ecological plasticity and invasiveness of the tetraploid cytotype.
Collapse
Affiliation(s)
- Ludmila Rejlová
- Institute of Botany, The Czech Academy of Sciences, Průhonice, Czech Republic
- Department of Botany, Faculty of Science, Charles University, Prague, Czech Republic
| | - Jindřich Chrtek
- Institute of Botany, The Czech Academy of Sciences, Průhonice, Czech Republic
- Department of Botany, Faculty of Science, Charles University, Prague, Czech Republic
| | - Pavel Trávníček
- Institute of Botany, The Czech Academy of Sciences, Průhonice, Czech Republic
| | - Magdalena Lučanová
- Institute of Botany, The Czech Academy of Sciences, Průhonice, Czech Republic
- Department of Botany, Faculty of Science University of South Bohemia, České Budějovice, Czech Republic
| | - Petr Vít
- Institute of Botany, The Czech Academy of Sciences, Průhonice, Czech Republic
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Tomáš Urfus
- Institute of Botany, The Czech Academy of Sciences, Průhonice, Czech Republic
- Department of Botany, Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
49
|
Genome-wide characterization of ALDH Superfamily in Brassica rapa and enhancement of stress tolerance in heterologous hosts by BrALDH7B2 expression. Sci Rep 2019; 9:7012. [PMID: 31065035 PMCID: PMC6505040 DOI: 10.1038/s41598-019-43332-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 04/22/2019] [Indexed: 12/17/2022] Open
Abstract
Aldehyde dehydrogenase (ALDH) carries out oxidation of toxic aldehydes using NAD+/NADP+ as cofactors. In the present study, we performed a genome-wide identification and expression analysis of genes in the ALDH gene family in Brassica rapa. A total of 23 ALDH genes in the superfamily have been identified according to the classification of ALDH Gene Nomenclature Committee (AGNC). They were distributed unevenly across all 10 chromosomes. All the 23 Brassica rapa ALDH (BrALDH) genes exhibited varied expression patterns during treatments with abiotic stress inducers and hormonal treatments. The relative expression profiles of ALDH genes in B. rapa showed that they are predominantly expressed in leaves and stem suggesting their function in the vegetative tissues. BrALDH7B2 showed a strong response to abiotic stress and hormonal treatments as compared to other ALDH genes; therefore, it was overexpressed in heterologous hosts, E. coli and yeast to study its possible function under abiotic stress conditions. Over-expression of BrALDH7B2 in heterologous systems, E. coli and yeast cells conferred significant tolerance to abiotic stress treatments. Results from this work demonstrate that BrALDH genes are a promising and untapped genetic resource for crop improvement and could be deployed further in the development of drought and salinity tolerance in B. rapa and other economically important crops.
Collapse
|
50
|
Bravo GA, Antonelli A, Bacon CD, Bartoszek K, Blom MPK, Huynh S, Jones G, Knowles LL, Lamichhaney S, Marcussen T, Morlon H, Nakhleh LK, Oxelman B, Pfeil B, Schliep A, Wahlberg N, Werneck FP, Wiedenhoeft J, Willows-Munro S, Edwards SV. Embracing heterogeneity: coalescing the Tree of Life and the future of phylogenomics. PeerJ 2019; 7:e6399. [PMID: 30783571 PMCID: PMC6378093 DOI: 10.7717/peerj.6399] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 01/07/2019] [Indexed: 12/23/2022] Open
Abstract
Building the Tree of Life (ToL) is a major challenge of modern biology, requiring advances in cyberinfrastructure, data collection, theory, and more. Here, we argue that phylogenomics stands to benefit by embracing the many heterogeneous genomic signals emerging from the first decade of large-scale phylogenetic analysis spawned by high-throughput sequencing (HTS). Such signals include those most commonly encountered in phylogenomic datasets, such as incomplete lineage sorting, but also those reticulate processes emerging with greater frequency, such as recombination and introgression. Here we focus specifically on how phylogenetic methods can accommodate the heterogeneity incurred by such population genetic processes; we do not discuss phylogenetic methods that ignore such processes, such as concatenation or supermatrix approaches or supertrees. We suggest that methods of data acquisition and the types of markers used in phylogenomics will remain restricted until a posteriori methods of marker choice are made possible with routine whole-genome sequencing of taxa of interest. We discuss limitations and potential extensions of a model supporting innovation in phylogenomics today, the multispecies coalescent model (MSC). Macroevolutionary models that use phylogenies, such as character mapping, often ignore the heterogeneity on which building phylogenies increasingly rely and suggest that assimilating such heterogeneity is an important goal moving forward. Finally, we argue that an integrative cyberinfrastructure linking all steps of the process of building the ToL, from specimen acquisition in the field to publication and tracking of phylogenomic data, as well as a culture that values contributors at each step, are essential for progress.
Collapse
Affiliation(s)
- Gustavo A. Bravo
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA, USA
| | - Alexandre Antonelli
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA, USA
- Gothenburg Global Biodiversity Centre, Göteborg, Sweden
- Department of Biological and Environmental Sciences, University of Gothenburg, Göteborg, Sweden
- Gothenburg Botanical Garden, Göteborg, Sweden
| | - Christine D. Bacon
- Gothenburg Global Biodiversity Centre, Göteborg, Sweden
- Department of Biological and Environmental Sciences, University of Gothenburg, Göteborg, Sweden
| | - Krzysztof Bartoszek
- Department of Computer and Information Science, Linköping University, Linköping, Sweden
| | - Mozes P. K. Blom
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden
| | - Stella Huynh
- Institut de Biologie, Université de Neuchâtel, Neuchâtel, Switzerland
| | - Graham Jones
- Department of Biological and Environmental Sciences, University of Gothenburg, Göteborg, Sweden
| | - L. Lacey Knowles
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| | - Sangeet Lamichhaney
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA, USA
| | - Thomas Marcussen
- Centre for Ecological and Evolutionary Synthesis, University of Oslo, Oslo, Norway
| | - Hélène Morlon
- Institut de Biologie, Ecole Normale Supérieure de Paris, Paris, France
| | - Luay K. Nakhleh
- Department of Computer Science, Rice University, Houston, TX, USA
| | - Bengt Oxelman
- Gothenburg Global Biodiversity Centre, Göteborg, Sweden
- Department of Biological and Environmental Sciences, University of Gothenburg, Göteborg, Sweden
| | - Bernard Pfeil
- Department of Biological and Environmental Sciences, University of Gothenburg, Göteborg, Sweden
| | - Alexander Schliep
- Department of Computer Science and Engineering, Chalmers University of Technology and University of Gothenburg, Göteborg, Sweden
| | | | - Fernanda P. Werneck
- Coordenação de Biodiversidade, Programa de Coleções Científicas Biológicas, Instituto Nacional de Pesquisa da Amazônia, Manaus, AM, Brazil
| | - John Wiedenhoeft
- Department of Computer Science and Engineering, Chalmers University of Technology and University of Gothenburg, Göteborg, Sweden
- Department of Computer Science, Rutgers University, Piscataway, NJ, USA
| | - Sandi Willows-Munro
- School of Life Sciences, University of Kwazulu-Natal, Pietermaritzburg, South Africa
| | - Scott V. Edwards
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA, USA
- Gothenburg Centre for Advanced Studies in Science and Technology, Chalmers University of Technology and University of Gothenburg, Göteborg, Sweden
| |
Collapse
|