1
|
Chen X, Gao Z, Yu Z, Ding Q, Qian X, Zhang C, Zhu C, Wang Y, Zhang C, Li Y, Hou X. BcWRKY53 promotes chlorophyll biosynthesis and cold tolerance of non-heading Chinese cabbage under cold stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 219:109398. [PMID: 39673938 DOI: 10.1016/j.plaphy.2024.109398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 09/25/2024] [Accepted: 12/09/2024] [Indexed: 12/16/2024]
Abstract
WRKY transcription factors are widely involved in plant responses to biotic and abiotic stresses, including cold stress. However, they have not been well studied in the regulation of chlorophyll synthesis and cold tolerance. So it is meaningful to analyze the mechanism under cold stress in non-heading Chinese cabbage. Here, BcWRKY53, a transcriptional activator WRKY-III gene, was identified by a screen upstream of the key chlorophyll synthesis genes BcCHLH and BcGUN4. BcWRKY53 was localized in the cell nucleus and induced to a significant extent by cold treatment. Ectopic expression of BcWRKY53 in Arabidopsis not only increased the chlorophyll content under cold stress, but also improved the cold tolerance. After silencing of BcWRKY53, there was a decrease in chlorophyll content and an increase in cold sensitivity. BcWRKY53 could inhibit self-expression by binding W-boxes in its own promoter. In addition, histone deacetylase 9 (BcHDA9) interacted with BcWRKY53 to inhibit BcWRKY53-mediated transcriptional activation. When ectopically overexpressed, BcHDA9 negatively regulates chlorophyll content and cold tolerance under cold treatment. Taken together, this study demonstrated that the cold-inducible transcription factor BcWRKY53 positively regulates BcCHLH and BcGUN4 under the regulation of self-regulation and BcHDA9 interactions. In this way, BcWRKY53 is actively involved in chlorophyll synthesis and the establishment of cold tolerance, which providing practical theoretical support in molecular characterization of cold tolerance and variety selection of non-heading Chinese cabbage.
Collapse
Affiliation(s)
- Xiaoshan Chen
- National Key Laboratory of Crop Genetics & Germplasm Innovation and Utilization, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), Ministry of Agriculture and Rural Affairs of China, Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education of China, Nanjing Agricultural University, Nanjing, 210095, China; Institute of Economic Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, 050051, China.
| | - Zhanyuan Gao
- National Key Laboratory of Crop Genetics & Germplasm Innovation and Utilization, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), Ministry of Agriculture and Rural Affairs of China, Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education of China, Nanjing Agricultural University, Nanjing, 210095, China; Nanjing Suman Plasma Engineering Research Institute Co., Ltd., Nanjing, 211162, China.
| | - Zhanghong Yu
- National Key Laboratory of Crop Genetics & Germplasm Innovation and Utilization, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), Ministry of Agriculture and Rural Affairs of China, Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education of China, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Qiang Ding
- National Key Laboratory of Crop Genetics & Germplasm Innovation and Utilization, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), Ministry of Agriculture and Rural Affairs of China, Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education of China, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Xiaojun Qian
- National Key Laboratory of Crop Genetics & Germplasm Innovation and Utilization, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), Ministry of Agriculture and Rural Affairs of China, Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education of China, Nanjing Agricultural University, Nanjing, 210095, China; Nanjing Suman Plasma Engineering Research Institute Co., Ltd., Nanjing, 211162, China.
| | - Chenyang Zhang
- National Key Laboratory of Crop Genetics & Germplasm Innovation and Utilization, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), Ministry of Agriculture and Rural Affairs of China, Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education of China, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Chenyu Zhu
- National Key Laboratory of Crop Genetics & Germplasm Innovation and Utilization, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), Ministry of Agriculture and Rural Affairs of China, Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education of China, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Yaolong Wang
- National Key Laboratory of Crop Genetics & Germplasm Innovation and Utilization, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), Ministry of Agriculture and Rural Affairs of China, Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education of China, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Changwei Zhang
- National Key Laboratory of Crop Genetics & Germplasm Innovation and Utilization, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), Ministry of Agriculture and Rural Affairs of China, Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education of China, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Ying Li
- National Key Laboratory of Crop Genetics & Germplasm Innovation and Utilization, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), Ministry of Agriculture and Rural Affairs of China, Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education of China, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Xilin Hou
- National Key Laboratory of Crop Genetics & Germplasm Innovation and Utilization, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), Ministry of Agriculture and Rural Affairs of China, Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education of China, Nanjing Agricultural University, Nanjing, 210095, China; Nanjing Suman Plasma Engineering Research Institute Co., Ltd., Nanjing, 211162, China.
| |
Collapse
|
2
|
Fu D, Zhou H, Grimm B, Wang P. The BCM1-EGY1 module balances chlorophyll biosynthesis and breakdown to confer chlorophyll homeostasis in land plants. MOLECULAR PLANT 2025; 18:76-94. [PMID: 39628053 DOI: 10.1016/j.molp.2024.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/15/2024] [Accepted: 11/29/2024] [Indexed: 01/03/2025]
Abstract
Chlorophyll metabolism has evolved during plant evolution. The strictly light-dependent nature of chlorophyll biosynthesis found in angiosperms requires tight coordination of chlorophyll biosynthesis and breakdown to achieve chlorophyll homeostasis. However, the specific control mechanisms remain largely unclear. Here, we demonstrate that the scaffold protein BALANCE OF CHLOROPHYLL METABOLISM1 (BCM1) has co-evolved with the carboxy-terminal domains of specific enzymes involved in chlorophyll biosynthesis and breakdown, including GENOMES UNCOUPLED 4 (GUN4) and Mg-dechelatase 1 (SGR1). We found that the land plant-specific interaction of BCM1 with the carboxy-terminal domains of GUN4 and SGR1 is indispensable for concurrent stimulation of chlorophyll biosynthesis and suppression of chlorophyll breakdown. The land plant-specific carboxy-terminal domain is essential for the membrane docking and turnover of GUN4, whereas it is key for proteolysis of SGR1. More importantly, we identified the metallopeptidase Gravitropism-deficient and Yellow-green 1 (EGY1) as the proteolytic machinery responsible for BCM1-mediated proteolysis of SGR1. In summary, this study reveals the BCM1-EGY1 module has evolved to maintain chlorophyll homeostasis by the post-translational control of the balance between chlorophyll biosynthesis and breakdown. This mechanism thus represents an evolutionary response to the metabolic demands imposed on plants in terrestrial environments.
Collapse
Affiliation(s)
- Dali Fu
- School of Biological Sciences, The University of Hong Kong, Hong Kong SAR 999077, China
| | - Hanlin Zhou
- School of Biological Sciences, The University of Hong Kong, Hong Kong SAR 999077, China
| | - Bernhard Grimm
- Institute of Biology/Plant Physiology, Humboldt-Universität zu Berlin, Philippstrasse13, Building 12, 10115 Berlin, Germany.
| | - Peng Wang
- School of Biological Sciences, The University of Hong Kong, Hong Kong SAR 999077, China; Institute of Biology/Plant Physiology, Humboldt-Universität zu Berlin, Philippstrasse13, Building 12, 10115 Berlin, Germany; State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong SAR 999077, China.
| |
Collapse
|
3
|
Lu H, Xiao Y, Liu Y, Zhang J, Zhao Y. Integrative Transcriptomics and Proteomics Analysis of a Cotton Mutant yl1 with a Chlorophyll-Reduced Leaf. PLANTS (BASEL, SWITZERLAND) 2024; 13:1789. [PMID: 38999629 PMCID: PMC11244299 DOI: 10.3390/plants13131789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/22/2024] [Accepted: 06/24/2024] [Indexed: 07/14/2024]
Abstract
Leaf color mutants serve as ideal materials for studying photosynthesis, chlorophyll metabolism, and other physiological processes. Here, we identified a spontaneous yellow-leaf mutant (yl1) with chlorophyll-reduced leaves from G. hirsutum L. cv ZM24. Compare to wild type ZM24 with green leaves, yl1 exhibited patchy yellow leaves and reduced chlorophyll content. To further explore the mechanisms of the patchy yellow phenotype of the mutant plant, the transcriptomics and proteomics profiles were conducted for the mutant and wild types. A total of 9247 differentially expressed genes (DEGs) and 1368 differentially accumulated proteins (DAPs) were identified. Following gene ontology (GO) annotation and KEGG enrichment, the DEGs/DAPs were found to be significantly involved in multiple important pathways, including the obsolete oxidation-reduction process, photosynthesis, light-harvesting, the microtubule-based process, cell redox homeostasis, and the carbohydrate metabolic process. In photosynthesis and the light-harvesting pathway, a total of 39 DAPs/DEGs were identified, including 9 genes in the PSI, 7 genes in the PS II, 9 genes in the light-harvesting chlorophyll protein complex (LHC), 10 genes in the PsbP family, and 4 genes in the cytochrome b6/f complex. To validate the reliability of the omics data, GhPPD1, a DAPs in the PsbP family, was knocked down in cotton using the TRV-based VIGS system, and it was observed that the GhPPD1-silenced plants exhibited patchy yellow color, accompanied by a significant decrease in chlorophyll content. In conclusion, this study integrated transcriptomic and proteomic approaches to gain a deeper understanding of the mechanisms underlying the chlorophyll-reduced leaf phenotype.
Collapse
Affiliation(s)
- Hejun Lu
- Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
- Xianghu Laboratory, Hangzhou 311231, China
| | - Yuyang Xiao
- Plant Genomics and Molecular Improvement of Colored Fiber Lab, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yuxin Liu
- Plant Genomics and Molecular Improvement of Colored Fiber Lab, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Jiachen Zhang
- Plant Genomics and Molecular Improvement of Colored Fiber Lab, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yanyan Zhao
- Plant Genomics and Molecular Improvement of Colored Fiber Lab, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|
4
|
Yong S, Chen Q, Xu F, Fu H, Liang G, Guo Q. Exploring the interplay between angiosperm chlorophyll metabolism and environmental factors. PLANTA 2024; 260:25. [PMID: 38861219 PMCID: PMC11166782 DOI: 10.1007/s00425-024-04437-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 05/09/2024] [Indexed: 06/12/2024]
Abstract
MAIN CONCLUSION In this review, we summarize how chlorophyll metabolism in angiosperm is affected by the environmental factors: light, temperature, metal ions, water, oxygen, and altitude. The significance of chlorophyll (Chl) in plant leaf morphogenesis and photosynthesis cannot be overstated. Over time, researchers have made significant advancements in comprehending the biosynthetic pathway of Chl in angiosperms, along with the pivotal enzymes and genes involved in this process, particularly those related to heme synthesis and light-responsive mechanisms. Various environmental factors influence the stability of Chl content in angiosperms by modulating Chl metabolic pathways. Understanding the interplay between plants Chl metabolism and environmental factors has been a prominent research topic. This review mainly focuses on angiosperms, provides an overview of the regulatory mechanisms governing Chl metabolism, and the impact of environmental factors such as light, temperature, metal ions (iron and magnesium), water, oxygen, and altitude on Chl metabolism. Understanding these effects is crucial for comprehending and preserving the homeostasis of Chl metabolism.
Collapse
Affiliation(s)
- Shunyuan Yong
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400715, People's Republic of China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences of Southwest University, Chongqing, 400715, People's Republic of China
| | - Qian Chen
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400715, People's Republic of China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences of Southwest University, Chongqing, 400715, People's Republic of China
| | - Fan Xu
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, People's Republic of China
| | - Hao Fu
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400715, People's Republic of China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences of Southwest University, Chongqing, 400715, People's Republic of China
| | - Guolu Liang
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400715, People's Republic of China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences of Southwest University, Chongqing, 400715, People's Republic of China
| | - Qigao Guo
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400715, People's Republic of China.
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences of Southwest University, Chongqing, 400715, People's Republic of China.
| |
Collapse
|
5
|
Bai A, Zhao T, Li Y, Zhang F, Wang H, Shah SHA, Gong L, Liu T, Wang Y, Hou X, Li Y. QTL mapping and candidate gene analysis reveal two major loci regulating green leaf color in non-heading Chinese cabbage. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:105. [PMID: 38622387 DOI: 10.1007/s00122-024-04608-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 03/23/2024] [Indexed: 04/17/2024]
Abstract
KEY MESSAGE Two major-effect QTL GlcA07.1 and GlcA09.1 for green leaf color were fine mapped into 170.25 kb and 191.41 kb intervals on chromosomes A07 and A09, respectively, and were validated by transcriptome analysis. Non-heading Chinese cabbage (NHCC) is a leafy vegetable with a wide range of green colors. Understanding the genetic mechanism behind broad spectrum of green may facilitate the breeding of high-quality NHCC. Here, we used F2 and F7:8 recombination inbred line (RIL) population from a cross between Wutacai (dark-green) and Erqing (lime-green) to undertake the genetic analysis and quantitative trait locus (QTL) mapping in NHCC. The genetic investigation of the F2 population revealed that the variation of green leaf color was controlled by two recessive genes. Six pigments associated with green leaf color, including total chlorophyll, chlorophyll a, chlorophyll b, total carotenoids, lutein, and carotene were quantified and applied for QTL mapping in the RIL population. A total of 7 QTL were detected across the whole genome. Among them, two major-effect QTL were mapped on chromosomes A07 (GlcA07.1) and A09 (GlcA09.1) corresponding to two QTL identified in the F2 population. The QTL GlcA07.1 and GlcA09.1 were further fine mapped into 170.25 kb and 191.41 kb genomic regions, respectively. By comparing gene expression level and gene annotation, BraC07g023810 and BraC07g023970 were proposed as the best candidates for GlcA07.1, while BraC09g052220 and BraC09g052270 were suggested for GlcA09.1. Two InDel molecular markers (GlcA07.1-BcGUN4 and GlcA09.1-BcSG1) associated with BraC07gA023810 and BraC09g052220 were developed and could effectively identify leaf color in natural NHCC accessions, suggesting their potential for marker-assisted leaf color selection in NHCC breeding.
Collapse
Affiliation(s)
- Aimei Bai
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education of the P. R. China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Tianzi Zhao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education of the P. R. China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Yan Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education of the P. R. China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Feixue Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education of the P. R. China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
- Huzhou Academy of Agricultural Sciences, Huzhou, 313000, Zhejiang Province, China
| | - Haibin Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education of the P. R. China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Sayyed Hamad Ahmad Shah
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education of the P. R. China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Li Gong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education of the P. R. China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Tongkun Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education of the P. R. China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Yuhui Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education of the P. R. China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China.
| | - Xilin Hou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education of the P. R. China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Ying Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education of the P. R. China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China.
| |
Collapse
|
6
|
Xiong B, Chen H, Ma Q, Yao J, Wang J, Wu W, Liao L, Wang X, Zhang M, He S, He J, Sun G, Wang Z. Genome-Wide Analysis of the GLK Gene Family and Its Expression at Different Leaf Ages in the Citrus Cultivar Kanpei. PLANTS (BASEL, SWITZERLAND) 2024; 13:936. [PMID: 38611466 PMCID: PMC11013922 DOI: 10.3390/plants13070936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/18/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024]
Abstract
The GLK gene family plays a crucial role in the regulation of chloroplast development and participates in chlorophyll synthesis. However, the precise mechanism by which GLK contributes to citrus's chlorophyll synthesis remains elusive. The GLK gene family causes variations in the photosynthetic capacity and chlorophyll synthesis of different citrus varieties. In this study, we identified tissue-specific members and the key CcGLKs involved in chlorophyll synthesis. A total of thirty CcGLK transcription factors (TFs) were discovered in the citrus genome, distributed across all nine chromosomes. The low occurrence of gene tandem duplication events and intronic variability suggests that intronic variation may be the primary mode of evolution for CcGLK TFs. Tissue-specific expression patterns were observed for various GLK family members; for instance, CcGLK12 and CcGLK15 were specifically expressed in the skin, while CcGLK30 was specific to the ovary, and CcGLK10, CcGLK6, CcGLK21, CcGLK2, CcGLK18, CcGLK9, CcGLK28, and CcGLK8 were specifically expressed in the leaves. CcGLK4, CcGLK5, CcGLK11, CcGLK23, CcGLKl7, CcGLK26, and CcGLK20 may participate in the regulation of the ALA, prochlorophylate, protoporphyrin IX, Mg-protoporphyrin IX, Chl b, T-Chl, MG-ProtoIX ME, and POR contents in citrus.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Zhihui Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (B.X.); (H.C.); (Q.M.); (J.Y.); (J.W.); (W.W.); (L.L.); (X.W.); (M.Z.); (S.H.); (J.H.); (G.S.)
| |
Collapse
|
7
|
Wang Y, Coyne KJ. Molecular Insights into the Synergistic Effects of Putrescine and Ammonium on Dinoflagellates. Int J Mol Sci 2024; 25:1306. [PMID: 38279308 PMCID: PMC10816187 DOI: 10.3390/ijms25021306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/13/2024] [Accepted: 01/15/2024] [Indexed: 01/28/2024] Open
Abstract
Ammonium and polyamines are essential nitrogen metabolites in all living organisms. Crosstalk between ammonium and polyamines through their metabolic pathways has been demonstrated in plants and animals, while no research has been directed to explore this relationship in algae or to investigate the underlying molecular mechanisms. Previous research demonstrated that high concentrations of ammonium and putrescine were among the active substances in bacteria-derived algicide targeting dinoflagellates, suggesting that the biochemical inter-connection and/or interaction of these nitrogen compounds play an essential role in controlling these ecologically important algal species. In this research, putrescine, ammonium, or a combination of putrescine and ammonium was added to cultures of three dinoflagellate species to explore their effects. The results demonstrated the dose-dependent and species-specific synergistic effects of putrescine and ammonium on these species. To further explore the molecular mechanisms behind the synergistic effects, transcriptome analysis was conducted on dinoflagellate Karlodinium veneficum treated with putrescine or ammonium vs. a combination of putrescine and ammonium. The results suggested that the synergistic effects of putrescine and ammonium disrupted polyamine homeostasis and reduced ammonium tolerance, which may have contributed to the cell death of K. veneficum. There was also transcriptomic evidence of damage to chloroplasts and impaired photosynthesis of K. veneficum. This research illustrates the molecular mechanisms underlying the synergistic effects of the major nitrogen metabolites, ammonium and putrescine, in dinoflagellates and provides direction for future studies on polyamine biology in algal species.
Collapse
Affiliation(s)
| | - Kathryn J. Coyne
- College of Earth, Ocean, and Environment, University of Delaware, Lewes, DE 19958, USA;
| |
Collapse
|
8
|
Sun M, Shen Y. Integrating the multiple functions of CHLH into chloroplast-derived signaling fundamental to plant development and adaptation as well as fruit ripening. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 338:111892. [PMID: 37821024 DOI: 10.1016/j.plantsci.2023.111892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 10/01/2023] [Accepted: 10/06/2023] [Indexed: 10/13/2023]
Abstract
Chlorophyll (Chl)-mediated oxygenic photosynthesis sustains life on Earth. Greening leaves play fundamental roles in plant growth and crop yield, correlating with the idea that more Chls lead to better adaptation. However, they face significant challenges from various unfavorable environments. Chl biosynthesis hinges on the first committed step, which involves inserting Mg2+ into protoporphyrin. This step is facilitated by the H subunit of magnesium chelatase (CHLH) and features a conserved mechanism from cyanobacteria to plants. For better adaptation to fluctuating land environments, especially drought, CHLH evolves multiple biological functions, including Chl biosynthesis, retrograde signaling, and abscisic acid (ABA) responses. Additionally, it integrates into various chloroplast-derived signaling pathways, encompassing both retrograde signaling and hormonal signaling. The former comprises ROS (reactive oxygen species), heme, GUN (genomes uncoupled), MEcPP (methylerythritol cyclodiphosphate), β-CC (β-cyclocitral), and PAP (3'-phosphoadenosine-5'-phosphate). The latter involves phytohormones like ABA, ethylene, auxin, cytokinin, gibberellin, strigolactone, brassinolide, salicylic acid, and jasmonic acid. Together, these elements create a coordinated regulatory network tailored to plant development and adaptation. An intriguing example is how drought-mediated improvement of fruit quality provides insights into chloroplast-derived signaling, aiding the shift from vegetative to reproductive growth. In this context, we explore the integration of CHLH's multifaceted roles into chloroplast-derived signaling, which lays the foundation for plant development and adaptation, as well as fruit ripening and quality. In the future, manipulating chloroplast-derived signaling may offer a promising avenue to enhance crop yield and quality through the homeostasis, function, and regulation of Chls.
Collapse
Affiliation(s)
- Mimi Sun
- College of Horticulture, China Agricultural University, Beijing 100193, China; College of Plant Science and Technology, Beijing University of Agriculture, 7 Beinong Road, Changping District, Beijing 102206, China
| | - Yuanyue Shen
- College of Plant Science and Technology, Beijing University of Agriculture, 7 Beinong Road, Changping District, Beijing 102206, China.
| |
Collapse
|
9
|
Kiss É, Talbot J, Adams NBP, Opekar S, Moos M, Pilný J, Kvasov T, Schneider E, Koník P, Šimek P, Sobotka R. Chlorophyll biosynthesis under the control of arginine metabolism. Cell Rep 2023; 42:113265. [PMID: 37864789 PMCID: PMC10783636 DOI: 10.1016/j.celrep.2023.113265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 08/11/2023] [Accepted: 09/29/2023] [Indexed: 10/23/2023] Open
Abstract
In natural environments, photosynthetic organisms adjust their metabolism to cope with the fluctuating availability of combined nitrogen sources, a growth-limiting factor. For acclimation, the dynamic degradation/synthesis of tetrapyrrolic pigments, as well as of the amino acid arginine, is pivotal; however, there has been no evidence that these processes could be functionally coupled. Using co-immunopurification and spectral shift assays, we found that in the cyanobacterium Synechocystis sp. PCC 6803, the arginine metabolism-related ArgD and CphB enzymes form protein complexes with Gun4, an essential protein for chlorophyll biosynthesis. Gun4 binds ArgD with high affinity, and the Gun4-ArgD complex accumulates in cells supplemented with ornithine, a key intermediate of the arginine pathway. Elevated ornithine levels restricted de novo synthesis of tetrapyrroles, which arrested the recovery from nitrogen deficiency. Our data reveal a direct crosstalk between tetrapyrrole biosynthesis and arginine metabolism that highlights the importance of balancing photosynthetic pigment synthesis with nitrogen homeostasis.
Collapse
Affiliation(s)
- Éva Kiss
- Laboratory of Photosynthesis, Centre Algatech, Institute of Microbiology, The Czech Academy of Sciences, 37901 Třeboň, Czech Republic
| | - Jana Talbot
- Laboratory of Photosynthesis, Centre Algatech, Institute of Microbiology, The Czech Academy of Sciences, 37901 Třeboň, Czech Republic
| | - Nathan B P Adams
- NanoTemper Technologies, Floessegasse 4, 81369 Munich, Germany; Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK
| | - Stanislav Opekar
- Biology Centre of the Czech Academy of Sciences, Branišovská 1160/31, 370 05 České Budějovice, Czech Republic
| | - Martin Moos
- Biology Centre of the Czech Academy of Sciences, Branišovská 1160/31, 370 05 České Budějovice, Czech Republic
| | - Jan Pilný
- Laboratory of Photosynthesis, Centre Algatech, Institute of Microbiology, The Czech Academy of Sciences, 37901 Třeboň, Czech Republic
| | - Tatjana Kvasov
- NanoTemper Technologies, Floessegasse 4, 81369 Munich, Germany
| | | | - Peter Koník
- Laboratory of Photosynthesis, Centre Algatech, Institute of Microbiology, The Czech Academy of Sciences, 37901 Třeboň, Czech Republic; Faculty of Science, University of South Bohemia, 37005 České Budějovice, Czech Republic
| | - Petr Šimek
- Biology Centre of the Czech Academy of Sciences, Branišovská 1160/31, 370 05 České Budějovice, Czech Republic
| | - Roman Sobotka
- Laboratory of Photosynthesis, Centre Algatech, Institute of Microbiology, The Czech Academy of Sciences, 37901 Třeboň, Czech Republic; Faculty of Science, University of South Bohemia, 37005 České Budějovice, Czech Republic.
| |
Collapse
|
10
|
Du Y, Lin Y, Zhang K, Rothenberg DO, Zhang H, Zhou H, Su H, Zhang L. The Chemical Composition and Transcriptome Analysis Reveal the Mechanism of Color Formation in Tea ( Camellia sinensis) Pericarp. Int J Mol Sci 2023; 24:13198. [PMID: 37686006 PMCID: PMC10487661 DOI: 10.3390/ijms241713198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
To elucidate the molecular mechanisms underlying the differential metabolism of albino (white), green, and purple pericarp coloration, biochemical profiling and transcriptome sequencing analyses were performed on three different tea pericarps, Zhongbaiyihao (Camellia sinensis L. var. Zhongbai), Jinxuan (Camellia sinensis L. var. Jinxuan), and Baitangziya (Camellia sinensis L. var. Baitang). Results of biochemical analysis revealed that low chlorophyll content and low chlorophyll/carotene ratio may be the biochemical basis for albino characteristics in the 'Zhongbaiyihao' pericarp. The differentially expressed genes (DEGs) involved in anthocyanin biosynthesis, including DFR, F3'5'H, CCoAOMT, and 4-coumaroyl-CoA, were highly expressed in the purple 'Baitangziya' pericarp. In the chlorophyll synthesis of white pericarp, GUN5 (Genome Uncoupled 5) and 8-vinyl-reductase both showed high expression levels compared to the green one, which indicated that albino 'Zhongbaiyihao' pericarp had a higher chlorophyll synthesis capacity than 'Jinxuan'. Meanwhile, chlorophyllase (CLH, CSS0004684) was lower in 'Baitang' than in 'Jinxuan' and 'Zhongbaiyihao' pericarp. Among the differentially expressed transcription factors, MYB59, WRKY41-like2 (CS ng17509), bHLH62 like1 (CS ng6804), and bHLH62-like3 (CSS0039948) were downregulated in Jinxuan pericarp, suggesting that transcription factors played a role in regulating tea pericarp coloration. These findings provide a better understanding of the molecular mechanisms and theoretical basis for utilizing functional components of tea pericarp.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Lingyun Zhang
- College of Horticulture, South China Agricultural University, Guangzhou 510640, China; (Y.D.); (Y.L.); (K.Z.); (D.O.R.); (H.Z.); (H.Z.); (H.S.)
| |
Collapse
|
11
|
Shim KC, Kang Y, Song JH, Kim YJ, Kim JK, Kim C, Tai TH, Park I, Ahn SN. A Frameshift Mutation in the Mg-Chelatase I Subunit Gene OsCHLI Is Associated with a Lethal Chlorophyll-Deficient, Yellow Seedling Phenotype in Rice. PLANTS (BASEL, SWITZERLAND) 2023; 12:2831. [PMID: 37570985 PMCID: PMC10420988 DOI: 10.3390/plants12152831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/23/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023]
Abstract
Chlorophyll biosynthesis is a crucial biological process in plants, and chlorophyll content is one of the most important traits in rice breeding programs. In this study, we identified a lethal, chlorophyll-deficient, yellow seedling (YS) phenotype segregating in progeny of CR5055-21, an F2 plant derived from a backcross between Korean japonica variety 'Hwaseong' (Oryza sativa) and CR5029, which is mostly Hwaseong with a small amount of Oryza grandiglumis chromosome segments. The segregation of the mutant phenotype was consistent with a single gene recessive mutation. Light microscopy of YS leaf cross-sections revealed loosely arranged mesophyll cells and sparse parenchyma in contrast to wildtype. In addition, transmission electron microscopy showed that chloroplasts did not develop in the mesophyll cells of the YS mutant. Quantitative trait loci (QTL)-seq analysis did not detect any significant QTL, however, examination of the individual delta-SNP index identified a 2-bp deletion (AG) in the OsCHLI gene, a magnesium (Mg)-chelatase subunit. A dCAPs marker was designed and genotyping of a segregating population (n = 275) showed that the mutant phenotype co-segregated with the marker. The 2-bp deletion was predicted to result in a frameshift mutation generating a premature termination. The truncated protein likely affects formation and function of Mg-chelatase, which consists of three different subunits that together catalyze the first committed step of chlorophyll biosynthesis. Transcriptome analysis showed that photosynthesis and carbohydrate metabolism pathways were significantly altered although expression of OsCHLI was not. Chlorophyll- and carotenoid-related genes were also differentially expressed in the YS mutant. Our findings demonstrated that OsCHLI plays an important role in leaf pigment biosynthesis and leaf structure development in rice.
Collapse
Affiliation(s)
- Kyu-Chan Shim
- Department of Agronomy, College of Agriculture and Life Science, Chungnam National University, Daejeon 34134, Republic of Korea; (K.-C.S.); (Y.K.); (C.K.)
- USDA-ARS Crops Pathology and Genetics Research Unit, Davis, CA 95616, USA;
- Department of Plant Sciences, University of California, Davis, CA 95616, USA
| | - Yuna Kang
- Department of Agronomy, College of Agriculture and Life Science, Chungnam National University, Daejeon 34134, Republic of Korea; (K.-C.S.); (Y.K.); (C.K.)
| | - Jun-Ho Song
- Department of Biology, Chungbuk National University, Cheongju 28644, Republic of Korea;
| | - Ye Jin Kim
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea; (Y.J.K.); (J.K.K.)
| | - Jae Kwang Kim
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea; (Y.J.K.); (J.K.K.)
| | - Changsoo Kim
- Department of Agronomy, College of Agriculture and Life Science, Chungnam National University, Daejeon 34134, Republic of Korea; (K.-C.S.); (Y.K.); (C.K.)
| | - Thomas H. Tai
- USDA-ARS Crops Pathology and Genetics Research Unit, Davis, CA 95616, USA;
- Department of Plant Sciences, University of California, Davis, CA 95616, USA
| | - Inkyu Park
- Department of Biology and Chemistry, Changwon National University, Changwon 51140, Republic of Korea
| | - Sang-Nag Ahn
- Department of Agronomy, College of Agriculture and Life Science, Chungnam National University, Daejeon 34134, Republic of Korea; (K.-C.S.); (Y.K.); (C.K.)
| |
Collapse
|
12
|
Xu B, Zhang C, Gu Y, Cheng R, Huang D, Liu X, Sun Y. Physiological and transcriptomic analysis of a yellow leaf mutant in watermelon. Sci Rep 2023; 13:9647. [PMID: 37316569 PMCID: PMC10267204 DOI: 10.1038/s41598-023-36656-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 06/07/2023] [Indexed: 06/16/2023] Open
Abstract
Leaf color mutants are important materials for studying chloroplast and photomorphogenesis, and can function as basic germplasms for genetic breeding. In an ethylmethanesulfonate mutagenesis population of watermelon cultivar "703", a chlorophyll-deficient mutant with yellow leaf (Yl2) color was identified. The contents of chlorophyll a, chlorophyll b, and carotenoids in Yl2 leaves were lower than those in wild-type (WT) leaves. The chloroplast ultrastructure in the leaves revealed that the chloroplasts in Yl2 were degraded. The numbers of chloroplasts and thylakoids in the Yl2 mutant were lower, resulting in lower photosynthetic parameters. Transcriptomic analysis identified 1292 differentially expressed genes, including1002 upregulated and 290 downregulated genes. The genes involved in chlorophyll biosynthesis (HEMA, HEMD, CHL1, CHLM, and CAO) were significantly downregulated in the Yl2 mutant, which may explain why chlorophyll pigment content was lower than that in the WT. Chlorophyll metabolism genes such as PDS, ZDS and VDE, were upregulated, which form the xanthophyll cycle and may protect the yellow‒leaves plants from photodamage. Taken together, our findings provide insight into the molecular mechanisms of leading to leaf color formation and chloroplast development in watermelon.
Collapse
Affiliation(s)
- Binghua Xu
- Huaiyin Institute of Agricultural Sciences of Xuhuai Region in Jiangsu, Jiangsu Academy of Agricultural Sciences, Huai'an, 223001, China
| | - Chaoyang Zhang
- Huaiyin Institute of Agricultural Sciences of Xuhuai Region in Jiangsu, Jiangsu Academy of Agricultural Sciences, Huai'an, 223001, China
| | - Yan Gu
- Huaiyin Institute of Agricultural Sciences of Xuhuai Region in Jiangsu, Jiangsu Academy of Agricultural Sciences, Huai'an, 223001, China
| | - Rui Cheng
- Huaiyin Institute of Agricultural Sciences of Xuhuai Region in Jiangsu, Jiangsu Academy of Agricultural Sciences, Huai'an, 223001, China
| | - Dayue Huang
- Huaiyin Institute of Agricultural Sciences of Xuhuai Region in Jiangsu, Jiangsu Academy of Agricultural Sciences, Huai'an, 223001, China
| | - Xin Liu
- Huaiyin Institute of Agricultural Sciences of Xuhuai Region in Jiangsu, Jiangsu Academy of Agricultural Sciences, Huai'an, 223001, China
| | - Yudong Sun
- Huaiyin Institute of Agricultural Sciences of Xuhuai Region in Jiangsu, Jiangsu Academy of Agricultural Sciences, Huai'an, 223001, China.
| |
Collapse
|
13
|
Geng R, Pang X, Li X, Shi S, Hedtke B, Grimm B, Bock R, Huang J, Zhou W. PROGRAMMED CELL DEATH8 interacts with tetrapyrrole biosynthesis enzymes and ClpC1 to maintain homeostasis of tetrapyrrole metabolites in Arabidopsis. THE NEW PHYTOLOGIST 2023; 238:2545-2560. [PMID: 36967598 DOI: 10.1111/nph.18906] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 03/19/2023] [Indexed: 05/19/2023]
Abstract
Tetrapyrrole biosynthesis (TBS) is a dynamically and strictly regulated process. Disruptions in tetrapyrrole metabolism influence many aspects of plant physiology, including photosynthesis, programmed cell death (PCD), and retrograde signaling, thus affecting plant growth and development at multiple levels. However, the genetic and molecular basis of TBS is not fully understood. We report here PCD8, a newly identified thylakoid-localized protein encoded by an essential gene in Arabidopsis. PCD8 knockdown causes a necrotic phenotype due to excessive chloroplast damage. A burst of singlet oxygen that results from overaccumulated tetrapyrrole intermediates upon illumination is suggested to be responsible for cell death in the knockdown mutants. Genetic and biochemical analyses revealed that PCD8 interacts with ClpC1 and a number of TBS enzymes, such as HEMC, CHLD, and PORC of TBS. Taken together, our findings uncover the function of chloroplast-localized PCD8 and provide a new perspective to elucidate molecular mechanism of how TBS is finely regulated in plants.
Collapse
Affiliation(s)
- Rudan Geng
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiaoqing Pang
- Institute of Biology/Plant Physiology, Humboldt-Universität zu Berlin, Philippstraße 13, Berlin, 10115, Germany
| | - Xia Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Shanshan Shi
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Boris Hedtke
- Institute of Biology/Plant Physiology, Humboldt-Universität zu Berlin, Philippstraße 13, Berlin, 10115, Germany
| | - Bernhard Grimm
- Institute of Biology/Plant Physiology, Humboldt-Universität zu Berlin, Philippstraße 13, Berlin, 10115, Germany
| | - Ralph Bock
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476, Potsdam-Golm, Germany
| | - Jirong Huang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Wenbin Zhou
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
14
|
Zhang X, Zhao Z, Zhang M, Wang J, Cheng T, Zhang Q, Pan H. FsHemF is involved in the formation of yellow Forsythia leaves by regulating chlorophyll synthesis in response to light intensity. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 200:107746. [PMID: 37210861 DOI: 10.1016/j.plaphy.2023.107746] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/21/2023] [Accepted: 05/04/2023] [Indexed: 05/23/2023]
Abstract
The leaves of Forsythia koreana 'Suwon Gold' are yellow under natural light condition and can revert to green when the light intensity is reduced. To understand the molecular mechanism of leaf color changes in response to light intensity, we compared the chlorophyll content and precursor content between yellow- and green-leaf Forsythia under shade and light-recovery conditions. We identified the conversion of coproporphyrin III (Coprogen III) to protoporphyrin IX (Proto IX) as the primary rate-limiting step of chlorophyll biosynthesis in yellow-leaf Forsythia. Further analysis of the activity of the enzymes that catalyze this step and the expression pattern of the chlorophyll biosynthesis-related genes under different light intensities revealed that the negatively regulated expression of FsHemF by light intensity was the major cause affecting the leaf color change in response to light intensity in yellow-leaf Forsythia. To further understand the cause of differential expression pattern of FsHemF in yellow- and green-leaf lines, we compared the coding sequence and promoter sequence of FsHemF between yellow- and green-leaf Forsythia. We found that one G-box light-responsive cis-element was absent in the promoter region of green-leaf lines. To investigate the functional role of FsHemF, we performed virus-induced gene silencing (VIGS) of FsHemF in green-leaf Forsythia, which leads to yellowing leaf veins, decreased chlorophyll b content, and inhibition of chlorophyll biosynthesis. The results will assist in elucidating the mechanism of yellow-leaf Forsythia in response to light intensity.
Collapse
Affiliation(s)
- Xiaolu Zhang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, College of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Zhengtian Zhao
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, College of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Man Zhang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, College of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Jia Wang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, College of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Tangren Cheng
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, College of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Qixiang Zhang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, College of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Huitang Pan
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, College of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
15
|
Rockwell NC, Lagarias JC. GUN4 appeared early in cyanobacterial evolution. PNAS NEXUS 2023; 2:pgad131. [PMID: 37152672 PMCID: PMC10156173 DOI: 10.1093/pnasnexus/pgad131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/15/2023] [Accepted: 04/06/2023] [Indexed: 05/09/2023]
Abstract
Photosynthesis relies on chlorophylls, which are synthesized via a common tetrapyrrole trunk pathway also leading to heme, vitamin B12, and other pigmented cofactors. The first committed step for chlorophyll biosynthesis is insertion of magnesium into protoporphyrin IX by magnesium chelatase. Magnesium chelatase is composed of H-, I-, and D-subunits, with the tetrapyrrole substrate binding to the H-subunit. This subunit is rapidly inactivated in the presence of substrate, light, and oxygen, so oxygenic photosynthetic organisms require mechanisms to protect magnesium chelatase from similar loss of function. An additional protein, GUN4, binds to the H-subunit and to tetrapyrroles. GUN4 has been proposed to serve this protective role via its ability to bind linear tetrapyrroles (bilins). In the current work, we probe the origins of bilin binding by GUN4 via comparative phylogenetic analysis and biochemical validation of a conserved bilin-binding motif. Based on our results, we propose that bilin-binding GUN4 proteins arose early in cyanobacterial evolution and that this early acquisition represents an ancient adaptation for maintaining chlorophyll biosynthesis in the presence of light and oxygen.
Collapse
Affiliation(s)
- Nathan C Rockwell
- Department of Molecular and Cell Biology, University of California at Davis, One Shields Avenue, Davis, CA 95616, USA
| | - J Clark Lagarias
- Department of Molecular and Cell Biology, University of California at Davis, One Shields Avenue, Davis, CA 95616, USA
| |
Collapse
|
16
|
Han H, Zhou Y, Liu H, Chen X, Wang Q, Zhuang H, Sun X, Ling Q, Zhang H, Wang B, Wang J, Tang Y, Wang H, Liu H. Transcriptomics and Metabolomics Analysis Provides Insight into Leaf Color and Photosynthesis Variation of the Yellow-Green Leaf Mutant of Hami Melon ( Cucumis melo L.). PLANTS (BASEL, SWITZERLAND) 2023; 12:1623. [PMID: 37111847 PMCID: PMC10143263 DOI: 10.3390/plants12081623] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 04/03/2023] [Accepted: 04/05/2023] [Indexed: 06/16/2023]
Abstract
Leaf color mutants are ideal materials for studying the regulatory mechanism of chloroplast development and photosynthesis. We isolated a cucumis melo spontaneous mutant (MT), which showed yellow-green leaf phenotype in the whole growing period and could be inherited stably. We compared its leaves with the wild type (WT) in terms of cytology, physiology, transcriptome and metabolism. The results showed that the thylakoid grana lamellae of MT were loosely arranged and fewer in number than WT. Physiological experiments also showed that MT had less chlorophyll content and more accumulation of reactive oxygen species (ROS) than WT. Furthermore, the activity of several key enzymes in C4 photosynthetic carbon assimilation pathway was more enhanced in MT than WT. Transcriptomic and metabolomic analyses showed that differential expression genes and differentially accumulated metabolites in MT were mainly co-enriched in the pathways related to photosystem-antenna proteins, central carbon metabolism, glutathione metabolism, phenylpropanoid biosynthesis and flavonoid metabolism. We also analyzed several key proteins in photosynthesis and chloroplast transport by Western blot. In summary, the results may provide a new insight into the understanding of how plants respond to the impaired photosynthesis by regulating chloroplast development and photosynthetic carbon assimilation pathways.
Collapse
Affiliation(s)
- Hongwei Han
- Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of Xinjiang Production and Construction Corps, Department of Horticulture, College of Agriculture, Shihezi University, Shihezi 832003, China; (H.H.)
- Key Laboratory of Horticulture Crop Genomics and Genetic Improvement in Xinjiang, Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830002, China
| | - Yuan Zhou
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200030, China
| | - Huifang Liu
- Key Laboratory of Horticulture Crop Genomics and Genetic Improvement in Xinjiang, Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830002, China
| | - Xianjun Chen
- Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of Xinjiang Production and Construction Corps, Department of Horticulture, College of Agriculture, Shihezi University, Shihezi 832003, China; (H.H.)
| | - Qiang Wang
- Key Laboratory of Horticulture Crop Genomics and Genetic Improvement in Xinjiang, Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830002, China
| | - Hongmei Zhuang
- Key Laboratory of Horticulture Crop Genomics and Genetic Improvement in Xinjiang, Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830002, China
| | - Xiaoxia Sun
- Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of Xinjiang Production and Construction Corps, Department of Horticulture, College of Agriculture, Shihezi University, Shihezi 832003, China; (H.H.)
| | - Qihua Ling
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200030, China
| | - Huijun Zhang
- School of Life Science, Huaibei Normal University, Huaibei 235000, China
| | - Baike Wang
- Key Laboratory of Horticulture Crop Genomics and Genetic Improvement in Xinjiang, Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830002, China
| | - Juan Wang
- Key Laboratory of Horticulture Crop Genomics and Genetic Improvement in Xinjiang, Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830002, China
| | - Yaping Tang
- Key Laboratory of Horticulture Crop Genomics and Genetic Improvement in Xinjiang, Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830002, China
| | - Hao Wang
- Key Laboratory of Horticulture Crop Genomics and Genetic Improvement in Xinjiang, Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830002, China
| | - Huiying Liu
- Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of Xinjiang Production and Construction Corps, Department of Horticulture, College of Agriculture, Shihezi University, Shihezi 832003, China; (H.H.)
| |
Collapse
|
17
|
Li Y, Liu H, Ma T, Li J, Yuan J, Xu YC, Sun R, Zhang X, Jing Y, Guo YL, Lin R. Arabidopsis EXECUTER1 interacts with WRKY transcription factors to mediate plastid-to-nucleus singlet oxygen signaling. THE PLANT CELL 2023; 35:827-851. [PMID: 36423342 PMCID: PMC9940883 DOI: 10.1093/plcell/koac330] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 10/10/2022] [Accepted: 11/16/2022] [Indexed: 06/01/2023]
Abstract
Chloroplasts produce singlet oxygen (1O2), which causes changes in nuclear gene expression through plastid-to-nucleus retrograde signaling to increase plant fitness. However, the identity of this 1O2-triggered pathway remains unclear. Here, we identify mutations in GENOMES UNCOUPLED4 (GUN4) and GUN5 as suppressors of phytochrome-interacting factor1 (pif1) pif3 in regulating the photo-oxidative response in Arabidopsis thaliana. GUN4 and GUN5 specifically interact with EXECUTER1 (EX1) and EX2 in plastids, and this interaction is alleviated by treatment with Rose Bengal (RB) or white light. Impaired expression of GUN4, GUN5, EX1, or EX2 leads to insensitivity to excess light and overexpression of EX1 triggers photo-oxidative responses. Strikingly, upon light irradiation or RB treatment, EX1 transiently accumulates in the nucleus and the nuclear fraction of EX1 shows a similar molecular weight as the plastid-located protein. Point mutagenesis analysis indicated that nuclear localization of EX1 is required for its function. EX1 acts as a transcriptional co-activator and interacts with the transcription factors WRKY18 and WRKY40 to promote the expression of 1O2-responsive genes. This study suggests that EX1 may act in plastid-to-nucleus signaling and establishes a 1O2-triggered retrograde signaling pathway that allows plants adapt to changing light environments during chloroplast development.
Collapse
Affiliation(s)
- Yuhong Li
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hanhong Liu
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tingting Ma
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Jialong Li
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Jiarui Yuan
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong-Chao Xu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Ran Sun
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinyu Zhang
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Yanjun Jing
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Ya-Long Guo
- University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Rongcheng Lin
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
18
|
Richter AS, Nägele T, Grimm B, Kaufmann K, Schroda M, Leister D, Kleine T. Retrograde signaling in plants: A critical review focusing on the GUN pathway and beyond. PLANT COMMUNICATIONS 2023; 4:100511. [PMID: 36575799 PMCID: PMC9860301 DOI: 10.1016/j.xplc.2022.100511] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 12/05/2022] [Accepted: 12/22/2022] [Indexed: 06/01/2023]
Abstract
Plastids communicate their developmental and physiological status to the nucleus via retrograde signaling, allowing nuclear gene expression to be adjusted appropriately. Signaling during plastid biogenesis and responses of mature chloroplasts to environmental changes are designated "biogenic" and "operational" controls, respectively. A prominent example of the investigation of biogenic signaling is the screen for gun (genomes uncoupled) mutants. Although the first five gun mutants were identified 30 years ago, the functions of GUN proteins in retrograde signaling remain controversial, and that of GUN1 is hotly disputed. Here, we provide background information and critically discuss recently proposed concepts that address GUN-related signaling and some novel gun mutants. Moreover, considering heme as a candidate in retrograde signaling, we revisit the spatial organization of heme biosynthesis and export from plastids. Although this review focuses on GUN pathways, we also highlight recent progress in the identification and elucidation of chloroplast-derived signals that regulate the acclimation response in green algae and plants. Here, stress-induced accumulation of unfolded/misassembled chloroplast proteins evokes a chloroplast-specific unfolded protein response, which leads to changes in the expression levels of nucleus-encoded chaperones and proteases to restore plastid protein homeostasis. We also address the importance of chloroplast-derived signals for activation of flavonoid biosynthesis leading to production of anthocyanins during stress acclimation through sucrose non-fermenting 1-related protein kinase 1. Finally, a framework for identification and quantification of intercompartmental signaling cascades at the proteomic and metabolomic levels is provided, and we discuss future directions of dissection of organelle-nucleus communication.
Collapse
Affiliation(s)
- Andreas S Richter
- Physiology of Plant Metabolism, Institute for Biosciences, University of Rostock, Albert-Einstein-Str. 3, 18059 Rostock, Germany
| | - Thomas Nägele
- Plant Evolutionary Cell Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Bernhard Grimm
- Institute of Biology/Plant Physiology, Humboldt-Universität zu Berlin, Philippstr. 13, 10115 Berlin, Germany
| | - Kerstin Kaufmann
- Plant Cell and Molecular Biology, Institute of Biology, Humboldt-Universität zu Berlin, Philippstr. 13, 10115 Berlin, Germany
| | - Michael Schroda
- Molecular Biotechnology and Systems Biology, TU Kaiserslautern, Kaiserslautern, Germany
| | - Dario Leister
- Plant Molecular Biology (Botany), Faculty of Biology, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Tatjana Kleine
- Plant Molecular Biology (Botany), Faculty of Biology, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany.
| |
Collapse
|
19
|
Mei X, Zhang K, Lin Y, Su H, Lin C, Chen B, Yang H, Zhang L. Metabolic and Transcriptomic Profiling Reveals Etiolated Mechanism in Huangyu Tea ( Camellia sinensis) Leaves. Int J Mol Sci 2022; 23:ijms232315044. [PMID: 36499369 PMCID: PMC9740216 DOI: 10.3390/ijms232315044] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/26/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022] Open
Abstract
Leaf color is one of the key factors involved in determining the processing suitability of tea. It relates to differential accumulation of flavor compounds due to the different metabolic mechanisms. In recent years, photosensitive etiolation or albefaction is an interesting direction in tea research field. However, the molecular mechanism of color formation remains unclear since albino or etiolated mutants have different genetic backgrounds. In this study, wide-target metabolomic and transcriptomic analyses were used to reveal the biological mechanism of leaf etiolation for 'Huangyu', a bud mutant of 'Yinghong 9'. The results indicated that the reduction in the content of chlorophyll and the ratio of chlorophyll to carotenoids might be the biochemical reasons for the etiolation of 'Huangyu' tea leaves, while the content of zeaxanthin was significantly higher. The differentially expressed genes (DEGs) involved in chlorophyll and chloroplast biogenesis were the biomolecular reasons for the formation of green or yellow color in tea leaves. In addition, our results also revealed that the changes of DEGs involved in light-induced proteins and circadian rhythm promoted the adaptation of etiolated tea leaves to light stress. Variant colors of tea leaves indicated different directions in metabolic flux and accumulation of flavor compounds.
Collapse
Affiliation(s)
- Xin Mei
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Kaikai Zhang
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Yongen Lin
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Hongfeng Su
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Chuyuan Lin
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Baoyi Chen
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Haijun Yang
- Center for Basic Experiments and Practical Training, South China Agricultural University, Guangzhou 510642, China
- Correspondence: (H.Y.); (L.Z.); Tel.: +86-020-8528-0542 (L.Z.)
| | - Lingyun Zhang
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
- Correspondence: (H.Y.); (L.Z.); Tel.: +86-020-8528-0542 (L.Z.)
| |
Collapse
|
20
|
Wang P, Ji S, Grimm B. Post-translational regulation of metabolic checkpoints in plant tetrapyrrole biosynthesis. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:4624-4636. [PMID: 35536687 PMCID: PMC9992760 DOI: 10.1093/jxb/erac203] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/06/2022] [Indexed: 06/02/2023]
Abstract
Tetrapyrrole biosynthesis produces metabolites that are essential for critical reactions in photosynthetic organisms, including chlorophylls, heme, siroheme, phytochromobilins, and their derivatives. Due to the paramount importance of tetrapyrroles, a better understanding of the complex regulation of tetrapyrrole biosynthesis promises to improve plant productivity in the context of global climate change. Tetrapyrrole biosynthesis is known to be controlled at multiple levels-transcriptional, translational and post-translational. This review addresses recent advances in our knowledge of the post-translational regulation of tetrapyrrole biosynthesis and summarizes the regulatory functions of the various auxiliary factors involved. Intriguingly, the post-translational network features three prominent metabolic checkpoints, located at the steps of (i) 5-aminolevulinic acid synthesis (the rate-limiting step in the pathway), (ii) the branchpoint between chlorophyll and heme synthesis, and (iii) the light-dependent enzyme protochlorophyllide oxidoreductase. The regulation of protein stability, enzymatic activity, and the spatial organization of the committed enzymes in these three steps ensures the appropriate flow of metabolites through the tetrapyrrole biosynthesis pathway during photoperiodic growth. In addition, we offer perspectives on currently open questions for future research on tetrapyrrole biosynthesis.
Collapse
Affiliation(s)
- Peng Wang
- Institute of Biology/Plant Physiology, Humboldt-Universität zu Berlin, Philippstraße 13 (Haus 12), 10115 Berlin, Germany
| | - Shuiling Ji
- Institute of Biology/Plant Physiology, Humboldt-Universität zu Berlin, Philippstraße 13 (Haus 12), 10115 Berlin, Germany
| | | |
Collapse
|
21
|
Meng X, Li L, Pascual J, Rahikainen M, Yi C, Jost R, He C, Fournier-Level A, Borevitz J, Kangasjärvi S, Whelan J, Berkowitz O. GWAS on multiple traits identifies mitochondrial ACONITASE3 as important for acclimation to submergence stress. PLANT PHYSIOLOGY 2022; 188:2039-2058. [PMID: 35043967 PMCID: PMC8968326 DOI: 10.1093/plphys/kiac011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 12/03/2021] [Indexed: 05/26/2023]
Abstract
Flooding causes severe crop losses in many parts of the world. Genetic variation in flooding tolerance exists in many species; however, there are few examples for the identification of tolerance genes and their underlying function. We conducted a genome-wide association study (GWAS) in 387 Arabidopsis (Arabidopsis thaliana) accessions. Plants were subjected to prolonged submergence followed by desubmergence, and seven traits (score, water content, Fv/Fm, and concentrations of nitrate, chlorophyll, protein, and starch) were quantified to characterize their acclimation responses. These traits showed substantial variation across the range of accessions. A total of 35 highly significant single-nucleotide polymorphisms (SNPs) were identified across the 20 GWA datasets, pointing to 22 candidate genes, with functions in TCA cycle, DNA modification, and cell division. Detailed functional characterization of one candidate gene, ACONITASE3 (ACO3), was performed. Chromatin immunoprecipitation followed by sequencing showed that a single nucleotide polymorphism in the ACO3 promoter co-located with the binding site of the master regulator of retrograde signaling ANAC017, while subcellular localization of an ACO3-YFP fusion protein confirmed a mitochondrial localization during submergence. Analysis of mutant and overexpression lines determined changes in trait parameters that correlated with altered submergence tolerance and were consistent with the GWAS results. Subsequent RNA-seq experiments suggested that impairing ACO3 function increases the sensitivity to submergence by altering ethylene signaling, whereas ACO3 overexpression leads to tolerance by metabolic priming. These results indicate that ACO3 impacts submergence tolerance through integration of carbon and nitrogen metabolism via the mitochondrial TCA cycle and impacts stress signaling during acclimation to stress.
Collapse
Affiliation(s)
- Xiangxiang Meng
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Department of Animal, Plant and Soil Science, ARC Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora, Victoria 3086, Australia
| | | | | | - Moona Rahikainen
- Molecular Plant Biology, Department of Biochemistry, University of Turku, Turku, FI-20014, Finland
| | - Changyu Yi
- Department of Animal, Plant and Soil Science, ARC Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora, Victoria 3086, Australia
| | - Ricarda Jost
- Department of Animal, Plant and Soil Science, ARC Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora, Victoria 3086, Australia
| | - Cunman He
- Department of Animal, Plant and Soil Science, ARC Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora, Victoria 3086, Australia
| | | | - Justin Borevitz
- Research School of Biology and Centre for Biodiversity Analysis, ARC Centre of Excellence in Plant Energy Biology, Australian National University, Canberra, ACT 0200, Australia
| | - Saijaliisa Kangasjärvi
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, Helsinki University, FI-00014, Finland
- Department of Agricultural Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, FI-00014, Finland
- Viikki Plant Science Center, University of Helsinki, Helsinki, FI-00014, Finland
| | - James Whelan
- Department of Animal, Plant and Soil Science, ARC Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora, Victoria 3086, Australia
| | | |
Collapse
|
22
|
Fölsche V, Großmann C, Richter AS. Impact of Porphyrin Binding to GENOMES UNCOUPLED 4 on Tetrapyrrole Biosynthesis in planta. FRONTIERS IN PLANT SCIENCE 2022; 13:850504. [PMID: 35371166 PMCID: PMC8967248 DOI: 10.3389/fpls.2022.850504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
Plant tetrapyrrole biosynthesis (TPS) provides the indispensable chlorophyll (Chl) and heme molecules in photosynthetic organisms. Post-translational mechanisms control the enzymes to ensure a balanced flow of intermediates in the pathway and synthesis of appropriate amounts of both endproducts. One of the critical regulators of TPS is GENOMES UNCOUPLED 4 (GUN4). GUN4 interacts with magnesium chelatase (MgCh), and its binding of the catalytic substrate and product of the MgCh reaction stimulates the insertion of Mg2+ into protoporphyrin IX. Despite numerous in vitro studies, knowledge about the in vivo function of the GUN4:porphyrin interaction for the whole TPS pathway, particularly in plants, is still limited. To address this, we focused on two highly conserved amino acids crucial for porphyrin-binding to GUN4 and analyzed GUN4-F191A, R211A, and R211E substitution mutants in vitro and in vivo. Our analysis confirmed the importance of these amino acids for porphyrin-binding and the stimulation of plant MgCh by GUN4 in vitro. Expression of porphyrin-binding deficient F191A, R211A, and R211E in the Arabidopsis gun4-2 knockout mutant background revealed that, unlike in cyanobacteria and green algae, GUN4:porphyrin interactions did not affect the stability of GUN4 or other Arabidopsis TPS pathway enzymes in vivo. In addition, although they shared diminished porphyrin-binding and MgCh activation in vitro, expression of the different GUN4 mutants in gun4-2 had divergent effects on the TPS and the accumulation of Chl and Chl-binding proteins. For instance, expression of R211E, but not R211A, induced a substantial decrease of ALA synthesis rate, lower TPS intermediate and Chl level, and strongly impaired accumulation of photosynthetic complexes compared to wild-type plants. Furthermore, the presence of R211E led to significant growth retardation and paler leaves compared to GUN4 knockdown mutants, indicating that the exchange of R211 to glutamate compromised TPS and Chl accumulation more substantially than the almost complete lack of GUN4. Extensive in vivo analysis of GUN4 point mutants suggested that F191 and R211 might also play a role beyond porphyrin-binding.
Collapse
Affiliation(s)
- Vincent Fölsche
- Physiology of Plant Cell Organelles, Humboldt-Universität Berlin, Berlin, Germany
- Department of Plant Physiology, Humboldt-Universität Berlin, Berlin, Germany
| | - Christopher Großmann
- Physiology of Plant Cell Organelles, Humboldt-Universität Berlin, Berlin, Germany
| | - Andreas S. Richter
- Physiology of Plant Cell Organelles, Humboldt-Universität Berlin, Berlin, Germany
- Department of Plant Physiology, Humboldt-Universität Berlin, Berlin, Germany
- Physiology of Plant Metabolism, University of Rostock, Rostock, Germany
| |
Collapse
|
23
|
Fine Mapping and Characterization of a Major Gene Responsible for Chlorophyll Biosynthesis in Brassica napus L. Biomolecules 2022; 12:biom12030402. [PMID: 35327594 PMCID: PMC8945836 DOI: 10.3390/biom12030402] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/24/2022] [Accepted: 03/01/2022] [Indexed: 02/01/2023] Open
Abstract
Rapeseed (Brassica napus L.) is mainly used for oil production and industrial purposes. A high photosynthetic efficiency is the premise of a high yield capable of meeting people’s various demands. Chlorophyll-deficient mutants are ideal materials for studying chlorophyll biosynthesis and photosynthesis. In a previous study, we obtained the mutant yl1 for leaf yellowing throughout the growth period by ethyl methanesulfonate mutagenesis of B. napus. A genetic analysis showed that the yl1 chlorophyll-deficient phenotype was controlled by one incompletely dominant gene, which was mapped on chromosome A03 by a quantitative trait loci sequencing analysis and designated as BnA03.Chd in this study. We constructed an F2 population containing 5256 individuals to clone BnA03.Chd. Finally, BnA03.Chd was fine-mapped to a 304.7 kb interval of the B. napus ‘ZS11’ genome containing 58 annotated genes. Functional annotation, transcriptome, and sequence variation analyses confirmed that BnaA03g0054400ZS, a homolog of AT5G13630, was the most likely candidate gene. BnaA03g0054400ZS encodes the H subunit of Mg-chelatase. A sequence analysis revealed a single-nucleotide polymorphism (SNP), causing an amino-acid substitution from glutamic acid to lysine (Glu1349Lys). In addition, the molecular marker BnaYL1 was developed based on the SNP of BnA03.Chd, which perfectly cosegregated with the chlorophyll-deficient phenotype in two different F2 populations. Our results provide insight into the molecular mechanism underlying chlorophyll synthesis in B. napus.
Collapse
|
24
|
Li W, Li H, Shi L, Shen P, Li Y. Leaf color formation mechanisms in Alternanthera bettzickiana elucidated by metabolite and transcriptome analyses. PLANTA 2022; 255:59. [PMID: 35128619 DOI: 10.1007/s00425-022-03840-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
The difference in leaf color among the three cultivars of A. bettzickiana is due to different chloroplast morphology and chlorophyll-to-anthocyanin ratios. Alternanthera bettzickiana is one of the most important ornamental plants in modern flower beds because of its colorful leaves. The present study examined the mechanism of leaf color formation in A. bettzickiana. Three cultivars of A. bettzickiana (red, green, and mixed red and green) were selected for comprehensive analyses of leaf color formation by examining cellular and subcellular structures and pigment biosynthesis and metabolism. The difference in leaf colors between the three cultivars of A. bettzickiana was due to different chlorophyll-to-anthocyanin ratios. A. bettzickiana 'Green' showed very low expression of CHS, F3H, and DFR, the key genes of the anthocyanin biosynthesis pathway, and a low anthocyanin content but had mature chloroplasts and a green color. A. bettzickiana 'Red' exhibited a low chlorophyll content and deformed chloroplasts but a high cyanidin content and, thus, a red color. A. bettzickiana 'Variegated' presented high anthocyanin and chlorophyll contents and exhibited red and green variegation, indicating a balance between coloration and photosynthetic efficiency. These data provide a good explanation for the coloration of different cultivars of A. bettzickiana and an important reference for better explaining the color formation mechanisms of plant leaves.
Collapse
Affiliation(s)
- Wenji Li
- College of Landscape Architecture, Sichuan Agricultural University, No.211 Huimin Road, Wenjiang District, Chengdu, 611130, China
| | - Huigen Li
- College of Life Science, Inner Mongolia University for the Nationalities, No.536 Huolinhe Street West, Tongliao City, 028000, Inner Mongolia, China
| | - Lisha Shi
- College of Landscape Architecture, Sichuan Agricultural University, No.211 Huimin Road, Wenjiang District, Chengdu, 611130, China
| | - Ping Shen
- College of Landscape Architecture, Beijing Forestry University, No.35 Qinghua East Road, Haidian District, Beijing, 100083, China
| | - Yurong Li
- College of Horticulture and Landscape Architecture, Southwest University, No.2 Tiansheng Road, Beibei District, Chongqing, 400716, China.
| |
Collapse
|
25
|
GUN4 Affects the Circadian Clock and Seedlings Adaptation to Changing Light Conditions. Int J Mol Sci 2021; 23:ijms23010194. [PMID: 35008619 PMCID: PMC8745339 DOI: 10.3390/ijms23010194] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/16/2021] [Accepted: 12/20/2021] [Indexed: 01/13/2023] Open
Abstract
The chloroplast is a key organelle for photosynthesis and perceiving environmental information. GENOME UNCOUPLED 4 (GUN4) has been shown to be required for the regulation of both chlorophyll synthesis, reactive oxygen species (ROS) homeostasis and plastid retrograde signaling. In this study, we found that growth of the gun4 mutant was significantly improved under medium strong light (200 μmol photons m−2s−1) compared to normal light (100 μmol photons m−2s−1), in marked contrast to wild-type (WT). Further analysis revealed that GUN4 interacts with SIGNAL RECOGNITION PARTICLE 54 KDA SUBUNIT (SRP43) and SRP54. RNA-seq analysis indicated that the expression of genes for light signaling and the circadian clock is altered in gun4 compared with (WT). qPCR analysis confirmed that the expression of the clock genes CLOCK-RELATED 1 (CCA1), LATE ELONGATION HYPOCOTYL (LHY), TIMING OF CAB EXPRESSION 1 (TOC1) and PSEUDO RESPONSE REGULATOR 7 (PRR7) is significantly changed in the gun4 and srp54 mutants under normal and medium strong light conditions. These results suggest that GUN4 may coordinate the adaptation of plants to changing light conditions by regulating the biological clock, although it is not clear whether the effect is direct or indirect.
Collapse
|
26
|
Wang F, Chen N, Shen S. iTRAQ-Based Quantitative Proteomics Analysis Reveals the Mechanism of Golden-Yellow Leaf Mutant in Hybrid Paper Mulberry. Int J Mol Sci 2021; 23:127. [PMID: 35008552 PMCID: PMC8745438 DOI: 10.3390/ijms23010127] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/17/2021] [Accepted: 12/17/2021] [Indexed: 11/17/2022] Open
Abstract
Plant growth and development relies on the conversion of light energy into chemical energy, which takes place in the leaves. Chlorophyll mutant variations are important for studying certain physiological processes, including chlorophyll metabolism, chloroplast biogenesis, and photosynthesis. To uncover the mechanisms of the golden-yellow phenotype of the hybrid paper mulberry plant, this study used physiological, cytological, and iTRAQ-based proteomic analyses to compare the green and golden-yellow leaves of hybrid paper mulberry. Physiological results showed that the mutants of hybrid paper mulberry showed golden-yellow leaves, reduced chlorophyll, and carotenoid content, and increased flavonoid content compared with wild-type plants. Cytological observations revealed defective chloroplasts in the mesophyll cells of the mutants. Results demonstrated that 4766 proteins were identified from the hybrid paper mulberry leaves, of which 168 proteins displayed differential accumulations between the green and mutant leaves. The differentially accumulated proteins were primarily involved in chlorophyll synthesis, carotenoid metabolism, and photosynthesis. In addition, differentially accumulated proteins are associated with ribosome pathways and could enable plants to adapt to environmental conditions by regulating the proteome to reduce the impact of chlorophyll reduction on growth and survival. Altogether, this study provides a better understanding of the formation mechanism of the golden-yellow leaf phenotype by combining proteomic approaches.
Collapse
Affiliation(s)
- Fenfen Wang
- Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, China;
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Naizhi Chen
- Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, China;
| | - Shihua Shen
- Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, China;
| |
Collapse
|
27
|
Lu J, Pan C, Li X, Huang Z, Shu J, Wang X, Lu X, Pan F, Hu J, Zhang H, Su W, Zhang M, Du Y, Liu L, Guo Y, Li J. OBV (obscure vein), a C 2H 2 zinc finger transcription factor, positively regulates chloroplast development and bundle sheath extension formation in tomato (Solanum lycopersicum) leaf veins. HORTICULTURE RESEARCH 2021; 8:230. [PMID: 34719693 PMCID: PMC8558323 DOI: 10.1038/s41438-021-00659-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 07/07/2021] [Accepted: 07/14/2021] [Indexed: 06/01/2023]
Abstract
Leaf veins play an important role in plant growth and development, and the bundle sheath (BS) is believed to greatly improve the photosynthetic efficiency of C4 plants. The OBV mutation in tomato (Solanum lycopersicum) results in dark veins and has been used widely in processing tomato varieties. However, physiological performance has difficulty explaining fitness in production. In this study, we confirmed that this mutation was caused by both the increased chlorophyll content and the absence of bundle sheath extension (BSE) in the veins. Using genome-wide association analysis and map-based cloning, we revealed that OBV encoded a C2H2L domain class transcription factor. It was localized in the nucleus and presented cell type-specific gene expression in the leaf veins. Furthermore, we verified the gene function by generating CRISPR/Cas9 knockout and overexpression mutants of the tomato gene. RNA sequencing analysis revealed that OBV was involved in regulating chloroplast development and photosynthesis, which greatly supported the change in chlorophyll content by mutation. Taken together, these findings demonstrated that OBV affected the growth and development of tomato by regulating chloroplast development in leaf veins. This study also provides a solid foundation to further decipher the mechanism of BSEs and to understand the evolution of photosynthesis in land plants.
Collapse
Affiliation(s)
- Jinghua Lu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Chunyang Pan
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xin Li
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zejun Huang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jinshuai Shu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiaoxuan Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiaoxiao Lu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Feng Pan
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Junling Hu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Hui Zhang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Wenyue Su
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Min Zhang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yongchen Du
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Lei Liu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yanmei Guo
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Junming Li
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
28
|
Li R, Jiang M, Zheng W, Zhang H. GUN4-mediated tetrapyrrole metabolites regulates starch biosynthesis during early seed development in rice. J Cereal Sci 2021. [DOI: 10.1016/j.jcs.2021.103317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
29
|
DeTar RA, Barahimipour R, Manavski N, Schwenkert S, Höhner R, Bölter B, Inaba T, Meurer J, Zoschke R, Kunz HH. Loss of inner-envelope K+/H+ exchangers impairs plastid rRNA maturation and gene expression. THE PLANT CELL 2021; 33:2479-2505. [PMID: 34235544 PMCID: PMC8364240 DOI: 10.1093/plcell/koab123] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/30/2021] [Indexed: 05/08/2023]
Abstract
The inner-envelope K+ EFFLUX ANTIPORTERS (KEA) 1 and 2 are critical for chloroplast development, ion homeostasis, and photosynthesis. However, the mechanisms by which changes in ion flux across the envelope affect organelle biogenesis remained elusive. Chloroplast development requires intricate coordination between the nuclear genome and the plastome. Many mutants compromised in plastid gene expression (PGE) display a virescent phenotype, that is delayed greening. The phenotypic appearance of Arabidopsis thaliana kea1 kea2 double mutants fulfills this criterion, yet a link to PGE has not been explored. Here, we show that a simultaneous loss of KEA1 and KEA2 results in maturation defects of the plastid ribosomal RNAs. This may be caused by secondary structure changes of rRNA transcripts and concomitant reduced binding of RNA-processing proteins, which we documented in the presence of skewed ion homeostasis in kea1 kea2. Consequently, protein synthesis and steady-state levels of plastome-encoded proteins remain low in mutants. Disturbance in PGE and other signs of plastid malfunction activate GENOMES UNCOUPLED 1-dependent retrograde signaling in kea1 kea2, resulting in a dramatic downregulation of GOLDEN2-LIKE transcription factors to halt expression of photosynthesis-associated nuclear-encoded genes (PhANGs). PhANG suppression delays the development of fully photosynthesizing kea1 kea2 chloroplasts, probably to avoid progressing photo-oxidative damage. Overall, our results reveal that KEA1/KEA2 function impacts plastid development via effects on RNA-metabolism and PGE.
Collapse
Affiliation(s)
- Rachael Ann DeTar
- Plant Physiology, School of Biological Sciences, Washington State University, PO Box 644236, Pullman, WA 99164-4236, USA
| | - Rouhollah Barahimipour
- Max Planck Institute of Molecular Plant Physiology, Wissenschaftspark Golm, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Nikolay Manavski
- Plant Sciences, Department I, LMU Munich, Großhaderner Str. 2-4, 82152 Planegg-Martinsried, Germany
| | - Serena Schwenkert
- Plant Sciences, Department I, LMU Munich, Großhaderner Str. 2-4, 82152 Planegg-Martinsried, Germany
| | - Ricarda Höhner
- Plant Physiology, School of Biological Sciences, Washington State University, PO Box 644236, Pullman, WA 99164-4236, USA
| | - Bettina Bölter
- Plant Sciences, Department I, LMU Munich, Großhaderner Str. 2-4, 82152 Planegg-Martinsried, Germany
| | - Takehito Inaba
- Department of Agricultural and Environmental Sciences, Faculty of Agriculture, University of Miyazaki, Miyazaki 889-2192, Japan
| | - Jörg Meurer
- Plant Sciences, Department I, LMU Munich, Großhaderner Str. 2-4, 82152 Planegg-Martinsried, Germany
| | - Reimo Zoschke
- Max Planck Institute of Molecular Plant Physiology, Wissenschaftspark Golm, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Hans-Henning Kunz
- Plant Physiology, School of Biological Sciences, Washington State University, PO Box 644236, Pullman, WA 99164-4236, USA
- Plant Sciences, Department I, LMU Munich, Großhaderner Str. 2-4, 82152 Planegg-Martinsried, Germany
- Author for correspondence:
| |
Collapse
|
30
|
Hu JH, Chang JW, Xu T, Wang J, Wang X, Lin R, Duanmu D, Liu L. Structural basis of bilin binding by the chlorophyll biosynthesis regulator GUN4. Protein Sci 2021; 30:2083-2091. [PMID: 34382282 DOI: 10.1002/pro.4164] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 08/05/2021] [Accepted: 08/09/2021] [Indexed: 11/05/2022]
Abstract
The chlorophyll biosynthesis regulator GENOMES UNCOUPLED 4 (GUN4) is conserved in nearly all oxygenic photosynthetic organisms. Recently, GUN4 has been found to be able to bind the linear tetrapyrroles (bilins) and stimulate the magnesium chelatase activity in the unicellular green alga Chlamydomonas reinhardtii. Here, we characterize GUN4 proteins from Arabidopsis thaliana and the cyanobacterium Synechocystis sp. PCC 6803 for their ability to bind bilins, and present the crystal structures of Synechocystis GUN4 in biliverdin-bound, phycocyanobilin-bound, and phytochromobilin-bound forms at the resolutions of 1.05, 1.10, and 1.70 Å, respectively. These linear molecules adopt a cyclic-helical conformation, and bind more tightly than planar porphyrins to the tetrapyrrole-binding pocket of GUN4. Based on structural comparison, we propose a working model of GUN4 in regulation of tetrapyrrole biosynthetic pathway, and address the role of the bilin-bound GUN4 in retrograde signaling.
Collapse
Affiliation(s)
- Jiu-Hui Hu
- School of Life Sciences, Anhui University, Hefei, China
| | | | - Tao Xu
- School of Life Sciences, Anhui University, Hefei, China
| | - Jia Wang
- School of Life Sciences, Anhui University, Hefei, China.,Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Xiao Wang
- School of Life Sciences, Anhui University, Hefei, China.,Anhui Key Laboratory of Modern Biomanufacturing, Anhui University, Hefei, China
| | - Rongcheng Lin
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Deqiang Duanmu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Lin Liu
- School of Life Sciences, Anhui University, Hefei, China.,Anhui Key Laboratory of Modern Biomanufacturing, Anhui University, Hefei, China
| |
Collapse
|
31
|
Li RQ, Jiang M, Huang JZ, Møller IM, Shu QY. Mutations of the Genomes Uncoupled 4 Gene Cause ROS Accumulation and Repress Expression of Peroxidase Genes in Rice. FRONTIERS IN PLANT SCIENCE 2021; 12:682453. [PMID: 34178000 PMCID: PMC8232891 DOI: 10.3389/fpls.2021.682453] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/10/2021] [Indexed: 05/19/2023]
Abstract
The Genomes Uncoupled 4 (GUN4) is one of the retrograde signaling genes in Arabidopsis and its orthologs have been identified in oxygenic phototrophic organisms from cyanobacterium to higher plants. GUN4 is involved in tetrapyrrole biosynthesis and its mutation often causes chlorophyll-deficient phenotypes with increased levels of reactive oxygen species (ROS), hence it has been speculated that GUN4 may also play a role in photoprotection. However, the biological mechanism leading to the increased ROS accumulation in gun4 mutants remains largely unknown. In our previous studies, we generated an epi-mutant allele of OsGUN4 (gun4 epi ), which downregulated its expression to ∼0.5% that of its wild-type (WT), and a complete knockout allele gun4-1 due to abolishment of its translation start site. In the present study, three types of F2 plant derived from a gun4-1/gun4 epi cross, i.e., gun4-1/gun4-1, gun4-1/gun4 epi and gun4 epi /gun4 epi were developed and used for further investigation by growing them under photoperiodic condition (16 h/8 h light/dark) with low light (LL, 100 μmol photons m-2 s-1) or high light (HL, 1000 μmol photons m-2 s-1). The expression of OsGUN4 was light responsive and had two peaks in the daytime. gun4-1/gun4-1-F2 seeds showed defective germination and died within 7 days. Significantly higher levels of ROS accumulated in all types of OsGUN4 mutants than in WT plants under both the LL and HL conditions. A comparative RNA-seq analysis of WT variety LTB and its gun4 epi mutant HYB led to the identification of eight peroxidase (PRX)-encoding genes that were significantly downregulated in HYB. The transcription of these eight PRX genes was restored in transgenic HYB protoplasts overexpressing OsGUN4, while their expression was repressed in LTB protoplasts transformed with an OsGUN4 silencing vector. We conclude that OsGUN4 is indispensable for rice, its expression is light- and oxidative-stress responsive, and it plays a role in ROS accumulation via its involvement in the transcriptional regulation of PRX genes.
Collapse
Affiliation(s)
- Rui-Qing Li
- Hainan Institute of Zhejiang University, Yazhou Bay Science and Technology City, Sanya, China
- College of Agronomy, Anhui Agricultural University, Hefei, China
| | - Meng Jiang
- Hainan Institute of Zhejiang University, Yazhou Bay Science and Technology City, Sanya, China
| | - Jian-Zhong Huang
- Hainan Institute of Zhejiang University, Yazhou Bay Science and Technology City, Sanya, China
- National Key Laboratory of Rice Biology, Institute of Crop Sciences, Zhejiang University, Hangzhou, China
| | - Ian Max Møller
- Department of Molecular Biology and Genetics, Aarhus University, Slagelse, Denmark
| | - Qing-Yao Shu
- Hainan Institute of Zhejiang University, Yazhou Bay Science and Technology City, Sanya, China
- National Key Laboratory of Rice Biology, Institute of Crop Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
32
|
Abstract
Biosyntheses of chlorophyll and heme in oxygenic phototrophs share a common trunk pathway that diverges with insertion of magnesium or iron into the last common intermediate, protoporphyrin IX. Since both tetrapyrroles are pro-oxidants, it is essential that their metabolism is tightly regulated. Here, we establish that heme-derived linear tetrapyrroles (bilins) function to stimulate the enzymatic activity of magnesium chelatase (MgCh) via their interaction with GENOMES UNCOUPLED 4 (GUN4) in the model green alga Chlamydomonas reinhardtii A key tetrapyrrole-binding component of MgCh found in all oxygenic photosynthetic species, CrGUN4, also stabilizes the bilin-dependent accumulation of protoporphyrin IX-binding CrCHLH1 subunit of MgCh in light-grown C. reinhardtii cells by preventing its photooxidative inactivation. Exogenous application of biliverdin IXα reverses the loss of CrCHLH1 in the bilin-deficient heme oxygenase (hmox1) mutant, but not in the gun4 mutant. We propose that these dual regulatory roles of GUN4:bilin complexes are responsible for the retention of bilin biosynthesis in all photosynthetic eukaryotes, which sustains chlorophyll biosynthesis in an illuminated oxic environment.
Collapse
|
33
|
Yang F, Debatosh D, Song T, Zhang JH. Light Harvesting-like Protein 3 Interacts with Phytoene Synthase and Is Necessary for Carotenoid and Chlorophyll Biosynthesis in Rice. RICE (NEW YORK, N.Y.) 2021; 14:32. [PMID: 33745012 PMCID: PMC7981378 DOI: 10.1186/s12284-021-00474-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 03/10/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Carotenoid biosynthesis is essential for the generation of photosynthetic pigments, phytohormone production, and flower color development. The light harvesting like 3 (LIL3) protein, which belongs to the light-harvesting complex protein family in photosystems, interacts with geranylgeranyl reductase (GGR) and protochlorophyllide oxidoreductase (POR) both of which are known to regulate terpenoid and chlorophyll biosynthesis, respectively, in both rice and Arabidopsis. RESULTS In our study, a CRISPR-Cas9 generated 4-bp deletion mutant oslil3 showed aberrant chloroplast development, growth defects, low fertility rates and reduced pigment contents. A comparative transcriptomic analysis of oslil3 suggested that differentially expressed genes (DEGs) involved in photosynthesis, cell wall modification, primary and secondary metabolism are differentially regulated in the mutant. Protein-protein interaction assays indicated that LIL3 interacts with phytoene synthase (PSY) and in addition the gene expression of PSY genes are regulated by LIL3. Subcellular localization of LIL3 and PSY suggested that both are thylakoid membrane anchored proteins in the chloroplast. We suggest that LIL3 directly interacts with PSY to regulate carotenoid biosynthesis. CONCLUSION This study reveals a new role of LIL3 in regulating pigment biosynthesis through interaction with the rate limiting enzyme PSY in carotenoid biosynthesis in rice presenting it as a putative target for genetic manipulation of pigment biosynthesis pathways in crop plants.
Collapse
Affiliation(s)
- Feng Yang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, 518057, Guangdong, China
| | - Das Debatosh
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, 518057, Guangdong, China
| | - Tao Song
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China.
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, 518057, Guangdong, China.
| | - Jian-Hua Zhang
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, 518057, Guangdong, China.
- Department of Biology, Hong Kong Baptist University and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
| |
Collapse
|
34
|
Comparative Transcriptome Analysis Reveals Key Genes and Pathways Involved in Prickle Development in Eggplant. Genes (Basel) 2021; 12:genes12030341. [PMID: 33668977 PMCID: PMC7996550 DOI: 10.3390/genes12030341] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/12/2021] [Accepted: 02/23/2021] [Indexed: 12/02/2022] Open
Abstract
Eggplant is one of the most important vegetables worldwide. Prickles on the leaves, stems and fruit calyxes of eggplant may cause difficulties during cultivation, harvesting and transportation, and therefore is an undesirable agronomic trait. However, limited knowledge about molecular mechanisms of prickle morphogenesis has hindered the genetic improvement of eggplant. In this study, we performed the phenotypic characterization and transcriptome analysis on prickly and prickleless eggplant genotypes to understand prickle development at the morphological and molecular levels. Morphological analysis revealed that eggplant prickles were multicellular, lignified and layered organs. Comparative transcriptome analysis identified key pathways and hub genes involved in the cell cycle as well as flavonoid biosynthetic, photosynthetic, and hormone metabolic processes during prickle development. Interestingly, genes associated with flavonoid biosynthesis were up-regulated in developing prickles, and genes associated with photosynthesis were down-regulated in developing and matured prickles. It was also noteworthy that several development-related transcription factors such as bHLH, C2H2, MYB, TCP and WRKY were specifically down- or up-regulated in developing prickles. Furthermore, four genes were found to be differentially expressed within the Pl locus interval. This study provides new insights into the regulatory molecular mechanisms underlying prickle morphogenesis in eggplant, and the genes identified might be exploited in breeding programs to develop prickleless eggplant cultivars.
Collapse
|
35
|
Shimizu T, Masuda T. The Role of Tetrapyrrole- and GUN1-Dependent Signaling on Chloroplast Biogenesis. PLANTS 2021; 10:plants10020196. [PMID: 33494334 PMCID: PMC7911674 DOI: 10.3390/plants10020196] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/15/2021] [Accepted: 01/18/2021] [Indexed: 12/14/2022]
Abstract
Chloroplast biogenesis requires the coordinated expression of the chloroplast and nuclear genomes, which is achieved by communication between the developing chloroplasts and the nucleus. Signals emitted from the plastids, so-called retrograde signals, control nuclear gene expression depending on plastid development and functionality. Genetic analysis of this pathway identified a set of mutants defective in retrograde signaling and designated genomes uncoupled (gun) mutants. Subsequent research has pointed to a significant role of tetrapyrrole biosynthesis in retrograde signaling. Meanwhile, the molecular functions of GUN1, the proposed integrator of multiple retrograde signals, have not been identified yet. However, based on the interactions of GUN1, some working hypotheses have been proposed. Interestingly, GUN1 contributes to important biological processes, including plastid protein homeostasis, through transcription, translation, and protein import. Furthermore, the interactions of GUN1 with tetrapyrroles and their biosynthetic enzymes have been revealed. This review focuses on our current understanding of the function of tetrapyrrole retrograde signaling on chloroplast biogenesis.
Collapse
|
36
|
Chen X, Zhou Y, Cong Y, Zhu P, Xing J, Cui J, Xu W, Shi Q, Diao M, Liu HY. Ascorbic Acid-Induced Photosynthetic Adaptability of Processing Tomatoes to Salt Stress Probed by Fast OJIP Fluorescence Rise. FRONTIERS IN PLANT SCIENCE 2021; 12:594400. [PMID: 34484251 PMCID: PMC8415309 DOI: 10.3389/fpls.2021.594400] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 07/14/2021] [Indexed: 05/04/2023]
Abstract
In this study, the protective role of exogenous ascorbic acid (AsA) on salt-induced inhibition of photosynthesis in the seedlings of processing tomatoes under salt stress has been investigated. Plants under salt stress (NaCl, 100 mmol/L) were foliar-sprayed with AsA (0.5 mmol/L), lycorine (LYC, 0.25 mmol/L, an inhibitor of key AsA synthesis enzyme l-galactono-γ-lactone dehydrogenase activity), or AsA plus LYC. The effects of AsA on fast OJIP fluorescence rise curve and JIP parameters were then examined. Our results demonstrated that applying exogenous AsA significantly changed the composition of O-J-I-P fluorescence transients in plants subjected to salt stress both with and without LYC. An increase in basal fluorescence (F o) and a decrease in maximum fluorescence (F m) were observed. Lower K- and L-bands and higher I-band were detected on the OJIP transient curves compared, respectively, with salt-stressed plants with and without LYC. AsA application also significantly increased the values of normalized total complementary area (Sm), relative variable fluorescence intensity at the I-step (VI), absorbed light energy (ABS/CSm), excitation energy (TRo/CSm), and reduction energy entering the electron transfer chain beyond QA (ETo/CSm) per reaction centre (RC) and electron transport flux per active RC (ETo/RC), while decreasing some others like the approximated initial slope of the fluorescence transient (Mo), relative variable fluorescence intensity at the K-step (VK), average absorption (ABS/RC), trapping (TRo/RC), heat dissipation (DIo/RC) per active RC, and heat dissipation per active RC (DIo/CSm) in the presence or absence of LYC. These results suggested that exogenous AsA counteracted salt-induced photoinhibition mainly by modulating the endogenous AsA level and redox state in the chloroplast to promote chlorophyll synthesis and alleviate the damage of oxidative stress to photosynthetic apparatus. AsA can also raise the efficiency of light utilization as well as excitation energy dissipation within the photosystem II (PSII) antennae, thus increasing the stability of PSII and promoting the movement of electrons among PS1 and PSII in tomato seedling leaves subjected to salt stress.
Collapse
Affiliation(s)
- Xianjun Chen
- Department of Horticulture, Agricultural College, Shihezi University, Shihezi, China
- Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of Xinjiang Production and Construction Corps, Shihezi, China
| | - Yan Zhou
- Department of Biological Science, Life Science and Technology School, Lingnan Normal University, Zhanjiang, China
| | - Yundan Cong
- Department of Horticulture, Agricultural College, Shihezi University, Shihezi, China
- Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of Xinjiang Production and Construction Corps, Shihezi, China
| | - Pusheng Zhu
- Department of Horticulture, Agricultural College, Shihezi University, Shihezi, China
- Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of Xinjiang Production and Construction Corps, Shihezi, China
| | - Jiayi Xing
- Department of Horticulture, Agricultural College, Shihezi University, Shihezi, China
- Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of Xinjiang Production and Construction Corps, Shihezi, China
| | - Jinxia Cui
- Department of Horticulture, Agricultural College, Shihezi University, Shihezi, China
- Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of Xinjiang Production and Construction Corps, Shihezi, China
| | - Wei Xu
- Department of Horticulture, Agricultural College, Shihezi University, Shihezi, China
- Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of Xinjiang Production and Construction Corps, Shihezi, China
| | - Qinghua Shi
- Department of Vegetables, Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Ming Diao
- Department of Horticulture, Agricultural College, Shihezi University, Shihezi, China
- Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of Xinjiang Production and Construction Corps, Shihezi, China
- Ming Diao
| | - Hui-ying Liu
- Department of Horticulture, Agricultural College, Shihezi University, Shihezi, China
- Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of Xinjiang Production and Construction Corps, Shihezi, China
- *Correspondence: Hui-ying Liu
| |
Collapse
|
37
|
Wu Y, Guo J, Wang T, Cao F, Wang G. Metabolomic and transcriptomic analyses of mutant yellow leaves provide insights into pigment synthesis and metabolism in Ginkgo biloba. BMC Genomics 2020; 21:858. [PMID: 33267778 PMCID: PMC7709416 DOI: 10.1186/s12864-020-07259-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 11/19/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Ginkgo (Ginkgo biloba L.) is an excellent landscape species. Its yellow-green leaf mutants are ideal materials for research on pigment synthesis, but the regulatory mechanism of leaf coloration in these ginkgo mutants remains unclear. RESULTS We compared the metabolomes and transcriptomes of green and mutant yellow leaves of ginkgo over the same period in this study. The results showed that the chlorophyll content of normal green leaves was significantly higher than that of mutant yellow leaves of ginkgo. We obtained 931.52M clean reads from different color leaves of ginkgo. A total of 283 substances in the metabolic profiles were finally detected, including 50 significantly differentially expressed metabolites (DEMs). We identified these DEMs and 1361 differentially expressed genes (DEGs), with 37, 4, 3 and 13 DEGs involved in the photosynthesis, chlorophyll, carotenoid, and flavonoid biosynthesis pathways, respectively. Moreover, integrative analysis of the metabolomes and transcriptomes revealed that the flavonoid pathway contained the upregulated DEM (-)-epicatechin. Fourteen DEGs from the photosynthesis pathway were positively or negatively correlated with the DEMs. CONCLUSIONS Our findings suggest a complex metabolic network in mutant yellow leaves. This study will provide a basis for studies of leaf color variation and regulation.
Collapse
Affiliation(s)
- Yaqiong Wu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, 159 Longpan Road, Nanjing, 210037, China.,Department of Forest and Conservation Sciences, Faculty of Forestry, The University of British Columbia, Vancouver, V6T 1Z4, Canada.,Research Center for Pomology, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Qian Hu Hou Cun No.1, Nanjing, 210014, China
| | - Jing Guo
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, 159 Longpan Road, Nanjing, 210037, China.,Department of Forest and Conservation Sciences, Faculty of Forestry, The University of British Columbia, Vancouver, V6T 1Z4, Canada
| | - Tongli Wang
- Department of Forest and Conservation Sciences, Faculty of Forestry, The University of British Columbia, Vancouver, V6T 1Z4, Canada
| | - Fuliang Cao
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, 159 Longpan Road, Nanjing, 210037, China
| | - Guibin Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, 159 Longpan Road, Nanjing, 210037, China.
| |
Collapse
|
38
|
Bru P, Nanda S, Malnoë A. A Genetic Screen to Identify New Molecular Players Involved in Photoprotection qH in Arabidopsis thaliana. PLANTS 2020; 9:plants9111565. [PMID: 33202829 PMCID: PMC7696684 DOI: 10.3390/plants9111565] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/30/2020] [Accepted: 11/11/2020] [Indexed: 12/23/2022]
Abstract
Photosynthesis is a biological process which converts light energy into chemical energy that is used in the Calvin-Benson cycle to produce organic compounds. An excess of light can induce damage to the photosynthetic machinery. Therefore, plants have evolved photoprotective mechanisms such as non-photochemical quenching (NPQ). To focus molecular insights on slowly relaxing NPQ processes in Arabidopsis thaliana, previously, a qE-deficient line-the PsbS mutant-was mutagenized and a mutant with high and slowly relaxing NPQ was isolated. The mutated gene was named suppressor of quenching 1, or SOQ1, to describe its function. Indeed, when present, SOQ1 negatively regulates or suppresses a form of antenna NPQ that is slow to relax and is photoprotective. We have now termed this component qH and identified the plastid lipocalin, LCNP, as the effector for this energy dissipation mode to occur. Recently, we found that the relaxation of qH1, ROQH1, protein is required to turn off qH. The aim of this study is to identify new molecular players involved in photoprotection qH by a whole genome sequencing approach of chemically mutagenized Arabidopsis thaliana. We conducted an EMS-mutagenesis on the soq1 npq4 double mutant and used chlorophyll fluorescence imaging to screen for suppressors and enhancers of qH. Out of 22,000 mutagenized plants screened, the molecular players cited above were found using a mapping-by-sequencing approach. Here, we describe the phenotypic characterization of the other mutants isolated from this genetic screen and an additional 8000 plants screened. We have classified them in several classes based on their fluorescence parameters, NPQ kinetics, and pigment content. A high-throughput whole genome sequencing approach on 65 mutants will identify the causal mutations thanks to allelic mutations from having reached saturation of the genetic screen. The candidate genes could be involved in the formation or maintenance of quenching sites for qH, in the regulation of qH at the transcriptional level, or be part of the quenching site itself.
Collapse
|
39
|
Adhikari ND, Eriksen RL, Shi A, Mou B. Proteomics Analysis Indicates Greater Abundance of Proteins Involved in Major Metabolic Pathways in Lactuca sativa cv. Salinas than Lactuca serriola Accession US96UC23. Proteomics 2020; 20:e1900420. [PMID: 32672417 DOI: 10.1002/pmic.201900420] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 06/20/2020] [Indexed: 12/17/2022]
Abstract
Lettuce (Lactuca sativa), cultivated mainly for its edible leaves and stems, is an important vegetable crop worldwide. Genomes of cultivated lettuce (L. sativa cv. Salinas) and its wild relative L. serriola accession US96UC23 are sequenced, but a clear understanding of the genetic basis for divergence in phenotypes of the two species is lacking. Tandem mass tag (TMT) based mass spectrometry is used to quantitatively compare protein levels between these two species. Four-day old seedlings is transplanted into 500 mL pots filled with soil. Plants are grown for 8 weeks under 250 µmol m-2 sec-1 continuous light, 20 °C and relative humidity between 50-70%. Leaf discs (1 cm diameter) from three individuals per biological replicate are analyzed. A total of 3000 proteins are identified, of which the levels of 650 are significantly different between 'Salinas' and US96UC23. Pathway analysis indicated a higher flux of carbon in 'Salinas' than US96UC23. Many essential metabolic pathways such as tetrapyrrole metabolism and fatty acid biosynthesis are upregulated in 'Salinas' compared with US96UC23. This study provides a reference proteome for researchers interested in understanding lettuce biology and improving traits for cultivation.
Collapse
Affiliation(s)
- Neil D Adhikari
- Crop Improvement and Protection Research Unit, United States Department of Agriculture, Agricultural Research Service, Salinas, CA, 93905, USA
- California Department of Public Health, Sacramento, CA, 95814, USA
| | - Renée L Eriksen
- Forage Seed and Cereal Research Unit, United States Department of Agriculture, Agricultural Research Service, 3450 SW Campus Way, Corvallis, OR, 97331, USA
| | - Ainong Shi
- Department of Horticulture, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Beiquan Mou
- Crop Improvement and Protection Research Unit, United States Department of Agriculture, Agricultural Research Service, Salinas, CA, 93905, USA
| |
Collapse
|
40
|
Wang L, Leister D, Kleine T. Chloroplast development and genomes uncoupled signaling are independent of the RNA-directed DNA methylation pathway. Sci Rep 2020; 10:15412. [PMID: 32963291 PMCID: PMC7508864 DOI: 10.1038/s41598-020-71907-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 08/21/2020] [Indexed: 01/18/2023] Open
Abstract
The Arabidopsis genome is methylated in CG and non-CG (CHG, and CHH in which H stands for A, T, or C) sequence contexts. DNA methylation has been suggested to be critical for seed development, and CHH methylation patterns change during stratification and germination. In plants, CHH methylation occurs mainly through the RNA-directed DNA methylation (RdDM) pathway. To test for an involvement of the RdDM pathway in chloroplast development, we analyzed seedling greening and the maximum quantum yield of photosystem II (Fv/Fm) in Arabidopsis thaliana seedlings perturbed in components of that pathway. Neither seedling greening nor Fv/Fm in seedlings and adult plants were affected in this comprehensive set of mutants, indicating that alterations in the RdDM pathway do not affect chloroplast development. Application of inhibitors like lincomycin or norflurazon inhibits greening of seedlings and represses the expression of photosynthesis-related genes including LIGHT HARVESTING CHLOROPHYLL A/B BINDING PROTEIN1.2 (LHCB1.2) in the nucleus. Our results indicate that the LHCB1.2 promoter is poorly methylated under both control conditions and after inhibitor treatment. Therefore no correlation between LHCB1.2 mRNA transcription and methylation changes of the LHCB1.2 promoter could be established. Moreover, we conclude that perturbations in the RdDM pathway do not interfere with gun signaling.
Collapse
Affiliation(s)
- Liangsheng Wang
- Plant Molecular Biology (Botany), Department Biology I, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Dario Leister
- Plant Molecular Biology (Botany), Department Biology I, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Tatjana Kleine
- Plant Molecular Biology (Botany), Department Biology I, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany.
| |
Collapse
|
41
|
Zhang C, Zhang B, Mu B, Zheng X, Zhao F, Lan W, Fu A, Luan S. A Thylakoid Membrane Protein Functions Synergistically with GUN5 in Chlorophyll Biosynthesis. PLANT COMMUNICATIONS 2020; 1:100094. [PMID: 33367259 PMCID: PMC7747962 DOI: 10.1016/j.xplc.2020.100094] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/24/2020] [Accepted: 07/02/2020] [Indexed: 05/21/2023]
Abstract
Chlorophyll (Chl) is essential for photosynthetic reactions and chloroplast development. While the enzymatic pathway for Chl biosynthesis is well established, the regulatory mechanism underlying the homeostasis of Chl levels remains largely unknown. In this study, we identified CBD1 (Chlorophyll Biosynthetic Defect1), which functions in the regulation of chlorophyll biosynthesis. The CBD1 gene was expressed specifically in green tissues and its protein product was embedded in the thylakoid membrane. Furthermore, CBD1 was precisely co-expressed and functionally correlated with GUN5 (Genome Uncoupled 5). Analysis of chlorophyll metabolic intermediates indicated that cbd1 and cbd1gun5 mutants over-accumulated magnesium protoporphyrin IX (Mg-Proto IX). In addition, the cbd1 mutant thylakoid contained less Mg than the wild type not only as a result of lower Chl content, but also implicating CBD1 in Mg transport. This was supported by the finding that CBD1 complemented a Mg2+ uptake-deficient Salmonella strain under low Mg conditions. Taken together, these results indicate that CBD1 functions synergistically with CHLH/GUN5 in Mg-Proto IX processing, and may serve as a Mg-transport protein to maintain Mg homeostasis in the chloroplast.
Collapse
Affiliation(s)
- Chi Zhang
- The Key Laboratory of Western Resources Biology and Biological Technology, College of Life Sciences, Northwest University, Xi'an 710069, China
- Nanjing University-Nanjing Forestry University Joint Institute for Plant Molecular Biology, College of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Bin Zhang
- The Key Laboratory of Western Resources Biology and Biological Technology, College of Life Sciences, Northwest University, Xi'an 710069, China
- Nanjing University-Nanjing Forestry University Joint Institute for Plant Molecular Biology, College of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Baicong Mu
- Nanjing University-Nanjing Forestry University Joint Institute for Plant Molecular Biology, College of Life Sciences, Nanjing University, Nanjing 210093, China
- Temasek Life Sciences Laboratory, Singapore 117604, Republic of Singapore
| | - Xiaojiang Zheng
- The Key Laboratory of Western Resources Biology and Biological Technology, College of Life Sciences, Northwest University, Xi'an 710069, China
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Fugeng Zhao
- Nanjing University-Nanjing Forestry University Joint Institute for Plant Molecular Biology, College of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Wenzhi Lan
- Nanjing University-Nanjing Forestry University Joint Institute for Plant Molecular Biology, College of Life Sciences, Nanjing University, Nanjing 210093, China
- Corresponding author
| | - Aigen Fu
- The Key Laboratory of Western Resources Biology and Biological Technology, College of Life Sciences, Northwest University, Xi'an 710069, China
- Corresponding author
| | - Sheng Luan
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
- Corresponding author
| |
Collapse
|
42
|
Characterization and Fine Mapping of a Yellow-Virescent Gene Regulating Chlorophyll Biosynthesis and Early Stage Chloroplast Development in Brassica napus. G3-GENES GENOMES GENETICS 2020; 10:3201-3211. [PMID: 32646913 PMCID: PMC7466985 DOI: 10.1534/g3.120.401460] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Chlorophyll biosynthesis and chloroplast development are crucial to photosynthesis and plant growth, but their regulatory mechanism remains elusive in many crop species. We isolated a Brassica napus yellow-virescent leaf (yvl) mutant, which exhibited yellow-younger-leaf and virescent-older-leaf with decreased chlorophyll accumulation and delayed chloroplast development. We mapped yvl locus to a 70-kb interval between molecular markers yvl-O10 and InDel-O6 on chromosome A03 in BC2F2 population using whole genome re-sequencing and bulked segregant analysis. The mutant had a ‘C’ to ‘T’ substitution in the coding sequence of BnaA03.CHLH, which encodes putative H subunit of Mg-protoporphyrin IX chelatase (CHLH). The mutation resulted in an imperfect protein structure and reduced activity of CHLH. It also hampered the plastid encoded RNA polymerase which transcribes regulatory genes of photosystem II and I. Consequently, the chlorophyll a/b and carotenoid contents were reduced and the chloroplast ultrastructure was degraded in yvl mutant. These results explain that a single nucleotide mutation in BnaA03.CHLH impairs PEP activity to disrupt chloroplast development and chlorophyll biosynthesis in B. napus.
Collapse
|
43
|
Ganusova EE, Reagan BC, Fernandez JC, Azim MF, Sankoh AF, Freeman KM, McCray TN, Patterson K, Kim C, Burch-Smith TM. Chloroplast-to-nucleus retrograde signalling controls intercellular trafficking via plasmodesmata formation. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190408. [PMID: 32362251 DOI: 10.1098/rstb.2019.0408] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The signalling pathways that regulate intercellular trafficking via plasmodesmata (PD) remain largely unknown. Analyses of mutants with defects in intercellular trafficking led to the hypothesis that chloroplasts are important for controlling PD, probably by retrograde signalling to the nucleus to regulate expression of genes that influence PD formation and function, an idea encapsulated in the organelle-nucleus-PD signalling (ONPS) hypothesis. ONPS is supported by findings that point to chloroplast redox state as also modulating PD. Here, we have attempted to further elucidate details of ONPS. Through reverse genetics, expression of select nucleus-encoded genes with known or predicted roles in chloroplast gene expression was knocked down, and the effects on intercellular trafficking were then assessed. Silencing most genes resulted in chlorosis, and the expression of several photosynthesis and tetrapyrrole biosynthesis associated nuclear genes was repressed in all silenced plants. PD-mediated intercellular trafficking was changed in the silenced plants, consistent with predictions of the ONPS hypothesis. One striking observation, best exemplified by silencing the PNPase homologues, was that the degree of chlorosis of silenced leaves was not correlated with the capacity for intercellular trafficking. Finally, we measured the distribution of PD in silenced leaves and found that intercellular trafficking was positively correlated with the numbers of PD. Together, these results not only provide further support for ONPS but also point to a genetic mechanism for PD formation, clarifying a longstanding question about PD and intercellular trafficking. This article is part of the theme issue 'Retrograde signalling from endosymbiotic organelles'.
Collapse
Affiliation(s)
- Elena E Ganusova
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Brandon C Reagan
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Jessica C Fernandez
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Mohammad F Azim
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Amie F Sankoh
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | | | - Tyra N McCray
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Kelsey Patterson
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Chinkee Kim
- Departments of Science and Mathematics, RIT/National Technical Institute for the Deaf (NTID), Rochester, NY 14623, USA
| | - Tessa M Burch-Smith
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| |
Collapse
|
44
|
Wang P, Richter AS, Kleeberg JRW, Geimer S, Grimm B. Post-translational coordination of chlorophyll biosynthesis and breakdown by BCMs maintains chlorophyll homeostasis during leaf development. Nat Commun 2020; 11:1254. [PMID: 32198392 PMCID: PMC7083845 DOI: 10.1038/s41467-020-14992-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 02/11/2020] [Indexed: 12/20/2022] Open
Abstract
Chlorophyll is indispensable for life on Earth. Dynamic control of chlorophyll level, determined by the relative rates of chlorophyll anabolism and catabolism, ensures optimal photosynthesis and plant fitness. How plants post-translationally coordinate these two antagonistic pathways during their lifespan remains enigmatic. Here, we show that two Arabidopsis paralogs of BALANCE of CHLOROPHYLL METABOLISM (BCM) act as functionally conserved scaffold proteins to regulate the trade-off between chlorophyll synthesis and breakdown. During early leaf development, BCM1 interacts with GENOMES UNCOUPLED 4 to stimulate Mg-chelatase activity, thus optimizing chlorophyll synthesis. Meanwhile, BCM1’s interaction with Mg-dechelatase promotes degradation of the latter, thereby preventing chlorophyll degradation. At the onset of leaf senescence, BCM2 is up-regulated relative to BCM1, and plays a conserved role in attenuating chlorophyll degradation. These results support a model in which post-translational regulators promote chlorophyll homeostasis by adjusting the balance between chlorophyll biosynthesis and breakdown during leaf development. Plants regulate chlorophyll levels to optimise photosynthesis. Here Wang et al. describe two paralogous thylakoid proteins, BCM1 and BCM2, which stimulate chlorophyll biosynthesis and attenuate chlorophyll degradation respectively through interaction with the Mg-chelatase-stimulating factor GUN4 and Mg-dechelatase isoform SGR1.
Collapse
Affiliation(s)
- Peng Wang
- Institute of Biology/Plant Physiology, Humboldt-Universität zu Berlin, Philippstraße 13, 10115, Berlin, Germany.
| | - Andreas S Richter
- Institute of Biology/Plant Physiology, Humboldt-Universität zu Berlin, Philippstraße 13, 10115, Berlin, Germany.,Institute of Biology/Physiology of Plant Cell Organelles, Humboldt-Universität zu Berlin, Philippstraße 13, 10115, Berlin, Germany
| | - Julius R W Kleeberg
- Zellbiologie/Elektronenmikroskopie, Universität Bayreuth, 95440, Bayreuth, Germany
| | - Stefan Geimer
- Zellbiologie/Elektronenmikroskopie, Universität Bayreuth, 95440, Bayreuth, Germany
| | - Bernhard Grimm
- Institute of Biology/Plant Physiology, Humboldt-Universität zu Berlin, Philippstraße 13, 10115, Berlin, Germany.
| |
Collapse
|
45
|
Dong X, Huang L, Chen Q, Lv Y, Sun H, Liang Z. Physiological and Anatomical Differences and Differentially Expressed Genes Reveal Yellow Leaf Coloration in Shumard Oak. PLANTS (BASEL, SWITZERLAND) 2020; 9:E169. [PMID: 32024044 PMCID: PMC7076436 DOI: 10.3390/plants9020169] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 01/22/2020] [Accepted: 01/26/2020] [Indexed: 11/17/2022]
Abstract
Shumard oak (Quercus shumardii Buckley) is a traditional foliage plant, but little is known about its regulatory mechanism of yellow leaf coloration. Here, the yellow leaf variety of Q. shumardii named 'Zhongshan Hongjincai' (identified as 'ZH' throughout this work) and a green leaf variety named 'Shumard oak No. 23' (identified as 'SO' throughout this work) were compared. 'ZH' had lower chlorophyll content and higher carotenoid content; photosynthetic characteristics and chlorophyll fluorescence parameters were also lower. Moreover, the mesophyll cells of 'ZH' showed reduced number of chloroplasts and some structural damage. In addition, transcriptomic analysis identified 39,962 differentially expressed genes, and their expression levels were randomly verified. Expressions of chlorophyll biosynthesis-related glumly-tRNA reductase gene and Mg-chelatase gene were decreased, while pheophorbide a oxygenase gene associated with chlorophyll degradation was up-regulated in 'ZH'. Simultaneously, carotenoid isomerase gene, z-carotene desaturase gene, violaxanthin de-epoxidase gene and zeaxanthin epoxidase gene involved in carotenoid biosynthesis were up-regulated in 'ZH'. These gene expression changes were accompanied by decreased chlorophyll content and enhanced carotenoid accumulation in 'ZH'. Consequently, changes in the ratio of carotenoids to chlorophyll could be driving the yellow leaf coloration in Q. shumardii.
Collapse
Affiliation(s)
| | - Libin Huang
- Jiangsu Academy of Forestry, Nanjing 211153, China; (X.D.); (Q.C.); (Y.L.); (H.S.); (Z.L.)
| | | | | | | | | |
Collapse
|
46
|
Kim SH, Kim SW, Lim GH, Lyu JI, Choi HI, Jo YD, Kang SY, Kang BC, Kim JB. Transcriptome analysis to identify candidate genes associated with the yellow-leaf phenotype of a Cymbidium mutant generated by γ-irradiation. PLoS One 2020; 15:e0228078. [PMID: 31995594 PMCID: PMC6988911 DOI: 10.1371/journal.pone.0228078] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 01/07/2020] [Indexed: 11/23/2022] Open
Abstract
Leaf color is an important agronomic trait in flowering plants, including orchids. However, factors underlying leaf phenotypes in plants remain largely unclear. A mutant displaying yellow leaves was obtained by the γ-ray-based mutagenesis of a Cymbidium orchid and characterized using RNA sequencing. A total of 144,918 unigenes obtained from over 25 million reads were assigned to 22 metabolic pathways in the Kyoto Encyclopedia of Genes and Genomes database. In addition, gene ontology was used to classify the predicted functions of transcripts into 73 functional groups. The RNA sequencing analysis identified 2,267 differentially expressed genes between wild-type and mutant Cymbidium sp. Genes involved in the chlorophyll biosynthesis and degradation, as well as ion transport, were identified and assayed for their expression levels in wild-type and mutant plants using quantitative real-time profiling. No critical expression changes were detected in genes involved in chlorophyll biosynthesis. In contrast, seven genes involved in ion transport, including two metal ion transporters, were down-regulated, and chlorophyllase 2, associated with chlorophyll degradation, was up-regulated. Together, these results suggest that alterations in chlorophyll metabolism and/or ion transport might contribute to leaf color in Cymbidium orchids.
Collapse
Affiliation(s)
- Sang Hoon Kim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Republic of Korea
| | - Se Won Kim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Republic of Korea
- National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, Republic of Korea
| | - Gah-Hyun Lim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Republic of Korea
| | - Jae Il Lyu
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Republic of Korea
| | - Hong-Il Choi
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Republic of Korea
| | - Yeong Deuk Jo
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Republic of Korea
| | - Si-Yong Kang
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Republic of Korea
| | - Byoung-Cheorl Kang
- Department of Plant Science, Plant Genomics and Breeding Institute, and Vegetable Breeding Research Center, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Jin-Baek Kim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Republic of Korea
| |
Collapse
|
47
|
Recent Advances in Hormonal Regulation and Cross-Talk during Non-Climacteric Fruit Development and Ripening. HORTICULTURAE 2019. [DOI: 10.3390/horticulturae5020045] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Fleshy fruits are characterized by having a developmentally and genetically controlled, highly intricate ripening process, leading to dramatic modifications in fruit size, texture, color, flavor, and aroma. Climacteric fruits such as tomato, pear, banana, and melon show a ripening-associated increase in respiration and ethylene production and these processes are well-documented. In contrast, the hormonal mechanism of fruit development and ripening in non-climacteric fruit, such as strawberry, grape, raspberry, and citrus, is not well characterized. However, recent studies have shown that non-climacteric fruit development and ripening, involves the coordinated action of different hormones, such as abscisic acid (ABA), auxin, gibberellins, ethylene, and others. In this review, we discuss and evaluate the recent research findings concerning the hormonal regulation of non-climacteric fruit development and ripening and their cross-talk by taking grape, strawberry, and raspberry as reference fruit species.
Collapse
|
48
|
Liu T, Zhang Y, Zhang X, Sun Y, Wang H, Song J, Li X. Transcriptome analyses reveal key genes involved in skin color changes of 'Xinlimei' radish taproot. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 139:528-539. [PMID: 31029026 DOI: 10.1016/j.plaphy.2019.04.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 02/22/2019] [Accepted: 04/05/2019] [Indexed: 06/09/2023]
Abstract
The color of radish (Raphanus sativus) taproot skin is an important visual quality. 'Xinlimei' radish is a red-fleshed cultivar with skin that changes color from red to white and finally to green at the mature stage, and appearance quality is strongly affected if the red color does not fade completely on a single taproot or simultaneously among different taproots. In the present study, anthocyanin and chlorophyll contents and the transcriptome of radish taproot skin at three distinct coloration stages were analyzed to explore the mechanism of color changes. The results showed that decreased anthocyanin and increased chlorophyll contents correlated with the color-fading process. Kyoto Encyclopedia of Genes and Genomes enrichment analysis of differentially expressed genes indicated that anthocyanin and chlorophyll metabolism pathways play important roles in color changes. In red color-fading process, the expression levels of anthocyanin biosynthetic genes (except PAL and C4H), a transport gene (RsTT19), and two anthocyanin biosynthesis transcription factors (TFs), RsMYB1 and RsTT8, were significantly downregulated, whereas peroxidase-encoding genes were significantly upregulated. In the skin-greening process, expression of most chlorophyll biosynthetic genes and two TFs (RsGLK1 and RsGLK2) that likely positively regulate chlorophyll biosynthesis was significantly upregulated. Thus, changes in the expression of these genes may be responsible for the color changes that occur in 'Xinlimei' taproot skin. This is the first report on the roles of chlorophyll metabolism genes and their dynamic relationship with anthocyanin metabolism genes in radish. The findings provide valuable information and theoretical guidelines for improving the appearance quality of 'Xinlimei' radish taproots.
Collapse
Affiliation(s)
- Tongjin Liu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Beijing, PR China.
| | - Youjun Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Beijing, PR China.
| | - Xiaohui Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Beijing, PR China.
| | - Yuyan Sun
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, PR China.
| | - Haiping Wang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Beijing, PR China.
| | - Jiangping Song
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Beijing, PR China.
| | - Xixiang Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Beijing, PR China.
| |
Collapse
|
49
|
Jiang M, Liu Y, Li R, Zheng Y, Fu H, Tan Y, Møller IM, Fan L, Shu Q, Huang J. A Suppressor Mutation Partially Reverts the xantha Trait via Lowered Methylation in the Promoter of Genomes Uncoupled 4 in Rice. FRONTIERS IN PLANT SCIENCE 2019; 10:1003. [PMID: 31428119 PMCID: PMC6688194 DOI: 10.3389/fpls.2019.01003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 07/18/2019] [Indexed: 05/08/2023]
Abstract
The xantha trait of a yellow leaf rice mutant (HYB), controlled epigenetically by elevated CHG methylation of the genomes uncoupled 4 (OsGUN4) promoter, has reduced chlorophyll content, altered tetrapyrrole biosynthesis, and deregulated transcription of photosynthesis-associated nuclear genes (PhANGs) compared to its wild-type progenitor Longtefu B (LTB). In the present study, we identified a suppressor mutant (CYB) of HYB and characterized its genetic, molecular, and physiological basis of the mutant phenotype. We found that the light-green phenotype of CYB was caused by a suppressor mutation in an unknown gene other than OsGUN4. Compared to HYB, the CHG methylation in the OsGUN4 promoter was reduced, while OsGUN4 transcript and protein abundance levels were increased in CYB. The contents of total chlorophyll and its intermediate metabolites (except protoporphyrin IX) in CYB plants were intermediate between HYB and LTB. The expression levels of 30 genes involved in tetrapyrrole biosynthesis in CYB were all partially reverted to those of LTB, so were the PhANGs. In summary, a suppressor mutation caused the reversion of the xantha trait via reducing CHG methylation in OsGUN4 promoter.
Collapse
Affiliation(s)
- Meng Jiang
- National Key Laboratory of Rice Biology, Institute of Crop Sciences, Zhejiang University, Hangzhou, China
- Hubei Collaborative Innovation Center for Grain Industry, Yangtze University, Jingzhou, China
- Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou, China
| | - Yanhua Liu
- National Key Laboratory of Rice Biology, Institute of Crop Sciences, Zhejiang University, Hangzhou, China
| | - Ruiqing Li
- National Key Laboratory of Rice Biology, Institute of Crop Sciences, Zhejiang University, Hangzhou, China
| | - Yunchao Zheng
- National Key Laboratory of Rice Biology, Institute of Crop Sciences, Zhejiang University, Hangzhou, China
| | - Haowei Fu
- Jiaxing Academy of Agricultural Sciences, Jiaxing, China
| | - Yuanyuan Tan
- National Key Laboratory of Rice Biology, Institute of Crop Sciences, Zhejiang University, Hangzhou, China
| | - Ian Max Møller
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Longjiang Fan
- National Key Laboratory of Rice Biology, Institute of Crop Sciences, Zhejiang University, Hangzhou, China
| | - Qingyao Shu
- National Key Laboratory of Rice Biology, Institute of Crop Sciences, Zhejiang University, Hangzhou, China
- Hubei Collaborative Innovation Center for Grain Industry, Yangtze University, Jingzhou, China
- *Correspondence: Qingyao Shu,
| | - Jianzhong Huang
- National Key Laboratory of Rice Biology, Institute of Crop Sciences, Zhejiang University, Hangzhou, China
- Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou, China
- Jianzhong Huang,
| |
Collapse
|
50
|
Song L, Chen Z, Larkin RM. The genomes uncoupled Mutants Are More Sensitive to Norflurazon Than Wild Type. PLANT PHYSIOLOGY 2018; 178:965-971. [PMID: 30209072 PMCID: PMC6236591 DOI: 10.1104/pp.18.00982] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 09/04/2018] [Indexed: 05/04/2023]
Abstract
The increased sensitivity of the genomes uncoupled mutants to norflurazon indicates that they are probably deficient in plastid-to-nucleus signaling and are unequivocally not resistant to norflurazon.
Collapse
Affiliation(s)
- Lijuan Song
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Zefan Chen
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Robert M Larkin
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| |
Collapse
|