1
|
Delaux PM, Gutjahr C. Evolution of small molecule-mediated regulation of arbuscular mycorrhiza symbiosis. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230369. [PMID: 39343030 PMCID: PMC11439497 DOI: 10.1098/rstb.2023.0369] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 10/01/2024] Open
Abstract
The arbuscular mycorrhizal (AM) symbiosis formed by most extant land plants with symbiotic fungi evolved 450 Ma. AM promotes plant growth by improving mineral nutrient and water uptake, while the symbiotic fungi obtain carbon in return. A number of plant genes regulating the steps leading to an efficient symbiosis have been identified; however, our understanding of the metabolic processes involved in the symbiosis and how they were wired to symbiosis regulation during plant evolution remains limited. Among them, the exchange of chemical signals, the activation of dedicated biosynthesis pathways and the production of secondary metabolites regulating late stages of the AM symbiosis begin to be well described across several land plant clades. Here, we review our current understanding of these processes and propose future directions to fully grasp the phylogenetic distribution and role played by small molecules during this ancient plant symbiosis. This article is part of the theme issue 'The evolution of plant metabolism'.
Collapse
Affiliation(s)
- Pierre-Marc Delaux
- LRSV, Université de Toulouse, CNRS, UPS, Toulouse INP, 31326 Castanet-Tolosan, France
| | - Caroline Gutjahr
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam Science Park, Am Mühlenberg 1, Potsdam-Golm14476, Germany
| |
Collapse
|
2
|
Pedinotti L, Teyssendier de la Serve J, Roudaire T, San Clemente H, Aguilar M, Kohlen W, Frugier F, Frei Dit Frey N. The CEP peptide-CRA2 receptor module promotes arbuscular mycorrhizal symbiosis. Curr Biol 2024:S0960-9822(24)01326-5. [PMID: 39437785 DOI: 10.1016/j.cub.2024.09.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 07/16/2024] [Accepted: 09/23/2024] [Indexed: 10/25/2024]
Abstract
C-terminally encoded peptides (CEPs) are small secreted signaling peptides that promote nitrogen-fixing root nodulation symbiosis in legumes, depending on soil mineral nitrogen availability.1 In Medicago truncatula, their action is mediated by the leucine-rich repeat receptor-like protein kinase COMPACT ROOT ARCHITECTURE 2 (CRA2).2,3,4 Like most land plants, under inorganic phosphate limitation, M. truncatula establishes another root endosymbiotic interaction with arbuscular fungi, the arbuscular mycorrhizal symbiosis (AMS). Because this interaction is beneficial for the plant but has a high energetic cost, it is tightly controlled by host plants to limit fungal infections mainly depending on phosphate availability.5 We show in this study that the expression of a subset of CEP-encoding genes is enhanced in the low-phosphate conditions and that overexpression of the low-phosphate-induced MtCEP1 gene, previously shown to promote the nitrogen-fixing root nodulation symbiosis, enhances AMS from the initial entry point of the fungi. Conversely, a loss-of-function mutation of the CRA2 receptor required for mediating CEP peptide action2 decreases the endomycorrhizal interaction from the same initial fungal entry stage. Transcriptomic analyses revealed that the cra2 mutant is negatively affected in the regulation of key phosphate transport and response genes as well as in the biosynthesis of strigolactone hormones that are required for establishing AMS. Accordingly, strigolactone contents were drastically decreased in cra2 mutant roots. Overall, we showed that the CEP/CRA2 pathway promotes both root nodulation and AMS in legume plants, depending on soil mineral nutrient availability.
Collapse
Affiliation(s)
- Léa Pedinotti
- Laboratoire de Recherche en Sciences Végétales (LRSV), Université de Toulouse, CNRS, UPS, INP Toulouse, 31320 Castanet-Tolosan, France
| | - Juliette Teyssendier de la Serve
- Laboratoire de Recherche en Sciences Végétales (LRSV), Université de Toulouse, CNRS, UPS, INP Toulouse, 31320 Castanet-Tolosan, France; Institute of Plant Sciences Paris Saclay (IPS2), Paris-Saclay University, CNRS, Paris-Cité University, INRAE, Univ d'Evry, Bat. 630, Avenue des Sciences, 91190 Gif-sur-Yvette, France
| | - Thibault Roudaire
- Laboratoire des Interactions Plantes Microbes-Environnement (LIPME), CNRS, INRAE, Université de Toulouse, 31320 Castanet-Tolosan, France
| | - Hélène San Clemente
- Laboratoire de Recherche en Sciences Végétales (LRSV), Université de Toulouse, CNRS, UPS, INP Toulouse, 31320 Castanet-Tolosan, France
| | - Marielle Aguilar
- Laboratoire de Recherche en Sciences Végétales (LRSV), Université de Toulouse, CNRS, UPS, INP Toulouse, 31320 Castanet-Tolosan, France
| | - Wouter Kohlen
- Laboratory of Molecular Biology, Wageningen University & Research, Wageningen 6708 PB, the Netherlands
| | - Florian Frugier
- Institute of Plant Sciences Paris Saclay (IPS2), Paris-Saclay University, CNRS, Paris-Cité University, INRAE, Univ d'Evry, Bat. 630, Avenue des Sciences, 91190 Gif-sur-Yvette, France.
| | - Nicolas Frei Dit Frey
- Laboratoire de Recherche en Sciences Végétales (LRSV), Université de Toulouse, CNRS, UPS, INP Toulouse, 31320 Castanet-Tolosan, France.
| |
Collapse
|
3
|
Iqbal MZ, Liang Y, Anwar M, Fatima A, Hassan MJ, Ali A, Tang Q, Peng Y. Overexpression of Auxin/Indole-3-Acetic Acid Gene TrIAA27 Enhances Biomass, Drought, and Salt Tolerance in Arabidopsis thaliana. PLANTS (BASEL, SWITZERLAND) 2024; 13:2684. [PMID: 39409554 PMCID: PMC11478388 DOI: 10.3390/plants13192684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/01/2024] [Accepted: 08/13/2024] [Indexed: 10/20/2024]
Abstract
White clover (Trifolium repens L.) is an important forage and aesthetic plant species, but it is susceptible to drought and heat stress. The phytohormone auxin regulates several aspects of plant development and alleviates the effects of drought stress in plants, including white clover, by involving auxin/indole acetic acid (Aux/IAA) family genes. However, Aux/IAA genes and the underlying mechanism of auxin-mediated drought response remain elusive in white clover. To extend our understanding of the multiple functions of Aux/IAAs, the current study described the characterization of a member of the Aux/IAA family TrIAA27 of white clover. TrIAA27 protein had conserved the Aux/IAA family domain and shared high sequence similarity with the IAA27 gene of a closely related species and Arabidopsis. Expression of TrIAA27 was upregulated in response to heavy metal, drought, salt, NO, Ca2+, H2O2, Spm, ABA, and IAA treatments, while downregulated under cold stress in the roots and leaves of white clover. TrIAA27 protein was localized in the nucleus. Constitutive overexpression of TrIAA27 in Arabidopsis thaliana led to enhanced hypocotyl length, root length, plant height, leaf length and width, and fresh and dry weights under optimal and stress conditions. There was Improved photosynthesis activity, chlorophyll content, survival rate, relative water content, endogenous catalase (CAT), and peroxidase (POD) concentration with a significantly lower electrolyte leakage percentage, malondialdehyde (MDA) content, and hydrogen peroxide (H2O2) concentration in overexpression lines compared to wild-type Arabidopsis under drought and salt stress conditions. Exposure to stress conditions resulted in relatively weaker roots and above-ground plant growth inhibition, enhanced endogenous levels of major antioxidant enzymes, which correlated well with lower lipid peroxidation, lower levels of reactive oxygen species, and reduced cell death in overexpression lines. The data of the current study demonstrated that TrIAA27 is involved in positively regulating plant growth and development and could be considered a potential target gene for further use, including the breeding of white clover for higher biomass with improved root architecture and tolerance to abiotic stress.
Collapse
Affiliation(s)
- Muhammad Zafar Iqbal
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (M.Z.I.)
- Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Peking University Institute of Advanced Agricultural Sciences, Weifang 261000, China
| | - Yuzhou Liang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (M.Z.I.)
| | - Muhammad Anwar
- Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Akash Fatima
- Institute of Plant Breeding and Biotechnology, MNS University of Agriculture, Multan 60000, Pakistan
| | - Muhammad Jawad Hassan
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (M.Z.I.)
| | - Asif Ali
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Qilin Tang
- Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China;
| | - Yan Peng
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (M.Z.I.)
| |
Collapse
|
4
|
Yang Y, Liang Y, Wang C, Wang Y. MicroRNAs as potent regulators in nitrogen and phosphorus signaling transduction and their applications. STRESS BIOLOGY 2024; 4:38. [PMID: 39264517 PMCID: PMC11393275 DOI: 10.1007/s44154-024-00181-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 06/18/2024] [Indexed: 09/13/2024]
Abstract
Nitrogen (N) and phosphorus (Pi) are essential macronutrients that affect plant growth and development by influencing the molecular, metabolic, biochemical, and physiological responses at the local and whole levels in plants. N and Pi stresses suppress the physiological activities of plants, resulting in agricultural productivity losses and severely threatening food security. Accordingly, plants have elaborated diverse strategies to cope with N and Pi stresses through maintaining N and Pi homeostasis. MicroRNAs (miRNAs) as potent regulators fine-tune N and Pi signaling transduction that are distinct and indivisible from each other. Specific signals, such as noncoding RNAs (ncRNAs), interact with miRNAs and add to the complexity of regulation. Elucidation of the mechanisms by which miRNAs regulate N and Pi signaling transduction aids in the breeding of plants with strong tolerance to N and Pi stresses and high N and Pi use efficiency by fine-tuning MIR genes or miRNAs. However, to date, there has been no detailed and systematic introduction and comparison of the functions of miRNAs in N and Pi signaling transduction from the perspective of miRNAs and their applications. Here, we summarized and discussed current advances in the involvement of miRNAs in N and Pi signaling transduction and highlighted that fine-tuning the MIR genes or miRNAs involved in maintaining N and Pi homeostasis might provide valuable sights for sustainable agriculture.
Collapse
Affiliation(s)
- Yuzhang Yang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Yanting Liang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Chun Wang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Yanwei Wang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
5
|
Li L, Ge S, He L, Liu R, Mei Y, Xia X, Yu J, Zhou Y. SlDELLA interacts with SlPIF4 to regulate arbuscular mycorrhizal symbiosis and phosphate uptake in tomato. HORTICULTURE RESEARCH 2024; 11:uhae195. [PMID: 39257536 PMCID: PMC11384114 DOI: 10.1093/hr/uhae195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 07/03/2024] [Indexed: 09/12/2024]
Abstract
Arbuscular mycorrhizal symbiosis (AMS), a complex and delicate process, is precisely regulated by a multitude of transcription factors. PHYTOCHROME-INTERACTING FACTORS (PIFs) are critical in plant growth and stress responses. However, the involvement of PIFs in AMS and the molecular mechanisms underlying their regulator functions have not been well elucidated. Here, we show that SlPIF4 negatively regulates the arbuscular mycorrhizal fungi (AMF) colonization and AMS-induced phosphate uptake in tomato. Protein-protein interaction studies suggest that SlDELLA interacts with SlPIF4, reducing its protein stability and inhibiting its transcriptional activity towards downstream target genes. This interaction promotes the accumulation of strigolactones (SLs), facilitating AMS development and phosphate uptake. As a transcription factor, SlPIF4 directly transcriptionally regulates genes involved in SLs biosynthesis, including SlCCD7, SlCDD8, and SlMAX1, as well as the AMS-specific phosphate transporter genes PT4 and PT5. Collectively, our findings uncover a molecular mechanism by which the SlDELLA-SlPIF4 module regulates AMS and phosphate uptake in tomato. We clarify a molecular basis for how SlPIF4 interacts with SLs to regulate the AMS and propose a potential strategy to improve phosphate utilization efficiency by targeting the AMS-specific phosphate transporter genes PTs.
Collapse
Affiliation(s)
- Lan Li
- Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Shibei Ge
- Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
- Tea Research Institute, Chinese Academy of Agricultural Science, Hangzhou 310008, China
| | - Liqun He
- Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Ruicheng Liu
- Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
- Hainan Institute, Zhejiang University, Sanya 572025, China
| | - Yuhong Mei
- Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Xiaojian Xia
- Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
- Key Laboratory of Horticultural Plant Growth and Development, Ministry of Agriculture and Rural Affairs of China, Hangzhou 310058, China
| | - Jingquan Yu
- Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
- Key Laboratory of Horticultural Plant Growth and Development, Ministry of Agriculture and Rural Affairs of China, Hangzhou 310058, China
| | - Yanhong Zhou
- Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
- Hainan Institute, Zhejiang University, Sanya 572025, China
- Key Laboratory of Horticultural Plant Growth and Development, Ministry of Agriculture and Rural Affairs of China, Hangzhou 310058, China
| |
Collapse
|
6
|
Ho-Plágaro T, Tamayo-Navarrete MI, Ćavar Zeljković S, Tarkowski P, García-Garrido JM. A dual regulatory role for the arbuscular mycorrhizal master regulator RAM1 in tomato. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:5021-5036. [PMID: 38726891 PMCID: PMC11349867 DOI: 10.1093/jxb/erae210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 05/09/2024] [Indexed: 08/29/2024]
Abstract
The REQUIRED FOR ARBUSCULAR MYCORRHIZATION1 (RAM1) transcription factor from the GRAS family is well known for its role as a master regulator of the arbuscular mycorrhizal (AM) symbiosis in dicotyledonous and monocotyledonous species, being essential in transcriptional reprogramming for the development and functionality of the arbuscules. In tomato, SlGRAS27 is the putative orthologue of RAM1 (here named SlRAM1), but has not yet been characterized. A reduced colonization of the root and impaired arbuscule formation were observed in SlRAM1-silenced plants, confirming the functional conservation of the RAM1 orthologue in tomato. However, unexpectedly, SlRAM1-overexpressing (UBIL:SlRAM1) plants also showed decreased mycorrhizal colonization. Analysis of non-mycorrhizal UBIL:SlRAM1 roots revealed an overall regulation of AM-related genes and a reduction of strigolactone biosynthesis. Moreover, external application of the strigolactone analogue GR244DO almost completely reversed the negative effects of SlRAM1 overexpression on the frequency of mycorrhization. However, it only partially recovered the pattern of arbuscule distribution observed in control plants. Our results strongly suggest that SlRAM1 has a dual regulatory role during mycorrhization and, in addition to its recognized action as a positive regulator of arbuscule development, it is also involved in different mechanisms for the negative regulation of mycorrhization, including the repression of strigolactone biosynthesis.
Collapse
Affiliation(s)
- Tania Ho-Plágaro
- Department of Soil and Plant Microbiology, Estación Experimental del Zaidín (EEZ), CSIC, Calle Profesor Albareda no. 1, 18008 Granada, Spain
| | - María Isabel Tamayo-Navarrete
- Department of Soil and Plant Microbiology, Estación Experimental del Zaidín (EEZ), CSIC, Calle Profesor Albareda no. 1, 18008 Granada, Spain
| | - Sanja Ćavar Zeljković
- Czech Advanced Technology and Research Institute, Palacky University, Šlechtitelů 27, 78371 Olomouc, Czech Republic
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Genetic Resources for Vegetables, Medicinal and Special Plants, Crop Research Institute, Šlechtitelů 29, 78371 Olomouc, Czech Republic
| | - Petr Tarkowski
- Czech Advanced Technology and Research Institute, Palacky University, Šlechtitelů 27, 78371 Olomouc, Czech Republic
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Genetic Resources for Vegetables, Medicinal and Special Plants, Crop Research Institute, Šlechtitelů 29, 78371 Olomouc, Czech Republic
| | - José Manuel García-Garrido
- Department of Soil and Plant Microbiology, Estación Experimental del Zaidín (EEZ), CSIC, Calle Profesor Albareda no. 1, 18008 Granada, Spain
| |
Collapse
|
7
|
Wu D, Fu W, Wang N, Ye Y, He J, Wu K. Genome-Wide Identification and Expression Characterization of the D27 Gene Family of Capsicum annuum L. PLANTS (BASEL, SWITZERLAND) 2024; 13:2070. [PMID: 39124188 PMCID: PMC11314413 DOI: 10.3390/plants13152070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/24/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024]
Abstract
As a crucial member of the gene family involved in the biosynthesis of strigolactones, D27 plays an important regulatory role in plant branching and root development, which is essential for field management and yield increase in peppers (Capsicum annuum L.). To comprehensively understand the characteristics of the pepper D27 gene family, we identified three CaD27 genes. By analyzing their physicochemical properties, phylogenetic relationships, gene structures, promoters, and expression patterns in different tissues, the characteristics of the CaD27 gene family were revealed. The research results showed that these three CaD27 genes are located in three different chromosomes. Evolutionary analysis divided the members of CaD27 into three groups, and gene collinearity analysis did not find any duplicates, indicating the diversity and non-redundancy of the CaD27 gene family members. In addition, we identified and classified cis-elements in the promoter regions of CaD27 genes, with a relatively high proportion related to light and plant hormone responses. Expression pattern analysis showed that CaD27.1 is expressed in leaves, while CaD27.2 is expressed in roots, indicating tissue specificity. Furthermore, protein interaction predictions revealed an interaction between D27.2 and CCD7. This study provided important insights into the function and regulatory mechanisms of the CaD27 gene family and the role of strigolactones in plant growth and development.
Collapse
Affiliation(s)
- Di Wu
- Research Institute of Pepper, Guizhou Academy of Agricultural Science, Guiyang 550025, China; (D.W.); (W.F.); (N.W.); (Y.Y.)
| | - Wenting Fu
- Research Institute of Pepper, Guizhou Academy of Agricultural Science, Guiyang 550025, China; (D.W.); (W.F.); (N.W.); (Y.Y.)
| | - Nanyi Wang
- Research Institute of Pepper, Guizhou Academy of Agricultural Science, Guiyang 550025, China; (D.W.); (W.F.); (N.W.); (Y.Y.)
| | - Yong Ye
- Research Institute of Pepper, Guizhou Academy of Agricultural Science, Guiyang 550025, China; (D.W.); (W.F.); (N.W.); (Y.Y.)
| | - Jianwen He
- Research Institute of Pepper, Guizhou Academy of Agricultural Science, Guiyang 550025, China; (D.W.); (W.F.); (N.W.); (Y.Y.)
| | - Kangyun Wu
- Key Laboratory of Crop Genetic Resources and Germplasm Innovation in Karst Mountain Areas, Ministry of Agriculture and Rural Affairs, Guiyang 550025, China
| |
Collapse
|
8
|
Prout JN, Williams A, Wanke A, Schornack S, Ton J, Field KJ. Mucoromycotina 'fine root endophytes': a new molecular model for plant-fungal mutualisms? TRENDS IN PLANT SCIENCE 2024; 29:650-661. [PMID: 38102045 DOI: 10.1016/j.tplants.2023.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/10/2023] [Accepted: 11/16/2023] [Indexed: 12/17/2023]
Abstract
The most studied plant-fungal symbioses to date are the interactions between plants and arbuscular mycorrhizal (AM) fungi of the Glomeromycotina clade. Advancements in phylogenetics and microbial community profiling have distinguished a group of symbiosis-forming fungi that resemble AM fungi as belonging instead to the Mucoromycotina. These enigmatic fungi are now known as Mucoromycotina 'fine root endophytes' and could provide a means to understand the origins of plant-fungal symbioses. Most of our knowledge of the mechanisms of fungal symbiosis comes from investigations using AM fungi. Here, we argue that inclusion of Mucoromycotina fine root endophytes in future studies will expand our understanding of the mechanisms, evolution, and ecology of plant-fungal symbioses.
Collapse
Affiliation(s)
- James N Prout
- Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK.
| | - Alex Williams
- Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Alan Wanke
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, UK
| | | | - Jurriaan Ton
- Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Katie J Field
- Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK.
| |
Collapse
|
9
|
Isidra-Arellano MC, Singh J, Valdés-López O. Unraveling the potential of the strigolactones-NSP1/NSP2 friendship in crop improvement. TRENDS IN PLANT SCIENCE 2024; 29:501-503. [PMID: 38158302 DOI: 10.1016/j.tplants.2023.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 01/03/2024]
Abstract
Strigolactones (SLs) are fundamental to the ability of plants to cope with phosphate deficiency. A recent study by Yuan et al. indicates that the genetic module PHR2/NSP1/NSP2 is crucial in activating SL biosynthesis and signaling under inorganic phosphate (Pi) deficiency. Furthermore, this genetic module is essential for improving Pi and nitrogen homeostasis in rice.
Collapse
Affiliation(s)
| | - Jawahar Singh
- University of Cambridge, Sainsbury Laboratory (SLCU), Cambridge, UK
| | - Oswaldo Valdés-López
- Laboratorio de Genómica Funcional de Leguminosas, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, México.
| |
Collapse
|
10
|
Homma M, Uchida K, Wakabayashi T, Mizutani M, Takikawa H, Sugimoto Y. 2-oxoglutarate-dependent dioxygenases and BAHD acyltransferases drive the structural diversification of orobanchol in Fabaceae plants. FRONTIERS IN PLANT SCIENCE 2024; 15:1392212. [PMID: 38699535 PMCID: PMC11063326 DOI: 10.3389/fpls.2024.1392212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 04/03/2024] [Indexed: 05/05/2024]
Abstract
Strigolactones (SLs), a class of plant apocarotenoids, serve dual roles as rhizosphere-signaling molecules and plant hormones. Orobanchol, a major naturally occurring SL, along with its various derivatives, has been detected in the root exudates of plants of the Fabaceae family. Medicaol, fabacyl acetate, and orobanchyl acetate were identified in the root exudates of barrel medic (Medicago truncatula), pea (Pisum sativum), and cowpea (Vigna unguiculata), respectively. Although the biosynthetic pathway leading to orobanchol production has been elucidated, the biosynthetic pathways of the orobanchol derivatives have not yet been fully elucidated. Here, we report the identification of 2-oxoglutarate-dependent dioxygenases (DOXs) and BAHD acyltransferases responsible for converting orobanchol to these derivatives in Fabaceae plants. First, the metabolic pathways downstream of orobanchol were analyzed using substrate feeding experiments. Prohexadione, an inhibitor of DOX inhibits the conversion of orobanchol to medicaol in barrel medic. The DOX inhibitor also reduced the formation of fabacyl acetate and fabacol, a precursor of fabacyl acetate, in pea. Subsequently, we utilized a dataset based on comparative transcriptome analysis to select a candidate gene encoding DOX for medicaol synthase in barrel medic. Recombinant proteins of the gene converted orobanchol to medicaol. The candidate genes encoding DOX and BAHD acyltransferase for fabacol synthase and fabacol acetyltransferase, respectively, were selected by co-expression analysis in pea. The recombinant proteins of the candidate genes converted orobanchol to fabacol and acetylated fabacol. Furthermore, fabacol acetyltransferase and its homolog in cowpea acetylated orobanchol. The kinetics and substrate specificity analyses revealed high affinity and strict recognition of the substrates of the identified enzymes. These findings shed light on the molecular mechanisms underlying the structural diversity of SLs.
Collapse
Affiliation(s)
- Masato Homma
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Kiyono Uchida
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Takatoshi Wakabayashi
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Kobe, Japan
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Masaharu Mizutani
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Hirosato Takikawa
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Yukihiro Sugimoto
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| |
Collapse
|
11
|
Tolnai Z, Sharma H, Soós V. D27-like carotenoid isomerases: at the crossroads of strigolactone and abscisic acid biosynthesis. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:1148-1158. [PMID: 38006582 DOI: 10.1093/jxb/erad475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/24/2023] [Indexed: 11/27/2023]
Abstract
Strigolactones and abscisic acid (ABA) are apocarotenoid-derived plant hormones. Their biosynthesis starts with the conversion of trans-carotenes into cis forms, which serve as direct precursors. Iron-containing DWARF27 isomerases were shown to catalyse or contribute to the trans/cis conversions of these precursor molecules. D27 converts trans-β-carotene into 9-cis-β-carotene, which is the first committed step in strigolactone biosynthesis. Recent studies found that its paralogue, D27-LIKE1, also catalyses this conversion. A crucial step in ABA biosynthesis is the oxidative cleavage of 9-cis-violaxanthin and/or 9-cis-neoxanthin, which are formed from their trans isomers by unknown isomerases. Several lines of evidence point out that D27-like proteins directly or indirectly contribute to 9-cis-violaxanthin conversion, and eventually ABA biosynthesis. Apparently, the diversity of D27-like enzymatic activity is essential for the optimization of cis/trans ratios, and hence act to maintain apocarotenoid precursor pools. In this review, we discuss the functional divergence and redundancy of D27 paralogues and their potential direct contribution to ABA precursor biosynthesis. We provide updates on their gene expression regulation and alleged Fe-S cluster binding feature. Finally, we conclude that the functional divergence of these paralogues is not fully understood and we provide an outlook on potential directions in research.
Collapse
Affiliation(s)
- Zoltán Tolnai
- Agricultural Institute, Centre for Agricultural Research, ELKH, 2462 Martonvásár, Brunszvik u. 2, Hungary
| | - Himani Sharma
- Agricultural Institute, Centre for Agricultural Research, ELKH, 2462 Martonvásár, Brunszvik u. 2, Hungary
| | - Vilmos Soós
- Agricultural Institute, Centre for Agricultural Research, ELKH, 2462 Martonvásár, Brunszvik u. 2, Hungary
| |
Collapse
|
12
|
Özbilen A, Sezer F, Taşkin KM. Identification and expression of strigolactone biosynthesis and signaling genes and the in vitro effects of strigolactones in olive ( Olea europaea L.). PLANT DIRECT 2024; 8:e568. [PMID: 38405354 PMCID: PMC10894696 DOI: 10.1002/pld3.568] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 02/27/2024]
Abstract
Strigolactones (SLs), synthesized in plant roots, play a dual role in modulating plant growth and development, and in inducing the germination of parasitic plant seeds and arbuscular mycorrhizal fungi in the rhizosphere. As phytohormones, SLs are crucial in regulating branching and shaping plant architecture. Despite the significant impact of branching strategies on the yield performance of fruit crops, limited research has been conducted on SLs in these crops. In our study, we identified the transcript sequences of SL biosynthesis and signaling genes in olive (Olea europaea L.) using rapid amplification of cDNA ends. We predicted the corresponding protein sequences, analyzed their characteristics, and conducted molecular docking with bioinformatics tools. Furthermore, we quantified the expression levels of these genes in various tissues using quantitative real-time PCR. Our findings demonstrate the predominant expression of SL biosynthesis and signaling genes (OeD27, OeMAX3, OeMAX4, OeMAX1, OeD14, and OeMAX2) in roots and lateral buds, highlighting their importance in branching. Treatment with rac-GR24, an SL analog, enhanced the germination frequency of olive seeds in vitro compared with untreated embryos. Conversely, inhibition of SL biosynthesis with TIS108 increased lateral bud formation in a hard-to-root cultivar, underscoring the role of SLs as phytohormones in olives. These results suggest that modifying SL biosynthesis and signaling pathways could offer novel approaches for olive breeding, with potential applicability to other fruit crops.
Collapse
Affiliation(s)
- Aslıhan Özbilen
- Department of BiologyCanakkale Onsekiz Mart UniversityCanakkaleTurkey
| | - Fatih Sezer
- Department of Molecular Biology and GeneticsCanakkale Onsekiz Mart UniversityCanakkaleTurkey
| | - Kemal Melih Taşkin
- Department of Molecular Biology and GeneticsCanakkale Onsekiz Mart UniversityCanakkaleTurkey
| |
Collapse
|
13
|
Sun H, Wang H, Chu C. Strigolactone regulates nitrogen-phosphorus balance in rice. SCIENCE CHINA. LIFE SCIENCES 2024; 67:428-430. [PMID: 38082198 DOI: 10.1007/s11427-023-2492-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 11/21/2023] [Indexed: 02/07/2024]
Affiliation(s)
- Huwei Sun
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
- Key Laboratory for Enhancing Resource Use Efficiency of Crops in South China, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Hanyun Wang
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
- Key Laboratory for Enhancing Resource Use Efficiency of Crops in South China, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, China
| | - Chengcai Chu
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China.
- Key Laboratory for Enhancing Resource Use Efficiency of Crops in South China, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China.
| |
Collapse
|
14
|
Wang Q, Liu M, Wang Z, Li J, Liu K, Huang D. The role of arbuscular mycorrhizal symbiosis in plant abiotic stress. Front Microbiol 2024; 14:1323881. [PMID: 38312502 PMCID: PMC10835807 DOI: 10.3389/fmicb.2023.1323881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/29/2023] [Indexed: 02/06/2024] Open
Abstract
Arbuscular mycorrhizal fungi (AMF) can penetrate plant root cortical cells, establish a symbiosis with most land plant species, and form branched structures (known as arbuscules) for nutrient exchange. Plants have evolved a complete plant-AMF symbiosis system to sustain their growth and development under various types of abiotic stress. Here, we highlight recent studies of AM symbiosis and the regulation of symbiosis process. The roles of mycorrhizal symbiosis and host plant interactions in enhancing drought resistance, increasing mineral nutrient uptake, regulating hormone synthesis, improving salt resistance, and alleviating heavy metal stress were also discussed. Overall, studies of AM symbiosis and a variety of abiotic stresses will aid applications of AMF in sustainable agriculture and can improve plant production and environmental safety.
Collapse
Affiliation(s)
- Qian Wang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang, Guizhou, China
| | - Mengmeng Liu
- College of Agriculture, Guizhou University, Guiyang, Guizhou, China
| | - Zhifan Wang
- College of Agriculture, Guizhou Engineering Research Center for Fruit Crops, Guizhou University, Guiyang, Guizhou, China
| | - Junrong Li
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang, Guizhou, China
| | - Ke Liu
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang, Guizhou, China
| | - Dong Huang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang, Guizhou, China
- College of Agriculture, Guizhou Engineering Research Center for Fruit Crops, Guizhou University, Guiyang, Guizhou, China
| |
Collapse
|
15
|
Slimani A, Ait-El-Mokhtar M, Ben-Laouane R, Boutasknit A, Anli M, Abouraicha EF, Oufdou K, Meddich A, Baslam M. Molecular and Systems Biology Approaches for Harnessing the Symbiotic Interaction in Mycorrhizal Symbiosis for Grain and Oil Crop Cultivation. Int J Mol Sci 2024; 25:912. [PMID: 38255984 PMCID: PMC10815302 DOI: 10.3390/ijms25020912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/09/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Mycorrhizal symbiosis, the mutually beneficial association between plants and fungi, has gained significant attention in recent years due to its widespread significance in agricultural productivity. Specifically, arbuscular mycorrhizal fungi (AMF) provide a range of benefits to grain and oil crops, including improved nutrient uptake, growth, and resistance to (a)biotic stressors. Harnessing this symbiotic interaction using molecular and systems biology approaches presents promising opportunities for sustainable and economically-viable agricultural practices. Research in this area aims to identify and manipulate specific genes and pathways involved in the symbiotic interaction, leading to improved cereal and oilseed crop yields and nutrient acquisition. This review provides an overview of the research frontier on utilizing molecular and systems biology approaches for harnessing the symbiotic interaction in mycorrhizal symbiosis for grain and oil crop cultivation. Moreover, we address the mechanistic insights and molecular determinants underpinning this exchange. We conclude with an overview of current efforts to harness mycorrhizal diversity to improve cereal and oilseed health through systems biology.
Collapse
Affiliation(s)
- Aiman Slimani
- Centre d’Agrobiotechnologie et Bioingénierie, Unité de Recherche Labellisée CNRST (Centre AgroBiotech-URL-CNRST-05), Cadi Ayyad University, Marrakesh 40000, Morocco
- Laboratory of Agro-Food, Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Department of Biology, Faculty of Science Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco
- Laboratory of Microbial Biotechnologies, Agrosciences, and Environment, Department of Biology, Faculty of Science Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco
| | - Mohamed Ait-El-Mokhtar
- Laboratory Biochemistry, Environment & Agri-Food URAC 36, Department of Biology, Faculty of Science and Techniques—Mohammedia, Hassan II University of Casablanca, Mohammedia 28800, Morocco
| | - Raja Ben-Laouane
- Laboratory of Environment and Health, Department of Biology, Faculty of Science and Techniques, Errachidia 52000, Morocco
| | - Abderrahim Boutasknit
- Centre d’Agrobiotechnologie et Bioingénierie, Unité de Recherche Labellisée CNRST (Centre AgroBiotech-URL-CNRST-05), Cadi Ayyad University, Marrakesh 40000, Morocco
- Laboratory of Agro-Food, Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Department of Biology, Faculty of Science Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco
- Department of Biology, Multidisciplinary Faculty of Nador, Mohamed First University, Nador 62700, Morocco
| | - Mohamed Anli
- Laboratory of Agro-Food, Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Department of Biology, Faculty of Science Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco
- Department of Life, Earth and Environmental Sciences, University of Comoros, Patsy University Center, Moroni 269, Comoros
| | - El Faiza Abouraicha
- Centre d’Agrobiotechnologie et Bioingénierie, Unité de Recherche Labellisée CNRST (Centre AgroBiotech-URL-CNRST-05), Cadi Ayyad University, Marrakesh 40000, Morocco
- Laboratory of Agro-Food, Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Department of Biology, Faculty of Science Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco
- Higher Institute of Nursing and Health Techniques (ISPITS), Essaouira 44000, Morocco
| | - Khalid Oufdou
- Laboratory of Microbial Biotechnologies, Agrosciences, and Environment, Department of Biology, Faculty of Science Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco
| | - Abdelilah Meddich
- Centre d’Agrobiotechnologie et Bioingénierie, Unité de Recherche Labellisée CNRST (Centre AgroBiotech-URL-CNRST-05), Cadi Ayyad University, Marrakesh 40000, Morocco
- Laboratory of Agro-Food, Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Department of Biology, Faculty of Science Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco
| | - Marouane Baslam
- Centre d’Agrobiotechnologie et Bioingénierie, Unité de Recherche Labellisée CNRST (Centre AgroBiotech-URL-CNRST-05), Cadi Ayyad University, Marrakesh 40000, Morocco
- Laboratory of Agro-Food, Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Department of Biology, Faculty of Science Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco
- GrowSmart, Seoul 03129, Republic of Korea
| |
Collapse
|
16
|
Lu H, Lin R, Deng M, Jin K, Mao C. New mechanistic insights into phosphate-starvation-regulated plant architecture change and nutrient uptake. MOLECULAR PLANT 2024; 17:19-21. [PMID: 38071429 DOI: 10.1016/j.molp.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 12/30/2023]
Affiliation(s)
- Hong Lu
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Rongbin Lin
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Meiju Deng
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Kangming Jin
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chuanzao Mao
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; Hainan Institute of Zhejiang University, Yazhou Bay Science and Technology City, Yazhou District, Sanya, Hainan 572025, China.
| |
Collapse
|
17
|
Li K, Cheng Y, Fang C. OsDWARF10, transcriptionally repressed by OsSPL3, regulates the nutritional metabolism of polished rice. FRONTIERS IN PLANT SCIENCE 2023; 14:1322463. [PMID: 38130489 PMCID: PMC10733476 DOI: 10.3389/fpls.2023.1322463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023]
Abstract
Strigolactone (SL) plays essential roles in plant development and the metabolism of rice leaves. However, the impact of SL on the accumulation of nutritional metabolites in polished rice, as well as the transcription factors directly involved in SL synthesis, remains elusive. In this study, we performed a metabolome analysis on polished rice samples from mutants of an SL biosynthetic gene, OsDWARF10 (OsD10). Compared with those in the wild type plants, primary and secondary metabolites exhibited a series of alterations in the d10 mutants. Notably, the d10 mutants showed a substantial increase in the amino acids and vitamins content. Through a yeast one-hybridization screening assay, we identified OsSPL3 as a transcription factor that binds to the OsD10 promoter, thereby inhibiting OsD10 transcription in vivo and in vitro. Furthermore, we conducted a metabolic profiling analysis in polished rice from plants that overexpressed OsSPL3 and observed enhanced levels of amino acids and vitamins. This study identified a novel transcriptional repressor of the SL biosynthetic gene and elucidated the regulatory roles of OsSPL3 and OsD10 on the accumulation of nutritional metabolites in polished rice.
Collapse
Affiliation(s)
- Kang Li
- Hainan Yazhou Bay Seed Laboratory, Scool of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Yan Cheng
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Chuanying Fang
- Hainan Yazhou Bay Seed Laboratory, Scool of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| |
Collapse
|
18
|
Boyno G, Rezaee Danesh Y, Demir S, Teniz N, Mulet JM, Porcel R. The Complex Interplay between Arbuscular Mycorrhizal Fungi and Strigolactone: Mechanisms, Sinergies, Applications and Future Directions. Int J Mol Sci 2023; 24:16774. [PMID: 38069097 PMCID: PMC10706366 DOI: 10.3390/ijms242316774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
Plants, the cornerstone of life on Earth, are constantly struggling with a number of challenges arising from both biotic and abiotic stressors. To overcome these adverse factors, plants have evolved complex defense mechanisms involving both a number of cell signaling pathways and a complex network of interactions with microorganisms. Among these interactions, the relationship between symbiotic arbuscular mycorrhizal fungi (AMF) and strigolactones (SLs) stands as an important interplay that has a significant impact on increased resistance to environmental stresses and improved nutrient uptake and the subsequent enhanced plant growth. AMF establishes mutualistic partnerships with plants by colonizing root systems, and offers a range of benefits, such as increased nutrient absorption, improved water uptake and increased resistance to both biotic and abiotic stresses. SLs play a fundamental role in shaping root architecture, promoting the growth of lateral roots and regulating plant defense responses. AMF can promote the production and release of SLs by plants, which in turn promote symbiotic interactions due to their role as signaling molecules with the ability to attract beneficial microbes. The complete knowledge of this synergy has the potential to develop applications to optimize agricultural practices, improve nutrient use efficiency and ultimately increase crop yields. This review explores the roles played by AMF and SLs in plant development and stress tolerance, highlighting their individual contributions and the synergistic nature of their interaction.
Collapse
Affiliation(s)
- Gökhan Boyno
- Department of Plant Protection, Faculty of Agriculture, Van Yuzuncu Yil University, Van 65090, Türkiye
| | - Younes Rezaee Danesh
- Department of Plant Protection, Faculty of Agriculture, Van Yuzuncu Yil University, Van 65090, Türkiye
- Department of Plant Protection, Faculty of Agriculture, Urmia University, Urmia 5756151818, Iran
| | - Semra Demir
- Department of Plant Protection, Faculty of Agriculture, Van Yuzuncu Yil University, Van 65090, Türkiye
| | - Necmettin Teniz
- Department of Agricultural Biotechnology, Faculty of Agriculture, Van Yuzuncu Yil University, Van 65090, Türkiye
| | - José M. Mulet
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, 46022 Valencia, Spain
| | - Rosa Porcel
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, 46022 Valencia, Spain
| |
Collapse
|
19
|
Kun Yuan, Zhang H, Yu C, Luo N, Yan J, Zheng S, Hu Q, Zhang D, Kou L, Meng X, Jing Y, Chen M, Ban X, Yan Z, Lu Z, Wu J, Zhao Y, Liang Y, Wang Y, Xiong G, Chu J, Wang E, Li J, Wang B. Low phosphorus promotes NSP1-NSP2 heterodimerization to enhance strigolactone biosynthesis and regulate shoot and root architecture in rice. MOLECULAR PLANT 2023; 16:1811-1831. [PMID: 37794682 DOI: 10.1016/j.molp.2023.09.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 08/18/2023] [Accepted: 09/28/2023] [Indexed: 10/06/2023]
Abstract
Phosphorus is an essential macronutrient for plant development and metabolism, and plants have evolved ingenious mechanisms to overcome phosphate (Pi) starvation. However, the molecular mechanisms underlying the regulation of shoot and root architecture by low phosphorus conditions and the coordinated utilization of Pi and nitrogen remain largely unclear. Here, we show that Nodulation Signaling Pathway 1 (NSP1) and NSP2 regulate rice tiller number by promoting the biosynthesis of strigolactones (SLs), a class of phytohormones with fundamental effects on plant architecture and environmental responses. We found that NSP1 and NSP2 are induced by Oryza sativa PHOSPHATE STARVATION RESPONSE2 (OsPHR2) in response to low-Pi stress and form a complex to directly bind the promoters of SL biosynthesis genes, thus markedly increasing SL biosynthesis in rice. Interestingly, the NSP1/2-SL signaling module represses the expression of CROWN ROOTLESS 1 (CRL1), a newly identified early SL-responsive gene in roots, to restrain lateral root density under Pi deficiency. We also demonstrated that GR244DO treatment under normal conditions inhibits the expression of OsNRTs and OsAMTs to suppress nitrogen absorption but enhances the expression of OsPTs to promote Pi absorption, thus facilitating the balance between nitrogen and phosphorus uptake in rice. Importantly, we found that NSP1p:NSP1 and NSP2p:NSP2 transgenic plants show improved agronomic traits and grain yield under low- and medium-phosphorus conditions. Taken together, these results revealed a novel regulatory mechanism of SL biosynthesis and signaling in response to Pi starvation, providing genetic resources for improving plant architecture and nutrient-use efficiency in low-Pi environments.
Collapse
Affiliation(s)
- Kun Yuan
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hao Zhang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chaoji Yu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Nan Luo
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jijun Yan
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Shuang Zheng
- University of Chinese Academy of Sciences, Beijing 100049, China; National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, SIBS, Chinese Academy of Sciences, Shanghai 200032, China
| | - Qingliang Hu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Dahan Zhang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liquan Kou
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiangbing Meng
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Yanhui Jing
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Mingjiang Chen
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Xinwei Ban
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zongyun Yan
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Zefu Lu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jian Wu
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Yu Zhao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Yan Liang
- College of Life Sciences, Shandong Agriculture University, Tai'an, Shandong 271018, China
| | - Yonghong Wang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; College of Life Sciences, Shandong Agriculture University, Tai'an, Shandong 271018, China
| | - Guosheng Xiong
- Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| | - Jinfang Chu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ertao Wang
- University of Chinese Academy of Sciences, Beijing 100049, China; National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, SIBS, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jiayang Li
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Yazhouwan National Laboratory, Sanya, Hainan 572024, China
| | - Bing Wang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
20
|
Mishra S, Chaudhary R, Pandey B, Singh G, Sharma P. Genome-wide identification and expression analysis of the GRAS gene family under abiotic stresses in wheat (Triticum aestivum L.). Sci Rep 2023; 13:18705. [PMID: 37907517 PMCID: PMC10618205 DOI: 10.1038/s41598-023-45051-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 10/15/2023] [Indexed: 11/02/2023] Open
Abstract
The GRAS transcription factors are multifunctional proteins involved in various biological processes, encompassing plant growth, metabolism, and responses to both abiotic and biotic stresses. Wheat is an important cereal crop cultivated worldwide. However, no systematic study of the GRAS gene family and their functions under heat, drought, and salt stress tolerance and molecular dynamics modeling in wheat has been reported. In the present study, we identified the GRAS gene in Triticum aestivum through systematically performing gene structure analysis, chromosomal location, conserved motif, phylogenetic relationship, and expression patterns. A total of 177 GRAS genes were identified within the wheat genome. Based on phylogenetic analysis, these genes were categorically placed into 14 distinct subfamilies. Detailed analysis of the genetic architecture revealed that the majority of TaGRAS genes had no intronic regions. The expansion of the wheat GRAS gene family was proven to be influenced by both segmental and tandem duplication events. The study of collinearity events between TaGRAS and analogous orthologs from other plant species provided valuable insights into the evolution of the GRAS gene family in wheat. It is noteworthy that the promoter regions of TaGRAS genes consistently displayed an array of cis-acting elements that are associated with stress responses and hormone regulation. Additionally, we discovered 14 miRNAs that target key genes involved in three stress-responsive pathways in our study. Moreover, an assessment of RNA-seq data and qRT-PCR results revealed a significant increase in the expression of TaGRAS genes during abiotic stress. These findings highlight the crucial role of TaGRAS genes in mediating responses to different environmental stresses. Our research delved into the molecular dynamics and structural aspects of GRAS domain-DNA interactions, marking the first instance of such information being generated. Overall, the current findings contribute to our understanding of the organization of the GRAS genes in the wheat genome. Furthermore, we identified TaGRAS27 as a candidate gene for functional research, and to improve abiotic stress tolerance in the wheat by molecular breeding.
Collapse
Affiliation(s)
- Shefali Mishra
- Deenbandhu Chhotu Ram University of Science and Technology, Murthal, India
- ICAR-Indian Institute of Wheat and Barley Research, Agrasain Marg, PO BOX-158, Karnal, Haryana, India
| | - Reeti Chaudhary
- Deenbandhu Chhotu Ram University of Science and Technology, Murthal, India
| | - Bharti Pandey
- ICAR-National Dairy Research Institute, Karnal, India
| | - Gyanendra Singh
- ICAR-Indian Institute of Wheat and Barley Research, Agrasain Marg, PO BOX-158, Karnal, Haryana, India
| | - Pradeep Sharma
- ICAR-Indian Institute of Wheat and Barley Research, Agrasain Marg, PO BOX-158, Karnal, Haryana, India.
| |
Collapse
|
21
|
Piña-Torres IH, Dávila-Berumen F, González-Hernández GA, Torres-Guzmán JC, Padilla-Guerrero IE. Hyphal Growth and Conidia Germination Are Induced by Phytohormones in the Root Colonizing and Plant Growth Promoting Fungus Metarhizium guizhouense. J Fungi (Basel) 2023; 9:945. [PMID: 37755053 PMCID: PMC10532501 DOI: 10.3390/jof9090945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/13/2023] [Accepted: 09/15/2023] [Indexed: 09/28/2023] Open
Abstract
Beneficial associations are very important for plants and soil-dwelling microorganisms in different ecological niches, where communication by chemical signals is relevant. Among the chemical signals, the release of phytohormones by plants is important to establish beneficial associations with fungi, and a recently described association is that of the entomopathogenic ascomycete fungus Metarhizium with plants. Here, we evaluated the effect of four different phytohormones, synthetic strigolactone (GR24), sorgolactone (SorL), 3-indolacetic acid (IAA) and gibberellic acid (GA3), on the fungus Metarhizium guizhouense strain HA11-2, where the germination rate and hyphal elongation were determined at three different times. All phytohormones had a positive effect on germination, with GA3 showing the greatest effect, and for hyphal length, on average, the group treated with synthetic strigolactone GR24 showed greater average hyphal length at 10 h of induction. This work expands the knowledge of the effect of phytohormones on the fungus M. guizhouense, as possible chemical signals for the rapid establishment of the fungus-plant association.
Collapse
Affiliation(s)
| | | | | | | | - Israel Enrique Padilla-Guerrero
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Noria Alta s/n, Guanajuato 36050, Mexico; (I.H.P.-T.); (F.D.-B.); (G.A.G.-H.); (J.C.T.-G.)
| |
Collapse
|
22
|
Varshney K, Gutjahr C. KAI2 Can Do: Karrikin Receptor Function in Plant Development and Response to Abiotic and Biotic Factors. PLANT & CELL PHYSIOLOGY 2023; 64:984-995. [PMID: 37548562 PMCID: PMC10504578 DOI: 10.1093/pcp/pcad077] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/02/2023] [Accepted: 07/14/2023] [Indexed: 08/08/2023]
Abstract
The α/β hydrolase KARRIKIN INSENSITIVE 2 (KAI2) functions as a receptor for a yet undiscovered phytohormone, provisionally termed KAI2 ligand (KL). In addition, it perceives karrikin, a butenolide compound found in the smoke of burnt plant material. KAI2-mediated signaling is involved in regulating seed germination and in shaping seedling and adult plant morphology, both above and below ground. It also governs responses to various abiotic stimuli and stresses and shapes biotic interactions. KAI2-mediated signaling is being linked to an elaborate cross-talk with other phytohormone pathways such as auxin, gibberellin, abscisic acid, ethylene and salicylic acid signaling, in addition to light and nutrient starvation signaling. Further connections will likely be revealed in the future. This article summarizes recent advances in unraveling the function of KAI2-mediated signaling and its interaction with other signaling pathways.
Collapse
Affiliation(s)
- Kartikye Varshney
- Department of Root Biology and Symbiosis, Max Planck Institute of Molecular Plant Physiology, Potsdam Science Park, Am Mühlenberg 1, Potsdam-Golm 14476, Germany
| | - Caroline Gutjahr
- Department of Root Biology and Symbiosis, Max Planck Institute of Molecular Plant Physiology, Potsdam Science Park, Am Mühlenberg 1, Potsdam-Golm 14476, Germany
| |
Collapse
|
23
|
Mashiguchi K, Morita R, Tanaka K, Kodama K, Kameoka H, Kyozuka J, Seto Y, Yamaguchi S. Activation of Strigolactone Biosynthesis by the DWARF14-LIKE/KARRIKIN-INSENSITIVE2 Pathway in Mycorrhizal Angiosperms, but Not in Arabidopsis, a Non-mycorrhizal Plant. PLANT & CELL PHYSIOLOGY 2023; 64:1066-1078. [PMID: 37494415 PMCID: PMC10504576 DOI: 10.1093/pcp/pcad079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 07/14/2023] [Accepted: 07/24/2023] [Indexed: 07/28/2023]
Abstract
Strigolactones (SLs) are a class of plant hormones that regulate many aspects of plant growth and development. SLs also improve symbiosis with arbuscular mycorrhizal fungi (AMF) in the rhizosphere. Recent studies have shown that the DWARF14-LIKE (D14L)/KARRIKIN-INSENSITIVE2 (KAI2) family, paralogs of the SL receptor D14, are required for AMF colonization in several flowering plants, including rice. In this study, we found that (-)-GR5, a 2'S-configured enantiomer of a synthetic SL analog (+)-GR5, significantly activated SL biosynthesis in rice roots via D14L. This result is consistent with a recent report, showing that the D14L pathway positively regulates SL biosynthesis in rice. In fact, the SL levels tended to be lower in the roots of the d14l mutant under both inorganic nutrient-deficient and -sufficient conditions. We also show that the increase in SL levels by (-)-GR5 was observed in other mycorrhizal plant species. In contrast, the KAI2 pathway did not upregulate the SL level and the expression of SL biosynthetic genes in Arabidopsis, a non-mycorrhizal plant. We also examined whether the KAI2 pathway enhances SL biosynthesis in the liverwort Marchantia paleacea, where SL functions as a rhizosphere signaling molecule for AMF. However, the SL level and SL biosynthetic genes were not positively regulated by the KAI2 pathway. These results imply that the activation of SL biosynthesis by the D14L/KAI2 pathway has been evolutionarily acquired after the divergence of bryophytes to efficiently promote symbiosis with AMF, although we cannot exclude the possibility that liverworts have specifically lost this regulatory system.
Collapse
Affiliation(s)
- Kiyoshi Mashiguchi
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011 Japan
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi, 980-8577 Japan
| | - Ryo Morita
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi, 980-8577 Japan
| | - Kai Tanaka
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi, 980-8577 Japan
| | - Kyoichi Kodama
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi, 980-8577 Japan
| | - Hiromu Kameoka
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi, 980-8577 Japan
| | - Junko Kyozuka
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi, 980-8577 Japan
| | - Yoshiya Seto
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi, 980-8577 Japan
- School of Agriculture, Meiji University, 1-1-1 Higashi-mita, Tama-ku, Kawasaki, Kanagawa, 214-8571 Japan
| | - Shinjiro Yamaguchi
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011 Japan
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi, 980-8577 Japan
| |
Collapse
|
24
|
Kee YJ, Ogawa S, Ichihashi Y, Shirasu K, Yoshida S. Strigolactones in Rhizosphere Communication: Multiple Molecules With Diverse Functions. PLANT & CELL PHYSIOLOGY 2023; 64:955-966. [PMID: 37279572 DOI: 10.1093/pcp/pcad055] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/13/2023] [Accepted: 05/31/2023] [Indexed: 06/08/2023]
Abstract
Strigolactones (SLs) are root-secreted small molecules that influence organisms living in the rhizosphere. While SLs are known as germination stimulants for root parasitic plants and as hyphal branching factors for arbuscular mycorrhizal fungi, recent studies have also identified them as chemoattractants for parasitic plants, sensors of neighboring plants and key players in shaping the microbiome community. Furthermore, the discovery of structurally diverged SLs, including so-called canonical and non-canonical SLs in various plant species, raises the question of whether the same SLs are responsible for their diverse functions 'in planta' and the rhizosphere or whether different molecules play different roles. Emerging evidence supports the latter, with each SL exhibiting different activities as rhizosphere signals and plant hormones. The evolution of D14/KAI2 receptors has enabled the perception of various SLs or SL-like compounds to control downstream signaling, highlighting the complex interplay between plants and their rhizosphere environment. This review summarizes the recent advances in our understanding of the diverse functions of SLs in the rhizosphere.
Collapse
Affiliation(s)
- Yee Jia Kee
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192 Japan
| | - Satoshi Ogawa
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045 Japan
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA 92507, USA
| | | | - Ken Shirasu
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045 Japan
- Graduate School of Science, University of Tokyo, Hongo, Tokyo, 113-0033 Japan
| | - Satoko Yoshida
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192 Japan
| |
Collapse
|
25
|
Barbier F, Fichtner F, Beveridge C. The strigolactone pathway plays a crucial role in integrating metabolic and nutritional signals in plants. NATURE PLANTS 2023; 9:1191-1200. [PMID: 37488268 DOI: 10.1038/s41477-023-01453-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 05/24/2023] [Indexed: 07/26/2023]
Abstract
Strigolactones are rhizosphere signals and phytohormones that play crucial roles in plant development. They are also well known for their role in integrating nitrate and phosphate signals to regulate shoot and root development. More recently, sugars and citrate (an intermediate of the tricarboxylic acid cycle) were reported to inhibit the strigolactone response, with dramatic effects on shoot architecture. This Review summarizes the discoveries recently made concerning the mechanisms through which the strigolactone pathway integrates sugar, metabolite and nutrient signals. We highlight here that strigolactones and MAX2-dependent signalling play crucial roles in mediating the impacts of nutritional and metabolic cues on plant development and metabolism. We also discuss and speculate concerning the role of these interactions in plant evolution and adaptation to their environment.
Collapse
Affiliation(s)
- Francois Barbier
- School of Biological Sciences, University of Queensland, St Lucia, Queensland, Australia.
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, University of Queensland, St Lucia, Queensland, Australia.
| | - Franziska Fichtner
- Institute of Plant Biochemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Christine Beveridge
- School of Biological Sciences, University of Queensland, St Lucia, Queensland, Australia
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, University of Queensland, St Lucia, Queensland, Australia
| |
Collapse
|
26
|
Paries M, Gutjahr C. The good, the bad, and the phosphate: regulation of beneficial and detrimental plant-microbe interactions by the plant phosphate status. THE NEW PHYTOLOGIST 2023. [PMID: 37145847 DOI: 10.1111/nph.18933] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 03/21/2023] [Indexed: 05/06/2023]
Abstract
Phosphate (Pi ) is indispensable for life on this planet. However, for sessile land plants it is poorly accessible. Therefore, plants have developed a variety of strategies for enhanced acquisition and recycling of Pi . The mechanisms to cope with Pi limitation as well as direct uptake of Pi from the substrate via the root epidermis are regulated by a conserved Pi starvation response (PSR) system based on a family of key transcription factors (TFs) and their inhibitors. Furthermore, plants obtain Pi indirectly through symbiosis with mycorrhiza fungi, which employ their extensive hyphal network to drastically increase the soil volume that can be explored by plants for Pi . Besides mycorrhizal symbiosis, there is also a variety of other interactions with epiphytic, endophytic, and rhizospheric microbes that can indirectly or directly influence plant Pi uptake. It was recently discovered that the PSR pathway is involved in the regulation of genes that promote formation and maintenance of AM symbiosis. Furthermore, the PSR system influences plant immunity and can also be a target of microbial manipulation. It is known for decades that the nutritional status of plants influences the outcome of plant-microbe interactions. The first molecular explanations for these observations are now emerging.
Collapse
Affiliation(s)
- Michael Paries
- Plant Genetics, TUM School of Life Sciences, Technical University of Munich (TUM), Emil Ramann Str. 4, Freising, 85354, Germany
| | - Caroline Gutjahr
- Plant Genetics, TUM School of Life Sciences, Technical University of Munich (TUM), Emil Ramann Str. 4, Freising, 85354, Germany
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm, 14476, Germany
| |
Collapse
|
27
|
Haider I, Yunmeng Z, White F, Li C, Incitti R, Alam I, Gojobori T, Ruyter-Spira C, Al-Babili S, Bouwmeester HJ. Transcriptome analysis of the phosphate starvation response sheds light on strigolactone biosynthesis in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:355-370. [PMID: 36775978 DOI: 10.1111/tpj.16140] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 02/06/2023] [Indexed: 05/10/2023]
Abstract
Phosphorus (P) is a major element required for plant growth and development. To cope with P shortage, plants activate local and long-distance signaling pathways, such as an increase in the production and exudation of strigolactones (SLs). The role of the latter in mitigating P deficiency is, however, still largely unknown. To shed light on this, we studied the transcriptional response to P starvation and replenishment in wild-type rice and a SL mutant, dwarf10 (d10), and upon exogenous application of the synthetic SL GR24. P starvation resulted in major transcriptional alterations, such as the upregulation of P TRANSPORTER, SYG1/PHO81/XPR1 (SPX) and VACUOLAR PHOSPHATE EFFLUX TRANSPORTER. Gene Ontology (GO) analysis of the genes induced by P starvation showed enrichment in phospholipid catabolic process and phosphatase activity. In d10, P deficiency induced upregulation of genes enriched for sesquiterpenoid production, secondary shoot formation and metabolic processes, including lactone biosynthesis. Furthermore, several genes induced by GR24 treatment shared the same GO terms with P starvation-induced genes, such as oxidation reduction, heme binding and oxidoreductase activity, hinting at the role that SLs play in the transcriptional reprogramming upon P starvation. Gene co-expression network analysis uncovered a METHYL TRANSFERASE that displayed co-regulation with known rice SL biosynthetic genes. Functional characterization showed that this gene encodes an enzyme catalyzing the conversion of carlactonoic acid to methyl carlactonoate. Our work provides a valuable resource to further studies on the response of crops to P deficiency and reveals a tool for the discovery of SL biosynthetic genes.
Collapse
Affiliation(s)
- Imran Haider
- Plant Hormone Biology Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
- Division of Biological and Environmental Science and Engineering, Center for Desert Agriculture, The BioActives Lab, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Zhang Yunmeng
- Laboratory of Plant Physiology, Wageningen University and Research, Wageningen, PO Box 658, 6700 AR, The Netherlands
| | - Fred White
- Plant Hormone Biology Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Changsheng Li
- Plant Hormone Biology Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Roberto Incitti
- Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Intikhab Alam
- Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Takashi Gojobori
- Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Carolien Ruyter-Spira
- Laboratory of Plant Physiology, Wageningen University and Research, Wageningen, PO Box 658, 6700 AR, The Netherlands
| | - Salim Al-Babili
- Division of Biological and Environmental Science and Engineering, Center for Desert Agriculture, The BioActives Lab, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
- Division of Biological and Environmental Science and Engineering, The Plant Science Program, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Harro J Bouwmeester
- Plant Hormone Biology Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| |
Collapse
|
28
|
Volpe V, Chialva M, Mazzarella T, Crosino A, Capitanio S, Costamagna L, Kohlen W, Genre A. Long-lasting impact of chitooligosaccharide application on strigolactone biosynthesis and fungal accommodation promotes arbuscular mycorrhiza in Medicago truncatula. THE NEW PHYTOLOGIST 2023; 237:2316-2331. [PMID: 36564991 DOI: 10.1111/nph.18697] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
The establishment of arbuscular mycorrhiza (AM) between plants and Glomeromycotina fungi is preceded by the exchange of chemical signals: fungal released Myc-factors, including chitooligosaccharides (CO) and lipo-chitooligosaccharides (LCO), activate plant symbiotic responses, while root-exuded strigolactones stimulate hyphal branching and boost CO release. Furthermore, fungal signaling reinforcement through CO application was shown to promote AM development in Medicago truncatula, but the cellular and molecular bases of this effect remained unclear. Here, we focused on long-term M. truncatula responses to CO treatment, demonstrating its impact on the transcriptome of both mycorrhizal and nonmycorrhizal roots over several weeks and providing an insight into the mechanistic bases of the CO-dependent promotion of AM colonization. CO treatment caused the long-lasting regulation of strigolactone biosynthesis and fungal accommodation-related genes. This was mirrored by an increase in root didehydro-orobanchol content, and the promotion of accommodation responses to AM fungi in root epidermal cells. Lastly, an advanced downregulation of AM symbiosis marker genes was observed at the latest time point in CO-treated plants, in line with an increased number of senescent arbuscules. Overall, CO treatment triggered molecular, metabolic, and cellular responses underpinning a protracted acceleration of AM development.
Collapse
Affiliation(s)
- Veronica Volpe
- Department of Life Sciences and Systems Biology, University of Turin, Viale Mattioli 25, 10125, Torino, Italy
| | - Matteo Chialva
- Department of Life Sciences and Systems Biology, University of Turin, Viale Mattioli 25, 10125, Torino, Italy
| | - Teresa Mazzarella
- Department of Life Sciences and Systems Biology, University of Turin, Viale Mattioli 25, 10125, Torino, Italy
| | - Andrea Crosino
- Department of Life Sciences and Systems Biology, University of Turin, Viale Mattioli 25, 10125, Torino, Italy
| | - Serena Capitanio
- Department of Life Sciences and Systems Biology, University of Turin, Viale Mattioli 25, 10125, Torino, Italy
| | - Lorenzo Costamagna
- Department of Life Sciences and Systems Biology, University of Turin, Viale Mattioli 25, 10125, Torino, Italy
| | - Wouter Kohlen
- Laboratory of Molecular Biology, Wageningen University & Research, Wageningen, 6708, PB, the Netherlands
| | - Andrea Genre
- Department of Life Sciences and Systems Biology, University of Turin, Viale Mattioli 25, 10125, Torino, Italy
| |
Collapse
|
29
|
Valmas MI, Sexauer M, Markmann K, Tsikou D. Plants Recruit Peptides and Micro RNAs to Regulate Nutrient Acquisition from Soil and Symbiosis. PLANTS (BASEL, SWITZERLAND) 2023; 12:187. [PMID: 36616316 PMCID: PMC9824779 DOI: 10.3390/plants12010187] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/24/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
Plants engage in symbiotic relationships with soil microorganisms to overcome nutrient limitations in their environment. Among the best studied endosymbiotic interactions in plants are those with arbuscular mycorrhizal (AM) fungi and N-fixing bacteria called rhizobia. The mechanisms regulating plant nutrient homeostasis and acquisition involve small mobile molecules such as peptides and micro RNAs (miRNAs). A large number of CLE (CLAVATA3/EMBRYO SURROUNDING REGION-RELATED) and CEP (C-TERMINALLY ENCODED PEPTIDE) peptide hormones as well as certain miRNAs have been reported to differentially respond to the availability of essential nutrients such as nitrogen (N) and phosphorus (P). Interestingly, a partially overlapping pool of these molecules is involved in plant responses to root colonization by rhizobia and AM fungi, as well as mineral nutrition. The crosstalk between root endosymbiosis and nutrient availability has been subject of intense investigations, and new insights in locally or systemically mobile molecules in nutrient- as well as symbiosis-related signaling continue to arise. Focusing on the key roles of peptides and miRNAs, we review the mechanisms that shape plant responses to nutrient limitation and regulate the establishment of symbiotic associations with beneficial soil microorganisms.
Collapse
Affiliation(s)
- Marios I. Valmas
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500 Larissa, Greece
| | - Moritz Sexauer
- Julius-von-Sachs-Institute for Biosciences, Würzburg University, Julius-von-Sachs-Platz 3, 97082 Würzburg, Germany
| | - Katharina Markmann
- Julius-von-Sachs-Institute for Biosciences, Würzburg University, Julius-von-Sachs-Platz 3, 97082 Würzburg, Germany
| | - Daniela Tsikou
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500 Larissa, Greece
| |
Collapse
|
30
|
Chang J, Duong TA, Schoeman C, Ma X, Roodt D, Barker N, Li Z, Van de Peer Y, Mizrachi E. The genome of the king protea, Protea cynaroides. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 113:262-276. [PMID: 36424853 PMCID: PMC10107735 DOI: 10.1111/tpj.16044] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 11/02/2022] [Accepted: 11/21/2022] [Indexed: 05/07/2023]
Abstract
The king protea (Protea cynaroides), an early-diverging eudicot, is the most iconic species from the Megadiverse Cape Floristic Region, and the national flower of South Africa. Perhaps best known for its iconic flower head, Protea is a key genus for the South African horticulture industry and cut-flower market. Ecologically, the genus and the family Proteaceae are important models for radiation and adaptation, particularly to soils with limited phosphorus bio-availability. Here, we present a high-quality chromosome-scale assembly of the P. cynaroides genome as the first representative of the fynbos biome. We reveal an ancestral whole-genome duplication event that occurred in the Proteaceae around the late Cretaceous that preceded the divergence of all crown groups within the family and its extant diversity in all Southern continents. The relatively stable genome structure of P. cynaroides is invaluable for comparative studies and for unveiling paleopolyploidy in other groups, such as the distantly related sister group Ranunculales. Comparative genomics in sequenced genomes of the Proteales shows loss of key arbuscular mycorrhizal symbiosis genes likely ancestral to the family, and possibly the order. The P. cynaroides genome empowers new research in plant diversification, horticulture and adaptation, particularly to nutrient-poor soils.
Collapse
Affiliation(s)
- Jiyang Chang
- Department of Plant Biotechnology and BioinformaticsGhent University and VIB Center for Plant Systems BiologyGhentBelgium
| | - Tuan A. Duong
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology InstituteUniversity of PretoriaPretoriaSouth Africa
| | - Cassandra Schoeman
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology InstituteUniversity of PretoriaPretoriaSouth Africa
| | - Xiao Ma
- Department of Plant Biotechnology and BioinformaticsGhent University and VIB Center for Plant Systems BiologyGhentBelgium
| | - Danielle Roodt
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology InstituteUniversity of PretoriaPretoriaSouth Africa
| | - Nigel Barker
- Department of Plant and Soil SciencesUniversity of PretoriaPretoriaSouth Africa
| | - Zhen Li
- Department of Plant Biotechnology and BioinformaticsGhent University and VIB Center for Plant Systems BiologyGhentBelgium
| | - Yves Van de Peer
- Department of Plant Biotechnology and BioinformaticsGhent University and VIB Center for Plant Systems BiologyGhentBelgium
- Department of Biochemistry, Genetics and MicrobiologyCentre for Microbial Ecology and Genomics, University of PretoriaPretoriaSouth Africa
- College of Horticulture, Academy for Advanced Interdisciplinary StudiesNanjing Agricultural UniversityNanjingChina
| | - Eshchar Mizrachi
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology InstituteUniversity of PretoriaPretoriaSouth Africa
| |
Collapse
|
31
|
Cervantes-Pérez SA, Thibivilliers S, Laffont C, Farmer AD, Frugier F, Libault M. Cell-specific pathways recruited for symbiotic nodulation in the Medicago truncatula legume. MOLECULAR PLANT 2022; 15:1868-1888. [PMID: 36321199 DOI: 10.1016/j.molp.2022.10.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/05/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
Medicago truncatula is a model legume species that has been studied for decades to understand the symbiotic relationship between legumes and soil bacteria collectively named rhizobia. This symbiosis called nodulation is initiated in roots with the infection of root hair cells by the bacteria, as well as the initiation of nodule primordia from root cortical, endodermal, and pericycle cells, leading to the development of a new root organ, the nodule, where bacteria fix and assimilate the atmospheric dinitrogen for the benefit of the plant. Here, we report the isolation and use of the nuclei from mock and rhizobia-inoculated roots for the single nuclei RNA-seq (sNucRNA-seq) profiling to gain a deeper understanding of early responses to rhizobial infection in Medicago roots. A gene expression map of the Medicago root was generated, comprising 25 clusters, which were annotated as specific cell types using 119 Medicago marker genes and orthologs to Arabidopsis cell-type marker genes. A focus on root hair, cortex, endodermis, and pericycle cell types, showing the strongest differential regulation in response to a short-term (48 h) rhizobium inoculation, revealed not only known genes and functional pathways, validating the sNucRNA-seq approach, but also numerous novel genes and pathways, allowing a comprehensive analysis of early root symbiotic responses at a cell type-specific level.
Collapse
Affiliation(s)
- Sergio Alan Cervantes-Pérez
- Department of Agronomy and Horticulture, Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE 68503, USA
| | - Sandra Thibivilliers
- Department of Agronomy and Horticulture, Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE 68503, USA; Single Cell Genomics Core Facility, Center for Biotechnology, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Carole Laffont
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, Université Paris-Cité, Université d'Evry, 91190 Gif-sur-Yvette, France
| | - Andrew D Farmer
- National Center for Genome Resources, Santa Fe, NM 87505, USA
| | - Florian Frugier
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, Université Paris-Cité, Université d'Evry, 91190 Gif-sur-Yvette, France
| | - Marc Libault
- Department of Agronomy and Horticulture, Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE 68503, USA; Single Cell Genomics Core Facility, Center for Biotechnology, University of Nebraska-Lincoln, Lincoln, NE 68588, USA.
| |
Collapse
|
32
|
Chen W, Hu X, Hu L, Hou X, Xu Z, Yang F, Yuan M, Chen F, Wang Y, Tu B, Li T, Kang L, Tang S, Ma B, Wang Y, Li S, Qin P, Yuan H. Wide Grain 3, a GRAS Protein, Interacts with DLT to Regulate Grain Size and Brassinosteroid Signaling in Rice. RICE (NEW YORK, N.Y.) 2022; 15:55. [PMID: 36326916 PMCID: PMC9633911 DOI: 10.1186/s12284-022-00601-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 10/09/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Grain size is a direct determinant of grain weight and yield in rice; however, the genetic and molecular mechanisms determining grain size remain largely unknown. FINDINGS We identified a mutant, wide grain 3 (wg3), which exhibited significantly increased grain width and 1000-grain weight. Cytological analysis showed that WG3 regulates grain size by affecting cell proliferation. MutMap-based gene cloning and a transgenic experiment demonstrated that WG3 encodes a GRAS protein. Moreover, we found that WG3 directly interacts with DWARF AND LOW-TILLERING (DLT), a previously reported GRAS protein, and a genetic experiment demonstrated that WG3 and DLT function in a common pathway to regulate grain size. Additionally, a brassinosteroid (BR) sensitivity test suggested that WG3 has a positive role in BR signaling in rice. Collectively, our results reveal a new genetic and molecular mechanism for the regulation of grain size in rice by the WG3-DLT complex, and highlight the important functions of the GRAS protein complex in plants. CONCLUSION WG3 functions directly in regulating grain size and BR signaling in rice.
Collapse
Affiliation(s)
- Weilan Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, 611130, Chengdu, Sichuan, China
| | - Xiaoling Hu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, 611130, Chengdu, Sichuan, China
| | - Li Hu
- College of Agriculture, Forestry and Health, The Open University of Sichuan, 610073, Chengdu, Sichuan, China
| | - Xinyue Hou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, 611130, Chengdu, Sichuan, China
| | - Zhengyan Xu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, 611130, Chengdu, Sichuan, China
| | - Fanmin Yang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, 611130, Chengdu, Sichuan, China
| | - Min Yuan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, 611130, Chengdu, Sichuan, China
| | - Feifan Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, 611130, Chengdu, Sichuan, China
| | - Yunxiao Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, 611130, Chengdu, Sichuan, China
| | - Bin Tu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, 611130, Chengdu, Sichuan, China
| | - Ting Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, 611130, Chengdu, Sichuan, China
| | - Liangzhu Kang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, 611130, Chengdu, Sichuan, China
| | - Shiwen Tang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, 611130, Chengdu, Sichuan, China
| | - Bingtian Ma
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, 611130, Chengdu, Sichuan, China
| | - Yuping Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, 611130, Chengdu, Sichuan, China
| | - Shigui Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, 611130, Chengdu, Sichuan, China
| | - Peng Qin
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, 611130, Chengdu, Sichuan, China.
| | - Hua Yuan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, 611130, Chengdu, Sichuan, China.
| |
Collapse
|
33
|
Zhang X, Wang Q, Wu J, Qi M, Zhang C, Huang Y, Wang G, Wang H, Tian J, Yu Y, Chen D, Li Y, Wang D, Zhang Y, Xue Y, Kong Z. A legume kinesin controls vacuole morphogenesis for rhizobia endosymbiosis. NATURE PLANTS 2022; 8:1275-1288. [PMID: 36316454 DOI: 10.1038/s41477-022-01261-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 09/09/2022] [Indexed: 06/16/2023]
Abstract
Symbioses between legumes and rhizobia require establishment of the plant-derived symbiosome membrane, which surrounds the rhizobia and accommodates the symbionts by providing an interface for nutrient and signal exchange. The host cytoskeleton and endomembrane trafficking systems play central roles in the formation of a functional symbiotic interface for rhizobia endosymbiosis; however, the underlying mechanisms remain largely unknown. Here we demonstrate that the nodulation-specific kinesin-like calmodulin-binding protein (nKCBP), a plant-specific microtubule-based kinesin motor, controls central vacuole morphogenesis in symbiotic cells in Medicago truncatula. Phylogenetic analysis further indicated that nKCBP duplication occurs solely in legumes of the clade that form symbiosomes. Knockout of nKCBP results in central vacuole deficiency, defective symbiosomes and abolished nitrogen fixation. nKCBP decorates linear particles along microtubules, and crosslinks microtubules with the actin cytoskeleton, to control central vacuole formation by modulating vacuolar vesicle fusion in symbiotic cells. Together, our findings reveal that rhizobia co-opted nKCBP to achieve symbiotic interface formation by regulating cytoskeletal assembly and central vacuole morphogenesis during nodule development.
Collapse
Affiliation(s)
- Xiaxia Zhang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Qi Wang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Jingxia Wu
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Meifang Qi
- State Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Science, Chinese Academy of Sciences, Shanghai, China
| | - Chen Zhang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Yige Huang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Guangda Wang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Huan Wang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Juan Tian
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Yanjun Yu
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Dasong Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Youguo Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Dong Wang
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA, USA
| | - Yijing Zhang
- State Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Science, Chinese Academy of Sciences, Shanghai, China
| | - Yongbiao Xue
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Zhaosheng Kong
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China.
- Houji Laboratory in Shanxi Province, Academy of Agronomy, Shanxi Agricultural University, Taiyuan, China.
| |
Collapse
|
34
|
Li XR, Sun J, Albinsky D, Zarrabian D, Hull R, Lee T, Jarratt-Barnham E, Chiu CH, Jacobsen A, Soumpourou E, Albanese A, Kohlen W, Luginbuehl LH, Guillotin B, Lawrensen T, Lin H, Murray J, Wallington E, Harwood W, Choi J, Paszkowski U, Oldroyd GED. Nutrient regulation of lipochitooligosaccharide recognition in plants via NSP1 and NSP2. Nat Commun 2022; 13:6421. [PMID: 36307431 PMCID: PMC9616857 DOI: 10.1038/s41467-022-33908-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 10/07/2022] [Indexed: 12/25/2022] Open
Abstract
Many plants associate with arbuscular mycorrhizal fungi for nutrient acquisition, while legumes also associate with nitrogen-fixing rhizobial bacteria. Both associations rely on symbiosis signaling and here we show that cereals can perceive lipochitooligosaccharides (LCOs) for activation of symbiosis signaling, surprisingly including Nod factors produced by nitrogen-fixing bacteria. However, legumes show stringent perception of specifically decorated LCOs, that is absent in cereals. LCO perception in plants is activated by nutrient starvation, through transcriptional regulation of Nodulation Signaling Pathway (NSP)1 and NSP2. These transcription factors induce expression of an LCO receptor and act through the control of strigolactone biosynthesis and the karrikin-like receptor DWARF14-LIKE. We conclude that LCO production and perception is coordinately regulated by nutrient starvation to promote engagement with mycorrhizal fungi. Our work has implications for the use of both mycorrhizal and rhizobial associations for sustainable productivity in cereals.
Collapse
Affiliation(s)
- Xin-Ran Li
- grid.5335.00000000121885934Sainsbury Laboratory, University of Cambridge, 47 Bateman Street, Cambridge, CB2 1LR UK
| | - Jongho Sun
- grid.5335.00000000121885934Sainsbury Laboratory, University of Cambridge, 47 Bateman Street, Cambridge, CB2 1LR UK
| | - Doris Albinsky
- grid.5335.00000000121885934Crop Science Centre, University of Cambridge, 93 Lawrence Weaver Road, Cambridge, CB3 0LE UK
| | - Darius Zarrabian
- grid.5335.00000000121885934Crop Science Centre, University of Cambridge, 93 Lawrence Weaver Road, Cambridge, CB3 0LE UK
| | - Raphaella Hull
- grid.5335.00000000121885934Crop Science Centre, University of Cambridge, 93 Lawrence Weaver Road, Cambridge, CB3 0LE UK
| | - Tak Lee
- grid.5335.00000000121885934Sainsbury Laboratory, University of Cambridge, 47 Bateman Street, Cambridge, CB2 1LR UK ,grid.5335.00000000121885934Crop Science Centre, University of Cambridge, 93 Lawrence Weaver Road, Cambridge, CB3 0LE UK
| | - Edwin Jarratt-Barnham
- grid.5335.00000000121885934Crop Science Centre, University of Cambridge, 93 Lawrence Weaver Road, Cambridge, CB3 0LE UK
| | - Chai Hao Chiu
- grid.5335.00000000121885934Crop Science Centre, University of Cambridge, 93 Lawrence Weaver Road, Cambridge, CB3 0LE UK
| | - Amy Jacobsen
- grid.5335.00000000121885934Crop Science Centre, University of Cambridge, 93 Lawrence Weaver Road, Cambridge, CB3 0LE UK
| | - Eleni Soumpourou
- grid.5335.00000000121885934Crop Science Centre, University of Cambridge, 93 Lawrence Weaver Road, Cambridge, CB3 0LE UK
| | - Alessio Albanese
- grid.5335.00000000121885934Crop Science Centre, University of Cambridge, 93 Lawrence Weaver Road, Cambridge, CB3 0LE UK
| | - Wouter Kohlen
- grid.4818.50000 0001 0791 5666Laboratory for Molecular Biology, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands
| | - Leonie H. Luginbuehl
- grid.14830.3e0000 0001 2175 7246John Innes Centre, Norwich Research Park, Norwich, NR4 7UH UK
| | - Bruno Guillotin
- grid.503344.50000 0004 0445 6769Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Castanet-Tolosan, France ,grid.137628.90000 0004 1936 8753Present Address: NYU-Center of Genomic and System Biology, 12 Waverly Place, New York, NY USA
| | - Tom Lawrensen
- grid.14830.3e0000 0001 2175 7246John Innes Centre, Norwich Research Park, Norwich, NR4 7UH UK
| | - Hui Lin
- grid.14830.3e0000 0001 2175 7246John Innes Centre, Norwich Research Park, Norwich, NR4 7UH UK
| | - Jeremy Murray
- grid.14830.3e0000 0001 2175 7246John Innes Centre, Norwich Research Park, Norwich, NR4 7UH UK
| | - Emma Wallington
- grid.17595.3f0000 0004 0383 6532NIAB, 93 Lawrence Weaver Road, Cambridge, CB3 0LE UK
| | - Wendy Harwood
- grid.14830.3e0000 0001 2175 7246John Innes Centre, Norwich Research Park, Norwich, NR4 7UH UK
| | - Jeongmin Choi
- grid.5335.00000000121885934Crop Science Centre, University of Cambridge, 93 Lawrence Weaver Road, Cambridge, CB3 0LE UK
| | - Uta Paszkowski
- grid.5335.00000000121885934Crop Science Centre, University of Cambridge, 93 Lawrence Weaver Road, Cambridge, CB3 0LE UK
| | - Giles E. D. Oldroyd
- grid.5335.00000000121885934Sainsbury Laboratory, University of Cambridge, 47 Bateman Street, Cambridge, CB2 1LR UK ,grid.5335.00000000121885934Crop Science Centre, University of Cambridge, 93 Lawrence Weaver Road, Cambridge, CB3 0LE UK
| |
Collapse
|
35
|
Identification of microRNAs responsive to arbuscular mycorrhizal fungi in Panicum virgatum (switchgrass). BMC Genomics 2022; 23:688. [PMID: 36199042 PMCID: PMC9535954 DOI: 10.1186/s12864-022-08797-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 07/26/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) are important post-transcriptional regulators involved in the control of a range of processes, including symbiotic interactions in plants. MiRNA involvement in arbuscular mycorrhizae (AM) symbiosis has been mainly studied in model species, and our study is the first to analyze global miRNA expression in the roots of AM colonized switchgrass (Panicum virgatum), an emerging biofuel feedstock. AM symbiosis helps plants gain mineral nutrition from the soil and may enhance switchgrass biomass production on marginal lands. Our goals were to identify miRNAs and their corresponding target genes that are controlling AM symbiosis in switchgrass. RESULTS Through genome-wide analysis of next-generation miRNA sequencing reads generated from switchgrass roots, we identified 122 mature miRNAs, including 28 novel miRNAs. By comparing miRNA expression profiles of AM-inoculated and control switchgrass roots, we identified 15 AM-responsive miRNAs across lowland accession "Alamo", upland accession "Dacotah", and two upland/lowland F1 hybrids. We used degradome sequencing to identify target genes of the AM-responsive miRNAs revealing targets of miRNAs residing on both K and N subgenomes. Notably, genes involved in copper ion binding were targeted by downregulated miRNAs, while upregulated miRNAs mainly targeted GRAS family transcription factors. CONCLUSION Through miRNA analysis and degradome sequencing, we revealed that both upland and lowland switchgrass genotypes as well as upland-lowland hybrids respond to AM by altering miRNA expression. We demonstrated complex GRAS transcription factor regulation by the miR171 family, with some miR171 family members being AM responsive while others remained static. Copper miRNA downregulation was common amongst the genotypes tested and we identified superoxide dismutases and laccases as targets, suggesting that these Cu-miRNAs are likely involved in ROS detoxification and lignin deposition, respectively. Other prominent targets of the Cu miRNAs were blue copper proteins. Overall, the potential effect of AM colonization on lignin deposition pathways in this biofuel crop highlights the importance of considering AM and miRNA in future biofuel crop development strategies.
Collapse
|
36
|
Pradhan M, Requena N. Distinguishing friends from foes: Can smRNAs modulate plant interactions with beneficial and pathogenic organisms? CURRENT OPINION IN PLANT BIOLOGY 2022; 69:102259. [PMID: 35841651 DOI: 10.1016/j.pbi.2022.102259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/25/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
In their agro-ecological habitats, plants are constantly challenged by fungal interactions that might be pathogenic or beneficial in nature, and thus, plants need to exhibit appropriate responses to discriminate between them. Such interactions involve sophisticated molecular mechanism of signal exchange, signal transduction and regulation of gene expression. Small RNAs (smRNAs), including the microRNAs (miRNAs), form an essential layer of regulation in plant developmental processes as well as in plant adaptation to environmental stresses, being key for the outcome during plant-microbial interactions. Further, smRNAs are mobile signals that can go across kingdoms from one interacting partner to the other and hence can be used as communication as well as regulatory tools not only by the host plant but also by the colonising fungus. Here, largely with a focus on plant-fungal interactions and miRNAs, we will discuss the role of smRNAs, and how they might help plants to discriminate between friends and foes.
Collapse
Affiliation(s)
- Maitree Pradhan
- Molecular Phytopathology, Botanical Institute, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 4, D-76131, Karlsruhe, Germany
| | - Natalia Requena
- Molecular Phytopathology, Botanical Institute, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 4, D-76131, Karlsruhe, Germany.
| |
Collapse
|
37
|
Quilbé J, Nouwen N, Pervent M, Guyonnet R, Cullimore J, Gressent F, Araújo NH, Gully D, Klopp C, Giraud E, Arrighi JF. A mutant-based analysis of the establishment of Nod-independent symbiosis in the legume Aeschynomene evenia. PLANT PHYSIOLOGY 2022; 190:1400-1417. [PMID: 35876558 PMCID: PMC9516736 DOI: 10.1093/plphys/kiac325] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
Intensive research on nitrogen-fixing symbiosis in two model legumes has uncovered the molecular mechanisms, whereby rhizobial Nod factors activate a plant symbiotic signaling pathway that controls infection and nodule organogenesis. In contrast, the so-called Nod-independent symbiosis found between Aeschynomene evenia and photosynthetic bradyrhizobia, which does not involve Nod factor recognition nor infection thread formation, is less well known. To gain knowledge on how Nod-independent symbiosis is established, we conducted a phenotypic and molecular characterization of A. evenia lines carrying mutations in different nodulation genes. Besides investigating the effect of the mutations on rhizobial symbiosis, we examined their consequences on mycorrhizal symbiosis and in nonsymbiotic conditions. Analyzing allelic mutant series for AePOLLUX, Ca2+/calmodulin dependent kinase, AeCYCLOPS, nodulation signaling pathway 2 (AeNSP2), and nodule inception demonstrated that these genes intervene at several stages of intercellular infection and during bacterial accommodation. We provide evidence that AeNSP2 has an additional nitrogen-dependent regulatory function in the formation of axillary root hairs at lateral root bases, which are rhizobia-colonized infection sites. Our investigation of the recently discovered symbiotic actor cysteine-rich receptor-like kinase specified that it is not involved in mycorrhization; however, it is essential for both symbiotic signaling and early infection during nodulation. These findings provide important insights on the modus operandi of Nod-independent symbiosis and contribute to the general understanding of how rhizobial-legume symbioses are established by complementing the information acquired in model legumes.
Collapse
Affiliation(s)
| | | | | | - Rémi Guyonnet
- IRD, Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM), UMR IRD/SupAgro/INRAE/UM/CIRAD, TA-A82/J-Campus de Baillarguet, Montpellier 34398, France
| | - Julie Cullimore
- Laboratory of Plant-Microbe Interactions and Environment (LIPME), University Toulouse III, INRAE, CNRS, Castanet-Tolosan, France
| | - Frédéric Gressent
- IRD, Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM), UMR IRD/SupAgro/INRAE/UM/CIRAD, TA-A82/J-Campus de Baillarguet, Montpellier 34398, France
- IRD, Plant Health Institute of Montpellier (PHIM), UMR IRD/SupAgro/INRAE/UM/CIRAD, TA-A82/J – Campus de Baillarguet, Montpellier 34398, France
| | - Natasha Horta Araújo
- IRD, Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM), UMR IRD/SupAgro/INRAE/UM/CIRAD, TA-A82/J-Campus de Baillarguet, Montpellier 34398, France
- IRD, Plant Health Institute of Montpellier (PHIM), UMR IRD/SupAgro/INRAE/UM/CIRAD, TA-A82/J – Campus de Baillarguet, Montpellier 34398, France
| | - Djamel Gully
- IRD, Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM), UMR IRD/SupAgro/INRAE/UM/CIRAD, TA-A82/J-Campus de Baillarguet, Montpellier 34398, France
- IRD, Plant Health Institute of Montpellier (PHIM), UMR IRD/SupAgro/INRAE/UM/CIRAD, TA-A82/J – Campus de Baillarguet, Montpellier 34398, France
| | - Christophe Klopp
- Plateforme Bioinformatique Genotoul, BioinfoMics, UR875 Biométrie et Intelligence Artificielle, INRAE, Castanet-Tolosan, France
| | - Eric Giraud
- IRD, Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM), UMR IRD/SupAgro/INRAE/UM/CIRAD, TA-A82/J-Campus de Baillarguet, Montpellier 34398, France
- IRD, Plant Health Institute of Montpellier (PHIM), UMR IRD/SupAgro/INRAE/UM/CIRAD, TA-A82/J – Campus de Baillarguet, Montpellier 34398, France
| | | |
Collapse
|
38
|
López-Jiménez AJ, Morote L, Niza E, Mondéjar M, Rubio-Moraga Á, Diretto G, Ahrazem O, Gómez-Gómez L. Subfunctionalization of D27 Isomerase Genes in Saffron. Int J Mol Sci 2022; 23:ijms231810543. [PMID: 36142456 PMCID: PMC9504799 DOI: 10.3390/ijms231810543] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/05/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022] Open
Abstract
Chromoplasts and chloroplasts contain carotenoid pigments as all-trans- and cis-isomers, which function as accessory light-harvesting pigments, antioxidant and photoprotective agents, and precursors of signaling molecules and plant hormones. The carotenoid pathway involves the participation of different carotenoid isomerases. Among them, D27 is a β-carotene isomerase showing high specificity for the C9-C10 double bond catalyzing the interconversion of all-trans- into 9-cis-β-carotene, the precursor of strigolactones. We have identified one D27 (CsD27-1) and two D27-like (CsD27-2 and CsD27-3) genes in saffron, with CsD27-1 and CsD27-3, clearly differing in their expression patterns; specifically, CsD27-1 was mainly expressed in the undeveloped stigma and roots, where it is induced by Rhizobium colonization. On the contrary, CsD27-2 and CsD27-3 were mainly expressed in leaves, with a preferential expression of CsD27-3 in this tissue. In vivo assays show that CsD27-1 catalyzes the isomerization of all-trans- to 9-cis-β-carotene, and could be involved in the isomerization of zeaxanthin, while CsD27-3 catalyzes the isomerization of all-trans- to cis-ζ-carotene and all-trans- to cis-neurosporene. Our data show that CsD27-1 and CsD27-3 enzymes are both involved in carotenoid isomerization, with CsD27-1 being specific to chromoplast/amyloplast-containing tissue, and CsD27-3 more specific to chloroplast-containing tissues. Additionally, we show that CsD27-1 is co-expressed with CCD7 and CCD8 mycorrhized roots, whereas CsD27-3 is expressed at higher levels than CRTISO and Z-ISO and showed circadian regulation in leaves. Overall, our data extend the knowledge about carotenoid isomerization and their implications in several physiological and ecological processes.
Collapse
Affiliation(s)
- Alberto José López-Jiménez
- Instituto Botánico, Departamento de Ciencia y Tecnología Agroforestal y Genética, Universidad de Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain
- Escuela Técnica Superior de Ingenieros Agrónomos y Montes, Grado de Biotecnología, Departamento de Ciencia y Tecnología Agroforestal y Genética, Universidad de Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain
| | - Lucía Morote
- Instituto Botánico, Departamento de Ciencia y Tecnología Agroforestal y Genética, Universidad de Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain
| | - Enrique Niza
- Instituto Botánico, Departamento de Ciencia y Tecnología Agroforestal y Genética, Universidad de Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain
- Facultad de Farmacia, Departamento de Ciencia y Tecnología Agroforestal y Genética, Universidad de Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain
| | - María Mondéjar
- Instituto Botánico, Departamento de Ciencia y Tecnología Agroforestal y Genética, Universidad de Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain
| | - Ángela Rubio-Moraga
- Instituto Botánico, Departamento de Ciencia y Tecnología Agroforestal y Genética, Universidad de Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain
- Escuela Técnica Superior de Ingenieros Agrónomos y Montes, Grado de Biotecnología, Departamento de Ciencia y Tecnología Agroforestal y Genética, Universidad de Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain
| | - Gianfranco Diretto
- Italian National Agency for New Technologies, Energy, and Sustainable Development, Casaccia Research Centre, 00123 Rome, Italy
| | - Oussama Ahrazem
- Instituto Botánico, Departamento de Ciencia y Tecnología Agroforestal y Genética, Universidad de Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain
- Escuela Técnica Superior de Ingenieros Agrónomos y Montes, Grado de Biotecnología, Departamento de Ciencia y Tecnología Agroforestal y Genética, Universidad de Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain
| | - Lourdes Gómez-Gómez
- Instituto Botánico, Departamento de Ciencia y Tecnología Agroforestal y Genética, Universidad de Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain
- Facultad de Farmacia, Departamento de Ciencia y Tecnología Agroforestal y Genética, Universidad de Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain
- Correspondence:
| |
Collapse
|
39
|
Roy S, Müller LM. A rulebook for peptide control of legume-microbe endosymbioses. TRENDS IN PLANT SCIENCE 2022; 27:870-889. [PMID: 35246381 DOI: 10.1016/j.tplants.2022.02.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 01/25/2022] [Accepted: 02/02/2022] [Indexed: 06/14/2023]
Abstract
Plants engage in mutually beneficial relationships with microbes, such as arbuscular mycorrhizal fungi or nitrogen-fixing rhizobia, for optimized nutrient acquisition. In return, the microbial symbionts receive photosynthetic carbon from the plant. Both symbioses are regulated by the plant nutrient status, indicating the existence of signaling pathways that allow the host to fine-tune its interactions with the beneficial microbes depending on its nutrient requirements. Peptide hormones coordinate a plethora of developmental and physiological processes and, recently, various peptide families have gained special attention as systemic and local regulators of plant-microbe interactions and nutrient homeostasis. In this review, we identify five 'rules' or guiding principles that govern peptide function during symbiotic plant-microbe interactions, and highlight possible points of integration with nutrient acquisition pathways.
Collapse
Affiliation(s)
- Sonali Roy
- College of Agriculture, Tennessee State University, Nashville, TN 37209, USA.
| | - Lena Maria Müller
- Department of Biology, University of Miami, Coral Gables, FL 33146, USA.
| |
Collapse
|
40
|
Lin Y, Chu S, Xu X, Han X, Huang H, Tong Z, Zhang J. Identification of Nitrogen Starvation-Responsive miRNAs to Reveal the miRNA-Mediated Regulatory Network in Betula luminifera. Front Genet 2022; 13:957505. [PMID: 36061195 PMCID: PMC9428261 DOI: 10.3389/fgene.2022.957505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 06/24/2022] [Indexed: 11/29/2022] Open
Abstract
Because of the immobility, plants encounter a series of stresses, such as varied nutrient concentrations in soil, which regulate plant growth, development, and phase transitions. Nitrogen (N) is one of the most limiting factors for plants, which was exemplified by the fact that low nitrogen (LN) has a great adverse effect on plant growth and development. In the present study, we explored the potential role of microRNAs (miRNAs) in response to LN stress in Betula luminifera. We identified 198 miRNAs using sRNA sequencing, including 155 known and 43 novel miRNAs. Among them, 98 known miRNAs and 31 novel miRNAs were differentially expressed after 0.5 h or 24 h of LN stress. Based on degradome data, 122 differential expressed miRNAs (DEmiRNAs) including 102 known miRNAs and 20 novel miRNAs targeted 203 genes, comprising 321 miRNA–target pairs. A big proportion of target genes were transcription factors and functional proteins, and most of the Gene Ontology terms were enriched in biological processes; moreover, one Kyoto Encyclopedia of Genes and Genomes term “ascorbate and aldarate metabolism” was significantly enriched. The expression patterns of six miRNAs and their corresponding target genes under LN stress were monitored. According to the potential function for targets of DEmiRNAs, a proposed regulatory network mediated by miRNA–target pairs under LN stress in B. luminifera was constructed. Taken together, these findings provide useful information to elucidate miRNA functions and establish a framework for exploring N signaling networks mediated by miRNAs in B. luminifera. It may provide new insights into the genetic engineering of the high use efficiency of N in forestry trees.
Collapse
|
41
|
Sugimura Y, Kawahara A, Maruyama H, Ezawa T. Plant Foraging Strategies Driven by Distinct Genetic Modules: Cross-Ecosystem Transcriptomics Approach. FRONTIERS IN PLANT SCIENCE 2022; 13:903539. [PMID: 35860530 PMCID: PMC9290524 DOI: 10.3389/fpls.2022.903539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
Plants have evolved diverse strategies for foraging, e.g., mycorrhizae, modification of root system architecture, and secretion of phosphatase. Despite extensive molecular/physiological studies on individual strategies under laboratory/greenhouse conditions, there is little information about how plants orchestrate these strategies in the field. We hypothesized that individual strategies are independently driven by corresponding genetic modules in response to deficiency/unbalance in nutrients. Roots colonized by mycorrhizal fungi, leaves, and root-zone soils were collected from 251 maize plants grown across the United States Corn Belt and Japan, which provided a large gradient of soil characteristics/agricultural practice and thus gene expression for foraging. RNA was extracted from the roots, sequenced, and subjected to gene coexpression network analysis. Nineteen genetic modules were defined and functionally characterized, from which three genetic modules, mycorrhiza formation, phosphate starvation response (PSR), and root development, were selected as those directly involved in foraging. The mycorrhizal module consists of genes responsible for mycorrhiza formation and was upregulated by both phosphorus and nitrogen deficiencies. The PSR module that consists of genes encoding phosphate transporter, secreted acid phosphatase, and enzymes involved in internal-phosphate recycling was regulated independent of the mycorrhizal module and strongly upregulated by phosphorus deficiency relative to nitrogen. The root development module that consists of regulatory genes for root development and cellulose biogenesis was upregulated by phosphorus and nitrogen enrichment. The expression of this module was negatively correlated with that of the mycorrhizal module, suggesting that root development is intrinsically an opposite strategy of mycorrhizae. Our approach provides new insights into understanding plant foraging strategies in complex environments at the molecular level.
Collapse
Affiliation(s)
- Yusaku Sugimura
- Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
| | - Ai Kawahara
- Health & Crop Sciences Research Laboratory, Sumitomo Chemical, Co., Ltd., Takarazuka, Japan
| | - Hayato Maruyama
- Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
| | - Tatsuhiro Ezawa
- Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
| |
Collapse
|
42
|
Chakraborty S, Harris JM. At the Crossroads of Salinity and Rhizobium-Legume Symbiosis. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2022; 35:540-553. [PMID: 35297650 DOI: 10.1094/mpmi-09-21-0231-fi] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Legume roots interact with soil bacteria rhizobia to develop nodules, de novo symbiotic root organs that host these rhizobia and are mini factories of atmospheric nitrogen fixation. Nodulation is a sophisticated developmental process and is sensitive to several abiotic factors, salinity being one of them. While salinity influences both the free-living partners, symbiosis is more vulnerable than other aspects of plant and microbe physiology, and the symbiotic interaction is strongly impaired even under moderate salinity. In this review, we tease apart the various known components of rhizobium-legume symbiosis and how they interact with salt stress. We focus primarily on the initial stages of symbiosis since we have a greater mechanistic understanding of the interaction at these stages.[Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.
Collapse
Affiliation(s)
- Sanhita Chakraborty
- Department of Plant Biology, University of Vermont, Burlington, VT 05405, U.S.A
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, U.S.A
| | - Jeanne M Harris
- Department of Plant Biology, University of Vermont, Burlington, VT 05405, U.S.A
| |
Collapse
|
43
|
Waseem M, Nkurikiyimfura O, Niyitanga S, Jakada BH, Shaheen I, Aslam MM. GRAS transcription factors emerging regulator in plants growth, development, and multiple stresses. Mol Biol Rep 2022; 49:9673-9685. [PMID: 35713799 DOI: 10.1007/s11033-022-07425-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 02/23/2022] [Accepted: 03/24/2022] [Indexed: 10/18/2022]
Abstract
GRAS transcription factors play multifunctional roles in plant growth, development, and resistance to various biotic and abiotic stresses. The structural and functional features of GRAS TFs have been unveiled in the last two decades. A typical GRAS protein contained a C-terminal GRAS domain with a highly variable N-terminal region. Studies on these TFs increase in numbers and are reported to be involved in various important developmental processes such as flowering, root formation, and stress responses. The GRAS TFs and hormone signaling crosstalk can be implicated in plant development and to stress responses. There are relatively few reports about GRAS TFs roles in plants, and no related reviews have been published. In this review, we summarized the features of GRAS TFs, their targets, and the roles these GRAS TFs playing in plant development and multiple stresses.
Collapse
Affiliation(s)
- Muhammad Waseem
- Department of Botany, University of Narowal, Narowal, Punjab, Pakistan. .,College of Life Science, Hainan University, Hainan, P.R. China.
| | - Oswald Nkurikiyimfura
- Key Lab for Bio-Pesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, 350002, Fuzhou, Fujian, China
| | - Sylvain Niyitanga
- Department of Plant Pathology, Fujian Agriculture and Forestry University, 350002, Fuzhou, China
| | - Bello Hassan Jakada
- College of Life Science, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, 350002, Fuzhou, Fujian, China
| | - Iffat Shaheen
- Faculty of Agriculture Science and Technology, Bahauddin Zakariya University, Multan, Pakistan
| | | |
Collapse
|
44
|
Li Y, Pei Y, Shen Y, Zhang R, Kang M, Ma Y, Li D, Chen Y. Progress in the Self-Regulation System in Legume Nodule Development-AON (Autoregulation of Nodulation). Int J Mol Sci 2022; 23:ijms23126676. [PMID: 35743118 PMCID: PMC9224500 DOI: 10.3390/ijms23126676] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 12/24/2022] Open
Abstract
The formation and development of legumes nodules requires a lot of energy. Legumes must strictly control the number and activity of nodules to ensure efficient energy distribution. The AON system can limit the number of rhizobia infections and nodule numbers through the systemic signal pathway network that the aboveground and belowground parts participate in together. It can also promote the formation of nodules when plants are deficient in nitrogen. The currently known AON pathway includes four parts: soil NO3− signal and Rhizobium signal recognition and transmission, CLE-SUNN is the negative regulation pathway, CEP-CRA2 is the positive regulation pathway and the miR2111/TML module regulates nodule formation and development. In order to ensure the biological function of this important approach, plants use a variety of plant hormones, polypeptides, receptor kinases, transcription factors and miRNAs for signal transmission and transcriptional regulation. This review summarizes and discusses the research progress of the AON pathway in Legume nodule development.
Collapse
|
45
|
Rehman NU, Abbas F, Imran M, Alam I, Imran M, Ullah I, Riaz M, Khan FU. Genome wide analysis of DWARF27 genes in soybean and functional characterization of GmD27c reveals eminent role of strigolactones in rhizobia interaction and nodulation in Glycine max. Mol Biol Rep 2022; 49:5405-5417. [PMID: 35025033 DOI: 10.1007/s11033-022-07127-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/04/2022] [Indexed: 10/19/2022]
Abstract
BACKGROUND Strigolactones (SLs) are newly identified hormones and their biosynthesis is stimulated under phosphate deprivation and accomplished by the action of several enzymes, including the beta-carotene isomerase DWARF27 (D27). Expression of D27 is well renowned to respond to phosphate insufficiency. However, the identification and functional analysis of the carotenoid isomerase D27 genes are not elucidated in soybean. METHODS AND RESULTS A total of six D27 genes were identified in the soybean genome and designated on the basis of chromosomal localization. According to the findings, these genes were irregularly distributed on chromosomes, and segmental repetition led to the expansion of the soybean GmD27 gene family. Based on a neighbor-joining phylogenetic tree, the predicted D27 proteins of soybean were divided into three clades. Based on RNA seq data analysis, GmD27 genes were differently expressed in various tissues but GmD27c was the highest. Therefore, GmD27c was chosen for the additional functional study due to its rather obvious transcription in nodulation and roots. RT-qPCR results showed that GmD27c was highly expressed in different nodule stages and in response to rhizobia infection. Functional characterization of GmD27c revealed that overexpression of GmD27c led to higher nodule number, while GmD27c knockdown caused fewer nodules compared to GUS control. Furthermore, GmD27c overexpressed and knockdown lines oppositely regulated the expression of numerous nodulation genes, which are vital for the development of nodules. CONCLUSION This study not only discovered that SL biosynthesis and signaling pathway genes are conserved, but it also revealed that SL biosynthesis gene GmD27c and legume rhizobia have close interactions in controlling plant nodule number.
Collapse
Affiliation(s)
- Naveed Ur Rehman
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Farhat Abbas
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Muhammad Imran
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Intikhab Alam
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Muhammad Imran
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Ihteram Ullah
- Department of Plant Breeding & Genetics, Gomal University, Dera Ismail Khan, Pakistan
| | - Muhammad Riaz
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresource, Root Biology Center, College of Natural Resource and Environment, South China Agricultural University, Guangzhou, China
| | - Fahim Ullah Khan
- Department of Agriculture, Hazara University, Mansehra, Pakistan.
| |
Collapse
|
46
|
|
47
|
Khan Y, Xiong Z, Zhang H, Liu S, Yaseen T, Hui T. Expression and roles of GRAS gene family in plant growth, signal transduction, biotic and abiotic stress resistance and symbiosis formation-a review. PLANT BIOLOGY (STUTTGART, GERMANY) 2022; 24:404-416. [PMID: 34854195 DOI: 10.1111/plb.13364] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 10/15/2021] [Indexed: 06/13/2023]
Abstract
The GRAS (derived from GAI, RGA and SCR) gene family consists of plant-specific genes, works as a transcriptional regulator and plays a key part in the regulation of plant growth and development. The past decade has witnessed significant progress in understanding and advances on GRAS transcription factors in various plants. A notable concern is to what extent the mechanisms found in plants, particularly crops, are shared by other species, and what other characteristics are dependent on GRAS transcription factor (TFS)-mediated gene expression. GRAS are involved in many processes that are intimately linked to plant growth regulation. However, GRAS also perform additional roles against environmental stresses, allowing plants to function more efficiently. GRAS increase plant growth and development by improving several physiological processes, such as phytohormone, biosynthetic and signalling pathways. Furthermore, the GRAS gene family plays an important role in response to abiotic stresses, e.g. photooxidative stress. Moreover, evidence shows the involvement of GRAS in arbuscule development during plant-mycorrhiza associations. In this review, the diverse roles of GRAS in plant systems are highlighted that could be useful in enhancing crop productivity through genetic modification, especially of crops. This is the first review to report the role and function of the GRAS gene family in plant systems. Furthermore, a large number of studies are reviewed, and several limitations and research gaps identified that must be addressed in future studies.
Collapse
Affiliation(s)
- Y Khan
- Key Laboratory of Plant Nutrition and Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resource and Environment, Northwest A&F University, Yangling, Shaanxi, China
| | - Z Xiong
- Key Laboratory of Plant Nutrition and Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resource and Environment, Northwest A&F University, Yangling, Shaanxi, China
| | - H Zhang
- Key Laboratory of Plant Nutrition and Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resource and Environment, Northwest A&F University, Yangling, Shaanxi, China
| | - S Liu
- Key Laboratory of Plant Nutrition and Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resource and Environment, Northwest A&F University, Yangling, Shaanxi, China
| | - T Yaseen
- Department of Botany, Bacha Khan University, Charsadda, Khyber Pakhtunkhwa, Pakistan
| | - T Hui
- Key Laboratory of Plant Nutrition and Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resource and Environment, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
48
|
Lu L, Diao Z, Yang D, Wang X, Zheng X, Xiang X, Xiao Y, Chen Z, Wang W, Wu Y, Tang D, Li S. The 14-3-3 protein GF14c positively regulates immunity by modulating the protein homoeostasis of the GRAS protein OsSCL7 in rice. PLANT, CELL & ENVIRONMENT 2022; 45:1065-1081. [PMID: 35129212 DOI: 10.1111/pce.14278] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 01/07/2022] [Accepted: 01/19/2022] [Indexed: 06/14/2023]
Abstract
Various types of transcription factors have been reported to be involved in plant-pathogen interactions by regulating defence-related genes. GRAS proteins, plant- specific transcription factors, have been shown to play essential roles in plant growth, development and stress responses. By performing a transcriptome study on rice early defence responses to Magnaporthe oryzae, we identified a GRAS protein, OsSCL7, which was induced by M. oryzae infection. We characterized the function of OsSCL7 in rice disease resistance. OsSCL7 was upregulated upon exposure to M. oryzae and pathogen-associated molecular pattern treatments, and knocking out OsSCL7 resulted in decreased disease resistance of rice to M. oryzae. In contrast, overexpression of OsSCL7 could improve rice disease resistance to M. oryzae. OsSCL7 was mainly localized in the nucleus and showed transcriptional activity. OsSCL7 can interact with GF14c, a 14-3-3 protein, and loss-of-function GF14c leads to enhanced susceptibility to M. oryzae. Additionally, OsSCL7 protein levels were reduced in the gf14c mutant and knocking out OsSCL7 affected the expression of a series of defence-related genes. Taken together, these findings uncover the important roles of OsSCL7 and GF14c in plant immunity and a potential mechanism by which plants fine-tune immunity by regulating the protein stability of a GRAS protein via a 14-3-3 protein.
Collapse
Affiliation(s)
- Ling Lu
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding, and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhijuan Diao
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding, and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Dewei Yang
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding, and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, China
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Xun Wang
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding, and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xingxing Zheng
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding, and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xinquan Xiang
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding, and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yueping Xiao
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding, and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhiwei Chen
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding, and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wei Wang
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding, and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yunkun Wu
- College of Life Science, Fujian Normal University, Fuzhou, China
| | - Dingzhong Tang
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding, and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shengping Li
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding, and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
49
|
Ho-Plágaro T, García-Garrido JM. Multifarious and Interactive Roles of GRAS Transcription Factors During Arbuscular Mycorrhiza Development. FRONTIERS IN PLANT SCIENCE 2022; 13:836213. [PMID: 35419017 PMCID: PMC8996055 DOI: 10.3389/fpls.2022.836213] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/10/2022] [Indexed: 06/01/2023]
Abstract
Arbuscular mycorrhiza (AM) is a mutualistic symbiotic interaction between plant roots and AM fungi (AMF). This interaction is highly beneficial for plant growth, development and fitness, which has made AM symbiosis the focus of basic and applied research aimed at increasing plant productivity through sustainable agricultural practices. The creation of AM requires host root cells to undergo significant structural and functional modifications. Numerous studies of mycorrhizal plants have shown that extensive transcriptional changes are induced in the host during all stages of colonization. Advances have recently been made in identifying several plant transcription factors (TFs) that play a pivotal role in the transcriptional regulation of AM development, particularly those belonging to the GRAS TF family. There is now sufficient experimental evidence to suggest that GRAS TFs are capable to establish intra and interspecific interactions, forming a transcriptional regulatory complex that controls essential processes in the AM symbiosis. In this minireview, we discuss the integrative role of GRAS TFs in the regulation of the complex genetic re-programming determining AM symbiotic interactions. Particularly, research being done shows the relevance of GRAS TFs in the morphological and developmental changes required for the formation and turnover of arbuscules, the fungal structures where the bidirectional nutrient translocation occurs.
Collapse
|
50
|
Xu Y, Liu F, Wu F, Zhao M, Zou R, Wu J, Li X. A novel SCARECROW-LIKE3 transcription factor LjGRAS36 in Lotus japonicus regulates the development of arbuscular mycorrhizal symbiosis. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2022; 28:573-583. [PMID: 35465207 PMCID: PMC8986927 DOI: 10.1007/s12298-022-01161-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 02/11/2022] [Accepted: 03/02/2022] [Indexed: 06/14/2023]
Abstract
UNLABELLED The symbiosis with arbuscular mycorrhizal (AM) fungi improves plants' nutrient uptake. During this process, transcription factors have been highlighted to play crucial roles. Members of the GRAS transcription factor gene family have been reported involved in AM symbiosis, but little is known about SCARECROW-LIKE3 (SCL3) genes belonging to this family in Lotus japonicus. In this study, 67 LjGRAS genes were identified from the L. japonicus genome, seven of which were clustered in the SCL3 group. Three of the seven LjGRAS genes expression levels were upregulated by AM fungal inoculation, and our biochemical results showed that the expression of LjGRAS36 was specifically induced by AM colonization. Functional loss of LjGRAS36 in mutant ljgras36 plants exhibited a significantly reduced mycorrhizal colonization rate and arbuscular size. Transcriptome analysis showed a deficiency of LjGRAS36 led to the dysregulation of the gibberellic acid signal pathway associated with AM symbiosis. Together, this study provides important insights for understanding the important potential function of SCL3 genes in regulating AM symbiotic development. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-022-01161-z.
Collapse
Affiliation(s)
- Yunjian Xu
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Yunnan University, 650500 Kunming, China
- Key Laboratory of Soil Ecology and Health in Universities of Yunnan Province, School of Ecology and Environmental Science, Yunnan University, 650500 Kunming, China
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, 230036 Hefei, China
| | - Fang Liu
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, 230036 Hefei, China
- School of Agriculture, Yunnan University, 650500 Kunming, China
| | - Fulang Wu
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, 230036 Hefei, China
| | - Manli Zhao
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, 230036 Hefei, China
| | - Ruifan Zou
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, 230036 Hefei, China
| | - Jianping Wu
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Yunnan University, 650500 Kunming, China
- Key Laboratory of Soil Ecology and Health in Universities of Yunnan Province, School of Ecology and Environmental Science, Yunnan University, 650500 Kunming, China
| | - Xiaoyu Li
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, 230036 Hefei, China
| |
Collapse
|