1
|
Wu J, Zhou M, Cheng Y, Chen X, Yan S, Deng S. Genome-Wide Analysis of C/S1-bZIP Subfamilies in Populus tomentosa and Unraveling the Role of PtobZIP55/21 in Response to Low Energy. Int J Mol Sci 2024; 25:5163. [PMID: 38791204 PMCID: PMC11120861 DOI: 10.3390/ijms25105163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/26/2024] [Accepted: 05/04/2024] [Indexed: 05/26/2024] Open
Abstract
C/S1 basic leucine zipper (bZIP) transcription factors are essential for plant survival under energy deficiency. However, studies on the responses of C/S1-bZIPs to low energy in woody plants have not yet been reported. In this study, members of C/S1-bZIP subfamilies in Populus tomentosa were systematically analyzed using bioinformatic approaches. Four C-bZIPs and 10 S1-bZIPs were identified, and their protein properties, phylogenetic relationships, gene structures, conserved motifs, and uORFs were systematically investigated. In yeast two-hybrid assays, direct physical interactions between C-bZIP and S1-bZIP members were observed, highlighting their potential functional synergy. Moreover, expression profile analyses revealed that low energy induced transcription levels of most C/S1-bZIP members, with bZIP55 and bZIP21 (a homolog of bZIP55) exhibiting particularly significant upregulation. When the expression of bZIP55 and bZIP21 was co-suppressed using artificial microRNA mediated gene silencing in transgenic poplars, root growth was promoted. Further analyses revealed that bZIP55/21 negatively regulated the root development of P. tomentosa in response to low energy. These findings provide insights into the molecular mechanisms by which C/S1-bZIPs regulate poplar growth and development in response to energy deprivation.
Collapse
Affiliation(s)
| | | | | | | | | | - Shurong Deng
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; (J.W.); (M.Z.); (Y.C.); (X.C.); (S.Y.)
| |
Collapse
|
2
|
TraB family proteins are components of ER-mitochondrial contact sites and regulate ER-mitochondrial interactions and mitophagy. Nat Commun 2022; 13:5658. [PMID: 36163196 PMCID: PMC9513094 DOI: 10.1038/s41467-022-33402-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 09/16/2022] [Indexed: 01/18/2023] Open
Abstract
ER-mitochondrial contact sites (EMCSs) are important for mitochondrial function. Here, we have identified a EMCS complex, comprising a family of uncharacterised mitochondrial outer membrane proteins, TRB1, TRB2, and the ER protein, VAP27-1. In Arabidopsis, there are three TraB family isoforms and the trb1/trb2 double mutant exhibits abnormal mitochondrial morphology, strong starch accumulation, and impaired energy metabolism, indicating that these proteins are essential for normal mitochondrial function. Moreover, TRB1 and TRB2 proteins also interact with ATG8 in order to regulate mitochondrial degradation (mitophagy). The turnover of depolarised mitochondria is significantly reduced in both trb1/trb2 and VAP27 mutants (vap27-1,3,4,6) under mitochondrial stress conditions, with an increased population of dysfunctional mitochondria present in the cytoplasm. Consequently, plant recovery after stress is significantly perturbed, suggesting that TRB1-regulated mitophagy and ER-mitochondrial interaction are two closely related processes. Taken together, we ascribe a dual role to TraB family proteins which are component of the EMCS complex in eukaryotes, regulating both interaction of the mitochondria to the ER and mitophagy.
Collapse
|
3
|
Tarasenko TA, Koulintchenko MV. Heterogeneity of the Mitochondrial Population in Cells of Plants and Other Organisms. Mol Biol 2022. [DOI: 10.1134/s0026893322020157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
4
|
Total and Mitochondrial Transcriptomic and Proteomic Insights into Regulation of Bioenergetic Processes for Shoot Fast-Growth Initiation in Moso Bamboo. Cells 2022; 11:cells11071240. [PMID: 35406802 PMCID: PMC8997719 DOI: 10.3390/cells11071240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/02/2022] [Accepted: 04/04/2022] [Indexed: 11/16/2022] Open
Abstract
As a fast-growing, woody grass plant, Moso bamboo (Phyllostachys edulis) can supply edible shoots, building materials, fibrous raw material, raw materials for crafts and furniture and so on within a relatively short time. Rapid growth of Moso bamboo occurs after the young bamboo shoots are covered with a shell and emerge from the ground. However, the molecular reactions of bioenergetic processes essential for fast growth remain undefined. Herein, total and mitochondrial transcriptomes and proteomes were compared between spring and winter shoots. Numerous key genes and proteins responsible for energy metabolism were significantly upregulated in spring shoots, including those involved in starch and sucrose catabolism, glycolysis, the pentose phosphate pathway, the tricarboxylic acid cycle and oxidative phosphorylation. Accordingly, significant decreases in starch and soluble sugar, higher ATP content and higher rates of respiration and glycolysis were identified in spring shoots. Further, the upregulated genes and proteins related to mitochondrial fission significantly increased the number of mitochondria, indirectly promoting intracellular energy metabolism. Moreover, enhanced alternate-oxidase and uncoupled-protein pathways in winter shoots showed that an efficient energy-dissipating system was important for winter shoots to adapt to the low-temperature environment. Heterologous expression of PeAOX1b in Arabidopsis significantly affected seedling growth and enhanced cold-stress tolerance. Overall, this study highlights the power of comparing total and mitochondrial omics and integrating physiochemical data to understand how bamboo initiates fast growth through modulating bioenergetic processes.
Collapse
|
5
|
Kang BH, Anderson CT, Arimura SI, Bayer E, Bezanilla M, Botella MA, Brandizzi F, Burch-Smith TM, Chapman KD, Dünser K, Gu Y, Jaillais Y, Kirchhoff H, Otegui MS, Rosado A, Tang Y, Kleine-Vehn J, Wang P, Zolman BK. A glossary of plant cell structures: Current insights and future questions. THE PLANT CELL 2022; 34:10-52. [PMID: 34633455 PMCID: PMC8846186 DOI: 10.1093/plcell/koab247] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 09/29/2021] [Indexed: 05/03/2023]
Abstract
In this glossary of plant cell structures, we asked experts to summarize a present-day view of plant organelles and structures, including a discussion of outstanding questions. In the following short reviews, the authors discuss the complexities of the plant cell endomembrane system, exciting connections between organelles, novel insights into peroxisome structure and function, dynamics of mitochondria, and the mysteries that need to be unlocked from the plant cell wall. These discussions are focused through a lens of new microscopy techniques. Advanced imaging has uncovered unexpected shapes, dynamics, and intricate membrane formations. With a continued focus in the next decade, these imaging modalities coupled with functional studies are sure to begin to unravel mysteries of the plant cell.
Collapse
Affiliation(s)
- Byung-Ho Kang
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Charles T Anderson
- Department of Biology and Center for Lignocellulose Structure and Formation, The Pennsylvania State University, University Park, Pennsylvania 16802 USA
| | - Shin-ichi Arimura
- Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
| | - Emmanuelle Bayer
- Université de Bordeaux, CNRS, Laboratoire de Biogenèse Membranaire, UMR 5200, Villenave d'Ornon F-33140, France
| | - Magdalena Bezanilla
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755, USA
| | - Miguel A Botella
- Departamento de Biología Molecular y Bioquímica, Instituto de Hortifruticultura Subtropical y Mediterránea “La Mayora,” Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Universidad de Málaga, Málaga 29071, Spain
| | - Federica Brandizzi
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, Michigan 48824 USA
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824, USA
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan 48824, USA
| | - Tessa M Burch-Smith
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - Kent D Chapman
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, Texas 76203, USA
| | - Kai Dünser
- Faculty of Biology, Chair of Molecular Plant Physiology (MoPP) University of Freiburg, Freiburg 79104, Germany
- Center for Integrative Biological Signalling Studies (CIBSS), University of Freiburg, Freiburg 79104, Germany
| | - Yangnan Gu
- Department of Plant and Microbial Biology, Innovative Genomics Institute, University of California, Berkeley, California 94720, USA
| | - Yvon Jaillais
- Laboratoire Reproduction et Développement des Plantes (RDP), Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Lyon, France
| | - Helmut Kirchhoff
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164, USA
| | - Marisa S Otegui
- Department of Botany and Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Wisconsin 53706, USA
| | - Abel Rosado
- Department of Botany, University of British Columbia, Vancouver V6T1Z4, Canada
| | - Yu Tang
- Department of Plant and Microbial Biology, Innovative Genomics Institute, University of California, Berkeley, California 94720, USA
| | - Jürgen Kleine-Vehn
- Faculty of Biology, Chair of Molecular Plant Physiology (MoPP) University of Freiburg, Freiburg 79104, Germany
- Center for Integrative Biological Signalling Studies (CIBSS), University of Freiburg, Freiburg 79104, Germany
| | - Pengwei Wang
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Bethany Karlin Zolman
- Department of Biology, University of Missouri, St. Louis, St. Louis, Missouri 63121, USA
| |
Collapse
|
6
|
Mehlhorn DG, Asseck LY, Grefen C. Looking for a safe haven: tail-anchored proteins and their membrane insertion pathways. PLANT PHYSIOLOGY 2021; 187:1916-1928. [PMID: 35235667 PMCID: PMC8644595 DOI: 10.1093/plphys/kiab298] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/05/2021] [Indexed: 06/14/2023]
Abstract
Insertion of membrane proteins into the lipid bilayer is a crucial step during their biosynthesis. Eukaryotic cells face many challenges in directing these proteins to their predestined target membrane. The hydrophobic signal peptide or transmembrane domain (TMD) of the nascent protein must be shielded from the aqueous cytosol and its target membrane identified followed by transport and insertion. Components that evolved to deal with each of these challenging steps range from chaperones to receptors, insertases, and sophisticated translocation complexes. One prominent translocation pathway for most proteins is the signal recognition particle (SRP)-dependent pathway which mediates co-translational translocation of proteins across or into the endoplasmic reticulum (ER) membrane. This textbook example of protein insertion is stretched to its limits when faced with secretory or membrane proteins that lack an amino-terminal signal sequence or TMD. Particularly, a large group of so-called tail-anchored (TA) proteins that harbor a single carboxy-terminal TMD require an alternative, post-translational insertion route into the ER membrane. In this review, we summarize the current research in TA protein insertion with a special focus on plants, address challenges, and highlight future research avenues.
Collapse
Affiliation(s)
- Dietmar G Mehlhorn
- Faculty of Biology and Biotechnology, Molecular and Cellular Botany, University of Bochum, Universitätsstraße 150, 44780 Bochum, Germany
| | - Lisa Y Asseck
- Faculty of Biology and Biotechnology, Molecular and Cellular Botany, University of Bochum, Universitätsstraße 150, 44780 Bochum, Germany
| | - Christopher Grefen
- Faculty of Biology and Biotechnology, Molecular and Cellular Botany, University of Bochum, Universitätsstraße 150, 44780 Bochum, Germany
| |
Collapse
|
7
|
Rose RJ. Contribution of Massive Mitochondrial Fusion and Subsequent Fission in the Plant Life Cycle to the Integrity of the Mitochondrion and Its Genome. Int J Mol Sci 2021; 22:5429. [PMID: 34063907 PMCID: PMC8196625 DOI: 10.3390/ijms22115429] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 12/24/2022] Open
Abstract
Plant mitochondria have large genomes to house a small number of key genes. Most mitochondria do not contain a whole genome. Despite these latter characteristics, the mitochondrial genome is faithfully maternally inherited. To maintain the mitochondrial genes-so important for energy production-the fusion and fission of mitochondria are critical. Fission in plants is better understood than fusion, with the dynamin-related proteins (DRP 3A and 3B) driving the constriction of the mitochondrion. How the endoplasmic reticulum and the cytoskeleton are linked to the fission process is not yet fully understood. The fusion mechanism is less well understood, as obvious orthologues are not present. However, there is a recently described gene, MIRO2, that appears to have a significant role, as does the ER and cytoskeleton. Massive mitochondrial fusion (MMF or hyperfusion) plays a significant role in plants. MMF occurs at critical times of the life cycle, prior to flowering, in the enlarging zygote and at germination, mixing the cells' mitochondrial population-the so-called "discontinuous whole". MMF in particular aids genome repair, the conservation of critical genes and possibly gives an energy boost to important stages of the life cycle. MMF is also important in plant regeneration, an important component of plant biotechnology.
Collapse
Affiliation(s)
- Ray J Rose
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia
| |
Collapse
|
8
|
ROS Homeostasis and Plant Salt Tolerance: Plant Nanobiotechnology Updates. SUSTAINABILITY 2021. [DOI: 10.3390/su13063552] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Salinity is an issue impairing crop production across the globe. Under salinity stress, besides the osmotic stress and Na+ toxicity, ROS (reactive oxygen species) overaccumulation is a secondary stress which further impairs plant performance. Chloroplasts, mitochondria, the apoplast, and peroxisomes are the main ROS generation sites in salt-stressed plants. In this review, we summarize ROS generation, enzymatic and non-enzymatic antioxidant systems in salt-stressed plants, and the potential for plant biotechnology to maintain ROS homeostasis. Overall, this review summarizes the current understanding of ROS homeostasis of salt-stressed plants and highlights potential applications of plant nanobiotechnology to enhance plant tolerance to stresses.
Collapse
|
9
|
Kim JH, Jang CS. E3 ligase, the Oryza sativa salt-induced RING finger protein 4 (OsSIRP4), negatively regulates salt stress responses via degradation of the OsPEX11-1 protein. PLANT MOLECULAR BIOLOGY 2021; 105:231-245. [PMID: 33079323 DOI: 10.1007/s11103-020-01084-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 10/11/2020] [Indexed: 05/20/2023]
Abstract
OsSIRP4 is an E3 ligase that acts as a negative regulator in the plant response to salt stress via the 26S proteasomal system regulation of substrate proteins, OsPEX11-1, which it provides important information for adaptation and regulation in rice. Plants are sessile organisms that can be exposed to environmental stress. Plants alter their cellular processes to survive under potentially unfavorable conditions. Protein ubiquitination is an important post-translational modification that has a crucial role in various cellular signaling processes in abiotic stress response. In this study, we characterized Oryza sativa salt-induced RING finger protein 4, OsSIRP4, a membrane and cytosol-localized RING E3 ligase in rice. OsSIRP4 transcripts were highly induced under salt stress in rice. We found that OsSIRP4 possesses E3 ligase activity; however, no E3 ligase activity was observed with a single amino acid substitution (OsSIRP4C269A). The results of the yeast two hybrid system, in vitro pull-down assay, BiFC analysis, in vitro ubiquitination assay, and in vitro degradation assay indicate that OsSIRP4 regulates degradation of a substrate protein, OsPEX11-1 (Oryza sativa peroxisomal biogenesis factor 11-1) via the 26S proteasomal system. Phenotypic analysis of OsSIRP4-overexpressing plants demonstrated hypersensitivity to salt response compared to that of the wild type and mutated OsSIRP4C269A plants. In addition, OsSIRP4-overexpressing plants exhibited significant low enzyme activities of superoxide dismutase, catalase, and peroxidase, and accumulation of proline and soluble sugar, but a high level of H2O2. Furthermore, qRT data on transgenic plants suggest that OsSIRP4 acted as a negative regulator of salt response by diminishing the expression of genes related to Na+/K+ homeostasis (AtSOS1, AtAKT1, AtNHX1, and AtHKT1;1) in transgenic plants under salt stress. These results suggest that OsSIRP4 plays a negative regulatory role in response to salt stress by modulating the target protein levels.
Collapse
Affiliation(s)
- Ju Hee Kim
- Plant Genomics Laboratory, Department of Bio-Resources Sciences, Graduate School, Kangwon National University, Chuncheon, 200-713, South Korea
| | - Cheol Seong Jang
- Plant Genomics Laboratory, Department of Bio-Resources Sciences, Graduate School, Kangwon National University, Chuncheon, 200-713, South Korea.
| |
Collapse
|
10
|
Ren K, Feng L, Sun S, Zhuang X. Plant Mitophagy in Comparison to Mammals: What Is Still Missing? Int J Mol Sci 2021; 22:1236. [PMID: 33513816 PMCID: PMC7865480 DOI: 10.3390/ijms22031236] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/13/2021] [Accepted: 01/20/2021] [Indexed: 12/21/2022] Open
Abstract
Mitochondrial homeostasis refers to the balance of mitochondrial number and quality in a cell. It is maintained by mitochondrial biogenesis, mitochondrial fusion/fission, and the clearance of unwanted/damaged mitochondria. Mitophagy represents a selective form of autophagy by sequestration of the potentially harmful mitochondrial materials into a double-membrane autophagosome, thus preventing the release of death inducers, which can trigger programmed cell death (PCD). Recent advances have also unveiled a close interconnection between mitophagy and mitochondrial dynamics, as well as PCD in both mammalian and plant cells. In this review, we will summarize and discuss recent findings on the interplay between mitophagy and mitochondrial dynamics, with a focus on the molecular evidence for mitophagy crosstalk with mitochondrial dynamics and PCD.
Collapse
Affiliation(s)
| | | | | | - Xiaohong Zhuang
- Centre for Cell and Developmental Biology, State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China; (K.R.); (L.F.); (S.S.)
| |
Collapse
|
11
|
White RR, Lin C, Leaves I, Castro IG, Metz J, Bateman BC, Botchway SW, Ward AD, Ashwin P, Sparkes I. Miro2 tethers the ER to mitochondria to promote mitochondrial fusion in tobacco leaf epidermal cells. Commun Biol 2020; 3:161. [PMID: 32246085 PMCID: PMC7125145 DOI: 10.1038/s42003-020-0872-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 02/25/2020] [Indexed: 12/19/2022] Open
Abstract
Mitochondria are highly pleomorphic, undergoing rounds of fission and fusion. Mitochondria are essential for energy conversion, with fusion favouring higher energy demand. Unlike fission, the molecular components involved in mitochondrial fusion in plants are unknown. Here, we show a role for the GTPase Miro2 in mitochondria interaction with the ER and its impacts on mitochondria fusion and motility. Mutations in AtMiro2's GTPase domain indicate that the active variant results in larger, fewer mitochondria which are attached more readily to the ER when compared with the inactive variant. These results are contrary to those in metazoans where Miro predominantly controls mitochondrial motility, with additional GTPases affecting fusion. Synthetically controlling mitochondrial fusion rates could fundamentally change plant physiology by altering the energy status of the cell. Furthermore, altering tethering to the ER could have profound effects on subcellular communication through altering the exchange required for pathogen defence.
Collapse
Affiliation(s)
| | - Congping Lin
- Department of Mathematics, Harrison Building, University of Exeter, Exeter, EX4 4QF, UK
- Center for Mathematical Sciences, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Lab of Engineering Modeling and Scientific Computing, Huazhong University of Science and Technology, Wuhan, China
| | - Ian Leaves
- Biosciences, CLES, Exeter University, Exeter, EX4 4QD, UK
| | - Inês G Castro
- Biosciences, CLES, Exeter University, Exeter, EX4 4QD, UK
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Jeremy Metz
- Biosciences, CLES, Exeter University, Exeter, EX4 4QD, UK
| | - Benji C Bateman
- Central Laser Facility, Science and Technology Facilities Council, Research Complex at Harwell, Didcot, Oxon, OX11 0FA, UK
| | - Stanley W Botchway
- Central Laser Facility, Science and Technology Facilities Council, Research Complex at Harwell, Didcot, Oxon, OX11 0FA, UK
| | - Andrew D Ward
- Central Laser Facility, Science and Technology Facilities Council, Research Complex at Harwell, Didcot, Oxon, OX11 0FA, UK
| | - Peter Ashwin
- Department of Mathematics, Harrison Building, University of Exeter, Exeter, EX4 4QF, UK
| | - Imogen Sparkes
- Biosciences, CLES, Exeter University, Exeter, EX4 4QD, UK.
- School of Biological Sciences, University of Bristol, Bristol Life Sciences Building, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK.
| |
Collapse
|
12
|
Aung K, Kim P, Li Z, Joe A, Kvitko B, Alfano JR, He SY. Pathogenic Bacteria Target Plant Plasmodesmata to Colonize and Invade Surrounding Tissues. THE PLANT CELL 2020; 32:595-611. [PMID: 31888968 PMCID: PMC7054039 DOI: 10.1105/tpc.19.00707] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 11/25/2019] [Accepted: 12/18/2019] [Indexed: 05/03/2023]
Abstract
A hallmark of multicellular organisms is their ability to maintain physiological homeostasis by communicating among cells, tissues, and organs. In plants, intercellular communication is largely dependent on plasmodesmata (PD), which are membrane-lined channels connecting adjacent plant cells. Upon immune stimulation, plants close PD as part of their immune responses. Here, we show that the bacterial pathogen Pseudomonas syringae deploys an effector protein, HopO1-1, that modulates PD function. HopO1-1 is required for P. syringae to spread locally to neighboring tissues during infection. Expression of HopO1-1 in Arabidopsis (Arabidopsis thaliana) increases the distance of PD-dependent molecular flux between neighboring plant cells. Being a putative ribosyltransferase, the catalytic activity of HopO1-1 is required for regulation of PD. HopO1-1 physically interacts with and destabilizes the plant PD-located protein PDLP7 and possibly PDLP5. Both PDLPs are involved in bacterial immunity. Our findings reveal that a pathogenic bacterium utilizes an effector to manipulate PD-mediated host intercellular communication for maximizing the spread of bacterial infection.
Collapse
Affiliation(s)
- Kyaw Aung
- Department of Energy, Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, Iowa 50011
| | - Panya Kim
- Center for Plant Science Innovation, University of Nebraska, Lincoln, Nebraska 68588
| | - Zhongpeng Li
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, Iowa 50011
| | - Anna Joe
- Center for Plant Science Innovation, University of Nebraska, Lincoln, Nebraska 68588
| | - Brian Kvitko
- Department of Energy, Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824
| | - James R Alfano
- Center for Plant Science Innovation, University of Nebraska, Lincoln, Nebraska 68588
- Department of Plant Pathology, University of Nebraska, Lincoln, Nebraska 68588
| | - Sheng Yang He
- Department of Energy, Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824
- Howard Hughes Medical Institute, Michigan State University, East Lansing, Michigan 48824
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824
- Plant Resilience Institute, Michigan State University, East Lansing, Michigan 48824
| |
Collapse
|
13
|
Hinojosa L, Sanad MNME, Jarvis DE, Steel P, Murphy K, Smertenko A. Impact of heat and drought stress on peroxisome proliferation in quinoa. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 99:1144-1158. [PMID: 31108001 DOI: 10.1111/tpj.14411] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 03/07/2019] [Accepted: 05/13/2019] [Indexed: 05/21/2023]
Abstract
Although peroxisomes play a key role in plant metabolism under both normal and stressful growth conditions, the impact of drought and heat stress on the peroxisomes remains unknown. Quinoa represents an informative system for dissecting the impact of abiotic stress on peroxisome proliferation because it is adapted to marginal environments. Here we determined the correlation of peroxisome abundance with physiological responses and yield under heat, drought and heat plus drought stresses in eight genotypes of quinoa. We found that all stresses caused a reduction in stomatal conductance and yield. Furthermore, H2 O2 content increased under drought and heat plus drought. Principal component analysis demonstrated that peroxisome abundance correlated positively with H2 O2 content in leaves and correlated negatively with yield. Pearson correlation coefficient for yield and peroxisome abundance (r = -0.59) was higher than for commonly used photosynthetic efficiency (r = 0.23), but comparable to those for classical stress indicators such as soil moisture content (r = 0.51) or stomatal conductance (r = 0.62). Our work established peroxisome abundance as a cellular sensor for measuring responses to heat and drought stress in the genetically diverse populations. As heat waves threaten agricultural productivity in arid climates, our findings will facilitate identification of genetic markers for improving yield of crops under extreme weather patterns.
Collapse
Affiliation(s)
- Leonardo Hinojosa
- Department of Crop and Soil Sciences, Washington State University, PO Box 646340, Pullman, WA, 99164, USA
| | - Marwa N M E Sanad
- Institute of Biological Chemistry, Washington State University, PO Box 646340, Pullman, WA, 99164, USA
- Department of Genetics and Cytology, National Research Centre, Giza, Egypt
| | - David E Jarvis
- Plant & Wildlife Sciences, Brigham Young University, Provo, UT, 84602, USA
| | - Patrick Steel
- Department of Chemistry, Durham University, Durham, UK
| | - Kevin Murphy
- Department of Crop and Soil Sciences, Washington State University, PO Box 646340, Pullman, WA, 99164, USA
| | - Andrei Smertenko
- Institute of Biological Chemistry, Washington State University, PO Box 646340, Pullman, WA, 99164, USA
| |
Collapse
|
14
|
Pan R, Liu J, Hu J. Peroxisomes in plant reproduction and seed-related development. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2019; 61:784-802. [PMID: 30578613 DOI: 10.1111/jipb.12765] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 12/18/2018] [Indexed: 05/21/2023]
Abstract
Peroxisomes are small multi-functional organelles essential for plant development and growth. Plant peroxisomes play various physiological roles, including phytohormone biosynthesis, lipid catabolism, reactive oxygen species metabolism and many others. Mutant analysis demonstrated key roles for peroxisomes in plant reproduction, seed development and germination and post-germinative seedling establishment; however, the underlying mechanisms remain to be fully elucidated. This review summarizes findings that reveal the importance and complexity of the role of peroxisomes in the pertinent processes. The β-oxidation pathway plays a central role, whereas other peroxisomal pathways are also involved. Understanding the biochemical and molecular mechanisms of these peroxisomal functions will be instrumental to the improvement of crop plants.
Collapse
Affiliation(s)
- Ronghui Pan
- Seed Science Center, Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Jun Liu
- Seed Science Center, Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Jianping Hu
- MSU-Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, USA
- Plant Biology Department, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
15
|
Lyu L, Bi Y, Li S, Xue H, Zhang Z, Prusky DB. Early Defense Responses Involved in Mitochondrial Energy Metabolism and Reactive Oxygen Species Accumulation in Harvested Muskmelons Infected by Trichothecium roseum. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:4337-4345. [PMID: 30865450 DOI: 10.1021/acs.jafc.8b06333] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Mitochondria play an essential part in fighting against pathogen infection in the defense responses of fruits. In this study, we investigated the reactive oxygen species (ROS) production, energy metabolism, and changes of mitochondrial proteins in harvested muskmelon fruits ( Cucumis melo cv. Yujinxiang) inoculated with Trichothecium roseum. The results indicated that the fungal infection obviously induced the H2O2 accumulation in mitochondria. Enzyme activities were inhibited in the first 6 h postinoculation (hpi), including succinic dehydrogenase, cytochrome c oxidase, H+-ATPase, and Ca2+-ATPase. However, the activities of Ca2+-ATPase and H+-ATPase and the contents of intracellular adenosine triphosphate (ATP) were improved to a higher level at 12 hpi. A total of 42 differentially expressed proteins were identified through tandem mass tags-based proteomic analyses, which are mainly involved in energy metabolism, stress responses and redox homeostasis, glycolysis and tricarboxylic acid cycle, and transporter and mitochondria dysfunction. Taken together, our results suggest that mitochondria play crucial roles in the early defense responses of muskmelons against T. roseum infection through regulation of ROS production and energy metabolism.
Collapse
Affiliation(s)
| | | | | | | | | | - Dov B Prusky
- Department of Postharvest Science of Fresh Produce , Agricultural Research Organization, The Volcani Center , Beit Dagan 50250 , Israel
| |
Collapse
|
16
|
Su T, Li W, Wang P, Ma C. Dynamics of Peroxisome Homeostasis and Its Role in Stress Response and Signaling in Plants. FRONTIERS IN PLANT SCIENCE 2019; 10:705. [PMID: 31214223 PMCID: PMC6557986 DOI: 10.3389/fpls.2019.00705] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 05/13/2019] [Indexed: 05/19/2023]
Abstract
Peroxisomes play vital roles in plant growth, development, and environmental stress response. During plant development and in response to environmental stresses, the number and morphology of peroxisomes are dynamically regulated to maintain peroxisome homeostasis in cells. To execute their various functions in the cell, peroxisomes associate and communicate with other organelles. Under stress conditions, reactive oxygen species (ROS) produced in peroxisomes and other organelles activate signal transduction pathways, in a process known as retrograde signaling, to synergistically regulate defense systems. In this review, we focus on the recent advances in the plant peroxisome field to provide an overview of peroxisome biogenesis, degradation, crosstalk with other organelles, and their role in response to environmental stresses.
Collapse
|
17
|
Abstract
Peroxisomes are key metabolic organelles, which contribute to cellular lipid metabolism, e.g. the β-oxidation of fatty acids and the synthesis of myelin sheath lipids, as well as cellular redox balance. Peroxisomal dysfunction has been linked to severe metabolic disorders in man, but peroxisomes are now also recognized as protective organelles with a wider significance in human health and potential impact on a large number of globally important human diseases such as neurodegeneration, obesity, cancer, and age-related disorders. Therefore, the interest in peroxisomes and their physiological functions has significantly increased in recent years. In this review, we intend to highlight recent discoveries, advancements and trends in peroxisome research, and present an update as well as a continuation of two former review articles addressing the unsolved mysteries of this astonishing organelle. We summarize novel findings on the biological functions of peroxisomes, their biogenesis, formation, membrane dynamics and division, as well as on peroxisome-organelle contacts and cooperation. Furthermore, novel peroxisomal proteins and machineries at the peroxisomal membrane are discussed. Finally, we address recent findings on the role of peroxisomes in the brain, in neurological disorders, and in the development of cancer.
Collapse
Affiliation(s)
- Markus Islinger
- Institute of Neuroanatomy, Center for Biomedicine and Medical Technology Mannheim, Medical Faculty Manheim, University of Heidelberg, 68167, Mannheim, Germany
| | - Alfred Voelkl
- Institute for Anatomy and Cell Biology, University of Heidelberg, 69120, Heidelberg, Germany
| | - H Dariush Fahimi
- Institute for Anatomy and Cell Biology, University of Heidelberg, 69120, Heidelberg, Germany
| | | |
Collapse
|
18
|
Pan R, Satkovich J, Chen C, Hu J. The E3 ubiquitin ligase SP1-like 1 plays a positive role in peroxisome biogenesis in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 94:836-846. [PMID: 29570879 DOI: 10.1111/tpj.13900] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 02/22/2018] [Accepted: 02/26/2018] [Indexed: 06/08/2023]
Abstract
Peroxisomes are dynamic organelles crucial for a variety of metabolic processes during the development of eukaryotic organisms, and are functionally linked to other subcellular organelles, such as mitochondria and chloroplasts. Peroxisomal matrix proteins are imported by peroxins (PEX proteins), yet the modulation of peroxin functions is poorly understood. We previously reported that, besides its known function in chloroplast protein import, the Arabidopsis E3 ubiquitin ligase SP1 (suppressor of ppi1 locus1) also targets to peroxisomes and mitochondria, and promotes the destabilization of the peroxisomal receptor-cargo docking complex components PEX13 and PEX14. Here we present evidence that in Arabidopsis, SP1's closest homolog SP1-like 1 (SPL1) plays an opposite role to SP1 in peroxisomes. In contrast to sp1, loss-of-function of SPL1 led to reduced peroxisomal β-oxidation activity, and enhanced the physiological and growth defects of pex14 and pex13 mutants. Transient co-expression of SPL1 and SP1 promoted each other's destabilization. SPL1 reduced the ability of SP1 to induce PEX13 turnover, and it is the N-terminus of SP1 and SPL1 that determines whether the protein is able to promote PEX13 turnover. Finally, SPL1 showed prevalent targeting to mitochondria, but rather weak and partial localization to peroxisomes. Our data suggest that these two members of the same E3 protein family utilize distinct mechanisms to modulate peroxisome biogenesis, where SPL1 reduces the function of SP1. Plants and possibly other higher eukaryotes may employ this small family of E3 enzymes to differentially modulate the dynamics of several organelles essential to energy metabolism via the ubiquitin-proteasome system.
Collapse
Affiliation(s)
- Ronghui Pan
- MSU-Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
| | - John Satkovich
- MSU-Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
| | - Cheng Chen
- Plant Biology Department, Michigan State University, East Lansing, MI, 48824, USA
| | - Jianping Hu
- MSU-Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
- Plant Biology Department, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|
19
|
Senkler J, Rugen N, Eubel H, Hegermann J, Braun HP. Absence of Complex I Implicates Rearrangement of the Respiratory Chain in European Mistletoe. Curr Biol 2018; 28:1606-1613.e4. [PMID: 29731306 DOI: 10.1016/j.cub.2018.03.050] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 01/31/2018] [Accepted: 03/21/2018] [Indexed: 01/06/2023]
Abstract
The mitochondrial oxidative phosphorylation (OXPHOS) system, which is based on the presence of five protein complexes, is in the very center of cellular ATP production. Complexes I to IV are components of the respiratory electron transport chain that drives proton translocation across the inner mitochondrial membrane. The resulting proton gradient is used by complex V (the ATP synthase complex) for the phosphorylation of ADP. Occurrence of complexes I to V is highly conserved in eukaryotes, with exceptions being restricted to unicellular parasites that take up energy-rich compounds from their hosts. Here we present biochemical evidence that the European mistletoe (Viscum album), an obligate semi-parasite living on branches of trees, has a highly unusual OXPHOS system. V. album mitochondria completely lack complex I and have greatly reduced amounts of complexes II and V. At the same time, the complexes III and IV form remarkably stable respiratory supercomplexes. Furthermore, complexome profiling revealed the presence of 150 kDa complexes that include type II NAD(P)H dehydrogenases and an alternative oxidase. Although the absence of complex I genes in mitochondrial genomes of mistletoe species has recently been reported, this is the first biochemical proof that these genes have not been transferred to the nuclear genome and that this respiratory complex indeed is not assembled. As a consequence, the whole respiratory chain is remodeled. Our results demonstrate that, in the context of parasitism, multicellular life can cope with lack of one of the OXPHOS complexes and give new insights into the life strategy of mistletoe species.
Collapse
Affiliation(s)
- Jennifer Senkler
- Institut für Pflanzengenetik, Leibniz Universität Hannover, Herrenhäuser Straße 2, 30419 Hannover, Germany
| | - Nils Rugen
- Institut für Pflanzengenetik, Leibniz Universität Hannover, Herrenhäuser Straße 2, 30419 Hannover, Germany
| | - Holger Eubel
- Institut für Pflanzengenetik, Leibniz Universität Hannover, Herrenhäuser Straße 2, 30419 Hannover, Germany
| | - Jan Hegermann
- Institut für Funktionelle und Angewandte Anatomie, Medizinische Hochschule Hannover, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| | - Hans-Peter Braun
- Institut für Pflanzengenetik, Leibniz Universität Hannover, Herrenhäuser Straße 2, 30419 Hannover, Germany.
| |
Collapse
|
20
|
Kao YT, Gonzalez KL, Bartel B. Peroxisome Function, Biogenesis, and Dynamics in Plants. PLANT PHYSIOLOGY 2018; 176:162-177. [PMID: 29021223 PMCID: PMC5761812 DOI: 10.1104/pp.17.01050] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 10/09/2017] [Indexed: 05/19/2023]
Abstract
Recent advances highlight understanding of the diversity of peroxisome contributions to plant biology and the mechanisms through which these essential organelles are generated.
Collapse
Affiliation(s)
- Yun-Ting Kao
- Department of Biosciences, Rice University, Houston, Texas 77005
| | - Kim L Gonzalez
- Department of Biosciences, Rice University, Houston, Texas 77005
| | - Bonnie Bartel
- Department of Biosciences, Rice University, Houston, Texas 77005
| |
Collapse
|
21
|
Abstract
Plant peroxisomes are required for a number of fundamental physiological processes, such as primary and secondary metabolism, development and stress response. Indexing the dynamic peroxisome proteome is prerequisite to fully understanding the importance of these organelles. Mass Spectrometry (MS)-based proteome analysis has allowed the identification of novel peroxisomal proteins and pathways in a relatively high-throughput fashion and significantly expanded the list of proteins and biochemical reactions in plant peroxisomes. In this chapter, we summarize the experimental proteomic studies performed in plants, compile a list of ~200 confirmed Arabidopsis peroxisomal proteins, and discuss the diverse plant peroxisome functions with an emphasis on the role of Arabidopsis MS-based proteomics in discovering new peroxisome functions. Many plant peroxisome proteins and biochemical pathways are specific to plants, substantiating the complexity, plasticity and uniqueness of plant peroxisomes. Mapping the full plant peroxisome proteome will provide a knowledge base for the improvement of crop production, quality and stress tolerance.
Collapse
Affiliation(s)
- Ronghui Pan
- MSU-Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
| | - Jianping Hu
- MSU-Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA.
- Plant Biology Department, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
22
|
Arimura SI. Fission and Fusion of Plant Mitochondria, and Genome Maintenance. PLANT PHYSIOLOGY 2018; 176:152-161. [PMID: 29138352 PMCID: PMC5761811 DOI: 10.1104/pp.17.01025] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 11/07/2017] [Indexed: 05/18/2023]
Abstract
Dynamic changes maintain a multipartite mitochondrial genome meets the changing needs of plant cells.
Collapse
Affiliation(s)
- Shin-Ichi Arimura
- Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
23
|
Frick EM, Strader LC. Kinase MPK17 and the Peroxisome Division Factor PMD1 Influence Salt-induced Peroxisome Proliferation. PLANT PHYSIOLOGY 2018; 176:340-351. [PMID: 28931630 PMCID: PMC5761782 DOI: 10.1104/pp.17.01019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 09/18/2017] [Indexed: 05/19/2023]
Abstract
Peroxisomes are small organelles that house many oxidative reactions. Peroxisome proliferation is induced under multiple stress conditions, including salt stress; however, factors regulating this process are not well defined. We have identified a role for Arabidopsis (Arabidopsis thaliana) MAP KINASE17 (MPK17) in affecting peroxisome division in a manner that requires the known peroxisome division factor PEROXISOME AND MITOCHONDRIAL DIVISION FACTOR1 (PMD1). MPK17 and PMD1 are involved in peroxisome proliferation in response to NaCl stress. Additionally, we found that PMD1 is an actin-binding protein and that a functioning actin cytoskeleton is required for NaCl-induced peroxisome division. Our data suggest roles for MPK17 and PMD1 in influencing the numbers and cellular distribution of peroxisomes through the cytoskeleton-peroxisome connection. These findings expand our understanding of peroxisome division and potentially identify factors connecting the actin cytoskeleton and peroxisome proliferation.
Collapse
Affiliation(s)
- Elizabeth M Frick
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri
| | - Lucia C Strader
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri
| |
Collapse
|
24
|
Schwarzländer M, Fuchs P. Plant mitochondrial membranes: adding structure and new functions to respiratory physiology. CURRENT OPINION IN PLANT BIOLOGY 2017; 40:147-157. [PMID: 28992511 DOI: 10.1016/j.pbi.2017.09.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 08/31/2017] [Accepted: 09/06/2017] [Indexed: 06/07/2023]
Abstract
The membranes of mitochondria are focal points of cellular physiology and respiratory energy transformation. Recent discoveries have started painting a refined picture of plant mitochondrial membranes as platforms in which structure and function have evolved in an interconnected and dynamically regulated manner. Hosting ancillary functions that interact with other mitochondrial properties gives mitochondria the characteristics of multitasking and integrated molecular mega machines. We review recent insights into the makeup and the plasticity of the outer and inner mitochondrial membranes, their intimate relationship with respiratory function and regulation, and their properties in mediating solute transport. Synthesizing recent research advances we hypothesize that plant mitochondrial membranes are a privileged location for incorporation of a wide range of processes, some of which collaborate with respiratory function, including plant immunity, metabolic regulation and signal transduction, to underpin flexibility in the acclimation to changing environments.
Collapse
Affiliation(s)
- Markus Schwarzländer
- Institute of Crop Science and Resource Conservation (INRES), Rheinische Friedrich-Wilhelms-Universität Bonn, Friedrich-Ebert-Allee 144, D-53113 Bonn, Germany; Institute of Plant Biology and Biotechnology, Westfälische Wilhelms-Universität Münster, Schlossplatz 8, D-48143 Münster, Germany.
| | - Philippe Fuchs
- Institute of Crop Science and Resource Conservation (INRES), Rheinische Friedrich-Wilhelms-Universität Bonn, Friedrich-Ebert-Allee 144, D-53113 Bonn, Germany; Institute of Plant Biology and Biotechnology, Westfälische Wilhelms-Universität Münster, Schlossplatz 8, D-48143 Münster, Germany
| |
Collapse
|
25
|
Cold Treatment Induces Transient Mitochondrial Fragmentation in Arabidopsis thaliana in a Way that Requires DRP3A but not ELM1 or an ELM1-Like Homologue, ELM2. Int J Mol Sci 2017; 18:ijms18102161. [PMID: 29039787 PMCID: PMC5666842 DOI: 10.3390/ijms18102161] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 10/09/2017] [Accepted: 10/13/2017] [Indexed: 11/17/2022] Open
Abstract
The number, size and shape of polymorphic plant mitochondria are determined at least partially by mitochondrial fission. Arabidopsis mitochondria divide through the actions of a dynamin-related protein, DRP3A. Another plant-specific factor, ELM1, was previously shown to localize DRP3A to mitochondrial fission sites. Here, we report that mitochondrial fission is not completely blocked in the Arabidopsis elm1 mutant and that it is strongly manifested in response to cold treatment. Arabidopsis has an ELM1 paralogue (ELM2) that seems to have only a limited role in mitochondrial fission in the elm1 mutant. Interestingly, cold-induced mitochondrial fragmentation was also observed in the wild-type, but not in a drp3a mutant, suggesting that cold-induced transient mitochondrial fragmentation requires DRP3A but not ELM1 or ELM2. DRP3A: GFP localized from the cytosol to mitochondrial fission sites without ELM1 after cold treatment. Together, these results suggest that Arabidopsis has a novel, cold-induced type of mitochondrial fission in which DRP3A localizes to mitochondrial fission sites without the involvement of ELM1 or ELM2.
Collapse
|
26
|
Nagaoka N, Yamashita A, Kurisu R, Watari Y, Ishizuna F, Tsutsumi N, Ishizaki K, Kohchi T, Arimura SI. DRP3 and ELM1 are required for mitochondrial fission in the liverwort Marchantia polymorpha. Sci Rep 2017; 7:4600. [PMID: 28676660 PMCID: PMC5496855 DOI: 10.1038/s41598-017-04886-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 05/22/2017] [Indexed: 12/12/2022] Open
Abstract
Mitochondria increase in number by the fission of existing mitochondria. Mitochondrial fission is needed to provide mitochondria to daughter cells during cell division. In Arabidopsis thaliana, four kinds of genes have been reported to be involved in mitochondrial fission. Two of them, DRP3 (dynamin-related protein3) and FIS1 (FISSION1), are well conserved in eukaryotes. The other two are plant-specific ELM1 (elongated mitochondria1) and PMD (peroxisomal and mitochondrial division). To better understand the commonality and diversity of mitochondrial fission factors in land plants, we examined mitochondrial fission-related genes in a liverwort, Marchantia polymorpha. As a bryophyte, M. polymorpha has features distinct from those of the other land plant lineages. We found that M. polymorpha has single copies of homologues for DRP3, FIS1 and ELM1, but does not appear to have a homologue of PMD. Citrine-fusion proteins with MpDRP3, MpFIS1 and MpELM1 were localized to mitochondria in M. polymorpha. MpDRP3- and MpELM1-defective mutants grew slowly and had networked mitochondria, indicating that mitochondrial fission was blocked in the mutants, as expected. However, knockout of MpFIS1 did not affect growth or mitochondrial morphology. These results suggest that MpDRP3 and MpELM1 but neither MpFIS1 nor PMD are needed for mitochondrial fission in M. polymorpha.
Collapse
Affiliation(s)
- Nagisa Nagaoka
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Akihiro Yamashita
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Rina Kurisu
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Yuta Watari
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Fumiko Ishizuna
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Nobuhissro Tsutsumi
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
| | | | - Takayuki Kohchi
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan
| | - Shin-Ichi Arimura
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan.
- PRESTO, Japan Science and Technology Agency, Saitama, 332-0012, Japan.
| |
Collapse
|
27
|
Pan R, Hu J. Sequence and biochemical analysis of Arabidopsis SP1 protein, a regulator of organelle biogenesis. Commun Integr Biol 2017; 10:e1338991. [PMID: 28919939 PMCID: PMC5595426 DOI: 10.1080/19420889.2017.1338991] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 06/01/2017] [Accepted: 06/02/2017] [Indexed: 11/16/2022] Open
Abstract
Peroxisomes, chloroplasts, and mitochondria are essential eukaryotic organelles that host a suite of metabolic processes crucial to energy metabolism and development. Regulatory mechanisms of the dynamics and biogenesis of these important organelles have begun to be discovered in plants. We recently showed that, aside from its previously reported role in targeting chloroplast protein import proteins, the Arabidopsis ubiquitin E3 ligase SP1 (suppressor of ppi1 locus1) negatively regulates peroxisome matrix protein import by promoting the ubiquitination and destabilization of PEX13 and possibly PEX14 and other components of the peroxisome protein import apparatus. Here, we compared protein sequence and domain structure of SP1-like proteins in Arabidopsis and their human homolog, Mitochondrial-Anchored Protein Ligase (MAPL). We further characterized SP1 protein in respect to its membrane topology and ubiquitin E3 ligase activity.
Collapse
Affiliation(s)
- Ronghui Pan
- MSU-Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, USA
| | - Jianping Hu
- MSU-Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, USA.,Plant Biology Department, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
28
|
Fahy D, Sanad MNME, Duscha K, Lyons M, Liu F, Bozhkov P, Kunz HH, Hu J, Neuhaus HE, Steel PG, Smertenko A. Impact of salt stress, cell death, and autophagy on peroxisomes: quantitative and morphological analyses using small fluorescent probe N-BODIPY. Sci Rep 2017; 7:39069. [PMID: 28145408 PMCID: PMC5286434 DOI: 10.1038/srep39069] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 11/17/2016] [Indexed: 12/19/2022] Open
Abstract
Plant peroxisomes maintain a plethora of key life processes including fatty acid β-oxidation, photorespiration, synthesis of hormones, and homeostasis of reactive oxygen species (ROS). Abundance of peroxisomes in cells is dynamic; however mechanisms controlling peroxisome proliferation remain poorly understood because measuring peroxisome abundance is technically challenging. Counting peroxisomes in individual cells of complex organs by electron or fluorescence microscopy is expensive and time consuming. Here we present a simple technique for quantifying peroxisome abundance using the small probe Nitro-BODIPY, which in vivo fluoresces selectively inside peroxisomes. The physiological relevance of our technique was demonstrated using salinity as a known inducer of peroxisome proliferation. While significant peroxisome proliferation was observed in wild-type Arabidopsis leaves following 5-hour exposure to NaCl, no proliferation was detected in the salt-susceptible mutants fry1-6, sos1-14, and sos1-15. We also found that N-BODIPY detects aggregation of peroxisomes during final stages of programmed cell death and can be used as a marker of this stage. Furthermore, accumulation of peroxisomes in an autophagy-deficient Arabidopsis mutant atg5 correlated with N-BODIPY labeling. In conclusion, the technique reported here enables quantification of peroxisomes in plant material at various physiological settings. Its potential applications encompass identification of genes controlling peroxisome homeostasis and capturing stress-tolerant genotypes.
Collapse
Affiliation(s)
- Deirdre Fahy
- Institute of Biological Chemistry, Washington State University, Pullman, 99164, WA, USA
| | - Marwa N M E Sanad
- Institute of Biological Chemistry, Washington State University, Pullman, 99164, WA, USA
- Department of Genetics and Cytology, National Research Center, Giza, Egypt
| | - Kerstin Duscha
- Plant Physiology, University of Kaiserslautern, Erwin Schrödinger Straße, Kaiserslautern, D-67653, Germany
| | - Madison Lyons
- Institute of Biological Chemistry, Washington State University, Pullman, 99164, WA, USA
| | - Fuquan Liu
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 18-30 Malone Road, Belfast, BT9 5BN, UK
| | - Peter Bozhkov
- Department of Chemistry and Biotechnology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, PO Box 7015, Uppsala, SE-75007, Sweden
| | - Hans-Henning Kunz
- School of Biological Sciences, Washington State University, Pullman, 99164, WA, USA
| | - Jianping Hu
- MSU-DOE Plant Research Laboratory, Michigan State University, 612 Wilson Road, East Lansing, 48824, MI, USA
| | - H Ekkehard Neuhaus
- Plant Physiology, University of Kaiserslautern, Erwin Schrödinger Straße, Kaiserslautern, D-67653, Germany
| | - Patrick G Steel
- Department of Chemistry, Durham University, Durham, DH1 3LE, UK
| | - Andrei Smertenko
- Institute of Biological Chemistry, Washington State University, Pullman, 99164, WA, USA.
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 18-30 Malone Road, Belfast, BT9 5BN, UK.
| |
Collapse
|
29
|
Murcha MW, Kubiszewski-Jakubiak S, Teixeira PF, Gügel IL, Kmiec B, Narsai R, Ivanova A, Megel C, Schock A, Kraus S, Berkowitz O, Glaser E, Philippar K, Maréchal-Drouard L, Soll J, Whelan J. Plant-Specific Preprotein and Amino Acid Transporter Proteins Are Required for tRNA Import into Mitochondria. PLANT PHYSIOLOGY 2016; 172:2471-2490. [PMID: 27789739 PMCID: PMC5129730 DOI: 10.1104/pp.16.01519] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 10/25/2016] [Indexed: 05/03/2023]
Abstract
A variety of eukaryotes, in particular plants, do not contain the required number of tRNAs to support the translation of mitochondria-encoded genes and thus need to import tRNAs from the cytosol. This study identified two Arabidopsis (Arabidopsis thaliana) proteins, Tric1 and Tric2 (for tRNA import component), which on simultaneous inactivation by T-DNA insertion lines displayed a severely delayed and chlorotic growth phenotype and significantly reduced tRNA import capacity into isolated mitochondria. The predicted tRNA-binding domain of Tric1 and Tric2, a sterile-α-motif at the C-terminal end of the protein, was required to restore tRNA uptake ability in mitochondria of complemented plants. The purified predicted tRNA-binding domain binds the T-arm of the tRNA for alanine with conserved lysine residues required for binding. T-DNA inactivation of both Tric proteins further resulted in an increase in the in vitro rate of in organello protein synthesis, which was mediated by a reorganization of the nuclear transcriptome, in particular of genes encoding a variety of proteins required for mitochondrial gene expression at both the transcriptional and translational levels. The characterization of Tric1/2 provides mechanistic insight into the process of tRNA import into mitochondria and supports the theory that the tRNA import pathway resulted from the repurposing of a preexisting protein import apparatus.
Collapse
Affiliation(s)
- Monika W Murcha
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, Western Australia 6009, Australia (M.W.M., S.K.-J., A.I.);
- Department of Biochemistry and Biophysics, Stockholm University, Arrhenius Laboratories for Natural Sciences, SE-10691 Stockholm, Sweden (P.F.T., B.K., E.G.);
- Department Biology 1-Botany, Biocenter Ludwig-Maximilians-University Munich, 82152 Planegg, Germany (I.L.G., A.S., S.K., K.P., J.S.);
- Munich Centre for Integrated Protein Science, Ludwig-Maximilians-University Munich, 81377 Munich, Germany (I.L.G., A.S., S.K., J.S.);
- Australian Research Council Centre of Excellence in Plant Energy Biology, Department of Animal, Plant, and Soil Science, School of Life Science, La Trobe University, Bundoora, Victoria 3086, Australia (R.N., O.B., J.W.);
- Center for Human and Molecular Biology, Plant Biology, Saarland University, 66123 Saarbruecken, Germany (K.P.); and
- Institut de Biologie Moléculaire des Plantes-Centre National de la Recherche Scientifique, Université de Strasbourg, 67084 Strasbourg cedex, France (L.M.-D., C.M.)
| | - Szymon Kubiszewski-Jakubiak
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, Western Australia 6009, Australia (M.W.M., S.K.-J., A.I.)
- Department of Biochemistry and Biophysics, Stockholm University, Arrhenius Laboratories for Natural Sciences, SE-10691 Stockholm, Sweden (P.F.T., B.K., E.G.)
- Department Biology 1-Botany, Biocenter Ludwig-Maximilians-University Munich, 82152 Planegg, Germany (I.L.G., A.S., S.K., K.P., J.S.)
- Munich Centre for Integrated Protein Science, Ludwig-Maximilians-University Munich, 81377 Munich, Germany (I.L.G., A.S., S.K., J.S.)
- Australian Research Council Centre of Excellence in Plant Energy Biology, Department of Animal, Plant, and Soil Science, School of Life Science, La Trobe University, Bundoora, Victoria 3086, Australia (R.N., O.B., J.W.)
- Center for Human and Molecular Biology, Plant Biology, Saarland University, 66123 Saarbruecken, Germany (K.P.); and
- Institut de Biologie Moléculaire des Plantes-Centre National de la Recherche Scientifique, Université de Strasbourg, 67084 Strasbourg cedex, France (L.M.-D., C.M.)
| | - Pedro F Teixeira
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, Western Australia 6009, Australia (M.W.M., S.K.-J., A.I.)
- Department of Biochemistry and Biophysics, Stockholm University, Arrhenius Laboratories for Natural Sciences, SE-10691 Stockholm, Sweden (P.F.T., B.K., E.G.)
- Department Biology 1-Botany, Biocenter Ludwig-Maximilians-University Munich, 82152 Planegg, Germany (I.L.G., A.S., S.K., K.P., J.S.)
- Munich Centre for Integrated Protein Science, Ludwig-Maximilians-University Munich, 81377 Munich, Germany (I.L.G., A.S., S.K., J.S.)
- Australian Research Council Centre of Excellence in Plant Energy Biology, Department of Animal, Plant, and Soil Science, School of Life Science, La Trobe University, Bundoora, Victoria 3086, Australia (R.N., O.B., J.W.)
- Center for Human and Molecular Biology, Plant Biology, Saarland University, 66123 Saarbruecken, Germany (K.P.); and
- Institut de Biologie Moléculaire des Plantes-Centre National de la Recherche Scientifique, Université de Strasbourg, 67084 Strasbourg cedex, France (L.M.-D., C.M.)
| | - Irene L Gügel
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, Western Australia 6009, Australia (M.W.M., S.K.-J., A.I.)
- Department of Biochemistry and Biophysics, Stockholm University, Arrhenius Laboratories for Natural Sciences, SE-10691 Stockholm, Sweden (P.F.T., B.K., E.G.)
- Department Biology 1-Botany, Biocenter Ludwig-Maximilians-University Munich, 82152 Planegg, Germany (I.L.G., A.S., S.K., K.P., J.S.)
- Munich Centre for Integrated Protein Science, Ludwig-Maximilians-University Munich, 81377 Munich, Germany (I.L.G., A.S., S.K., J.S.)
- Australian Research Council Centre of Excellence in Plant Energy Biology, Department of Animal, Plant, and Soil Science, School of Life Science, La Trobe University, Bundoora, Victoria 3086, Australia (R.N., O.B., J.W.)
- Center for Human and Molecular Biology, Plant Biology, Saarland University, 66123 Saarbruecken, Germany (K.P.); and
- Institut de Biologie Moléculaire des Plantes-Centre National de la Recherche Scientifique, Université de Strasbourg, 67084 Strasbourg cedex, France (L.M.-D., C.M.)
| | - Beata Kmiec
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, Western Australia 6009, Australia (M.W.M., S.K.-J., A.I.)
- Department of Biochemistry and Biophysics, Stockholm University, Arrhenius Laboratories for Natural Sciences, SE-10691 Stockholm, Sweden (P.F.T., B.K., E.G.)
- Department Biology 1-Botany, Biocenter Ludwig-Maximilians-University Munich, 82152 Planegg, Germany (I.L.G., A.S., S.K., K.P., J.S.)
- Munich Centre for Integrated Protein Science, Ludwig-Maximilians-University Munich, 81377 Munich, Germany (I.L.G., A.S., S.K., J.S.)
- Australian Research Council Centre of Excellence in Plant Energy Biology, Department of Animal, Plant, and Soil Science, School of Life Science, La Trobe University, Bundoora, Victoria 3086, Australia (R.N., O.B., J.W.)
- Center for Human and Molecular Biology, Plant Biology, Saarland University, 66123 Saarbruecken, Germany (K.P.); and
- Institut de Biologie Moléculaire des Plantes-Centre National de la Recherche Scientifique, Université de Strasbourg, 67084 Strasbourg cedex, France (L.M.-D., C.M.)
| | - Reena Narsai
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, Western Australia 6009, Australia (M.W.M., S.K.-J., A.I.)
- Department of Biochemistry and Biophysics, Stockholm University, Arrhenius Laboratories for Natural Sciences, SE-10691 Stockholm, Sweden (P.F.T., B.K., E.G.)
- Department Biology 1-Botany, Biocenter Ludwig-Maximilians-University Munich, 82152 Planegg, Germany (I.L.G., A.S., S.K., K.P., J.S.)
- Munich Centre for Integrated Protein Science, Ludwig-Maximilians-University Munich, 81377 Munich, Germany (I.L.G., A.S., S.K., J.S.)
- Australian Research Council Centre of Excellence in Plant Energy Biology, Department of Animal, Plant, and Soil Science, School of Life Science, La Trobe University, Bundoora, Victoria 3086, Australia (R.N., O.B., J.W.)
- Center for Human and Molecular Biology, Plant Biology, Saarland University, 66123 Saarbruecken, Germany (K.P.); and
- Institut de Biologie Moléculaire des Plantes-Centre National de la Recherche Scientifique, Université de Strasbourg, 67084 Strasbourg cedex, France (L.M.-D., C.M.)
| | - Aneta Ivanova
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, Western Australia 6009, Australia (M.W.M., S.K.-J., A.I.)
- Department of Biochemistry and Biophysics, Stockholm University, Arrhenius Laboratories for Natural Sciences, SE-10691 Stockholm, Sweden (P.F.T., B.K., E.G.)
- Department Biology 1-Botany, Biocenter Ludwig-Maximilians-University Munich, 82152 Planegg, Germany (I.L.G., A.S., S.K., K.P., J.S.)
- Munich Centre for Integrated Protein Science, Ludwig-Maximilians-University Munich, 81377 Munich, Germany (I.L.G., A.S., S.K., J.S.)
- Australian Research Council Centre of Excellence in Plant Energy Biology, Department of Animal, Plant, and Soil Science, School of Life Science, La Trobe University, Bundoora, Victoria 3086, Australia (R.N., O.B., J.W.)
- Center for Human and Molecular Biology, Plant Biology, Saarland University, 66123 Saarbruecken, Germany (K.P.); and
- Institut de Biologie Moléculaire des Plantes-Centre National de la Recherche Scientifique, Université de Strasbourg, 67084 Strasbourg cedex, France (L.M.-D., C.M.)
| | - Cyrille Megel
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, Western Australia 6009, Australia (M.W.M., S.K.-J., A.I.)
- Department of Biochemistry and Biophysics, Stockholm University, Arrhenius Laboratories for Natural Sciences, SE-10691 Stockholm, Sweden (P.F.T., B.K., E.G.)
- Department Biology 1-Botany, Biocenter Ludwig-Maximilians-University Munich, 82152 Planegg, Germany (I.L.G., A.S., S.K., K.P., J.S.)
- Munich Centre for Integrated Protein Science, Ludwig-Maximilians-University Munich, 81377 Munich, Germany (I.L.G., A.S., S.K., J.S.)
- Australian Research Council Centre of Excellence in Plant Energy Biology, Department of Animal, Plant, and Soil Science, School of Life Science, La Trobe University, Bundoora, Victoria 3086, Australia (R.N., O.B., J.W.)
- Center for Human and Molecular Biology, Plant Biology, Saarland University, 66123 Saarbruecken, Germany (K.P.); and
- Institut de Biologie Moléculaire des Plantes-Centre National de la Recherche Scientifique, Université de Strasbourg, 67084 Strasbourg cedex, France (L.M.-D., C.M.)
| | - Annette Schock
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, Western Australia 6009, Australia (M.W.M., S.K.-J., A.I.)
- Department of Biochemistry and Biophysics, Stockholm University, Arrhenius Laboratories for Natural Sciences, SE-10691 Stockholm, Sweden (P.F.T., B.K., E.G.)
- Department Biology 1-Botany, Biocenter Ludwig-Maximilians-University Munich, 82152 Planegg, Germany (I.L.G., A.S., S.K., K.P., J.S.)
- Munich Centre for Integrated Protein Science, Ludwig-Maximilians-University Munich, 81377 Munich, Germany (I.L.G., A.S., S.K., J.S.)
- Australian Research Council Centre of Excellence in Plant Energy Biology, Department of Animal, Plant, and Soil Science, School of Life Science, La Trobe University, Bundoora, Victoria 3086, Australia (R.N., O.B., J.W.)
- Center for Human and Molecular Biology, Plant Biology, Saarland University, 66123 Saarbruecken, Germany (K.P.); and
- Institut de Biologie Moléculaire des Plantes-Centre National de la Recherche Scientifique, Université de Strasbourg, 67084 Strasbourg cedex, France (L.M.-D., C.M.)
| | - Sabrina Kraus
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, Western Australia 6009, Australia (M.W.M., S.K.-J., A.I.)
- Department of Biochemistry and Biophysics, Stockholm University, Arrhenius Laboratories for Natural Sciences, SE-10691 Stockholm, Sweden (P.F.T., B.K., E.G.)
- Department Biology 1-Botany, Biocenter Ludwig-Maximilians-University Munich, 82152 Planegg, Germany (I.L.G., A.S., S.K., K.P., J.S.)
- Munich Centre for Integrated Protein Science, Ludwig-Maximilians-University Munich, 81377 Munich, Germany (I.L.G., A.S., S.K., J.S.)
- Australian Research Council Centre of Excellence in Plant Energy Biology, Department of Animal, Plant, and Soil Science, School of Life Science, La Trobe University, Bundoora, Victoria 3086, Australia (R.N., O.B., J.W.)
- Center for Human and Molecular Biology, Plant Biology, Saarland University, 66123 Saarbruecken, Germany (K.P.); and
- Institut de Biologie Moléculaire des Plantes-Centre National de la Recherche Scientifique, Université de Strasbourg, 67084 Strasbourg cedex, France (L.M.-D., C.M.)
| | - Oliver Berkowitz
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, Western Australia 6009, Australia (M.W.M., S.K.-J., A.I.)
- Department of Biochemistry and Biophysics, Stockholm University, Arrhenius Laboratories for Natural Sciences, SE-10691 Stockholm, Sweden (P.F.T., B.K., E.G.)
- Department Biology 1-Botany, Biocenter Ludwig-Maximilians-University Munich, 82152 Planegg, Germany (I.L.G., A.S., S.K., K.P., J.S.)
- Munich Centre for Integrated Protein Science, Ludwig-Maximilians-University Munich, 81377 Munich, Germany (I.L.G., A.S., S.K., J.S.)
- Australian Research Council Centre of Excellence in Plant Energy Biology, Department of Animal, Plant, and Soil Science, School of Life Science, La Trobe University, Bundoora, Victoria 3086, Australia (R.N., O.B., J.W.)
- Center for Human and Molecular Biology, Plant Biology, Saarland University, 66123 Saarbruecken, Germany (K.P.); and
- Institut de Biologie Moléculaire des Plantes-Centre National de la Recherche Scientifique, Université de Strasbourg, 67084 Strasbourg cedex, France (L.M.-D., C.M.)
| | - Elzbieta Glaser
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, Western Australia 6009, Australia (M.W.M., S.K.-J., A.I.)
- Department of Biochemistry and Biophysics, Stockholm University, Arrhenius Laboratories for Natural Sciences, SE-10691 Stockholm, Sweden (P.F.T., B.K., E.G.)
- Department Biology 1-Botany, Biocenter Ludwig-Maximilians-University Munich, 82152 Planegg, Germany (I.L.G., A.S., S.K., K.P., J.S.)
- Munich Centre for Integrated Protein Science, Ludwig-Maximilians-University Munich, 81377 Munich, Germany (I.L.G., A.S., S.K., J.S.)
- Australian Research Council Centre of Excellence in Plant Energy Biology, Department of Animal, Plant, and Soil Science, School of Life Science, La Trobe University, Bundoora, Victoria 3086, Australia (R.N., O.B., J.W.)
- Center for Human and Molecular Biology, Plant Biology, Saarland University, 66123 Saarbruecken, Germany (K.P.); and
- Institut de Biologie Moléculaire des Plantes-Centre National de la Recherche Scientifique, Université de Strasbourg, 67084 Strasbourg cedex, France (L.M.-D., C.M.)
| | - Katrin Philippar
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, Western Australia 6009, Australia (M.W.M., S.K.-J., A.I.)
- Department of Biochemistry and Biophysics, Stockholm University, Arrhenius Laboratories for Natural Sciences, SE-10691 Stockholm, Sweden (P.F.T., B.K., E.G.)
- Department Biology 1-Botany, Biocenter Ludwig-Maximilians-University Munich, 82152 Planegg, Germany (I.L.G., A.S., S.K., K.P., J.S.)
- Munich Centre for Integrated Protein Science, Ludwig-Maximilians-University Munich, 81377 Munich, Germany (I.L.G., A.S., S.K., J.S.)
- Australian Research Council Centre of Excellence in Plant Energy Biology, Department of Animal, Plant, and Soil Science, School of Life Science, La Trobe University, Bundoora, Victoria 3086, Australia (R.N., O.B., J.W.)
- Center for Human and Molecular Biology, Plant Biology, Saarland University, 66123 Saarbruecken, Germany (K.P.); and
- Institut de Biologie Moléculaire des Plantes-Centre National de la Recherche Scientifique, Université de Strasbourg, 67084 Strasbourg cedex, France (L.M.-D., C.M.)
| | - Laurence Maréchal-Drouard
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, Western Australia 6009, Australia (M.W.M., S.K.-J., A.I.)
- Department of Biochemistry and Biophysics, Stockholm University, Arrhenius Laboratories for Natural Sciences, SE-10691 Stockholm, Sweden (P.F.T., B.K., E.G.)
- Department Biology 1-Botany, Biocenter Ludwig-Maximilians-University Munich, 82152 Planegg, Germany (I.L.G., A.S., S.K., K.P., J.S.)
- Munich Centre for Integrated Protein Science, Ludwig-Maximilians-University Munich, 81377 Munich, Germany (I.L.G., A.S., S.K., J.S.)
- Australian Research Council Centre of Excellence in Plant Energy Biology, Department of Animal, Plant, and Soil Science, School of Life Science, La Trobe University, Bundoora, Victoria 3086, Australia (R.N., O.B., J.W.)
- Center for Human and Molecular Biology, Plant Biology, Saarland University, 66123 Saarbruecken, Germany (K.P.); and
- Institut de Biologie Moléculaire des Plantes-Centre National de la Recherche Scientifique, Université de Strasbourg, 67084 Strasbourg cedex, France (L.M.-D., C.M.)
| | - Jürgen Soll
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, Western Australia 6009, Australia (M.W.M., S.K.-J., A.I.)
- Department of Biochemistry and Biophysics, Stockholm University, Arrhenius Laboratories for Natural Sciences, SE-10691 Stockholm, Sweden (P.F.T., B.K., E.G.)
- Department Biology 1-Botany, Biocenter Ludwig-Maximilians-University Munich, 82152 Planegg, Germany (I.L.G., A.S., S.K., K.P., J.S.)
- Munich Centre for Integrated Protein Science, Ludwig-Maximilians-University Munich, 81377 Munich, Germany (I.L.G., A.S., S.K., J.S.)
- Australian Research Council Centre of Excellence in Plant Energy Biology, Department of Animal, Plant, and Soil Science, School of Life Science, La Trobe University, Bundoora, Victoria 3086, Australia (R.N., O.B., J.W.)
- Center for Human and Molecular Biology, Plant Biology, Saarland University, 66123 Saarbruecken, Germany (K.P.); and
- Institut de Biologie Moléculaire des Plantes-Centre National de la Recherche Scientifique, Université de Strasbourg, 67084 Strasbourg cedex, France (L.M.-D., C.M.)
| | - James Whelan
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, Western Australia 6009, Australia (M.W.M., S.K.-J., A.I.);
- Department of Biochemistry and Biophysics, Stockholm University, Arrhenius Laboratories for Natural Sciences, SE-10691 Stockholm, Sweden (P.F.T., B.K., E.G.);
- Department Biology 1-Botany, Biocenter Ludwig-Maximilians-University Munich, 82152 Planegg, Germany (I.L.G., A.S., S.K., K.P., J.S.);
- Munich Centre for Integrated Protein Science, Ludwig-Maximilians-University Munich, 81377 Munich, Germany (I.L.G., A.S., S.K., J.S.);
- Australian Research Council Centre of Excellence in Plant Energy Biology, Department of Animal, Plant, and Soil Science, School of Life Science, La Trobe University, Bundoora, Victoria 3086, Australia (R.N., O.B., J.W.);
- Center for Human and Molecular Biology, Plant Biology, Saarland University, 66123 Saarbruecken, Germany (K.P.); and
- Institut de Biologie Moléculaire des Plantes-Centre National de la Recherche Scientifique, Université de Strasbourg, 67084 Strasbourg cedex, France (L.M.-D., C.M.)
| |
Collapse
|
30
|
E3 ubiquitin ligase SP1 regulates peroxisome biogenesis in Arabidopsis. Proc Natl Acad Sci U S A 2016; 113:E7307-E7316. [PMID: 27799549 DOI: 10.1073/pnas.1613530113] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Peroxisomes are ubiquitous eukaryotic organelles that play pivotal roles in a suite of metabolic processes and often act coordinately with other organelles, such as chloroplasts and mitochondria. Peroxisomes import proteins to the peroxisome matrix by peroxins (PEX proteins), but how the function of the PEX proteins is regulated is poorly understood. In this study, we identified the Arabidopsis RING (really interesting new gene) type E3 ubiquitin ligase SP1 [suppressor of plastid protein import locus 1 (ppi1) 1] as a peroxisome membrane protein with a regulatory role in peroxisome protein import. SP1 interacts physically with the two components of the peroxisome protein docking complex PEX13-PEX14 and the (RING)-finger peroxin PEX2. Loss of SP1 function suppresses defects of the pex14-2 and pex13-1 mutants, and SP1 is involved in the degradation of PEX13 and possibly PEX14 and all three RING peroxins. An in vivo ubiquitination assay showed that SP1 has the ability to promote PEX13 ubiquitination. Our study has revealed that, in addition to its previously reported function in chloroplast biogenesis, SP1 plays a role in peroxisome biogenesis. The same E3 ubiquitin ligase promotes the destabilization of components of two distinct protein-import machineries, indicating that degradation of organelle biogenesis factors by the ubiquitin-proteasome system may constitute an important regulatory mechanism in coordinating the biogenesis of metabolically linked organelles in eukaryotes.
Collapse
|
31
|
Fuchs R, Kopischke M, Klapprodt C, Hause G, Meyer AJ, Schwarzländer M, Fricker MD, Lipka V. Immobilized Subpopulations of Leaf Epidermal Mitochondria Mediate PENETRATION2-Dependent Pathogen Entry Control in Arabidopsis. THE PLANT CELL 2016; 28:130-45. [PMID: 26721862 PMCID: PMC4746686 DOI: 10.1105/tpc.15.00887] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 12/30/2015] [Indexed: 05/05/2023]
Abstract
The atypical myrosinase PENETRATION2 (PEN2) is required for broad-spectrum invasion resistance to filamentous plant pathogens. Previous localization studies suggested PEN2-GFP association with peroxisomes. Here, we show that PEN2 is a tail-anchored protein with dual-membrane targeting to peroxisomes and mitochondria and that PEN2 has the capacity to form homo-oligomer complexes. We demonstrate pathogen-induced recruitment and immobilization of mitochondrial subpopulations at sites of attempted fungal invasion and show that mitochondrial arrest is accompanied by peripheral accumulation of GFP-tagged PEN2. PEN2 substrate production by the cytochrome P450 monooxygenase CYP81F2 is localized to the surface of the endoplasmic reticulum, which focally reorganizes close to the immobilized mitochondria. Exclusive targeting of PEN2 to the outer membrane of mitochondria complements the pen2 mutant phenotype, corroborating the functional importance of the mitochondrial PEN2 protein subpool for controlled local production of PEN2 hydrolysis products at subcellular plant-microbe interaction domains. Moreover, live-cell imaging shows that mitochondria arrested at these domains exhibit a pathogen-induced redox imbalance, which may lead to the production of intracellular signals.
Collapse
Affiliation(s)
- Rene Fuchs
- Department of Plant Cell Biology, Albrecht-von-Haller-Institute, Georg-August-University Göttingen, 37077 Göttingen, Germany The Sainsbury Laboratory, Norwich NR4 7UH, United Kingdom
| | - Michaela Kopischke
- Department of Plant Cell Biology, Albrecht-von-Haller-Institute, Georg-August-University Göttingen, 37077 Göttingen, Germany The Sainsbury Laboratory, Norwich NR4 7UH, United Kingdom
| | - Christine Klapprodt
- Department of Plant Cell Biology, Albrecht-von-Haller-Institute, Georg-August-University Göttingen, 37077 Göttingen, Germany The Sainsbury Laboratory, Norwich NR4 7UH, United Kingdom
| | - Gerd Hause
- Martin-Luther-Universität Halle-Wittenberg, Universitätsbiozentrum, 06120 Halle, Germany
| | - Andreas J Meyer
- University of Bonn, INRES-Chemical Signalling, 53113 Bonn, Germany
| | | | - Mark D Fricker
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, United Kingdom
| | - Volker Lipka
- Department of Plant Cell Biology, Albrecht-von-Haller-Institute, Georg-August-University Göttingen, 37077 Göttingen, Germany The Sainsbury Laboratory, Norwich NR4 7UH, United Kingdom
| |
Collapse
|
32
|
Cui P, Liu H, Islam F, Li L, Farooq MA, Ruan S, Zhou W. OsPEX11, a Peroxisomal Biogenesis Factor 11, Contributes to Salt Stress Tolerance in Oryza sativa. FRONTIERS IN PLANT SCIENCE 2016; 7:1357. [PMID: 27695459 PMCID: PMC5024708 DOI: 10.3389/fpls.2016.01357] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 08/25/2016] [Indexed: 05/19/2023]
Abstract
Peroxisomes are single membrane-bound organelles, whose basic enzymatic constituents are catalase and H2O2-producing flavin oxidases. Previous reports showed that peroxisome is involved in numerous processes including primary and secondary metabolism, plant development and abiotic stress responses. However, knowledge on the function of different peroxisome genes from rice and its regulatory roles in salt and other abiotic stresses is limited. Here, a novel prey protein, OsPEX11 (Os03g0302000), was screened and identified by yeast two-hybrid and GST pull-down assays. Phenotypic analysis of OsPEX11 overexpression seedlings demonstrated that they had better tolerance to salt stress than wild type (WT) and OsPEX11-RNAi seedlings. Compared with WT and OsPEX11-RNAi seedlings, overexpression of OsPEX11 had lower level of lipid peroxidation, Na+/K+ ratio, higher activities of antioxidant enzymes (SOD, POD, and CAT) and proline accumulation. Furthermore, qPCR data suggested that OsPEX11 acted as a positive regulator of salt tolerance by reinforcing the expression of several well-known rice transporters (OsHKT2;1, OsHKT1;5, OsLti6a, OsLti6b, OsSOS1, OsNHX1, and OsAKT1) involved in Na+/K+ homeostasis in transgenic plants under salinity. Ultrastructural observations of OsPEX11-RNAi seedlings showed that they were less sensitive to salt stress than WT and overexpression lines. These results provide experimental evidence that OsPEX11 is an important gene implicated in Na+ and K+ regulation, and plays a critical role in salt stress tolerance by modulating the expression of cation transporters and antioxidant defense. Thus, OsPEX11 could be considered in transgenic breeding for improvement of salt stress tolerance in rice crop.
Collapse
Affiliation(s)
- Peng Cui
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang UniversityHangzhou, China
| | - Hongbo Liu
- College of Agriculture and Food Science, Zhejiang A & F UniversityLin’an, China
| | - Faisal Islam
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang UniversityHangzhou, China
| | - Lan Li
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang UniversityHangzhou, China
| | - Muhammad A. Farooq
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang UniversityHangzhou, China
| | - Songlin Ruan
- Laboratory of Plant Molecular Biology and Proteomics, Institute of Biotechnology, Hangzhou Academy of Agricultural SciencesHangzhou, China
- *Correspondence: Weijun Zhou, Songlin Ruan,
| | - Weijun Zhou
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang UniversityHangzhou, China
- *Correspondence: Weijun Zhou, Songlin Ruan,
| |
Collapse
|
33
|
Shi H, Ye T, Yang F, Chan Z. Arabidopsis PED2 positively modulates plant drought stress resistance. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2015; 57:796-806. [PMID: 25588806 DOI: 10.1111/jipb.12330] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 01/09/2015] [Indexed: 05/28/2023]
Abstract
Abscisic acid (ABA) is an important phytohormone that functions in seed germination, plant development, and multiple stress responses. Arabidopsis Peroxisome defective 2 (AtPED2) (also known as AtPEXOXIN14, AtPEX14), is involved in the intracellular transport of thiolase from the cytosol to glyoxysomes, and perosisomal matrix protein import in plants. In this study, we assigned a new role for AtPED2 in drought stress resistance. The transcript level of AtPED2 was downregulated by ABA and abiotic stress treatments. AtPED2 knockout mutants were insensitive to ABA-mediated seed germination, primary root elongation, and stomatal response, while AtPED2 over-expressing plants were sensitive to ABA in comparison to wide type (WT). AtPED2 also positively regulated drought stress resistance, as evidenced by the changes of water loss rate, electrolyte leakage, and survival rate. Notably, AtPED2 positively modulated expression of several stress-responsive genes (RAB18, RD22, RD29A, and RD29B), positively affected underlying antioxidant enzyme activities and negatively regulated reactive oxygen species (ROS) level under drought stress conditions. Moreover, multiple carbon metabolites including amino acids, organic acids, sugars, sugar alcohols, and aromatic amines were also positively regulated by AtPED2. Taken together, these results indicated a positive role for AtPED2 in drought resistance, through modulation of stress-responsive genes expression, ROS metabolism, and metabolic homeostasis, at least partially.
Collapse
Affiliation(s)
- Haitao Shi
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Agriculture, Hainan University, Haikou, 570228, China
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Tiantian Ye
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Fan Yang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Zhulong Chan
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| |
Collapse
|
34
|
Abstract
Mitochondria are highly dynamic organelles that are continuously shaped by the antagonistic fission and fusion processes. The major machineries of mitochondrial fission and fusion, as well as mechanisms that regulate the function of key players in these processes have been analyzed in different experimental systems. In plants however, the mitochondrial fusion machinery is still largely unknown, and the regulatory mechanisms of the fission machinery are just beginning to be elucidated. This review focuses on the molecular mechanisms underlying plant mitochondrial dynamics and regulation of some of the key factors, especially the roles of membrane lipids such as cardiolipin.
Collapse
Affiliation(s)
- Ronghui Pan
- Department of Energy Plant Research Laboratory; Michigan State University; East Lansing, MI USA
- Department of Biochemistry and Molecular Biology; Michigan State University; East Lansing, MI USA
| | - Jianping Hu
- Department of Energy Plant Research Laboratory; Michigan State University; East Lansing, MI USA
- Department of Plant Biology; Michigan State University; East Lansing, MI USA
- Correspondence to: Jianping Hu;
| |
Collapse
|
35
|
Pan R, Kaur N, Hu J. The Arabidopsis mitochondrial membrane-bound ubiquitin protease UBP27 contributes to mitochondrial morphogenesis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 78:1047-59. [PMID: 24707813 DOI: 10.1111/tpj.12532] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 03/28/2014] [Accepted: 04/01/2014] [Indexed: 05/13/2023]
Abstract
Mitochondria are essential organelles with dynamic morphology and function. Post-translational modifications (PTMs), which include protein ubiquitination, are critically involved in animal and yeast mitochondrial dynamics. How PTMs contribute to plant mitochondrial dynamics is just beginning to be elucidated, and mitochondrial enzymes involved in ubiquitination have not been reported from plants. In this study, we identified an Arabidopsis mitochondrial localized ubiquitin protease, UBP27, through a screen that combined bioinformatics and fluorescent fusion protein targeting analysis. We characterized UBP27 with respect to its membrane topology and enzymatic activities, and analysed the mitochondrial morphological changes in UBP27T-DNA insertion mutants and overexpression lines. We have shown that UBP27 is embedded in the mitochondrial outer membrane with an Nin -Cout orientation and possesses ubiquitin protease activities in vitro. UBP27 demonstrates similar sub-cellular localization, domain structure, membrane topology and enzymatic activities with two mitochondrial deubiquitinases, yeast ScUBP16 and human HsUSP30, which indicated that these proteins are functional orthologues in eukaryotes. Although loss-of-function mutants of UBP27 do not show obvious phenotypes in plant growth and mitochondrial morphology, UBP27 overexpression can change mitochondrial morphology from rod to spherical shape and reduce the mitochondrial association of dynamin-related protein 3 (DRP3) proteins, large GTPases that serve as the main mitochondrial fission factors. Thus, our study has uncovered a plant ubiquitin protease that plays a role in mitochondrial morphogenesis possibly through modulation of the function of organelle division proteins.
Collapse
Affiliation(s)
- Ronghui Pan
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA; Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| | | | | |
Collapse
|
36
|
Pan R, Jones AD, Hu J. Cardiolipin-mediated mitochondrial dynamics and stress response in Arabidopsis. THE PLANT CELL 2014; 26:391-409. [PMID: 24443516 PMCID: PMC3963584 DOI: 10.1105/tpc.113.121095] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 12/19/2013] [Accepted: 12/27/2013] [Indexed: 05/19/2023]
Abstract
Mitochondria are essential and dynamic organelles in eukaryotes. Cardiolipin (CL) is a key phospholipid in mitochondrial membranes, playing important roles in maintaining the functional integrity and dynamics of mitochondria in animals and yeasts. However, CL's role in plants is just beginning to be elucidated. In this study, we used Arabidopsis thaliana to examine the subcellular distribution of CL and CARDIOLIPIN SYNTHASE (CLS) and analyzed loss-of-function cls mutants for defects in mitochondrial morphogenesis and stress response. We show that CL localizes to mitochondria and is enriched at specific domains, and CLS targets to the inner membrane of mitochondria with its C terminus in the intermembrane space. Furthermore, cls mutants exhibit significantly impaired growth as well as altered structural integrity and morphogenesis of mitochondria. In contrast to animals and yeasts, in which CL's effect on mitochondrial fusion is more profound, Arabidopsis CL plays a dominant role in mitochondrial fission and exerts this function, at least in part, through stabilizing the protein complex of the major mitochondrial fission factor, DYNAMIN-RELATED PROTEIN3. CL also plays a role in plant responses to heat and extended darkness, stresses that induce programmed cell death. Our study has uncovered conserved and plant-specific aspects of CL biology in mitochondrial dynamics and the organism response to environmental stresses.
Collapse
Affiliation(s)
- Ronghui Pan
- Michigan State University–Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824
| | - A. Daniel Jones
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824
| | - Jianping Hu
- Michigan State University–Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824
- Plant Biology Department, Michigan State University, East Lansing, Michigan 48824
- Address correspondence to
| |
Collapse
|
37
|
Marty NJ, Teresinski HJ, Hwang YT, Clendening EA, Gidda SK, Sliwinska E, Zhang D, Miernyk JA, Brito GC, Andrews DW, Dyer JM, Mullen RT. New insights into the targeting of a subset of tail-anchored proteins to the outer mitochondrial membrane. FRONTIERS IN PLANT SCIENCE 2014; 5:426. [PMID: 25237314 PMCID: PMC4154396 DOI: 10.3389/fpls.2014.00426] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 08/12/2014] [Indexed: 05/21/2023]
Abstract
Tail-anchored (TA) proteins are a unique class of functionally diverse membrane proteins defined by their single C-terminal membrane-spanning domain and their ability to insert post-translationally into specific organelles with an Ncytoplasm-Corganelle interior orientation. The molecular mechanisms by which TA proteins are sorted to the proper organelles are not well-understood. Herein we present results indicating that a dibasic targeting motif (i.e., -R-R/K/H-X({X≠E})) identified previously in the C terminus of the mitochondrial isoform of the TA protein cytochrome b 5, also exists in many other A. thaliana outer mitochondrial membrane (OMM)-TA proteins. This motif is conspicuously absent, however, in all but one of the TA protein subunits of the translocon at the outer membrane of mitochondria (TOM), suggesting that these two groups of proteins utilize distinct biogenetic pathways. Consistent with this premise, we show that the TA sequences of the dibasic-containing proteins are both necessary and sufficient for targeting to mitochondria, and are interchangeable, while the TA regions of TOM proteins lacking a dibasic motif are necessary, but not sufficient for localization, and cannot be functionally exchanged. We also present results from a comprehensive mutational analysis of the dibasic motif and surrounding sequences that not only greatly expands the functional definition and context-dependent properties of this targeting signal, but also led to the identification of other novel putative OMM-TA proteins. Collectively, these results provide important insight to the complexity of the targeting pathways involved in the biogenesis of OMM-TA proteins and help define a consensus targeting motif that is utilized by at least a subset of these proteins.
Collapse
Affiliation(s)
- Naomi J. Marty
- Department of Molecular and Cellular Biology, University of GuelphGuelph, ON, Canada
| | - Howard J. Teresinski
- Department of Molecular and Cellular Biology, University of GuelphGuelph, ON, Canada
| | - Yeen Ting Hwang
- Department of Molecular and Cellular Biology, University of GuelphGuelph, ON, Canada
| | - Eric A. Clendening
- Department of Molecular and Cellular Biology, University of GuelphGuelph, ON, Canada
| | - Satinder K. Gidda
- Department of Molecular and Cellular Biology, University of GuelphGuelph, ON, Canada
| | - Elwira Sliwinska
- Department of Molecular and Cellular Biology, University of GuelphGuelph, ON, Canada
- Department of Plant Genetics, Physiology and Biotechnology, University of Technology and Life Sciences in BydgoszczBydgoszcz, Poland
| | - Daiyuan Zhang
- United States Department of Agriculture, Agricultural Research Service, US Arid-Land Agricultural Research CenterMaricopa, AZ, USA
| | - Ján A. Miernyk
- United States Department of Agriculture, Agricultural Research Service, Plant Genetics Research Unit, University of MissouriColumbia, MO, USA
| | - Glauber C. Brito
- Instituto do Cancer do Estado de Sao Paulo, Fundacao Faculdade de Medicina, Universidade de Sao PauloSao Paulo, Brazil
| | - David W. Andrews
- Sunnybrook Research Institute and Department of Biochemistry, University of TorontoToronto, ON, Canada
| | - John M. Dyer
- United States Department of Agriculture, Agricultural Research Service, US Arid-Land Agricultural Research CenterMaricopa, AZ, USA
| | - Robert T. Mullen
- Department of Molecular and Cellular Biology, University of GuelphGuelph, ON, Canada
- *Correspondence: Robert T. Mullen, Department of Molecular and Cellular, Biology, University of Guelph, Room 4470 Science Complex, 488 Gordon Street, Guelph, ON N1G 2W1, Canada e-mail:
| |
Collapse
|
38
|
Quan S, Yang P, Cassin-Ross G, Kaur N, Switzenberg R, Aung K, Li J, Hu J. Proteome analysis of peroxisomes from etiolated Arabidopsis seedlings identifies a peroxisomal protease involved in β-oxidation and development. PLANT PHYSIOLOGY 2013; 163:1518-38. [PMID: 24130194 PMCID: PMC3850190 DOI: 10.1104/pp.113.223453] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Plant peroxisomes are highly dynamic organelles that mediate a suite of metabolic processes crucial to development. Peroxisomes in seeds/dark-grown seedlings and in photosynthetic tissues constitute two major subtypes of plant peroxisomes, which had been postulated to contain distinct primary biochemical properties. Multiple in-depth proteomic analyses had been performed on leaf peroxisomes, yet the major makeup of peroxisomes in seeds or dark-grown seedlings remained unclear. To compare the metabolic pathways of the two dominant plant peroxisomal subtypes and discover new peroxisomal proteins that function specifically during seed germination, we performed proteomic analysis of peroxisomes from etiolated Arabidopsis (Arabidopsis thaliana) seedlings. The detection of 77 peroxisomal proteins allowed us to perform comparative analysis with the peroxisomal proteome of green leaves, which revealed a large overlap between these two primary peroxisomal variants. Subcellular targeting analysis by fluorescence microscopy validated around 10 new peroxisomal proteins in Arabidopsis. Mutant analysis suggested the role of the cysteine protease RESPONSE TO DROUGHT21A-LIKE1 in β-oxidation, seed germination, and growth. This work provides a much-needed road map of a major type of plant peroxisome and has established a basis for future investigations of peroxisomal proteolytic processes to understand their roles in development and in plant interaction with the environment.
Collapse
|
39
|
Abstract
PMPs (peroxisome membrane proteins) play essential roles in organelle biogenesis and in co-ordinating peroxisomal metabolism with pathways in other subcellular compartments through transport of metabolites and the operation of redox shuttles. Although the import of soluble proteins into the peroxisome matrix has been well studied, much less is known about the trafficking of PMPs. Pex3 and Pex19 (and Pex16 in mammals) were identified over a decade ago as critical components of PMP import; however, it has proved surprisingly difficult to produce a unified model for their function in PMP import and peroxisome biogenesis. It has become apparent that each of these peroxins has multiple functions and in the present review we focus on both the classical and the more recently identified roles of Pex19 and Pex3 as informed by structural, biochemical and live cell imaging studies. We consider the different models proposed for peroxisome biogenesis and the role of PMP import within them, and propose that the differences may be more perceived than real and may reflect the highly dynamic nature of peroxisomes.
Collapse
|
40
|
Venkatakrishnan S, Mackey D, Meier I. Functional investigation of the plant-specific long coiled-coil proteins PAMP-INDUCED COILED-COIL (PICC) and PICC-LIKE (PICL) in Arabidopsis thaliana. PLoS One 2013; 8:e57283. [PMID: 23451199 PMCID: PMC3581476 DOI: 10.1371/journal.pone.0057283] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 01/23/2013] [Indexed: 12/20/2022] Open
Abstract
We have identified and characterized two Arabidopsis long coiled-coil proteins PAMP-INDUCED COILED-COIL (PICC) and PICC-LIKE (PICL). PICC (147 kDa) and PICL (87 kDa) are paralogs that consist predominantly of a long coiled-coil domain (expanded in PICC), with a predicted transmembrane domain at the immediate C-terminus. Orthologs of PICC and PICL were found exclusively in vascular plants. PICC and PICL GFP fusion proteins are anchored to the cytoplasmic surface of the endoplasmic reticulum (ER) membrane by a C-terminal transmembrane domain and a short tail domain, via a tail-anchoring mechanism. T-DNA-insertion mutants of PICC and PICL as well as the double mutant show an increased sensitivity to the plant abiotic stress hormone abscisic acid (ABA) in a post-germination growth response. PICC, but not PICL gene expression is induced by the bacterial pathogen-associated molecular pattern (PAMP) flg22. T-DNA insertion alleles of PICC, but not PICL, show increased susceptibility to the non-virulent strain P. syringae pv. tomato DC3000 hrcC, but not to the virulent strain P. syringae pv. tomato DC3000. This suggests that PICC mutants are compromised in PAMP-triggered immunity (PTI). The data presented here provide first evidence for the involvement of a plant long coiled-coil protein in a plant defense response.
Collapse
Affiliation(s)
- Sowmya Venkatakrishnan
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, United States of America
| | - David Mackey
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, United States of America
- Department of Horticulture and Crop Science, The Ohio State University, Columbus, Ohio, United States of America
| | - Iris Meier
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, United States of America
| |
Collapse
|
41
|
Carrie C, Murcha MW, Giraud E, Ng S, Zhang MF, Narsai R, Whelan J. How do plants make mitochondria? PLANTA 2013; 237:429-439. [PMID: 22976451 DOI: 10.1007/s00425-012-1762-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Accepted: 09/04/2012] [Indexed: 05/28/2023]
Abstract
Plant mitochondria can differ in size, shape, number and protein content across different tissue types and over development. These differences are a result of signaling and regulatory processes that ensure mitochondrial function is tuned in a cell-specific manner to support proper plant growth and development. In the last decade, the processes involved in mitochondrial biogenesis are becoming clearer, including; how dormant seeds transition from empty promitochondria to fully functional mitochondria with extensive cristae structures and various biochemical activities, the regulation of nuclear genes encoding mitochondrial proteins via regulators of the diurnal cycle in plants, the mitochondrial stress response, the targeting of proteins to mitochondria and other organelles and connections between the respiratory chain and protein import complexes. All these findings indicate that mitochondrial function is a part of an integrated cellular network, and communication between mitochondria and other cellular processes extends beyond the known exchange or transport of metabolites. Our current knowledge now needs to be used to gain more insight into the molecular components at various levels of this hierarchical and complex regulatory and communication network, so that mitochondrial function can be predicted and modified in a rational manner.
Collapse
Affiliation(s)
- Chris Carrie
- Department of Biology I, Botany, Ludwig-Maximilians Universität München, Großhaderner Strasse 2-4, Planegg-Martinsried, Germany.
| | | | | | | | | | | | | |
Collapse
|
42
|
Hu J, Baker A, Bartel B, Linka N, Mullen RT, Reumann S, Zolman BK. Plant peroxisomes: biogenesis and function. THE PLANT CELL 2012; 24:2279-303. [PMID: 22669882 PMCID: PMC3406917 DOI: 10.1105/tpc.112.096586] [Citation(s) in RCA: 303] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Peroxisomes are eukaryotic organelles that are highly dynamic both in morphology and metabolism. Plant peroxisomes are involved in numerous processes, including primary and secondary metabolism, development, and responses to abiotic and biotic stresses. Considerable progress has been made in the identification of factors involved in peroxisomal biogenesis, revealing mechanisms that are both shared with and diverged from non-plant systems. Furthermore, recent advances have begun to reveal an unexpectedly large plant peroxisomal proteome and have increased our understanding of metabolic pathways in peroxisomes. Coordination of the biosynthesis, import, biochemical activity, and degradation of peroxisomal proteins allows for highly dynamic responses of peroxisomal metabolism to meet the needs of a plant. Knowledge gained from plant peroxisomal research will be instrumental to fully understanding the organelle's dynamic behavior and defining peroxisomal metabolic networks, thus allowing the development of molecular strategies for rational engineering of plant metabolism, biomass production, stress tolerance, and pathogen defense.
Collapse
Affiliation(s)
- Jianping Hu
- Michigan State University-Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824, USA.
| | | | | | | | | | | | | |
Collapse
|
43
|
Elgass K, Pakay J, Ryan MT, Palmer CS. Recent advances into the understanding of mitochondrial fission. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1833:150-61. [PMID: 22580041 DOI: 10.1016/j.bbamcr.2012.05.002] [Citation(s) in RCA: 192] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Revised: 04/24/2012] [Accepted: 05/02/2012] [Indexed: 12/20/2022]
Abstract
Mitochondria exist as a highly dynamic tubular network, and their morphology is governed by the delicate balance between frequent fusion and fission events, as well as by interactions with the cytoskeleton. Alterations in mitochondrial morphology are associated with changes in metabolism, cell development and cell death, whilst several human pathologies have been associated with perturbations in the cellular machinery that coordinate these processes. Mitochondrial fission also contributes to ensuring the proper distribution of mitochondria in response to the energetic requirements of the cell. The master mediator of fission is Dynamin related protein 1 (Drp1), which polymerises and constricts mitochondria to facilitate organelle division. The activity of Drp1 at the mitochondrial outer membrane is regulated through post-translational modifications and interactions with mitochondrial receptor and accessory proteins. This review will concentrate on recent advances made in delineating the mechanism of mitochondrial fission, and will highlight the importance of mitochondrial fission in health and disease. This article is part of a Special Issue entitled: Mitochondrial dynamics and physiology.
Collapse
Affiliation(s)
- Kirstin Elgass
- Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia
| | | | | | | |
Collapse
|
44
|
Islinger M, Grille S, Fahimi HD, Schrader M. The peroxisome: an update on mysteries. Histochem Cell Biol 2012; 137:547-74. [DOI: 10.1007/s00418-012-0941-4] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2012] [Indexed: 12/31/2022]
|
45
|
Fission and proliferation of peroxisomes. Biochim Biophys Acta Mol Basis Dis 2011; 1822:1343-57. [PMID: 22240198 DOI: 10.1016/j.bbadis.2011.12.014] [Citation(s) in RCA: 130] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 12/22/2011] [Accepted: 12/23/2011] [Indexed: 01/12/2023]
Abstract
Peroxisomes are remarkably dynamic, multifunctional organelles, which react to physiological changes in their cellular environment and adopt their morphology, number, enzyme content and metabolic functions accordingly. At the organelle level, the key molecular machinery controlling peroxisomal membrane elongation and remodeling as well as membrane fission is becoming increasingly established and defined. Key players in peroxisome division are conserved in animals, plants and fungi, and key fission components are shared with mitochondria. However, the physiological stimuli and corresponding signal transduction pathways regulating and modulating peroxisome maintenance and proliferation are, despite a few exceptions, largely unexplored. There is emerging evidence that peroxisomal dynamics and proper regulation of peroxisome number and morphology are crucial for the physiology of the cell, as well as for the pathology of the organism. Here, we discuss several key aspects of peroxisomal fission and proliferation and highlight their association with certain diseases. We address signaling and transcriptional events resulting in peroxisome proliferation, and focus on novel findings concerning the key division components and their interplay. Finally, we present an updated model of peroxisomal growth and division. This article is part of a Special Issue entitled: Metabolic Functions and Biogenesis of Peroxisomes in Health and Disease.
Collapse
|
46
|
Kaur N, Hu J. Defining the plant peroxisomal proteome: from Arabidopsis to rice. FRONTIERS IN PLANT SCIENCE 2011; 2:103. [PMID: 22645559 PMCID: PMC3355810 DOI: 10.3389/fpls.2011.00103] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Accepted: 12/08/2011] [Indexed: 05/08/2023]
Abstract
Peroxisomes are small subcellular organelles mediating a multitude of processes in plants. Proteomics studies over the last several years have yielded much needed information on the composition of plant peroxisomes. In this review, the status of peroxisome proteomics studies in Arabidopsis and other plant species and the cumulative advances made through these studies are summarized. A reference Arabidopsis peroxisome proteome is generated, and some unique aspects of Arabidopsis peroxisomes that were uncovered through proteomics studies and hint at unanticipated peroxisomal functions are also highlighted. Knowledge gained from Arabidopsis was utilized to compile a tentative list of peroxisome proteins for the model monocot plant, rice. Differences in the peroxisomal proteome between these two model plants were drawn, and novel facets in rice were expounded upon. Finally, we discuss about the current limitations of experimental proteomics in decoding the complete and dynamic makeup of peroxisomes, and complementary and integrated approaches that would be beneficial to defining the peroxisomal metabolic and regulatory roadmaps. The synteny of genomes in the grass family makes rice an ideal model to study peroxisomes in cereal crops, in which these organelles have received much less attention, with the ultimate goal to improve crop yield.
Collapse
Affiliation(s)
- Navneet Kaur
- MSU-DOE Plant Research Laboratory, Michigan State UniversityEast Lansing, MI, USA
| | - Jianping Hu
- MSU-DOE Plant Research Laboratory, Michigan State UniversityEast Lansing, MI, USA
- Plant Biology Department, Michigan State UniversityEast Lansing, MI, USA
- *Correspondence: Jianping Hu, MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA. e-mail:
| |
Collapse
|