1
|
García-Oneto TM, Moyano-Bellido C, Domínguez-Martín MA. Structure and function of the light-protective orange carotenoid protein families. Curr Res Struct Biol 2024; 7:100141. [PMID: 38736459 PMCID: PMC11087925 DOI: 10.1016/j.crstbi.2024.100141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/21/2024] [Accepted: 03/29/2024] [Indexed: 05/14/2024] Open
Abstract
Orange carotenoid proteins (OCPs) are unique photoreceptors that are critical for cyanobacterial photoprotection. Upon exposure to blue-green light, OCPs are activated from a stable orange form, OCPO, to an active red form, OCPR, which binds to phycobilisomes (PBSs) and performs photoprotective non-photochemical quenching (NPQ). OCPs can be divided into three main families: the most abundant and best studied OCP1, and two others, OCP2 and OCP3, which have different activation and quenching properties and are yet underexplored. Crystal structures have been acquired for the three OCP clades, providing a glimpse into the conformational underpinnings of their light-absorption and energy dissipation attributes. Recently, the structure of the PBS-OCPR complex has been obtained allowing for an unprecedented insight into the photoprotective action of OCPs. Here, we review the latest findings in the field that have substantially improved our understanding of how cyanobacteria protect themselves from the toxic consequences of excess light absorption. Furthermore, current research is applying the structure of OCPs to bio-inspired optogenetic tools, to function as carotenoid delivery devices, as well as engineering the NPQ mechanism of cyanobacteria to enhance their photosynthetic biomass production.
Collapse
Affiliation(s)
| | | | - M. Agustina Domínguez-Martín
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario CeiA3, Universidad de Córdoba, Córdoba, Spain
| |
Collapse
|
2
|
Sklyar J, Wilson A, Kirilovsky D, Adir N. Insights into energy quenching mechanisms and carotenoid uptake by orange carotenoid protein homologs: HCP4 and CTDH. Int J Biol Macromol 2024; 265:131028. [PMID: 38521321 DOI: 10.1016/j.ijbiomac.2024.131028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 03/09/2024] [Accepted: 03/19/2024] [Indexed: 03/25/2024]
Abstract
Photodamage to the photosynthetic apparatus by excessive light radiation has led to the evolution of a variety of energy dissipation mechanisms. A mechanism that exists in some cyanobacterial species, enables non-photochemical quenching of excitation energy within the phycobilisome (PBS) antenna complex by the Orange Carotenoid Protein (OCP). The OCP contains an active N-terminal domain (NTD) and a regulatory C-terminal domain (CTD). Some cyanobacteria also have genes encoding for homologs to both the CTD (CTDH) and the NTD (referred to as helical carotenoid proteins, HCP). The CTDH facilitates uptake of carotenoids from the thylakoid membranes to be transferred to the HCPs. Holo-HCPs exhibit diverse functionalities such as carotenoid carriers, singlet oxygen quenchers, and in the case of HCP4, constitutive OCP-like energy quenching. Here, we present the first crystal structure of the holo-HCP4 binding canthaxanthin molecule and an improved structure of the apo-CTDH from Anabaena sp. PCC 7120. We propose here models of the binding of the HCP4 to the PBS and the associated energy quenching mechanism. Our results show that the presence of the carotenoid is essential for fluorescence quenching. We also examined interactions within OCP-like species, including HCP4 and CTDH, providing the basis for mechanisms of carotenoid transfer from CTDH to HCPs.
Collapse
Affiliation(s)
- Jenia Sklyar
- Schulich Faculty of Chemistry, Technion, Haifa 3200003, Israel
| | - Adjélé Wilson
- Université Paris-Saclay, CNRS, CEA, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif sur Yvette, France
| | - Diana Kirilovsky
- Université Paris-Saclay, CNRS, CEA, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif sur Yvette, France.
| | - Noam Adir
- Schulich Faculty of Chemistry, Technion, Haifa 3200003, Israel.
| |
Collapse
|
3
|
Chukhutsina VU, Hutchison CDM, van Thor JJ. The Carbonyl Group in β2 of the Carotenoid Tunes the Photocycle Kinetics in Orange Carotenoid Protein. J Mol Biol 2024; 436:168463. [PMID: 38307159 DOI: 10.1016/j.jmb.2024.168463] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/29/2024] [Accepted: 01/29/2024] [Indexed: 02/04/2024]
Abstract
Adaptation to rapid environmental changes is crucial for maintaining optimal photosynthetic efficiency and is ultimately key to the survival of all photosynthetic organisms. Like most of them, cyanobacteria protect their photosynthetic apparatus against rapidly increasing light intensities by nonphotochemical quenching (NPQ). In cyanobacteria, NPQ is controlled by Orange Carotenoid Protein (OCP) photocycle. OCP is the only known photoreceptor that uses carotenoid for its light activation. How carotenoid drives and controls this unique photoactivation process is still unknown. However, understanding and potentially controlling the OCP photocycle may open up new possibilities for improving photosynthetic biomass. Here we investigate the effect of the carbonyl group in the β2 ring of the carotenoid on the OCP photocycle. We report microsecond to minute OCP light activation kinetics and Arrhenius plots of the two OCP forms: Canthaxanthin-bound OCP (OCPCAN) and echinenone-bound OCP (OCPECH). The difference between the two carotenoids is the presence of a carbonyl group in the β2-ring located in the N-terminal domain of the protein. A combination of temperature-dependent spectroscopy, flash photolysis, and pump-probe transient absorption allows us to report the previously unresolved OCP intermediate associated primarily with the absorption bleach (OCPB). OCPB dominates the photokinetics in the μs to subms time range for OCPCAN and in the μs to ms range for OCPECH. We show that in OCPCAN the OCP photocycle steps are always faster than in OCPECH: from 2 to almost 20 times depending on the step. These results suggest that the presence of the carbonyl group in the β2-ring of the carotenoid accelerates the OCP photocycle.
Collapse
Affiliation(s)
- Volha U Chukhutsina
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom.
| | | | - Jasper J van Thor
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom.
| |
Collapse
|
4
|
Sluchanko NN, Maksimov EG, Slonimskiy YB, Varfolomeeva LA, Bukhanko AY, Egorkin NA, Tsoraev GV, Khrenova MG, Ge B, Qin S, Boyko KM, Popov VO. Structural framework for the understanding spectroscopic and functional signatures of the cyanobacterial Orange Carotenoid Protein families. Int J Biol Macromol 2024; 254:127874. [PMID: 37939760 DOI: 10.1016/j.ijbiomac.2023.127874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/23/2023] [Accepted: 11/01/2023] [Indexed: 11/10/2023]
Abstract
The Orange Carotenoid Protein (OCP) is a unique photoreceptor crucial for cyanobacterial photoprotection. Best studied Synechocystis sp. PCC 6803 OCP belongs to the large OCP1 family. Downregulated by the Fluorescence Recovery Protein (FRP) in low-light, high-light-activated OCP1 binds to the phycobilisomes and performs non-photochemical quenching. Recently discovered families OCP2 and OCP3 remain structurally and functionally underexplored, and no systematic comparative studies have ever been conducted. Here we present two first crystal structures of OCP2 from morphoecophysiologically different cyanobacteria and provide their comprehensive structural, spectroscopic and functional comparison with OCP1, the recently described OCP3 and all-OCP ancestor. Structures enable correlation of spectroscopic signatures with the effective number of hydrogen and discovered here chalcogen bonds anchoring the ketocarotenoid in OCP, as well as with the rotation of the echinenone's β-ionone ring in the CTD. Structural data also helped rationalize the observed differences in OCP/FRP and OCP/phycobilisome functional interactions. These data are expected to foster OCP research and applications in optogenetics, targeted carotenoid delivery and cyanobacterial biomass engineering.
Collapse
Affiliation(s)
- Nikolai N Sluchanko
- A.N. Bach Institute of Biochemistry, Federal Research Centre of Biotechnology of the Russian Academy of Sciences, Moscow 119071, Russia.
| | - Eugene G Maksimov
- M.V. Lomonosov Moscow State University, Faculty of Biology, Moscow 119991, Russia
| | - Yury B Slonimskiy
- A.N. Bach Institute of Biochemistry, Federal Research Centre of Biotechnology of the Russian Academy of Sciences, Moscow 119071, Russia
| | - Larisa A Varfolomeeva
- A.N. Bach Institute of Biochemistry, Federal Research Centre of Biotechnology of the Russian Academy of Sciences, Moscow 119071, Russia
| | - Antonina Y Bukhanko
- M.V. Lomonosov Moscow State University, Faculty of Biology, Moscow 119991, Russia
| | - Nikita A Egorkin
- A.N. Bach Institute of Biochemistry, Federal Research Centre of Biotechnology of the Russian Academy of Sciences, Moscow 119071, Russia; M.V. Lomonosov Moscow State University, Faculty of Biology, Moscow 119991, Russia
| | - Georgy V Tsoraev
- A.N. Bach Institute of Biochemistry, Federal Research Centre of Biotechnology of the Russian Academy of Sciences, Moscow 119071, Russia
| | - Maria G Khrenova
- A.N. Bach Institute of Biochemistry, Federal Research Centre of Biotechnology of the Russian Academy of Sciences, Moscow 119071, Russia; Lomonosov Moscow State University, Chemistry Department, Moscow 119991, Russia
| | - Baosheng Ge
- China University of Petroleum (Huadong), College of Chemistry and Chemical Engineering, Qingdao 266580, People's Republic of China
| | - Song Qin
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, People's Republic of China.
| | - Konstantin M Boyko
- A.N. Bach Institute of Biochemistry, Federal Research Centre of Biotechnology of the Russian Academy of Sciences, Moscow 119071, Russia
| | - Vladimir O Popov
- A.N. Bach Institute of Biochemistry, Federal Research Centre of Biotechnology of the Russian Academy of Sciences, Moscow 119071, Russia; M.V. Lomonosov Moscow State University, Faculty of Biology, Moscow 119991, Russia
| |
Collapse
|
5
|
Leccese S, Calcinoni A, Wilson A, Kirilovsky D, Carbonera D, Onfroy T, Jolivalt C, Mezzetti A. Orange Carotenoid Protein in Mesoporous Silica: A New System towards the Development of Colorimetric and Fluorescent Sensors for pH and Temperature. MICROMACHINES 2023; 14:1871. [PMID: 37893308 PMCID: PMC10609006 DOI: 10.3390/mi14101871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/26/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023]
Abstract
Orange carotenoid protein (OCP) is a photochromic carotenoprotein involved in the photoprotection of cyanobacteria. It is activated by blue-green light to a red form OCPR capable of dissipating the excess of energy of the cyanobacterial photosynthetic light-harvesting systems. Activation to OCPR can also be achieved in the dark. In the present work, activation by pH changes of two different OCPs-containing echinenone or canthaxanthin as carotenoids-is investigated in different conditions. A particular emphasis is put on OCP encapsulated in SBA-15 mesoporous silica nanoparticles. It is known that in these hybrid systems, under appropriate conditions, OCP remains photoactive. Here, we show that when immobilised in SBA-15, the OCP visible spectrum is sensitive to pH changes, but such a colorimetric response is very different from the one observed for OCP in solution. In both cases (SBA-15 matrices and solutions), pH-induced colour changes are related either by orange-to-red OCP activation, or by carotenoid loss from the denatured protein. Of particular interest is the response of OCP in SBA-15 matrices, where a sudden change in the Vis absorption spectrum and in colour is observed for pH changing from 2 to 3 (in the case of canthaxanthin-binding OCP in SBA-15: λMAX shifts from 454 to 508 nm) and for pH changing from 3 to 4 (in the case of echinenone-binding OCP in SBA-15: λMAX shifts from 445 to 505 nm). The effect of temperature on OCP absorption spectrum and colour (in SBA-15 matrices) has also been investigated and found to be highly dependent on the properties of the used mesoporous silica matrix. Finally, we also show that simultaneous encapsulation in selected surface-functionalised SBA-15 nanoparticles of appropriate fluorophores makes it possible to develop OCP-based pH-sensitive fluorescent systems. This work therefore represents a proof of principle that OCP immobilised in mesoporous silica is a promising system in the development of colorimetric and fluorometric pH and temperature sensors.
Collapse
Affiliation(s)
- Silvia Leccese
- Sorbonne Université, CNRS, Laboratoire de Réactivité de Surface (LRS), 4 Place Jussieu, 75005 Paris, France (A.C.); (C.J.)
| | - Andrea Calcinoni
- Sorbonne Université, CNRS, Laboratoire de Réactivité de Surface (LRS), 4 Place Jussieu, 75005 Paris, France (A.C.); (C.J.)
- Department of Chemical Sciences, University of Padova, 35131 Padova, Italy;
| | - Adjélé Wilson
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, CEDEX, 91198 Gif-sur-Yvette, France (D.K.)
| | - Diana Kirilovsky
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, CEDEX, 91198 Gif-sur-Yvette, France (D.K.)
| | | | - Thomas Onfroy
- Sorbonne Université, CNRS, Laboratoire de Réactivité de Surface (LRS), 4 Place Jussieu, 75005 Paris, France (A.C.); (C.J.)
| | - Claude Jolivalt
- Sorbonne Université, CNRS, Laboratoire de Réactivité de Surface (LRS), 4 Place Jussieu, 75005 Paris, France (A.C.); (C.J.)
| | - Alberto Mezzetti
- Sorbonne Université, CNRS, Laboratoire de Réactivité de Surface (LRS), 4 Place Jussieu, 75005 Paris, France (A.C.); (C.J.)
| |
Collapse
|
6
|
Han MH, Yang HW, Yoon J, Villafani Y, Song JY, Pan CH, Park K, Cho Y, Song JJ, Kim SJ, Park YI, Park J. Color-Tuning Mechanism of the Lit Form of Orange Carotenoid Protein. Mol Cells 2023; 46:513-525. [PMID: 37587751 PMCID: PMC10440265 DOI: 10.14348/molcells.2023.2186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 07/11/2023] [Accepted: 07/13/2023] [Indexed: 08/18/2023] Open
Abstract
Orange carotenoid protein (OCP) of photosynthetic cyanobacteria binds to ketocarotenoids noncovalently and absorbs excess light to protect the host organism from light-induced oxidative damage. Herein, we found that mutating valine 40 in the α3 helix of Gloeocapsa sp. PCC 7513 (GlOCP1) resulted in blue- or red-shifts of 6-20 nm in the absorption maxima of the lit forms. We analyzed the origins of absorption maxima shifts by integrating X-ray crystallography, homology modeling, molecular dynamics simulations, and hybrid quantum mechanics/molecular mechanics calculations. Our analysis suggested that the single residue mutations alter the polar environment surrounding the bound canthaxanthin, thereby modulating the degree of charge transfer in the photoexcited state of the chromophore. Our integrated investigations reveal the mechanism of color adaptation specific to OCPs and suggest a design principle for color-specific photoswitches.
Collapse
Affiliation(s)
- Man-Hyuk Han
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- Department of Biological Sciences, KI for the BioCentury, KAIST, Daejeon 34141, Korea
| | - Hee Wook Yang
- Department of Biological Sciences, Chungnam National University, Daejeon 34134, Korea
| | - Jungmin Yoon
- Department of Biological Sciences, KI for the BioCentury, KAIST, Daejeon 34141, Korea
| | - Yvette Villafani
- Department of Biological Sciences, Chungnam National University, Daejeon 34134, Korea
| | - Ji-Young Song
- Department of Biological Sciences, Chungnam National University, Daejeon 34134, Korea
| | - Cheol Ho Pan
- Natural Product Informatics Research Center, KIST Gangneung Institute of Natural Products, Gangneung 25451, Korea
| | - Keunwan Park
- Natural Product Informatics Research Center, KIST Gangneung Institute of Natural Products, Gangneung 25451, Korea
| | - Youngmoon Cho
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Ji-Joon Song
- Department of Biological Sciences, KI for the BioCentury, KAIST, Daejeon 34141, Korea
| | - Seung Joong Kim
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- Quantum Intelligence Corp., Seoul 07326, Korea
| | - Youn-Il Park
- Department of Biological Sciences, Chungnam National University, Daejeon 34134, Korea
| | - Jiyong Park
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Korea
- Department of Chemistry, KAIST, Daejeon 34141, Korea
| |
Collapse
|
7
|
Leccese S, Wilson A, Kirilovsky D, Spezia R, Jolivalt C, Mezzetti A. Light-induced infrared difference spectroscopy on three different forms of orange carotenoid protein: focus on carotenoid vibrations. Photochem Photobiol Sci 2023:10.1007/s43630-023-00384-7. [PMID: 36853495 DOI: 10.1007/s43630-023-00384-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 01/27/2023] [Indexed: 03/01/2023]
Abstract
Orange carotenoid protein (OCP) is a photoactive carotenoprotein involved in photoprotection of cyanobacteria, which uses a keto-catorenoid as a chromophore. When it absorbs blue-green light, it converts from an inactive OCPO orange form to an activated OCPR red form, the latter being able to bind the light-harvesting complexes facilitating thermal dissipation of the excess of absorbed light energy. Several research groups have focused their attention on the photoactivation mechanism, characterized by several steps, involving both carotenoid photophysics and protein conformational changes. Among the used techniques, time-resolved IR spectroscopy have the advantage of providing simultaneously information on both the chromophore and the protein, giving thereby the possibility to explore links between carotenoid dynamics and protein dynamics, leading to a better understanding of the mechanism. However, an appropriate interpretation of data requires previous assignment of marker IR bands, for both the carotenoid and the protein. To date, some assignments have concerned specific α-helices of the OCP backbone, but no specific marker band for the carotenoid was identified on solid ground. This paper provides evidence for the assignment of putative marker bands for three carotenoids bound in three different OCPs: 3'-hydroxyechineone (3'-hECN), echinenone (ECN), canthaxanthin (CAN). Light-induced FTIR difference spectra were recorded in H2O and D2O and compared with spectra of isolated carotenoids. The use of DFT calculations allowed to propose a description for the vibrations responsible of several IR bands. Interestingly, most bands are located at the same wavenumber for the three kinds of OCPs suggesting that the conformation of the three carotenoids is the same in the red and in the orange form. These results are discussed in the framework of recent time-resolved IR studies on OCP.
Collapse
Affiliation(s)
- Silvia Leccese
- Laboratoire de Réactivité de Surface, LRS, Sorbonne Université, CNRS, 4 Place Jussieu, 75005, Paris, France
| | - Adjélé Wilson
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 91198, Gif Sur Yvette, France
| | - Diana Kirilovsky
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 91198, Gif Sur Yvette, France
| | - Riccardo Spezia
- Laboratoire de Chimie Théorique, Sorbonne Université, UMR 7616 CNRS, 4, Place Jussieu, 75005, Paris, France
| | - Claude Jolivalt
- Laboratoire de Réactivité de Surface, LRS, Sorbonne Université, CNRS, 4 Place Jussieu, 75005, Paris, France
| | - Alberto Mezzetti
- Laboratoire de Réactivité de Surface, LRS, Sorbonne Université, CNRS, 4 Place Jussieu, 75005, Paris, France.
| |
Collapse
|
8
|
Chukhutsina VU, Baxter JM, Fadini A, Morgan RM, Pope MA, Maghlaoui K, Orr CM, Wagner A, van Thor JJ. Light activation of Orange Carotenoid Protein reveals bicycle-pedal single-bond isomerization. Nat Commun 2022; 13:6420. [PMID: 36307413 PMCID: PMC9616832 DOI: 10.1038/s41467-022-34137-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 10/14/2022] [Indexed: 12/25/2022] Open
Abstract
Orange Carotenoid protein (OCP) is the only known photoreceptor which uses carotenoid for its activation. It is found exclusively in cyanobacteria, where it functions to control light-harvesting of the photosynthetic machinery. However, the photochemical reactions and structural dynamics of this unique photosensing process are not yet resolved. We present time-resolved crystal structures at second-to-minute delays under bright illumination, capturing the early photoproduct and structures of the subsequent reaction intermediates. The first stable photoproduct shows concerted isomerization of C9'-C8' and C7'-C6' single bonds in the bicycle-pedal (s-BP) manner and structural changes in the N-terminal domain with minute timescale kinetics. These are followed by a thermally-driven recovery of the s-BP isomer to the dark state carotenoid configuration. Structural changes propagate to the C-terminal domain, resulting, at later time, in the H-bond rupture of the carotenoid keto group with protein residues. Solution FTIR and UV/Vis spectroscopy support the single bond isomerization of the carotenoid in the s-BP manner and subsequent thermal structural reactions as the basis of OCP photoreception.
Collapse
Affiliation(s)
- Volha U. Chukhutsina
- grid.7445.20000 0001 2113 8111Department of Life Sciences, Imperial College London, London, SW7 2AZ UK
| | - James M. Baxter
- grid.7445.20000 0001 2113 8111Department of Life Sciences, Imperial College London, London, SW7 2AZ UK
| | - Alisia Fadini
- grid.7445.20000 0001 2113 8111Department of Life Sciences, Imperial College London, London, SW7 2AZ UK
| | - Rhodri M. Morgan
- grid.7445.20000 0001 2113 8111Department of Life Sciences, Imperial College London, London, SW7 2AZ UK
| | - Matthew A. Pope
- grid.7445.20000 0001 2113 8111Department of Life Sciences, Imperial College London, London, SW7 2AZ UK
| | - Karim Maghlaoui
- grid.7445.20000 0001 2113 8111Department of Life Sciences, Imperial College London, London, SW7 2AZ UK
| | - Christian M. Orr
- grid.18785.330000 0004 1764 0696Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OX11 0DE UK
| | - Armin Wagner
- grid.18785.330000 0004 1764 0696Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OX11 0DE UK
| | - Jasper J. van Thor
- grid.7445.20000 0001 2113 8111Department of Life Sciences, Imperial College London, London, SW7 2AZ UK
| |
Collapse
|
9
|
Wilson A, Andreeva EA, Niziński S, Talbot L, Hartmann E, Schlichting I, Burdzinski G, Sliwa M, Kirilovsky D, Colletier JP. Structure-function-dynamics relationships in the peculiar Planktothrix PCC7805 OCP1: Impact of his-tagging and carotenoid type. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2022; 1863:148584. [PMID: 35752265 DOI: 10.1016/j.bbabio.2022.148584] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 05/31/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
The orange carotenoid protein (OCP) is a photoactive protein involved in cyanobacterial photoprotection. Here, we report on the functional, spectral and structural characteristics of the peculiar Planktothrix PCC7805 OCP (Plankto-OCP). We show that this OCP variant is characterized by higher photoactivation and recovery rates, and a stronger energy-quenching activity, compared to other OCP studied thus far. We characterize the effect of the functionalizing carotenoid and of his-tagging on these reactions, and identify the time scales on which these modifications affect photoactivation. The presence of a his-tag at the C-terminus has a large influence on photoactivation, thermal recovery and PBS-fluorescence quenching, and likewise for the nature of the carotenoid that additionally affects the yield and characteristics of excited states and the ns-s dynamics of photoactivated OCP. By solving the structures of Plankto-OCP in the ECN- and CAN-functionalized states, each in two closely-related crystal forms, we further unveil the molecular breathing motions that animate Plankto-OCP at the monomer and dimer levels. We finally discuss the structural changes that could explain the peculiar properties of Plankto-OCP.
Collapse
Affiliation(s)
- Adjélé Wilson
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Elena A Andreeva
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, 38000 Grenoble, France; Max-Planck-Institut für medizinische Forschung, Jahnstrasse 29, 69120 Heidelberg, Germany
| | - Stanisław Niziński
- Univ. Lille, CNRS, UMR 8516, LASIRE, LAboratoire de Spectroscopie pour les Interactions, la Réactivité et l'Environnement, Lille 59000, France; Quantum Electronics Laboratory, Faculty of Physics, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 2, Poznan 61-614, Poland
| | - Léa Talbot
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Elisabeth Hartmann
- Max-Planck-Institut für medizinische Forschung, Jahnstrasse 29, 69120 Heidelberg, Germany
| | - Ilme Schlichting
- Max-Planck-Institut für medizinische Forschung, Jahnstrasse 29, 69120 Heidelberg, Germany
| | - Gotard Burdzinski
- Quantum Electronics Laboratory, Faculty of Physics, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 2, Poznan 61-614, Poland
| | - Michel Sliwa
- Univ. Lille, CNRS, UMR 8516, LASIRE, LAboratoire de Spectroscopie pour les Interactions, la Réactivité et l'Environnement, Lille 59000, France.
| | - Diana Kirilovsky
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France.
| | | |
Collapse
|
10
|
Slonimskiy YB, Zupnik AO, Varfolomeeva LA, Boyko KM, Maksimov EG, Sluchanko NN. A primordial Orange Carotenoid Protein: Structure, photoswitching activity and evolutionary aspects. Int J Biol Macromol 2022; 222:167-180. [PMID: 36165868 DOI: 10.1016/j.ijbiomac.2022.09.131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 11/28/2022]
Abstract
Cyanobacteria are photosynthesizing prokaryotes responsible for the Great Oxygenation Event on Earth ~2.5 Ga years ago. They use a specific photoprotective mechanism based on the 35-kDa photoactive Orange Carotenoid Protein (OCP), a promising target for developing novel optogenetic tools and for biomass engineering. The two-domain OCP presumably stems from domain fusion, yet the primitive thylakoid-less cyanobacteria Gloeobacter encodes a complete OCP. Its photosynthesis regulation lacks the so-called Fluorescence Recovery Protein (FRP), which in Synechocystis inhibits OCP-mediated phycobilisome fluorescence quenching, and Gloeobacter OCP belongs to the recently defined, heterogeneous clade OCPX (GlOCPX), the least characterized compared to OCP2 and especially OCP1 clades. Here, we describe the first crystal structure of OCPX, which explains unique functional adaptations of Gloeobacter OCPX compared to OCP1 from Synechocystis. We show that monomeric GlOCPX exploits a remarkable intramolecular locking mechanism stabilizing its dark-adapted state and exhibits drastically accelerated, less temperature-dependent recovery after photoactivation. While GlOCPX quenches Synechocystis phycobilisomes similar to Synechocystis OCP1, it evades interaction with and regulation by FRP from other species and likely uses alternative mechanisms for fluorescence recovery. This analysis of a primordial OCPX sheds light on its evolution, rationalizing renaming and subdivision of the OCPX clade into subclades - OCP3a, OCP3b, OCP3c.
Collapse
Affiliation(s)
- Yury B Slonimskiy
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russian Federation
| | - Andrei O Zupnik
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russian Federation
| | - Larisa A Varfolomeeva
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russian Federation
| | - Konstantin M Boyko
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russian Federation
| | - Eugene G Maksimov
- M.V. Lomonosov Moscow State University, Faculty of Biology, 119991 Moscow, Russian Federation
| | - Nikolai N Sluchanko
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russian Federation.
| |
Collapse
|
11
|
Oligomerization processes limit photoactivation and recovery of the Orange Carotenoid Protein. Biophys J 2022; 121:2849-2872. [PMID: 35794830 PMCID: PMC9388578 DOI: 10.1016/j.bpj.2022.07.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 05/17/2022] [Accepted: 07/01/2022] [Indexed: 11/23/2022] Open
Abstract
The Orange Carotenoid Protein (OCP) is a photoactive protein involved in cyanobacterial photoprotection, by quenching of the excess of light harvested energy. The photoactivation mechanism remains elusive, in part due to absence of data pertaining to the timescales over which protein structural changes take place. It also remains unclear whether or not oligomerization of the dark-adapted and light-adapted OCP could play a role in the regulation of its energy quenching activity. Here, we probed photo-induced structural changes in OCP by a combination of static and time-resolved X-ray scattering and steady-state and transient optical spectroscopy in the visible range. Our results suggest that oligomerization partakes in regulation of the OCP photocycle, with different oligomers slowing down the overall thermal recovery of the dark-adapted state of OCP. They furthermore reveal that upon non-photoproductive excitation, a numbed-state forms, which remains in a non-photoexcitable structural state for at least ∼0.5 μs after absorption of a first photon.
Collapse
|
12
|
Tseng HW, Moldenhauer M, Friedrich T, Maksimov EG, Budisa N. Probing the spectral signatures of orange carotenoid protein by orthogonal translation with aromatic non-canonical amino acids. Biochem Biophys Res Commun 2022; 607:96-102. [DOI: 10.1016/j.bbrc.2022.03.118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 03/21/2022] [Accepted: 03/23/2022] [Indexed: 11/02/2022]
|
13
|
Niziński S, Wilson A, Uriarte LM, Ruckebusch C, Andreeva EA, Schlichting I, Colletier JP, Kirilovsky D, Burdzinski G, Sliwa M. Unifying Perspective of the Ultrafast Photodynamics of Orange Carotenoid Proteins from Synechocystis: Peril of High-Power Excitation, Existence of Different S* States, and Influence of Tagging. JACS AU 2022; 2:1084-1095. [PMID: 35647603 PMCID: PMC9131370 DOI: 10.1021/jacsau.1c00472] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 02/02/2022] [Accepted: 02/03/2022] [Indexed: 06/15/2023]
Abstract
A substantial number of Orange Carotenoid Protein (OCP) studies have aimed to describe the evolution of singlet excited states leading to the formation of a photoactivated form, OCPR. The most recent one suggests that 3 ps-lived excited states are formed after the sub-100 fs decay of the initial S2 state. The S* state, which has the longest reported lifetime of a few to tens of picoseconds, is considered to be the precursor of the first red photoproduct P1. Here, we report the ultrafast photodynamics of the OCP from Synechocystis PCC 6803 carried out using visible-near infrared femtosecond time-resolved absorption spectroscopy as a function of the excitation pulse power and wavelength. We found that a carotenoid radical cation can form even at relatively low excitation power, obscuring the determination of photoactivation yields for P1. Moreover, the comparison of green (540 nm) and blue (470 nm) excitations revealed the existence of an hitherto uncharacterized excited state, denoted as S∼, living a few tens of picoseconds and formed only upon 470 nm excitation. Because neither the P1 quantum yield nor the photoactivation speed over hundreds of seconds vary under green and blue continuous irradiation, this S∼ species is unlikely to be involved in the photoactivation mechanism leading to OCPR. We also addressed the effect of His-tagging at the N- or C-termini on the excited-state photophysical properties. Differences in spectral signatures and lifetimes of the different excited states were observed at a variance with the usual assumption that His-tagging hardly influences protein dynamics and function. Altogether our results advocate for the careful consideration of the excitation power and His-tag position when comparing the photoactivation of different OCP variants and beg to revisit the notion that S* is the precursor of photoactivated OCPR.
Collapse
Affiliation(s)
- Stanisław Niziński
- Quantum
Electronics Laboratory, Faculty of Physics, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 2, Poznan 61-614, Poland
- Univ.
Lille, CNRS, UMR 8516, LASIRE, LAboratoire de Spectroscopie pour les
Interactions, la Réactivité et l’Environnement, Lille 59000, France
| | - Adjéle Wilson
- Université
Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the
Cell (I2BC), Gif-sur-Yvette 91198, France
| | - Lucas M. Uriarte
- Univ.
Lille, CNRS, UMR 8516, LASIRE, LAboratoire de Spectroscopie pour les
Interactions, la Réactivité et l’Environnement, Lille 59000, France
| | - Cyril Ruckebusch
- Univ.
Lille, CNRS, UMR 8516, LASIRE, LAboratoire de Spectroscopie pour les
Interactions, la Réactivité et l’Environnement, Lille 59000, France
| | - Elena A. Andreeva
- Univ.
Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, Grenoble 38000, France
- Max-Planck-Institut
für Medizinische Forschung, Jahnstrasse 29, Heidelberg 69120, Germany
| | - Ilme Schlichting
- Max-Planck-Institut
für Medizinische Forschung, Jahnstrasse 29, Heidelberg 69120, Germany
| | | | - Diana Kirilovsky
- Université
Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the
Cell (I2BC), Gif-sur-Yvette 91198, France
| | - Gotard Burdzinski
- Quantum
Electronics Laboratory, Faculty of Physics, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 2, Poznan 61-614, Poland
| | - Michel Sliwa
- Univ.
Lille, CNRS, UMR 8516, LASIRE, LAboratoire de Spectroscopie pour les
Interactions, la Réactivité et l’Environnement, Lille 59000, France
| |
Collapse
|
14
|
Sharawy M, Pigni NB, May ER, Gascón JA. A favorable path to domain separation in the orange carotenoid protein. Protein Sci 2022; 31:850-863. [PMID: 35000233 PMCID: PMC8927859 DOI: 10.1002/pro.4273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/24/2021] [Accepted: 01/03/2022] [Indexed: 11/10/2022]
Abstract
The orange carotenoid protein (OCP) is responsible for nonphotochemical quenching (NPQ) in cyanobacteria, a defense mechanism against potentially damaging effects of excess light conditions. This soluble two-domain protein undergoes profound conformational changes upon photoactivation, involving translocation of the ketocarotenoid inside the cavity followed by domain separation. Domain separation is a critical step in the photocycle of OCP because it exposes the N-terminal domain (NTD) to perform quenching of the phycobilisomes. Many details regarding the mechanism and energetics of OCP domain separation remain unknown. In this work, we apply metadynamics to elucidate the protein rearrangements that lead to the active, domain-separated, form of OCP. We find that translocation of the ketocarotenoid canthaxanthin has a profound effect on the energetic landscape and that domain separation only becomes favorable following translocation. We further explore, characterize, and validate the free energy surface (FES) using equilibrium simulations initiated from different states on the FES. Through pathway optimization methods, we characterize the most probable path to domain separation and reveal the barriers along that pathway. We find that the free energy barriers are relatively small (<5 kcal/mol), but the overall estimated kinetic rate is consistent with experimental measurements (>1 ms). Overall, our results provide detailed information on the requirement for canthaxanthin translocation to precede domain separation and an energetically feasible pathway to dissociation.
Collapse
Affiliation(s)
- Mahmoud Sharawy
- Department of Molecular and Cell BiologyUniversity of ConnecticutStorrsConnecticutUSA
| | - Natalia B. Pigni
- Department of ChemistryUniversity of ConnecticutStorrsConnecticutUSA
- Instituto de Ciencia y Tecnología de Alimentos Córdoba (ICYTAC‐CONICET)Ciudad UniversitariaCórdobaArgentina
| | - Eric R. May
- Department of Molecular and Cell BiologyUniversity of ConnecticutStorrsConnecticutUSA
| | - José A. Gascón
- Department of ChemistryUniversity of ConnecticutStorrsConnecticutUSA
| |
Collapse
|
15
|
Wilson A, Muzzopappa F, Kirilovsky D. Elucidation of the essential amino acids involved in the binding of the cyanobacterial Orange Carotenoid Protein to the phycobilisome. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2022; 1863:148504. [PMID: 34619092 DOI: 10.1016/j.bbabio.2021.148504] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/27/2021] [Accepted: 09/30/2021] [Indexed: 02/06/2023]
Abstract
The Orange Carotenoid Protein (OCP) is a soluble photoactive protein involved in cyanobacterial photoprotection. It is formed by the N-terminal domain (NTD) and C-terminal (CTD) domain, which establish interactions in the orange inactive form and share a ketocarotenoid molecule. Upon exposure to intense blue light, the carotenoid molecule migrates into the NTD and the domains undergo separation. The free NTD can then interact with the phycobilisome (PBS), the extramembrane cyanobacterial antenna, and induces thermal dissipation of excess absorbed excitation energy. The OCP and PBS amino acids involved in their interactions remain undetermined. To identify the OCP amino acids essential for this interaction, we constructed several OCP mutants (23) with modified amino acids located on different NTD surfaces. We demonstrated that only the NTD surface that establishes interactions with the CTD in orange OCP is involved in the binding of OCP to PBS. All amino acids surrounding the carotenoid β1 ring in the OCPR-NTD (L51, P56, G57, N104, I151, R155, N156) are important for binding OCP to PBS. Additionally, modification of the amino acids influences OCP photoactivation and/or recovery rates, indicating that they are also involved in the translocation of the carotenoid.
Collapse
Affiliation(s)
- Adjélé Wilson
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif sur Yvette, France.
| | - Fernando Muzzopappa
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif sur Yvette, France
| | - Diana Kirilovsky
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif sur Yvette, France.
| |
Collapse
|
16
|
Zhan J, Steglich C, Scholz I, Hess WR, Kirilovsky D. Inverse regulation of light harvesting and photoprotection is mediated by a 3'-end-derived sRNA in cyanobacteria. THE PLANT CELL 2021; 33:358-380. [PMID: 33793852 PMCID: PMC8136909 DOI: 10.1093/plcell/koaa030] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 12/01/2020] [Indexed: 06/12/2023]
Abstract
Phycobilisomes (PBSs), the principal cyanobacterial antenna, are among the most efficient macromolecular structures in nature, and are used for both light harvesting and directed energy transfer to the photosynthetic reaction center. However, under unfavorable conditions, excess excitation energy needs to be rapidly dissipated to avoid photodamage. The orange carotenoid protein (OCP) senses light intensity and induces thermal energy dissipation under stress conditions. Hence, its expression must be tightly controlled; however, the molecular mechanism of this regulation remains to be elucidated. Here, we describe the discovery of a posttranscriptional regulatory mechanism in Synechocystis sp. PCC 6803 in which the expression of the operon encoding the allophycocyanin subunits of the PBS is directly and in an inverse fashion linked to the expression of OCP. This regulation is mediated by ApcZ, a small regulatory RNA that is derived from the 3'-end of the tetracistronic apcABC-apcZ operon. ApcZ inhibits ocp translation under stress-free conditions. Under most stress conditions, apc operon transcription decreases and ocp translation increases. Thus, a key operon involved in the collection of light energy is functionally connected to the expression of a protein involved in energy dissipation. Our findings support the view that regulatory RNA networks in bacteria evolve through the functionalization of mRNA 3'-UTRs.
Collapse
Affiliation(s)
- Jiao Zhan
- Université Paris-Saclay, Commissariat à l’Énergie Atomiques et aux Énergies Alternatives, Centre National de la Recherche Scientifique (CEA, CNRS), Institute for Integrative Biology of the Cell (I2BC), 91198 Gif sur Yvette, France
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Claudia Steglich
- Faculty of Biology, Institute of Biology III, University of Freiburg, D-79104 Freiburg im Breisgau, Germany
| | - Ingeborg Scholz
- Faculty of Biology, Institute of Biology III, University of Freiburg, D-79104 Freiburg im Breisgau, Germany
| | - Wolfgang R Hess
- Faculty of Biology, Institute of Biology III, University of Freiburg, D-79104 Freiburg im Breisgau, Germany
| | - Diana Kirilovsky
- Université Paris-Saclay, Commissariat à l’Énergie Atomiques et aux Énergies Alternatives, Centre National de la Recherche Scientifique (CEA, CNRS), Institute for Integrative Biology of the Cell (I2BC), 91198 Gif sur Yvette, France
| |
Collapse
|
17
|
Kawasaki S, Yamazaki K, Nishikata T, Ishige T, Toyoshima H, Miyata A. Photooxidative stress-inducible orange and pink water-soluble astaxanthin-binding proteins in eukaryotic microalga. Commun Biol 2020; 3:490. [PMID: 32895456 PMCID: PMC7477208 DOI: 10.1038/s42003-020-01206-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 07/28/2020] [Indexed: 11/22/2022] Open
Abstract
Lipid astaxanthin, a potent antioxidant known as a natural sunscreen, accumulates in eukaryotic microalgae and confers photoprotection. We previously identified a photooxidative stress-inducible water-soluble astaxanthin-binding carotenoprotein (AstaP) in a eukaryotic microalga (Coelastrella astaxanthina Ki-4) isolated from an extreme environment. The distribution in eukaryotic microalgae remains unknown. Here we identified three novel AstaP orthologs in a eukaryotic microalga, Scenedesmus sp. Oki-4N. The purified proteins, named AstaP-orange2, AstaP-pink1, and AstaP-pink2, were identified as secreted fasciclin proteins with potent 1O2 quenching activity in aqueous solution, which are characteristics shared with Ki-4 AstaP. Nonetheless, the absence of glycosylation in the AstaP-pinks, the presence of a glycosylphosphatidylinositol (GPI) anchor motif in AstaP-orange2, and highly acidic isoelectric points (pI = 3.6-4.7), differed significantly from that of AstaP-orange1 (pI = 10.5). These results provide unique examples on the use of water-soluble forms of astaxanthin in photosynthetic organisms as novel strategies for protecting single cells against severe photooxidative stresses.
Collapse
Affiliation(s)
- Shinji Kawasaki
- Department of Molecular Microbiology, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo, 156-8502, Japan.
- Department of Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo, 156-8502, Japan.
| | - Keita Yamazaki
- Department of Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo, 156-8502, Japan
| | - Tohya Nishikata
- Department of Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo, 156-8502, Japan
| | - Taichiro Ishige
- NODAI Genome Research Centre, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo, 156-8502, Japan
| | - Hiroki Toyoshima
- Department of Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo, 156-8502, Japan
| | - Ami Miyata
- Department of Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo, 156-8502, Japan
| |
Collapse
|
18
|
Lou W, Niedzwiedzki DM, Jiang RJ, Blankenship RE, Liu H. Binding of red form of Orange Carotenoid Protein (OCP) to phycobilisome is not sufficient for quenching. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1861:148155. [PMID: 31935359 DOI: 10.1016/j.bbabio.2020.148155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 12/06/2019] [Accepted: 01/08/2020] [Indexed: 10/25/2022]
Abstract
The Orange Carotenoid Protein (OCP) is responsible for photoprotection in many cyanobacteria. Absorption of blue light drives the conversion of the orange, inactive form (OCPO) to the red, active form (OCPR). Concomitantly, the N-terminal domain (NTD) and the C-terminal domain (CTD) of OCP separate, which ultimately leads to the formation of a quenched OCPR-PBS complex. The details of the photoactivation of OCP have been intensely researched. Binding site(s) of OCPR on the PBS core have also been proposed. However, the post-binding events of the OCPR-PBS complex remain unclear. Here, we demonstrate that PBS-bound OCPR is not sufficient as a PBS excitation energy quencher. Using site-directed mutagenesis, we generated a suite of single point mutations at OCP Leucine 51 (L51) of Synechocystis 6803. Steady-state and time-resolved fluorescence analyses demonstrated that all mutant proteins are unable to quench the PBS fluorescence, owing to either failed OCP binding to PBS, or, if bound, an OCP-PBS quenching state failed to form. The SDS-PAGE and Western blot analysis support that the L51A (Alanine) mutant binds to the PBS and therefore belongs to the second category. We hypothesize that upon binding to PBS, OCPR likely reorganizes and adopts a new conformational state (OCP3rd) different than either OCPO or OCPR to allow energy quenching, depending on the cross-talk between OCPR and its PBS core-binding counterpart.
Collapse
Affiliation(s)
- Wenjing Lou
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Dariusz M Niedzwiedzki
- Center for Solar Energy and Energy Storage, Washington University in St. Louis, St. Louis, MO 63130, USA; Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Ruidong J Jiang
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Robert E Blankenship
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA; Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Haijun Liu
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA; Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA.
| |
Collapse
|
19
|
Slonimskiy YB, Maksimov EG, Lukashev EP, Moldenhauer M, Friedrich T, Sluchanko NN. Engineering the photoactive orange carotenoid protein with redox-controllable structural dynamics and photoprotective function. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1861:148174. [PMID: 32059843 DOI: 10.1016/j.bbabio.2020.148174] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 02/02/2020] [Accepted: 02/10/2020] [Indexed: 01/01/2023]
Abstract
Photosynthesis requires various photoprotective mechanisms for survival of organisms in high light. In cyanobacteria exposed to high light, the Orange Carotenoid Protein (OCP) is reversibly photoswitched from the orange (OCPO) to the red (OCPR) form, the latter binds to the antenna (phycobilisomes, PBs) and quenches its overexcitation. OCPR accumulation implicates restructuring of a compact dark-adapted OCPO state including detachment of the N-terminal extension (NTE) and separation of protein domains, which is reversed by interaction with the Fluorescence Recovery Protein (FRP). OCP phototransformation supposedly occurs via an intermediate characterized by an OCPR-like absorption spectrum and an OCPO-like protein structure, but the hierarchy of steps remains debatable. Here, we devise and analyze an OCP variant with the NTE trapped on the C-terminal domain (CTD) via an engineered disulfide bridge (OCPCC). NTE trapping preserves OCP photocycling within the compact protein structure but precludes functional interaction with PBs and especially FRP, which is completely restored upon reduction of the disulfide bridge. Non-interacting with the dark-adapted oxidized OCPCC, FRP binds reduced OCPCC nearly as efficiently as OCPO devoid of the NTE, suggesting that the low-affinity FRP binding to OCPO is realized via NTE displacement. The low efficiency of excitation energy transfer in complexes between PBs and oxidized OCPCC indicates that OCPCC binds to PBs in an orientation suboptimal for quenching PBs fluorescence. Our approach supports the presence of the OCPR-like intermediate in the OCP photocycle and shows effective uncoupling of spectral changes from functional OCP photoactivation, enabling redox control of its structural dynamics and function.
Collapse
Affiliation(s)
- Yury B Slonimskiy
- Protein-Protein Interactions Unit, A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russian Federation; Department of Biochemistry, Faculty of Biology, M.V. Lomonosov Moscow State University, 119991 Moscow, Russian Federation
| | - Eugene G Maksimov
- Protein-Protein Interactions Unit, A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russian Federation; Department of Biophysics, Faculty of Biology, M.V. Lomonosov Moscow State University, 119991 Moscow, Russian Federation
| | - Evgeny P Lukashev
- Department of Biophysics, Faculty of Biology, M.V. Lomonosov Moscow State University, 119991 Moscow, Russian Federation
| | - Marcus Moldenhauer
- Technische Universität Berlin, Institute of Chemistry PC 14, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Thomas Friedrich
- Technische Universität Berlin, Institute of Chemistry PC 14, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Nikolai N Sluchanko
- Protein-Protein Interactions Unit, A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russian Federation; Department of Biophysics, Faculty of Biology, M.V. Lomonosov Moscow State University, 119991 Moscow, Russian Federation.
| |
Collapse
|
20
|
Kuznetsova V, Dominguez-Martin MA, Bao H, Gupta S, Sutter M, Kloz M, Rebarz M, Přeček M, Chen Y, Petzold CJ, Ralston CY, Kerfeld CA, Polívka T. Comparative ultrafast spectroscopy and structural analysis of OCP1 and OCP2 from Tolypothrix. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2020; 1861:148120. [PMID: 31734194 PMCID: PMC6943196 DOI: 10.1016/j.bbabio.2019.148120] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 10/09/2019] [Accepted: 11/04/2019] [Indexed: 01/12/2023]
Abstract
The orange carotenoid protein (OCP) is a structurally and functionally modular photoactive protein involved in cyanobacterial photoprotection. Recently, based on bioinformatic analysis and phylogenetic relationships, new families of OCP have been described, OCP2 and OCPx. The first characterization of the OCP2 showed both faster photoconversion and back-conversion, and lower fluorescence quenching of phycobilisomes relative to the well-characterized OCP1. Moreover, OCP2 is not regulated by the fluorescence recovery protein (FRP). In this work, we present a comprehensive study combining ultrafast spectroscopy and structural analysis to compare the photoactivation mechanisms of OCP1 and OCP2 from Tolypothrix PCC 7601. We show that despite significant differences in their functional characteristics, the spectroscopic properties of OCP1 and OCP2 are comparable. This indicates that the OCP functionality is not directly related to the spectroscopic properties of the bound carotenoid. In addition, the structural analysis by X-ray footprinting reveals that, overall, OCP1 and OCP2 have grossly the same photoactivation mechanism. However, the OCP2 is less reactive to radiolytic labeling, suggesting that the protein is less flexible than OCP1. This observation could explain fast photoconversion of OCP2.
Collapse
Affiliation(s)
- Valentyna Kuznetsova
- Institute of Physics, Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05 České Budějovice, Czech Republic
| | | | - Han Bao
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
| | - Sayan Gupta
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Markus Sutter
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA; Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Miroslav Kloz
- ELI Beamlines, Institute of Physics, Czech Academy of Sciences, Za Radnicí 835, 252 41 Dolní Břežany, Czech Republic
| | - Mateusz Rebarz
- ELI Beamlines, Institute of Physics, Czech Academy of Sciences, Za Radnicí 835, 252 41 Dolní Břežany, Czech Republic
| | - Martin Přeček
- ELI Beamlines, Institute of Physics, Czech Academy of Sciences, Za Radnicí 835, 252 41 Dolní Břežany, Czech Republic
| | - Yan Chen
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Christopher J Petzold
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Corie Y Ralston
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Cheryl A Kerfeld
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA; Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Tomáš Polívka
- Institute of Physics, Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05 České Budějovice, Czech Republic.
| |
Collapse
|
21
|
Kirilovsky D. Modulating Energy Transfer from Phycobilisomes to Photosystems: State Transitions and OCP-Related Non-Photochemical Quenching. PHOTOSYNTHESIS IN ALGAE: BIOCHEMICAL AND PHYSIOLOGICAL MECHANISMS 2020. [DOI: 10.1007/978-3-030-33397-3_14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
22
|
Muzzopappa F, Kirilovsky D. Changing Color for Photoprotection: The Orange Carotenoid Protein. TRENDS IN PLANT SCIENCE 2020; 25:92-104. [PMID: 31679992 DOI: 10.1016/j.tplants.2019.09.013] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/16/2019] [Accepted: 09/18/2019] [Indexed: 05/09/2023]
Abstract
Under high irradiance, light becomes dangerous for photosynthetic organisms and they must protect themselves. Cyanobacteria have developed a simple mechanism, involving a photoactive soluble carotenoid protein, the orange carotenoid protein (OCP), which increases thermal dissipation of excess energy by interacting with the cyanobacterial antenna, the phycobilisome. Here, we summarize our knowledge of the OCP-related photoprotective mechanism, including the remarkable progress that has been achieved in recent years on OCP photoactivation and interaction with phycobilisomes, as well as with the fluorescence recovery protein, which is necessary to end photoprotection. A recently discovered unique mechanism of carotenoid transfer between soluble proteins related to OCP is also described.
Collapse
Affiliation(s)
- Fernando Muzzopappa
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198 Gif sur Yvette, France
| | - Diana Kirilovsky
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198 Gif sur Yvette, France.
| |
Collapse
|
23
|
Muzzopappa F, Wilson A, Kirilovsky D. Interdomain interactions reveal the molecular evolution of the orange carotenoid protein. NATURE PLANTS 2019; 5:1076-1086. [PMID: 31527845 DOI: 10.1038/s41477-019-0514-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 08/05/2019] [Indexed: 06/10/2023]
Abstract
The photoactive orange carotenoid protein (OCP) is a blue-light intensity sensor involved in cyanobacterial photoprotection. Three OCP families co-exist (OCPX, OCP1 and OCP2), having originated from the fusion of ancestral domain genes. Here, we report the characterization of an OCPX and the evolutionary characterization of OCP paralogues focusing on the role of the linker connecting the domains. The addition of the linker with specific amino acids enabled the photocycle of the OCP ancestor. OCPX is the paralogue closest to this ancestor. A second diversification gave rise to OCP1 and OCP2. OCPX and OCP2 present fast deactivation and weak antenna interaction. In OCP1, OCP deactivation became slower and interaction with the antenna became stronger, requiring a further protein to detach OCP from the antenna and accelerate its deactivation. OCP2 lost the tendency to dimerize, unlike OCPX and OCP1, and the role of its linker is slightly different, giving less controlled photoactivation.
Collapse
Affiliation(s)
- Fernando Muzzopappa
- Institute for Integrative Biology of the Cell, CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif sur Yvette, France
| | - Adjélé Wilson
- Institute for Integrative Biology of the Cell, CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif sur Yvette, France
| | - Diana Kirilovsky
- Institute for Integrative Biology of the Cell, CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif sur Yvette, France.
| |
Collapse
|
24
|
Engineering the orange carotenoid protein for applications in synthetic biology. Curr Opin Struct Biol 2019; 57:110-117. [DOI: 10.1016/j.sbi.2019.01.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 01/13/2019] [Accepted: 01/28/2019] [Indexed: 12/18/2022]
|
25
|
Lou W, Wolf BM, Blankenship RE, Liu H. Cu+ Contributes to the Orange Carotenoid Protein-Related Phycobilisome Fluorescence Quenching and Photoprotection in Cyanobacteria. Biochemistry 2019; 58:3109-3115. [DOI: 10.1021/acs.biochem.9b00409] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Wenjing Lou
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Benjamin M. Wolf
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Robert E. Blankenship
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri 63130, United States
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Haijun Liu
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri 63130, United States
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| |
Collapse
|
26
|
Zhang Y, Lang B, Zeng D, Li Z, Yang J, Yan R, Xu X, Lin J. Truncation of κ‑carrageenase for higher κ‑carrageenan oligosaccharides yield with improved enzymatic characteristics. Int J Biol Macromol 2019; 130:958-968. [DOI: 10.1016/j.ijbiomac.2019.02.109] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 02/18/2019] [Accepted: 02/18/2019] [Indexed: 02/06/2023]
|
27
|
Mezzetti A, Alexandre M, Thurotte A, Wilson A, Gwizdala M, Kirilovsky D. Two-Step Structural Changes in Orange Carotenoid Protein Photoactivation Revealed by Time-Resolved Fourier Transform Infrared Spectroscopy. J Phys Chem B 2019; 123:3259-3266. [DOI: 10.1021/acs.jpcb.9b01242] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Alberto Mezzetti
- Sorbonne Université, CNRS, Laboratoire Réactivité de Surface, UMR CNRS 7197, F-75252 Paris, France
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198 Gif sur Yvette, France
| | - Maxime Alexandre
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198 Gif sur Yvette, France
- Department of Physics and Astronomy, Faculty of Sciences, VU University, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | - Adrien Thurotte
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198 Gif sur Yvette, France
- Metabolism, Engineering of Microalgal Molecules and Applications (MIMMA) Team, Mer, Molécules, Santé/Sea, Molecules & Health (EA2160), Département de Biologie et Géosciences, Le Mans Université, Avenue Olivier Messiaen, 72085 Le Mans cedex 9, France
| | - Adjelé Wilson
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198 Gif sur Yvette, France
| | - Michal Gwizdala
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198 Gif sur Yvette, France
- Department of Physics, Faculty of Natural and Agricultural Sciences, University of Pretoria, Private bag X20, 0028 Hatfield, South Africa
- Department of Physics and Astronomy, Faculty of Sciences, VU University, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | - Diana Kirilovsky
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198 Gif sur Yvette, France
| |
Collapse
|
28
|
Konold PE, van Stokkum IHM, Muzzopappa F, Wilson A, Groot ML, Kirilovsky D, Kennis JTM. Photoactivation Mechanism, Timing of Protein Secondary Structure Dynamics and Carotenoid Translocation in the Orange Carotenoid Protein. J Am Chem Soc 2019; 141:520-530. [PMID: 30511841 PMCID: PMC6331140 DOI: 10.1021/jacs.8b11373] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Indexed: 01/10/2023]
Abstract
The orange carotenoid protein (OCP) is a two-domain photoactive protein that noncovalently binds an echinenone (ECN) carotenoid and mediates photoprotection in cyanobacteria. In the dark, OCP assumes an orange, inactive state known as OCPO; blue light illumination results in the red active state, known as OCPR. The OCPR state is characterized by large-scale structural changes that involve dissociation and separation of C-terminal and N-terminal domains accompanied by carotenoid translocation into the N-terminal domain. The mechanistic and dynamic-structural relations between photon absorption and formation of the OCPR state have remained largely unknown. Here, we employ a combination of time-resolved UV-visible and (polarized) mid-infrared spectroscopy to assess the electronic and structural dynamics of the carotenoid and the protein secondary structure, from femtoseconds to 0.5 ms. We identify a hereto unidentified carotenoid excited state in OCP, the so-called S* state, which we propose to play a key role in breaking conserved hydrogen-bond interactions between carotenoid and aromatic amino acids in the binding pocket. We arrive at a comprehensive reaction model where the hydrogen-bond rupture with conserved aromatic side chains at the carotenoid β1-ring in picoseconds occurs at a low yield of <1%, whereby the β1-ring retains a trans configuration with respect to the conjugated π-electron chain. This event initiates structural changes at the N-terminal domain in 1 μs, which allow the carotenoid to translocate into the N-terminal domain in 10 μs. We identified infrared signatures of helical elements that dock on the C-terminal domain β-sheet in the dark and unfold in the light to allow domain separation. These helical elements do not move within the experimental range of 0.5 ms, indicating that domain separation occurs on longer time scales, lagging carotenoid translocation by at least 2 decades of time.
Collapse
Affiliation(s)
- Patrick E. Konold
- Department of Physics
and Astronomy, Faculty of Sciences, Vrije
Universiteit, De Boelelaan
1081, 1081HV Amsterdam, The Netherlands
| | - Ivo H. M. van Stokkum
- Department of Physics
and Astronomy, Faculty of Sciences, Vrije
Universiteit, De Boelelaan
1081, 1081HV Amsterdam, The Netherlands
| | - Fernando Muzzopappa
- Institute for Integrative Biology of the
Cell (I2BC), CEA, CNRS, Universite Paris-Sud,
Universite Paris-Saclay, 91198 Gif-sur-Yvette, France
- Institut Joliot, Commissariat a l’Energie
Atomique (CEA), 91191 Gif-sur-Yvette, France
| | - Adjélé Wilson
- Institute for Integrative Biology of the
Cell (I2BC), CEA, CNRS, Universite Paris-Sud,
Universite Paris-Saclay, 91198 Gif-sur-Yvette, France
- Institut Joliot, Commissariat a l’Energie
Atomique (CEA), 91191 Gif-sur-Yvette, France
| | - Marie-Louise Groot
- Department of Physics
and Astronomy, Faculty of Sciences, Vrije
Universiteit, De Boelelaan
1081, 1081HV Amsterdam, The Netherlands
| | - Diana Kirilovsky
- Institute for Integrative Biology of the
Cell (I2BC), CEA, CNRS, Universite Paris-Sud,
Universite Paris-Saclay, 91198 Gif-sur-Yvette, France
- Institut Joliot, Commissariat a l’Energie
Atomique (CEA), 91191 Gif-sur-Yvette, France
| | - John T. M. Kennis
- Department of Physics
and Astronomy, Faculty of Sciences, Vrije
Universiteit, De Boelelaan
1081, 1081HV Amsterdam, The Netherlands
| |
Collapse
|
29
|
Gwizdala M, Botha JL, Wilson A, Kirilovsky D, van Grondelle R, Krüger TPJ. Switching an Individual Phycobilisome Off and On. J Phys Chem Lett 2018; 9:2426-2432. [PMID: 29688018 DOI: 10.1021/acs.jpclett.8b00767] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Photosynthetic organisms have found various smart ways to cope with unexpected changes in light conditions. In many cyanobacteria, the lethal effects of a sudden increase in light intensity are mitigated mainly by the interaction between phycobilisomes (PBs) and the orange carotenoid protein (OCP). The latter senses high light intensities by means of photoactivation and triggers thermal energy dissipation from the PBs. Due to the brightness of their emission, PBs can be characterized at the level of individual complexes. Here, energy dissipation from individual PBs was reversibly switched on and off using only light and OCP. We reveal the presence of quasistable intermediate states during the binding and unbinding of OCP to PB, with a spectroscopic signature indicative of transient decoupling of some of the PB rods during docking of OCP. Real-time control of emission from individual PBs has the potential to contribute to the development of new super-resolution imaging techniques.
Collapse
Affiliation(s)
- Michal Gwizdala
- Department of Physics and Astronomy , Faculty of Sciences, VU University , De Boelelaan 1081 , 1081 HV Amsterdam , The Netherlands
- Department of Physics , Faculty of Natural and Agricultural Sciences, University of Pretoria , Private bag X20, Hatfield 0028 , South Africa
| | - Joshua L Botha
- Department of Physics , Faculty of Natural and Agricultural Sciences, University of Pretoria , Private bag X20, Hatfield 0028 , South Africa
| | - Adjélé Wilson
- Unité de Recherche Associée 2096 , Centre National de la Recherche Scientifique , Service de Bioénergétique, 91191 Gif sur Yvette , France
| | - Diana Kirilovsky
- Unité de Recherche Associée 2096 , Centre National de la Recherche Scientifique , Service de Bioénergétique, 91191 Gif sur Yvette , France
| | - Rienk van Grondelle
- Department of Physics and Astronomy , Faculty of Sciences, VU University , De Boelelaan 1081 , 1081 HV Amsterdam , The Netherlands
| | - Tjaart P J Krüger
- Department of Physics , Faculty of Natural and Agricultural Sciences, University of Pretoria , Private bag X20, Hatfield 0028 , South Africa
| |
Collapse
|
30
|
Slonimskiy YB, Maksimov EG, Lukashev EP, Moldenhauer M, Jeffries CM, Svergun DI, Friedrich T, Sluchanko NN. Functional interaction of low-homology FRPs from different cyanobacteria with Synechocystis OCP. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018. [DOI: 10.1016/j.bbabio.2018.03.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
31
|
Sluchanko NN, Slonimskiy YB, Maksimov EG. Features of Protein-Protein Interactions in the Cyanobacterial Photoprotection Mechanism. BIOCHEMISTRY (MOSCOW) 2018. [PMID: 29523061 DOI: 10.1134/s000629791713003x] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Photoprotective mechanisms of cyanobacteria are characterized by several features associated with the structure of their water-soluble antenna complexes - the phycobilisomes (PBs). During energy transfer from PBs to chlorophyll of photosystem reaction centers, the "energy funnel" principle is realized, which regulates energy flux due to the specialized interaction of the PBs core with a quenching molecule capable of effectively dissipating electron excitation energy into heat. The role of the quencher is performed by ketocarotenoid within the photoactive orange carotenoid protein (OCP), which is also a sensor for light flux. At a high level of insolation, OCP is reversibly photoactivated, and this is accompanied by a significant change in its structure and spectral characteristics. Such conformational changes open the possibility for protein-protein interactions between OCP and the PBs core (i.e., activation of photoprotection mechanisms) or the fluorescence recovery protein. Even though OCP was discovered in 1981, little was known about the conformation of its active form until recently, as well as about the properties of homologs of its N and C domains. Studies carried out during recent years have made a breakthrough in understanding of the structural-functional organization of OCP and have enabled discovery of new aspects of the regulation of photoprotection processes in cyanobacteria. This review focuses on aspects of protein-protein interactions between the main participants of photoprotection reactions and on certain properties of representatives of newly discovered families of OCP homologs.
Collapse
Affiliation(s)
- N N Sluchanko
- Bach Institute of Biochemistry, Federal Research Center "Fundamentals of Biotechnology", Russian Academy of Sciences, Moscow, 119071, Russia.
| | | | | |
Collapse
|
32
|
The photocycle of orange carotenoid protein conceals distinct intermediates and asynchronous changes in the carotenoid and protein components. Sci Rep 2017; 7:15548. [PMID: 29138423 PMCID: PMC5686206 DOI: 10.1038/s41598-017-15520-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 10/27/2017] [Indexed: 11/30/2022] Open
Abstract
The 35-kDa Orange Carotenoid Protein (OCP) is responsible for photoprotection in cyanobacteria. It acts as a light intensity sensor and efficient quencher of phycobilisome excitation. Photoactivation triggers large-scale conformational rearrangements to convert OCP from the orange OCPO state to the red active signaling state, OCPR, as demonstrated by various structural methods. Such rearrangements imply a complete, yet reversible separation of structural domains and translocation of the carotenoid. Recently, dynamic crystallography of OCPO suggested the existence of photocycle intermediates with small-scale rearrangements that may trigger further transitions. In this study, we took advantage of single 7 ns laser pulses to study carotenoid absorption transients in OCP on the time-scale from 100 ns to 10 s, which allowed us to detect a red intermediate state preceding the red signaling state, OCPR. In addition, time-resolved fluorescence spectroscopy and the assignment of carotenoid-induced quenching of different tryptophan residues derived thereof revealed a novel orange intermediate state, which appears during the relaxation of photoactivated OCPR to OCPO. Our results show asynchronous changes between the carotenoid- and protein-associated kinetic components in a refined mechanistic model of the OCP photocycle, but also introduce new kinetic signatures for future studies of OCP photoactivity and photoprotection.
Collapse
|
33
|
Muzzopappa F, Wilson A, Yogarajah V, Cot S, Perreau F, Montigny C, Bourcier de Carbon C, Kirilovsky D. Paralogs of the C-Terminal Domain of the Cyanobacterial Orange Carotenoid Protein Are Carotenoid Donors to Helical Carotenoid Proteins. PLANT PHYSIOLOGY 2017; 175:1283-1303. [PMID: 28935842 PMCID: PMC5664476 DOI: 10.1104/pp.17.01040] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 09/19/2017] [Indexed: 05/15/2023]
Abstract
The photoactive Orange Carotenoid Protein (OCP) photoprotects cyanobacteria cells by quenching singlet oxygen and excess excitation energy. Its N-terminal domain is the active part of the protein, and the C-terminal domain regulates the activity. Recently, the characteristics of a family of soluble carotenoid-binding proteins (Helical Carotenoid Proteins [HCPs]), paralogs of the N-terminal domain of OCP, were described. Bioinformatics studies also revealed the existence of genes coding for homologs of CTD. Here, we show that the latter genes encode carotenoid proteins (CTDHs). This family of proteins contains two subgroups with distinct characteristics. One CTDH of each clade was further characterized, and they proved to be very good singlet oxygen quenchers. When synthesized in Escherichia coli or Synechocystis PCC 6803, CTDHs formed dimers that share a carotenoid molecule and are able to transfer their carotenoid to apo-HCPs and apo-OCP. The CTDHs from clade 2 have a cysteine in position 103. A disulfide bond is easily formed between the monomers of the dimer preventing carotenoid transfer. This suggests that the transfer of the carotenoid could be redox regulated in clade 2 CTDH. We also demonstrate here that apo-OCPs and apo-CTDHs are able to take the carotenoid directly from membranes, while HCPs are unable to do so. HCPs need the presence of CTDH to become holo-proteins. We propose that, in cyanobacteria, the CTDHs are carotenoid donors to HCPs.
Collapse
Affiliation(s)
- Fernando Muzzopappa
- Institute for Integrative Biology of the Cell, Commissariat à l'Energie Atomique, Centre National de la Recherche Scientifique, Université Paris-Sud, Université Paris-Saclay, 91198 Gif sur Yvette, France
- Institut de Biologie et Technologies de Saclay, Commissariat à l'Energie Atomique, 91191 Gif-sur-Yvette, France
| | - Adjélé Wilson
- Institute for Integrative Biology of the Cell, Commissariat à l'Energie Atomique, Centre National de la Recherche Scientifique, Université Paris-Sud, Université Paris-Saclay, 91198 Gif sur Yvette, France
- Institut de Biologie et Technologies de Saclay, Commissariat à l'Energie Atomique, 91191 Gif-sur-Yvette, France
| | - Vinosa Yogarajah
- Institute for Integrative Biology of the Cell, Commissariat à l'Energie Atomique, Centre National de la Recherche Scientifique, Université Paris-Sud, Université Paris-Saclay, 91198 Gif sur Yvette, France
- Institut de Biologie et Technologies de Saclay, Commissariat à l'Energie Atomique, 91191 Gif-sur-Yvette, France
| | - Sandrine Cot
- Institute for Integrative Biology of the Cell, Commissariat à l'Energie Atomique, Centre National de la Recherche Scientifique, Université Paris-Sud, Université Paris-Saclay, 91198 Gif sur Yvette, France
- Institut de Biologie et Technologies de Saclay, Commissariat à l'Energie Atomique, 91191 Gif-sur-Yvette, France
| | - François Perreau
- Institut National de la Recherche Agronomique, Institut Jean-Pierre Bourgin, Unité Mixte de Recherche 1318, ERL (Équipe de Recherche Labellisée) Centre National de la Recherche Scientifique 3559, Saclay Plant Sciences, F-78026 Versailles, France
| | - Cédric Montigny
- Institute for Integrative Biology of the Cell, Commissariat à l'Energie Atomique, Centre National de la Recherche Scientifique, Université Paris-Sud, Université Paris-Saclay, 91198 Gif sur Yvette, France
- Institut de Biologie et Technologies de Saclay, Commissariat à l'Energie Atomique, 91191 Gif-sur-Yvette, France
| | - Céline Bourcier de Carbon
- Institute for Integrative Biology of the Cell, Commissariat à l'Energie Atomique, Centre National de la Recherche Scientifique, Université Paris-Sud, Université Paris-Saclay, 91198 Gif sur Yvette, France
- Institut de Biologie et Technologies de Saclay, Commissariat à l'Energie Atomique, 91191 Gif-sur-Yvette, France
| | - Diana Kirilovsky
- Institute for Integrative Biology of the Cell, Commissariat à l'Energie Atomique, Centre National de la Recherche Scientifique, Université Paris-Sud, Université Paris-Saclay, 91198 Gif sur Yvette, France
- Institut de Biologie et Technologies de Saclay, Commissariat à l'Energie Atomique, 91191 Gif-sur-Yvette, France
| |
Collapse
|
34
|
Kerfeld CA, Melnicki MR, Sutter M, Dominguez-Martin MA. Structure, function and evolution of the cyanobacterial orange carotenoid protein and its homologs. THE NEW PHYTOLOGIST 2017; 215:937-951. [PMID: 28675536 DOI: 10.1111/nph.14670] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 05/09/2017] [Indexed: 06/07/2023]
Abstract
Contents 937 I. 937 II. 938 III. 939 IV. 943 V. 947 VI. 948 948 References 949 SUMMARY: The orange carotenoid protein (OCP) is a water-soluble, photoactive protein involved in thermal dissipation of excess energy absorbed by the light-harvesting phycobilisomes (PBS) in cyanobacteria. The OCP is structurally and functionally modular, consisting of a sensor domain, an effector domain and a keto-carotenoid. On photoactivation, the OCP converts from a stable orange form, OCPO , to a red form, OCPR . Activation is accompanied by a translocation of the carotenoid deeper into the effector domain. The increasing availability of cyanobacterial genomes has enabled the identification of new OCP families (OCP1, OCP2, OCPX). The fluorescence recovery protein (FRP) detaches OCP1 from the PBS core, accelerating its back-conversion to OCPO ; by contrast, other OCP families are not regulated by FRP. N-terminal domain homologs, the helical carotenoid proteins (HCPs), have been found among diverse cyanobacteria, occurring as multiple paralogous groups, with two representatives exhibiting strong singlet oxygen (1 O2 ) quenching (HCP2, HCP3) and another capable of dissipating PBS excitation (HCP4). Crystal structures are presently available for OCP1 and HCP1, and models of other HCP subtypes can be readily produced as a result of strong sequence conservation, providing new insights into the determinants of carotenoid binding and 1 O2 quenching.
Collapse
Affiliation(s)
- Cheryl A Kerfeld
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Matthew R Melnicki
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Markus Sutter
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | | |
Collapse
|
35
|
Fujisawa T, Leverenz RL, Nagamine M, Kerfeld CA, Unno M. Raman Optical Activity Reveals Carotenoid Photoactivation Events in the Orange Carotenoid Protein in Solution. J Am Chem Soc 2017; 139:10456-10460. [PMID: 28692285 DOI: 10.1021/jacs.7b05193] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The orange carotenoid protein (OCP) plays an important role in photoprotection in cyanobacteria, which is achieved by the photoconversion from the orange dark state (OCPO) to the red active state (OCPR). Using Raman optical activity (ROA), we studied the conformations of the carotenoid chromophore in the active sites of OCPO and OCPR. This ROA measurement directly observed the chromophore conformation of native OCP in solution, and the measurement of OCPR first demonstrated the ROA spectroscopy for the transient species. For OCPO, the spectral features of ROA were mostly reproduced by the quantum chemical calculation based on the crystal structure of the OCP. Within the spatial resolution (∼2 Å), a slight modification of the polyene-chain distortion improved the agreement between the observed and calculated ROA spectra. While the crystal structure of OCPR is not available, the ROA spectrum of OCPR was reproduced by using the crystal structure of red carotenoid protein (RCP), an OCPR proxy. The present results showed that the chromophore conformations in the crystal structures of OCP and RCP hold true for OCPO and OCPR in solution. Particularly, ROA spectroscopy of the native OCPR provides a direct support for the 12 Å translocation of chromophore in the photoactivation, which was proposed by X-ray crystallography using RCP [R. L. Leverenz, M. Sutter, et al. Science 2015, 348, 1463-1466].
Collapse
Affiliation(s)
- Tomotsumi Fujisawa
- Department of Chemistry and Applied Chemistry, Graduate School of Science and Engineering, Saga University , Saga 850-8502, Japan
| | - Ryan L Leverenz
- MSU-DOE Plant Research Laboratory and Department of Biochemistry and Molecular Biology, Michigan State University , East Lansing, Michigan 48824, United States.,Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory , Berkeley, California 94720, United States
| | - Momoka Nagamine
- Department of Chemistry and Applied Chemistry, Graduate School of Science and Engineering, Saga University , Saga 850-8502, Japan
| | - Cheryl A Kerfeld
- MSU-DOE Plant Research Laboratory and Department of Biochemistry and Molecular Biology, Michigan State University , East Lansing, Michigan 48824, United States.,Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory , Berkeley, California 94720, United States
| | - Masashi Unno
- Department of Chemistry and Applied Chemistry, Graduate School of Science and Engineering, Saga University , Saga 850-8502, Japan
| |
Collapse
|
36
|
Bao H, Melnicki MR, Pawlowski EG, Sutter M, Agostoni M, Lechno-Yossef S, Cai F, Montgomery BL, Kerfeld CA. Additional families of orange carotenoid proteins in the photoprotective system of cyanobacteria. NATURE PLANTS 2017; 3:17089. [PMID: 28692021 DOI: 10.1038/nplants.2017.89] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 05/15/2017] [Indexed: 06/07/2023]
Abstract
The orange carotenoid protein (OCP) is a structurally and functionally modular photoactive protein involved in cyanobacterial photoprotection. Using phylogenomic analysis, we have revealed two new paralogous OCP families, each distributed among taxonomically diverse cyanobacterial genomes. Based on bioinformatic properties and phylogenetic relationships, we named the new families OCP2 and OCPx to distinguish them from the canonical OCP that has been well characterized in Synechocystis, denoted hereafter as OCP1. We report the first characterization of a carotenoprotein photoprotective system in the chromatically acclimating cyanobacterium Tolypothrix sp. PCC 7601, which encodes both OCP1 and OCP2 as well as the regulatory fluorescence recovery protein (FRP). OCP2 expression could only be detected in cultures grown under high irradiance, surpassing expression levels of OCP1, which appears to be constitutive; under low irradiance, OCP2 expression was only detectable in a Tolypothrix mutant lacking the RcaE photoreceptor required for complementary chromatic acclimation. In vitro studies show that Tolypothrix OCP1 is functionally equivalent to Synechocystis OCP1, including its regulation by Tolypothrix FRP, which we show is structurally similar to the dimeric form of Synechocystis FRP. In contrast, Tolypothrix OCP2 shows both faster photoconversion and faster back-conversion, lack of regulation by the FRP, a different oligomeric state (monomer compared to dimer for OCP1) and lower fluorescence quenching of the phycobilisome. Collectively, these findings support our hypothesis that the OCP2 is relatively primitive. The OCP2 is transcriptionally regulated and may have evolved to respond to distinct photoprotective needs under particular environmental conditions such as high irradiance of a particular light quality, whereas the OCP1 is constitutively expressed and is regulated at the post-translational level by FRP and/or oligomerization.
Collapse
Affiliation(s)
- Han Bao
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824, USA
| | - Matthew R Melnicki
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Emily G Pawlowski
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824, USA
| | - Markus Sutter
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Marco Agostoni
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824, USA
| | - Sigal Lechno-Yossef
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824, USA
| | - Fei Cai
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Beronda L Montgomery
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, USA
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan 48824, USA
| | - Cheryl A Kerfeld
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA
| |
Collapse
|
37
|
Bao H, Melnicki MR, Kerfeld CA. Structure and functions of Orange Carotenoid Protein homologs in cyanobacteria. CURRENT OPINION IN PLANT BIOLOGY 2017; 37:1-9. [PMID: 28391046 DOI: 10.1016/j.pbi.2017.03.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 03/16/2017] [Accepted: 03/21/2017] [Indexed: 06/07/2023]
Abstract
Rapidly-induced photoprotection in cyanobacteria involves thermal dissipation of excess energy absorbed by the phycobilisome (PBS), the primary light-harvesting antenna. This process is called non-photochemical quenching (NPQ), and is mediated by a water-soluble photoactive protein, the Orange Carotenoid Protein (OCP). The OCP is structurally and functionally modular, consisting of a sensor domain, an effector domain, and a carotenoid. Blue-green light induces a structural transition of the OCP from the orange inactive form, OCPo, to the red active form, OCPR. Translocation of the carotenoid into the effector domain accompanies photoactivation. The OCPR binds to the PBS core, where it triggers dissipation of excitation energy and quenches fluorescence. To recover the antenna capacity under low light conditions, the Fluorescence Recovery Protein (FRP) participates in detaching the OCP from the PBS and accelerates back-conversion of OCPR to OCPo. Increased sequencing of cyanobacterial genomes has allowed the identification of new paralogous families of the OCP and its domain homologs, the Helical Carotenoid Proteins (HCPs), which have been found distributed widely among taxonomically and ecophysiologically diverse cyanobacteria. Distinct functions from the canonical OCP have been revealed for some of these paralogs by recent structural and functional studies.
Collapse
Affiliation(s)
- Han Bao
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
| | - Matthew R Melnicki
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA; Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Cheryl A Kerfeld
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA; Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA; Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA.
| |
Collapse
|
38
|
Lu Y, Liu H, Saer R, Li VL, Zhang H, Shi L, Goodson C, Gross ML, Blankenship RE. A Molecular Mechanism for Nonphotochemical Quenching in Cyanobacteria. Biochemistry 2017; 56:2812-2823. [PMID: 28513152 DOI: 10.1021/acs.biochem.7b00202] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The cyanobacterial orange carotenoid protein (OCP) protects photosynthetic cyanobacteria from photodamage by dissipating excess excitation energy collected by phycobilisomes (PBS) as heat. Dissociation of the PBS-OCP complex in vivo is facilitated by another protein known as the fluorescence recovery protein (FRP), which primarily exists as a dimeric complex. We used various mass spectrometry (MS)-based techniques to investigate the molecular mechanism of this FRP-mediated process. FRP in the dimeric state (dFRP) retains its high affinity for the C-terminal domain (CTD) of OCP in the red state (OCPr). Site-directed mutagenesis and native MS suggest the head region on FRP is a candidate to bind OCP. After attachment to the CTD, the conformational changes of dFRP allow it to bridge the two domains, facilitating the reversion of OCPr into the orange state (OCPo) accompanied by a structural rearrangement of dFRP. Interestingly, we found a mutual response between FRP and OCP; that is, FRP and OCPr destabilize each other, whereas FRP and OCPo stabilize each other. A detailed mechanism of FRP function is proposed on the basis of the experimental results.
Collapse
Affiliation(s)
- Yue Lu
- Department of Chemistry, Washington University in St. Louis , St. Louis, Missouri 63130, United States.,Photosynthetic Antenna Research Center, Washington University in St. Louis , St. Louis, Missouri 63130, United States
| | - Haijun Liu
- Photosynthetic Antenna Research Center, Washington University in St. Louis , St. Louis, Missouri 63130, United States.,Department of Biology, Washington University in St. Louis , St. Louis, Missouri 63130, United States
| | - Rafael Saer
- Photosynthetic Antenna Research Center, Washington University in St. Louis , St. Louis, Missouri 63130, United States.,Department of Biology, Washington University in St. Louis , St. Louis, Missouri 63130, United States
| | - Veronica L Li
- Department of Chemistry, Washington University in St. Louis , St. Louis, Missouri 63130, United States.,Photosynthetic Antenna Research Center, Washington University in St. Louis , St. Louis, Missouri 63130, United States
| | - Hao Zhang
- Department of Chemistry, Washington University in St. Louis , St. Louis, Missouri 63130, United States.,Photosynthetic Antenna Research Center, Washington University in St. Louis , St. Louis, Missouri 63130, United States
| | - Liuqing Shi
- Department of Chemistry, Washington University in St. Louis , St. Louis, Missouri 63130, United States
| | - Carrie Goodson
- Photosynthetic Antenna Research Center, Washington University in St. Louis , St. Louis, Missouri 63130, United States.,Department of Biology, Washington University in St. Louis , St. Louis, Missouri 63130, United States
| | - Michael L Gross
- Department of Chemistry, Washington University in St. Louis , St. Louis, Missouri 63130, United States.,Photosynthetic Antenna Research Center, Washington University in St. Louis , St. Louis, Missouri 63130, United States
| | - Robert E Blankenship
- Department of Chemistry, Washington University in St. Louis , St. Louis, Missouri 63130, United States.,Photosynthetic Antenna Research Center, Washington University in St. Louis , St. Louis, Missouri 63130, United States.,Department of Biology, Washington University in St. Louis , St. Louis, Missouri 63130, United States
| |
Collapse
|
39
|
Thurotte A, Bourcier de Carbon C, Wilson A, Talbot L, Cot S, López-Igual R, Kirilovsky D. The cyanobacterial Fluorescence Recovery Protein has two distinct activities: Orange Carotenoid Protein amino acids involved in FRP interaction. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2017; 1858:308-317. [PMID: 28188781 DOI: 10.1016/j.bbabio.2017.02.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 01/17/2017] [Accepted: 02/05/2017] [Indexed: 12/21/2022]
Abstract
To deal with fluctuating light condition, cyanobacteria have developed a photoprotective mechanism which, under high light conditions, decreases the energy arriving at the photochemical centers. It relies on a photoswitch, the Orange Carotenoid Protein (OCP). Once photoactivated, OCP binds to the light harvesting antenna, the phycobilisome (PBS), and triggers the thermal dissipation of the excess energy absorbed. Deactivation of the photoprotective mechanism requires the intervention of a third partner, the Fluorescence Recovery Protein (FRP). FRP by interacting with the photoactivated OCP accelerates its conversion to the non-active form and its detachment from the phycobilisome. We have studied the interaction of FRP with free and phycobilisome-bound OCP. Several OCP variants were constructed and characterized. In this article we show that OCP amino acid F299 is essential and D220 important for OCP deactivation mediated by FRP. Mutations of these amino acids did not affect FRP activity as helper to detach OCP from phycobilisomes. In addition, while mutated R60L FRP is inactive on OCP deactivation, its activity on the detachment of the OCP from the phycobilisomes is not affected. Thus, our results demonstrate that FRP has two distinct activities: it accelerates OCP detachment from phycobilisomes and then it helps deactivation of the OCP. They also suggest that different OCP and FRP amino acids could be involved in these two activities.
Collapse
Affiliation(s)
- Adrien Thurotte
- Institute for Integrative Biology of the Cell (I2BC), CNRS, CEA, Université Paris-Sud, Université Paris-Saclay, 91198 Gif sur Yvette, France; Institut de Biologie et Technologies de Saclay (iBiTec-S), Commissariat à l'Energie Atomique (CEA), 91191 Gif-sur-Yvette, France
| | - Céline Bourcier de Carbon
- Institut de Biologie et Technologies de Saclay (iBiTec-S), Commissariat à l'Energie Atomique (CEA), 91191 Gif-sur-Yvette, France; Phycosource, 13 boulevard de l'Hautil, 95092 Cergy Cedex, France
| | - Adjélé Wilson
- Institute for Integrative Biology of the Cell (I2BC), CNRS, CEA, Université Paris-Sud, Université Paris-Saclay, 91198 Gif sur Yvette, France; Institut de Biologie et Technologies de Saclay (iBiTec-S), Commissariat à l'Energie Atomique (CEA), 91191 Gif-sur-Yvette, France
| | - Léa Talbot
- Institute for Integrative Biology of the Cell (I2BC), CNRS, CEA, Université Paris-Sud, Université Paris-Saclay, 91198 Gif sur Yvette, France; Institut de Biologie et Technologies de Saclay (iBiTec-S), Commissariat à l'Energie Atomique (CEA), 91191 Gif-sur-Yvette, France
| | - Sandrine Cot
- Institute for Integrative Biology of the Cell (I2BC), CNRS, CEA, Université Paris-Sud, Université Paris-Saclay, 91198 Gif sur Yvette, France; Institut de Biologie et Technologies de Saclay (iBiTec-S), Commissariat à l'Energie Atomique (CEA), 91191 Gif-sur-Yvette, France
| | - Rocio López-Igual
- Institute for Integrative Biology of the Cell (I2BC), CNRS, CEA, Université Paris-Sud, Université Paris-Saclay, 91198 Gif sur Yvette, France; Institut de Biologie et Technologies de Saclay (iBiTec-S), Commissariat à l'Energie Atomique (CEA), 91191 Gif-sur-Yvette, France
| | - Diana Kirilovsky
- Institute for Integrative Biology of the Cell (I2BC), CNRS, CEA, Université Paris-Sud, Université Paris-Saclay, 91198 Gif sur Yvette, France; Institut de Biologie et Technologies de Saclay (iBiTec-S), Commissariat à l'Energie Atomique (CEA), 91191 Gif-sur-Yvette, France.
| |
Collapse
|
40
|
Mezzetti A, Leibl W. Time-resolved infrared spectroscopy in the study of photosynthetic systems. PHOTOSYNTHESIS RESEARCH 2017; 131:121-144. [PMID: 27678250 DOI: 10.1007/s11120-016-0305-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Accepted: 09/05/2016] [Indexed: 06/06/2023]
Abstract
Time-resolved (TR) infrared (IR) spectroscopy in the nanosecond to second timescale has been extensively used, in the last 30 years, in the study of photosynthetic systems. Interesting results have also been obtained at lower time resolution (minutes or even hours). In this review, we first describe the used techniques-dispersive IR, laser diode IR, rapid-scan Fourier transform (FT)IR, step-scan FTIR-underlying the advantages and disadvantages of each of them. Then, the main TR-IR results obtained so far in the investigation of photosynthetic reactions (in reaction centers, in light-harvesting systems, but also in entire membranes or even in living organisms) are presented. Finally, after the general conclusions, the perspectives in the field of TR-IR applied to photosynthesis are described.
Collapse
Affiliation(s)
- Alberto Mezzetti
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR 7197, Laboratoire de Réactivité de Surfaces, 4 Pl. Jussieu, 75005, Paris, France.
- Institut de Biologie Intégrative de la Cellule (I2BC), IBITECS, CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette, France.
| | - Winfried Leibl
- Institut de Biologie Intégrative de la Cellule (I2BC), IBITECS, CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette, France
| |
Collapse
|
41
|
Kirilovsky D, Kerfeld CA. Cyanobacterial photoprotection by the orange carotenoid protein. NATURE PLANTS 2016; 2:16180. [PMID: 27909300 DOI: 10.1038/nplants.2016.180] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 10/20/2016] [Indexed: 05/18/2023]
Abstract
In photosynthetic organisms, the production of dangerous oxygen species is stimulated under high irradiance. To cope with this stress, these organisms have evolved photoprotective mechanisms. One type of mechanism functions to decrease the energy arriving at the photochemical centres by increasing thermal dissipation at the level of antennae. In cyanobacteria, the trigger for this mechanism is the photoactivation of a soluble carotenoid protein, the orange carotenoid protein (OCP), which is a structurally and functionally modular protein. The inactive orange form (OCPo) is compact and globular, with the carotenoid spanning the effector and the regulatory domains. In the active red form (OCPr), the two domains are completely separated and the carotenoid has translocated entirely into the effector domain. The activated OCPr interacts with the phycobilisome (PBS), the cyanobacterial antenna, and induces excitation-energy quenching. A second protein, the fluorescence recovery protein (FRP), dislodges the active OCPr from the PBSs and accelerates its conversion to the inactive OCP.
Collapse
Affiliation(s)
- Diana Kirilovsky
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
- Institut de Biologie et Technologies de Saclay (iBiTec-S), Commissariat à l'Energie Atomique (CEA), 91191 Gif-sur-Yvette, France
| | - Cheryl A Kerfeld
- MSU-DOE Plant Research Laboratory and Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
- Berkeley Synthetic Biology Institute, Berkeley, California 94720, USA
| |
Collapse
|
42
|
Maksimov EG, Moldenhauer M, Shirshin EA, Parshina EA, Sluchanko NN, Klementiev KE, Tsoraev GV, Tavraz NN, Willoweit M, Schmitt FJ, Breitenbach J, Sandmann G, Paschenko VZ, Friedrich T, Rubin AB. A comparative study of three signaling forms of the orange carotenoid protein. PHOTOSYNTHESIS RESEARCH 2016; 130:389-401. [PMID: 27161566 DOI: 10.1007/s11120-016-0272-8] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 04/27/2016] [Indexed: 06/05/2023]
Abstract
Orange carotenoid protein (OCP) is a water-soluble photoactive protein responsible for a photoprotective mechanism of nonphotochemical quenching in cyanobacteria. Under blue-green illumination, OCP converts from the stable orange into the signaling red quenching form; however, the latter form could also be obtained by chemical activation with high concentrations of sodium thiocyanate (NaSCN) or point mutations. In this work, we show that a single replacement of tryptophan-288, normally involved in protein-chromophore interactions, by alanine, results in formation of a new protein form, hereinafter referred to as purple carotenoid protein (PCP). Comparison of resonance Raman spectra of the native photoactivated red form, chemically activated OCP, and PCP reveals that carotenoid conformation is sensitive to the structure of the C-domain, implicating that the chromophore retains some interactions with this part of the protein in the active red form. Combination of differential scanning fluorimetry and picosecond time-resolved fluorescence anisotropy measurements allowed us to compare the stability of different OCP forms and to estimate relative differences in protein rotation rates. These results were corroborated by hydrodynamic analysis of proteins by dynamic light scattering and analytical size-exclusion chromatography, indicating that the light-induced conversion of the protein is accompanied by a significant increase in its size. On the whole, our data support the idea that the red form of OCP is a molten globule-like protein in which, however, interactions between the carotenoid and the C-terminal domain are preserved.
Collapse
Affiliation(s)
- E G Maksimov
- Department of Biophysics, Faculty of Biology, M.V. Lomonosov Moscow State University, 119992, Moscow, Russia.
| | - M Moldenhauer
- Institute of Chemistry PC 14, Technical University of Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany
| | - E A Shirshin
- Department of Quantum Electronics, Faculty of Physics, M.V. Lomonosov Moscow State University, 119992, Moscow, Russia
| | - E A Parshina
- Department of Biophysics, Faculty of Biology, M.V. Lomonosov Moscow State University, 119992, Moscow, Russia
| | - N N Sluchanko
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 119071, Moscow, Russia
| | - K E Klementiev
- Department of Biophysics, Faculty of Biology, M.V. Lomonosov Moscow State University, 119992, Moscow, Russia
| | - G V Tsoraev
- Department of Biophysics, Faculty of Biology, M.V. Lomonosov Moscow State University, 119992, Moscow, Russia
| | - N N Tavraz
- Institute of Chemistry PC 14, Technical University of Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany
| | - M Willoweit
- Institute of Chemistry PC 14, Technical University of Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany
| | - F-J Schmitt
- Institute of Chemistry PC 14, Technical University of Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany
| | - J Breitenbach
- Institute for Molecular Biosciences, Johann Wolfgang Goethe University of Frankfurt, Max-von-Laue-Straße 9, 60438, Frankfurt, Germany
| | - G Sandmann
- Institute for Molecular Biosciences, Johann Wolfgang Goethe University of Frankfurt, Max-von-Laue-Straße 9, 60438, Frankfurt, Germany
| | - V Z Paschenko
- Department of Biophysics, Faculty of Biology, M.V. Lomonosov Moscow State University, 119992, Moscow, Russia
| | - T Friedrich
- Institute of Chemistry PC 14, Technical University of Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany
| | - A B Rubin
- Department of Biophysics, Faculty of Biology, M.V. Lomonosov Moscow State University, 119992, Moscow, Russia
| |
Collapse
|
43
|
Acuña AM, Kaňa R, Gwizdala M, Snellenburg JJ, van Alphen P, van Oort B, Kirilovsky D, van Grondelle R, van Stokkum IHM. A method to decompose spectral changes in Synechocystis PCC 6803 during light-induced state transitions. PHOTOSYNTHESIS RESEARCH 2016; 130:237-249. [PMID: 27016082 PMCID: PMC5054063 DOI: 10.1007/s11120-016-0248-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 03/15/2016] [Indexed: 05/28/2023]
Abstract
Cyanobacteria have developed responses to maintain the balance between the energy absorbed and the energy used in different pigment-protein complexes. One of the relatively rapid (a few minutes) responses is activated when the cells are exposed to high light intensities. This mechanism thermally dissipates excitation energy at the level of the phycobilisome (PB) antenna before it reaches the reaction center. When exposed to low intensities of light that modify the redox state of the plastoquinone pool, the so-called state transitions redistribute energy between photosystem I and II. Experimental techniques to investigate the underlying mechanisms of these responses, such as pulse-amplitude modulated fluorometry, are based on spectrally integrated signals. Previously, a spectrally resolved fluorometry method has been introduced to preserve spectral information. The analysis method introduced in this work allows to interpret SRF data in terms of species-associated spectra of open/closed reaction centers (RCs), (un)quenched PB and state 1 versus state 2. Thus, spectral differences in the time-dependent fluorescence signature of photosynthetic organisms under varying light conditions can be traced and assigned to functional emitting species leading to a number of interpretations of their molecular origins. In particular, we present evidence that state 1 and state 2 correspond to different states of the PB-PSII-PSI megacomplex.
Collapse
Affiliation(s)
- Alonso M Acuña
- Faculty of Sciences, Institute for Lasers, Life and Biophotonics, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081, HV, Amsterdam, The Netherlands
| | - Radek Kaňa
- Laboratory of Photosynthesis, Centre Algatech, Institute of Microbiology, Opatovický Mlýn, 379 81, Třeboň, Czech Republic
| | - Michal Gwizdala
- Faculty of Sciences, Institute for Lasers, Life and Biophotonics, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081, HV, Amsterdam, The Netherlands
| | - Joris J Snellenburg
- Faculty of Sciences, Institute for Lasers, Life and Biophotonics, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081, HV, Amsterdam, The Netherlands
| | - Pascal van Alphen
- Swammerdam Institute for Life Sciences, University of Amsterdam, 1098, XH, Amsterdam, The Netherlands
| | - Bart van Oort
- Faculty of Sciences, Institute for Lasers, Life and Biophotonics, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081, HV, Amsterdam, The Netherlands
| | - Diana Kirilovsky
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette Cedex, France
| | - Rienk van Grondelle
- Faculty of Sciences, Institute for Lasers, Life and Biophotonics, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081, HV, Amsterdam, The Netherlands
| | - Ivo H M van Stokkum
- Faculty of Sciences, Institute for Lasers, Life and Biophotonics, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081, HV, Amsterdam, The Netherlands.
| |
Collapse
|
44
|
Sluchanko NN, Klementiev KE, Shirshin EA, Tsoraev GV, Friedrich T, Maksimov EG. The purple Trp288Ala mutant of Synechocystis OCP persistently quenches phycobilisome fluorescence and tightly interacts with FRP. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1858:1-11. [PMID: 27755972 DOI: 10.1016/j.bbabio.2016.10.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 09/22/2016] [Accepted: 10/13/2016] [Indexed: 10/20/2022]
Abstract
In Cyanobacteria, the Orange Carotenoid Protein (OCP) and Fluorescence Recovery Protein (FRP) are central to the photoprotective mechanism consisting in regulated quenching of phycobilisome (PBs) fluorescence. Due to a transient and flexible nature of the light-activated red quenching form, OCPR, which is obtained from the stable dark-adapted orange form, OCPO, by photoconversion, the detailed mechanism of photoprotection remains unclear. Here we demonstrate that our recently described W288A mutant of the Synechocystis OCP (hereinafter called OCPW288A) is a fully functional analogue of the OCPR form which is capable of constitutive PBs fluorescence quenching in vitro with no need of photoactivation. This PBs quenching effect is abolished in the presence of FRP, which interacts with OCPW288A with micromolar affinity and an apparent stoichiometry of 1:1, unexpectedly, implying dissociation of the FRP dimers. This establishes OCPW288A as a robust model system providing novel insights into the interplay between OCP and FRP to regulate photoprotection in cyanobacteria.
Collapse
Affiliation(s)
- Nikolai N Sluchanko
- A.N. Bach Institute of Biochemistry, Federal Research Center "Fundamentals of Biotechnology" of the Russian Academy of Sciences, 119071 Moscow, Russia.
| | - Konstantin E Klementiev
- Department of Biophysics, Faculty of Biology, M.V. Lomonosov Moscow State University, 119992, Moscow, Russia
| | - Evgeny A Shirshin
- Department of Quantum Electronics, Faculty of Physics, M.V. Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Georgy V Tsoraev
- Department of Biophysics, Faculty of Biology, M.V. Lomonosov Moscow State University, 119992, Moscow, Russia
| | - Thomas Friedrich
- Technical University of Berlin, Institute of Chemistry PC 14, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Eugene G Maksimov
- Department of Biophysics, Faculty of Biology, M.V. Lomonosov Moscow State University, 119992, Moscow, Russia
| |
Collapse
|
45
|
López-Igual R, Wilson A, Leverenz RL, Melnicki MR, Bourcier de Carbon C, Sutter M, Turmo A, Perreau F, Kerfeld CA, Kirilovsky D. Different Functions of the Paralogs to the N-Terminal Domain of the Orange Carotenoid Protein in the Cyanobacterium Anabaena sp. PCC 7120. PLANT PHYSIOLOGY 2016; 171:1852-66. [PMID: 27208286 PMCID: PMC4936580 DOI: 10.1104/pp.16.00502] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 05/11/2016] [Indexed: 05/16/2023]
Abstract
The photoactive Orange Carotenoid Protein (OCP) is involved in cyanobacterial photoprotection. Its N-terminal domain (NTD) is responsible for interaction with the antenna and induction of excitation energy quenching, while the C-terminal domain is the regulatory domain that senses light and induces photoactivation. In most nitrogen-fixing cyanobacterial strains, there are one to four paralogous genes coding for homologs to the NTD of the OCP. The functions of these proteins are unknown. Here, we study the expression, localization, and function of these genes in Anabaena sp. PCC 7120. We show that the four genes present in the genome are expressed in both vegetative cells and heterocysts but do not seem to have an essential role in heterocyst formation. This study establishes that all four Anabaena NTD-like proteins can bind a carotenoid and the different paralogs have distinct functions. Surprisingly, only one paralog (All4941) was able to interact with the antenna and to induce permanent thermal energy dissipation. Two of the other Anabaena paralogs (All3221 and Alr4783) were shown to be very good singlet oxygen quenchers. The fourth paralog (All1123) does not seem to be involved in photoprotection. Structural homology modeling allowed us to propose specific features responsible for the different functions of these soluble carotenoid-binding proteins.
Collapse
Affiliation(s)
- Rocío López-Igual
- Institute for Integrative Biology of the Cell (I2BC), Commissariat à l'Energie Atomique, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198 Gif sur Yvette, France (R.L.-I., A.W., C.B.d.C., D.K.);Institut de Biologie et Technologies de Saclay (iBiTec-S), Commissariat à l'Energie Atomique, 91191 Gif-sur-Yvette, France (R.L.-I., A.W., C.B.d.C., D.K.);MSU-DOE Plant Research Laboratory and Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824 (R.L.L., M.S., A.T., C.A.K.);Department of Plant and Microbial Biology, University of California, Berkeley, California 94720 (M.R.M., C.A.K.);Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (M.R.M., M.S., C.A.K.); andINRA, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, F-78026 Versailles, France (F.P.)
| | - Adjélé Wilson
- Institute for Integrative Biology of the Cell (I2BC), Commissariat à l'Energie Atomique, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198 Gif sur Yvette, France (R.L.-I., A.W., C.B.d.C., D.K.);Institut de Biologie et Technologies de Saclay (iBiTec-S), Commissariat à l'Energie Atomique, 91191 Gif-sur-Yvette, France (R.L.-I., A.W., C.B.d.C., D.K.);MSU-DOE Plant Research Laboratory and Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824 (R.L.L., M.S., A.T., C.A.K.);Department of Plant and Microbial Biology, University of California, Berkeley, California 94720 (M.R.M., C.A.K.);Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (M.R.M., M.S., C.A.K.); andINRA, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, F-78026 Versailles, France (F.P.)
| | - Ryan L Leverenz
- Institute for Integrative Biology of the Cell (I2BC), Commissariat à l'Energie Atomique, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198 Gif sur Yvette, France (R.L.-I., A.W., C.B.d.C., D.K.);Institut de Biologie et Technologies de Saclay (iBiTec-S), Commissariat à l'Energie Atomique, 91191 Gif-sur-Yvette, France (R.L.-I., A.W., C.B.d.C., D.K.);MSU-DOE Plant Research Laboratory and Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824 (R.L.L., M.S., A.T., C.A.K.);Department of Plant and Microbial Biology, University of California, Berkeley, California 94720 (M.R.M., C.A.K.);Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (M.R.M., M.S., C.A.K.); andINRA, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, F-78026 Versailles, France (F.P.)
| | - Matthew R Melnicki
- Institute for Integrative Biology of the Cell (I2BC), Commissariat à l'Energie Atomique, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198 Gif sur Yvette, France (R.L.-I., A.W., C.B.d.C., D.K.);Institut de Biologie et Technologies de Saclay (iBiTec-S), Commissariat à l'Energie Atomique, 91191 Gif-sur-Yvette, France (R.L.-I., A.W., C.B.d.C., D.K.);MSU-DOE Plant Research Laboratory and Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824 (R.L.L., M.S., A.T., C.A.K.);Department of Plant and Microbial Biology, University of California, Berkeley, California 94720 (M.R.M., C.A.K.);Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (M.R.M., M.S., C.A.K.); andINRA, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, F-78026 Versailles, France (F.P.)
| | - Céline Bourcier de Carbon
- Institute for Integrative Biology of the Cell (I2BC), Commissariat à l'Energie Atomique, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198 Gif sur Yvette, France (R.L.-I., A.W., C.B.d.C., D.K.);Institut de Biologie et Technologies de Saclay (iBiTec-S), Commissariat à l'Energie Atomique, 91191 Gif-sur-Yvette, France (R.L.-I., A.W., C.B.d.C., D.K.);MSU-DOE Plant Research Laboratory and Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824 (R.L.L., M.S., A.T., C.A.K.);Department of Plant and Microbial Biology, University of California, Berkeley, California 94720 (M.R.M., C.A.K.);Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (M.R.M., M.S., C.A.K.); andINRA, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, F-78026 Versailles, France (F.P.)
| | - Markus Sutter
- Institute for Integrative Biology of the Cell (I2BC), Commissariat à l'Energie Atomique, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198 Gif sur Yvette, France (R.L.-I., A.W., C.B.d.C., D.K.);Institut de Biologie et Technologies de Saclay (iBiTec-S), Commissariat à l'Energie Atomique, 91191 Gif-sur-Yvette, France (R.L.-I., A.W., C.B.d.C., D.K.);MSU-DOE Plant Research Laboratory and Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824 (R.L.L., M.S., A.T., C.A.K.);Department of Plant and Microbial Biology, University of California, Berkeley, California 94720 (M.R.M., C.A.K.);Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (M.R.M., M.S., C.A.K.); andINRA, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, F-78026 Versailles, France (F.P.)
| | - Aiko Turmo
- Institute for Integrative Biology of the Cell (I2BC), Commissariat à l'Energie Atomique, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198 Gif sur Yvette, France (R.L.-I., A.W., C.B.d.C., D.K.);Institut de Biologie et Technologies de Saclay (iBiTec-S), Commissariat à l'Energie Atomique, 91191 Gif-sur-Yvette, France (R.L.-I., A.W., C.B.d.C., D.K.);MSU-DOE Plant Research Laboratory and Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824 (R.L.L., M.S., A.T., C.A.K.);Department of Plant and Microbial Biology, University of California, Berkeley, California 94720 (M.R.M., C.A.K.);Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (M.R.M., M.S., C.A.K.); andINRA, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, F-78026 Versailles, France (F.P.)
| | - François Perreau
- Institute for Integrative Biology of the Cell (I2BC), Commissariat à l'Energie Atomique, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198 Gif sur Yvette, France (R.L.-I., A.W., C.B.d.C., D.K.);Institut de Biologie et Technologies de Saclay (iBiTec-S), Commissariat à l'Energie Atomique, 91191 Gif-sur-Yvette, France (R.L.-I., A.W., C.B.d.C., D.K.);MSU-DOE Plant Research Laboratory and Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824 (R.L.L., M.S., A.T., C.A.K.);Department of Plant and Microbial Biology, University of California, Berkeley, California 94720 (M.R.M., C.A.K.);Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (M.R.M., M.S., C.A.K.); andINRA, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, F-78026 Versailles, France (F.P.)
| | - Cheryl A Kerfeld
- Institute for Integrative Biology of the Cell (I2BC), Commissariat à l'Energie Atomique, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198 Gif sur Yvette, France (R.L.-I., A.W., C.B.d.C., D.K.);Institut de Biologie et Technologies de Saclay (iBiTec-S), Commissariat à l'Energie Atomique, 91191 Gif-sur-Yvette, France (R.L.-I., A.W., C.B.d.C., D.K.);MSU-DOE Plant Research Laboratory and Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824 (R.L.L., M.S., A.T., C.A.K.);Department of Plant and Microbial Biology, University of California, Berkeley, California 94720 (M.R.M., C.A.K.);Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (M.R.M., M.S., C.A.K.); andINRA, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, F-78026 Versailles, France (F.P.)
| | - Diana Kirilovsky
- Institute for Integrative Biology of the Cell (I2BC), Commissariat à l'Energie Atomique, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198 Gif sur Yvette, France (R.L.-I., A.W., C.B.d.C., D.K.);Institut de Biologie et Technologies de Saclay (iBiTec-S), Commissariat à l'Energie Atomique, 91191 Gif-sur-Yvette, France (R.L.-I., A.W., C.B.d.C., D.K.);MSU-DOE Plant Research Laboratory and Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824 (R.L.L., M.S., A.T., C.A.K.);Department of Plant and Microbial Biology, University of California, Berkeley, California 94720 (M.R.M., C.A.K.);Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (M.R.M., M.S., C.A.K.); andINRA, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, F-78026 Versailles, France (F.P.)
| |
Collapse
|
46
|
Maksimov EG, Shirshin EA, Sluchanko NN, Zlenko DV, Parshina EY, Tsoraev GV, Klementiev KE, Budylin GS, Schmitt FJ, Friedrich T, Fadeev VV, Paschenko VZ, Rubin AB. The Signaling State of Orange Carotenoid Protein. Biophys J 2016; 109:595-607. [PMID: 26244741 DOI: 10.1016/j.bpj.2015.06.052] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 06/01/2015] [Accepted: 06/25/2015] [Indexed: 10/23/2022] Open
Abstract
Orange carotenoid protein (OCP) is the photoactive protein that is responsible for high light tolerance in cyanobacteria. We studied the kinetics of the OCP photocycle by monitoring changes in its absorption spectrum, intrinsic fluorescence, and fluorescence of the Nile red dye bound to OCP. It was demonstrated that all of these three methods provide the same kinetic parameters of the photocycle, namely, the kinetics of OCP relaxation in darkness was biexponential with a ratio of two components equal to 2:1 independently of temperature. Whereas the changes of the absorption spectrum of OCP characterize the geometry and environment of its chromophore, the intrinsic fluorescence of OCP reveals changes in its tertiary structure, and the fluorescence properties of Nile red indicate the exposure of hydrophobic surface areas of OCP to the solvent following the photocycle. The results of molecular-dynamics studies indicated the presence of two metastable conformations of 3'-hydroxyechinenone, which is consistent with characteristic changes in the Raman spectra. We conclude that rotation of the β-ionylidene ring in the C-terminal domain of OCP could be one of the first conformational rearrangements that occur during photoactivation. The obtained results suggest that the photoactivated form of OCP represents a molten globule-like state that is characterized by increased mobility of tertiary structure elements and solvent accessibility.
Collapse
Affiliation(s)
- Eugene G Maksimov
- Department of Biophysics, Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia.
| | - Evgeny A Shirshin
- Department of Quantum Electronics, Faculty of Physics, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Nikolai N Sluchanko
- A.N. Bach Institute of Biochemistry, Russian Academy of Sciences, Moscow, Russia
| | - Dmitry V Zlenko
- Department of Biophysics, Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Evgenia Y Parshina
- Department of Biophysics, Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Georgy V Tsoraev
- Department of Biophysics, Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Konstantin E Klementiev
- Department of Biophysics, Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Gleb S Budylin
- Department of Quantum Electronics, Faculty of Physics, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Franz-Josef Schmitt
- Institute of Chemistry, Max-Volmer Laboratory of Biophysical Chemistry, Technical University Berlin, Berlin, Germany
| | - Thomas Friedrich
- Institute of Chemistry, Max-Volmer Laboratory of Biophysical Chemistry, Technical University Berlin, Berlin, Germany
| | - Victor V Fadeev
- Department of Quantum Electronics, Faculty of Physics, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Vladimir Z Paschenko
- Department of Biophysics, Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Andrew B Rubin
- Department of Biophysics, Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
47
|
Zhang H, Liu H, Blankenship RE, Gross ML. Isotope-Encoded Carboxyl Group Footprinting for Mass Spectrometry-Based Protein Conformational Studies. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2016; 27:178-81. [PMID: 26384685 PMCID: PMC4688080 DOI: 10.1007/s13361-015-1260-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 08/27/2015] [Accepted: 08/28/2015] [Indexed: 05/03/2023]
Abstract
We report an isotope-encoding method coupled with carboxyl-group footprinting to monitor protein conformational changes. The carboxyl groups of aspartic/glutamic acids and of the C-terminus of proteins can serve as reporters for protein conformational changes when labeled with glycine ethyl ester (GEE) mediated by carbodiimide. In the new development, isotope-encoded "heavy" and "light" GEE are used to label separately the two states of the orange carotenoid protein (OCP) from cyanobacteria. Two samples are mixed (1:1 ratio) and analyzed by a single LC-MS/MS experiment. The differences in labeling extent between the two states are represented by the ratio of the "heavy" and "light" peptides, providing information about protein conformational changes. Combining isotope-encoded MS quantitative analysis and carboxyl-group footprinting reduces the time of MS analysis and improves the sensitivity of GEE and other footprinting.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, 63130, USA
- Photosynthetic Antenna Research Center (PARC), Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Haijun Liu
- Photosynthetic Antenna Research Center (PARC), Washington University in St. Louis, St. Louis, MO, 63130, USA
- Department of Biology, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Robert E Blankenship
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, 63130, USA
- Photosynthetic Antenna Research Center (PARC), Washington University in St. Louis, St. Louis, MO, 63130, USA
- Department of Biology, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Michael L Gross
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, 63130, USA.
- Photosynthetic Antenna Research Center (PARC), Washington University in St. Louis, St. Louis, MO, 63130, USA.
| |
Collapse
|
48
|
Zakar T, Laczko-Dobos H, Toth TN, Gombos Z. Carotenoids Assist in Cyanobacterial Photosystem II Assembly and Function. FRONTIERS IN PLANT SCIENCE 2016; 7:295. [PMID: 27014318 PMCID: PMC4785236 DOI: 10.3389/fpls.2016.00295] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 02/24/2016] [Indexed: 05/10/2023]
Abstract
Carotenoids (carotenes and xanthophylls) are ubiquitous constituents of living organisms. They are protective agents against oxidative stresses and serve as modulators of membrane microviscosity. As antioxidants they can protect photosynthetic organisms from free radicals like reactive oxygen species that originate from water splitting, the first step of photosynthesis. We summarize the structural and functional roles of carotenoids in connection with cyanobacterial Photosystem II. Although carotenoids are hydrophobic molecules, their complexes with proteins also allow cytoplasmic localization. In cyanobacterial cells such complexes are called orange carotenoid proteins, and they protect Photosystem II and Photosystem I by preventing their overexcitation through phycobilisomes (PBS). Recently it has been observed that carotenoids are not only required for the proper functioning, but also for the structural stability of PBSs.
Collapse
|
49
|
Gupta S, Guttman M, Leverenz RL, Zhumadilova K, Pawlowski EG, Petzold CJ, Lee KK, Ralston CY, Kerfeld CA. Local and global structural drivers for the photoactivation of the orange carotenoid protein. Proc Natl Acad Sci U S A 2015; 112:E5567-74. [PMID: 26385969 PMCID: PMC4611662 DOI: 10.1073/pnas.1512240112] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Photoprotective mechanisms are of fundamental importance for the survival of photosynthetic organisms. In cyanobacteria, the orange carotenoid protein (OCP), when activated by intense blue light, binds to the light-harvesting antenna and triggers the dissipation of excess captured light energy. Using a combination of small angle X-ray scattering (SAXS), X-ray hydroxyl radical footprinting, circular dichroism, and H/D exchange mass spectrometry, we identified both the local and global structural changes in the OCP upon photoactivation. SAXS and H/D exchange data showed that global tertiary structural changes, including complete domain dissociation, occur upon photoactivation, but with alteration of secondary structure confined to only the N terminus of the OCP. Microsecond radiolytic labeling identified rearrangement of the H-bonding network associated with conserved residues and structural water molecules. Collectively, these data provide experimental evidence for an ensemble of local and global structural changes, upon activation of the OCP, that are essential for photoprotection.
Collapse
Affiliation(s)
- Sayan Gupta
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Miklos Guttman
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195
| | - Ryan L Leverenz
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI 48824
| | - Kulyash Zhumadilova
- School of Science and Technology, Nazarbayev University, Astana 010000, Kazakhstan
| | - Emily G Pawlowski
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI 48824
| | - Christopher J Petzold
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Kelly K Lee
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195
| | - Corie Y Ralston
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Cheryl A Kerfeld
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720; Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI 48824; Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720; Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824
| |
Collapse
|
50
|
Kirilovsky D. Modulating energy arriving at photochemical reaction centers: orange carotenoid protein-related photoprotection and state transitions. PHOTOSYNTHESIS RESEARCH 2015; 126:3-17. [PMID: 25139327 DOI: 10.1007/s11120-014-0031-7] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 08/08/2014] [Indexed: 05/09/2023]
Abstract
Photosynthetic organisms tightly regulate the energy arriving to the reaction centers in order to avoid photodamage or imbalance between the photosystems. To this purpose, cyanobacteria have developed mechanisms involving relatively rapid (seconds to minutes) changes in the photosynthetic apparatus. In this review, two of these processes will be described: orange carotenoid protein(OCP)-related photoprotection and state transitions which optimize energy distribution between the two photosystems. The photoactive OCP is a light intensity sensor and an energy dissipater. Photoactivation depends on light intensity and only the red-active OCP form, by interacting with phycobilisome cores, increases thermal energy dissipation at the level of the antenna. A second protein, the "fluorescence recovery protein", is needed to recover full antenna capacity under low light conditions. This protein accelerates OCP conversion to the inactive orange form and plays a role in dislodging the red OCP protein from the phycobilisome. The mechanism of state transitions is still controversial. Changes in the redox state of the plastoquinone pool induce movement of phycobilisomes and/or photosystems leading to redistribution of energy absorbed by phycobilisomes between PSII and PSI and/or to changes in excitation energy spillover between photosystems. The different steps going from the induction of redox changes to movement of phycobilisomes or photosystems remain to be elucidated.
Collapse
Affiliation(s)
- Diana Kirilovsky
- Commissariat à l'Energie Atomique (CEA), SB2SM, Bat 532, Institut de Biologie et Technologies de Saclay (iBiTec-S), 91191, Gif sur Yvette, France.
- Centre National de la Recherche Scientifique (CNRS), UMR 8221, 91191, Gif sur Yvette, France.
| |
Collapse
|