1
|
Gospodaryov DV. Alternative NADH dehydrogenase: A complex I backup, a drug target, and a tool for mitochondrial gene therapy. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2024; 1866:149529. [PMID: 39615731 DOI: 10.1016/j.bbabio.2024.149529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 11/24/2024] [Accepted: 11/26/2024] [Indexed: 12/06/2024]
Abstract
Alternative NADH dehydrogenase, also known as type II NADH dehydrogenase (NDH-2), catalyzes the same redox reaction as mitochondrial respiratory chain complex I. Specifically, it oxidizes reduced nicotinamide adenine dinucleotide (NADH) while simultaneously reducing ubiquinone to ubiquinol. However, unlike complex I, this enzyme is non-proton pumping, comprises of a single subunit, and is resistant to rotenone. Initially identified in bacteria, fungi and plants, NDH-2 was subsequently discovered in protists and certain animal taxa including sea squirts. The gene coding for NDH-2 is also present in the genomes of some annelids, tardigrades, and crustaceans. For over two decades, NDH-2 has been investigated as a potential substitute for defective complex I. In model organisms, NDH-2 has been shown to ameliorate a broad spectrum of conditions associated with complex I malfunction, including symptoms of Parkinson's disease. Recently, lifespan extension has been observed in animals expressing NDH-2 in a heterologous manner. A variety of mechanisms have been put forward by which NDH-2 may extend lifespan. Such mechanisms include the activation of pro-longevity pathways through modulation of the NAD+/NADH ratio, decreasing production of reactive oxygen species (ROS) in mitochondria, or then through moderate increases in ROS production followed by activation of defense pathways (mitohormesis). This review gives an overview of the latest research on NDH-2, including the structural peculiarities of NDH-2, its inhibitors, its role in the pathogenicity of mycobacteria and apicomplexan parasites, and its function in bacteria, fungi, and animals.
Collapse
Affiliation(s)
- Dmytro V Gospodaryov
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenka, 76018, Ivano-Frankivsk, Ukraine.
| |
Collapse
|
2
|
Stutts L, Latimer S, Batyrshina Z, Dickinson G, Alborn H, Block AK, Basset GJ. The evolution of strictly monofunctional naphthoquinol C-methyltransferases is vital in cyanobacteria and plastids. THE PLANT CELL 2023; 35:3686-3696. [PMID: 37477936 PMCID: PMC10533327 DOI: 10.1093/plcell/koad202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/30/2023] [Accepted: 07/01/2023] [Indexed: 07/22/2023]
Abstract
Prenylated quinones are membrane-associated metabolites that serve as vital electron carriers for respiration and photosynthesis. The UbiE (EC 2.1.1.201)/MenG (EC 2.1.1.163) C-methyltransferases catalyze pivotal ring methylations in the biosynthetic pathways of many of these quinones. In a puzzling evolutionary pattern, prokaryotic and eukaryotic UbiE/MenG homologs segregate into 2 clades. Clade 1 members occur universally in prokaryotes and eukaryotes, excluding cyanobacteria, and include mitochondrial COQ5 enzymes required for ubiquinone biosynthesis; Clade 2 members are specific to cyanobacteria and plastids. Functional complementation of an Escherichia coli ubiE/menG mutant indicated that Clade 1 members display activity with both demethylbenzoquinols and demethylnaphthoquinols, independently of the quinone profile of their original taxa, while Clade 2 members have evolved strict substrate specificity for demethylnaphthoquinols. Expression of the gene-encoding bifunctional Arabidopsis (Arabidopsis thaliana) COQ5 in the cyanobacterium Synechocystis or its retargeting to Arabidopsis plastids resulted in synthesis of a methylated variant of plastoquinone-9 that does not occur in nature. Accumulation of methylplastoquinone-9 was acutely cytotoxic, leading to the emergence of suppressor mutations in Synechocystis and seedling lethality in Arabidopsis. These data demonstrate that in cyanobacteria and plastids, co-occurrence of phylloquinone and plastoquinone-9 has driven the evolution of monofunctional demethylnaphthoquinol methyltransferases and explains why plants cannot capture the intrinsic bifunctionality of UbiE/MenG to simultaneously synthesize their respiratory and photosynthetic quinones.
Collapse
Affiliation(s)
- Lauren Stutts
- Department of Horticultural Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Scott Latimer
- Department of Horticultural Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Zhaniya Batyrshina
- Department of Horticultural Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Gabriella Dickinson
- Department of Horticultural Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Hans Alborn
- Center for Medical, Agricultural and Veterinary Entomology, ARS, USDA, Gainesville, FL 32608, USA
| | - Anna K Block
- Center for Medical, Agricultural and Veterinary Entomology, ARS, USDA, Gainesville, FL 32608, USA
| | - Gilles J Basset
- Department of Horticultural Sciences, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
3
|
Zmuda AJ, Niehaus TD. Systems and strategies for plant protein expression. Methods Enzymol 2023; 680:3-34. [PMID: 36710015 DOI: 10.1016/bs.mie.2022.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
At least a quarter of the protein-encoding genes in plant genomes are predicted to encode enzymes for which no physiological function is known. Determining functions for these uncharacterized enzymes is key to understanding plant metabolism. Functional characterization typically requires expression and purification of recombinant enzymes to be used in enzyme assays and/or for protein structure elucidation studies. Here, we describe several practical considerations used to improve the heterologous expression and purification of Arabidopsis thaliana and Zea mays NAD(P)HX dehydratase (NAXD) and NAD(P)HX epimerase (NAXE), two enzymes that are involved in repair of chemically damaged NAD(P)H cofactors. We provide protocols for transit peptide prediction and construct design, expression in Escherichia coli, and purification of NAXD and NAXE. Many of these strategies are generally applicable to the purification of any plant protein.
Collapse
Affiliation(s)
- Anthony J Zmuda
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN, United States
| | - Thomas D Niehaus
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN, United States.
| |
Collapse
|
4
|
KleinJan H, Frioux C, Califano G, Aite M, Fremy E, Karimi E, Corre E, Wichard T, Siegel A, Boyen C, Dittami SM. Insights into the potential for mutualistic and harmful host-microbe interactions affecting brown alga freshwater acclimation. Mol Ecol 2023; 32:703-723. [PMID: 36326449 PMCID: PMC10099861 DOI: 10.1111/mec.16766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 11/05/2022]
Abstract
Microbes can modify their hosts' stress tolerance, thus potentially enhancing their ecological range. An example of such interactions is Ectocarpus subulatus, one of the few freshwater-tolerant brown algae. This tolerance is partially due to its (un)cultivated microbiome. We investigated this phenomenon by modifying the microbiome of laboratory-grown E. subulatus using mild antibiotic treatments, which affected its ability to grow in low salinity. Low salinity acclimation of these algal-bacterial associations was then compared. Salinity significantly impacted bacterial and viral gene expression, albeit in different ways across algal-bacterial communities. In contrast, gene expression of the host and metabolite profiles were affected almost exclusively in the freshwater-intolerant algal-bacterial communities. We found no evidence of bacterial protein production that would directly improve algal stress tolerance. However, vitamin K synthesis is one possible bacterial service missing specifically in freshwater-intolerant cultures in low salinity. In this condition, we also observed a relative increase in bacterial transcriptomic activity and the induction of microbial genes involved in the biosynthesis of the autoinducer AI-1, a quorum-sensing regulator. This could have resulted in dysbiosis by causing a shift in bacterial behaviour in the intolerant algal-bacterial community. Together, these results provide two promising hypotheses to be examined by future targeted experiments. Although they apply only to the specific study system, they offer an example of how bacteria may impact their host's stress response.
Collapse
Affiliation(s)
- Hetty KleinJan
- Station Biologique de Roscoff, Laboratory of Integrative Biology of Marine ModelsSorbonne University, CNRSRoscoffFrance
- CEBEDEAU, Research and Expertise Centre for WaterQuartier Polytech 1LiègeBelgium
| | - Clémence Frioux
- Inria, CNRS, IRISAUniversity of RennesRennesFrance
- InriaUniversity of Bordeaux, INRAETalenceFrance
| | - Gianmaria Califano
- Institute for Inorganic and Analytical ChemistryFriedrich Schiller University JenaJenaGermany
| | - Méziane Aite
- Inria, CNRS, IRISAUniversity of RennesRennesFrance
| | - Enora Fremy
- Inria, CNRS, IRISAUniversity of RennesRennesFrance
| | - Elham Karimi
- Station Biologique de Roscoff, Laboratory of Integrative Biology of Marine ModelsSorbonne University, CNRSRoscoffFrance
| | - Erwan Corre
- Station BiologiqueFR2424, ABiMS, Sorbonne Université, CNRSRoscoffFrance
| | - Thomas Wichard
- Institute for Inorganic and Analytical ChemistryFriedrich Schiller University JenaJenaGermany
| | - Anne Siegel
- Inria, CNRS, IRISAUniversity of RennesRennesFrance
| | - Catherine Boyen
- Station Biologique de Roscoff, Laboratory of Integrative Biology of Marine ModelsSorbonne University, CNRSRoscoffFrance
| | - Simon M. Dittami
- Station Biologique de Roscoff, Laboratory of Integrative Biology of Marine ModelsSorbonne University, CNRSRoscoffFrance
| |
Collapse
|
5
|
Sweetman C, Waterman CD, Wong DC, Day DA, Jenkins CL, Soole KL. Altering the balance between AOX1A and NDB2 expression affects a common set of transcripts in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2022; 13:876843. [PMID: 36466234 PMCID: PMC9716356 DOI: 10.3389/fpls.2022.876843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 10/24/2022] [Indexed: 06/17/2023]
Abstract
Stress-responsive components of the mitochondrial alternative electron transport pathway have the capacity to improve tolerance of plants to abiotic stress, particularly the alternative oxidase AOX1A but also external NAD(P)H dehydrogenases such as NDB2, in Arabidopsis. NDB2 and AOX1A can cooperate to entirely circumvent the classical electron transport chain in Arabidopsis mitochondria. Overexpression of AOX1A or NDB2 alone can have slightly negative impacts on plant growth under optimal conditions, while simultaneous overexpression of NDB2 and AOX1A can reverse these phenotypic effects. We have taken a global transcriptomic approach to better understand the molecular shifts that occur due to overexpression of AOX1A alone and with concomitant overexpression of NDB2. Of the transcripts that were significantly up- or down- regulated in the AOX1A overexpression line compared to wild type (410 and 408, respectively), the majority (372 and 337, respectively) reverted to wild type levels in the dual overexpression line. Several mechanisms for the AOX1A overexpression phenotype are proposed based on the functional classification of these 709 genes, which can be used to guide future experiments. Only 28 genes were uniquely up- or down-regulated when NDB2 was overexpressed in the AOX1A overexpression line. On the other hand, many unique genes were deregulated in the NDB2 knockout line. Furthermore, several changes in transcript abundance seen in the NDB2 knockout line were consistent with changes in the AOX1A overexpression line. The results suggest that an imbalance in AOX1A:NDB2 protein levels caused by under- or over-expression of either component, triggers a common set of transcriptional responses that may be important in mitochondrial redox regulation. The most significant changes were transcripts associated with photosynthesis, secondary metabolism and oxidative stress responses.
Collapse
Affiliation(s)
- Crystal Sweetman
- College of Science & Engineering, Flinders University, Bedford Park, SA, Australia
| | | | - Darren C.J. Wong
- College of Science, Australian National University, Canberra, ACT, Australia
| | - David A. Day
- College of Science & Engineering, Flinders University, Bedford Park, SA, Australia
| | - Colin L.D. Jenkins
- College of Science & Engineering, Flinders University, Bedford Park, SA, Australia
| | - Kathleen L. Soole
- College of Science & Engineering, Flinders University, Bedford Park, SA, Australia
| |
Collapse
|
6
|
Evidence for Electron Transfer from the Bidirectional Hydrogenase to the Photosynthetic Complex I (NDH-1) in the Cyanobacterium Synechocystis sp. PCC 6803. Microorganisms 2022; 10:microorganisms10081617. [PMID: 36014035 PMCID: PMC9414918 DOI: 10.3390/microorganisms10081617] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 12/12/2022] Open
Abstract
The cyanobacterial bidirectional [NiFe]-hydrogenase is a pentameric enzyme. Apart from the small and large hydrogenase subunits (HoxYH) it contains a diaphorase module (HoxEFU) that interacts with NAD(P)+ and ferredoxin. HoxEFU shows strong similarity to the outermost subunits (NuoEFG) of canonical respiratory complexes I. Photosynthetic complex I (NDH-1) lacks these three subunits. This led to the idea that HoxEFU might interact with NDH-1 instead. HoxEFUYH utilizes excited electrons from PSI for photohydrogen production and it catalyzes the reverse reaction and feeds electrons into the photosynthetic electron transport. We analyzed hydrogenase activity, photohydrogen evolution and hydrogen uptake, the respiration and photosynthetic electron transport of ΔhoxEFUYH, and a knock-out strain with dysfunctional NDH-1 (ΔndhD1/ΔndhD2) of the cyanobacterium Synechocystis sp. PCC 6803. Photohydrogen production was prolonged in ΔndhD1/ΔndhD2 due to diminished hydrogen uptake. Electrons from hydrogen oxidation must follow a different route into the photosynthetic electron transport in this mutant compared to wild type cells. Furthermore, respiration was reduced in ΔhoxEFUYH and the ΔndhD1/ΔndhD2 localization of the hydrogenase to the membrane was impaired. These data indicate that electron transfer from the hydrogenase to the NDH-1 complex is either direct, by the binding of the hydrogenase to the complex, or indirect, via an additional mediator.
Collapse
|
7
|
Suttiyut T, Auber RP, Ghaste M, Kane CN, McAdam SAM, Wisecaver JH, Widhalm JR. Integrative analysis of the shikonin metabolic network identifies new gene connections and reveals evolutionary insight into shikonin biosynthesis. HORTICULTURE RESEARCH 2022; 9:uhab087. [PMID: 35048120 PMCID: PMC8969065 DOI: 10.1093/hr/uhab087] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 12/07/2021] [Indexed: 05/28/2023]
Abstract
Plant specialized 1,4-naphthoquinones present a remarkable case of convergent evolution. Species across multiple discrete orders of vascular plants produce diverse 1,4-naphthoquinones via one of several pathways using different metabolic precursors. Evolution of these pathways was preceded by events of metabolic innovation and many appear to share connections with biosynthesis of photosynthetic or respiratory quinones. Here, we sought to shed light on the metabolic connections linking shikonin biosynthesis with its precursor pathways and on the origins of shiknoin metabolic genes. Downregulation of Lithospermum erythrorhizon geranyl diphosphate synthase (LeGPPS), recently shown to have been recruited from a cytoplasmic farnesyl diphosphate synthase (FPPS), resulted in reduced shikonin production and a decrease in expression of mevalonic acid and phenylpropanoid pathway genes. Next, we used LeGPPS and other known shikonin pathway genes to build a coexpression network model for identifying new gene connections to shikonin metabolism. Integrative in silico analyses of network genes revealed candidates for biochemical steps in the shikonin pathway arising from Boraginales-specific gene family expansion. Multiple genes in the shikonin coexpression network were also discovered to have originated from duplication of ubiquinone pathway genes. Taken together, our study provides evidence for transcriptional crosstalk between shikonin biosynthesis and its precursor pathways, identifies several shikonin pathway gene candidates and their evolutionary histories, and establishes additional evolutionary links between shikonin and ubiquinone metabolism. Moreover, we demonstrate that global coexpression analysis using limited transcriptomic data obtained from targeted experiments is effective for identifying gene connections within a defined metabolic network.
Collapse
Affiliation(s)
- Thiti Suttiyut
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana, 47907, USA
- Purdue Center for Plant Biology, Purdue University, West Lafayette, Indiana 47907, USA
| | - Robert P Auber
- Purdue Center for Plant Biology, Purdue University, West Lafayette, Indiana 47907, USA
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907, USA
| | - Manoj Ghaste
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana, 47907, USA
- Purdue Center for Plant Biology, Purdue University, West Lafayette, Indiana 47907, USA
| | - Cade N Kane
- Purdue Center for Plant Biology, Purdue University, West Lafayette, Indiana 47907, USA
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907, USA
| | - Scott A M McAdam
- Purdue Center for Plant Biology, Purdue University, West Lafayette, Indiana 47907, USA
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907, USA
| | - Jennifer H Wisecaver
- Purdue Center for Plant Biology, Purdue University, West Lafayette, Indiana 47907, USA
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907, USA
| | - Joshua R Widhalm
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana, 47907, USA
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907, USA
| |
Collapse
|
8
|
Wójtowicz J, Grzyb J, Szach J, Mazur R, Gieczewska KB. Bean and Pea Plastoglobules Change in Response to Chilling Stress. Int J Mol Sci 2021; 22:11895. [PMID: 34769326 PMCID: PMC8584975 DOI: 10.3390/ijms222111895] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/28/2021] [Accepted: 10/28/2021] [Indexed: 11/17/2022] Open
Abstract
Plastoglobules (PGs) might be characterised as microdomains of the thylakoid membrane that serve as a platform to recruit proteins and metabolites in their spatial proximity in order to facilitate metabolic channelling or signal transduction. This study provides new insight into changes in PGs isolated from two plant species with different responses to chilling stress, namely chilling-tolerant pea (Pisum sativum) and chilling-sensitive bean (Phaseolus coccineus). Using multiple analytical methods, such as high-performance liquid chromatography and visualisation techniques including transmission electron microscopy and atomic force microscopy, we determined changes in PGs' biochemical and biophysical characteristics as a function of chilling stress. Some of the observed alterations occurred in both studied plant species, such as increased particle size and plastoquinone-9 content, while others were more typical of a particular type of response to chilling stress. Additionally, PGs of first green leaves were examined to highlight differences at this stage of development. Observed changes appear to be a dynamic response to the demands of photosynthetic membranes under stress conditions.
Collapse
Affiliation(s)
- Joanna Wójtowicz
- Department of Plant Anatomy and Cytology, Faculty of Biology, Institute of Experimental Plant Biology and Biotechnology, University of Warsaw, I. Miecznikowa 1, PL-02096 Warsaw, Poland; (J.W.); (J.S.)
| | - Joanna Grzyb
- Department of Biophysics, Faculty of Biotechnology, University of Wrocław, F. Joliot-Curie Street 14a, PL-50383 Wrocław, Poland;
| | - Joanna Szach
- Department of Plant Anatomy and Cytology, Faculty of Biology, Institute of Experimental Plant Biology and Biotechnology, University of Warsaw, I. Miecznikowa 1, PL-02096 Warsaw, Poland; (J.W.); (J.S.)
| | - Radosław Mazur
- Department of Metabolic Regulation, Faculty of Biology, Institute of Biochemistry, University of Warsaw, I. Miecznikowa 1, PL-02096 Warsaw, Poland;
| | - Katarzyna B. Gieczewska
- Department of Plant Anatomy and Cytology, Faculty of Biology, Institute of Experimental Plant Biology and Biotechnology, University of Warsaw, I. Miecznikowa 1, PL-02096 Warsaw, Poland; (J.W.); (J.S.)
| |
Collapse
|
9
|
Leishmania type II dehydrogenase is essential for parasite viability irrespective of the presence of an active complex I. Proc Natl Acad Sci U S A 2021; 118:2103803118. [PMID: 34654744 DOI: 10.1073/pnas.2103803118] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2021] [Indexed: 11/18/2022] Open
Abstract
Type II NADH dehydrogenases (NDH2) are monotopic enzymes present in the external or internal face of the mitochondrial inner membrane that contribute to NADH/NAD+ balance by conveying electrons from NADH to ubiquinone without coupled proton translocation. Herein, we characterize the product of a gene present in all species of the human protozoan parasite Leishmania as a bona fide, matrix-oriented, type II NADH dehydrogenase. Within mitochondria, this respiratory activity concurs with that of type I NADH dehydrogenase (complex I) in some Leishmania species but not others. To query the significance of NDH2 in parasite physiology, we attempted its genetic disruption in two parasite species, exhibiting a silent (Leishmania infantum, Li) and a fully operational (Leishmania major, Lm) complex I. Strikingly, this analysis revealed that NDH2 abrogation is not tolerated by Leishmania, not even by complex I-expressing Lm species. Conversely, complex I is dispensable in both species, provided that NDH2 is sufficiently expressed. That a type II dehydrogenase is essential even in the presence of an active complex I places Leishmania NADH metabolism into an entirely unique perspective and suggests unexplored functions for NDH2 that span beyond its complex I-overlapping activities. Notably, by showing that the essential character of NDH2 extends to the disease-causing stage of Leishmania, we genetically validate NDH2-an enzyme without a counterpart in mammals-as a candidate target for leishmanicidal drugs.
Collapse
|
10
|
Eggers R, Jammer A, Jha S, Kerschbaumer B, Lahham M, Strandback E, Toplak M, Wallner S, Winkler A, Macheroux P. The scope of flavin-dependent reactions and processes in the model plant Arabidopsis thaliana. PHYTOCHEMISTRY 2021; 189:112822. [PMID: 34118767 DOI: 10.1016/j.phytochem.2021.112822] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/23/2021] [Accepted: 05/24/2021] [Indexed: 06/12/2023]
Abstract
Flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD) are utilized as coenzymes in many biochemical reduction-oxidation reactions owing to the ability of the tricyclic isoalloxazine ring system to employ the oxidized, radical and reduced state. We have analyzed the genome of Arabidopsis thaliana to establish an inventory of genes encoding flavin-dependent enzymes (flavoenzymes) as a basis to explore the range of flavin-dependent biochemical reactions that occur in this model plant. Expectedly, flavoenzymes catalyze many pivotal reactions in primary catabolism, which are connected to the degradation of basic metabolites, such as fatty and amino acids as well as carbohydrates and purines. On the other hand, flavoenzymes play diverse roles in anabolic reactions most notably the biosynthesis of amino acids as well as the biosynthesis of pyrimidines and sterols. Importantly, the role of flavoenzymes goes much beyond these basic reactions and extends into pathways that are equally crucial for plant life, for example the production of natural products. In this context, we outline the participation of flavoenzymes in the biosynthesis and maintenance of cofactors, coenzymes and accessory plant pigments (e. g. carotenoids) as well as phytohormones. Moreover, several multigene families have emerged as important components of plant immunity, for example the family of berberine bridge enzyme-like enzymes, flavin-dependent monooxygenases and NADPH oxidases. Furthermore, the versatility of flavoenzymes is highlighted by their role in reactions leading to tRNA-modifications, chromatin regulation and cellular redox homeostasis. The favorable photochemical properties of the flavin chromophore are exploited by photoreceptors to govern crucial processes of plant adaptation and development. Finally, a sequence- and structure-based approach was undertaken to gain insight into the catalytic role of uncharacterized flavoenzymes indicating their involvement in unknown biochemical reactions and pathways in A. thaliana.
Collapse
Affiliation(s)
- Reinmar Eggers
- Institute of Biochemistry, Graz University of Technology, Petersgasse 12/2, 8010, Graz, Austria
| | - Alexandra Jammer
- Institute of Biochemistry, Graz University of Technology, Petersgasse 12/2, 8010, Graz, Austria
| | - Shalinee Jha
- Institute of Biochemistry, Graz University of Technology, Petersgasse 12/2, 8010, Graz, Austria
| | - Bianca Kerschbaumer
- Institute of Biochemistry, Graz University of Technology, Petersgasse 12/2, 8010, Graz, Austria
| | - Majd Lahham
- Institute of Biochemistry, Graz University of Technology, Petersgasse 12/2, 8010, Graz, Austria
| | - Emilia Strandback
- Institute of Biochemistry, Graz University of Technology, Petersgasse 12/2, 8010, Graz, Austria
| | - Marina Toplak
- Institute of Biochemistry, Graz University of Technology, Petersgasse 12/2, 8010, Graz, Austria
| | - Silvia Wallner
- Institute of Biochemistry, Graz University of Technology, Petersgasse 12/2, 8010, Graz, Austria
| | - Andreas Winkler
- Institute of Biochemistry, Graz University of Technology, Petersgasse 12/2, 8010, Graz, Austria
| | - Peter Macheroux
- Institute of Biochemistry, Graz University of Technology, Petersgasse 12/2, 8010, Graz, Austria.
| |
Collapse
|
11
|
Espinoza-Corral R, Schwenkert S, Lundquist PK. Molecular changes of Arabidopsis thaliana plastoglobules facilitate thylakoid membrane remodeling under high light stress. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:1571-1587. [PMID: 33783866 DOI: 10.1111/tpj.15253] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 03/14/2021] [Accepted: 03/18/2021] [Indexed: 05/21/2023]
Abstract
Plants require rapid responses to adapt to environmental stresses. This includes dramatic changes in the size and number of plastoglobule lipid droplets within chloroplasts. Although the morphological changes of plastoglobules are well documented, little is known about the corresponding molecular changes. To address this gap, we have compared the quantitative proteome, oligomeric state, prenyl-lipid content and kinase activities of Arabidopsis thaliana plastoglobules under unstressed and 5-day light-stressed conditions. Our results show a specific recruitment of proteins related to leaf senescence and jasmonic acid biosynthesis under light stress, and identify nearly half of the plastoglobule proteins in high native molecular weight masses. Additionally, a specific increase in plastoglobule carotenoid abundance under the light stress was consistent with enhanced thylakoid disassembly and leaf senescence, supporting a specific role for plastoglobules in senescence and thylakoid remodeling as an intermediate storage site for photosynthetic pigments. In vitro kinase assays of isolated plastoglobules demonstrated kinase activity towards multiple target proteins, which was more pronounced in the plastoglobules of unstressed than light-stressed leaf tissue, and which was diminished in plastoglobules of the abc1k1/abc1k3 double-mutant. These results strongly suggest that plastoglobule-localized ABC1 kinases hold endogenous kinase activity, as these were the only known or putative kinases identified in the isolated plastoglobules by deep bottom-up proteomics. Collectively, our study reveals targeted changes to the protein and prenyl-lipid composition of plastoglobules under light stress that present strategies by which plastoglobules appear to facilitate stress adaptation within chloroplasts.
Collapse
Affiliation(s)
- Roberto Espinoza-Corral
- Department of Biochemistry and Molecular Biology, Plant Resilience Institute, Michigan State University, East Lansing, MI, USA
| | - Serena Schwenkert
- Department I, Plant Biochemistry, Ludwig Maximilians University Munich, Großhadernerstr. 2-4, Planegg-Martinsried, 82152, Germany
| | - Peter K Lundquist
- Department of Biochemistry and Molecular Biology, Plant Resilience Institute, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
12
|
Tetraploid Citrumelo 4475 rootstocks improve diploid common clementine tolerance to long-term nutrient deficiency. Sci Rep 2021; 11:8902. [PMID: 33903646 PMCID: PMC8076223 DOI: 10.1038/s41598-021-88383-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 04/09/2021] [Indexed: 02/02/2023] Open
Abstract
Nutrient deficiency alters growth and the production of high-quality nutritious food. In Citrus crops, rootstock technologies have become a key tool for enhancing tolerance to abiotic stress. The use of doubled diploid rootstocks can improve adaptation to lower nutrient inputs. This study investigated leaf structure and ultrastructure and physiological and biochemical parameters of diploid common clementine scions (C) grafted on diploid (2x) and doubled diploid (4x) Carrizo citrange (C/CC2x and C/CC4x) and Citrumelo 4475 (C/CM2x and C/CM4x) rootstocks under optimal fertigation and after 7 months of nutrient deficiency. Rootstock ploidy level had no impact on structure but induced changes in the number and/or size of cells and some cell components of 2x common clementine leaves under optimal nutrition. Rootstock ploidy level did not modify gas exchanges in Carrizo citrange but induced a reduction in the leaf net photosynthetic rate in Citrumelo 4475. By assessing foliar damage, changes in photosynthetic processes and malondialdehyde accumulation, we found that C/CM4x were less affected by nutrient deficiency than the other scion/rootstock combinations. Their greater tolerance to nutrient deficiency was probably due to the better performance of the enzyme-based antioxidant system. Nutrient deficiency had similar impacts on C/CC2x and C/CC4x. Tolerance to nutrient deficiency can therefore be improved by rootstock polyploidy but remains dependent on the rootstock genotype.
Collapse
|
13
|
Gu X, Chen IG, Harding SA, Nyamdari B, Ortega MA, Clermont K, Westwood JH, Tsai CJ. Plasma membrane phylloquinone biosynthesis in nonphotosynthetic parasitic plants. PLANT PHYSIOLOGY 2021; 185:1443-1456. [PMID: 33793953 PMCID: PMC8133638 DOI: 10.1093/plphys/kiab031] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 01/13/2021] [Indexed: 05/25/2023]
Abstract
Nonphotosynthetic holoparasites exploit flexible targeting of phylloquinone biosynthesis to facilitate plasma membrane redox signaling. Phylloquinone is a lipophilic naphthoquinone found predominantly in chloroplasts and best known for its function in photosystem I electron transport and disulfide bridge formation of photosystem II subunits. Phylloquinone has also been detected in plasma membrane (PM) preparations of heterotrophic tissues with potential transmembrane redox function, but the molecular basis for this noncanonical pathway is unknown. Here, we provide evidence of PM phylloquinone biosynthesis in a nonphotosynthetic holoparasite Phelipanche aegyptiaca. A nonphotosynthetic and nonplastidial role for phylloquinone is supported by transcription of phylloquinone biosynthetic genes during seed germination and haustorium development, by PM-localization of alternative terminal enzymes, and by detection of phylloquinone in germinated seeds. Comparative gene network analysis with photosynthetically competent parasites revealed a bias of P. aegyptiaca phylloquinone genes toward coexpression with oxidoreductases involved in PM electron transport. Genes encoding the PM phylloquinone pathway are also present in several photoautotrophic taxa of Asterids, suggesting an ancient origin of multifunctionality. Our findings suggest that nonphotosynthetic holoparasites exploit alternative targeting of phylloquinone for transmembrane redox signaling associated with parasitism.
Collapse
Affiliation(s)
- Xi Gu
- Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA
| | - Ing-Gin Chen
- School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA
| | - Scott A Harding
- School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| | - Batbayar Nyamdari
- School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| | - Maria A Ortega
- School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| | - Kristen Clermont
- School of Plant and Environmental Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - James H Westwood
- School of Plant and Environmental Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Chung-Jui Tsai
- Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA
- School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
14
|
Current knowledge and recent advances in understanding metabolism of the model cyanobacterium Synechocystis sp. PCC 6803. Biosci Rep 2021; 40:222317. [PMID: 32149336 PMCID: PMC7133116 DOI: 10.1042/bsr20193325] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/05/2020] [Accepted: 03/06/2020] [Indexed: 02/06/2023] Open
Abstract
Cyanobacteria are key organisms in the global ecosystem, useful models for studying metabolic and physiological processes conserved in photosynthetic organisms, and potential renewable platforms for production of chemicals. Characterizing cyanobacterial metabolism and physiology is key to understanding their role in the environment and unlocking their potential for biotechnology applications. Many aspects of cyanobacterial biology differ from heterotrophic bacteria. For example, most cyanobacteria incorporate a series of internal thylakoid membranes where both oxygenic photosynthesis and respiration occur, while CO2 fixation takes place in specialized compartments termed carboxysomes. In this review, we provide a comprehensive summary of our knowledge on cyanobacterial physiology and the pathways in Synechocystis sp. PCC 6803 (Synechocystis) involved in biosynthesis of sugar-based metabolites, amino acids, nucleotides, lipids, cofactors, vitamins, isoprenoids, pigments and cell wall components, in addition to the proteins involved in metabolite transport. While some pathways are conserved between model cyanobacteria, such as Synechocystis, and model heterotrophic bacteria like Escherichia coli, many enzymes and/or pathways involved in the biosynthesis of key metabolites in cyanobacteria have not been completely characterized. These include pathways required for biosynthesis of chorismate and membrane lipids, nucleotides, several amino acids, vitamins and cofactors, and isoprenoids such as plastoquinone, carotenoids, and tocopherols. Moreover, our understanding of photorespiration, lipopolysaccharide assembly and transport, and degradation of lipids, sucrose, most vitamins and amino acids, and haem, is incomplete. We discuss tools that may aid our understanding of cyanobacterial metabolism, notably CyanoSource, a barcoded library of targeted Synechocystis mutants, which will significantly accelerate characterization of individual proteins.
Collapse
|
15
|
Zhao C, Wan Y, Tang G, Jin Q, Zhang H, Xu Z. Comparison of different fermentation processes for the vitamin K2 (Menaquinone-7) production by a novel Bacillus velezensis ND strain. Process Biochem 2021. [DOI: 10.1016/j.procbio.2020.11.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
16
|
Abstract
Most secondary nonphotosynthetic eukaryotes have retained residual plastids whose physiological role is often still unknown. One such example is Euglena longa, a close nonphotosynthetic relative of Euglena gracilis harboring a plastid organelle of enigmatic function. By mining transcriptome data from E. longa, we finally provide an overview of metabolic processes localized to its elusive plastid. The organelle plays no role in the biosynthesis of isoprenoid precursors and fatty acids and has a very limited repertoire of pathways concerning nitrogen-containing metabolites. In contrast, the synthesis of phospholipids and glycolipids has been preserved, curiously with the last step of sulfoquinovosyldiacylglycerol synthesis being catalyzed by the SqdX form of an enzyme so far known only from bacteria. Notably, we show that the E. longa plastid synthesizes tocopherols and a phylloquinone derivative, the first such report for nonphotosynthetic plastids studied so far. The most striking attribute of the organelle could be the presence of a linearized Calvin-Benson (CB) pathway, including RuBisCO yet lacking the gluconeogenetic part of the standard cycle, together with ferredoxin-NADP+ reductase (FNR) and the ferredoxin/thioredoxin system. We hypothesize that the ferredoxin/thioredoxin system activates the linear CB pathway in response to the redox status of the E. longa cell and speculate on the role of the pathway in keeping the redox balance of the cell. Altogether, the E. longa plastid defines a new class of relic plastids that is drastically different from the best-studied organelle of this category, the apicoplast.IMPORTANCE Colorless plastids incapable of photosynthesis evolved in many plant and algal groups, but what functions they perform is still unknown in many cases. Here, we study the elusive plastid of Euglena longa, a nonphotosynthetic cousin of the familiar green flagellate Euglena gracilis We document an unprecedented combination of metabolic functions that the E. longa plastid exhibits in comparison with previously characterized nonphotosynthetic plastids. For example, and truly surprisingly, it has retained the synthesis of tocopherols (vitamin E) and a phylloquinone (vitamin K) derivative. In addition, we offer a possible solution of the long-standing conundrum of the presence of the CO2-fixing enzyme RuBisCO in E. longa Our work provides a detailed account on a unique variant of relic plastids, the first among nonphotosynthetic plastids that evolved by secondary endosymbiosis from a green algal ancestor, and suggests that it has persisted for reasons not previously considered in relation to nonphotosynthetic plastids.
Collapse
|
17
|
Foong LC, Chai JY, Ho ASH, Yeo BPH, Lim YM, Tam SM. Comparative transcriptome analysis to identify candidate genes involved in 2-methoxy-1,4-naphthoquinone (MNQ) biosynthesis in Impatiens balsamina L. Sci Rep 2020; 10:16123. [PMID: 32999341 PMCID: PMC7527972 DOI: 10.1038/s41598-020-72997-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 07/10/2020] [Indexed: 11/09/2022] Open
Abstract
Impatiens balsamina L. is a tropical ornamental and traditional medicinal herb rich in natural compounds, especially 2-methoxy-1,4-naphthoquinone (MNQ) which is a bioactive compound with tested anticancer activities. Characterization of key genes involved in the shikimate and 1,4-dihydroxy-2-naphthoate (DHNA) pathways responsible for MNQ biosynthesis and their expression profiles in I. balsamina will facilitate adoption of genetic/metabolic engineering or synthetic biology approaches to further increase production for pre-commercialization. In this study, HPLC analysis showed that MNQ was present in significantly higher quantities in the capsule pericarps throughout three developmental stages (early-, mature- and postbreaker stages) whilst its immediate precursor, 2-hydroxy-1,4-naphthoquinone (lawsone) was mainly detected in mature leaves. Transcriptomes of I. balsamina derived from leaf, flower, and three capsule developmental stages were generated, totalling 59.643 Gb of raw reads that were assembled into 94,659 unigenes (595,828 transcripts). A total of 73.96% of unigenes were functionally annotated against seven public databases and 50,786 differentially expressed genes (DEGs) were identified. Expression profiles of 20 selected genes from four major secondary metabolism pathways were studied and validated using qRT-PCR method. Majority of the DHNA pathway genes were found to be significantly upregulated in early stage capsule compared to flower and leaf, suggesting tissue-specific synthesis of MNQ. Correlation analysis identified 11 candidate unigenes related to three enzymes (NADH-quinone oxidoreductase, UDP-glycosyltransferases and S-adenosylmethionine-dependent O-methyltransferase) important in the final steps of MNQ biosynthesis based on genes expression profiles consistent with MNQ content. This study provides the first molecular insight into the dynamics of MNQ biosynthesis and accumulation across different tissues of I. balsamina and serves as a valuable resource to facilitate further manipulation to increase production of MNQ.
Collapse
Affiliation(s)
- Lian Chee Foong
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, Jalan Taylors, 47500, Subang Jaya, Selangor, Malaysia.,Faculty of Applied Sciences, UCSI University, Jalan Puncak Menara Gading, UCSI Heights, 56000, Cheras, Wilayah Persekutuan Kuala Lumpur, Malaysia
| | - Jian Yi Chai
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, Jalan Taylors, 47500, Subang Jaya, Selangor, Malaysia
| | - Anthony Siong Hock Ho
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, Jalan Taylors, 47500, Subang Jaya, Selangor, Malaysia
| | - Brandon Pei Hui Yeo
- Fairview International School, Lot 4178, Jalan 1/27d, Seksyen 6 Wangsa Maju, 53300, Kuala Lumpur, Wilayah Persekutuan Kuala Lumpur, Malaysia
| | - Yang Mooi Lim
- Department of Pre-Clinical Sciences, Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Lot PT 21144, Jalan Sungai Long, Bandar Sungai Long, 43000, Kajang, Selangor, Malaysia
| | - Sheh May Tam
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, Jalan Taylors, 47500, Subang Jaya, Selangor, Malaysia.
| |
Collapse
|
18
|
Podgórska A, Mazur R, Ostaszewska-Bugajska M, Kryzheuskaya K, Dziewit K, Borysiuk K, Wdowiak A, Burian M, Rasmusson AG, Szal B. Efficient Photosynthetic Functioning of Arabidopsis thaliana Through Electron Dissipation in Chloroplasts and Electron Export to Mitochondria Under Ammonium Nutrition. FRONTIERS IN PLANT SCIENCE 2020; 11:103. [PMID: 32174931 PMCID: PMC7054346 DOI: 10.3389/fpls.2020.00103] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 01/23/2020] [Indexed: 05/20/2023]
Abstract
An improvement in photosynthetic rate promotes the growth of crop plants. The sink-regulation of photosynthesis is crucial in optimizing nitrogen fixation and integrating it with carbon balance. Studies on these processes are essential in understanding growth inhibition in plants with ammonium ( NH 4 + ) syndrome. Hence, we sought to investigate the effects of using nitrogen sources with different states of reduction (during assimilation of NO 3 - versus NH 4 + ) on the photosynthetic performance of Arabidopsis thaliana. Our results demonstrated that photosynthetic functioning during long-term NH 4 + nutrition was not disturbed and that no indication of photoinhibition of PSII was detected, revealing the robustness of the photosynthetic apparatus during stressful conditions. Based on our findings, we propose multiple strategies to sustain photosynthetic activity during limited reductant utilization for NH 4 + assimilation. One mechanism to prevent chloroplast electron transport chain overreduction during NH 4 + nutrition is for cyclic electron flow together with plastid terminal oxidase activity. Moreover, redox state in chloroplasts was optimized by a dedicated type II NAD(P)H dehydrogenase. In order to reduce the amount of energy that reaches the photosynthetic reaction centers and to facilitate photosynthetic protection during NH 4 + nutrition, non-photochemical quenching (NPQ) and ample xanthophyll cycle pigments efficiently dissipate excess excitation. Additionally, high redox load may be dissipated in other metabolic reactions outside of chloroplasts due to the direct export of nucleotides through the malate/oxaloacetate valve. Mitochondrial alternative pathways can downstream support the overreduction of chloroplasts. This mechanism correlated with the improved growth of A. thaliana with the overexpression of the alternative oxidase 1a (AOX1a) during NH 4 + nutrition. Most remarkably, our findings demonstrated the capacity of chloroplasts to tolerate NH 4 + syndrome instead of providing redox poise to the cells.
Collapse
Affiliation(s)
- Anna Podgórska
- Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Radosław Mazur
- Institute of Biochemistry, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Monika Ostaszewska-Bugajska
- Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Katsiaryna Kryzheuskaya
- Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Kacper Dziewit
- Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Klaudia Borysiuk
- Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Agata Wdowiak
- Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Maria Burian
- Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | | | - Bożena Szal
- Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| |
Collapse
|
19
|
Colina F, Carbó M, Meijón M, Cañal MJ, Valledor L. Low UV-C stress modulates Chlamydomonas reinhardtii biomass composition and oxidative stress response through proteomic and metabolomic changes involving novel signalers and effectors. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:110. [PMID: 32577129 PMCID: PMC7305600 DOI: 10.1186/s13068-020-01750-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 06/11/2020] [Indexed: 05/06/2023]
Abstract
BACKGROUND The exposure of microalgae and plants to low UV-C radiation dosages can improve their biomass composition and stress tolerance. Despite UV-C sharing these effects with UV-A/B but at much lower dosages, UV-C sensing and signal mechanisms are still mostly unknown. Thus, we have described and integrated the proteometabolomic and physiological changes occurring in Chlamydomonas reinhardtii-a simple Plantae model-into the first 24 h after a short and low-intensity UV-C irradiation in order to reconstruct the microalgae response system to this stress. RESULTS The microalgae response was characterized by increased redox homeostasis, ROS scavenging and protein damage repair/avoidance elements. These processes were upregulated along with others related to the modulation of photosynthetic electron flux, carbon fixation and C/N metabolism. These changes, attributed to either direct UV-C-, ROS- or redox unbalances-associated damage, trigger a response process involving novel signaling intermediaries and effectors such as the translation modulator FAP204, a PP2A-like protein and a novel DYRK kinase. These elements were found linked to the modulation of Chlamydomonas biomass composition (starch accumulation) and proliferation, within an UV-C response probably modulated by different epigenetic factors. CONCLUSION Chosen multiomics integration approach was able to describe many fast changes, including biomass composition and ROS stress tolerance, as a response to a low-intensity UV-C stress. Moreover, the employed omics and systems biology approach placed many previously unidentified protein and metabolites at the center of these changes. These elements would be promising targets for the characterization of this stress response in microalgae and plants and the engineering of more productive microalgae strains.
Collapse
Affiliation(s)
- Francisco Colina
- Plant Physiology, Department of Organisms and Systems Biology and University Institute of Biotechnology of Asturias (IUBA), University of Oviedo, Oviedo, Spain
| | - María Carbó
- Plant Physiology, Department of Organisms and Systems Biology and University Institute of Biotechnology of Asturias (IUBA), University of Oviedo, Oviedo, Spain
| | - Mónica Meijón
- Plant Physiology, Department of Organisms and Systems Biology and University Institute of Biotechnology of Asturias (IUBA), University of Oviedo, Oviedo, Spain
| | - María Jesús Cañal
- Plant Physiology, Department of Organisms and Systems Biology and University Institute of Biotechnology of Asturias (IUBA), University of Oviedo, Oviedo, Spain
| | - Luis Valledor
- Plant Physiology, Department of Organisms and Systems Biology and University Institute of Biotechnology of Asturias (IUBA), University of Oviedo, Oviedo, Spain
| |
Collapse
|
20
|
Baers LL, Breckels LM, Mills LA, Gatto L, Deery MJ, Stevens TJ, Howe CJ, Lilley KS, Lea-Smith DJ. Proteome Mapping of a Cyanobacterium Reveals Distinct Compartment Organization and Cell-Dispersed Metabolism. PLANT PHYSIOLOGY 2019; 181:1721-1738. [PMID: 31578229 PMCID: PMC6878006 DOI: 10.1104/pp.19.00897] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 09/11/2019] [Indexed: 05/23/2023]
Abstract
Cyanobacteria are complex prokaryotes, incorporating a Gram-negative cell wall and internal thylakoid membranes (TMs). However, localization of proteins within cyanobacterial cells is poorly understood. Using subcellular fractionation and quantitative proteomics, we produced an extensive subcellular proteome map of an entire cyanobacterial cell, identifying ∼67% of proteins in Synechocystis sp. PCC 6803, ∼1000 more than previous studies. Assigned to six specific subcellular regions were 1,712 proteins. Proteins involved in energy conversion localized to TMs. The majority of transporters, with the exception of a TM-localized copper importer, resided in the plasma membrane (PM). Most metabolic enzymes were soluble, although numerous pathways terminated in the TM (notably those involved in peptidoglycan monomer, NADP+, heme, lipid, and carotenoid biosynthesis) or PM (specifically, those catalyzing lipopolysaccharide, molybdopterin, FAD, and phylloquinol biosynthesis). We also identified the proteins involved in the TM and PM electron transport chains. The majority of ribosomal proteins and enzymes synthesizing the storage compound polyhydroxybuyrate formed distinct clusters within the data, suggesting similar subcellular distributions to one another, as expected for proteins operating within multicomponent structures. Moreover, heterogeneity within membrane regions was observed, indicating further cellular complexity. Cyanobacterial TM protein localization was conserved in Arabidopsis (Arabidopsis thaliana) chloroplasts, suggesting similar proteome organization in more developed photosynthetic organisms. Successful application of this technique in Synechocystis suggests it could be applied to mapping the proteomes of other cyanobacteria and single-celled organisms. The organization of the cyanobacterial cell revealed here substantially aids our understanding of these environmentally and biotechnologically important organisms.
Collapse
Affiliation(s)
- Laura L Baers
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom
| | - Lisa M Breckels
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom
- Computational Proteomics Unit, Cambridge Centre for Proteomics, University of Cambridge, Cambridge CB2 1QW, United Kingdom
| | - Lauren A Mills
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom
| | - Laurent Gatto
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom
- Computational Proteomics Unit, Cambridge Centre for Proteomics, University of Cambridge, Cambridge CB2 1QW, United Kingdom
| | - Michael J Deery
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom
| | - Tim J Stevens
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH United Kingdom
| | - Christopher J Howe
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom
| | - Kathryn S Lilley
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom
| | - David J Lea-Smith
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom
| |
Collapse
|
21
|
Sweetman C, Waterman CD, Rainbird BM, Smith PMC, Jenkins CD, Day DA, Soole KL. AtNDB2 Is the Main External NADH Dehydrogenase in Mitochondria and Is Important for Tolerance to Environmental Stress. PLANT PHYSIOLOGY 2019; 181:774-788. [PMID: 31409698 PMCID: PMC6776847 DOI: 10.1104/pp.19.00877] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 07/23/2019] [Indexed: 05/02/2023]
Abstract
In addition to the classical electron transport pathway coupled to ATP synthesis, plant mitochondria have an alternative pathway that involves type II NAD(P)H dehydrogenases (NDs) and alternative oxidase (AOX). This alternative pathway participates in thermogenesis in select organs of some species and is thought to help prevent cellular damage during exposure to environmental stress. Here, we investigated the function and role of one alternative path component, AtNDB2, using a transgenic approach in Arabidopsis (Arabidopsis thaliana). Disruption of AtNDB2 expression via T-DNA insertion led to a 90% decrease of external NADH oxidation in isolated mitochondria. Overexpression of AtNDB2 led to increased AtNDB2 protein abundance in mitochondria but did not enhance external NADH oxidation significantly unless AtAOX1A was concomitantly overexpressed and activated, demonstrating a functional link between these enzymes. Plants lacking either AtAOX1A or AtNDB2 were more sensitive to combined drought and elevated light treatments, whereas plants overexpressing these components showed increased tolerance and capacity for poststress recovery. We conclude that AtNDB2 is the predominant external NADH dehydrogenase in mitochondria and together with AtAOX1A forms a complete, functional, nonphosphorylating pathway of electron transport, whose operation enhances tolerance to environmental stress. This study demonstrates that at least one of the alternative NDs, as well as AOX, are important for the stress response.
Collapse
Affiliation(s)
- Crystal Sweetman
- College of Science and Engineering, Flinders University of South Australia, Adelaide, South Australia 5042, Australia
| | - Christopher D Waterman
- College of Science and Engineering, Flinders University of South Australia, Adelaide, South Australia 5042, Australia
| | - Barry M Rainbird
- College of Science and Engineering, Flinders University of South Australia, Adelaide, South Australia 5042, Australia
| | - Penelope M C Smith
- Department of Animal, Plant, and Soil Sciences, School of Life Sciences, Latrobe University, Bundoora, Victoria 3083, Australia
| | - Colin D Jenkins
- College of Science and Engineering, Flinders University of South Australia, Adelaide, South Australia 5042, Australia
| | - David A Day
- College of Science and Engineering, Flinders University of South Australia, Adelaide, South Australia 5042, Australia
| | - Kathleen L Soole
- College of Science and Engineering, Flinders University of South Australia, Adelaide, South Australia 5042, Australia
| |
Collapse
|
22
|
Espinoza-Corral R, Heinz S, Klingl A, Jahns P, Lehmann M, Meurer J, Nickelsen J, Soll J, Schwenkert S. Plastoglobular protein 18 is involved in chloroplast function and thylakoid formation. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:3981-3993. [PMID: 30976809 PMCID: PMC6685665 DOI: 10.1093/jxb/erz177] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 04/02/2019] [Indexed: 05/05/2023]
Abstract
Plastoglobules are lipoprotein particles that are found in different types of plastids. They contain a very specific and specialized set of lipids and proteins. Plastoglobules are highly dynamic in size and shape, and are therefore thought to participate in adaptation processes during either abiotic or biotic stresses or transitions between developmental stages. They are suggested to function in thylakoid biogenesis, isoprenoid metabolism, and chlorophyll degradation. While several plastoglobular proteins contain identifiable domains, others provide no structural clues to their function. In this study, we investigate the role of plastoglobular protein 18 (PG18), which is conserved from cyanobacteria to higher plants. Analysis of a PG18 loss-of-function mutant in Arabidopsis thaliana demonstrated that PG18 plays an important role in thylakoid formation; the loss of PG18 results in impaired accumulation, assembly, and function of thylakoid membrane complexes. Interestingly, the mutant accumulated less chlorophyll and carotenoids, whereas xanthophyll cycle pigments were increased. Accumulation of photosynthetic complexes is similarly affected in both a Synechocystis and an Arabidopsis PG18 mutant. However, the ultrastructure of cyanobacterial thylakoids is not compromised by the lack of PG18, probably due to its less complex architecture.
Collapse
Affiliation(s)
- Roberto Espinoza-Corral
- Department Biologie I, Botanik, Ludwig-Maximilians-Universität, Planegg-Martinsried, Germany
| | - Steffen Heinz
- Department Biologie I, Botanik, Ludwig-Maximilians-Universität, Planegg-Martinsried, Germany
| | - Andreas Klingl
- Department Biologie I, Botanik, Ludwig-Maximilians-Universität, Planegg-Martinsried, Germany
| | - Peter Jahns
- Plant Biochemistry, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Martin Lehmann
- Department Biologie I, Botanik, Ludwig-Maximilians-Universität, Planegg-Martinsried, Germany
| | - Jörg Meurer
- Department Biologie I, Botanik, Ludwig-Maximilians-Universität, Planegg-Martinsried, Germany
| | - Jörg Nickelsen
- Department Biologie I, Botanik, Ludwig-Maximilians-Universität, Planegg-Martinsried, Germany
| | - Jürgen Soll
- Department Biologie I, Botanik, Ludwig-Maximilians-Universität, Planegg-Martinsried, Germany
- Munich Center for Integrated Protein Science CiPSM, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Serena Schwenkert
- Department Biologie I, Botanik, Ludwig-Maximilians-Universität, Planegg-Martinsried, Germany
- Correspondence:
| |
Collapse
|
23
|
Huokko T, Muth-Pawlak D, Aro EM. Thylakoid Localized Type 2 NAD(P)H Dehydrogenase NdbA Optimizes Light-Activated Heterotrophic Growth of Synechocystis sp. PCC 6803. PLANT & CELL PHYSIOLOGY 2019; 60:1386-1399. [PMID: 30847494 PMCID: PMC6553663 DOI: 10.1093/pcp/pcz044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 02/26/2019] [Indexed: 05/08/2023]
Abstract
NdbA, one of the three type 2 NAD(P)H dehydrogenases (NDH-2) in Synechocystis sp. PCC 6803 (hereafter Synechocystis) was here localized to the thylakoid membrane (TM), unique for the three NDH-2s, and investigated with respect to photosynthetic and cellular redox metabolism. For this purpose, a deletion mutant (ΔndbA) and a complementation strain overexpressing NdbA (ΔndbA::ndbA) were constructed. It is demonstrated that NdbA is expressed at very low level in the wild-type (WT) Synechocystis under photoautotrophic (PA) growth whilst substantially higher expression occurs under light-activated heterotrophic growth (LAHG). The absence of NdbA resulted in non-optimal growth of Synechocystis under LAHG and concomitantly enhanced the expression of photoprotection-related flavodiiron proteins and carbon acquisition-related proteins as well as various transporters, but downregulated a few iron homeostasis-related proteins. NdbA overexpression, on the other hand, promoted photosynthetic pigmentation and functionality of photosystem I under LAHG conditions while distinct photoprotective and carbon concentrating proteins were downregulated. NdbA overexpression also exerted an effect on the expression of many signaling and gene regulation proteins. It is concluded that the amount and function of NdbA in the TM has a capacity to modulate the redox signaling of gene expression, but apparently has a major physiological role in maintaining iron homeostasis under LAHG conditions. LC-MS/MS data are available via ProteomeXchange with identifier PXD011671.
Collapse
Affiliation(s)
- Tuomas Huokko
- Laboratory of Molecular Plant Biology, Department of Biochemistry, University of Turku, Tykist�katu 6 A, Turku FI, Finland
| | - Dorota Muth-Pawlak
- Laboratory of Molecular Plant Biology, Department of Biochemistry, University of Turku, Tykist�katu 6 A, Turku FI, Finland
| | - Eva-Mari Aro
- Laboratory of Molecular Plant Biology, Department of Biochemistry, University of Turku, Tykist�katu 6 A, Turku FI, Finland
- Corresponding author: E-mail, ; Fax, +358 (0)29 450 5040
| |
Collapse
|
24
|
Abstract
Phytol, the prenyl side chain of chlorophyll, is derived from geranylgeraniol by reduction of three double bonds. Recent results demonstrated that the conversion of geranylgeraniol to phytol is linked to chlorophyll synthesis, which is catalyzed by protein complexes associated with the thylakoid membranes. One of these complexes contains light harvesting chlorophyll binding like proteins (LIL3), enzymes of chlorophyll synthesis (protoporphyrinogen oxidoreductase, POR; chlorophyll synthase, CHLG) and geranylgeranyl reductase (GGR). Phytol is not only employed for the synthesis of chlorophyll, but also for tocopherol (vitamin E), phylloquinol (vitamin K) and fatty acid phytyl ester production. Previously, it was believed that phytol is derived from reduction of geranylgeranyl-diphosphate originating from the 4-methylerythritol-5-phosphate (MEP) pathway. The identification and characterization of two kinases, VTE5 and VTE6, involved in phytol and phytyl-phosphate phosphorylation, respectively, indicated that most phytol employed for tocopherol synthesis is derived from reduction of geranylgeranylated chlorophyll to (phytol-) chlorophyll. After hydrolysis from chlorophyll, free phytol is phosphorylated by the two kinases, and phytyl-diphosphate employed for the synthesis of tocopherol and phylloquinol. The reason why some chloroplast lipids, i.e. chlorophyll, tocopherol and phylloquinol, are derived from phytol, while others, i.e. carotenoids and tocotrienols (in some plant species) are synthesized from geranylgeraniol, remains unclear.
Collapse
|
25
|
Tarento TDC, McClure DD, Talbot AM, Regtop HL, Biffin JR, Valtchev P, Dehghani F, Kavanagh JM. A potential biotechnological process for the sustainable production of vitamin K 1. Crit Rev Biotechnol 2018; 39:1-19. [PMID: 29793354 DOI: 10.1080/07388551.2018.1474168] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
The primary objective of this review is to propose an approach for the biosynthesis of phylloquinone (vitamin K1) based upon its known sources, its role in photosynthesis and its biosynthetic pathway. The chemistry, health benefits, market, and industrial production of vitamin K are also summarized. Vitamin K compounds (K vitamers) are required for the normal function of at least 15 proteins involved in diverse physiological processes such as coagulation, tissue mineralization, inflammation, and neuroprotection. Vitamin K is essential for the prevention of Vitamin K Deficiency Bleeding (VKDB), especially in neonates. Increased vitamin K intake may also reduce the severity and/or risk of bone fracture, arterial calcification, inflammatory diseases, and cognitive decline. Consumers are increasingly favoring natural food and therapeutic products. However, the bulk of vitamin K products employed for both human and animal use are chemically synthesized. Biosynthesis of the menaquinones (vitamin K2) has been extensively researched. However, published research on the biotechnological production of phylloquinone is restricted to a handful of available articles and patents. We have found that microalgae are more suitable than plant cell cultures for the biosynthesis of phylloquinone. Many algae are richer in vitamin K1 than terrestrial plants, and algal cells are easier to manipulate. Vitamin K1 can be efficiently recovered from the biomass using supercritical carbon dioxide extraction.
Collapse
Affiliation(s)
- Thomas D C Tarento
- School of Chemical and Biomolecular Engineering, University of Sydney, Sydney, NSW, Australia
| | - Dale D McClure
- School of Chemical and Biomolecular Engineering, University of Sydney, Sydney, NSW, Australia
| | - Andrea M Talbot
- School of Chemical and Biomolecular Engineering, University of Sydney, Sydney, NSW, Australia.,Agricure Scientific Organics Pty. Ltd., Braemar, NSW, Australia
| | - Hubert L Regtop
- Agricure Scientific Organics Pty. Ltd., Braemar, NSW, Australia
| | - John R Biffin
- Agricure Scientific Organics Pty. Ltd., Braemar, NSW, Australia
| | - Peter Valtchev
- School of Chemical and Biomolecular Engineering, University of Sydney, Sydney, NSW, Australia
| | - Fariba Dehghani
- School of Chemical and Biomolecular Engineering, University of Sydney, Sydney, NSW, Australia
| | - John M Kavanagh
- School of Chemical and Biomolecular Engineering, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
26
|
Wanniarachchi VR, Dametto L, Sweetman C, Shavrukov Y, Day DA, Jenkins CLD, Soole KL. Alternative Respiratory Pathway Component Genes (AOX and ND) in Rice and Barley and Their Response to Stress. Int J Mol Sci 2018; 19:E915. [PMID: 29558397 PMCID: PMC5877776 DOI: 10.3390/ijms19030915] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 03/15/2018] [Accepted: 03/16/2018] [Indexed: 11/24/2022] Open
Abstract
Plants have a non-energy conserving bypass of the classical mitochondrial cytochrome c pathway, known as the alternative respiratory pathway (AP). This involves type II NAD(P)H dehydrogenases (NDs) on both sides of the mitochondrial inner membrane, ubiquinone, and the alternative oxidase (AOX). The AP components have been widely characterised from Arabidopsis, but little is known for monocot species. We have identified all the genes encoding components of the AP in rice and barley and found the key genes which respond to oxidative stress conditions. In both species, AOX is encoded by four genes; in rice OsAOX1a, 1c, 1d and 1e representing four clades, and in barley, HvAOX1a, 1c, 1d1 and 1d2, but no 1e. All three subfamilies of plant ND genes, NDA, NDB and NDC are present in both rice and barley, but there are fewer NDB genes compared to Arabidopsis. Cyanide treatment of both species, along with salt treatment of rice and drought treatment of barley led to enhanced expression of various AP components; there was a high level of co-expression of AOX1a and AOX1d, along with NDB3 during the stress treatments, reminiscent of the co-expression that has been well characterised in Arabidopsis for AtAOX1a and AtNDB2.
Collapse
Affiliation(s)
- Vajira R Wanniarachchi
- College of Science and Engineering, Flinders University of South Australia, GPO Box 5100, Adelaide, SA 5001, Australia.
| | - Lettee Dametto
- College of Science and Engineering, Flinders University of South Australia, GPO Box 5100, Adelaide, SA 5001, Australia.
| | - Crystal Sweetman
- College of Science and Engineering, Flinders University of South Australia, GPO Box 5100, Adelaide, SA 5001, Australia.
| | - Yuri Shavrukov
- College of Science and Engineering, Flinders University of South Australia, GPO Box 5100, Adelaide, SA 5001, Australia.
| | - David A Day
- College of Science and Engineering, Flinders University of South Australia, GPO Box 5100, Adelaide, SA 5001, Australia.
| | - Colin L D Jenkins
- College of Science and Engineering, Flinders University of South Australia, GPO Box 5100, Adelaide, SA 5001, Australia.
| | - Kathleen L Soole
- College of Science and Engineering, Flinders University of South Australia, GPO Box 5100, Adelaide, SA 5001, Australia.
| |
Collapse
|
27
|
McCoy RM, Utturkar SM, Crook JW, Thimmapuram J, Widhalm JR. The origin and biosynthesis of the naphthalenoid moiety of juglone in black walnut. HORTICULTURE RESEARCH 2018; 5:67. [PMID: 30393541 PMCID: PMC6210188 DOI: 10.1038/s41438-018-0067-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 06/14/2018] [Accepted: 06/17/2018] [Indexed: 05/20/2023]
Abstract
Several members of the Juglandaceae family produce juglone, a specialized 1,4-naphthoquinone (1,4-NQ) natural product that is responsible for the notorious allelopathic effects of black walnut (Juglans nigra). Despite its documented ecological roles and potential for being developed as a novel natural product-based herbicide, none of the genes involved in synthesizing juglone have been identified. Based on classical labeling studies, we hypothesized that biosynthesis of juglone's naphthalenoid moiety is shared with biochemical steps of the phylloquinone pathway. Here, using comparative transcriptomics in combination with targeted metabolic profiling of 1,4-NQs in various black walnut organs, we provide evidence that phylloquinone pathway genes involved in 1,4-dihydroxynaphthoic acid (DHNA) formation are expressed in roots for synthesis of a compound other than phylloquinone. Feeding experiments using axenic black walnut root cultures revealed that stable isotopically labeled l-glutamate incorporates into juglone resulting in the same mass shift as that expected for labeling of the quinone ring in phylloquinone. Taken together, these results indicate that in planta, an intermediate from the phylloquinone pathway provides the naphthalenoid moiety of juglone. Moreover, this work shows that juglone can be de novo synthesized in roots without the contribution of immediate precursors translocated from aerial tissues. The present study illuminates all genes involved in synthesizing the juglone naphthoquinone ring and provides RNA-sequencing datasets that can be used with functional screening studies to elucidate the remaining juglone pathway genes. Translation of the generated knowledge is expected to inform future metabolic engineering strategies for harnessing juglone as a novel natural product-based herbicide.
Collapse
Affiliation(s)
- Rachel M. McCoy
- Department of Horticulture and Landscape Architecture, Purdue University, 625 Agriculture Mall Drive, West Lafayette, IN 47907 USA
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN 47907 USA
| | - Sagar M. Utturkar
- Bioinformatics Core, Purdue University, 155 South Grant Street, West Lafayette, IN 47907 USA
| | - Joseph W. Crook
- Department of Horticulture and Landscape Architecture, Purdue University, 625 Agriculture Mall Drive, West Lafayette, IN 47907 USA
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN 47907 USA
| | - Jyothi Thimmapuram
- Bioinformatics Core, Purdue University, 155 South Grant Street, West Lafayette, IN 47907 USA
| | - Joshua R. Widhalm
- Department of Horticulture and Landscape Architecture, Purdue University, 625 Agriculture Mall Drive, West Lafayette, IN 47907 USA
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN 47907 USA
| |
Collapse
|
28
|
Huokko T, Muth-Pawlak D, Battchikova N, Allahverdiyeva Y, Aro EM. Role of Type 2 NAD(P)H Dehydrogenase NdbC in Redox Regulation of Carbon Allocation in Synechocystis. PLANT PHYSIOLOGY 2017; 174:1863-1880. [PMID: 28533358 PMCID: PMC5490909 DOI: 10.1104/pp.17.00398] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 05/19/2017] [Indexed: 05/21/2023]
Abstract
NAD(P)H dehydrogenases comprise type 1 (NDH-1) and type 2 (NDH-2s) enzymes. Even though the NDH-1 complex is a well-characterized protein complex in the thylakoid membrane of Synechocystis sp. PCC 6803 (hereafter Synechocystis), the exact roles of different NDH-2s remain poorly understood. To elucidate this question, we studied the function of NdbC, one of the three NDH-2s in Synechocystis, by constructing a deletion mutant (ΔndbC) for a corresponding protein and submitting the mutant to physiological and biochemical characterization as well as to comprehensive proteomics analysis. We demonstrate that the deletion of NdbC, localized to the plasma membrane, affects several metabolic pathways in Synechocystis in autotrophic growth conditions without prominent effects on photosynthesis. Foremost, the deletion of NdbC leads, directly or indirectly, to compromised sugar catabolism, to glycogen accumulation, and to distorted cell division. Deficiencies in several sugar catabolic routes were supported by severe retardation of growth of the ΔndbC mutant under light-activated heterotrophic growth conditions but not under mixotrophy. Thus, NdbC has a significant function in regulating carbon allocation between storage and the biosynthesis pathways. In addition, the deletion of NdbC increases the amount of cyclic electron transfer, possibly via the NDH-12 complex, and decreases the expression of several transporters in ambient CO2 growth conditions.
Collapse
Affiliation(s)
- Tuomas Huokko
- Laboratory of Molecular Plant Biology, Department of Biochemistry, University of Turku, Turku FI-20014, Finland
| | - Dorota Muth-Pawlak
- Laboratory of Molecular Plant Biology, Department of Biochemistry, University of Turku, Turku FI-20014, Finland
| | - Natalia Battchikova
- Laboratory of Molecular Plant Biology, Department of Biochemistry, University of Turku, Turku FI-20014, Finland
| | - Yagut Allahverdiyeva
- Laboratory of Molecular Plant Biology, Department of Biochemistry, University of Turku, Turku FI-20014, Finland
| | - Eva-Mari Aro
- Laboratory of Molecular Plant Biology, Department of Biochemistry, University of Turku, Turku FI-20014, Finland
| |
Collapse
|
29
|
van Wijk KJ, Kessler F. Plastoglobuli: Plastid Microcompartments with Integrated Functions in Metabolism, Plastid Developmental Transitions, and Environmental Adaptation. ANNUAL REVIEW OF PLANT BIOLOGY 2017; 68:253-289. [PMID: 28125283 DOI: 10.1146/annurev-arplant-043015-111737] [Citation(s) in RCA: 177] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Plastoglobuli (PGs) are plastid lipoprotein particles surrounded by a membrane lipid monolayer. PGs contain small specialized proteomes and metabolomes. They are present in different plastid types (e.g., chloroplasts, chromoplasts, and elaioplasts) and are dynamic in size and shape in response to abiotic stress or developmental transitions. PGs in chromoplasts are highly enriched in carotenoid esters and enzymes involved in carotenoid metabolism. PGs in chloroplasts are associated with thylakoids and contain ∼30 core proteins (including six ABC1 kinases) as well as additional proteins recruited under specific conditions. Systems analysis has suggested that chloroplast PGs function in metabolism of prenyl lipids (e.g., tocopherols, plastoquinone, and phylloquinone); redox and photosynthetic regulation; plastid biogenesis; and senescence, including recycling of phytol, remobilization of thylakoid lipids, and metabolism of jasmonate. These functionalities contribute to chloroplast PGs' role in responses to stresses such as high light and nitrogen starvation. PGs are thus lipid microcompartments with multiple functions integrated into plastid metabolism, developmental transitions, and environmental adaptation. This review provides an in-depth overview of PG experimental observations, summarizes the present understanding of PG features and functions, and provides a conceptual framework for PG research and the realization of opportunities for crop improvement.
Collapse
Affiliation(s)
- Klaas J van Wijk
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853;
| | - Felix Kessler
- Laboratory of Plant Physiology, University of Neuchâtel, 2000 Neuchâtel, Switzerland;
| |
Collapse
|
30
|
Wang L, Li Q, Zhang A, Zhou W, Jiang R, Yang Z, Yang H, Qin X, Ding S, Lu Q, Wen X, Lu C. The Phytol Phosphorylation Pathway Is Essential for the Biosynthesis of Phylloquinone, which Is Required for Photosystem I Stability in Arabidopsis. MOLECULAR PLANT 2017; 10:183-196. [PMID: 28007557 DOI: 10.1016/j.molp.2016.12.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Revised: 12/03/2016] [Accepted: 12/12/2016] [Indexed: 05/16/2023]
Abstract
Phytyl-diphosphate, which provides phytyl moieties as a common substrate in both tocopherol and phylloquinone biosynthesis, derives from de novo isoprenoid biosynthesis or a salvage pathway via phytol phosphorylation. However, very little is known about the role and origin of the phytyl moiety for phylloquinone biosynthesis. Since VTE6, a phytyl-phosphate kinase, is a key enzyme for phytol phosphorylation, we characterized Arabidopsis vte6 mutants to gain insight into the roles of phytyl moieties in phylloquinone biosynthesis and of phylloquinone in photosystem I (PSI) biogenesis. The VTE6 knockout mutants vte6-1 and vte6-2 lacked detectable phylloquinone, whereas the phylloquinone content in the VTE6 knockdown mutant vte6-3 was 90% lower than that in wild-type. In vte6 mutants, PSI function was impaired and accumulation of the PSI complex was defective. The PSI core subunits PsaA/B were efficiently synthesized and assembled into the PSI complex in vte6-3. However, the degradation rate of PSI subunits in the assembled PSI complex was more rapid in vte6-3 than in wild-type. In vte6-3, PSI was more susceptible to high-light damage than in wild-type. Our results provide the first genetic evidence that the phytol phosphorylation pathway is essential for phylloquinone biosynthesis, and that phylloquinone is required for PSI complex stability.
Collapse
Affiliation(s)
- Lei Wang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingwei Li
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Aihong Zhang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Wen Zhou
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rui Jiang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhipan Yang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Huixia Yang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Xiaochun Qin
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Shunhua Ding
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Qingtao Lu
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Xiaogang Wen
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Congming Lu
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; National Center for Plant Gene Research, Beijing 100093, China.
| |
Collapse
|
31
|
Emonds‐Alt B, Coosemans N, Gerards T, Remacle C, Cardol P. Isolation and characterization of mutants corresponding to the MENA, MENB, MENC and MENE enzymatic steps of 5'-monohydroxyphylloquinone biosynthesis in Chlamydomonas reinhardtii. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 89:141-154. [PMID: 27612091 PMCID: PMC5299476 DOI: 10.1111/tpj.13352] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 08/26/2016] [Indexed: 05/28/2023]
Abstract
Phylloquinone (PhQ), or vitamin K1 , is an essential electron carrier (A1 ) in photosystem I (PSI). In the green alga Chlamydomonas reinhardtii, which is a model organism for the study of photosynthesis, a detailed characterization of the pathway is missing with only one mutant deficient for MEND having been analyzed. We took advantage of the fact that a double reduction of plastoquinone occurs in anoxia in the A1 site in the mend mutant, interrupting photosynthetic electron transfer, to isolate four new phylloquinone-deficient mutants impaired in MENA, MENB, MENC (PHYLLO) and MENE. Compared with the wild type and complemented strains for MENB and MENE, the four men mutants grow slowly in low light and are sensitive to high light. When grown in low light they show a reduced photosynthetic electron transfer due to a specific decrease of PSI. Upon exposure to high light for a few hours, PSI becomes almost completely inactive, which leads in turn to lack of phototrophic growth. Loss of PhQ also fully prevents reactivation of photosynthesis after dark anoxia acclimation. In silico analyses allowed us to propose a PhQ biosynthesis pathway in Chlamydomonas that involves 11 enzymatic steps from chorismate located in the chloroplast and in the peroxisome.
Collapse
Affiliation(s)
- Barbara Emonds‐Alt
- Department of Life Sciences, Genetics and Physiology of MicroalgaePhytoSYSTEMSInBiosUniversity of LiègeB–4000LiègeBelgium
| | - Nadine Coosemans
- Department of Life Sciences, Genetics and Physiology of MicroalgaePhytoSYSTEMSInBiosUniversity of LiègeB–4000LiègeBelgium
| | - Thomas Gerards
- Department of Life Sciences, BioenergeticsPhytoSYSTEMSInBiosUniversity of LiègeB–4000LiègeBelgium
| | - Claire Remacle
- Department of Life Sciences, Genetics and Physiology of MicroalgaePhytoSYSTEMSInBiosUniversity of LiègeB–4000LiègeBelgium
| | - Pierre Cardol
- Department of Life Sciences, Genetics and Physiology of MicroalgaePhytoSYSTEMSInBiosUniversity of LiègeB–4000LiègeBelgium
| |
Collapse
|
32
|
Bhuiyan NH, Friso G, Rowland E, Majsec K, van Wijk KJ. The Plastoglobule-Localized Metallopeptidase PGM48 Is a Positive Regulator of Senescence in Arabidopsis thaliana. THE PLANT CELL 2016; 28:3020-3037. [PMID: 27895226 PMCID: PMC5240743 DOI: 10.1105/tpc.16.00745] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 11/08/2016] [Accepted: 11/19/2016] [Indexed: 05/18/2023]
Abstract
Plastoglobuli (PG) are thylakoid-associated monolayer lipid particles with a specific proteome of ∼30 PG core proteins and isoprenoid and neutral lipids. During senescence, PGs increase in size, reflecting their role in dismantling thylakoid membranes. Here, we show that the only PG-localized peptidase PGM48 positively regulates leaf senescence. We discovered that PGM48 is a member of the M48 peptidase family with PGM48 homologs, forming a clade (M48D) only found in photosynthetic organisms. Unlike the M48A, B, and C clades, members of M48D have no transmembrane domains, consistent with their unique subcellular location in the PG. In vitro assays showed Zn-dependent proteolytic activity and substrate cleavage upstream of hydrophobic residues. Overexpression of PGM48 accelerated natural leaf senescence, whereas suppression delayed senescence. Quantitative proteomics of PG from senescing rosettes of PGM48 overexpression lines showed a dramatically reduced level of CAROTENOID CLEAVAGE ENZYME4 (CCD4) and significantly increased levels of the senescence-induced ABC1 KINASE7 (ABC1K7) and PHYTYL ESTER SYNTHASE1 (PES1). Yeast two-hybrid experiments identified PG core proteins ABC1K3, PES1, and CCD4 as PGM48 interactors, whereas several other PG-localized proteins and chlorophyll degradation enzymes did not interact. We discuss mechanisms through which PGM48 could possibly accelerate the senescence process.
Collapse
Affiliation(s)
- Nazmul H Bhuiyan
- Department of Plant Biology, Cornell University, Ithaca, New York 14853
| | - Giulia Friso
- Department of Plant Biology, Cornell University, Ithaca, New York 14853
| | - Elden Rowland
- Department of Plant Biology, Cornell University, Ithaca, New York 14853
| | - Kristina Majsec
- Department of Plant Biology, Cornell University, Ithaca, New York 14853
| | - Klaas J van Wijk
- Department of Plant Biology, Cornell University, Ithaca, New York 14853
| |
Collapse
|
33
|
Strenkert D, Limso CA, Fatihi A, Schmollinger S, Basset GJ, Merchant SS. Genetically Programmed Changes in Photosynthetic Cofactor Metabolism in Copper-deficient Chlamydomonas. J Biol Chem 2016; 291:19118-31. [PMID: 27440043 DOI: 10.1074/jbc.m116.717413] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Indexed: 01/08/2023] Open
Abstract
Genetic and genomic studies indicate that copper deficiency triggers changes in the expression of genes encoding key enzymes in various chloroplast-localized lipid/pigment biosynthetic pathways. Among these are CGL78 involved in chlorophyll biosynthesis and HPPD1, encoding 4-hydroxyphenylpyruvate dioxygenase catalyzing the committed step of plastoquinone and tocopherol biosyntheses. Copper deficiency in wild-type cells does not change the chlorophyll content, but a survey of chlorophyll protein accumulation in this situation revealed increased accumulation of LHCSR3, which is blocked at the level of mRNA accumulation when either CGL78 expression is reduced or in the crd1 mutant, which has a copper-nutrition conditional defect at the same step in chlorophyll biosynthesis. Again, like copper-deficient crd1 strains, cgl78 knock-down lines also have reduced chlorophyll content concomitant with loss of PSI-LHCI super-complexes and reduced abundance of a chlorophyll binding subunit of PSI, PSAK, which connects LHCI to PSI. For HPPD1, increased mRNA results in increased abundance of the corresponding protein in copper-deficient cells concomitant with CRR1-dependent increased accumulation of γ-tocopherols, but not plastoquinone-9 nor total tocopherols. In crr1 mutants, where increased HPPD1 expression is blocked, plastochromanol-8, derived from plastoquinone-9 and purported to also have an antioxidant function, is found instead. Although not previously found in algae, this metabolite may occur only in stress conditions.
Collapse
Affiliation(s)
- Daniela Strenkert
- From the Institute for Genomics and Proteomics, University of California, Los Angeles, California 90095, the Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095
| | - Clariss Ann Limso
- the Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095
| | - Abdelhak Fatihi
- the Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech, 78026 Versailles Cedex, France, and
| | - Stefan Schmollinger
- From the Institute for Genomics and Proteomics, University of California, Los Angeles, California 90095, the Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095
| | - Gilles J Basset
- the Horticultural Sciences Department, University of Florida, Gainesville, Florida 32611
| | - Sabeeha S Merchant
- From the Institute for Genomics and Proteomics, University of California, Los Angeles, California 90095, the Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095,
| |
Collapse
|
34
|
Lohscheider JN, Friso G, van Wijk KJ. Phosphorylation of plastoglobular proteins in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:3975-84. [PMID: 26962209 PMCID: PMC4915526 DOI: 10.1093/jxb/erw091] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Plastoglobules (PGs) are plastid lipid-protein particles with a small specialized proteome and metabolome. Among the 30 core PG proteins are six proteins of the ancient ABC1 atypical kinase (ABC1K) family and their locations in an Arabidopsis mRNA-based co-expression network suggested central regulatory roles. To identify candidate ABC1K targets and a possible ABC1K hierarchical phosphorylation network within the chloroplast PG proteome, we searched Arabidopsis phosphoproteomics data from publicly available sources. Evaluation of underlying spectra and/or associated information was challenging for a variety of reasons, but supported pSer sites and a few pThr sites in nine PG proteins, including five FIBRILLINS. PG phosphorylation motifs are discussed in the context of possible responsible kinases. The challenges of collection and evaluation of published Arabidopsis phosphorylation data are discussed, illustrating the importance of deposition of all mass spectrometry data in well-organized repositories such as PRIDE and ProteomeXchange. This study provides a starting point for experimental testing of phosho-sites in PG proteins and also suggests that phosphoproteomics studies specifically designed toward the PG proteome and its ABC1K are needed to understand phosphorylation networks in these specialized particles.
Collapse
Affiliation(s)
- Jens N Lohscheider
- Section of Plant Biology, School of Integrated Plant Science (SIPS), Cornell University, Ithaca, NY 14853, USA
| | - Giulia Friso
- Section of Plant Biology, School of Integrated Plant Science (SIPS), Cornell University, Ithaca, NY 14853, USA
| | - Klaas J van Wijk
- Section of Plant Biology, School of Integrated Plant Science (SIPS), Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
35
|
Peltier G, Aro EM, Shikanai T. NDH-1 and NDH-2 Plastoquinone Reductases in Oxygenic Photosynthesis. ANNUAL REVIEW OF PLANT BIOLOGY 2016; 67:55-80. [PMID: 26735062 DOI: 10.1146/annurev-arplant-043014-114752] [Citation(s) in RCA: 177] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Oxygenic photosynthesis converts solar energy into chemical energy in the chloroplasts of plants and microalgae as well as in prokaryotic cyanobacteria using a complex machinery composed of two photosystems and both membrane-bound and soluble electron carriers. In addition to the major photosynthetic complexes photosystem II (PSII), cytochrome b6f, and photosystem I (PSI), chloroplasts also contain minor components, including a well-conserved type I NADH dehydrogenase (NDH-1) complex that functions in close relationship with photosynthesis and likewise originated from the endosymbiotic cyanobacterial ancestor. Some plants and many microalgal species have lost plastidial ndh genes and a functional NDH-1 complex during evolution, and studies have suggested that a plastidial type II NADH dehydrogenase (NDH-2) complex substitutes for the electron transport activity of NDH-1. However, although NDH-1 was initially thought to use NAD(P)H as an electron donor, recent research has demonstrated that both chloroplast and cyanobacterial NDH-1s oxidize reduced ferredoxin. We discuss more recent findings related to the biochemical composition and activity of NDH-1 and NDH-2 in relation to the physiology and regulation of photosynthesis, particularly focusing on their roles in cyclic electron flow around PSI, chlororespiration, and acclimation to changing environments.
Collapse
Affiliation(s)
- Gilles Peltier
- Institute of Environmental Biology and Biotechnology, CEA, CNRS, Aix-Marseille University, CEA Cadarache, 13018 Saint-Paul-lès-Durance, France;
| | - Eva-Mari Aro
- Department of Biochemistry, University of Turku, 20014 Turku, Finland;
| | | |
Collapse
|
36
|
Widhalm JR, Rhodes D. Biosynthesis and molecular actions of specialized 1,4-naphthoquinone natural products produced by horticultural plants. HORTICULTURE RESEARCH 2016; 3:16046. [PMID: 27688890 PMCID: PMC5030760 DOI: 10.1038/hortres.2016.46] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 08/23/2016] [Indexed: 05/20/2023]
Abstract
The 1,4-naphthoquinones (1,4-NQs) are a diverse group of natural products found in every kingdom of life. Plants, including many horticultural species, collectively synthesize hundreds of specialized 1,4-NQs with ecological roles in plant-plant (allelopathy), plant-insect and plant-microbe interactions. Numerous horticultural plants producing 1,4-NQs have also served as sources of traditional medicines for hundreds of years. As a result, horticultural species have been at the forefront of many basic studies conducted to understand the metabolism and function of specialized plant 1,4-NQs. Several 1,4-NQ natural products derived from horticultural plants have also emerged as promising scaffolds for developing new drugs. In this review, the current understanding of the core metabolic pathways leading to plant 1,4-NQs is provided with additional emphasis on downstream natural products originating from horticultural species. An overview on the biochemical mechanisms of action, both from an ecological and pharmacological perspective, of 1,4-NQs derived from horticultural plants is also provided. In addition, future directions for improving basic knowledge about plant 1,4-NQ metabolism are discussed.
Collapse
Affiliation(s)
- Joshua R Widhalm
- Department of Horticulture and Landscape Architecture, Purdue University, 625 Agriculture Mall Drive, West Lafayette, IN 47907-2010, USA
- ()
| | - David Rhodes
- Department of Horticulture and Landscape Architecture, Purdue University, 625 Agriculture Mall Drive, West Lafayette, IN 47907-2010, USA
| |
Collapse
|
37
|
Spicher L, Glauser G, Kessler F. Lipid Antioxidant and Galactolipid Remodeling under Temperature Stress in Tomato Plants. FRONTIERS IN PLANT SCIENCE 2016; 7:167. [PMID: 26925083 PMCID: PMC4756161 DOI: 10.3389/fpls.2016.00167] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 01/31/2016] [Indexed: 05/22/2023]
Abstract
Increased temperatures are a major scenario in climate change and present a threat to plant growth and agriculture. Plant growth depends on photosynthesis. To function optimally, the photosynthetic machinery at the thylakoid membrane in chloroplasts continuously adapts to changing conditions. Here, we set out to discover the most important changes arising at the lipid level under high temperature (38°C) in comparison to mild (20°C) and moderately cold temperature (10°C) using a non-targeted lipidomics approach. To our knowledge, no comparable experiment at the level of the whole membrane system has been documented. Here, 791 molecular species were detected by mass spectrometry and ranged from membrane lipids, prenylquinones (tocopherols, phylloquinone, plastoquinone, plastochromanol), carotenoids (β-carotene, xanthophylls) to numerous unidentified compounds. At high temperatures, the most striking changes were observed for the prenylquinones (α-tocopherol and plastoquinone/-ol) and the degree of saturation of fatty acids in galactolipids and phosphatidyl ethanolamine. Photosynthetic efficiency at high temperature was not affected but at moderately cold temperature mild photoinhibition occurred. The results indicate, that the thylakoid membrane is remodeled with regard to fatty acid saturation in galactolipids and lipid antioxidant concentrations under high temperature stress. The data strongly suggest, that massively increased concentrations of α-tocopherol and plastoquinone are important for protection against high temperature stress and proper function of the photosynthetic apparatus.
Collapse
Affiliation(s)
- Livia Spicher
- Laboratory of Plant Physiology, Institute of Biology, University of NeuchâtelNeuchâtel, Switzerland
| | - Gaetan Glauser
- Neuchâtel Platform of Analytical Chemistry, University of NeuchâtelNeuchâtel, Switzerland
| | - Felix Kessler
- Laboratory of Plant Physiology, Institute of Biology, University of NeuchâtelNeuchâtel, Switzerland
- *Correspondence: Felix Kessler
| |
Collapse
|