1
|
He C, Bi S, Li Y, Song C, Zhang H, Xu X, Li Q, Saeed S, Chen W, Zhao C, Lan C, Su H, Mao H, Yan W. Dynamic atlas of histone modifications and gene regulatory networks in endosperm of bread wheat. Nat Commun 2024; 15:9572. [PMID: 39505871 PMCID: PMC11542021 DOI: 10.1038/s41467-024-53300-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 10/07/2024] [Indexed: 11/08/2024] Open
Abstract
Dissecting the genetic basis of seed traits in wheat is impeded by limited genetic polymorphisms and significant variations caused by environmental conditions and seed position in a spikelet. Seed performance is largely determined by endosperm development controlled by spatiotemporal variation in gene activities, which is greatly affected by chromatin status. Here, we map genome-wide dynamic distributions of H3K27me3, H3K4me3 and H3K9ac modifications and profile gene transcription across wheat endosperm development. The combinatorial effects of active and repressive marks ensure spatiotemporal dynamic gene expression, especially for starch biosynthesis. By scanning the transcription factor binding motifs in the ATAC-seq peaks, hub regulators are identified from the regulatory network. In addition, we observe significant correlations between sequence polymorphisms of hub regulators and variations in seed traits in a germplasm population. Thus, the analysis of genomic regulatory activities together with genetic variation provides a robust approach to dissect seed traits in bread wheat.
Collapse
Affiliation(s)
- Chao He
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Siteng Bi
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yuqi Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chengxiang Song
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Heping Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xintong Xu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qiang Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Sulaiman Saeed
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wei Chen
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chunjie Zhao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Caixia Lan
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Handong Su
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hailiang Mao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Wenhao Yan
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
2
|
Ranjan R, Srijan S, Balekuttira S, Agarwal T, Ramey M, Dobbins M, Kuhn R, Wang X, Hudson K, Li Y, Varala K. Organ-delimited gene regulatory networks provide high accuracy in candidate transcription factor selection across diverse processes. Proc Natl Acad Sci U S A 2024; 121:e2322751121. [PMID: 38652750 PMCID: PMC11066984 DOI: 10.1073/pnas.2322751121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/14/2024] [Indexed: 04/25/2024] Open
Abstract
Organ-specific gene expression datasets that include hundreds to thousands of experiments allow the reconstruction of organ-level gene regulatory networks (GRNs). However, creating such datasets is greatly hampered by the requirements of extensive and tedious manual curation. Here, we trained a supervised classification model that can accurately classify the organ-of-origin for a plant transcriptome. This K-Nearest Neighbor-based multiclass classifier was used to create organ-specific gene expression datasets for the leaf, root, shoot, flower, and seed in Arabidopsis thaliana. A GRN inference approach was used to determine the: i. influential transcription factors (TFs) in each organ and, ii. most influential TFs for specific biological processes in that organ. These genome-wide, organ-delimited GRNs (OD-GRNs), recalled many known regulators of organ development and processes operating in those organs. Importantly, many previously unknown TF regulators were uncovered as potential regulators of these processes. As a proof-of-concept, we focused on experimentally validating the predicted TF regulators of lipid biosynthesis in seeds, an important food and biofuel trait. Of the top 20 predicted TFs, eight are known regulators of seed oil content, e.g., WRI1, LEC1, FUS3. Importantly, we validated our prediction of MybS2, TGA4, SPL12, AGL18, and DiV2 as regulators of seed lipid biosynthesis. We elucidated the molecular mechanism of MybS2 and show that it induces purple acid phosphatase family genes and lipid synthesis genes to enhance seed lipid content. This general approach has the potential to be extended to any species with sufficiently large gene expression datasets to find unique regulators of any trait-of-interest.
Collapse
Affiliation(s)
- Rajeev Ranjan
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN47907
- Center for Plant Biology, Purdue University, West Lafayette, IN47907
| | - Sonali Srijan
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN47907
| | - Somaiah Balekuttira
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN47907
| | - Tina Agarwal
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN47907
- Center for Plant Biology, Purdue University, West Lafayette, IN47907
| | - Melissa Ramey
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN47907
| | - Madison Dobbins
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN47907
| | - Rachel Kuhn
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN47907
| | - Xiaojin Wang
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN47907
- Center for Plant Biology, Purdue University, West Lafayette, IN47907
| | - Karen Hudson
- United States Department of Agriculture-Agricultural Research Service Crop Production and Pest Control Research Unit, West Lafayette, IN47907
| | - Ying Li
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN47907
- Center for Plant Biology, Purdue University, West Lafayette, IN47907
| | - Kranthi Varala
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN47907
- Center for Plant Biology, Purdue University, West Lafayette, IN47907
| |
Collapse
|
3
|
Yu L, Liu D, Yin F, Yu P, Lu S, Zhang Y, Zhao H, Lu C, Yao X, Dai C, Yang QY, Guo L. Interaction between phenylpropane metabolism and oil accumulation in the developing seed of Brassica napus revealed by high temporal-resolution transcriptomes. BMC Biol 2023; 21:202. [PMID: 37775748 PMCID: PMC10543336 DOI: 10.1186/s12915-023-01705-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 09/18/2023] [Indexed: 10/01/2023] Open
Abstract
BACKGROUND Brassica napus is an important oilseed crop providing high-quality vegetable oils for human consumption and non-food applications. However, the regulation between embryo and seed coat for the synthesis of oil and phenylpropanoid compounds remains largely unclear. RESULTS Here, we analyzed the transcriptomes in developing seeds at 2-day intervals from 14 days after flowering (DAF) to 64 DAF. The 26 high-resolution time-course transcriptomes are clearly clustered into five distinct groups from stage I to stage V. A total of 2217 genes including 136 transcription factors, are specifically expressed in the seed and show high temporal specificity by being expressed only at certain stages of seed development. Furthermore, we analyzed the co-expression networks during seed development, which mainly included master regulatory transcription factors, lipid, and phenylpropane metabolism genes. The results show that the phenylpropane pathway is prominent during seed development, and the key enzymes in the phenylpropane metabolic pathway, including TT5, BAN, and the transporter TT19, were directly or indirectly related to many key enzymes and transcription factors involved in oil accumulation. We identified candidate genes that may regulate seed oil content based on the co-expression network analysis combined with correlation analysis of the gene expression with seed oil content and seed coat content. CONCLUSIONS Overall, these results reveal the transcriptional regulation between lipid and phenylpropane accumulation during B. napus seed development. The established co-expression networks and predicted key factors provide important resources for future studies to reveal the genetic control of oil accumulation in B. napus seeds.
Collapse
Affiliation(s)
- Liangqian Yu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Dongxu Liu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Feifan Yin
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Pugang Yu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shaoping Lu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yuting Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
- Yazhouwan National Laboratory, Sanya, 572025, China
| | - Hu Zhao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chaofu Lu
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, 59717, USA
| | - Xuan Yao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
- Yazhouwan National Laboratory, Sanya, 572025, China
| | - Cheng Dai
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Qing-Yong Yang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
- Yazhouwan National Laboratory, Sanya, 572025, China.
| | - Liang Guo
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
- Yazhouwan National Laboratory, Sanya, 572025, China.
| |
Collapse
|
4
|
Shaheen N, Khan UM, Farooq A, Zafar UB, Khan SH, Ahmad S, Azhar MT, Atif RM, Rana IA, Seo H. Comparative transcriptomic and evolutionary analysis of FAD-like genes of Brassica species revealed their role in fatty acid biosynthesis and stress tolerance. BMC PLANT BIOLOGY 2023; 23:250. [PMID: 37173631 PMCID: PMC10176799 DOI: 10.1186/s12870-023-04232-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 04/17/2023] [Indexed: 05/15/2023]
Abstract
BACKGROUND Fatty acid desaturases (FADs) are involved in regulating plant fatty acid composition by adding double bonds to growing hydrocarbon chain. Apart from regulating fatty acid composition FADs are of great importance, and are involved in stress responsiveness, plant development, and defense mechanisms. FADs have been extensively studied in crop plants, and are broadly classed into soluble and non-soluble fatty acids. However, FADs have not yet been characterized in Brassica carinata and its progenitors. RESULTS Here we have performed comparative genome-wide identification of FADs and have identified 131 soluble and 28 non-soluble FADs in allotetraploid B. carinata and its diploid parents. Most soluble FAD proteins are predicted to be resided in endomembrane system, whereas FAB proteins were found to be localized in chloroplast. Phylogenetic analysis classed the soluble and non-soluble FAD proteins into seven and four clusters, respectively. Positive type of selection seemed to be dominant in both FADs suggesting the impact of evolution on these gene families. Upstream regions of both FADs were enriched in stress related cis-regulatory elements and among them ABRE type of elements were in abundance. Comparative transcriptomic data analysis output highlighted that FADs expression reduced gradually in mature seed and embryonic tissues. Moreover, under heat stress during seed and embryo development seven genes remained up-regulated regardless of external stress. Three FADs were only induced under elevated temperature whereas five genes were upregulated under Xanthomonas campestris stress suggesting their involvement in abiotic and biotic stress response. CONCLUSIONS The current study provides insights into the evolution of FADs and their role in B. carinata under stress conditions. Moreover, the functional characterization of stress-related genes would exploit their utilization in future breeding programs of B. carinata and its progenitors.
Collapse
Affiliation(s)
- Nabeel Shaheen
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad, 38000, Pakistan
- Center for Advanced Studies in Agriculture and Food security, University of Agriculture, Faisalabad, 38000, Pakistan
- Seed Center and Plant Genetic Resources Bank, Ministry of Environment, Water & Agriculture, Riyadh, 14712, Saudi Arabia
| | - Uzair Muhammad Khan
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad, 38000, Pakistan
- Center for Advanced Studies in Agriculture and Food security, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Ayesha Farooq
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad, 38000, Pakistan
- Center for Advanced Studies in Agriculture and Food security, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Ummul Buneen Zafar
- Center for Advanced Studies in Agriculture and Food security, University of Agriculture, Faisalabad, 38000, Pakistan
- Center of Agricultural Biochemistry and Biotechnology, University of Agriculture Faisalabad, Faisalabad, 38000, Pakistan
| | - Sultan Habibullah Khan
- Center for Advanced Studies in Agriculture and Food security, University of Agriculture, Faisalabad, 38000, Pakistan
- Center of Agricultural Biochemistry and Biotechnology, University of Agriculture Faisalabad, Faisalabad, 38000, Pakistan
| | - Shakeel Ahmad
- Seed Center and Plant Genetic Resources Bank, Ministry of Environment, Water & Agriculture, Riyadh, 14712, Saudi Arabia
| | - Muhammad Tehseen Azhar
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad, 38000, Pakistan
- School of Agriculture Sciences, Zhengzhou University, Zhengzhou, 450000, China
| | - Rana Muhammad Atif
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad, 38000, Pakistan
- Center for Advanced Studies in Agriculture and Food security, University of Agriculture, Faisalabad, 38000, Pakistan
- Precision Agriculture and Analytics Lab, National Center in Big Data and Cloud Computing (NCBC), University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Iqrar Ahmad Rana
- Center for Advanced Studies in Agriculture and Food security, University of Agriculture, Faisalabad, 38000, Pakistan.
- Center of Agricultural Biochemistry and Biotechnology, University of Agriculture Faisalabad, Faisalabad, 38000, Pakistan.
| | - Hyojin Seo
- Korea Soybean Research Institute, Jinju, 52840, Korea.
| |
Collapse
|
5
|
Li L, Song J, Zhang M, Iqbal S, Li Y, Zhang H, Zhang H. A near complete genome assembly of chia assists in identification of key fatty acid desaturases in developing seeds. FRONTIERS IN PLANT SCIENCE 2023; 14:1102715. [PMID: 37021303 PMCID: PMC10067618 DOI: 10.3389/fpls.2023.1102715] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 03/06/2023] [Indexed: 06/19/2023]
Abstract
Chia is an annual crop whose seeds have the highest content of α-linolenic acid (ALA) of any plant known to date. We generated a high-quality assembly of the chia genome using circular consensus sequencing (CCS) of PacBio. The assembled six chromosomes are composed of 21 contigs and have a total length of 361.7 Mb. Genome annotation revealed a 53.5% repeat content and 35,850 protein-coding genes. Chia shared a common ancestor with Salvia splendens ~6.1 million years ago. Utilizing the reference genome and two transcriptome datasets, we identified candidate fatty acid desaturases responsible for ALA biosynthesis during chia seed development. Because the seed of S. splendens contains significantly lower proportion of ALA but similar total contents of unsaturated fatty acids, we suggest that strong expression of two ShFAD3 genes are critical for the high ALA content of chia seeds. This genome assembly will serve as a valuable resource for breeding, comparative genomics, and functional genomics studies of chia.
Collapse
Affiliation(s)
- Leiting Li
- National Key Laboratory of Molecular Plant Genetics, Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jingjing Song
- National Key Laboratory of Molecular Plant Genetics, Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Meiling Zhang
- Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, China
| | - Shahid Iqbal
- Institute of Plant Breeding and Biotechnology, Muhammad Nawaz Shareef University of Agriculture, Multan, Pakistan
| | - Yuanyuan Li
- Centre for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Heng Zhang
- National Key Laboratory of Molecular Plant Genetics, Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Hui Zhang
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, Shandong, China
| |
Collapse
|
6
|
Baud S, Corso M, Debeaujon I, Dubreucq B, Job D, Marion-Poll A, Miquel M, North H, Rajjou L, Lepiniec L. Recent progress in molecular genetics and omics-driven research in seed biology. C R Biol 2023; 345:61-110. [PMID: 36847120 DOI: 10.5802/crbiol.104] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 12/07/2022] [Indexed: 01/11/2023]
Abstract
Elucidating the mechanisms that control seed development, metabolism, and physiology is a fundamental issue in biology. Michel Caboche had long been a catalyst for seed biology research in France up until his untimely passing away last year. To honour his memory, we have updated a review written under his coordination in 2010 entitled "Arabidopsis seed secrets unravelled after a decade of genetic and omics-driven research". This review encompassed different molecular aspects of seed development, reserve accumulation, dormancy and germination, that are studied in the lab created by M. Caboche. We have extended the scope of this review to highlight original experimental approaches implemented in the field over the past decade such as omics approaches aimed at investigating the control of gene expression, protein modifications, primary and specialized metabolites at the tissue or even cellular level, as well as seed biodiversity and the impact of the environment on seed quality.
Collapse
|
7
|
Sagun JV, Yadav UP, Alonso AP. Progress in understanding and improving oil content and quality in seeds. FRONTIERS IN PLANT SCIENCE 2023; 14:1116894. [PMID: 36778708 PMCID: PMC9909563 DOI: 10.3389/fpls.2023.1116894] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 01/09/2023] [Indexed: 06/18/2023]
Abstract
The world's population is projected to increase by two billion by 2050, resulting in food and energy insecurity. Oilseed crops have been identified as key to address these challenges: they produce and store lipids in the seeds as triacylglycerols that can serve as a source of food/feed, renewable fuels, and other industrially-relevant chemicals. Therefore, improving seed oil content and composition has generated immense interest. Research efforts aiming to unravel the regulatory pathways involved in fatty acid synthesis and to identify targets for metabolic engineering have made tremendous progress. This review provides a summary of the current knowledge of oil metabolism and discusses how photochemical activity and unconventional pathways can contribute to high carbon conversion efficiency in seeds. It also highlights the importance of 13C-metabolic flux analysis as a tool to gain insights on the pathways that regulate oil biosynthesis in seeds. Finally, a list of key genes and regulators that have been recently targeted to enhance seed oil production are reviewed and additional possible targets in the metabolic pathways are proposed to achieve desirable oil content and quality.
Collapse
Affiliation(s)
| | | | - Ana Paula Alonso
- Department of Biological Sciences, BioDiscovery Institute, University of North Texas, Denton, TX, United States
| |
Collapse
|
8
|
Nawade B, Kumar A, Maurya R, Subramani R, Yadav R, Singh K, Rangan P. Longer Duration of Active Oil Biosynthesis during Seed Development Is Crucial for High Oil Yield-Lessons from Genome-Wide In Silico Mining and RNA-Seq Validation in Sesame. PLANTS (BASEL, SWITZERLAND) 2022; 11:2980. [PMID: 36365434 PMCID: PMC9657858 DOI: 10.3390/plants11212980] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
Sesame, one of the ancient oil crops, is an important oilseed due to its nutritionally rich seeds with high protein content. Genomic scale information for sesame has become available in the public databases in recent years. The genes and their families involved in oil biosynthesis in sesame are less studied than in other oilseed crops. Therefore, we retrieved a total of 69 genes and their translated amino acid sequences, associated with gene families linked to the oil biosynthetic pathway. Genome-wide in silico mining helped identify key regulatory genes for oil biosynthesis, though the findings require functional validation. Comparing sequences of the SiSAD (stearoyl-acyl carrier protein (ACP)-desaturase) coding genes with known SADs helped identify two SiSAD family members that may be palmitoyl-ACP-specific. Based on homology with lysophosphatidic acid acyltransferase (LPAAT) sequences, an uncharacterized gene has been identified as SiLPAAT1. Identified key regulatory genes associated with high oil content were also validated using publicly available transcriptome datasets of genotypes contrasting for oil content at different developmental stages. Our study provides evidence that a longer duration of active oil biosynthesis is crucial for high oil accumulation during seed development. This underscores the importance of early onset of oil biosynthesis in developing seeds. Up-regulating, identified key regulatory genes of oil biosynthesis during early onset of seed development, should help increase oil yields.
Collapse
Affiliation(s)
- Bhagwat Nawade
- Division of Genomic Resources, ICAR-National Bureau of Plant Genetic Resources, PUSA Campus, New Delhi 110012, India
| | - Ajay Kumar
- Division of Genomic Resources, ICAR-National Bureau of Plant Genetic Resources, PUSA Campus, New Delhi 110012, India
| | - Rasna Maurya
- Division of Genomic Resources, ICAR-National Bureau of Plant Genetic Resources, PUSA Campus, New Delhi 110012, India
| | - Rajkumar Subramani
- Division of Genomic Resources, ICAR-National Bureau of Plant Genetic Resources, PUSA Campus, New Delhi 110012, India
| | - Rashmi Yadav
- Division of Germplasm Evaluation, ICAR-National Bureau of Plant Genetic Resources, PUSA Campus, New Delhi 110012, India
| | - Kuldeep Singh
- Division of Genomic Resources, ICAR-National Bureau of Plant Genetic Resources, PUSA Campus, New Delhi 110012, India
| | - Parimalan Rangan
- Division of Genomic Resources, ICAR-National Bureau of Plant Genetic Resources, PUSA Campus, New Delhi 110012, India
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
9
|
Bioinformatic approach for the identification of plant species that accumulate palmitoleic acid. ELECTRON J BIOTECHN 2022. [DOI: 10.1016/j.ejbt.2022.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
10
|
Abstract
In angiosperms, double fertilization triggers the concomitant development of two closely juxtaposed tissues, the embryo and the endosperm. Successful seed development and germination require constant interactions between these tissues, which occur across their common interface. The embryo-endosperm interface is a complex and poorly understood compound apoplast comprising components derived from both tissues, across which nutrients transit to fuel embryo development. Interface properties, which affect molecular diffusion and thus communication, are themselves dynamically regulated by molecular and physical dialogues between the embryo and endosperm. We review the current understanding of embryo-endosperm interactions, with a focus on the structure, properties, and function of their shared interface. Concentrating on Arabidopsis, but with reference to other species, we aim to situate recent findings within the broader context of seed physiology, developmental biology, and genetic factors such as parental conflicts over resource allocation.
Collapse
Affiliation(s)
- Nicolas M Doll
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium;
- VIB Center of Plant Systems Biology, Ghent, Belgium
| | - Gwyneth C Ingram
- Laboratoire Reproduction et Développement des Plantes, ENS de Lyon, CNRS, INRAE, Université de Lyon 1, Lyon, France;
| |
Collapse
|
11
|
Shin S, Chairattanawat C, Yamaoka Y, Yang Q, Lee Y, Hwang JU. Early seed development requires the A-type ATP-binding cassette protein ABCA10. PLANT PHYSIOLOGY 2022; 189:360-374. [PMID: 35166840 PMCID: PMC9070825 DOI: 10.1093/plphys/kiac062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/06/2022] [Indexed: 05/11/2023]
Abstract
A-type ATP-binding cassette (ABCA) proteins transport lipids and lipid-based molecules in humans, and their malfunction is associated with various inherited diseases. Although plant genomes encode many ABCA transporters, their molecular and physiological functions remain largely unknown. Seeds are rapidly developing organs that rely on the biosynthesis and transport of large quantities of lipids to generate new membranes and storage lipids. In this study, we characterized the Arabidopsis (Arabidopsis thaliana) ABCA10 transporter, which is selectively expressed in female gametophytes and early developing seeds. By 3 d after flowering (DAF), seeds from the abca10 loss-of-function mutant exhibited a smaller chalazal endosperm than those of the wild-type. By 4 DAF, their endosperm nuclei occupied a smaller area than those of the wild-type. The endosperm nuclei of the mutants also failed to distribute evenly inside the seed coat and stayed aggregated instead, possibly due to inadequate expansion of abca10 endosperm. This endosperm defect might have retarded abca10 embryo development. At 7 DAF, a substantial portion of abca10 embryos remained at the globular or earlier developmental stages, whereas wild-type embryos were at the torpedo or later stages. ABCA10 is likely involved in lipid metabolism, as ABCA10 overexpression induced the overaccumulation of triacylglycerol but did not change the carbohydrate or protein contents in seeds. In agreement, ABCA10 localized to the endoplasmic reticulum (ER), the major site of lipid biosynthesis. Our results reveal that ABCA10 plays an essential role in early seed development, possibly by transporting substrates for lipid metabolism to the ER.
Collapse
Affiliation(s)
- Seungjun Shin
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | | | - Yasuyo Yamaoka
- Division of Biotechnology, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| | - Qianying Yang
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Youngsook Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
- Department of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | | |
Collapse
|
12
|
Gomez-Cano F, Chu YH, Cruz-Gomez M, Abdullah HM, Lee YS, Schnell DJ, Grotewold E. Exploring Camelina sativa lipid metabolism regulation by combining gene co-expression and DNA affinity purification analyses. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:589-606. [PMID: 35064997 DOI: 10.1111/tpj.15682] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 06/14/2023]
Abstract
Camelina (Camelina sativa) is an annual oilseed plant that is gaining momentum as a biofuel cover crop. Understanding gene regulatory networks is essential to deciphering plant metabolic pathways, including lipid metabolism. Here, we take advantage of a growing collection of gene expression datasets to predict transcription factors (TFs) associated with the control of Camelina lipid metabolism. We identified approximately 350 TFs highly co-expressed with lipid-related genes (LRGs). These TFs are highly represented in the MYB, AP2/ERF, bZIP, and bHLH families, including a significant number of homologs of well-known Arabidopsis lipid and seed developmental regulators. After prioritizing the top 22 TFs for further validation, we identified DNA-binding sites and predicted target genes for 16 out of the 22 TFs tested using DNA affinity purification followed by sequencing (DAP-seq). Enrichment analyses of targets supported the co-expression prediction for most TF candidates, and the comparison to Arabidopsis revealed some common themes, but also aspects unique to Camelina. Within the top potential lipid regulators, we identified CsaMYB1, CsaABI3AVP1-2, CsaHB1, CsaNAC2, CsaMYB3, and CsaNAC1 as likely involved in the control of seed fatty acid elongation and CsaABI3AVP1-2 and CsabZIP1 as potential regulators of the synthesis and degradation of triacylglycerols (TAGs), respectively. Altogether, the integration of co-expression data and DNA-binding assays permitted us to generate a high-confidence and short list of Camelina TFs involved in the control of lipid metabolism during seed development.
Collapse
Affiliation(s)
- Fabio Gomez-Cano
- Department of Biochemistry and Molecular Biology, Michigan State University, 603 Wilson Road, Room 212, Biochemistry Building, East Lansing, MI, 48824-6473, USA
| | - Yi-Hsuan Chu
- Department of Biochemistry and Molecular Biology, Michigan State University, 603 Wilson Road, Room 212, Biochemistry Building, East Lansing, MI, 48824-6473, USA
| | - Mariel Cruz-Gomez
- Department of Biochemistry and Molecular Biology, Michigan State University, 603 Wilson Road, Room 212, Biochemistry Building, East Lansing, MI, 48824-6473, USA
| | - Hesham M Abdullah
- Department of Plant Biology, Michigan State University, 612 Wilson Road, Room 166, East Lansing, MI, 48824-1312, USA
- Biotechnology Department, Faculty of Agriculture, Al-Azhar University, Cairo, 11651, Egypt
| | - Yun Sun Lee
- Department of Biochemistry and Molecular Biology, Michigan State University, 603 Wilson Road, Room 212, Biochemistry Building, East Lansing, MI, 48824-6473, USA
| | - Danny J Schnell
- Department of Plant Biology, Michigan State University, 612 Wilson Road, Room 166, East Lansing, MI, 48824-1312, USA
| | - Erich Grotewold
- Department of Biochemistry and Molecular Biology, Michigan State University, 603 Wilson Road, Room 212, Biochemistry Building, East Lansing, MI, 48824-6473, USA
| |
Collapse
|
13
|
Plant monounsaturated fatty acids: Diversity, biosynthesis, functions and uses. Prog Lipid Res 2021; 85:101138. [PMID: 34774919 DOI: 10.1016/j.plipres.2021.101138] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/02/2021] [Accepted: 11/06/2021] [Indexed: 11/22/2022]
Abstract
Monounsaturated fatty acids are straight-chain aliphatic monocarboxylic acids comprising a unique carbon‑carbon double bond, also termed unsaturation. More than 50 distinct molecular structures have been described in the plant kingdom, and more remain to be discovered. The evolution of land plants has apparently resulted in the convergent evolution of non-homologous enzymes catalyzing the dehydrogenation of saturated acyl chain substrates in a chemo-, regio- and stereoselective manner. Contrasted enzymatic characteristics and different subcellular localizations of these desaturases account for the diversity of existing fatty acid structures. Interestingly, the location and geometrical configuration of the unsaturation confer specific characteristics to these molecules found in a variety of membrane, storage, and surface lipids. An ongoing research effort aimed at exploring the links existing between fatty acid structures and their biological functions has already unraveled the importance of several monounsaturated fatty acids in various physiological and developmental contexts. What is more, the monounsaturated acyl chains found in the oils of seeds and fruits are widely and increasingly used in the food and chemical industries due to the physicochemical properties inherent in their structures. Breeders and plant biotechnologists therefore develop new crops with high monounsaturated contents for various agro-industrial purposes.
Collapse
|
14
|
Alizadeh M, Hoy R, Lu B, Song L. Team effort: Combinatorial control of seed maturation by transcription factors. CURRENT OPINION IN PLANT BIOLOGY 2021; 63:102091. [PMID: 34343847 DOI: 10.1016/j.pbi.2021.102091] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 05/07/2021] [Accepted: 06/13/2021] [Indexed: 06/13/2023]
Abstract
Seed development is under tight spatiotemporal regulation. Here, we summarize how transcriptional regulation helps shape the major traits during seed maturation, which include storage reserve accumulation, dormancy, desiccation tolerance, and longevity. The regulation is rarely a solo task by an individual transcription factor (TF). Rather, it often involves coordinated recruitment or replacement of multiple TFs to achieve combinatorial regulation. We highlight recent progress on the transcriptional integration of activation and repression of seed maturation genes, and discuss potential research directions to further understand the TF networks of seed maturation.
Collapse
Affiliation(s)
- Milad Alizadeh
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Ryan Hoy
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Bailan Lu
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Liang Song
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada.
| |
Collapse
|
15
|
Smith R, Jouhet J, Gandini C, Nekrasov V, Marechal E, Napier JA, Sayanova O. Plastidial acyl carrier protein Δ9-desaturase modulates eicosapentaenoic acid biosynthesis and triacylglycerol accumulation in Phaeodactylum tricornutum. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:1247-1259. [PMID: 33725374 PMCID: PMC8360179 DOI: 10.1111/tpj.15231] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 02/26/2021] [Accepted: 03/05/2021] [Indexed: 06/12/2023]
Abstract
The unicellular marine diatom Phaeodactylum tricornutum accumulates up to 35% eicosapentaenoic acid (EPA, 20:5n3) and has been used as a model organism to study long chain polyunsaturated fatty acids (LC-PUFA) biosynthesis due to an excellent annotated genome sequence and established transformation system. In P. tricornutum, the majority of EPA accumulates in polar lipids, particularly in galactolipids such as mono- and di-galactosyldiacylglycerol. LC-PUFA biosynthesis is considered to start from oleic acid (18:1n9). EPA can be synthesized via a series of desaturation and elongation steps occurring at the endoplasmic reticulum and newly synthesized EPA is then imported into the plastids for incorporation into galactolipids via an unknown route. The basis for the flux of EPA is fundamental to understanding LC-PUFA biosynthesis in diatoms. We used P. tricornutum to study acyl modifying activities, upstream of 18:1n9, on subsequent LC-PUFA biosynthesis. We identified the gene coding for the plastidial acyl carrier protein Δ9-desaturase, a key enzyme in fatty acid modification and analyzed the impact of overexpression and knock out of this gene on glycerolipid metabolism. This revealed a previously unknown role of this soluble desaturase in EPA synthesis and production of triacylglycerol. This study provides further insight into the distinctive nature of lipid metabolism in the marine diatom P. tricornutum and suggests additional approaches for tailoring oil composition in microalgae.
Collapse
Affiliation(s)
- Richard Smith
- Department of Plant SciencesRothamsted ResearchHarpendenHertsAL5 2JQUK
- Present address:
AlgenuityEden LaboratoryBroadmead RoadStewartbyMK43 9NDUK
| | - Juliette Jouhet
- Laboratoire de Physiologie Cellulaire et Végétale Univ. Grenoble AlpesCNRSIRAECEAIRIGGrenoble38000France
| | - Chiara Gandini
- Department of Plant SciencesRothamsted ResearchHarpendenHertsAL5 2JQUK
- Present address:
Open Bioeconomy LaboratoryDepartment of Chemical Engineering and BiotechnologyUniversity of CambridgeCambridgeCB3 0ASUK
| | - Vladimir Nekrasov
- Department of Plant SciencesRothamsted ResearchHarpendenHertsAL5 2JQUK
| | - Eric Marechal
- Laboratoire de Physiologie Cellulaire et Végétale Univ. Grenoble AlpesCNRSIRAECEAIRIGGrenoble38000France
| | | | - Olga Sayanova
- Department of Plant SciencesRothamsted ResearchHarpendenHertsAL5 2JQUK
| |
Collapse
|
16
|
Acyl-Acyl Carrier Protein Desaturases and Plant Biotic Interactions. Cells 2021; 10:cells10030674. [PMID: 33803674 PMCID: PMC8002970 DOI: 10.3390/cells10030674] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/15/2021] [Accepted: 03/15/2021] [Indexed: 11/29/2022] Open
Abstract
Interactions between land plants and other organisms such as pathogens, pollinators, or symbionts usually involve a variety of specialized effectors participating in complex cross-talks between organisms. Fatty acids and their lipid derivatives play important roles in these biological interactions. While the transcriptional regulation of genes encoding acyl–acyl carrier protein (ACP) desaturases appears to be largely responsive to biotic stress, the different monounsaturated fatty acids produced by these enzymes were shown to take active part in plant biotic interactions and were assigned with specific functions intrinsically linked to the position of the carbon–carbon double bond within their acyl chain. For example, oleic acid, an omega-9 monounsaturated fatty acid produced by Δ9-stearoyl–ACP desaturases, participates in signal transduction pathways affecting plant immunity against pathogen infection. Myristoleic acid, an omega-5 monounsaturated fatty acid produced by Δ9-myristoyl–ACP desaturases, serves as a precursor for the biosynthesis of omega-5 anacardic acids that are active biocides against pests. Finally, different types of monounsaturated fatty acids synthesized in the labellum of orchids are used for the production of a variety of alkenes participating in the chemistry of sexual deception, hence favoring plant pollination by hymenopterans.
Collapse
|
17
|
Miray R, Kazaz S, To A, Baud S. Molecular Control of Oil Metabolism in the Endosperm of Seeds. Int J Mol Sci 2021; 22:1621. [PMID: 33562710 PMCID: PMC7915183 DOI: 10.3390/ijms22041621] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/30/2021] [Accepted: 02/02/2021] [Indexed: 12/12/2022] Open
Abstract
In angiosperm seeds, the endosperm develops to varying degrees and accumulates different types of storage compounds remobilized by the seedling during early post-germinative growth. Whereas the molecular mechanisms controlling the metabolism of starch and seed-storage proteins in the endosperm of cereal grains are relatively well characterized, the regulation of oil metabolism in the endosperm of developing and germinating oilseeds has received particular attention only more recently, thanks to the emergence and continuous improvement of analytical techniques allowing the evaluation, within a spatial context, of gene activity on one side, and lipid metabolism on the other side. These studies represent a fundamental step toward the elucidation of the molecular mechanisms governing oil metabolism in this particular tissue. In particular, they highlight the importance of endosperm-specific transcriptional controls for determining original oil compositions usually observed in this tissue. In the light of this research, the biological functions of oils stored in the endosperm of seeds then appear to be more diverse than simply constituting a source of carbon made available for the germinating seedling.
Collapse
Affiliation(s)
| | | | | | - Sébastien Baud
- Institut Jean-Pierre Bourgin, INRAE, CNRS, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France; (R.M.); (S.K.); (A.T.)
| |
Collapse
|
18
|
Liu B, Sun Y, Hang W, Wang X, Xue J, Ma R, Jia X, Li R. Characterization of a Novel Acyl-ACP Δ 9 Desaturase Gene Responsible for Palmitoleic Acid Accumulation in a Diatom Phaeodactylum tricornutum. Front Microbiol 2020; 11:584589. [PMID: 33391203 PMCID: PMC7772203 DOI: 10.3389/fmicb.2020.584589] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 11/17/2020] [Indexed: 12/23/2022] Open
Abstract
Palmitoleic acid (16:1Δ9) possesses a double bond at the seventh carbon atom from methyl end of the acyl chain and belongs to unusual ω-7 monounsaturated fatty acids with broad applications in food, pharmaceuticals, cosmetics, biofuel, and other industries. This high-value fatty acid accumulates up to >40% of total lipid in the marine diatom Phaeodactylum tricornutum. The present study was conducted to determine the key gene responsible for 16:1Δ9 biosynthesis in this unicellular alga. A new full-length cDNA and genomic DNA encoding acyl-ACP Δ9 desaturase (PtAAD) were isolated from P. tricornutum cells. Expression levels of PtAAD gene under normal and stress culture conditions were both positively correlated with 16:1Δ9 accumulation, implying its potential role for fatty acid determination. Functional complementation assay of a yeast mutant strain BY4839 evidenced that PtAAD could restore the synthesis of unsaturated fatty acid, especially generating high levels of 16:1Δ9. Further transient expression of PtAAD gene in Nicotiana benthamiana leaves was accompanied by the accumulation of 16:1Δ9, which was absent from control groups. Three-dimensional structure modeling studies showed that functional domain of PtAAD contained three variant amino acids (F160, A223, and L156), which may narrow the space shape of substrate-binding cavity to ensure the entry of 16:0-ACP. Consistent with this prediction, the mutated version of PtAAD gene (F160L, A223T, and L156M) in N. benthamiana systems failed to accumulate 16:1Δ9, but increased levels of 18:1Δ9. Taken together, PtAAD exhibits a strong enzymatic activity and substrate preference for 16:0-ACP, acting as the key player for high biosynthesis and accumulation of 16:1Δ9 in this alga. These findings provide new insights for better understanding the palmitoleic acid and oil biosynthetic mechanism in P. tricornutum, indicating that PtAAD gene may have practical applications for enriching palmitoleic acid and oil yield in other commercial oleaginous algae and crops.
Collapse
Affiliation(s)
- Baoling Liu
- College of Agriculture, Shanxi Agricultural University, Jinzhong, China.,College of Plant Protection, Shanxi Agricultural University, Jinzhong, China
| | - Yan Sun
- College of Agriculture, Shanxi Agricultural University, Jinzhong, China
| | - Wei Hang
- College of Agriculture, Shanxi Agricultural University, Jinzhong, China
| | - Xiaodan Wang
- College of Agriculture, Shanxi Agricultural University, Jinzhong, China
| | - Jinai Xue
- College of Agriculture, Shanxi Agricultural University, Jinzhong, China
| | - Ruiyan Ma
- College of Plant Protection, Shanxi Agricultural University, Jinzhong, China
| | - Xiaoyun Jia
- College of Agriculture, Shanxi Agricultural University, Jinzhong, China
| | - Runzhi Li
- College of Agriculture, Shanxi Agricultural University, Jinzhong, China
| |
Collapse
|
19
|
Kazaz S, Barthole G, Domergue F, Ettaki H, To A, Vasselon D, De Vos D, Belcram K, Lepiniec L, Baud S. Differential Activation of Partially Redundant Δ9 Stearoyl-ACP Desaturase Genes Is Critical for Omega-9 Monounsaturated Fatty Acid Biosynthesis During Seed Development in Arabidopsis. THE PLANT CELL 2020; 32:3613-3637. [PMID: 32958563 PMCID: PMC7610281 DOI: 10.1105/tpc.20.00554] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/04/2020] [Accepted: 09/16/2020] [Indexed: 05/20/2023]
Abstract
The spatiotemporal pattern of deposition, final amount, and relative abundance of oleic acid (cis-ω-9 C18:1) and its derivatives in the different lipid fractions of the seed of Arabidopsis (Arabidopsis thaliana) indicates that omega-9 monoenes are synthesized at high rates in this organ. Accordingly, we observed that four Δ9 stearoyl-ACP desaturase (SAD)-coding genes (FATTY ACID BIOSYNTHESIS2 [FAB2], ACYL-ACYL CARRIER PROTEIN5 [AAD5], AAD1, and AAD6) are transcriptionally induced in seeds. We established that the three most highly expressed ones are directly activated by the WRINKLED1 transcription factor. We characterized a collection of 30 simple, double, triple, and quadruple mutants affected in SAD-coding genes and thereby revealed the functions of these desaturases throughout seed development. Production of oleic acid by FAB2 and AAD5 appears to be critical at the onset of embryo morphogenesis. Double homozygous plants from crossing fab2 and aad5 could never be obtained, and further investigations revealed that the double mutation results in the arrest of embryo development before the globular stage. During later stages of seed development, these two SADs, together with AAD1, participate in the elaboration of the embryonic cuticle, a barrier essential for embryo-endosperm separation during the phase of invasive embryo growth through the endosperm. This study also demonstrates that the four desaturases redundantly contribute to storage lipid production during the maturation phase.
Collapse
Affiliation(s)
- Sami Kazaz
- Institut Jean-Pierre Bourgin, INRAE, CNRS, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
| | - Guillaume Barthole
- Institut Jean-Pierre Bourgin, INRAE, CNRS, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
| | - Frédéric Domergue
- Université de Bordeaux, Laboratoire de Biogenèse Membranaire, UMR 5200, 33882 Villenave d'Ornon, France
- CNRS, Laboratoire de Biogenèse Membranaire, UMR 5200, 33882 Villenave d'Ornon, France
| | - Hasna Ettaki
- Institut Jean-Pierre Bourgin, INRAE, CNRS, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
| | - Alexandra To
- Institut Jean-Pierre Bourgin, INRAE, CNRS, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
| | - Damien Vasselon
- Institut Jean-Pierre Bourgin, INRAE, CNRS, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
| | - Delphine De Vos
- Institut Jean-Pierre Bourgin, INRAE, CNRS, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
| | - Katia Belcram
- Institut Jean-Pierre Bourgin, INRAE, CNRS, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
| | - Loïc Lepiniec
- Institut Jean-Pierre Bourgin, INRAE, CNRS, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
| | - Sébastien Baud
- Institut Jean-Pierre Bourgin, INRAE, CNRS, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
| |
Collapse
|
20
|
Wang W, Ryu KH, Barron C, Schiefelbein J. Root Epidermal Cell Patterning Is Modulated by a Critical Residue in the WEREWOLF Transcription Factor. PLANT PHYSIOLOGY 2019; 181:1239-1256. [PMID: 31492737 PMCID: PMC6836813 DOI: 10.1104/pp.19.00458] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 08/23/2019] [Indexed: 05/22/2023]
Abstract
The Arabidopsis (Arabidopsis thaliana) root epidermis exhibits a position-dependent pattern of root-hair and nonhair cell types. A highly orchestrated network of gene regulatory interactions, including the R2R3-type MYB transcription factor WEREWOLF (WER), is responsible for generating this cell pattern during root development. In this study, we identified a novel wer mutant from a genetic enhancer screen, designated wer-4, that exhibits an abnormal pattern of root-hair and nonhair cells. We established that wer-4 bears a single-residue substitution (D105N) in the DNA-binding R3 MYB repeat of WER, which differentially affects the transcription of WER target genes, including GLABRA2, CAPRICE, TRIPTYCHON, and ENHANCER OF TRY AND CPC1 This modulation of the gene regulatory network leads to altered levels and distributions of cell fate regulators in the differentiating epidermal cells that ultimately generate the abnormal cell-type pattern. We also created several WER variants with substitutions at the Asp-105 position, and these exhibited a variety of gene expression and cell-type pattern alterations, further supporting the critical role of this residue. These findings provide insight into WER protein function and its importance in generating the proper balance of downstream transcriptional factors in the gene regulatory network that establishes root epidermal cell fate.
Collapse
Affiliation(s)
- Wenjia Wang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109
| | - Kook Hui Ryu
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109
| | - Christa Barron
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109
| | - John Schiefelbein
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
21
|
Dennison T, Qin W, Loneman DM, Condon SGF, Lauter N, Nikolau BJ, Yandeau-Nelson MD. Genetic and environmental variation impact the cuticular hydrocarbon metabolome on the stigmatic surfaces of maize. BMC PLANT BIOLOGY 2019; 19:430. [PMID: 31623561 PMCID: PMC6796380 DOI: 10.1186/s12870-019-2040-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 09/16/2019] [Indexed: 05/13/2023]
Abstract
BACKGROUND Simple non-isoprenoid hydrocarbons accumulate in discrete regions of the biosphere, including within bacteria and algae as a carbon and/or energy store, and the cuticles of plants and insects, where they may protect against environmental stresses. The extracellular cuticular surfaces of the stigmatic silks of maize are rich in linear hydrocarbons and therefore provide a convenient system to study the biological origins and functions of these unique metabolites. RESULTS To test the hypotheses that genetics and environment influence the accumulation of surface hydrocarbons on silks and to examine the breadth of metabolome compositions across diverse germplasm, cuticular hydrocarbons were analyzed on husk-encased silks and silks that emerged from the husk leaves from 32 genetically diverse maize inbred lines, most of which are commonly utilized in genetics experiments. Total hydrocarbon accumulation varied ~ 10-fold among inbred lines, and up to 5-fold between emerged and husk-encased silks. Alkenes accounted for 5-60% of the total hydrocarbon metabolome, and the majority of alkenes were monoenes with a double bond at either the 7th or 9th carbon atom of the alkyl chain. Total hydrocarbon accumulation was impacted to similar degrees by genotype and husk encasement status, whereas genotype predominantly impacted alkene composition. Only minor differences in the metabolome were observed on silks that were emerged into the external environment for 3- versus 6-days. The environmental influence on the metabolome was further investigated by growing inbred lines in 2 years, one of which was warmer and wetter. Inbred lines grown in the drier year accumulated up to 2-fold more hydrocarbons and up to a 22% higher relative abundance of alkenes. In summary, the surface hydrocarbon metabolome of silks is primarily governed by genotype and husk encasement status, with smaller impacts of environment and genotype-by-environment interactions. CONCLUSIONS This study reveals that the composition of the cuticular hydrocarbon metabolome on silks is affected significantly by genetic factors, and is therefore amenable to dissection using quantitative genetic approaches. Such studies will clarify the genetic mechanisms responsible for the accumulation of these metabolites, enabling detailed functional investigations of the diverse and complex protective roles of silk surface lipids against environmental stresses.
Collapse
Affiliation(s)
- Tesia Dennison
- Interdepartmental Genetics and Genomics Graduate Program, Iowa State University, Ames, USA
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, USA
| | - Wenmin Qin
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, USA
- Present Address: GenScript, Nanjing, China
| | - Derek M. Loneman
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, USA
- Present Address: School of Medicine, Case Western Reserve University, Cleveland, OH USA
| | - Samson G. F. Condon
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, USA
- Present Address: Department of Biochemistry, University of Wisconsin, Madison, USA
| | - Nick Lauter
- Interdepartmental Genetics and Genomics Graduate Program, Iowa State University, Ames, USA
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, USA
- USDA-ARS Corn Insects and Crop Genetics Research Unit, Iowa State University, Ames, USA
| | - Basil J. Nikolau
- Interdepartmental Genetics and Genomics Graduate Program, Iowa State University, Ames, USA
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, USA
- NSF-Engineering Research Center for Biorenewable Chemicals, Iowa State University, Ames, USA
- Center for Metabolic Biology, Iowa State University, Ames, USA
| | - Marna D. Yandeau-Nelson
- Interdepartmental Genetics and Genomics Graduate Program, Iowa State University, Ames, USA
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, USA
- NSF-Engineering Research Center for Biorenewable Chemicals, Iowa State University, Ames, USA
- Center for Metabolic Biology, Iowa State University, Ames, USA
| |
Collapse
|
22
|
Wu T, Mao X, Kou Y, Li Y, Sun H, He Y, Chen F. Characterization of Microalgal Acetyl-CoA Synthetases with High Catalytic Efficiency Reveals Their Regulatory Mechanism and Lipid Engineering Potential. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:9569-9578. [PMID: 31385495 DOI: 10.1021/acs.jafc.9b03370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Acetyl-CoA synthetase (ACS) plays a key role in microalgal lipid biosynthesis and acetyl-CoA industrial production. In the present study, two ACSs were cloned and characterized from the oleaginous microalga Chromochloris zofingiensis. In vitro kinetic analysis showed that the Km values of CzACS1 and CzACS2 for potassium acetate were 0.99 and 0.81 mM, respectively. Moreover, CzACS1 and CzACS2 had outstanding catalytic efficiencies (kcat/Km), which were 70.67 and 79.98 s-1 mM-1, respectively, and these values were higher than that of other reported ACSs. CzACS1 and CzACS2 exhibited differential expression patterns at the transcriptional level under various conditions. Screening a recombinant library of 52 transcription factors (TFs) constructed in the present study via yeast one-hybrid assay pointed to seven TFs with potential involvement in the regulation of the two ACS genes. Expression correlation analysis implied that GATA20 was likely an important regulator of CzACS2 and that ERF9 could regulate two CzACSs simultaneously.
Collapse
Affiliation(s)
| | | | | | | | - Han Sun
- Institute for Advanced Study , Shenzhen University , Shenzhen 518060 , China
| | | | - Feng Chen
- Institute for Advanced Study , Shenzhen University , Shenzhen 518060 , China
| |
Collapse
|
23
|
Hisanaga T, Yamaoka S, Kawashima T, Higo A, Nakajima K, Araki T, Kohchi T, Berger F. Building new insights in plant gametogenesis from an evolutionary perspective. NATURE PLANTS 2019; 5:663-669. [PMID: 31285561 DOI: 10.1038/s41477-019-0466-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 05/29/2019] [Indexed: 05/18/2023]
Abstract
Extant bryophytes are thought to preserve characteristics of ancestral land plants, with a life cycle dominated by the haploid gametophyte. The gametophyte produces gametes in specialized organs that differentiate after an extensive phase of vegetative development. During land plant evolution, these organs became extremely reduced. As a result, in flowers of angiosperms the haploid phase of the life cycle is reduced to few-celled gametophytes, namely the embryo sac (female) and pollen (male). Although many factors contributing to gametogenesis have been identified in flowering plants, the extreme reduction of the gametophytes has prevented a clear molecular dissection of key processes of gametogenesis. Recent studies in the model bryophyte Marchantia polymorpha have identified conserved transcription factors regulating the equivalent steps in the sexual reproduction of land plants. These include FEMALE GAMETOPHYTE MYB for female gametophyte development, BONOBO for gamete progenitor cell specification, DUO POLLEN1 for sperm differentiation and members of the RWP-RK domain family for female gamete formation. These studies demonstrate that M. polymorpha is a powerful model to untangle the core processes of gametogenesis in land plants. We anticipate that a deeper understanding of gametogenesis in bryophytes will circumscribe the origin of plant germ cells and define the differentiation programmes of sperm and eggs.
Collapse
Affiliation(s)
- Tetsuya Hisanaga
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan
| | - Shohei Yamaoka
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Tomokazu Kawashima
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, USA
| | - Asuka Higo
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan
| | - Keiji Nakajima
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan
| | - Takashi Araki
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Takayuki Kohchi
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Frédéric Berger
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria.
| |
Collapse
|
24
|
Ding J, Ruan C, Du W, Guan Y. RNA-seq data reveals a coordinated regulation mechanism of multigenes involved in the high accumulation of palmitoleic acid and oil in sea buckthorn berry pulp. BMC PLANT BIOLOGY 2019; 19:207. [PMID: 31109294 PMCID: PMC6528223 DOI: 10.1186/s12870-019-1815-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 04/30/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Sea buckthorn is a woody oil crop in which palmitoleic acid (C16:1n7, an omega-7 fatty acid (FA)) contributes approximately 40% of the total FA content in berry pulp (non-seed tissue). However, the molecular mechanisms contributing to the high accumulation of C16:1n7 in developing sea buckthorn berry pulp (SBP) remain poorly understood. RESULTS We identified 1737 unigenes associated with lipid metabolism through RNA-sequencing analysis of the four developmental stages of berry pulp in two sea buckthorn lines, 'Za56' and 'TF2-36'; 139 differentially expressed genes were detected between the different berry pulp developmental stages in the two lines. Analyses of the FA composition showed that the C16:1n7 contents were significantly higher in line 'Za56' than in line 'TF2-36' in the mid-late developmental stages of SBP. Additionally, qRT-PCR analyses of 15 genes involved in FA and triacylglycerol (TAG) biosynthesis in both lines revealed that delta9-ACP-desaturase (ACP-Δ9D) competed with 3-ketoacyl-ACP-synthase II (KASII) for the substrate C16:0-ACP and that ACP-Δ9D and delta9-CoA-desaturase (CoA-Δ9D) gene expression positively correlated with C16:1n7 content; KASII and fatty acid elongation 1 (FAE1) gene expression positively correlated with C18:0 content in developing SBP. Specifically, the abundance of ACP-Δ9D and CoA-Δ9D transcripts in line 'Za56', which had a higher C16:1n7 content than line 'TF2-36', suggests that these two genes play an important role in C16:1n7 biosynthesis. Furthermore, the high expressions of the glycerol-3-phosphate dehydrogenase (GPD1) gene and the WRINKLED1 (WRI1) transcription factor contributed to increased biosynthesis of TAG precursor and FAs, respectively, in the early developmental stages of SBP, and the high expression of the diacylglycerol O-acyltransferase 1 (DGAT1) gene increased TAG assembly in the later developmental stages of SBP. Overall, we concluded that increased ACP-Δ9D and CoA-Δ9D levels coupled with decreased KASII and FAE1 activity is a critical event for high C16:1n7 accumulation and that the coordinated high expression of WRI1, GPD1, and DGAT1 genes resulted in high oil accumulation in SBP. CONCLUSION Our results provide a scientific basis for understanding the mechanism of high C16:1n7 accumulation in berry pulp (non-seed tissue) and are valuable to the genetic breeding programme for achieving a high quality and yield of SBP oil.
Collapse
Affiliation(s)
- Jian Ding
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Institute of Plant Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian, 116600 Liaoning China
| | - Chengjiang Ruan
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Institute of Plant Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian, 116600 Liaoning China
| | - Wei Du
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Institute of Plant Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian, 116600 Liaoning China
| | - Ying Guan
- Institute of Berries, Heilongjiang Academy of Agricultural Sciences, 5 Fansheng Street, Suiling, Heilongjiang, 152230 China
| |
Collapse
|
25
|
MacGregor DR, Zhang N, Iwasaki M, Chen M, Dave A, Lopez‐Molina L, Penfield S. ICE1 and ZOU determine the depth of primary seed dormancy in Arabidopsis independently of their role in endosperm development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 98:277-290. [PMID: 30570804 PMCID: PMC6900779 DOI: 10.1111/tpj.14211] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 11/20/2018] [Accepted: 12/12/2018] [Indexed: 05/06/2023]
Abstract
Seed dormancy is a widespread and key adaptive trait that is essential for the establishment of soil seed banks and prevention of pre-harvest sprouting. Herein we demonstrate that the endosperm-expressed transcription factors ZHOUPI (ZOU) and INDUCER OF CBF EXPRESSION1 (ICE1) play a role in determining the depth of primary dormancy in Arabidopsis. We show that ice1 or zou increases seed dormancy and the double mutant has an additive phenotype. This increased dormancy is associated with increased ABA levels, and can be separated genetically from any role in endosperm maturation because loss of ABA biosynthesis or DELAY OF GERMINATION 1 reverses the dormancy phenotype without affecting the aberrant seed morphology. Consistent with these results, ice1 endosperms had an increased capacity for preventing embryo greening, a phenotype previously associated with an increase in endospermic ABA levels. Although ice1 changes the expression of many genes, including some in ABA biosynthesis, catabolism and/or signalling, only ABA INSENSITIVE 3 is significantly misregulated in ice1 mutants. We also demonstrate that ICE1 binds to and inhibits expression of ABA INSENSITIVE 3. Our data demonstrate that Arabidopsis ICE1 and ZOU determine the depth of primary dormancy during maturation independently of their effect on endosperm development.
Collapse
Affiliation(s)
- Dana R. MacGregor
- Department of Crop GeneticsJohn Innes CentreNorwich Research ParkNorwichNR4 7UHUK
- Present address:
Department of Biointeractions and Crop ProtectionRothamsted ResearchHarpenden, HertfordshireAL5 2JQUK
| | - Naichao Zhang
- Department of Crop GeneticsJohn Innes CentreNorwich Research ParkNorwichNR4 7UHUK
| | - Mayumi Iwasaki
- Department of Plant Biology and Institute for Genetics and Genomics in Geneva (iGE3)University of Geneva30, Quai Ernest‐Ansermet CH‐1211Geneva4Switzerland
| | - Min Chen
- Department of Crop GeneticsJohn Innes CentreNorwich Research ParkNorwichNR4 7UHUK
- Present address:
College of Life Science and TechnologyHuazhong Agricultural UniversityWuhan430070China
| | - Anuja Dave
- Department of Crop GeneticsJohn Innes CentreNorwich Research ParkNorwichNR4 7UHUK
| | - Luis Lopez‐Molina
- Department of Plant Biology and Institute for Genetics and Genomics in Geneva (iGE3)University of Geneva30, Quai Ernest‐Ansermet CH‐1211Geneva4Switzerland
| | - Steven Penfield
- Department of Crop GeneticsJohn Innes CentreNorwich Research ParkNorwichNR4 7UHUK
| |
Collapse
|
26
|
Gao P, Xiang D, Quilichini TD, Venglat P, Pandey PK, Wang E, Gillmor CS, Datla R. Gene expression atlas of embryo development in Arabidopsis. PLANT REPRODUCTION 2019; 32:93-104. [PMID: 30762127 DOI: 10.1007/s00497-019-00364-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 02/01/2019] [Indexed: 05/24/2023]
Abstract
Embryogenesis represents a critical phase in the life cycle of flowering plants. Here, we characterize transcriptome landscapes associated with key stages of embryogenesis by combining an optimized method for the isolation of developing Arabidopsis embryos with high-throughput RNA-seq. The resulting RNA-seq datasets identify distinct overlapping patterns of gene expression, as well as temporal shifts in gene activity across embryogenesis. Network analysis revealed stage-specific and multi-stage gene expression clusters and biological functions associated with key stages of embryo development. Methylation-related gene expression was associated with early- and middle-stage embryos, initiation of photosynthesis components with the late embryogenesis stage, and storage/energy-related protein activation with late and mature embryos. These results provide a comprehensive understanding of transcriptome programming in Arabidopsis embryogenesis and identify modules of gene expression corresponding to key stages of embryo development. This dataset and analysis are a unique resource to advance functional genetic analysis of embryo development in plants.
Collapse
Affiliation(s)
- Peng Gao
- Aquatic and Crop Resource Development, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK, S7N 0W9, Canada
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, SK, S7N 4J8, Canada
| | - Daoquan Xiang
- Aquatic and Crop Resource Development, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK, S7N 0W9, Canada
| | - Teagen D Quilichini
- Aquatic and Crop Resource Development, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK, S7N 0W9, Canada
| | - Prakash Venglat
- Aquatic and Crop Resource Development, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK, S7N 0W9, Canada
- Department of Plant Sciences and Crop Development Centre, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK, S7N 5A8, Canada
| | - Prashant K Pandey
- Aquatic and Crop Resource Development, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK, S7N 0W9, Canada
| | - Edwin Wang
- Center for Health Genomics and Informatics, University of Calgary Cumming School of Medicine, Calgary, AB, T2N 4N1, Canada
| | - C Stewart Gillmor
- Laboratorio Nacional de Genómica para la Biodiversidad (Langebio), Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN), Irapuato, Guanajuato, México
| | - Raju Datla
- Aquatic and Crop Resource Development, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK, S7N 0W9, Canada.
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, SK, S7N 4J8, Canada.
| |
Collapse
|
27
|
Hisanaga T, Okahashi K, Yamaoka S, Kajiwara T, Nishihama R, Shimamura M, Yamato KT, Bowman JL, Kohchi T, Nakajima K. A cis-acting bidirectional transcription switch controls sexual dimorphism in the liverwort. EMBO J 2019; 38:embj.2018100240. [PMID: 30609993 PMCID: PMC6418429 DOI: 10.15252/embj.2018100240] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 11/17/2018] [Accepted: 11/27/2018] [Indexed: 01/19/2023] Open
Abstract
Plant life cycles alternate between haploid gametophytes and diploid sporophytes. While regulatory factors determining male and female sexual morphologies have been identified for sporophytic reproductive organs, such as stamens and pistils of angiosperms, those regulating sex‐specific traits in the haploid gametophytes that produce male and female gametes and hence are central to plant sexual reproduction are poorly understood. Here, we identified a MYB‐type transcription factor, MpFGMYB, as a key regulator of female sexual differentiation in the haploid‐dominant dioicous liverwort, Marchantia polymorpha. MpFGMYB is specifically expressed in females and its loss resulted in female‐to‐male sex conversion. Strikingly, MpFGMYB expression is suppressed in males by a cis‐acting antisense gene SUF at the same locus, and loss‐of‐function suf mutations resulted in male‐to‐female sex conversion. Thus, the bidirectional transcription module at the MpFGMYB/SUF locus acts as a toggle between female and male sexual differentiation in M. polymorpha gametophytes. Arabidopsis thaliana MpFGMYB orthologs are known to be expressed in embryo sacs and promote their development. Thus, phylogenetically related MYB transcription factors regulate female gametophyte development across land plants.
Collapse
Affiliation(s)
- Tetsuya Hisanaga
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara, Japan
| | | | - Shohei Yamaoka
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | | | | | - Masaki Shimamura
- Graduate School of Science, Hiroshima University, Kagamiyama, Higashi-Hiroshima, Japan
| | - Katsuyuki T Yamato
- Faculty of Biology-Oriented Science and Technology, Kindai University, Kinokawa, Wakayama, Japan
| | - John L Bowman
- School of Biological Sciences, Monash University, Melbourne, Vic., Australia
| | - Takayuki Kohchi
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Keiji Nakajima
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara, Japan
| |
Collapse
|
28
|
Liu B, Sun Y, Xue J, Mao X, Jia X, Li R. Stearoyl-ACP Δ 9 Desaturase 6 and 8 (GhA-SAD6 and GhD-SAD8) Are Responsible for Biosynthesis of Palmitoleic Acid Specifically in Developing Endosperm of Upland Cotton Seeds. FRONTIERS IN PLANT SCIENCE 2019; 10:703. [PMID: 31214221 PMCID: PMC6554319 DOI: 10.3389/fpls.2019.00703] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 05/13/2019] [Indexed: 05/06/2023]
Abstract
Palmitoleic acid (16:1Δ9) is one kind of ω-7 fatty acids (ω-7 FAs) widely used in food, nutraceutical and industry. However, such high-valued ω-7 FA only has a trace level in mature seeds of cotton and other common oil crops. We found that palmitoleic acid (>10.58 Mol%) was specially enriched in developing cotton endosperm which is disappeared in its mature seed. The present study was conducted to investigate the mechanism underlying high accumulation of palmitoleic acid in developing endosperm but not in embryo of upland cotton (Gossypium hirsutum L.) seed. Of 17 stearoyl-ACP Δ9 desaturases (SAD) gene family members identified in upland cotton, six GhSADs may specifically work in the desaturation of palmitic acid (16:0-ACP) to produce palmitoleic acid (16:1Δ9-ACP), which were revealed by examining the key amino acids in the catalytic center and their cis-elements. Gene expression analysis showed that spatial patterns of these GhSADs were different in developing ovules, with GhA-SAD6 and GhD-SAD8 preferentially expressed in developing endosperms. Functional analysis by transient expression in Nicotiana benthamiana leaves and genetic complementary assay using yeast mutant BY4389 strain unable to synthesize unsaturated fatty acids demonstrated that GhA-SAD6 and GhD-SAD8 have strong substrate specificity for 16:0-ACP. In contrast, GhA-SAD5 and GhA-SAD7 exhibited high specific activity on 18:0-ACP. Taken together, these data evidence that GhA-SAD6 and GhD-SAD8 are responsible for making palmitoleic acid in developing cotton endosperms, and provide endogenous gene targets for genetic modification to enrich ω-7 FAs in cotton seed oil required for sustainable production of functionality-valued products.
Collapse
|
29
|
Lepiniec L, Devic M, Roscoe TJ, Bouyer D, Zhou DX, Boulard C, Baud S, Dubreucq B. Molecular and epigenetic regulations and functions of the LAFL transcriptional regulators that control seed development. PLANT REPRODUCTION 2018; 31:291-307. [PMID: 29797091 DOI: 10.1007/s00497-018-0337-2] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 05/10/2018] [Indexed: 05/20/2023]
Abstract
The LAFL (i.e. LEC1, ABI3, FUS3, and LEC2) master transcriptional regulators interact to form different complexes that induce embryo development and maturation, and inhibit seed germination and vegetative growth in Arabidopsis. Orthologous genes involved in similar regulatory processes have been described in various angiosperms including important crop species. Consistent with a prominent role of the LAFL regulators in triggering and maintaining embryonic cell fate, their expression appears finely tuned in different tissues during seed development and tightly repressed in vegetative tissues by a surprisingly high number of genetic and epigenetic factors. Partial functional redundancies and intricate feedback regulations of the LAFL have hampered the elucidation of the underpinning molecular mechanisms. Nevertheless, genetic, genomic, cellular, molecular, and biochemical analyses implemented during the last years have greatly improved our knowledge of the LALF network. Here we summarize and discuss recent progress, together with current issues required to gain a comprehensive insight into the network, including the emerging function of LEC1 and possibly LEC2 as pioneer transcription factors.
Collapse
Affiliation(s)
- L Lepiniec
- IJPB (Institut Jean-Pierre Bourgin), INRA, AgroParisTech, CNRS, Université Paris-Saclay, RD10, 78026, Versailles, France.
| | - M Devic
- Régulations Epigénétiques et Développement de la Graine, ERL 5300 CNRS-IRD UMR DIADE, IRD centre de Montpellier, 911 Avenue Agropolis, BP 64501, 34394, Montpellier, France
- Laboratoire d'Océanographie Microbienne, Observatoire Océanologique, Sorbonne Universités, Université Pierre et Marie Curie (Paris 06) & Centre National pour la Recherche Scientifique CNRS UMR 7621, 66650, Banyuls-sur-Mer, France
| | - T J Roscoe
- Régulations Epigénétiques et Développement de la Graine, ERL 5300 CNRS-IRD UMR DIADE, IRD centre de Montpellier, 911 Avenue Agropolis, BP 64501, 34394, Montpellier, France
- Laboratoire d'Océanographie Microbienne, Observatoire Océanologique, Sorbonne Universités, Université Pierre et Marie Curie (Paris 06) & Centre National pour la Recherche Scientifique CNRS UMR 7621, 66650, Banyuls-sur-Mer, France
| | - D Bouyer
- Institut de Biologie de l'ENS, CNRS UMR8197, Ecole Normale Supérieure, 46 rue d'Ulm, 75230, Paris Cedex 05, France
| | - D-X Zhou
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris Sud 11, Université Paris-Saclay, 91405, Orsay, France
| | - C Boulard
- IJPB (Institut Jean-Pierre Bourgin), INRA, AgroParisTech, CNRS, Université Paris-Saclay, RD10, 78026, Versailles, France
| | - S Baud
- IJPB (Institut Jean-Pierre Bourgin), INRA, AgroParisTech, CNRS, Université Paris-Saclay, RD10, 78026, Versailles, France
| | - B Dubreucq
- IJPB (Institut Jean-Pierre Bourgin), INRA, AgroParisTech, CNRS, Université Paris-Saclay, RD10, 78026, Versailles, France
| |
Collapse
|
30
|
Abstract
Studying seed oil metabolism. The seeds of higher plants represent valuable factories capable of converting photosynthetically derived sugars into a variety of storage compounds, including oils. Oils are the most energy-dense plant reserves and fatty acids composing these oils represent an excellent nutritional source. They supply humans with much of the calories and essential fatty acids required in their diet. These oils are then increasingly being utilized as renewable alternatives to petroleum for the chemical industry and for biofuels. Plant oils therefore represent a highly valuable agricultural commodity, the demand for which is increasing rapidly. Knowledge regarding seed oil production is extensively exploited in the frame of breeding programs and approaches of metabolic engineering for oilseed crop improvement. Complementary aspects of this research include (1) the study of carbon metabolism responsible for the conversion of photosynthetically derived sugars into precursors for fatty acid biosynthesis, (2) the identification and characterization of the enzymatic actors allowing the production of the wide set of fatty acid structures found in seed oils, and (3) the investigation of the complex biosynthetic pathways leading to the production of storage lipids (waxes, triacylglycerols). In this review, we outline the most recent developments in our understanding of the underlying biochemical and molecular mechanisms of seed oil production, focusing on fatty acids and oils that can have a significant impact on the emerging bioeconomy.
Collapse
Affiliation(s)
- Sébastien Baud
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, RD10, 78026, Versailles Cedex, France.
| |
Collapse
|
31
|
Overexpression of MYB115, AAD2, or AAD3 in Arabidopsis thaliana seeds yields contrasting omega-7 contents. PLoS One 2018; 13:e0192156. [PMID: 29381741 PMCID: PMC5790276 DOI: 10.1371/journal.pone.0192156] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 01/17/2018] [Indexed: 01/14/2023] Open
Abstract
Omega-7 monoenoic fatty acids (ω-7 FAs) are increasingly exploited both for their positive effects on health and for their industrial potential. Some plant species produce fruits or seeds with high amounts of ω-7 FAs. However, the low yields and poor agronomic properties of these plants preclude their commercial use. As an alternative, the metabolic engineering of oilseed crops for sustainable ω-7 FA production has been proposed. Two palmitoyl-ACP desaturases (PADs) catalyzing ω-7 FA biosynthesis were recently identified and characterized in Arabidopsis thaliana, together with MYB115 and MYB118, two transcription factors that positively control the expression of the corresponding PAD genes. In the present research, we examine the biotechnological potential of these new actors of ω-7 metabolism for the metabolic engineering of plant-based production of ω-7 FAs. We placed the PAD and MYB115 coding sequences under the control of a promoter strongly induced in seeds and evaluated these different constructs in A. thaliana. Seeds were obtained that exhibit ω-7 FA contents ranging from 10 to >50% of the total FAs, and these major compositional changes have no detrimental effect on seed germination.
Collapse
|
32
|
Nakamura Y. Plant Phospholipid Diversity: Emerging Functions in Metabolism and Protein-Lipid Interactions. TRENDS IN PLANT SCIENCE 2017; 22:1027-1040. [PMID: 28993119 DOI: 10.1016/j.tplants.2017.09.002] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 08/26/2017] [Accepted: 09/07/2017] [Indexed: 05/22/2023]
Abstract
Phospholipids are essential components of biological membranes and signal transduction cascades in plants. In recent years, plant phospholipid research was greatly advanced by the characterization of numerous mutants affected in phospholipid biosynthesis and the discovery of a number of functionally important phospholipid-binding proteins. It is now accepted that most phospholipids to some extent have regulatory functions, including those that serve as constituents of biological membranes. Phospholipids are more than an inert end product of lipid biosynthesis. This review article summarizes recent advances on phospholipid biosynthesis with a particular focus on polar head group synthesis, followed by a short overview on protein-phospholipid interactions as an emerging regulatory mechanism of phospholipid function in arabidopsis (Arabidopsis thaliana).
Collapse
Affiliation(s)
- Yuki Nakamura
- Institute of Plant and Microbial Biology, Academia Sinica, Taiwan 11529, Taiwan; http://ipmb.sinica.edu.tw/index.html/?q=node/972&language=en.
| |
Collapse
|
33
|
Boulard C, Fatihi A, Lepiniec L, Dubreucq B. Regulation and evolution of the interaction of the seed B3 transcription factors with NF-Y subunits. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2017; 1860:1069-1078. [PMID: 28866096 DOI: 10.1016/j.bbagrm.2017.08.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 08/28/2017] [Accepted: 08/28/2017] [Indexed: 12/14/2022]
Abstract
The LAFL genes (LEC2, ABI3, FUS3, LEC1) encode transcription factors that regulate different aspects of seed development, from early to late embryogenesis and accumulation of storage compounds. These transcription factors form a complex network, with members able to interact with various other players to control the switch between embryo development and seed maturation and, at a later stage in the plant life cycle, between the mature seed and germination. In this review, we first summarize our current understanding of the role of each member in the network in the light of recent advances regarding their regulation and structure/function relationships. In a second part, we discuss new insights concerning the evolution of the LAFL genes to address the more specific question of the conservation of LEAFY COTYLEDONS 2 in both dicots and monocots and the putative origin of the network. Last we examine the current major limitations to current knowledge and future prospects to improve our understanding of this regulatory network.
Collapse
Affiliation(s)
- C Boulard
- Institut Jean-Pierre Bourgin (IJPB), INRA, AgroParisTech, ERL-CNRS, Saclay Plant Sciences (SPS), Université Paris-Saclay, RD10, F-78026 Versailles, France
| | - A Fatihi
- Institut Jean-Pierre Bourgin (IJPB), INRA, AgroParisTech, ERL-CNRS, Saclay Plant Sciences (SPS), Université Paris-Saclay, RD10, F-78026 Versailles, France
| | - L Lepiniec
- Institut Jean-Pierre Bourgin (IJPB), INRA, AgroParisTech, ERL-CNRS, Saclay Plant Sciences (SPS), Université Paris-Saclay, RD10, F-78026 Versailles, France
| | - B Dubreucq
- Institut Jean-Pierre Bourgin (IJPB), INRA, AgroParisTech, ERL-CNRS, Saclay Plant Sciences (SPS), Université Paris-Saclay, RD10, F-78026 Versailles, France.
| |
Collapse
|