1
|
Linares A, Härter NC, Rannou E, Bischof S. Identification of Plant Chromatin Interaction Networks Using IP-MS and co-IP. Methods Mol Biol 2025; 2873:129-143. [PMID: 39576600 DOI: 10.1007/978-1-0716-4228-3_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2024]
Abstract
Proteins often act in concert to perform their function. Thus, the identification of protein complexes is crucial if we want to understand how they work. In this chapter, we present a highly sensitive protocol for the immunoprecipitation of nuclear chromatin-linked proteins in Arabidopsis thaliana that does not rely on time-consuming nuclei extraction. Interaction partners are identified using mass spectrometry and confirmed by co-immunoprecipitation. To help solubilize chromatin-bound proteins and eliminate nonspecific interactions of proteins binding the same DNA stretch, we include an enzymatic digestion step to remove DNA before immunoprecipitation. Our protocol offers a simplified process using optimized buffers, which facilitates quick and effective immunoprecipitation. The outcome is high-quality eluates that are ideal for identifying proteins through MS.
Collapse
Affiliation(s)
- Alberto Linares
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Nicole Corina Härter
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Emilie Rannou
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Sylvain Bischof
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
2
|
Machelová A, Dadejová MN, Franek M, Mougeot G, Simon L, Le Goff S, Duc C, Bassler J, Demko M, Schwarzerová J, Desset S, Probst AV, Dvořáčková M. The histone chaperones ASF1 and HIRA are required for telomere length and 45S rDNA copy number homeostasis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:1125-1141. [PMID: 39400911 DOI: 10.1111/tpj.17041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 09/03/2024] [Accepted: 09/06/2024] [Indexed: 10/15/2024]
Abstract
Genome stability is significantly influenced by the precise coordination of chromatin complexes that facilitate the loading and eviction of histones from chromatin during replication, transcription, and DNA repair processes. In this study, we investigate the role of the Arabidopsis H3 histone chaperones ANTI-SILENCING FUNCTION 1 (ASF1) and HISTONE REGULATOR A (HIRA) in the maintenance of telomeres and 45S rDNA loci, genomic sites that are particularly susceptible to changes in the chromatin structure. We find that both ASF1 and HIRA are essential for telomere length regulation, as telomeres are significantly shorter in asf1a1b and hira mutants. However, these shorter telomeres remain localized around the nucleolus and exhibit a comparable relative H3 occupancy to the wild type. In addition to regulating telomere length, ASF1 and HIRA contribute to silencing 45S rRNA genes and affect their copy number. Besides, ASF1 supports global heterochromatin maintenance. Our findings also indicate that ASF1 transiently binds to the TELOMERE REPEAT BINDING 1 protein and the N terminus of telomerase in vivo, suggesting a physical link between the ASF1 histone chaperone and the telomere maintenance machinery.
Collapse
Affiliation(s)
- Adéla Machelová
- Mendel Centre for Plant Genomics and Proteomics, CEITEC, Masaryk University, Brno, CZ-62500, Czech Republic
- Laboratory of Functional Genomics and Proteomics, NCBR, Faculty of Science, Masaryk University, Brno, CZ-61137, Czech Republic
| | - Martina Nešpor Dadejová
- Mendel Centre for Plant Genomics and Proteomics, CEITEC, Masaryk University, Brno, CZ-62500, Czech Republic
| | - Michal Franek
- Mendel Centre for Plant Genomics and Proteomics, CEITEC, Masaryk University, Brno, CZ-62500, Czech Republic
| | - Guillaume Mougeot
- iGReD, Université Clermont Auvergne, CNRS, INSERM, BP 38, Clermont-Ferrand, 63001, France
| | - Lauriane Simon
- iGReD, Université Clermont Auvergne, CNRS, INSERM, BP 38, Clermont-Ferrand, 63001, France
| | - Samuel Le Goff
- iGReD, Université Clermont Auvergne, CNRS, INSERM, BP 38, Clermont-Ferrand, 63001, France
| | - Céline Duc
- Nantes Université, CNRS, US2B UMR 6286, Nantes, F-44000, France
| | - Jasmin Bassler
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna Biocenter (VBC), Vienna, 1030, Austria
| | - Martin Demko
- Core Facility Bioinformatics, CEITEC, Masaryk University, Brno, CZ-62500, Czech Republic
| | - Jana Schwarzerová
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Brno, 616 00, Czech Republic
- Molecular Systems Biology (MOSYS), Department of Functional and Evolutionary Ecology, Faculty of Life Sciences, University of Vienna, Vienna, 1030, Austria
| | - Sophie Desset
- iGReD, Université Clermont Auvergne, CNRS, INSERM, BP 38, Clermont-Ferrand, 63001, France
| | - Aline V Probst
- iGReD, Université Clermont Auvergne, CNRS, INSERM, BP 38, Clermont-Ferrand, 63001, France
| | - Martina Dvořáčková
- Mendel Centre for Plant Genomics and Proteomics, CEITEC, Masaryk University, Brno, CZ-62500, Czech Republic
- Laboratory of Functional Genomics and Proteomics, NCBR, Faculty of Science, Masaryk University, Brno, CZ-61137, Czech Republic
| |
Collapse
|
3
|
Zhang G, Wei B, Ding Q. Identification of differentially expressed miRNAs between male sterile and fertile floral buds in watermelon ( Citrullus lanatus L.) via high-throughput sequencing. 3 Biotech 2024; 14:247. [PMID: 39345966 PMCID: PMC11424599 DOI: 10.1007/s13205-024-04084-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 09/05/2024] [Indexed: 10/01/2024] Open
Abstract
This experiment used floral buds from watermelon genic male sterile dual-purpose lines as materials to explore the differentially expressed miRNAs (DEMs) between male fertile and sterile floral buds of watermelon. Paraffin sectioning technology was employed for a cytological analysis, and small RNA sequencing was used to explore miRNAs related to anther or pollen development. Cytological analysis indicated that the abnormal development of tapetal cells may cause microspore abortion. Small RNA sequencing identified a total of 314 miRNAs (29 known and 285 novel, which belonged to 12 and 61 miRNA families, respectively) in floral buds. Differential expression revealed 36 (5 known and 31 novel) DEMs between male fertile and sterile buds, 7 and 29 of which were up-regulated and down-regulated, respectively. Target genes analysis showed that the 36 DEMs were predicted to target 577 genes, and these targets might participate in various biological processes, such as response to metal ions, floral organ development, stamen development, anther development, pollen maturation, and programmed cell death. Moreover, pathway analysis indicated that these genes were mainly enriched in purine metabolism, starch and sucrose metabolism, RNA transport, and other pathways. In addition, the 55 miRNA-target modules, including 3 known and 16 novel miRNAs with 30 target genes, might be related to anther or pollen development in watermelon. Our findings provide important miRNA-target modules related to watermelon anther or pollen development and can lay the foundation for biological functional analysis. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-024-04084-6.
Collapse
Affiliation(s)
- Gaoyuan Zhang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070 Gansu China
| | - Bingqiang Wei
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070 Gansu China
| | - Qian Ding
- College of Floriculture, Weifang Engineering Vocational College, Qingzhou, 262500 Shandong China
| |
Collapse
|
4
|
Takeuchi H, Nagahara S, Higashiyama T, Berger F. The Chaperone NASP Contributes to de Novo Deposition of the Centromeric Histone Variant CENH3 in Arabidopsis Early Embryogenesis. PLANT & CELL PHYSIOLOGY 2024; 65:1135-1148. [PMID: 38597891 PMCID: PMC11287212 DOI: 10.1093/pcp/pcae030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 03/01/2024] [Accepted: 03/25/2024] [Indexed: 04/11/2024]
Abstract
The centromere is an essential chromosome region where the kinetochore is formed to control equal chromosome distribution during cell division. The centromere-specific histone H3 variant CENH3 (also called CENP-A) is a prerequisite for the kinetochore formation. Since CENH3 evolves rapidly, associated factors, including histone chaperones mediating the deposition of CENH3 on the centromere, are thought to act through species-specific amino acid sequences. The functions and interaction networks of CENH3 and histone chaperons have been well-characterized in animals and yeasts. However, molecular mechanisms involved in recognition and deposition of CENH3 are still unclear in plants. Here, we used a swapping strategy between domains of CENH3 of Arabidopsis thaliana and the liverwort Marchantia polymorpha to identify specific regions of CENH3 involved in targeting the centromeres and interacting with the general histone H3 chaperone, nuclear autoantigenic sperm protein (NASP). CENH3's LoopN-α1 region was necessary and sufficient for the centromere targeting in cooperation with the α2 region and was involved in interaction with NASP in cooperation with αN, suggesting a species-specific CENH3 recognition. In addition, by generating an Arabidopsis nasp knock-out mutant in the background of a fully fertile GFP-CENH3/cenh3-1 line, we found that NASP was implicated for de novo CENH3 deposition after fertilization and thus for early embryo development. Our results imply that the NASP mediates the supply of CENH3 in the context of the rapidly evolving centromere identity in land plants.
Collapse
Affiliation(s)
- Hidenori Takeuchi
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Aichi 464-8601, Japan
- Institute for Advanced Research, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Shiori Nagahara
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Tetsuya Higashiyama
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Aichi 464-8601, Japan
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Frédéric Berger
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Vienna 1030, Austria
| |
Collapse
|
5
|
Gaur A, Jindal Y, Singh V, Tiwari R, Juliana P, Kaushik D, Kumar KJY, Ahlawat OP, Singh G, Sheoran S. GWAS elucidated grain yield genetics in Indian spring wheat under diverse water conditions. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:177. [PMID: 38972024 DOI: 10.1007/s00122-024-04680-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 06/11/2024] [Indexed: 07/08/2024]
Abstract
KEY MESSAGE Underpinned natural variations and key genes associated with yield under different water regimes, and identified genomic signatures of genetic gain in the Indian wheat breeding program. A novel KASP marker for TKW under water stress was developed and validated. A comprehensive genome-wide association study was conducted on 300 spring wheat genotypes to elucidate the natural variations associated with grain yield and its eleven contributing traits under fully irrigated, restricted water, and simulated no water conditions. Utilizing the 35K Wheat Breeders' Array, we identified 1155 quantitative trait nucleotides (QTNs), with 207 QTNs exhibiting stability across diverse conditions. These QTNs were further delimited into 539 genomic regions using a genome-wide LD value of 3.0 Mbp, revealing pleiotropic control across traits and conditions. Sub-genome A was significantly associated with traits under irrigated conditions, while sub-genome B showed more QTNs under water stressed conditions. Favourable alleles with significantly associated QTNs were delineated, with a notable pyramiding effect for enhancing trait performance. Additionally, allele of only 921 QTNs significantly affected the population mean. Allele profiling highlighted C-306 as a most potential source of drought tolerance. Moreover, 762 genes overlapping significant QTNs were identified, narrowing down to 27 putative candidate genes overlapping 29 novel and functional SNPs expressing (≥ 0.5 tpm) relevance across various growth conditions. A new KASP assay was developed, targeting a gene TraesCS2A03G1123700 regulating thousand kernel weight under severe drought condition. Genomic selection models (GBLUP, BayesB, MxE, and R-Norm) demonstrated an average prediction accuracy of 0.06-0.58 across environments, indicating potential for trait selection. Retrospective analysis of the Indian wheat breeding program supported a genetic gain in GY at the rate of ca. 0.56% per breeding cycle, since 1960, supporting the identification of genomic signatures driving trait selection and genetic gain. These findings offer insight into improving the rate of genetic gain in wheat breeding programs globally.
Collapse
Affiliation(s)
- Arpit Gaur
- Department of Genetics and Plant Breeding, CCS Haryana Agricultural University, Hisar, India
- Crop Improvement, ICAR- Indian Institute of Wheat and Barley Research, Karnal, India
| | - Yogesh Jindal
- Department of Genetics and Plant Breeding, CCS Haryana Agricultural University, Hisar, India
| | - Vikram Singh
- Department of Genetics and Plant Breeding, CCS Haryana Agricultural University, Hisar, India
| | - Ratan Tiwari
- Crop Improvement, ICAR- Indian Institute of Wheat and Barley Research, Karnal, India
| | | | - Deepak Kaushik
- Department of Genetics and Plant Breeding, CCS Haryana Agricultural University, Hisar, India
| | | | - Om Parkash Ahlawat
- Crop Improvement, ICAR- Indian Institute of Wheat and Barley Research, Karnal, India
| | - Gyanendra Singh
- Crop Improvement, ICAR- Indian Institute of Wheat and Barley Research, Karnal, India
| | - Sonia Sheoran
- Crop Improvement, ICAR- Indian Institute of Wheat and Barley Research, Karnal, India.
| |
Collapse
|
6
|
Franek M, Nešpor Dadejová M, Pírek P, Kryštofová K, Dobisová T, Zdráhal Z, Dvořáčková M, Lochmanová G. Histone Chaperone Deficiency in Arabidopsis Plants Triggers Adaptive Epigenetic Changes in Histone Variants and Modifications. Mol Cell Proteomics 2024; 23:100795. [PMID: 38848995 PMCID: PMC11263794 DOI: 10.1016/j.mcpro.2024.100795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/14/2024] [Accepted: 06/04/2024] [Indexed: 06/09/2024] Open
Abstract
At the molecular scale, adaptive advantages during plant growth and development rely on modulation of gene expression, primarily provided by epigenetic machinery. One crucial part of this machinery is histone posttranslational modifications, which form a flexible system, driving transient changes in chromatin, and defining particular epigenetic states. Posttranslational modifications work in concert with replication-independent histone variants further adapted for transcriptional regulation and chromatin repair. However, little is known about how such complex regulatory pathways are orchestrated and interconnected in cells. In this work, we demonstrate the utility of mass spectrometry-based approaches to explore how different epigenetic layers interact in Arabidopsis mutants lacking certain histone chaperones. We show that defects in histone chaperone function (e.g., chromatin assembly factor-1 or nucleosome assembly protein 1 mutations) translate into an altered epigenetic landscape, which aids the plant in mitigating internal instability. We observe changes in both the levels and distribution of H2A.W.7, altogether with partial repurposing of H3.3 and changes in the key repressive (H3K27me1/2) or euchromatic marks (H3K36me1/2). These shifts in the epigenetic profile serve as a compensatory mechanism in response to impaired integration of the H3.1 histone in the fas1 mutants. Altogether, our findings suggest that maintaining genome stability involves a two-tiered approach. The first relies on flexible adjustments in histone marks, while the second level requires the assistance of chaperones for histone variant replacement.
Collapse
Affiliation(s)
- Michal Franek
- Mendel Center for Plant Genomics and Proteomics, Central European Institute of Technology, Brno, Czech Republic
| | - Martina Nešpor Dadejová
- Mendel Center for Plant Genomics and Proteomics, Central European Institute of Technology, Brno, Czech Republic
| | - Pavlína Pírek
- Mendel Center for Plant Genomics and Proteomics, Central European Institute of Technology, Brno, Czech Republic
| | - Karolína Kryštofová
- Mendel Center for Plant Genomics and Proteomics, Central European Institute of Technology, Brno, Czech Republic; National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic
| | | | - Zbyněk Zdráhal
- Mendel Center for Plant Genomics and Proteomics, Central European Institute of Technology, Brno, Czech Republic; National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Martina Dvořáčková
- Mendel Center for Plant Genomics and Proteomics, Central European Institute of Technology, Brno, Czech Republic; National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic.
| | - Gabriela Lochmanová
- Mendel Center for Plant Genomics and Proteomics, Central European Institute of Technology, Brno, Czech Republic; National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic.
| |
Collapse
|
7
|
Omondi EO, Lin CY, Huang SM, Liao CA, Lin YP, Oliva R, van Zonneveld M. Landscape genomics reveals genetic signals of environmental adaptation of African wild eggplants. Ecol Evol 2024; 14:e11662. [PMID: 38983700 PMCID: PMC11232056 DOI: 10.1002/ece3.11662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 06/03/2024] [Accepted: 06/18/2024] [Indexed: 07/11/2024] Open
Abstract
Crop wild relatives (CWR) provide a valuable resource for improving crops. They possess desirable traits that confer resilience to various environmental stresses. To fully utilize crop wild relatives in breeding and conservation programs, it is important to understand the genetic basis of their adaptation. Landscape genomics associates environments with genomic variation and allows for examining the genetic basis of adaptation. Our study examined the differences in allele frequency of 15,416 single nucleotide polymorphisms (SNPs) generated through genotyping by sequencing approach among 153 accessions of 15 wild eggplant relatives and two cultivated species from Africa, the principal hotspot of these wild relatives. We also explored the correlation between these variations and the bioclimatic and soil conditions at their collection sites, providing a comprehensive understanding of the genetic signals of environmental adaptation in African wild eggplant. Redundancy analysis (RDA) results showed that the environmental variation explained 6% while the geographical distances among the collection sites explained 15% of the genomic variation in the eggplant wild relative populations when controlling for population structure. Our findings indicate that even though environmental factors are not the main driver of selection in eggplant wild relatives, it is influential in shaping the genomic variation over time. The selected environmental variables and candidate SNPs effectively revealed grouping patterns according to the environmental characteristics of sampling sites. Using four genotype-environment association methods, we detected 396 candidate SNPs (2.5% of the initial SNPs) associated with eight environmental factors. Some of these SNPs signal genes involved in pathways that help adapt to environmental stresses such as drought, heat, cold, salinity, pests, and diseases. These candidate SNPs will be useful for marker-assisted improvement and characterizing the germplasm of this crop for developing climate-resilient eggplant varieties. The study provides a model for applying landscape genomics to other crops' wild relatives.
Collapse
Affiliation(s)
- Emmanuel O Omondi
- Genetic Resources and Seed Unit World Vegetable Center Tainan Taiwan
| | - Chen-Yu Lin
- Biotechnology, World Vegetable Center Tainan Taiwan
| | | | - Cheng-An Liao
- Department of Horticulture National Taiwan University Taipei Taiwan
| | - Ya-Ping Lin
- Biotechnology, World Vegetable Center Tainan Taiwan
| | - Ricardo Oliva
- Plant Pathology World Vegetable Center Tainan Taiwan
| | | |
Collapse
|
8
|
Simon L, Probst AV. Maintenance and dynamic reprogramming of chromatin organization during development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:657-670. [PMID: 36700345 DOI: 10.1111/tpj.16119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 06/17/2023]
Abstract
Controlled transcription of genes is critical for cell differentiation and development. Gene expression regulation therefore involves a multilayered control from nucleosome composition in histone variants and their post-translational modifications to higher-order folding of chromatin fibers and chromatin interactions in nuclear space. Recent technological advances have allowed gaining insight into these mechanisms, the interplay between local and higher-order chromatin organization, and the dynamic changes that occur during stress response and developmental transitions. In this review, we will discuss chromatin organization from the nucleosome to its three-dimensional structure in the nucleus, and consider how these different layers of organization are maintained during the cell cycle or rapidly reprogrammed during development.
Collapse
Affiliation(s)
- Lauriane Simon
- iGReD, CNRS, Inserm, Université Clermont Auvergne, 63000, Clermont-Ferrand, France
| | - Aline V Probst
- iGReD, CNRS, Inserm, Université Clermont Auvergne, 63000, Clermont-Ferrand, France
| |
Collapse
|
9
|
Liu K, Yin C, Ye W, Ma M, Wang Y, Wang P, Fang Y. Histone Variant H3.3 Controls Arabidopsis Fertility by Regulating Male Gamete Development. PLANT & CELL PHYSIOLOGY 2024; 65:68-78. [PMID: 37814936 DOI: 10.1093/pcp/pcad119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/13/2023] [Accepted: 10/01/2023] [Indexed: 10/11/2023]
Abstract
Reprograming of chromatin structures and changes in gene expression are critical for plant male gamete development, and epigenetic marks play an important role in these processes. Histone variant H3.3 is abundant in euchromatin and is largely associated with transcriptional activation. The precise function of H3.3 in gamete development remains unclear in plants. Here, we report that H3.3 is abundantly expressed in Arabidopsis anthers and its knockout mutant h3.3-1 is sterile due to male sterility. Transcriptome analysis of young inflorescence has identified 2348 genes downregulated in h3.3-1 mutant, among which 1087 target genes are directly bound by H3.3, especially at their 3' ends. As a group, this set of H3.3 targets is enriched in the reproduction-associated processes including male gamete generation, pollen sperm cell differentiation and pollen tube growth. The function of H3.3 in male gamete development is dependent on the Anti-Silencing Factor 1A/1B (ASF1A/1B)-Histone regulator A (HIRA)-mediated pathway. Our results suggest that ASF1A/1B-HIRA-mediated H3.3 deposition at its direct targets for transcription activation forms the regulatory networks responsible for male gamete development.
Collapse
Affiliation(s)
- Kunpeng Liu
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chunmei Yin
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wenjing Ye
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Min Ma
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yuanda Wang
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Pan Wang
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yuda Fang
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
10
|
Lee SC, Adams DW, Ipsaro JJ, Cahn J, Lynn J, Kim HS, Berube B, Major V, Calarco JP, LeBlanc C, Bhattacharjee S, Ramu U, Grimanelli D, Jacob Y, Voigt P, Joshua-Tor L, Martienssen RA. Chromatin remodeling of histone H3 variants by DDM1 underlies epigenetic inheritance of DNA methylation. Cell 2023; 186:4100-4116.e15. [PMID: 37643610 PMCID: PMC10529913 DOI: 10.1016/j.cell.2023.08.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/19/2023] [Accepted: 08/01/2023] [Indexed: 08/31/2023]
Abstract
Nucleosomes block access to DNA methyltransferase, unless they are remodeled by DECREASE in DNA METHYLATION 1 (DDM1LSH/HELLS), a Snf2-like master regulator of epigenetic inheritance. We show that DDM1 promotes replacement of histone variant H3.3 by H3.1. In ddm1 mutants, DNA methylation is partly restored by loss of the H3.3 chaperone HIRA, while the H3.1 chaperone CAF-1 becomes essential. The single-particle cryo-EM structure at 3.2 Å of DDM1 with a variant nucleosome reveals engagement with histone H3.3 near residues required for assembly and with the unmodified H4 tail. An N-terminal autoinhibitory domain inhibits activity, while a disulfide bond in the helicase domain supports activity. DDM1 co-localizes with H3.1 and H3.3 during the cell cycle, and with the DNA methyltransferase MET1Dnmt1, but is blocked by H4K16 acetylation. The male germline H3.3 variant MGH3/HTR10 is resistant to remodeling by DDM1 and acts as a placeholder nucleosome in sperm cells for epigenetic inheritance.
Collapse
Affiliation(s)
- Seung Cho Lee
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - Dexter W Adams
- W. M. Keck Structural Biology Laboratory, Howard Hughes Medical Institute, Cold Spring Harbor, NY 11724, USA; Graduate Program in Genetics, Stony Brook University, Stony Brook, NY 11794, USA
| | - Jonathan J Ipsaro
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA; W. M. Keck Structural Biology Laboratory, Howard Hughes Medical Institute, Cold Spring Harbor, NY 11724, USA
| | - Jonathan Cahn
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - Jason Lynn
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - Hyun-Soo Kim
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - Benjamin Berube
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA; Cold Spring Harbor Laboratory School of Biological Sciences, 1 Bungtown Rd, Cold Spring Harbor, NY 11724, USA
| | - Viktoria Major
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Joseph P Calarco
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA; Cold Spring Harbor Laboratory School of Biological Sciences, 1 Bungtown Rd, Cold Spring Harbor, NY 11724, USA
| | - Chantal LeBlanc
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - Sonali Bhattacharjee
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - Umamaheswari Ramu
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - Daniel Grimanelli
- Institut de Recherche pour le Développement, 911Avenue Agropolis, 34394 Montpelier, France
| | - Yannick Jacob
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - Philipp Voigt
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Leemor Joshua-Tor
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA; W. M. Keck Structural Biology Laboratory, Howard Hughes Medical Institute, Cold Spring Harbor, NY 11724, USA.
| | - Robert A Martienssen
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
11
|
Lee SC, Adams DW, Ipsaro JJ, Cahn J, Lynn J, Kim HS, Berube B, Major V, Calarco JP, LeBlanc C, Bhattacharjee S, Ramu U, Grimanelli D, Jacob Y, Voigt P, Joshua-Tor L, Martienssen RA. Chromatin remodeling of histone H3 variants underlies epigenetic inheritance of DNA methylation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.11.548598. [PMID: 37503143 PMCID: PMC10369972 DOI: 10.1101/2023.07.11.548598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Epigenetic inheritance refers to the faithful replication of DNA methylation and histone modification independent of DNA sequence. Nucleosomes block access to DNA methyltransferases, unless they are remodeled by DECREASE IN DNA METHYLATION1 (DDM1 Lsh/HELLS ), a Snf2-like master regulator of epigenetic inheritance. We show that DDM1 activity results in replacement of the transcriptional histone variant H3.3 for the replicative variant H3.1 during the cell cycle. In ddm1 mutants, DNA methylation can be restored by loss of the H3.3 chaperone HIRA, while the H3.1 chaperone CAF-1 becomes essential. The single-particle cryo-EM structure at 3.2 Å of DDM1 with a variant nucleosome reveals direct engagement at SHL2 with histone H3.3 at or near variant residues required for assembly, as well as with the deacetylated H4 tail. An N-terminal autoinhibitory domain binds H2A variants to allow remodeling, while a disulfide bond in the helicase domain is essential for activity in vivo and in vitro . We show that differential remodeling of H3 and H2A variants in vitro reflects preferential deposition in vivo . DDM1 co-localizes with H3.1 and H3.3 during the cell cycle, and with the DNA methyltransferase MET1 Dnmt1 . DDM1 localization to the chromosome is blocked by H4K16 acetylation, which accumulates at DDM1 targets in ddm1 mutants, as does the sperm cell specific H3.3 variant MGH3 in pollen, which acts as a placeholder nucleosome in the germline and contributes to epigenetic inheritance.
Collapse
Affiliation(s)
- Seung Cho Lee
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory; 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - Dexter W. Adams
- W. M. Keck Structural Biology Laboratory, Howard Hughes Medical Institute; Cold Spring Harbor, NY 11724, USA
- Graduate Program in Genetics, Stony Brook University; Stony Brook, NY 11794, USA
| | - Jonathan J. Ipsaro
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory; 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
- W. M. Keck Structural Biology Laboratory, Howard Hughes Medical Institute; Cold Spring Harbor, NY 11724, USA
| | - Jonathan Cahn
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory; 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - Jason Lynn
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory; 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - Hyun-Soo Kim
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory; 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - Benjamin Berube
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory; 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
- Cold Spring Harbor Laboratory School of Biological Sciences; 1 Bungtown Rd, Cold Spring Harbor, NY 11724, USA
| | - Viktoria Major
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh; Edinburgh EH9 3BF, United Kingdom
| | - Joseph P. Calarco
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory; 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
- Cold Spring Harbor Laboratory School of Biological Sciences; 1 Bungtown Rd, Cold Spring Harbor, NY 11724, USA
| | - Chantal LeBlanc
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory; 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
- Present address: Department of Molecular, Cellular and Developmental Biology, Faculty of Arts and Sciences, Yale University; 260 Whitney Ave., New Haven, CT, 06511, USA
| | - Sonali Bhattacharjee
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory; 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - Umamaheswari Ramu
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory; 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - Daniel Grimanelli
- Institut de Recherche pour le Développement; 911 Avenue Agropolis, 34394 Montpellier, France
| | - Yannick Jacob
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory; 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
- Present address: Department of Molecular, Cellular and Developmental Biology, Faculty of Arts and Sciences, Yale University; 260 Whitney Ave., New Haven, CT, 06511, USA
| | - Philipp Voigt
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh; Edinburgh EH9 3BF, United Kingdom
- Present address: Epigenetics Programme, Babraham Institute; Cambridge CB22 3AT, United Kingdom
| | - Leemor Joshua-Tor
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory; 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
- W. M. Keck Structural Biology Laboratory, Howard Hughes Medical Institute; Cold Spring Harbor, NY 11724, USA
| | - Robert A. Martienssen
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory; 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
| |
Collapse
|
12
|
Caperta AD, Fernandes I, Conceição SIR, Marques I, Róis AS, Paulo OS. Ovule Transcriptome Analysis Discloses Deregulation of Genes and Pathways in Sexual and Apomictic Limonium Species (Plumbaginaceae). Genes (Basel) 2023; 14:genes14040901. [PMID: 37107659 PMCID: PMC10137852 DOI: 10.3390/genes14040901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 03/31/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
The genus Limonium Mill. (sea lavenders) includes species with sexual and apomixis reproductive strategies, although the genes involved in these processes are unknown. To explore the mechanisms beyond these reproduction modes, transcriptome profiling of sexual, male sterile, and facultative apomictic species was carried out using ovules from different developmental stages. In total, 15,166 unigenes were found to be differentially expressed with apomictic vs. sexual reproduction, of which 4275 were uniquely annotated using an Arabidopsis thaliana database, with different regulations according to each stage and/or species compared. Gene ontology (GO) enrichment analysis indicated that genes related to tubulin, actin, the ubiquitin degradation process, reactive oxygen species scavenging, hormone signaling such as the ethylene signaling pathway and gibberellic acid-dependent signal, and transcription factors were found among differentially expressed genes (DEGs) between apomictic and sexual plants. We found that 24% of uniquely annotated DEGs were likely to be implicated in flower development, male sterility, pollen formation, pollen-stigma interactions, and pollen tube formation. The present study identifies candidate genes that are highly associated with distinct reproductive modes and sheds light on the molecular mechanisms of apomixis expression in Limonium sp.
Collapse
Affiliation(s)
- Ana D Caperta
- Linking Landscape, Environment, Agriculture and Food (LEAF), Research Center, Associate Laboratory TERRA, Instituto Superior de Agronomia (ISA), Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Isabel Fernandes
- cE3c-Centre for Ecology, Evolution and Environmental Changes, CHANGE-Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Sofia I R Conceição
- Linking Landscape, Environment, Agriculture and Food (LEAF), Research Center, Associate Laboratory TERRA, Instituto Superior de Agronomia (ISA), Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
- LASIGE Computer Science and Engineering Research Centre, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Isabel Marques
- Linking Landscape, Environment, Agriculture and Food (LEAF), Research Center, Associate Laboratory TERRA, Instituto Superior de Agronomia (ISA), Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
- Forest Research Centre (CEF), Associate Laboratory TERRA, Instituto Superior de Agronomia (ISA), Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Ana S Róis
- Linking Landscape, Environment, Agriculture and Food (LEAF), Research Center, Associate Laboratory TERRA, Instituto Superior de Agronomia (ISA), Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
- School of Psychology and Life Sciences, Universidade Lusófona de Humanidades e Tecnologias (ULHT), Campo Grande 376, 1749-024 Lisboa, Portugal
| | - Octávio S Paulo
- cE3c-Centre for Ecology, Evolution and Environmental Changes, CHANGE-Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| |
Collapse
|
13
|
Zhao F, Xue M, Zhang H, Li H, Zhao T, Jiang D. Coordinated histone variant H2A.Z eviction and H3.3 deposition control plant thermomorphogenesis. THE NEW PHYTOLOGIST 2023; 238:750-764. [PMID: 36647799 DOI: 10.1111/nph.18738] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 01/11/2023] [Indexed: 06/17/2023]
Abstract
Plants can sense temperature changes and adjust their development and morphology accordingly in a process called thermomorphogenesis. This phenotypic plasticity implies complex mechanisms regulating gene expression reprogramming in response to environmental alteration. Histone variants often associate with specific chromatin states; yet, how their deposition/eviction modulates transcriptional changes induced by environmental cues remains elusive. In Arabidopsis thaliana, temperature elevation-induced transcriptional activation at thermo-responsive genes entails the chromatin eviction of a histone variant H2A.Z by INO80, which is recruited to these loci via interacting with a key thermomorphogenesis regulator PIF4. Here, we show that both INO80 and the deposition chaperones of another histone variant H3.3 associate with ELF7, a critical component of the transcription elongator PAF1 complex. H3.3 promotes thermomorphogenesis and the high temperature-enhanced RNA Pol II transcription at PIF4 targets, and it is broadly required for the H2A.Z removal-induced gene activation. Reciprocally, INO80 and ELF7 regulate H3.3 deposition, and are necessary for the high temperature-induced H3.3 enrichment at PIF4 targets. Our findings demonstrate close coordination between H2A.Z eviction and H3.3 deposition in gene activation induced by high temperature, and pinpoint the importance of histone variants dynamics in transcriptional regulation.
Collapse
Affiliation(s)
- Fengyue Zhao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Mande Xue
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Huairen Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Hui Li
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Ting Zhao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Danhua Jiang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| |
Collapse
|
14
|
Yang C, Zhu T, Zhou N, Huang S, Zeng Y, Jiang W, Xie Y, Shen WH, Li L. PIF7-mediated epigenetic reprogramming promotes the transcriptional response to shade in Arabidopsis. EMBO J 2023; 42:e111472. [PMID: 36912149 PMCID: PMC10106985 DOI: 10.15252/embj.2022111472] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 01/28/2023] [Accepted: 02/01/2023] [Indexed: 03/14/2023] Open
Abstract
For shade-intolerant plants, changes in light quality through competition from neighbors trigger shade avoidance syndrome (SAS): a series of morphological and physiological adaptations that are ultimately detrimental to plant health and crop yield. Phytochrome-interacting factor 7 (PIF7) is a major transcriptional regulator of SAS in Arabidopsis; however, how it regulates gene expression is not fully understood. Here, we show that PIF7 directly interacts with the histone chaperone anti-silencing factor 1 (ASF1). The ASF1-deprived asf1ab mutant showed defective shade-induced hypocotyl elongation. Histone regulator homolog A (HIRA), which mediates deposition of the H3.3 variant into chromatin, is also involved in SAS. RNA/ChIP-sequencing analyses identified the role of ASF1 in the direct regulation of a subset of PIF7 target genes. Furthermore, shade-elicited gene activation is accompanied by H3.3 enrichment, which is mediated by the PIF7-ASF1-HIRA regulatory module. Collectively, our data reveal that PIF7 recruits ASF1-HIRA to increase H3.3 incorporation into chromatin to promote gene transcription, thus enabling plants to effectively respond to environmental shade.
Collapse
Affiliation(s)
- Chuanwei Yang
- State Key Laboratory of Genetic Engineering, Institute of Plants Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Tongdan Zhu
- State Key Laboratory of Genetic Engineering, Institute of Plants Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Nana Zhou
- State Key Laboratory of Genetic Engineering, Department of Biochemistry, Institute of Plants Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Sha Huang
- State Key Laboratory of Genetic Engineering, Institute of Plants Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Yue Zeng
- State Key Laboratory of Genetic Engineering, Institute of Plants Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Wen Jiang
- State Key Laboratory of Genetic Engineering, Department of Biochemistry, Institute of Plants Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Yu Xie
- State Key Laboratory of Genetic Engineering, Institute of Plants Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Wen-Hui Shen
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Lin Li
- State Key Laboratory of Genetic Engineering, Institute of Plants Biology, School of Life Sciences, Fudan University, Shanghai, China
| |
Collapse
|
15
|
Aguilera P, López-Contreras AJ. ATRX, a guardian of chromatin. Trends Genet 2023; 39:505-519. [PMID: 36894374 DOI: 10.1016/j.tig.2023.02.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 02/07/2023] [Accepted: 02/14/2023] [Indexed: 03/09/2023]
Abstract
ATRX (alpha-thalassemia mental retardation X-linked) is one of the most frequently mutated tumor suppressor genes in human cancers, especially in glioma, and recent findings indicate roles for ATRX in key molecular pathways, such as the regulation of chromatin state, gene expression, and DNA damage repair, placing ATRX as a central player in the maintenance of genome stability and function. This has led to new perspectives about the functional role of ATRX and its relationship with cancer. Here, we provide an overview of ATRX interactions and molecular functions and discuss the consequences of its impairment, including alternative lengthening of telomeres and therapeutic vulnerabilities that may be exploited in cancer cells.
Collapse
Affiliation(s)
- Paula Aguilera
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Sevilla - Universidad Pablo de Olavide, Seville, Spain.
| | - Andrés J López-Contreras
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Sevilla - Universidad Pablo de Olavide, Seville, Spain.
| |
Collapse
|
16
|
Hayashi K, Alseekh S, Fernie AR. Genetic and epigenetic control of the plant metabolome. Proteomics 2023:e2200104. [PMID: 36781168 DOI: 10.1002/pmic.202200104] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/15/2023]
Abstract
Plant metabolites are mainly produced through chemical reactions catalysed by enzymes encoded in the genome. Mutations in enzyme-encoding or transcription factor-encoding genes can alter the metabolome by changing the enzyme's catalytic activity or abundance, respectively. Insertion of transposable elements into non-coding regions has also been reported to affect transcription and ultimately metabolite content. In addition to genetic mutations, transgenerational epigenetic variations have also been found to affect metabolic content by controlling the transcription of metabolism-related genes. However, the majority of cases reported so far, in which epigenetic mechanisms are associated with metabolism, are non-transgenerational, and are triggered by developmental signals or environmental stress. Although, accumulating research has provided evidence of strong genetic control of the metabolome, epigenetic control has been largely untouched. Here, we provide a review of the genetic and epigenetic control of metabolism with a focus on epigenetics. We discuss both transgenerational and non-transgenerational epigenetic marks regulating metabolism as well as prospects of the field of metabolic control where intricate interactions between genetics and epigenetics are involved.
Collapse
Affiliation(s)
- Koki Hayashi
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Saleh Alseekh
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, Germany.,Center for Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, Germany.,Center for Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria
| |
Collapse
|
17
|
Poulet A, Rousselot E, Téletchéa S, Noirot C, Jacob Y, van Wolfswinkel J, Thiriet C, Duc C. The Histone Chaperone Network Is Highly Conserved in Physarum polycephalum. Int J Mol Sci 2023; 24:1051. [PMID: 36674565 PMCID: PMC9864664 DOI: 10.3390/ijms24021051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 12/30/2022] [Accepted: 01/02/2023] [Indexed: 01/07/2023] Open
Abstract
The nucleosome is composed of histones and DNA. Prior to their deposition on chromatin, histones are shielded by specialized and diverse proteins known as histone chaperones. They escort histones during their entire cellular life and ensure their proper incorporation in chromatin. Physarum polycephalum is a Mycetozoan, a clade located at the crown of the eukaryotic tree. We previously found that histones, which are highly conserved between plants and animals, are also highly conserved in Physarum. However, histone chaperones differ significantly between animal and plant kingdoms, and this thus probed us to further study the conservation of histone chaperones in Physarum and their evolution relative to animal and plants. Most of the known histone chaperones and their functional domains are conserved as well as key residues required for histone and chaperone interactions. Physarum is divergent from yeast, plants and animals, but PpHIRA, PpCABIN1 and PpSPT6 are similar in structure to plant orthologues. PpFACT is closely related to the yeast complex, and the Physarum genome encodes the animal-specific APFL chaperone. Furthermore, we performed RNA sequencing to monitor chaperone expression during the cell cycle and uncovered two distinct patterns during S-phase. In summary, our study demonstrates the conserved role of histone chaperones in handling histones in an early-branching eukaryote.
Collapse
Affiliation(s)
- Axel Poulet
- Department of Molecular, Cellular and Developmental Biology, Faculty of Arts and Sciences, Yale University, New Haven, CT 06511, USA
| | - Ellyn Rousselot
- Faculté des Sciences et Techniques, Nantes Université, CNRS, US2B, UMR 6286, 44000 Nantes, France
| | - Stéphane Téletchéa
- Faculté des Sciences et Techniques, Nantes Université, CNRS, US2B, UMR 6286, 44000 Nantes, France
| | - Céline Noirot
- INRAE, UR 875 Unité de Mathématique et Informatique Appliquées, Genotoul Bioinfo Auzeville, 31326 Castanet-Tolosan, France
| | - Yannick Jacob
- Department of Molecular, Cellular and Developmental Biology, Faculty of Arts and Sciences, Yale University, New Haven, CT 06511, USA
| | - Josien van Wolfswinkel
- Department of Molecular, Cellular and Developmental Biology, Faculty of Arts and Sciences, Yale University, New Haven, CT 06511, USA
| | - Christophe Thiriet
- Université Rennes 1, CNRS, IGDR (Institut de Génétique et Développement de Rennes)—UMR 6290, 35043 Rennes, France
| | - Céline Duc
- Faculté des Sciences et Techniques, Nantes Université, CNRS, US2B, UMR 6286, 44000 Nantes, France
| |
Collapse
|
18
|
Zhao X, Wang J, Jin D, Cheng J, Chen H, Li Z, Wang Y, Lou H, Zhu JK, Du X, Gong Z. AtMCM10 promotes DNA replication-coupled nucleosome assembly in Arabidopsis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:203-222. [PMID: 36541721 DOI: 10.1111/jipb.13438] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
Minichromosome Maintenance protein 10 (MCM10) is essential for DNA replication initiation and DNA elongation in yeasts and animals. Although the functions of MCM10 in DNA replication and repair have been well documented, the detailed mechanisms for MCM10 in these processes are not well known. Here, we identified AtMCM10 gene through a forward genetic screening for releasing a silenced marker gene. Although plant MCM10 possesses a similar crystal structure as animal MCM10, AtMCM10 is not essential for plant growth or development in Arabidopsis. AtMCM10 can directly bind to histone H3-H4 and promotes nucleosome assembly in vitro. The nucleosome density is decreased in Atmcm10, and most of the nucleosome density decreased regions in Atmcm10 are also regulated by newly synthesized histone chaperone Chromatin Assembly Factor-1 (CAF-1). Loss of both AtMCM10 and CAF-1 is embryo lethal, indicating that AtMCM10 and CAF-1 are indispensable for replication-coupled nucleosome assembly. AtMCM10 interacts with both new and parental histones. Atmcm10 mutants have lower H3.1 abundance and reduced H3K27me1/3 levels with releasing some silenced transposons. We propose that AtMCM10 deposits new and parental histones during nucleosome assembly, maintaining proper epigenetic modifications and genome stability during DNA replication.
Collapse
Affiliation(s)
- Xinjie Zhao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Jingyi Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, The Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Dan Jin
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Jinkui Cheng
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Hui Chen
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Zhen Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yu Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Huiqiang Lou
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Jian-Kang Zhu
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, School of Life Science, Department of Biology, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xuan Du
- Department of Biochemistry and Molecular Biology, International Cancer Center, Shenzhen University Medical School, Shenzhen, 518060, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, 518060, China
| | - Zhizhong Gong
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
- School of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China
| |
Collapse
|
19
|
Zhao T, Lu J, Zhang H, Xue M, Pan J, Ma L, Berger F, Jiang D. Histone H3.3 deposition in seed is essential for the post-embryonic developmental competence in Arabidopsis. Nat Commun 2022; 13:7728. [PMID: 36513677 PMCID: PMC9747979 DOI: 10.1038/s41467-022-35509-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 12/07/2022] [Indexed: 12/15/2022] Open
Abstract
The acquisition of germination and post-embryonic developmental ability during seed maturation is vital for seed vigor, an important trait for plant propagation and crop production. How seed vigor is established in seeds is still poorly understood. Here, we report the crucial function of Arabidopsis histone variant H3.3 in endowing seeds with post-embryonic developmental potentials. H3.3 is not essential for seed formation, but loss of H3.3 results in severely impaired germination and post-embryonic development. H3.3 exhibits a seed-specific 5' gene end distribution and facilitates chromatin opening at regulatory regions in seeds. During germination, H3.3 is essential for proper gene transcriptional regulation. Moreover, H3.3 is constantly loaded at the 3' gene end, correlating with gene body DNA methylation and the restriction of chromatin accessibility and cryptic transcription at this region. Our results suggest a fundamental role of H3.3 in initiating chromatin accessibility at regulatory regions in seed and licensing the embryonic to post-embryonic transition.
Collapse
Affiliation(s)
- Ting Zhao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Jingyun Lu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Huairen Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Mande Xue
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jie Pan
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lijun Ma
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Frédéric Berger
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Dr. Bohr-Gasse 3, 1030, Vienna, Austria
| | - Danhua Jiang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
20
|
León-Ruiz JA, Cruz Ramírez A. Predicted landscape of RETINOBLASTOMA-RELATED LxCxE-mediated interactions across the Chloroplastida. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:1507-1524. [PMID: 36305297 DOI: 10.1111/tpj.16012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 09/20/2022] [Accepted: 10/14/2022] [Indexed: 05/16/2023]
Abstract
The colonization of land by a single streptophyte algae lineage some 450 million years ago has been linked to multiple key innovations such as three-dimensional growth, alternation of generations, the presence of stomata, as well as innovations inherent to the birth of major plant lineages, such as the origins of vascular tissues, roots, seeds and flowers. Multicellularity, which evolved multiple times in the Chloroplastida coupled with precise spatiotemporal control of proliferation and differentiation were instrumental for the evolution of these traits. RETINOBLASTOMA-RELATED (RBR), the plant homolog of the metazoan Retinoblastoma protein (pRB), is a highly conserved and multifunctional core cell cycle regulator that has been implicated in the evolution of multicellularity in the green lineage as well as in plant multicellularity-related processes such as proliferation, differentiation, stem cell regulation and asymmetric cell division. RBR fulfills these roles through context-specific protein-protein interactions with proteins containing the Leu-x-Cys-x-Glu (LxCxE) short-linear motif (SLiM); however, how RBR-LxCxE interactions have changed throughout major innovations in the Viridiplantae kingdom is a question that remains unexplored. Here, we employ an in silico evo-devo approach to predict and analyze potential RBR-LxCxE interactions in different representative species of key Chloroplastida lineages, providing a valuable resource for deciphering RBR-LxCxE multiple functions. Furthermore, our analyses suggest that RBR-LxCxE interactions are an important component of RBR functions and that interactions with chromatin modifiers/remodelers, DNA replication and repair machinery are highly conserved throughout the Viridiplantae, while LxCxE interactions with transcriptional regulators likely diversified throughout the water-to-land transition.
Collapse
Affiliation(s)
- Jesús A León-Ruiz
- Molecular and Developmental Complexity Group, Unidad de Genómica Avanzada, Laboratorio Nacional de Genómica para la Biodiversidad, Cinvestav Sede Irapuato, Km. 9.6 Libramiento Norte Carretera, Irapuato-León, Irapuato, 36821, Guanajuato, Mexico
| | - Alfredo Cruz Ramírez
- Molecular and Developmental Complexity Group, Unidad de Genómica Avanzada, Laboratorio Nacional de Genómica para la Biodiversidad, Cinvestav Sede Irapuato, Km. 9.6 Libramiento Norte Carretera, Irapuato-León, Irapuato, 36821, Guanajuato, Mexico
| |
Collapse
|
21
|
Zhong Z, Wang Y, Wang M, Yang F, Thomas QA, Xue Y, Zhang Y, Liu W, Jami-Alahmadi Y, Xu L, Feng S, Marquardt S, Wohlschlegel JA, Ausin I, Jacobsen SE. Histone chaperone ASF1 mediates H3.3-H4 deposition in Arabidopsis. Nat Commun 2022; 13:6970. [PMID: 36379930 PMCID: PMC9666630 DOI: 10.1038/s41467-022-34648-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 11/01/2022] [Indexed: 11/16/2022] Open
Abstract
Histone chaperones and chromatin remodelers control nucleosome dynamics, which are essential for transcription, replication, and DNA repair. The histone chaperone Anti-Silencing Factor 1 (ASF1) plays a central role in facilitating CAF-1-mediated replication-dependent H3.1 deposition and HIRA-mediated replication-independent H3.3 deposition in yeast and metazoans. Whether ASF1 function is evolutionarily conserved in plants is unknown. Here, we show that Arabidopsis ASF1 proteins display a preference for the HIRA complex. Simultaneous mutation of both Arabidopsis ASF1 genes caused a decrease in chromatin density and ectopic H3.1 occupancy at loci typically enriched with H3.3. Genetic, transcriptomic, and proteomic data indicate that ASF1 proteins strongly prefers the HIRA complex over CAF-1. asf1 mutants also displayed an increase in spurious Pol II transcriptional initiation and showed defects in the maintenance of gene body CG DNA methylation and in the distribution of histone modifications. Furthermore, ectopic targeting of ASF1 caused excessive histone deposition, less accessible chromatin, and gene silencing. These findings reveal the importance of ASF1-mediated histone deposition for proper epigenetic regulation of the genome.
Collapse
Affiliation(s)
- Zhenhui Zhong
- grid.19006.3e0000 0000 9632 6718Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA 90095 USA
| | - Yafei Wang
- grid.144022.10000 0004 1760 4150State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences and Institute of Future Agriculture, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Ming Wang
- grid.19006.3e0000 0000 9632 6718Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA 90095 USA
| | - Fan Yang
- grid.144022.10000 0004 1760 4150State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences and Institute of Future Agriculture, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Quentin Angelo Thomas
- grid.5254.60000 0001 0674 042XCopenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Yan Xue
- grid.19006.3e0000 0000 9632 6718Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA 90095 USA
| | - Yaxin Zhang
- grid.256111.00000 0004 1760 2876Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian China
| | - Wanlu Liu
- grid.512487.dZhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, International Campus, Zhejiang University, 718 East Haizhou Road, Haining, 314400 Zhejiang China
| | - Yasaman Jami-Alahmadi
- grid.19006.3e0000 0000 9632 6718Department of Biological Chemistry, University of California, Los Angeles, CA 90095 USA
| | - Linhao Xu
- grid.418934.30000 0001 0943 9907Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), OT Gatersleben, Stadt Seeland, 06466 Germany
| | - Suhua Feng
- grid.19006.3e0000 0000 9632 6718Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA 90095 USA ,grid.19006.3e0000 0000 9632 6718Eli & Edythe Broad Center of Regenerative Medicine & Stem Cell Research, University of California, Los Angeles, CA 90095 USA
| | - Sebastian Marquardt
- grid.5254.60000 0001 0674 042XCopenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - James A. Wohlschlegel
- grid.19006.3e0000 0000 9632 6718Department of Biological Chemistry, University of California, Los Angeles, CA 90095 USA
| | - Israel Ausin
- grid.144022.10000 0004 1760 4150State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences and Institute of Future Agriculture, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Steven E. Jacobsen
- grid.19006.3e0000 0000 9632 6718Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA 90095 USA ,grid.19006.3e0000 0000 9632 6718Howard Hughes Medical Institute, University of California, Los Angeles, CA 90095 USA
| |
Collapse
|
22
|
Probst AV. Deposition and eviction of histone variants define functional chromatin states in plants. CURRENT OPINION IN PLANT BIOLOGY 2022; 69:102266. [PMID: 35981458 DOI: 10.1016/j.pbi.2022.102266] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/30/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
The organization of DNA with histone proteins into chromatin is fundamental for the regulation of gene expression. Incorporation of different histone variants into the nucleosome together with post-translational modifications of these histone variants allows modulating chromatin accessibility and contributes to the establishment of functional chromatin states either permissive or repressive for transcription. This review highlights emerging mechanisms required to deposit or evict histone variants in a timely and locus-specific manner. This review further discusses how assembly of specific histone variants permits to reinforce transmission of chromatin states during replication, to maintain heterochromatin organization and stability and to reprogram existing epigenetic information.
Collapse
Affiliation(s)
- Aline V Probst
- iGReD, CNRS, Inserm, Université Clermont Auvergne, 63000 Clermont-Ferrand, France.
| |
Collapse
|
23
|
Foroozani M, Holder DH, Deal RB. Histone Variants in the Specialization of Plant Chromatin. ANNUAL REVIEW OF PLANT BIOLOGY 2022; 73:149-172. [PMID: 35167758 PMCID: PMC9133179 DOI: 10.1146/annurev-arplant-070221-050044] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The basic unit of chromatin, the nucleosome, is an octamer of four core histone proteins (H2A, H2B, H3, and H4) and serves as a fundamental regulatory unit in all DNA-templated processes. The majority of nucleosome assembly occurs during DNA replication when these core histones are produced en masse to accommodate the nascent genome. In addition, there are a number of nonallelic sequence variants of H2A and H3 in particular, known as histone variants, that can be incorporated into nucleosomes in a targeted and replication-independent manner. By virtue of their sequence divergence from the replication-coupled histones, these histone variants can impart unique properties onto the nucleosomes they occupy and thereby influence transcription and epigenetic states, DNA repair, chromosome segregation, and other nuclear processes in ways that profoundly affect plant biology. In this review, we discuss the evolutionary origins of these variants in plants, their known roles in chromatin, and their impacts on plant development and stress responses. We focus on the individual and combined roles of histone variants in transcriptional regulation within euchromatic and heterochromatic genome regions. Finally, we highlight gaps in our understanding of plant variants at the molecular, cellular, and organismal levels, and we propose new directions for study in the field of plant histone variants.
Collapse
Affiliation(s)
| | - Dylan H Holder
- Department of Biology, Emory University, Atlanta, Georgia, USA;
- Graduate Program in Genetics and Molecular Biology, Emory University, Atlanta, Georgia, USA
| | - Roger B Deal
- Department of Biology, Emory University, Atlanta, Georgia, USA;
| |
Collapse
|
24
|
ATRX proximal protein associations boast roles beyond histone deposition. PLoS Genet 2021; 17:e1009909. [PMID: 34780483 PMCID: PMC8629390 DOI: 10.1371/journal.pgen.1009909] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/29/2021] [Accepted: 10/23/2021] [Indexed: 12/31/2022] Open
Abstract
The ATRX ATP-dependent chromatin remodelling/helicase protein associates with the DAXX histone chaperone to deposit histone H3.3 over repetitive DNA regions. Because ATRX-protein interactions impart functions, such as histone deposition, we used proximity-dependent biotinylation (BioID) to identify proximal associations for ATRX. The proteomic screen captured known interactors, such as DAXX, NBS1, and PML, but also identified a range of new associating proteins. To gauge the scope of their roles, we examined three novel ATRX-associating proteins that likely differed in function, and for which little data were available. We found CCDC71 to associate with ATRX, but also HP1 and NAP1, suggesting a role in chromatin maintenance. Contrastingly, FAM207A associated with proteins involved in ribosome biosynthesis and localized to the nucleolus. ATRX proximal associations with the SLF2 DNA damage response factor help inhibit telomere exchanges. We further screened for the proteomic changes at telomeres when ATRX, SLF2, or both proteins were deleted. The loss caused important changes in the abundance of chromatin remodelling, DNA replication, and DNA repair factors at telomeres. Interestingly, several of these have previously been implicated in alternative lengthening of telomeres. Altogether, this study expands the repertoire of ATRX-associating proteins and functions. ATRX is a protein that is needed to keep repetitive DNA regions organized. It does so in part by binding the DAXX histone chaperone to deposit histone proteins on DNA and assemble structures known as nucleosomes. While important, ATRX has additional functions that remain understudied. To better understand its various biological roles, we first identified the other proteins that are found in its proximity. ATRX-associating proteins were implicated in a range of functions, in addition to histone deposition. Our results suggest that ATRX-associating proteins likely help compact DNA after it is assembled into nucleosomes, and also promote its stability. We then examined the effect of ATRX on telomeres (repetitive DNA regions at the end of chromosomes). ATRX and at least one of its associating proteins suppressed spurious DNA exchanges at telomeres. To understand why, we then identified proteomic changes that occur at telomeres when ATRX was deleted. Loss of ATRX altered the enrichment of a surprising number of proteins at telomeres, including several DNA damage response and chromatin remodelling proteins.
Collapse
|
25
|
Zhao F, Zhang H, Zhao T, Li Z, Jiang D. The histone variant H3.3 promotes the active chromatin state to repress flowering in Arabidopsis. PLANT PHYSIOLOGY 2021; 186:2051-2063. [PMID: 34618105 PMCID: PMC8331167 DOI: 10.1093/plphys/kiab224] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 04/29/2021] [Indexed: 05/29/2023]
Abstract
The histone H3 family in animals and plants includes replicative H3 and nonreplicative H3.3 variants. H3.3 preferentially associates with active transcription, yet its function in development and transcription regulation remains elusive. The floral transition in Arabidopsis (Arabidopsis thaliana) involves complex chromatin regulation at a central flowering repressor FLOWERING LOCUS C (FLC). Here, we show that H3.3 upregulates FLC expression and promotes active histone modifications histone H3 lysine 4 trimethylation (H3K4me3) and histone H3 lysine 36 trimethylation (H3K36me3) at the FLC locus. The FLC activator FRIGIDA (FRI) directly mediates H3.3 enrichment at FLC, leading to chromatin conformation changes and further induction of active histone modifications at FLC. Moreover, the antagonistic H3.3 and H2A.Z act in concert to activate FLC expression, likely by forming unstable nucleosomes ideal for transcription processing. We also show that H3.3 knockdown leads to H3K4me3 reduction at a subset of particularly short genes, suggesting the general role of H3.3 in promoting H3K4me3. The finding that H3.3 stably accumulates at FLC in the absence of H3K36me3 indicates that the H3.3 deposition may serve as a prerequisite for active histone modifications. Our results reveal the important function of H3.3 in mediating the active chromatin state for flowering repression.
Collapse
Affiliation(s)
- Fengyue Zhao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy ofSciences, Beijing, 100039, China
| | - Huairen Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ting Zhao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zicong Li
- School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Danhua Jiang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy ofSciences, Beijing, 100039, China
| |
Collapse
|
26
|
Borg M, Jiang D, Berger F. Histone variants take center stage in shaping the epigenome. CURRENT OPINION IN PLANT BIOLOGY 2021; 61:101991. [PMID: 33434757 DOI: 10.1016/j.pbi.2020.101991] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/09/2020] [Accepted: 12/17/2020] [Indexed: 05/28/2023]
Abstract
The dynamic properties of the nucleosome are central to genomic activity. Variants of the core histones that form the nucleosome play a pivotal role in modulating nucleosome structure and function. Despite often small differences in sequence, histone variants display remarkable diversity in genomic deposition and post-translational modification. Here, we summarize the roles played by histone variants in the establishment, maintenance and reprogramming of plant chromatin landscapes, with a focus on histone H3 variants. Deposition of replicative H3.1 during DNA replication controls epigenetic inheritance, while local replacement of H3.1 with H3.3 marks cells undergoing terminal differentiation. Deposition of specialized H3 variants in specific cell types is emerging as a novel mechanism of selective epigenetic reprogramming during the plant life cycle.
Collapse
Affiliation(s)
- Michael Borg
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Danhua Jiang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Frédéric Berger
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Dr. Bohr-Gasse 3, 1030 Vienna, Austria.
| |
Collapse
|
27
|
Layat E, Bourcy M, Cotterell S, Zdzieszyńska J, Desset S, Duc C, Tatout C, Bailly C, Probst AV. The Histone Chaperone HIRA Is a Positive Regulator of Seed Germination. Int J Mol Sci 2021; 22:ijms22084031. [PMID: 33919775 PMCID: PMC8070706 DOI: 10.3390/ijms22084031] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/05/2021] [Accepted: 04/12/2021] [Indexed: 11/18/2022] Open
Abstract
Histone chaperones regulate the flow and dynamics of histone variants and ensure their assembly into nucleosomal structures, thereby contributing to the repertoire of histone variants in specialized cells or tissues. To date, not much is known on the distribution of histone variants and their modifications in the dry seed embryo. Here, we bring evidence that genes encoding the replacement histone variant H3.3 are expressed in Arabidopsis dry seeds and that embryo chromatin is characterized by a low H3.1/H3.3 ratio. Loss of HISTONE REGULATOR A (HIRA), a histone chaperone responsible for H3.3 deposition, reduces cellular H3 levels and increases chromatin accessibility in dry seeds. These molecular differences are accompanied by increased seed dormancy in hira-1 mutant seeds. The loss of HIRA negatively affects seed germination even in the absence of HISTONE MONOUBIQUITINATION 1 or TRANSCRIPTION ELONGATION FACTOR II S, known to be required for seed dormancy. Finally, hira-1 mutant seeds show lower germination efficiency when aged under controlled deterioration conditions or when facing unfavorable environmental conditions such as high salinity. Altogether, our results reveal a dependency of dry seed chromatin organization on the replication-independent histone deposition pathway and show that HIRA contributes to modulating seed dormancy and vigor.
Collapse
Affiliation(s)
- Elodie Layat
- IBPS, UMR 7622 Biologie du Développement, CNRS, Sorbonne Université, 75005 Paris, France; (E.L.); (M.B.); (C.B.)
| | - Marie Bourcy
- IBPS, UMR 7622 Biologie du Développement, CNRS, Sorbonne Université, 75005 Paris, France; (E.L.); (M.B.); (C.B.)
| | - Sylviane Cotterell
- iGReD, CNRS, Inserm, Université Clermont Auvergne, 63000 Clermont-Ferrand, France; (S.C.); (S.D.); (C.T.)
| | - Julia Zdzieszyńska
- Department of Plant Physiology, Institute of Biology, Warsaw University of Life Sciences–SGGW, 02-776 Warsaw, Poland;
| | - Sophie Desset
- iGReD, CNRS, Inserm, Université Clermont Auvergne, 63000 Clermont-Ferrand, France; (S.C.); (S.D.); (C.T.)
| | - Céline Duc
- UFIP UMR-CNRS 6286, Épigénétique et Dynamique de la Chromatine, Université de Nantes, 2 rue de la Houssinière, 44322 Nantes, France;
| | - Christophe Tatout
- iGReD, CNRS, Inserm, Université Clermont Auvergne, 63000 Clermont-Ferrand, France; (S.C.); (S.D.); (C.T.)
| | - Christophe Bailly
- IBPS, UMR 7622 Biologie du Développement, CNRS, Sorbonne Université, 75005 Paris, France; (E.L.); (M.B.); (C.B.)
| | - Aline V. Probst
- iGReD, CNRS, Inserm, Université Clermont Auvergne, 63000 Clermont-Ferrand, France; (S.C.); (S.D.); (C.T.)
- Correspondence:
| |
Collapse
|
28
|
Kolářová K, Nešpor Dadejová M, Loja T, Lochmanová G, Sýkorová E, Dvořáčková M. Disruption of NAP1 genes in Arabidopsis thaliana suppresses the fas1 mutant phenotype, enhances genome stability and changes chromatin compaction. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:56-73. [PMID: 33368779 DOI: 10.1111/tpj.15145] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 11/21/2020] [Accepted: 11/30/2020] [Indexed: 06/12/2023]
Abstract
Histone chaperones mediate the assembly and disassembly of nucleosomes and participate in essentially all DNA-dependent cellular processes. In Arabidopsis thaliana, loss-of-function of FAS1 or FAS2 subunits of the H3-H4 histone chaperone complex CHROMATIN ASSEMBLY FACTOR 1 (CAF-1) has a dramatic effect on plant morphology, growth and overall fitness. CAF-1 dysfunction can lead to altered chromatin compaction, systematic loss of repetitive elements or increased DNA damage, clearly demonstrating its severity. How chromatin composition is maintained without functional CAF-1 remains elusive. Here we show that disruption of the H2A-H2B histone chaperone NUCLEOSOME ASSEMBLY PROTEIN 1 (NAP1) suppresses the FAS1 loss-of-function phenotype. The quadruple mutant fas1 nap1;1 nap1;2 nap1;3 shows wild-type growth, decreased sensitivity to genotoxic stress and suppression of telomere and 45S rDNA loss. Chromatin of fas1 nap1;1 nap1;2 nap1;3 plants is less accessible to micrococcal nuclease and the nuclear H3.1 and H3.3 histone pools change compared to fas1. Consistently, association between NAP1 and H3 occurs in the cytoplasm and nucleus in vivo in protoplasts. Altogether we show that NAP1 proteins play an essential role in DNA repair in fas1, which is coupled to nucleosome assembly through modulation of H3 levels in the nucleus.
Collapse
Affiliation(s)
- Karolína Kolářová
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kotlářská 2, Brno, CZ-61137, Czech Republic
- Molecular Cytology and Cytometry, Institute of Biophysics of the Czech Academy of Sciences, v.v.i., Královopolská 135, Brno, CZ-61265, Czech Republic
| | - Martina Nešpor Dadejová
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology/Masaryk University, Kamenice 5, Brno, CZ-62500, Czech Republic
| | - Tomáš Loja
- Centre for Molecular Medicine, Central European Institute of Technology/Masaryk University, Kamenice 5, Brno, CZ-62500, Czech Republic
| | - Gabriela Lochmanová
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology/Masaryk University, Kamenice 5, Brno, CZ-62500, Czech Republic
| | - Eva Sýkorová
- Molecular Cytology and Cytometry, Institute of Biophysics of the Czech Academy of Sciences, v.v.i., Královopolská 135, Brno, CZ-61265, Czech Republic
| | - Martina Dvořáčková
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology/Masaryk University, Kamenice 5, Brno, CZ-62500, Czech Republic
| |
Collapse
|
29
|
Kutashev KO, Franek M, Diamanti K, Komorowski J, Olšinová M, Dvořáčková M. Nucleolar rDNA folds into condensed foci with a specific combination of epigenetic marks. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:1534-1548. [PMID: 33314374 DOI: 10.1111/tpj.15130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 11/30/2020] [Indexed: 05/15/2023]
Abstract
Arabidopsis thaliana 45S ribosomal genes (rDNA) are located in tandem arrays called nucleolus organizing regions on the termini of chromosomes 2 and 4 (NOR2 and NOR4) and encode rRNA, a crucial structural element of the ribosome. The current model of rDNA organization suggests that inactive rRNA genes accumulate in the condensed chromocenters in the nucleus and at the nucleolar periphery, while the nucleolus delineates active genes. We challenge the perspective that all intranucleolar rDNA is active by showing that a subset of nucleolar rDNA assembles into condensed foci marked by H3.1 and H3.3 histones that also contain the repressive H3K9me2 histone mark. By using plant lines containing a low number of rDNA copies, we further found that the condensed foci relate to the folding of rDNA, which appears to be a common mechanism of rDNA regulation inside the nucleolus. The H3K9me2 histone mark found in condensed foci represents a typical modification of bulk inactive rDNA, as we show by genome-wide approaches, similar to the H2A.W histone variant. The euchromatin histone marks H3K27me3 and H3K4me3, in contrast, do not colocalize with nucleolar foci and their overall levels in the nucleolus are very low. We further demonstrate that the rDNA promoter is an important regulatory region of the rDNA, where the distribution of histone variants and histone modifications are modulated in response to rDNA activity.
Collapse
Affiliation(s)
- Konstantin O Kutashev
- Mendel Centre for Plant Genomics and Proteomics, CEITEC, Masaryk University, Kamenice 5, Brno, 62500, Czech Republic
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kotlářská 2, Brno, 61137, Czech Republic
| | - Michal Franek
- Mendel Centre for Plant Genomics and Proteomics, CEITEC, Masaryk University, Kamenice 5, Brno, 62500, Czech Republic
| | - Klev Diamanti
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, 751 24, Sweden
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, 751 08, Sweden
| | - Jan Komorowski
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, 751 24, Sweden
- Institute of Computer Science, Polish Academy of Sciences, Warsaw, 012-48, Poland
| | - Marie Olšinová
- BioCEV Imaging Methods Core Facility, Průmyslová 595, Vestec, 252 50, Czech Republic
| | - Martina Dvořáčková
- Mendel Centre for Plant Genomics and Proteomics, CEITEC, Masaryk University, Kamenice 5, Brno, 62500, Czech Republic
| |
Collapse
|
30
|
Aguilar M, Prieto P. Telomeres and Subtelomeres Dynamics in the Context of Early Chromosome Interactions During Meiosis and Their Implications in Plant Breeding. FRONTIERS IN PLANT SCIENCE 2021; 12:672489. [PMID: 34149773 PMCID: PMC8212018 DOI: 10.3389/fpls.2021.672489] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 05/06/2021] [Indexed: 05/08/2023]
Abstract
Genomic architecture facilitates chromosome recognition, pairing, and recombination. Telomeres and subtelomeres play an important role at the beginning of meiosis in specific chromosome recognition and pairing, which are critical processes that allow chromosome recombination between homologs (equivalent chromosomes in the same genome) in later stages. In plant polyploids, these terminal regions are even more important in terms of homologous chromosome recognition, due to the presence of homoeologs (equivalent chromosomes from related genomes). Although telomeres interaction seems to assist homologous pairing and consequently, the progression of meiosis, other chromosome regions, such as subtelomeres, need to be considered, because the DNA sequence of telomeres is not chromosome-specific. In addition, recombination operates at subtelomeres and, as it happens in rye and wheat, homologous recognition and pairing is more often correlated with recombining regions than with crossover-poor regions. In a plant breeding context, the knowledge of how homologous chromosomes initiate pairing at the beginning of meiosis can contribute to chromosome manipulation in hybrids or interspecific genetic crosses. Thus, recombination in interspecific chromosome associations could be promoted with the aim of transferring desirable agronomic traits from related genetic donor species into crops. In this review, we summarize the importance of telomeres and subtelomeres on chromatin dynamics during early meiosis stages and their implications in recombination in a plant breeding framework.
Collapse
Affiliation(s)
- Miguel Aguilar
- Área de Fisiología Vegetal, Universidad de Córdoba, Córdoba, Spain
| | - Pilar Prieto
- Plant Breeding Department, Institute for Sustainable Agriculture, Agencia Estatal Consejo Superior de Investigaciones Científicas (CSIC), Córdoba, Spain
- *Correspondence: Pilar Prieto, ; orcid.org/0000-0002-8160-808X
| |
Collapse
|
31
|
Abstract
Nucleosome dynamics and properties are central to all forms of genomic activities. Among the core histones, H3 variants play a pivotal role in modulating nucleosome structure and function. Here, we focus on the impact of H3 variants on various facets of development. The deposition of the replicative H3 variant following DNA replication is essential for the transmission of the epigenomic information encoded in posttranscriptional modifications. Through this process, replicative H3 maintains cell fate while, in contrast, the replacement H3.3 variant opposes cell differentiation during early embryogenesis. In later steps of development, H3.3 and specialized H3 variants are emerging as new, important regulators of terminal cell differentiation, including neurons and gametes. The specific pathways that regulate the dynamics of the deposition of H3.3 are paramount during reprogramming events that drive zygotic activation and the initiation of a new cycle of development.
Collapse
Affiliation(s)
- Benjamin Loppin
- Laboratoire de Biologie et de Modélisation de la Cellule, CNRS UMR 5239, Ecole Normale Supérieure de Lyon, University of Lyon, F-69007 Lyon, France;
| | - Frédéric Berger
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), 1030 Vienna, Austria;
| |
Collapse
|
32
|
Probst AV, Desvoyes B, Gutierrez C. Similar yet critically different: the distribution, dynamics and function of histone variants. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:5191-5204. [PMID: 32392582 DOI: 10.1093/jxb/eraa230] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 05/06/2020] [Indexed: 05/23/2023]
Abstract
Organization of the genetic information into chromatin plays an important role in the regulation of all DNA template-based reactions. The incorporation of different variant versions of the core histones H3, H2A, and H2B, or the linker histone H1 results in nucleosomes with unique properties. Histone variants can differ by only a few amino acids or larger protein domains and their incorporation may directly affect nucleosome stability and higher order chromatin organization or indirectly influence chromatin function through histone variant-specific binding partners. Histone variants employ dedicated histone deposition machinery for their timely and locus-specific incorporation into chromatin. Plants have evolved specific histone variants with unique expression patterns and features. In this review, we discuss our current knowledge on histone variants in Arabidopsis, their mode of deposition, variant-specific post-translational modifications, and genome-wide distribution, as well as their role in defining different chromatin states.
Collapse
Affiliation(s)
- Aline V Probst
- Université Clermont Auvergne, CNRS, Inserm, GReD, Clermont-Ferrand, France
| | - Bénédicte Desvoyes
- Centro de Biologia Molecular Severo Ochoa, CSIC-UAM, Cantoblanco, Madrid, Spain
| | - Crisanto Gutierrez
- Centro de Biologia Molecular Severo Ochoa, CSIC-UAM, Cantoblanco, Madrid, Spain
| |
Collapse
|
33
|
Wang Y, Li Y, Luan D, Kang J, He R, Zhang Y, Quan F. Dynamic replacement of H3.3 affects nuclear reprogramming in early bovine SCNT embryos. Theriogenology 2020; 154:43-52. [PMID: 32480063 DOI: 10.1016/j.theriogenology.2020.05.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 05/20/2020] [Accepted: 05/22/2020] [Indexed: 01/22/2023]
Abstract
The histone variant H3.3 is an important maternal factor in fertilization of oocytes and reprogramming of somatic cell nuclear transfer (SCNT) embryos. As a crucial replacement histone, maternal H3.3 is involved in chromatin remodeling and zygote genome activation. Litte is, however, known about the replacement of H3.3 in the bovine SCNT embryos. In this study, the maternal H3.3 in mature ooplasm was labeled with HA tag and the donor cells H3.3 was labeled with Flag tag, in order to observe the replacement of H3.3 in the bovine SCNT embryos. Meanwhile, maternal H3.3 knockdown was performed by microinjecting two different interfering fragments before nucleus transfer. It was showed that the dynamic replacement between maternal- and donor nucleus-derived H3.3 was detected after SCNT. And it could be observed that the blastocyst development rate of the cloned embryos decreased from 22.3% to 8.2-10.3% (P < 0.05), the expression of Pou5f1 and Sox2 was down-regulated and the level of H3K9me3 was increased in the interfered embryos. In summary, H3.3 replacement impacted on the process of reprogramming, including embryonic development potential, activation of pluripotency genes and epigenetic modification in bovine SCNT embryos.
Collapse
Affiliation(s)
- Yile Wang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, China; College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yanhe Li
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, China; College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Deji Luan
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, China; College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jian Kang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, China; College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Rongjun He
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, China; College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yong Zhang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, China; College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Fusheng Quan
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, China; College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
34
|
Dumur T, Duncan S, Graumann K, Desset S, Randall RS, Scheid OM, Prodanov D, Tatout C, Baroux C. Probing the 3D architecture of the plant nucleus with microscopy approaches: challenges and solutions. Nucleus 2019; 10:181-212. [PMID: 31362571 PMCID: PMC6682351 DOI: 10.1080/19491034.2019.1644592] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 06/24/2019] [Accepted: 07/01/2019] [Indexed: 12/18/2022] Open
Abstract
The eukaryotic cell nucleus is a central organelle whose architecture determines genome function at multiple levels. Deciphering nuclear organizing principles influencing cellular responses and identity is a timely challenge. Despite many similarities between plant and animal nuclei, plant nuclei present intriguing specificities. Complementary to molecular and biochemical approaches, 3D microscopy is indispensable for resolving nuclear architecture. However, novel solutions are required for capturing cell-specific, sub-nuclear and dynamic processes. We provide a pointer for utilising high-to-super-resolution microscopy and image processing to probe plant nuclear architecture in 3D at the best possible spatial and temporal resolution and at quantitative and cell-specific levels. High-end imaging and image-processing solutions allow the community now to transcend conventional practices and benefit from continuously improving approaches. These promise to deliver a comprehensive, 3D view of plant nuclear architecture and to capture spatial dynamics of the nuclear compartment in relation to cellular states and responses. Abbreviations: 3D and 4D: Three and Four dimensional; AI: Artificial Intelligence; ant: antipodal nuclei (ant); CLSM: Confocal Laser Scanning Microscopy; CTs: Chromosome Territories; DL: Deep Learning; DLIm: Dynamic Live Imaging; ecn: egg nucleus; FACS: Fluorescence-Activated Cell Sorting; FISH: Fluorescent In Situ Hybridization; FP: Fluorescent Proteins (GFP, RFP, CFP, YFP, mCherry); FRAP: Fluorescence Recovery After Photobleaching; GPU: Graphics Processing Unit; KEEs: KNOT Engaged Elements; INTACT: Isolation of Nuclei TAgged in specific Cell Types; LADs: Lamin-Associated Domains; ML: Machine Learning; NA: Numerical Aperture; NADs: Nucleolar Associated Domains; PALM: Photo-Activated Localization Microscopy; Pixel: Picture element; pn: polar nuclei; PSF: Point Spread Function; RHF: Relative Heterochromatin Fraction; SIM: Structured Illumination Microscopy; SLIm: Static Live Imaging; SMC: Spore Mother Cell; SNR: Signal to Noise Ratio; SRM: Super-Resolution Microscopy; STED: STimulated Emission Depletion; STORM: STochastic Optical Reconstruction Microscopy; syn: synergid nuclei; TADs: Topologically Associating Domains; Voxel: Volumetric pixel.
Collapse
Affiliation(s)
- Tao Dumur
- Gregor Mendel Institute (GMI) of Molecular Plant Biology, Austrian Academy of Sciences, Vienna Biocenter (VBC), Vienna, Austria
| | - Susan Duncan
- Norwich Research Park, Earlham Institute, Norwich, UK
| | - Katja Graumann
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
| | - Sophie Desset
- GReD, Université Clermont Auvergne, CNRS, INSERM, Clermont–Ferrand, France
| | - Ricardo S Randall
- Department of Plant and Microbial Biology, Zürich-Basel Plant Science Center, University of Zürich, Zürich, Switzerland
| | - Ortrun Mittelsten Scheid
- Gregor Mendel Institute (GMI) of Molecular Plant Biology, Austrian Academy of Sciences, Vienna Biocenter (VBC), Vienna, Austria
| | - Dimiter Prodanov
- Environment, Health and Safety, Neuroscience Research Flanders, Leuven, Belgium
| | - Christophe Tatout
- GReD, Université Clermont Auvergne, CNRS, INSERM, Clermont–Ferrand, France
| | - Célia Baroux
- Department of Plant and Microbial Biology, Zürich-Basel Plant Science Center, University of Zürich, Zürich, Switzerland
| |
Collapse
|
35
|
Sáez-Vásquez J, Delseny M. Ribosome Biogenesis in Plants: From Functional 45S Ribosomal DNA Organization to Ribosome Assembly Factors. THE PLANT CELL 2019; 31:1945-1967. [PMID: 31239391 PMCID: PMC6751116 DOI: 10.1105/tpc.18.00874] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 05/28/2019] [Accepted: 06/25/2019] [Indexed: 05/11/2023]
Abstract
The transcription of 18S, 5.8S, and 18S rRNA genes (45S rDNA), cotranscriptional processing of pre-rRNA, and assembly of mature rRNA with ribosomal proteins are the linchpins of ribosome biogenesis. In yeast (Saccharomyces cerevisiae) and animal cells, hundreds of pre-rRNA processing factors have been identified and their involvement in ribosome assembly determined. These studies, together with structural analyses, have yielded comprehensive models of the pre-40S and pre-60S ribosome subunits as well as the largest cotranscriptionally assembled preribosome particle: the 90S/small subunit processome. Here, we present the current knowledge of the functional organization of 45S rDNA, pre-rRNA transcription, rRNA processing activities, and ribosome assembly factors in plants, focusing on data from Arabidopsis (Arabidopsis thaliana). Based on yeast and mammalian cell studies, we describe the ribonucleoprotein complexes and RNA-associated activities and discuss how they might specifically affect the production of 40S and 60S subunits. Finally, we review recent findings concerning pre-rRNA processing pathways and a novel mechanism involved in a ribosome stress response in plants.
Collapse
Affiliation(s)
- Julio Sáez-Vásquez
- CNRS, Laboratoire Génome et Développement des Plantes, UMR 5096, 66860 Perpignan, France, and Universite Perpignan Via Domitia, Laboratoire Génome et Développement des Plantes, UMR 5096, F-66860 Perpignan, France
| | - Michel Delseny
- CNRS, Laboratoire Génome et Développement des Plantes, UMR 5096, 66860 Perpignan, France, and Universite Perpignan Via Domitia, Laboratoire Génome et Développement des Plantes, UMR 5096, F-66860 Perpignan, France
| |
Collapse
|
36
|
Benoit M, Simon L, Desset S, Duc C, Cotterell S, Poulet A, Le Goff S, Tatout C, Probst AV. Replication-coupled histone H3.1 deposition determines nucleosome composition and heterochromatin dynamics during Arabidopsis seedling development. THE NEW PHYTOLOGIST 2019; 221:385-398. [PMID: 29897636 DOI: 10.1111/nph.15248] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 05/01/2018] [Indexed: 05/23/2023]
Abstract
Developmental phase transitions are often characterized by changes in the chromatin landscape and heterochromatin reorganization. In Arabidopsis, clustering of repetitive heterochromatic loci into so-called chromocenters is an important determinant of chromosome organization in nuclear space. Here, we investigated the molecular mechanisms involved in chromocenter formation during the switch from a heterotrophic to a photosynthetically competent state during early seedling development. We characterized the spatial organization and chromatin features at centromeric and pericentromeric repeats and identified mutant contexts with impaired chromocenter formation. We find that clustering of repetitive DNA loci into chromocenters takes place in a precise temporal window and results in reinforced transcriptional repression. Although repetitive sequences are enriched in H3K9me2 and linker histone H1 before repeat clustering, chromocenter formation involves increasing enrichment in H3.1 as well as H2A.W histone variants, hallmarks of heterochromatin. These processes are severely affected in mutants impaired in replication-coupled histone assembly mediated by CHROMATIN ASSEMBLY FACTOR 1 (CAF-1). We further reveal that histone deposition by CAF-1 is required for efficient H3K9me2 enrichment at repetitive sequences during chromocenter formation. Taken together, we show that chromocenter assembly during post-germination development requires dynamic changes in nucleosome composition and histone post-translational modifications orchestrated by the replication-coupled H3.1 deposition machinery.
Collapse
Affiliation(s)
- Matthias Benoit
- GReD, Université Clermont Auvergne, CNRS, INSERM, BP 38, 63001, Clermont-Ferrand, France
- The Sainsbury Laboratory, University of Cambridge, Cambridge, CB2 1LR, UK
| | - Lauriane Simon
- GReD, Université Clermont Auvergne, CNRS, INSERM, BP 38, 63001, Clermont-Ferrand, France
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Uppsala, 75007, Sweden
| | - Sophie Desset
- GReD, Université Clermont Auvergne, CNRS, INSERM, BP 38, 63001, Clermont-Ferrand, France
| | - Céline Duc
- GReD, Université Clermont Auvergne, CNRS, INSERM, BP 38, 63001, Clermont-Ferrand, France
| | - Sylviane Cotterell
- GReD, Université Clermont Auvergne, CNRS, INSERM, BP 38, 63001, Clermont-Ferrand, France
| | - Axel Poulet
- GReD, Université Clermont Auvergne, CNRS, INSERM, BP 38, 63001, Clermont-Ferrand, France
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, 1518 Clifton Road NE, Atlanta, GA, 30322, USA
| | - Samuel Le Goff
- GReD, Université Clermont Auvergne, CNRS, INSERM, BP 38, 63001, Clermont-Ferrand, France
| | - Christophe Tatout
- GReD, Université Clermont Auvergne, CNRS, INSERM, BP 38, 63001, Clermont-Ferrand, France
| | - Aline V Probst
- GReD, Université Clermont Auvergne, CNRS, INSERM, BP 38, 63001, Clermont-Ferrand, France
| |
Collapse
|
37
|
Mozgova I, Wildhaber T, Trejo-Arellano MS, Fajkus J, Roszak P, Köhler C, Hennig L. Transgenerational phenotype aggravation in CAF-1 mutants reveals parent-of-origin specific epigenetic inheritance. THE NEW PHYTOLOGIST 2018; 220:908-921. [PMID: 29573427 DOI: 10.1111/nph.15082] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 02/05/2018] [Indexed: 05/23/2023]
Abstract
Chromatin is assembled by histone chaperones such as chromatin assembly factor CAF-1. We had noticed that vigor of Arabidopsis thaliana CAF-1 mutants decreased over several generations. Because changes in mutant phenotype severity over generations are unusual, we asked how repeated selfing of Arabidopsis CAF-1 mutants affects phenotype severity. CAF-1 mutant plants of various generations were grown, and developmental phenotypes, transcriptomes and DNA cytosine-methylation profiles were compared quantitatively. Shoot- and root-related growth phenotypes were progressively more affected in successive generations of CAF-1 mutants. Early and late generations of the fasciata (fas)2-4 CAF-1 mutant displayed only limited changes in gene expression, of which increasing upregulation of plant defense-related genes reflects the transgenerational phenotype aggravation. Likewise, global DNA methylation in the sequence context CHG but not CG or CHH (where H = A, T or C) changed over generations in fas2-4. Crossing early and late generation fas2-4 plants established that the maternal contribution to the phenotype severity exceeds the paternal contribution. Together, epigenetic rather than genetic mechanisms underlie the progressive developmental phenotype aggravation in the Arabidopsis CAF-1 mutants and preferred maternal transmission reveals a more efficient reprogramming of epigenetic information in the male than the female germline.
Collapse
Affiliation(s)
- Iva Mozgova
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, SE-75007, Uppsala, Sweden
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Opatovický mlýn, CZ-37981, Třeboň, Czech Republic
| | - Thomas Wildhaber
- Department of Biology and Zurich-Basel Plant Science Center, ETH Zurich, CH-8092, Zurich, Switzerland
| | - Minerva S Trejo-Arellano
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, SE-75007, Uppsala, Sweden
| | - Jiri Fajkus
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, CZ-61137, Brno, Czech Republic
| | - Pawel Roszak
- Department of Biology and Zurich-Basel Plant Science Center, ETH Zurich, CH-8092, Zurich, Switzerland
| | - Claudia Köhler
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, SE-75007, Uppsala, Sweden
| | - Lars Hennig
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, SE-75007, Uppsala, Sweden
| |
Collapse
|
38
|
Wang H, Jiang D, Axelsson E, Lorković ZJ, Montgomery S, Holec S, Pieters BJGE, Al Temimi AHK, Mecinović J, Berger F. LHP1 Interacts with ATRX through Plant-Specific Domains at Specific Loci Targeted by PRC2. MOLECULAR PLANT 2018; 11:1038-1052. [PMID: 29793052 DOI: 10.1016/j.molp.2018.05.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 04/10/2018] [Accepted: 05/11/2018] [Indexed: 06/08/2023]
Abstract
Heterochromatin Protein 1 (HP1) is a major regulator of chromatin structure and function. In animals, the network of proteins interacting with HP1 is mainly associated with constitutive heterochromatin marked by H3K9me3. HP1 physically interacts with the putative ortholog of the SNF2 chromatin remodeler ATRX, which controls deposition of histone variant H3.3 in mammals. In this study, we show that the Arabidopsis thaliana ortholog of ATRX participates in H3.3 deposition and possesses specific conserved domains in plants. We found that plant Like HP1 (LHP1) protein interacts with ATRX through domains that evolved specifically in land plant ancestors. Loss of ATRX function in Arabidopsis affects the expression of a limited subset of genes controlled by PRC2 (POLYCOMB REPRESSIVE COMPLEX 2), including the flowering time regulator FLC. The function of ATRX in regulation of flowering time requires novel LHP1-interacting domain and ATPase activity of the ATRX SNF2 helicase domain. Taken together, these results suggest that distinct evolutionary pathways led to the interaction between ATRX and HP1 in mammals and its counterpart LHP1 in plants, resulting in distinct modes of transcriptional regulation.
Collapse
Affiliation(s)
- Haifeng Wang
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria; Temasek Lifesciences Laboratory, 1 Research Link, National University of Singapore, 117604 Singapore, Singapore; Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, 117543 Singapore, Singapore
| | - Danhua Jiang
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria; Temasek Lifesciences Laboratory, 1 Research Link, National University of Singapore, 117604 Singapore, Singapore
| | - Elin Axelsson
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Zdravko J Lorković
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Sean Montgomery
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Sarah Holec
- Temasek Lifesciences Laboratory, 1 Research Link, National University of Singapore, 117604 Singapore, Singapore
| | - Bas J G E Pieters
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands
| | - Abbas H K Al Temimi
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands
| | - Jasmin Mecinović
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands
| | - Frédéric Berger
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria; Temasek Lifesciences Laboratory, 1 Research Link, National University of Singapore, 117604 Singapore, Singapore; Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, 117543 Singapore, Singapore.
| |
Collapse
|