1
|
Iwano M, Suetsugu N, Nishihama R, Ishida S, Horie T, Costa A, Katsuno T, Kimura M, Iida K, Iida H, Nagai T, Kohchi T. MID1-COMPLEMENTING ACTIVITY regulates cell proliferation and development via Ca2+ signaling in Marchantia polymorpha. PLANT PHYSIOLOGY 2024; 197:kiae613. [PMID: 39535860 DOI: 10.1093/plphys/kiae613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/23/2024] [Accepted: 10/11/2024] [Indexed: 11/16/2024]
Abstract
MID1-COMPLEMENTING ACTIVITY (MCA) is a land plant-specific, plasma membrane protein, and Ca2+ signaling component that responds to exogenous mechanical stimuli, such as touch, gravity, and hypotonic-osmotic stress, in various plant species. MCA is essential for cell proliferation and differentiation during growth and development in rice (Oryza sativa) and maize (Zea mays). However, the mechanism by which MCA mediates cell proliferation and differentiation via Ca2+ signaling remains unknown. Here, we address this question using the liverwort Marchantia polymorpha. We show that the M. polymorpha MCA ortholog, MpMCA, is highly expressed in actively dividing regions, such as apical notches in the thalli and developing gametangiophores, and that MpMCA is a plasma membrane protein. In vivo, Ca2+ imaging using a Ca2+ sensor (yellow cameleon) revealed that MpMCA is required for maintaining proper [Ca2+]cyt levels in the apical notch region, egg cells, and antheridium cells. Mpmca mutant plants showed severe cell proliferation and differentiation defects in the thalli, gametangiophores, and gametangia, resulting in abnormal development and unsuccessful fertilization. Furthermore, expression of the Arabidopsis MCA1 gene complemented most of the defects in the growth and development of the Mpmca mutant plants. Our findings indicate that MpMCA is an evolutionarily conserved Ca2+-signaling component that regulates cell proliferation and development across the life cycle of land plants.
Collapse
Affiliation(s)
- Megumi Iwano
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Noriyuki Suetsugu
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan
| | - Ryuichi Nishihama
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Sakiko Ishida
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Tomoaki Horie
- Division of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, Ueda, Nagano 386-8567, Japan
| | - Alex Costa
- Department of Biosciences, University of Milan, Milano 20133, Italy
| | - Tatsuya Katsuno
- Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Midori Kimura
- Department of Biology, Tokyo Gakugei University, Koganei, Tokyo 184-8501, Japan
| | - Kazuko Iida
- Department of Biology, Tokyo Gakugei University, Koganei, Tokyo 184-8501, Japan
| | - Hidetoshi Iida
- Department of Biology, Tokyo Gakugei University, Koganei, Tokyo 184-8501, Japan
| | - Takeharu Nagai
- SANKEN, The University of Osaka, Ibaraki, Osaka 567-0047, Japan
| | - Takayuki Kohchi
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
2
|
Chen J, Cullen E. Follow the calcium road: Conserved mechanisms of growth and development in Marchantia polymorpha. PLANT PHYSIOLOGY 2024; 197:kiae622. [PMID: 39574291 DOI: 10.1093/plphys/kiae622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 11/16/2024] [Indexed: 12/24/2024]
Affiliation(s)
- Jiawen Chen
- Plant Physiology, American Society of Plant Biologists
- Division of Crop Biotechnics, Department of Biosystems, KU Leuven, Leuven 3001, Belgium
| | - Erin Cullen
- Plant Physiology, American Society of Plant Biologists
| |
Collapse
|
3
|
Yang H, Thompson B. Widespread changes to the translational landscape in a maize microRNA biogenesis mutant. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:1986-2000. [PMID: 38963711 DOI: 10.1111/tpj.16902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 06/08/2024] [Accepted: 06/17/2024] [Indexed: 07/06/2024]
Abstract
MicroRNAs are short, non-coding RNAs that repress gene expression in both plants and animals and have diverse functions related to growth, development, and stress responses. The ribonuclease, DICER-LIKE1 (DCL1) is required for two steps in plant miRNA biogenesis: cleavage of the primary miRNAs (pri-miRNAs) to release a hairpin structure, called the precursor miRNA (pre-miRNA) and cleavage of the pre-miRNA to generate the miRNA/miRNA* duplex. The mature miRNA guides the RNA-induced silencing complex to target RNAs with complementary sequences, resulting in translational repression and/or RNA cleavage of target mRNAs. However, the relative contribution of translational repression versus mRNA degradation by miRNAs remains unknown at the genome-level in crops, especially in maize. The maize fuzzy tassel (fzt) mutant contains a hypomorphic mutation in DCL1 resulting in broad developmental defects. While most miRNAs are reduced in fzt, the levels of miRNA-targeted mRNAs are not dramatically increased, suggesting that translational regulation by miRNAs may be common. To gain insight into the repression mechanism of plant miRNAs, we combined ribosome profiling and RNA-sequencing to globally survey miRNA activities in maize. Our data indicate that translational repression contributes significantly to regulation of most miRNA targets and that approximately one-third of miRNA targets are regulated primarily at the translational level. Surprisingly, ribosomes appear altered in fzt mutants suggesting that DCL1 may also have a role in ribosome biogenesis. Thus, DICER-LIKE1 shapes the translational landscape in plants through both miRNA-dependent and miRNA-independent mechanisms.
Collapse
Affiliation(s)
- Hailong Yang
- Biology Department, East Carolina University, Greenville, North Carolina, USA
| | - Beth Thompson
- Biology Department, East Carolina University, Greenville, North Carolina, USA
| |
Collapse
|
4
|
Dong Y, Li G, Zhang X, Feng Z, Li T, Li Z, Xu S, Xu S, Liu W, Xue J. Genome-Wide Association Study for Maize Hybrid Performance in a Typical Breeder Population. Int J Mol Sci 2024; 25:1190. [PMID: 38256265 PMCID: PMC10816832 DOI: 10.3390/ijms25021190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/14/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
Maize is one of the major crops that has demonstrated success in the utilization of heterosis. Developing high-yield hybrids is a crucial part of plant breeding to secure global food demand. In this study, we conducted a genome-wide association study (GWAS) for 10 agronomic traits using a typical breeder population comprised 442 single-cross hybrids by evaluating additive, dominance, and epistatic effects. A total of 49 significant single nucleotide polymorphisms (SNPs) and 69 significant pairs of epistasis were identified, explaining 26.2% to 64.3% of the phenotypic variation across the 10 traits. The enrichment of favorable genotypes is significantly correlated to the corresponding phenotype. In the confident region of the associated site, 532 protein-coding genes were discovered. Among these genes, the Zm00001d044211 candidate gene was found to negatively regulate starch synthesis and potentially impact yield. This typical breeding population provided a valuable resource for dissecting the genetic architecture of yield-related traits. We proposed a novel mating strategy to increase the GWAS efficiency without utilizing more resources. Finally, we analyzed the enrichment of favorable alleles in the Shaan A and Shaan B groups, as well as in each inbred line. Our breeding practice led to consistent results. Not only does this study demonstrate the feasibility of GWAS in F1 hybrid populations, it also provides a valuable basis for further molecular biology and breeding research.
Collapse
Affiliation(s)
- Yuan Dong
- Key Laboratory of Biology and Genetic Breeding of Maize in Arid Area of Northwest Region, College of Agronomy, Northwest A&F University, Yangling 712100, China
| | - Guoliang Li
- National Maize Improvement Center of China, Key Laboratory of Crop Heterosis and Utilization (MOE), China Agricultural University, Beijing 100193, China
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, 06466 Seeland, Germany
| | - Xinghua Zhang
- Key Laboratory of Biology and Genetic Breeding of Maize in Arid Area of Northwest Region, College of Agronomy, Northwest A&F University, Yangling 712100, China
| | - Zhiqian Feng
- Key Laboratory of Biology and Genetic Breeding of Maize in Arid Area of Northwest Region, College of Agronomy, Northwest A&F University, Yangling 712100, China
| | - Ting Li
- Key Laboratory of Biology and Genetic Breeding of Maize in Arid Area of Northwest Region, College of Agronomy, Northwest A&F University, Yangling 712100, China
| | - Zhoushuai Li
- Key Laboratory of Biology and Genetic Breeding of Maize in Arid Area of Northwest Region, College of Agronomy, Northwest A&F University, Yangling 712100, China
| | - Shizhong Xu
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
| | - Shutu Xu
- Key Laboratory of Biology and Genetic Breeding of Maize in Arid Area of Northwest Region, College of Agronomy, Northwest A&F University, Yangling 712100, China
| | - Wenxin Liu
- National Maize Improvement Center of China, Key Laboratory of Crop Heterosis and Utilization (MOE), China Agricultural University, Beijing 100193, China
| | - Jiquan Xue
- Key Laboratory of Biology and Genetic Breeding of Maize in Arid Area of Northwest Region, College of Agronomy, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
5
|
Wang D, Zhang H, Hu X, Zhang H, Feng S, Zhou A. Cell number regulator 8 from Salix linearistipularis enhances cadmium tolerance in poplar by reducing cadmium uptake and accumulation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 206:108216. [PMID: 38016370 DOI: 10.1016/j.plaphy.2023.108216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/01/2023] [Accepted: 11/20/2023] [Indexed: 11/30/2023]
Abstract
Trace metals have relatively high density and high toxicity at low concentrations. Willow (Salix genus) is an excellent phytoremediation species for soil contaminated by trace metal ions. This study identified a cell number regulator (CNR) gene family member in Salix linearistipularis exhibiting strong metal ion resistance: SlCNR8. SlCNR8 expression was affected by various metal ions, including cadmium (Cd), zinc (Zn), copper (Cu), iron (Fe), and manganese (Mn). SlCNR8 overexpression enhanced Cd, Zn, Cu, and Fe resistance in transgenic poplar seedlings (84K) compared with the wild-type (WT). Moreover, transgenic poplar seedlings showed lower root Cd uptake and less Cd accumulation than WT under Cd stress. SlCNR8 was primarily localized to the nucleus and the plasma membrane-like cell periphery. Furthermore, SlCNR8 had transcriptional activation activity in yeast. The transcript levels of multiple metal ion transporters were altered in the roots of transgenic poplar seedlings compared to WT roots under Cd stress. These results suggest that SlCNR8 may enhance Cd resistance in transgenic poplar by reducing Cd uptake and accumulation. This may be related to altered transcription levels of other transporters or to itself. Our study suggests that SlCNR8 can be used as a candidate gene for genetic improvement of phytostabilisation of trace metals by genetic engineering.
Collapse
Affiliation(s)
- Di Wang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Huaifang Zhang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Xuefei Hu
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Haizhen Zhang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Shuang Feng
- Large-Scale Instrument and Equipment Sharing Service Platform, Northeast Agricultural University, Harbin, 150030, China.
| | - Aimin Zhou
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
6
|
Robson JK, Ferguson JN, McAusland L, Atkinson JA, Tranchant-Dubreuil C, Cubry P, Sabot F, Wells DM, Price AH, Wilson ZA, Murchie EH. Chlorophyll fluorescence-based high-throughput phenotyping facilitates the genetic dissection of photosynthetic heat tolerance in African (Oryza glaberrima) and Asian (Oryza sativa) rice. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:5181-5197. [PMID: 37347829 PMCID: PMC10498015 DOI: 10.1093/jxb/erad239] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 06/20/2023] [Indexed: 06/24/2023]
Abstract
Rising temperatures and extreme heat events threaten rice production. Half of the global population relies on rice for basic nutrition, and therefore developing heat-tolerant rice is essential. During vegetative development, reduced photosynthetic rates can limit growth and the capacity to store soluble carbohydrates. The photosystem II (PSII) complex is a particularly heat-labile component of photosynthesis. We have developed a high-throughput chlorophyll fluorescence-based screen for photosynthetic heat tolerance capable of screening hundreds of plants daily. Through measuring the response of maximum PSII efficiency to increasing temperature, this platform generates data for modelling the PSII-temperature relationship in large populations in a small amount of time. Coefficients from these models (photosynthetic heat tolerance traits) demonstrated high heritabilities across African (Oryza glaberrima) and Asian (Oryza sativa, Bengal Assam Aus Panel) rice diversity sets, highlighting valuable genetic variation accessible for breeding. Genome-wide association studies were performed across both species for these traits, representing the first documented attempt to characterize the genetic basis of photosynthetic heat tolerance in any species to date. A total of 133 candidate genes were highlighted. These were significantly enriched with genes whose predicted roles suggested influence on PSII activity and the response to stress. We discuss the most promising candidates for improving photosynthetic heat tolerance in rice.
Collapse
Affiliation(s)
- Jordan K Robson
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, UK
| | - John N Ferguson
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, UK
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
- School of Life Sciences, University of Essex, Colchester, UK
| | - Lorna McAusland
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, UK
| | - Jonathan A Atkinson
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, UK
| | | | - Phillipe Cubry
- Institut de Recherche pour le Developpement, 911 Av. Agropolis, 34394 Montpellier, France
| | - François Sabot
- Institut de Recherche pour le Developpement, 911 Av. Agropolis, 34394 Montpellier, France
| | - Darren M Wells
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, UK
| | - Adam H Price
- Institut de Recherche pour le Developpement, 911 Av. Agropolis, 34394 Montpellier, France
| | - Zoe A Wilson
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, UK
| | - Erik H Murchie
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, UK
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
7
|
Li Q, Liu N, Wu C. Novel insights into maize (Zea mays) development and organogenesis for agricultural optimization. PLANTA 2023; 257:94. [PMID: 37031436 DOI: 10.1007/s00425-023-04126-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 03/22/2023] [Indexed: 06/19/2023]
Abstract
In maize, intrinsic hormone activities and sap fluxes facilitate organogenesis patterning and plant holistic development; these hormone movements should be a primary focus of developmental biology and agricultural optimization strategies. Maize (Zea mays) is an important crop plant with distinctive life history characteristics and structural features. Genetic studies have extended our knowledge of maize developmental processes, genetics, and molecular ecophysiology. In this review, the classical life cycle and life history strategies of maize are analyzed to identify spatiotemporal organogenesis properties and develop a definitive understanding of maize development. The actions of genes and hormones involved in maize organogenesis and sex determination, along with potential molecular mechanisms, are investigated, with findings suggesting central roles of auxin and cytokinins in regulating maize holistic development. Furthermore, investigation of morphological and structural characteristics of maize, particularly node ubiquity and the alternate attachment pattern of lateral organs, yields a novel regulatory model suggesting that maize organ initiation and subsequent development are derived from the stimulation and interaction of auxin and cytokinin fluxes. Propositions that hormone activities and sap flow pathways control organogenesis are thoroughly explored, and initiation and development processes of distinctive maize organs are discussed. Analysis of physiological factors driving hormone and sap movement implicates cues of whole-plant activity for hormone and sap fluxes to stimulate maize inflorescence initiation and organ identity determination. The physiological origins and biogenetic mechanisms underlying maize floral sex determination occurring at the tassel and ear spikelet are thoroughly investigated. The comprehensive outline of maize development and morphogenetic physiology developed in this review will enable farmers to optimize field management and will provide a reference for de novo crop domestication and germplasm improvement using genome editing biotechnologies, promoting agricultural optimization.
Collapse
Affiliation(s)
- Qinglin Li
- Crop Genesis and Novel Agronomy Center, Yangling, 712100, Shaanxi, China.
| | - Ning Liu
- Shandong ZhongnongTiantai Seed Co., Ltd, Pingyi, 273300, Shandong, China
| | - Chenglai Wu
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, Shandong, China.
- College of Agronomy, Shandong Agricultural University, Tai'an, 271018, Shandong, China.
| |
Collapse
|
8
|
Gao C, Peng X, Zhang L, Zhao Q, Ma L, Yu Q, Lian X, Gao L, Xiong L, Li S. Proteome and Ubiquitylome Analyses of Maize Endoplasmic Reticulum under Heat Stress. Genes (Basel) 2023; 14:genes14030749. [PMID: 36981020 PMCID: PMC10047965 DOI: 10.3390/genes14030749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/12/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
High temperatures severely affect plant growth and pose a threat to global crop production. Heat causes the accumulation of misfolded proteins in the endoplasmic reticulum(ER), as well as triggering the heat-shock response (HSR) in the cytosol and the unfolded protein response (UPR) in the ER. Excessive misfolded proteins undergo further degradation through ER-associated degradation (ERAD). Although much research on the plant heat stress response has been conducted, the regulation of ER-localized proteins has not been well-studied thus far. We isolated the microsome fraction from heat-treated and untreated maize seedlings and performed proteome and ubiquitylome analyses. Of the 8306 total proteins detected in the proteomics analysis, 1675 proteins were significantly up-regulated and 708 proteins were significantly down-regulated. Global ubiquitination analysis revealed 1780 proteins with at least one ubiquitination site. Motif analysis revealed that alanine and glycine are the preferred amino acids upstream and downstream of ubiquitinated lysine sites. ERAD components were found to be hyper-ubiquitinated after heat treatment, implying the feedback regulation of ERAD activity through protein degradation.
Collapse
Affiliation(s)
- Chunyan Gao
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
- College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaohui Peng
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Luoying Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Qi Zhao
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Liguo Ma
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Qi Yu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xuechun Lian
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Lei Gao
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Langyu Xiong
- Institute of Advanced Studies in Humanities and Social Sciences, Beijing Normal University, Zhuhai 519087, China
| | - Shengben Li
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
- Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
9
|
Wang S, Robertz S, Seven M, Kraemer F, Kuhn BM, Liu L, Lunde C, Pauly M, Ramírez V. A large-scale forward genetic screen for maize mutants with altered lignocellulosic properties. FRONTIERS IN PLANT SCIENCE 2023; 14:1099009. [PMID: 36959947 PMCID: PMC10028098 DOI: 10.3389/fpls.2023.1099009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
The development of efficient pipelines for the bioconversion of grass lignocellulosic feedstocks is challenging due to the limited understanding of the molecular mechanisms controlling the synthesis, deposition, and degradation of the varying polymers unique to grass cell walls. Here, we describe a large-scale forward genetic approach resulting in the identification of a collection of chemically mutagenized maize mutants with diverse alterations in their cell wall attributes such as crystalline cellulose content or hemicellulose composition. Saccharification yield, i.e. the amount of lignocellulosic glucose (Glc) released by means of enzymatic hydrolysis, is increased in two of the mutants and decreased in the remaining six. These mutants, termed candy-leaf (cal), show no obvious plant growth or developmental defects despite associated differences in their lignocellulosic composition. The identified cal mutants are a valuable tool not only to understand recalcitrance of grass lignocellulosics to enzymatic deconstruction but also to decipher grass-specific aspects of cell wall biology once the genetic basis, i.e. the location of the mutation, has been identified.
Collapse
Affiliation(s)
- Shaogan Wang
- Institute for Plant Cell Biology and Biotechnology-Cluster of Excellence on Plant Sciences, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Stefan Robertz
- Institute for Plant Cell Biology and Biotechnology-Cluster of Excellence on Plant Sciences, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Merve Seven
- Institute for Plant Cell Biology and Biotechnology-Cluster of Excellence on Plant Sciences, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Florian Kraemer
- Department of Plant and Microbial Biology, Energy Biosciences Institute, University of California, Berkeley, Berkeley, CA, United States
| | - Benjamin M. Kuhn
- Department of Plant and Microbial Biology, Energy Biosciences Institute, University of California, Berkeley, Berkeley, CA, United States
| | - Lifeng Liu
- Department of Plant and Microbial Biology, Energy Biosciences Institute, University of California, Berkeley, Berkeley, CA, United States
| | - China Lunde
- Plant Gene Expression Center, Agricultural Research Service, U.S. Department of Agriculture, Albany, CA, United States
| | - Markus Pauly
- Institute for Plant Cell Biology and Biotechnology-Cluster of Excellence on Plant Sciences, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Department of Plant and Microbial Biology, Energy Biosciences Institute, University of California, Berkeley, Berkeley, CA, United States
| | - Vicente Ramírez
- Institute for Plant Cell Biology and Biotechnology-Cluster of Excellence on Plant Sciences, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Department of Plant and Microbial Biology, Energy Biosciences Institute, University of California, Berkeley, Berkeley, CA, United States
| |
Collapse
|
10
|
A receptor-like kinase controls the amplitude of secondary cell wall synthesis in rice. Curr Biol 2023; 33:498-506.e6. [PMID: 36638797 DOI: 10.1016/j.cub.2022.12.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/06/2022] [Accepted: 12/13/2022] [Indexed: 01/14/2023]
Abstract
Cell wall expansion is a key element in determining plant morphology and growth, and cell wall integrity changes are relayed to the cell to fine-tune growth responses. Here, we show that variations in the ectodomain of a cell wall-associated receptor-like kinase, WAK10, in temperate Oryza japonica accessions differentially amplify fluctuations in cell wall integrity to control rice stem height. Mutation in the WAK10 gene exhibited increased cell wall thickening in stem sclerenchyma and reduced cell expansion in the stem. Two WAK10 ectodomain variants bound pectic oligosaccharides with different affinities. The pectic oligosaccharide binding regulated WAK10 phosphorylation activity, the amplitude of secondary wall deposition, and ultimately, stem height. Rice population analyses revealed active enrichment of the short-stem WAK10 ectodomain alleles in japonica subspecies during domestication. Our study outlines not only a mechanism for how variations in ligand affinities of a receptor kinase control cell wall biosynthesis and plant growth, but it also provides breeding targets for new semi-dwarf rice cultivars.
Collapse
|
11
|
Busche M, Hake S, Brunkard JO. Terminal ear 1 and phytochromes B1/B2 regulate maize leaf initiation independently. Genetics 2022; 223:6887217. [PMID: 36495288 PMCID: PMC9910401 DOI: 10.1093/genetics/iyac182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 12/14/2022] Open
Abstract
Higher plants generate new leaves from shoot meristems throughout their vegetative lifespan. The tempo of leaf initiation is dynamically regulated by physiological cues, but little is known about the underlying genetic signaling pathways that coordinate this rate. Two maize (Zea mays) mutants, terminal ear1 (te1) and phytochrome B1;phytochrome B2 (phyB1;phyB2), oppositely affect leaf initiation rates and total leaf number at the flowering time: te1 mutants make leaves faster whereas phyB1;phyB2 mutants make leaves slower than wild-type plants. To test whether PhyB1, PhyB2, and TE1 act in overlapping or distinct pathways to regulate leaf initiation, we crossed te1 and phyB1;phyB2 created an F2 population segregating for these three mutations and quantified various phenotypes among the resulting genotypes, including leaf number, leaf initiation rate, plant height, leaf length, leaf width, number of juvenile leaves, stalk diameter, and dry shoot biomass. Leaf number and initiation rate in phyB1;phyB2;te1 plants fell between the extremes of the two parents, suggesting an additive genetic interaction between te1 and phyB1;phyB2 rather than epistasis. Therefore, we conclude that PhyB1, PhyB2, and TE1 likely control leaf initiation through distinct signaling pathways.
Collapse
Affiliation(s)
- Michael Busche
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Sarah Hake
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA,Plant Gene Expression Center, USDA Agricultural Research Service, Albany, CA 94710, USA
| | - Jacob O Brunkard
- Corresponding author: Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53715, USA.
| |
Collapse
|
12
|
Comparative Proteomic Analyses of Susceptible and Resistant Maize Inbred Lines at the Stage of Enations Forming following Infection by Rice Black-Streaked Dwarf Virus. Viruses 2022; 14:v14122604. [PMID: 36560608 PMCID: PMC9785138 DOI: 10.3390/v14122604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 11/24/2022] Open
Abstract
Rice black-streaked dwarf virus (RBSDV) is the main pathogen causing maize rough dwarf disease (MRDD) in China. Typical enation symptoms along the abaxial leaf veins prevail in RBSDV-infected maize inbred line B73 (susceptible to RBSDV), but not in X178 (resistant to RBSDV). Observation of the microstructures of epidermal cells and cross section of enations from RBSDV-infected maize leaves found that the increase of epidermal cell and phloem cell numbers is associated with enation formation. To identify proteins associated with enation formation and candidate proteins against RBSDV infection, comparative proteomics between B73 and X178 plants were conducted using isobaric tags for relative and absolute quantitation (iTRAQ) with leaf samples at the enation forming stage. The proteomics data showed that 260 and 316 differentially expressed proteins (DEPs) were identified in B73 and X178, respectively. We found that the majority of DEPs are located in the chloroplast and cytoplasm. Moreover, RBSDV infection resulted in dramatic changes of DEPs enriched by the metabolic process, response to stress and the biosynthetic process. Strikingly, a cell number regulator 10 was significantly down-regulated in RBSDV-infected B73 plants. Altogether, these data will provide value information for future studies to analyze molecular events during both enation formation and resistance mechanism to RBSDV infection.
Collapse
|
13
|
Jia B, Li Y, Sun X, Sun M. Structure, Function, and Applications of Soybean Calcium Transporters. Int J Mol Sci 2022; 23:ijms232214220. [PMID: 36430698 PMCID: PMC9693241 DOI: 10.3390/ijms232214220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/13/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
Glycine max is a calcium-loving crop. The external application of calcium fertilizer is beneficial to the increase of soybean yield. Indeed, calcium is a vital nutrient in plant growth and development. As a core metal ion in signaling transduction, calcium content is maintained in dynamic balance under normal circumstances. Now, eight transporters were found to control the uptake and efflux of calcium. Though these calcium transporters have been identified through genome-wide analysis, only a few of them were functionally verified. Therefore, in this study, we summarized the current knowledge of soybean calcium transporters in structural features, expression characteristics, roles in stress response, and prospects. The above results will be helpful in understanding the function of cellular calcium transport and provide a theoretical basis for elevating soybean yield.
Collapse
|
14
|
Pierroz G. Stress management: how NOD and LGN coordinate growth-defence tradeoffs in maize. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:879-880. [PMID: 36415090 DOI: 10.1111/tpj.16016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
|
15
|
Abraham‐Juárez MJ, Busche M, Anderson AA, Lunde C, Winders J, Christensen SA, Hunter CT, Hake S, Brunkard JO. Liguleless narrow and narrow odd dwarf act in overlapping pathways to regulate maize development and metabolism. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:881-896. [PMID: 36164819 PMCID: PMC9827925 DOI: 10.1111/tpj.15988] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 08/24/2022] [Accepted: 09/05/2022] [Indexed: 06/16/2023]
Abstract
Narrow odd dwarf (nod) and Liguleless narrow (Lgn) are pleiotropic maize mutants that both encode plasma membrane proteins, cause similar developmental patterning defects, and constitutively induce stress signaling pathways. To investigate how these mutants coordinate maize development and physiology, we screened for protein interactors of NOD by affinity purification. LGN was identified by this screen as a strong candidate interactor, and we confirmed the NOD-LGN molecular interaction through orthogonal experiments. We further demonstrated that LGN, a receptor-like kinase, can phosphorylate NOD in vitro, hinting that they could act in intersecting signal transduction pathways. To test this hypothesis, we generated Lgn-R;nod mutants in two backgrounds (B73 and A619), and found that these mutations enhance each other, causing more severe developmental defects than either single mutation on its own, with phenotypes including very narrow leaves, increased tillering, and failure of the main shoot. Transcriptomic and metabolomic analyses of the single and double mutants in the two genetic backgrounds revealed widespread induction of pathogen defense genes and a shift in resource allocation away from primary metabolism in favor of specialized metabolism. These effects were similar in each single mutant and heightened in the double mutant, leading us to conclude that NOD and LGN act cumulatively in overlapping signaling pathways to coordinate growth-defense tradeoffs in maize.
Collapse
Affiliation(s)
- María Jazmín Abraham‐Juárez
- Laboratorio Nacional de Genómica para la BiodiversidadUnidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico NacionalGuanajuato36821Mexico
| | - Michael Busche
- Laboratory of GeneticsUniversity of WisconsinMadisonWisconsin53706USA
| | - Alyssa A. Anderson
- Department of Plant and Microbial BiologyUniversity of CaliforniaBerkeleyCalifornia94720USA
- Plant Gene Expression CenterUSDA Agricultural Research ServiceAlbanyCalifornia94710USA
| | - China Lunde
- Department of Plant and Microbial BiologyUniversity of CaliforniaBerkeleyCalifornia94720USA
| | - Jeremy Winders
- Genomics and Bioinformatics Research Unit, US Department of Agriculture‐Agricultural Research ServiceRaleighNorth CarolinaUSA
| | | | - Charles T. Hunter
- Chemistry Research Unit, USDA Agricultural Research ServiceGainesvilleFlorida32608USA
| | - Sarah Hake
- Department of Plant and Microbial BiologyUniversity of CaliforniaBerkeleyCalifornia94720USA
- Plant Gene Expression CenterUSDA Agricultural Research ServiceAlbanyCalifornia94710USA
| | - Jacob O. Brunkard
- Laboratory of GeneticsUniversity of WisconsinMadisonWisconsin53706USA
- Department of Plant and Microbial BiologyUniversity of CaliforniaBerkeleyCalifornia94720USA
- Plant Gene Expression CenterUSDA Agricultural Research ServiceAlbanyCalifornia94710USA
| |
Collapse
|
16
|
Tao T, Huang Q, Zuo Z, Lu Y, Su X, Xu Y, Li P, Xu C, Yang Z. Nucleotide polymorphisms of the maize ZmFWL7 gene and their association with ear-related traits. Front Genet 2022; 13:960529. [PMID: 36035151 PMCID: PMC9399371 DOI: 10.3389/fgene.2022.960529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 07/18/2022] [Indexed: 11/14/2022] Open
Abstract
Plant fw2.2-like (FWL) genes, encoding proteins harboring a placenta-specific eight domain, have been suggested to control fruit and grain size through regulating cell division, differentiation, and expansion. Here, we re-sequenced the nucleotide sequences of the maize ZmFWL7 gene, a member of the FWL family, in 256 elite maize inbred lines, and the associations of nucleotide polymorphisms in this locus with 11 ear-related traits were further detected. A total of 175 variants, including 159 SNPs and 16 InDels, were identified in the ZmFWL7 locus. Although the promoter and downstream regions showed higher nucleotide polymorphism, the coding region also possessed 61 SNPs and 6 InDels. Eleven polymorphic sites in the ZmFWL7 locus were found to be significantly associated with eight ear-related traits. Among them, two nonsynonymous SNPs (SNP2370 and SNP2898) showed significant association with hundred kernel weight (HKW), and contributed to 7.11% and 8.62% of the phenotypic variations, respectively. In addition, the SNP2898 was associated with kernel width (KW), and contributed to 7.57% of the phenotypic variations. Notably, the elite allele T of SNP2370 was absent in teosintes and landraces, while its frequency in inbred lines was increased to 12.89%. By contrast, the frequency of the elite allele A of SNP2898 was 3.12% in teosintes, and it was raised to 12.68% and 19.92% in landraces and inbred lines, respectively. Neutral tests show that this locus wasn’t artificially chosen during the process of domestication and genetic improvement. Our results revealed that the elite allelic variants in ZmFWL7 might possess potential for the genetic improvement of maize ear-related traits.
Collapse
Affiliation(s)
- Tianyun Tao
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| | - Qianfeng Huang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| | - Zhihao Zuo
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| | - Yue Lu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| | - Xiaomin Su
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| | - Yang Xu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| | - Pengcheng Li
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| | - Chenwu Xu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
- *Correspondence: Chenwu Xu, ; Zefeng Yang,
| | - Zefeng Yang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
- *Correspondence: Chenwu Xu, ; Zefeng Yang,
| |
Collapse
|
17
|
Guichard M, Thomine S, Frachisse JM. Mechanotransduction in the spotlight of mechano-sensitive channels. CURRENT OPINION IN PLANT BIOLOGY 2022; 68:102252. [PMID: 35772372 DOI: 10.1016/j.pbi.2022.102252] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/06/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
The study of mechanosensitive channels (MS) in living organisms has progressed considerably over the past two decades. The understanding of their roles in mechanosensation and mechanotransduction was consecrated by the awarding of the Nobel Prize in 2021 to A. Patapoutian for his discoveries on the role of MS channels in mechanoperception in humans. In this review, we first summarize the fundamental properties of MS channels and their mode of operation. Then in a second step, we provide an update on the knowledge on the families of MS channels identified in plants and the roles and functions that have been attributed to them.
Collapse
Affiliation(s)
- Marjorie Guichard
- Institute of Cell and Interaction Biology, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Sébastien Thomine
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Jean-Marie Frachisse
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France.
| |
Collapse
|
18
|
Richardson AE, Hake S. The power of classic maize mutants: Driving forward our fundamental understanding of plants. THE PLANT CELL 2022; 34:2505-2517. [PMID: 35274692 PMCID: PMC9252469 DOI: 10.1093/plcell/koac081] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/08/2022] [Indexed: 05/12/2023]
Abstract
Since Mendel, maize has been a powerhouse of fundamental genetics research. From testing the Mendelian laws of inheritance, to the first genetic and cytogenetic maps, to the use of whole-genome sequencing data for crop improvement, maize is at the forefront of genetics advances. Underpinning much of this revolutionary work are the classic morphological mutants; the "freaks" that stood out in the field to even the untrained eye. Here we review some of these classic developmental mutants and their importance in the history of genetics, as well as their key role in our fundamental understanding of plant development.
Collapse
Affiliation(s)
- Annis E Richardson
- School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Sarah Hake
- Department of Plant and Microbial Biology, University of California, Berkeley, California, USA
| |
Collapse
|
19
|
Morphological Characterization and Transcriptome Analysis of New Dwarf and Narrow-Leaf ( dnl2) Mutant in Maize. Int J Mol Sci 2022; 23:ijms23020795. [PMID: 35054982 PMCID: PMC8775757 DOI: 10.3390/ijms23020795] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/06/2022] [Accepted: 01/07/2022] [Indexed: 12/04/2022] Open
Abstract
Lodging is the primary factor limiting high yield under a high plant density. However, an optimal plant height and leaf shape can effectively decrease the lodging risk. Here we studied an ethyl methanesulfonate (EMS)-induced dwarf and a narrow-leaf mutant, dnl2. Gene mapping indicated that the mutant was controlled by a gene located on chromosome nine. Phenotypic and cytological observations revealed that dnl2 showed inhibited cell growth, altered vascular bundle patterning, and disrupted secondary cell wall structure when compared with the wild-type, which could be the direct cause of the dwarf and narrow-leaf phenotype. The phytohormone levels, especially auxin and gibberellin, were significantly decreased in dnl2 compared to the wild-type plants. Transcriptome profiling of the internodes of the dnl2 mutant and wild-type revealed a large number of differentially expressed genes enriched in the cell wall biosynthesis, remodeling, and hormone biosynthesis and signaling pathways. Therefore, we suggest that crosstalk between hormones (the altered vascular bundle and secondary cell wall structure) may contribute to the dwarf and narrow-leaf phenotype by influencing cell growth. These results provide a foundation for DNL2 gene cloning and further elucidation of the molecular mechanism of the regulation of plant height and leaf shape in maize.
Collapse
|
20
|
Zuo Z, Lu Y, Zhu M, Chen R, Zhang E, Hao D, Huang Q, Wang H, Su Y, Wang Z, Xu Y, Li P, Xu C, Yang Z. Nucleotide Diversity of the Maize ZmCNR13 Gene and Association With Ear Traits. Front Genet 2021; 12:773597. [PMID: 34764988 PMCID: PMC8576287 DOI: 10.3389/fgene.2021.773597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 10/14/2021] [Indexed: 11/16/2022] Open
Abstract
The maize (Zea mays L.) ZmCNR13 gene, encoding a protein of fw2.2-like (FWL) family, has been demonstrated to be involved in cell division, expansion, and differentiation. In the present study, the genomic sequences of the ZmCNR13 locus were re-sequenced in 224 inbred lines, 56 landraces and 30 teosintes, and the nucleotide polymorphism and selection signature were estimated. A total of 501 variants, including 415 SNPs and 86 Indels, were detected. Among them, 51 SNPs and 4 Indels were located in the coding regions. Although neutrality tests revealed that this locus had escaped from artificial selection during the process of maize domestication, the population of inbred lines possesses lower nucleotide diversity and decay of linkage disequilibrium. To estimate the association between sequence variants of ZmCNR13 and maize ear characteristics, a total of ten ear-related traits were obtained from the selected inbred lines. Four variants were found to be significantly associated with six ear-related traits. Among them, SNP2305, a non-synonymous mutation in exon 2, was found to be associated with ear weight, ear grain weight, ear diameter and ear row number, and explained 4.59, 4.61, 4.31, and 8.42% of the phenotypic variations, respectively. These results revealed that natural variations of ZmCNR13 might be involved in ear development and can be used in genetic improvement of maize ear-related traits.
Collapse
Affiliation(s)
- Zhihao Zuo
- Jiangsu Key Laboratory of Crop Genetics and Physiology Key Laboratory of Plant Functional Genomics of the Ministry of Education Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, China.,Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Yue Lu
- Jiangsu Key Laboratory of Crop Genetics and Physiology Key Laboratory of Plant Functional Genomics of the Ministry of Education Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, China.,Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Minyan Zhu
- Jiangsu Key Laboratory of Crop Genetics and Physiology Key Laboratory of Plant Functional Genomics of the Ministry of Education Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, China.,Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Rujia Chen
- Jiangsu Key Laboratory of Crop Genetics and Physiology Key Laboratory of Plant Functional Genomics of the Ministry of Education Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, China.,Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Enying Zhang
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Derong Hao
- Jiangsu Yanjiang Institute of Agricultural Sciences, Nantong, China
| | - Qianfeng Huang
- Jiangsu Key Laboratory of Crop Genetics and Physiology Key Laboratory of Plant Functional Genomics of the Ministry of Education Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, China.,Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| | - Hanyao Wang
- Jiangsu Key Laboratory of Crop Genetics and Physiology Key Laboratory of Plant Functional Genomics of the Ministry of Education Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, China
| | - Yanze Su
- Jiangsu Key Laboratory of Crop Genetics and Physiology Key Laboratory of Plant Functional Genomics of the Ministry of Education Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, China
| | - Zhichao Wang
- Jiangsu Key Laboratory of Crop Genetics and Physiology Key Laboratory of Plant Functional Genomics of the Ministry of Education Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, China
| | - Yang Xu
- Jiangsu Key Laboratory of Crop Genetics and Physiology Key Laboratory of Plant Functional Genomics of the Ministry of Education Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, China.,Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Pengcheng Li
- Jiangsu Key Laboratory of Crop Genetics and Physiology Key Laboratory of Plant Functional Genomics of the Ministry of Education Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, China.,Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Chenwu Xu
- Jiangsu Key Laboratory of Crop Genetics and Physiology Key Laboratory of Plant Functional Genomics of the Ministry of Education Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, China.,Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Zefeng Yang
- Jiangsu Key Laboratory of Crop Genetics and Physiology Key Laboratory of Plant Functional Genomics of the Ministry of Education Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, China.,Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
| |
Collapse
|
21
|
Strable J, Nelissen H. The dynamics of maize leaf development: Patterned to grow while growing a pattern. CURRENT OPINION IN PLANT BIOLOGY 2021; 63:102038. [PMID: 33940553 DOI: 10.1016/j.pbi.2021.102038] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 05/12/2023]
Abstract
Leaves are a significant component of the shoot system in grasses, functioning in light capture and photosynthesis. Leaf width, length, and angle are expressions of development that collectively define canopy architecture. Thus, the distinctive morphology of grass leaves is an interdependent readout of developmental patterning and growth along the proximal-distal, medial-lateral, and adaxial-abaxial axes. Here, we review the chronology of patterning and growth, namely along the proximal-distal axis, during maize leaf development. We underscore that patterning and growth occur simultaneously, making use of shared developmental gradients and molecular pathways.
Collapse
Affiliation(s)
- Josh Strable
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC, USA 27695.
| | - Hilde Nelissen
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052, Ghent, Belgium; VIB Center for Plant Systems Biology, 9052, Ghent, Belgium.
| |
Collapse
|
22
|
Beauchet A, Gévaudant F, Gonzalez N, Chevalier C. In search of the still unknown function of FW2.2/CELL NUMBER REGULATOR, a major regulator of fruit size in tomato. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:5300-5311. [PMID: 33974684 DOI: 10.1093/jxb/erab207] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 05/07/2021] [Indexed: 06/12/2023]
Abstract
The FW2.2 gene is associated with the major quantitative trait locus (QTL) governing fruit size in tomato, and acts by negatively controlling cell division during fruit development. FW2.2 belongs to a multigene family named the CELL NUMBER REGULATOR (CNR) family. CNR proteins harbour the uncharacterized PLAC8 motif made of two conserved cysteine-rich domains separated by a variable region that are predicted to be transmembrane segments, and indeed FW2.2 localizes to the plasma membrane. Although FW2.2 was cloned more than two decades ago, the molecular mechanisms of action remain unknown. In particular, how FW2.2 functions to regulate cell cycle and fruit growth, and thus fruit size, is as yet not understood. Here we review current knowledge on PLAC8-containing CNR/FWL proteins in plants, which are described to participate in organogenesis and the regulation of organ size, especially in fruits, and in cadmium resistance, ion homeostasis, and/or Ca2+ signalling. Within the plasma membrane FW2.2 and some CNR/FWLs are localized in microdomains, which is supported by recent data from interactomics studies. Hence FW2.2 and CNR/FWL could be involved in a transport function of signalling molecules across membranes, influencing organ growth via a cell to cell trafficking mechanism.
Collapse
Affiliation(s)
- Arthur Beauchet
- Université de Bordeaux, INRAE, UMR1332 Biologie du Fruit et Pathologie, F-33882 Villenave d'Ornon, France
| | - Frédéric Gévaudant
- Université de Bordeaux, INRAE, UMR1332 Biologie du Fruit et Pathologie, F-33882 Villenave d'Ornon, France
| | - Nathalie Gonzalez
- Université de Bordeaux, INRAE, UMR1332 Biologie du Fruit et Pathologie, F-33882 Villenave d'Ornon, France
| | - Christian Chevalier
- Université de Bordeaux, INRAE, UMR1332 Biologie du Fruit et Pathologie, F-33882 Villenave d'Ornon, France
| |
Collapse
|
23
|
Mix and match: Patchwork domain evolution of the land plant-specific Ca2+-permeable mechanosensitive channel MCA. PLoS One 2021; 16:e0249735. [PMID: 33857196 PMCID: PMC8049495 DOI: 10.1371/journal.pone.0249735] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 03/23/2021] [Indexed: 11/19/2022] Open
Abstract
Multidomain proteins can have a complex evolutionary history that may involve de novo domain evolution, recruitment and / or recombination of existing domains and domain losses. Here, the domain evolution of the plant-specific Ca2+-permeable mechanosensitive channel protein, MID1-COMPLEMENTING ACTIVITY (MCA), was investigated. MCA, a multidomain protein, possesses a Ca2+-influx-MCAfunc domain and a PLAC8 domain. Profile Hidden Markov Models (HMMs) of domains were assessed in 25 viridiplantae proteomes. While PLAC8 was detected in plants, animals, and fungi, MCAfunc was found in streptophytes but not in chlorophytes. Full MCA proteins were only found in embryophytes. We identified the MCAfunc domain in all streptophytes including charophytes where it appeared in E3 ubiquitin ligase-like proteins. Our Maximum Likelihood (ML) analyses suggested that the MCAfunc domain evolved early in the history of streptophytes. The PLAC8 domain showed similarity to Plant Cadmium Resistance (PCR) genes, and the coupling of MCAfunc and PLAC8 seemed to represent a single evolutionary event. This combination is unique in MCA, and does not exist in other plant mechanosensitive channels. Within angiosperms, gene duplications increased the number of MCAs. Considering their role in mechanosensing in roots, MCA might be instrumental for the rise of land plants. This study provides a textbook example of de novo domain emergence, recombination, duplication, and losses, leading to the convergence of function of proteins in plants.
Collapse
|
24
|
Strable J. Developmental genetics of maize vegetative shoot architecture. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2021; 41:19. [PMID: 37309417 PMCID: PMC10236122 DOI: 10.1007/s11032-021-01208-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 01/25/2021] [Indexed: 06/13/2023]
Abstract
More than 1.1 billion tonnes of maize grain were harvested across 197 million hectares in 2019 (FAOSTAT 2020). The vast global productivity of maize is largely driven by denser planting practices, higher yield potential per area of land, and increased yield potential per plant. Shoot architecture, the three-dimensional structural arrangement of the above-ground plant body, is critical to maize grain yield and biomass. Structure of the shoot is integral to all aspects of modern agronomic practices. Here, the developmental genetics of the maize vegetative shoot is reviewed. Plant architecture is ultimately determined by meristem activity, developmental patterning, and growth. The following topics are discussed: shoot apical meristem, leaf architecture, axillary meristem and shoot branching, and intercalary meristem and stem activity. Where possible, classical and current studies in maize developmental genetics, as well as recent advances leveraged by "-omics" analyses, are highlighted within these sections. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-021-01208-1.
Collapse
Affiliation(s)
- Josh Strable
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853 USA
- Present Address: Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695 USA
| |
Collapse
|
25
|
He J, He X, Chang P, Jiang H, Gong D, Sun Q. Genome-wide identification and characterization of TCP family genes in Brassica juncea var. tumida. PeerJ 2020; 8:e9130. [PMID: 32461831 PMCID: PMC7231505 DOI: 10.7717/peerj.9130] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 04/14/2020] [Indexed: 01/28/2023] Open
Abstract
Background Teosinte branched1/Cycloidea/proliferating cell factors (TCPs) are plant-specific transcription factors widely involved in leaf development, flowering, shoot branching, the circadian rhythm, hormone signaling, and stress responses. However, the TCP function in Brassica juncea var. tumida, the tumorous stem mustard, has not yet been reported. This study identified and characterized the entire TCP family members in B. juncea var. tumida. Methods We identified 62 BjTCP genes from the B. juncea var. tumida genome and analyzed their phylogenetic relationship, gene structure, protein motifs, chromosome location, and expression profile in different tissues. Results Of the 62 BjTCP genes we identified in B. juncea var. tumida, containing 34 class I and 28 class II subfamily members, 61 were distributed on 18 chromosomes. Gene structure and conserved motif analysis showed that the same clade genes displayed a similar exon/intron gene structure and conserved motifs. Cis-acting element results showed that the same clade genes also had a similar cis-acting element; however, subtle differences implied a different regulatory pathway. The BjTCP18s members were low-expressed in Dayejie strains and the unswelling stage of Yonganxiaoye strains. Treatment with gibberellin (GA) and salicylic acid (SA) showed that GA and SA affect the expression levels of multiple TCP genes. Conclusion We performed the first genome-wide analysis of the TCP gene family of B. juncea var. tumida. Our results have provided valuable information for understanding the classification and functions of TCP genes in B. juncea var. tumida.
Collapse
Affiliation(s)
- Jing He
- Chongqing University of Posts and Telecommunications, College of Bioinformation, Chongqing Key Laboratory of Big Data for Bio Intelligence, ChongQing, China
| | - Xiaohong He
- Chongqing University of Posts and Telecommunications, College of Bioinformation, Chongqing Key Laboratory of Big Data for Bio Intelligence, ChongQing, China
| | - Pingan Chang
- Chongqing University of Posts and Telecommunications, College of Bioinformation, Chongqing Key Laboratory of Big Data for Bio Intelligence, ChongQing, China
| | - Huaizhong Jiang
- Chongqing University of Posts and Telecommunications, College of Bioinformation, Chongqing Key Laboratory of Big Data for Bio Intelligence, ChongQing, China
| | - Daping Gong
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Quan Sun
- Chongqing University of Posts and Telecommunications, College of Bioinformation, Chongqing Key Laboratory of Big Data for Bio Intelligence, ChongQing, China
| |
Collapse
|
26
|
Rui Y, Dinneny JR. A wall with integrity: surveillance and maintenance of the plant cell wall under stress. THE NEW PHYTOLOGIST 2020; 225:1428-1439. [PMID: 31486535 DOI: 10.1111/nph.16166] [Citation(s) in RCA: 143] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 08/16/2019] [Indexed: 05/21/2023]
Abstract
The structural and functional integrity of the cell wall needs to be constantly monitored and fine-tuned to allow for growth while preventing mechanical failure. Many studies have advanced our understanding of the pathways that contribute to cell wall biosynthesis and how these pathways are regulated by external and internal cues. Recent evidence also supports a model in which certain aspects of the wall itself may act as growth-regulating signals. Molecular components of the signaling pathways that sense and maintain cell wall integrity have begun to be revealed, including signals arising in the wall, sensors that detect changes at the cell surface, and downstream signal transduction modules. Abiotic and biotic stress conditions provide new contexts for the study of cell wall integrity, but the nature and consequences of wall disruptions due to various stressors require further investigation. A deeper understanding of cell wall signaling will provide insights into the growth regulatory mechanisms that allow plants to survive in changing environments.
Collapse
Affiliation(s)
- Yue Rui
- Department of Biology, Stanford University, 371 Serra Mall, Stanford, CA, 94305, USA
- Department of Plant Biology, Carnegie Institution for Science, 260 Panama Street, Stanford, CA, 94305, USA
| | - José R Dinneny
- Department of Biology, Stanford University, 371 Serra Mall, Stanford, CA, 94305, USA
- Department of Plant Biology, Carnegie Institution for Science, 260 Panama Street, Stanford, CA, 94305, USA
| |
Collapse
|
27
|
Nunes TDG, Zhang D, Raissig MT. Form, development and function of grass stomata. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 101:780-799. [PMID: 31571301 DOI: 10.1111/tpj.14552] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 09/13/2019] [Accepted: 09/17/2019] [Indexed: 05/20/2023]
Abstract
Stomata are cellular breathing pores on leaves that open and close to absorb photosynthetic carbon dioxide and to restrict water loss through transpiration, respectively. Grasses (Poaceae) form morphologically innovative stomata, which consist of two dumbbell-shaped guard cells flanked by two lateral subsidiary cells (SCs). This 'graminoid' morphology is associated with faster stomatal movements leading to more water-efficient gas exchange in changing environments. Here, we offer a genetic and mechanistic perspective on the unique graminoid form of grass stomata and the developmental innovations during stomatal cell lineage initiation, recruitment of SCs and stomatal morphogenesis. Furthermore, the functional consequences of the four-celled, graminoid stomatal morphology are summarized. We compile the identified players relevant for stomatal opening and closing in grasses, and discuss possible mechanisms leading to cell-type-specific regulation of osmotic potential and turgor. In conclusion, we propose that the investigation of functionally superior grass stomata might reveal routes to improve water-stress resilience of agriculturally relevant plants in a changing climate.
Collapse
Affiliation(s)
- Tiago D G Nunes
- Centre for Organismal Studies Heidelberg, Heidelberg University, 69120, Heidelberg, Germany
| | - Dan Zhang
- Centre for Organismal Studies Heidelberg, Heidelberg University, 69120, Heidelberg, Germany
| | - Michael T Raissig
- Centre for Organismal Studies Heidelberg, Heidelberg University, 69120, Heidelberg, Germany
| |
Collapse
|
28
|
Vaahtera L, Schulz J, Hamann T. Cell wall integrity maintenance during plant development and interaction with the environment. NATURE PLANTS 2019; 5:924-932. [PMID: 31506641 DOI: 10.1038/s41477-019-0502-0] [Citation(s) in RCA: 167] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 07/23/2019] [Indexed: 05/18/2023]
Abstract
Cell walls are highly dynamic structures that provide mechanical support for plant cells during growth, development and adaptation to a changing environment. Thus, it is important for plants to monitor the state of their cell walls and ensure their functional integrity at all times. This monitoring involves perception of physical forces at the cell wall-plasma membrane interphase. These forces are altered during cell division and morphogenesis, as well as in response to various abiotic and biotic stresses. Mechanisms responsible for the perception of physical stimuli involved in these processes have been difficult to separate from other regulatory mechanisms perceiving chemical signals such as hormones, peptides or cell wall fragments. However, recently developed technologies in combination with more established genetic and biochemical approaches are beginning to open up this exciting field of study. Here, we will review our current knowledge of plant cell wall integrity signalling using selected recent findings and highlight how the cell wall-plasma membrane interphase can act as a venue for sensing changes in the physical forces affecting plant development and stress responses. More importantly, we discuss how these signals may be integrated with chemical signals derived from established signalling cascades to control specific adaptive responses during exposure to biotic and abiotic stresses.
Collapse
Affiliation(s)
- Lauri Vaahtera
- Department of Biology, Faculty of Natural Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Julia Schulz
- Department of Biology, Faculty of Natural Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Thorsten Hamann
- Department of Biology, Faculty of Natural Sciences, Norwegian University of Science and Technology, Trondheim, Norway.
| |
Collapse
|
29
|
Lunde C, Kimberlin A, Leiboff S, Koo AJ, Hake S. Tasselseed5 overexpresses a wound-inducible enzyme, ZmCYP94B1, that affects jasmonate catabolism, sex determination, and plant architecture in maize. Commun Biol 2019; 2:114. [PMID: 30937397 PMCID: PMC6433927 DOI: 10.1038/s42003-019-0354-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 02/13/2019] [Indexed: 12/26/2022] Open
Abstract
Maize is monecious, with separate male and female inflorescences. Maize flowers are initially bisexual but achieve separate sexual identities through organ arrest. Loss-of-function mutants in the jasmonic acid (JA) pathway have only female flowers due to failure to abort silks in the tassel. Tasselseed5 (Ts5) shares this phenotype but is dominant. Positional cloning and transcriptomics of tassels identified an ectopically expressed gene in the CYP94B subfamily, Ts5 (ZmCYP94B1). CYP94B enzymes are wound inducible and inactivate bioactive jasmonoyl-L-isoleucine (JA-Ile). Consistent with this result, tassels and wounded leaves of Ts5 mutants displayed lower JA and JA-lle precursors and higher 12OH-JA-lle product than the wild type. Furthermore, many wounding and jasmonate pathway genes were differentially expressed in Ts5 tassels. We propose that the Ts5 phenotype results from the interruption of JA signaling during sexual differentiation via the upregulation of ZmCYP94B1 and that its proper expression maintains maize monoecy.
Collapse
Affiliation(s)
- China Lunde
- University of California, Berkeley, CA 94720 USA
- Plant Gene Expression Center, U.S. Department of Agriculture-Agricultural Research Service, 800 Buchanan Street, Albany, CA 94710 USA
| | - Athen Kimberlin
- Department of Biochemistry, University of Missouri, Columbia, MO 65211 USA
- Interdisciplinary Plant Group, University of Missouri, Columbia, MO 65211 USA
| | - Samuel Leiboff
- University of California, Berkeley, CA 94720 USA
- Plant Gene Expression Center, U.S. Department of Agriculture-Agricultural Research Service, 800 Buchanan Street, Albany, CA 94710 USA
| | - Abraham J. Koo
- Department of Biochemistry, University of Missouri, Columbia, MO 65211 USA
- Interdisciplinary Plant Group, University of Missouri, Columbia, MO 65211 USA
| | - Sarah Hake
- University of California, Berkeley, CA 94720 USA
- Plant Gene Expression Center, U.S. Department of Agriculture-Agricultural Research Service, 800 Buchanan Street, Albany, CA 94710 USA
| |
Collapse
|
30
|
Facette MR, Rasmussen CG, Van Norman JM. A plane choice: coordinating timing and orientation of cell division during plant development. CURRENT OPINION IN PLANT BIOLOGY 2019; 47:47-55. [PMID: 30261337 DOI: 10.1016/j.pbi.2018.09.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 09/05/2018] [Accepted: 09/06/2018] [Indexed: 06/08/2023]
Affiliation(s)
- Michelle R Facette
- Department of Biology, University of Massachusetts, Amherst, MA, United States.
| | - Carolyn G Rasmussen
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, Institute of Integrative Genome Biology, University of California, Riverside, CA, United States.
| | - Jaimie M Van Norman
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, Institute of Integrative Genome Biology, University of California, Riverside, CA, United States.
| |
Collapse
|
31
|
|
32
|
|
33
|
Bellinger M, Sidhu S, Rasmussen C. Staining Maize Epidermal Leaf Peels with Toluidine Blue O. Bio Protoc 2019. [DOI: 10.21769/bioprotoc.3214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
34
|
Abraham-Juárez MJ, Klein H. Hormone Treatments during Maize Vegetative and Reproductive Development. Bio Protoc 2019. [DOI: 10.21769/bioprotoc.3240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
35
|
Abraham-Juárez MJ. Protein Immunoprecipitation in Maize. Bio Protoc 2019. [DOI: 10.21769/bioprotoc.3256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
36
|
Klein H, Xiao Y, Conklin PA, Govindarajulu R, Kelly JA, Scanlon MJ, Whipple CJ, Bartlett M. Bulked-Segregant Analysis Coupled to Whole Genome Sequencing (BSA-Seq) for Rapid Gene Cloning in Maize. G3 (BETHESDA, MD.) 2018; 8:3583-3592. [PMID: 30194092 PMCID: PMC6222591 DOI: 10.1534/g3.118.200499] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 09/05/2018] [Indexed: 12/22/2022]
Abstract
Forward genetics remains a powerful method for revealing the genes underpinning organismal form and function, and for revealing how these genes are tied together in gene networks. In maize, forward genetics has been tremendously successful, but the size and complexity of the maize genome made identifying mutant genes an often arduous process with traditional methods. The next generation sequencing revolution has allowed for the gene cloning process to be significantly accelerated in many organisms, even when genomes are large and complex. Here, we describe a bulked-segregant analysis sequencing (BSA-Seq) protocol for cloning mutant genes in maize. Our simple strategy can be used to quickly identify a mapping interval and candidate single nucleotide polymorphisms (SNPs) from whole genome sequencing of pooled F2 individuals. We employed this strategy to identify narrow odd dwarf as an enhancer of teosinte branched1, and to identify a new allele of defective kernel1 Our method provides a quick, simple way to clone genes in maize.
Collapse
Affiliation(s)
- Harry Klein
- Plant Biology Graduate Program and Biology Department, University of Massachusetts Amherst, Amherst, MA 01003
| | - Yuguo Xiao
- Department of Biology, Brigham Young University, 4102 LSB, Provo, UT 84602
| | | | | | - Jacob A Kelly
- Department of Biology, Brigham Young University, 4102 LSB, Provo, UT 84602
| | | | - Clinton J Whipple
- Department of Biology, Brigham Young University, 4102 LSB, Provo, UT 84602
| | - Madelaine Bartlett
- Plant Biology Graduate Program and Biology Department, University of Massachusetts Amherst, Amherst, MA 01003
| |
Collapse
|
37
|
Wu Q, Xu F, Jackson D. All together now, a magical mystery tour of the maize shoot meristem. CURRENT OPINION IN PLANT BIOLOGY 2018; 45:26-35. [PMID: 29778985 DOI: 10.1016/j.pbi.2018.04.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 03/30/2018] [Accepted: 04/15/2018] [Indexed: 05/11/2023]
Abstract
Crop yield improvement requires optimization of shoot architecture, and can be facilitated by understanding shoot apical meristem (SAM) development. Maize, as one of the most important cereal crops worldwide, is also a model system and has significantly contributed to our fundamental understanding of SAM development. In this review, we focus on recent progress and will discuss communication between different meristem regulators, including CLAVATA receptors and ligands, transcription factors, small RNAs and hormones, as well as the importance of communication between different SAM regions.
Collapse
Affiliation(s)
- Qingyu Wu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, United States
| | - Fang Xu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, United States
| | - David Jackson
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, United States.
| |
Collapse
|
38
|
Gigli-Bisceglia N, Hamann T. Outside-in control - does plant cell wall integrity regulate cell cycle progression? PHYSIOLOGIA PLANTARUM 2018; 164:82-94. [PMID: 29652097 DOI: 10.1111/ppl.12744] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Revised: 04/05/2018] [Accepted: 04/05/2018] [Indexed: 05/12/2023]
Abstract
During recent years it has become accepted that plant cell walls are not inert objects surrounding all plant cells but are instead highly dynamic, plastic structures. They are involved in a large number of cell biological processes and contribute actively to plant growth, development and interaction with environment. Therefore, it is not surprising that cellular processes can control plant cell wall integrity (CWI) while, simultaneously, CWI can influence cellular processes. In yeast and animal cells such a bidirectional relationship also exists between the yeast/animal extracellular matrices and the cell cycle. In yeast, the CWI maintenance mechanism and a dedicated plasma membrane integrity checkpoint are mediating this relationship. Recent research has yielded insights into the mechanism controlling plant cell wall metabolism during cytokinesis. However, the knowledge regarding putative regulatory pathways controlling adaptive modifications in plant cell cycle activity in response to changes in the state of the plant cell wall are not yet identified. In this review, we summarize similarities and differences in regulatory mechanisms coordinating extracellular matrices and cell cycle activity in animal and yeast cells, discuss the available evidence supporting the existence of such a mechanism in plants and suggest that the plant CWI maintenance mechanism might also control cell cycle activity in plant cells.
Collapse
Affiliation(s)
- Nora Gigli-Bisceglia
- Department of Biology, Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | - Thorsten Hamann
- Department of Biology, Norwegian University of Science and Technology, 7491, Trondheim, Norway
| |
Collapse
|
39
|
Engelsdorf T, Gigli-Bisceglia N, Veerabagu M, McKenna JF, Vaahtera L, Augstein F, Van der Does D, Zipfel C, Hamann T. The plant cell wall integrity maintenance and immune signaling systems cooperate to control stress responses in Arabidopsis thaliana. Sci Signal 2018; 11:11/536/eaao3070. [PMID: 29945884 DOI: 10.1126/scisignal.aao3070] [Citation(s) in RCA: 142] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cell walls surround all plant cells, and their composition and structure are modified in a tightly controlled, adaptive manner to meet sometimes opposing functional requirements during growth and development. The plant cell wall integrity (CWI) maintenance mechanism controls these functional modifications, as well as responses to cell wall damage (CWD). We investigated how the CWI system mediates responses to CWD in Arabidopsis thaliana CWD induced by cell wall-degrading enzymes or an inhibitor of cellulose biosynthesis elicited similar, turgor-sensitive stress responses. Phenotypic clustering with 27 genotypes identified a core group of receptor-like kinases (RLKs) and ion channels required for the activation of CWD responses. A genetic analysis showed that the RLK FEI2 and the plasma membrane-localized mechanosensitive Ca2+ channel MCA1 functioned downstream of the RLK THE1 in CWD perception. In contrast, pattern-triggered immunity (PTI) signaling components, including the receptors for plant elicitor peptides (AtPeps) PEPR1 and PEPR2, repressed responses to CWD. CWD induced the expression of PROPEP1 and PROPEP3, which encode the precursors of AtPep1 and AtPep3, and the release of PROPEP3 into the growth medium. Application of AtPep1 and AtPep3 repressed CWD-induced phytohormone accumulation in a concentration-dependent manner. These results suggest that AtPep-mediated signaling suppresses CWD-induced defense responses controlled by the CWI mechanism. This suppression was alleviated when PTI signaling downstream of PEPR1 and PEPR2 was impaired. Defense responses controlled by the CWI maintenance mechanism might thus compensate to some extent for the loss of PTI signaling elements.
Collapse
Affiliation(s)
- Timo Engelsdorf
- Department of Biology, Høgskoleringen 5, Realfagbygget, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Nora Gigli-Bisceglia
- Department of Biology, Høgskoleringen 5, Realfagbygget, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Manikandan Veerabagu
- Department of Biology, Høgskoleringen 5, Realfagbygget, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Joseph F McKenna
- Department of Biology, Imperial College London, South Kensington Campus, SW7 2AZ London, UK
| | - Lauri Vaahtera
- Department of Biology, Høgskoleringen 5, Realfagbygget, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Frauke Augstein
- Department of Biology, Høgskoleringen 5, Realfagbygget, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | | | - Cyril Zipfel
- The Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, UK
| | - Thorsten Hamann
- Department of Biology, Høgskoleringen 5, Realfagbygget, Norwegian University of Science and Technology, 7491 Trondheim, Norway.
| |
Collapse
|
40
|
De Vriese K, Costa A, Beeckman T, Vanneste S. Pharmacological Strategies for Manipulating Plant Ca 2+ Signalling. Int J Mol Sci 2018; 19:E1506. [PMID: 29783646 PMCID: PMC5983822 DOI: 10.3390/ijms19051506] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 05/10/2018] [Accepted: 05/12/2018] [Indexed: 11/20/2022] Open
Abstract
Calcium is one of the most pleiotropic second messengers in all living organisms. However, signalling specificity is encoded via spatio-temporally regulated signatures that act with surgical precision to elicit highly specific cellular responses. How this is brought about remains a big challenge in the plant field, in part due to a lack of specific tools to manipulate/interrogate the plant Ca2+ toolkit. In many cases, researchers resort to tools that were optimized in animal cells. However, the obviously large evolutionary distance between plants and animals implies that there is a good chance observed effects may not be specific to the intended plant target. Here, we provide an overview of pharmacological strategies that are commonly used to activate or inhibit plant Ca2+ signalling. We focus on highlighting modes of action where possible, and warn for potential pitfalls. Together, this review aims at guiding plant researchers through the Ca2+ pharmacology swamp.
Collapse
Affiliation(s)
- Kjell De Vriese
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052 Ghent, Belgium.
- VIB Center for Plant Systems Biology, VIB, Technologiepark 927, 9052 Ghent, Belgium.
| | - Alex Costa
- Department of Biosciences, University of Milan, 20133 Milan, Italy.
- Instititute of Biophysics, Consiglio Nazionale delle Ricerche, 20133 Milan, Italy.
| | - Tom Beeckman
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052 Ghent, Belgium.
- VIB Center for Plant Systems Biology, VIB, Technologiepark 927, 9052 Ghent, Belgium.
| | - Steffen Vanneste
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052 Ghent, Belgium.
- VIB Center for Plant Systems Biology, VIB, Technologiepark 927, 9052 Ghent, Belgium.
- Lab of Plant Growth Analysis, Ghent University Global Campus, Songdomunhwa-Ro, 119, Yeonsu-gu, Incheon 21985, Korea.
| |
Collapse
|
41
|
Dong W, Wu D, Li G, Wu D, Wang Z. Next-generation sequencing from bulked segregant analysis identifies a dwarfism gene in watermelon. Sci Rep 2018; 8:2908. [PMID: 29440685 PMCID: PMC5811605 DOI: 10.1038/s41598-018-21293-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 02/01/2018] [Indexed: 01/03/2023] Open
Abstract
Dwarfism is one of the most valuable traits in watermelon breeding mainly because of its contribution to yield as well as the decreased labor required to cultivate and harvest smaller plants. However, the underlying genetic mechanism is unknown. In this study, a candidate dwarfism gene was identified by applying next-generation sequencing technology to analyze watermelon plants. We completed a whole-genome re-sequencing of two DNA bulks (dwarf pool and vine pool) generated from plants in an F2 population. A genome-wide analysis of single nucleotide polymorphisms resulted in the detection of a genomic region harboring the candidate dwarfism gene Cla010726. The encoded protein was predicted to be a gibberellin 20-oxidase-like protein, which is a well-known “green revolution” protein in other crops. A quantitative real-time PCR investigation revealed that the Cla010726 expression level was significantly lower in the dwarf plants than in the normal-sized plants. The SNP analysis resulted in two SNP locating in the Cla010726 gene promoter of dsh F2 individuals. The results presented herein provide preliminary evidence that Cla010726 is a possible dwarfism gene.
Collapse
Affiliation(s)
- Wei Dong
- School of Life Science, Henan University, Plant Genetics Laboratory, Kaifeng, Henan, 475004, People's Republic of China
| | - Defeng Wu
- School of Physical Education, Henan University, Kaifeng, Henan, 475001, People's Republic of China
| | - Guoshen Li
- School of Life Science, Henan University, Plant Genetics Laboratory, Kaifeng, Henan, 475004, People's Republic of China
| | - Dewei Wu
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou, Jiangsu, 225009, People's Republic of China
| | - Zicheng Wang
- School of Life Science, Henan University, Plant Genetics Laboratory, Kaifeng, Henan, 475004, People's Republic of China.
| |
Collapse
|
42
|
Zhang D, Sun W, Singh R, Zheng Y, Cao Z, Li M, Lunde C, Hake S, Zhang Z. GRF-interacting factor1 Regulates Shoot Architecture and Meristem Determinacy in Maize. THE PLANT CELL 2018; 30:360-374. [PMID: 29437990 PMCID: PMC5868708 DOI: 10.1105/tpc.17.00791] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 01/22/2018] [Accepted: 02/03/2018] [Indexed: 05/08/2023]
Abstract
Plant architecture results from a balance of indeterminate and determinate cell fates. Cells with indeterminate fates are located in meristems, comprising groups of pluripotent cells that produce lateral organs. Meristematic cells are also found in intercalary stem tissue, which provides cells for internodes, and at leaf margins to contribute to leaf width. We identified a maize (Zea mays) mutant that has a defect in balancing determinacy and indeterminacy. The mutant has narrow leaves and short internodes, suggesting a reduction in indeterminate cells in the leaf and stem. In contrast, the mutants fail to control indeterminacy in shoot meristems. Inflorescence meristems are fasciated, and determinate axillary meristems become indeterminate. Positional cloning identified growth regulating factor-interacting factor1 (gif1) as the responsible gene. gif1 mRNA accumulates in distinct domains of shoot meristems, consistent with tissues affected by the mutation. We determined which GROWTH REGULATING FACTORs interact with GIF1 and performed RNA-seq analysis. Many genes known to play roles in inflorescence architecture were differentially expressed in gif1 Chromatin immunoprecipitation identified some differentially expressed genes as direct targets of GIF1. The interactions with these diverse direct and indirect targets help explain the paradoxical phenotypes of maize GIF1. These results provide insights into the biological functions of gif1.
Collapse
Affiliation(s)
- Dan Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Wei Sun
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Renee Singh
- Plant Gene Expression Center, USDA-ARS and UC Berkeley, Albany, California 94710
| | - Yuanyuan Zheng
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Zheng Cao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Manfei Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - China Lunde
- Plant Gene Expression Center, USDA-ARS and UC Berkeley, Albany, California 94710
| | - Sarah Hake
- Plant Gene Expression Center, USDA-ARS and UC Berkeley, Albany, California 94710
| | - Zuxin Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, P.R. China
| |
Collapse
|
43
|
Gigli-Bisceglia N, Engelsdorf T, Strnad M, Vaahtera L, Khan GA, Jamoune A, Alipanah L, Novák O, Persson S, Hejatko J, Hamann T. Cell wall integrity modulates Arabidopsis thaliana cell cycle gene expression in a cytokinin- and nitrate reductase-dependent manner. Development 2018; 145:dev.166678. [DOI: 10.1242/dev.166678] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 08/28/2018] [Indexed: 12/15/2022]
Abstract
During plant growth and defense, cell cycle activity needs to be coordinated with cell wall integrity. Little is known about how coordination is achieved. Here we investigated coordination in Arabidopsis thaliana seedlings by studying the impact of cell wall damage (CWD, caused by cellulose biosynthesis inhibition) on cytokinin homeostasis, cell cycle gene expression and shape in root tips. CWD inhibited cell cycle gene expression and increased transition zone cell width in an osmo-sensitive manner. These results were correlated with CWD-induced, osmo-sensitive changes in cytokinin homeostasis. Expression of CYTOKININ OXIDASE/DEHYDROGENASE2 and 3 (CKX2, CKX3), encoding cytokinin-degrading enzymes was induced by CWD and reduced by osmoticum treatment. In nitrate reductase1 nitrate reductase2 (nia1 nia2) seedlings, neither CKX2 and CKX3 transcript levels were increased nor cell cycle gene expression repressed by CWD. Moreover, established CWD-induced responses like jasmonic acid, salicylic acid and lignin production, were also absent, implying a central role of NIA1- and NIA2-mediated processes in regulation of CWD responses. These results suggest that CWD enhances cytokinin degradation rates through a NIA1 and NIA2-mediated process, subsequently attenuating cell cycle gene expression.
Collapse
Affiliation(s)
- Nora Gigli-Bisceglia
- Department of Biology, Høgskoleringen 5, Realfagbygget, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Timo Engelsdorf
- Department of Biology, Høgskoleringen 5, Realfagbygget, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Miroslav Strnad
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany of the Czech Academy of Sciences & Faculty of Science of Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic
| | - Lauri Vaahtera
- Department of Biology, Høgskoleringen 5, Realfagbygget, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | | | - Amel Jamoune
- Laboratory of Molecular Plant Physiology and Functional Genomics and Proteomics of Plants CEITEC-Central European Institute of Technology Masaryk University Kamenice 5, CZ-625 00 Brno, Czech Republic
| | - Leila Alipanah
- Department of Biology, Høgskoleringen 5, Realfagbygget, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Ondřej Novák
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany of the Czech Academy of Sciences & Faculty of Science of Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic
| | - Staffan Persson
- School of Biosciences, University of Melbourne, Parkville VIC 3010, Australia
| | - Jan Hejatko
- Laboratory of Molecular Plant Physiology and Functional Genomics and Proteomics of Plants CEITEC-Central European Institute of Technology Masaryk University Kamenice 5, CZ-625 00 Brno, Czech Republic
| | - Thorsten Hamann
- Department of Biology, Høgskoleringen 5, Realfagbygget, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| |
Collapse
|
44
|
Basu D, Haswell ES. Plant mechanosensitive ion channels: an ocean of possibilities. CURRENT OPINION IN PLANT BIOLOGY 2017; 40:43-48. [PMID: 28750206 PMCID: PMC5714682 DOI: 10.1016/j.pbi.2017.07.002] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 06/26/2017] [Accepted: 07/09/2017] [Indexed: 05/19/2023]
Abstract
Mechanosensitive ion channels, transmembrane proteins that directly couple mechanical stimuli to ion flux, serve to sense and respond to changes in membrane tension in all branches of life. In plants, mechanosensitive channels have been implicated in the perception of important mechanical stimuli such as osmotic pressure, touch, gravity, and pathogenic invasion. Indeed, three established families of plant mechanosensitive ion channels play roles in cell and organelle osmoregulation and root mechanosensing - and it is likely that many other channels and functions await discovery. Inspired by recent discoveries in bacterial and animal systems, we are beginning to establish the conserved and the unique ways in which mechanosensitive channels function in plants.
Collapse
Affiliation(s)
- Debarati Basu
- Department of Biology, Mailcode 1137, Washington University in Saint Louis, Saint Louis, MO 63130, USA
| | - Elizabeth S Haswell
- Department of Biology, Mailcode 1137, Washington University in Saint Louis, Saint Louis, MO 63130, USA.
| |
Collapse
|
45
|
Tang RJ, Luan S. Regulation of calcium and magnesium homeostasis in plants: from transporters to signaling network. CURRENT OPINION IN PLANT BIOLOGY 2017; 39:97-105. [PMID: 28709026 DOI: 10.1016/j.pbi.2017.06.009] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 06/12/2017] [Accepted: 06/14/2017] [Indexed: 05/26/2023]
Abstract
Calcium (Ca2+) and magnesium (Mg2+) are the most abundant divalent cations in plants. As a nutrient and a signaling ion, Ca2+ levels in the cell are tightly controlled by an array of channels and carriers that provide mechanistic basis for Ca2+ homeostasis and the generation of Ca2+ signals. Although a family of CorA-type Mg2+ transporters plays a key role in controlling Mg2+ homeostasis in plants, more components are yet to be identified. Ca2+ and Mg2+ appear to have antagonistic interactions in plant cells, and therefore plants depend on a homeostatic balance between Ca2+ and Mg2+ for optimal growth and development. Maintenance of such a balance in response to changing nutrient status in the soil emerges as a critical feature of plant mineral nutrition. Studies have uncovered signaling mechanisms that perceive nutrient status as a signal and regulate transport activities as adaptive responses. This 'nutrient sensing' network is exemplified by the Ca2+-dependent CBL (calcineurin B-like)-CIPK (CBL-interacting protein kinase) pathway that serves as a major link between environmental nutrient status and transport activities. In this review, we analyze the recent literature on Ca2+ and Mg2+ transport systems and their regulation and provide our perspectives on future research.
Collapse
Affiliation(s)
- Ren-Jie Tang
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, United States
| | - Sheng Luan
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, United States.
| |
Collapse
|