1
|
Ali S, Tyagi A, Park S, Bae H. Understanding the mechanobiology of phytoacoustics through molecular Lens: Mechanisms and future perspectives. J Adv Res 2024; 65:47-72. [PMID: 38101748 PMCID: PMC11518948 DOI: 10.1016/j.jare.2023.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND How plants emit, perceive, and respond to sound vibrations (SVs) is a long-standing question in the field of plant sensory biology. In recent years, there have been numerous studies on how SVs affect plant morphological, physiological, and biochemical traits related to growth and adaptive responses. For instance, under drought SVs navigate plant roots towards water, activate their defence responses against stressors, and increase nectar sugar in response to pollinator SVs. Also, plants emit SVs during stresses which are informative in terms of ecological and adaptive perspective. However, the molecular mechanisms underlying the SV perception and emission in plants remain largely unknown. Therefore, deciphering the complexity of plant-SV interactions and identifying bonafide receptors and signaling players will be game changers overcoming the roadblocks in phytoacoustics. AIM OF REVIEW The aim of this review is to provide an overview of recent developments in phytoacoustics. We primarily focuss on SV signal perception and transduction with current challenges and future perspectives. KEY SCIENTIFIC CONCEPTS OF REVIEW Timeline breakthroughs in phytoacoustics have constantly shaped our understanding and belief that plants may emit and respond to SVs like other species. However, unlike other plant mechanostimuli, little is known about SV perception and signal transduction. Here, we provide an update on phytoacoustics and its ecological importance. Next, we discuss the role of cell wall receptor-like kinases, mechanosensitive channels, intracellular organelle signaling, and other key players involved in plant-SV receptive pathways that connect them. We also highlight the role of calcium (Ca2+), reactive oxygen species (ROS), hormones, and other emerging signaling molecules in SV signal transduction. Further, we discuss the importance of molecular, biophysical, computational, and live cell imaging tools for decoding the molecular complexity of acoustic signaling in plants. Finally, we summarised the role of SV priming in plants and discuss how SVs could modulate plant defense and growth trade-offs during other stresses.
Collapse
Affiliation(s)
- Sajad Ali
- Department of Biotechnology, Yeungnam University, Gyeongsan Gyeongbuk 38541, Republic of Korea
| | - Anshika Tyagi
- Department of Biotechnology, Yeungnam University, Gyeongsan Gyeongbuk 38541, Republic of Korea
| | - Suvin Park
- Department of Biotechnology, Yeungnam University, Gyeongsan Gyeongbuk 38541, Republic of Korea
| | - Hanhong Bae
- Department of Biotechnology, Yeungnam University, Gyeongsan Gyeongbuk 38541, Republic of Korea.
| |
Collapse
|
2
|
Chi Y, Zhang H, Chen S, Cheng Y, Zhang X, Jia D, Chen Q, Chen H, Wei T. Leafhopper salivary carboxylesterase suppresses JA-Ile synthesis to facilitate initial arbovirus transmission in rice phloem. PLANT COMMUNICATIONS 2024; 5:100939. [PMID: 38725245 PMCID: PMC11412928 DOI: 10.1016/j.xplc.2024.100939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 04/16/2024] [Accepted: 05/01/2024] [Indexed: 06/09/2024]
Abstract
Plant jasmonoyl-L-isoleucine (JA-Ile) is a major defense signal against insect feeding, but whether or how insect salivary effectors suppress JA-Ile synthesis and thus facilitate viral transmission in the plant phloem remains elusive. Insect carboxylesterases (CarEs) are the third major family of detoxification enzymes. Here, we identify a new leafhopper CarE, CarE10, that is specifically expressed in salivary glands and is secreted into the rice phloem as a saliva component. Leafhopper CarE10 directly binds to rice jasmonate resistant 1 (JAR1) and promotes its degradation by the proteasome system. Moreover, the direct association of CarE10 with JAR1 clearly impairs JAR1 enzyme activity for conversion of JA to JA-Ile in an in vitro JA-Ile synthesis system. A devastating rice reovirus activates and promotes the co-secretion of virions and CarE10 via virus-induced vesicles into the saliva-storing salivary cavities of the leafhopper vector and ultimately into the rice phloem to establish initial infection. Furthermore, a virus-mediated increase in CarE10 secretion or overexpression of CarE10 in transgenic rice plants causes reduced levels of JAR1 and thus suppresses JA-Ile synthesis, promoting host attractiveness to insect vectors and facilitating initial viral transmission. Our findings provide insight into how the insect salivary protein CarE10 suppresses host JA-Ile synthesis to promote initial virus transmission in the rice phloem.
Collapse
Affiliation(s)
- Yunhua Chi
- Vector-borne Virus Research Center, Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Hongxiang Zhang
- Vector-borne Virus Research Center, Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Siyu Chen
- Vector-borne Virus Research Center, Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Yu Cheng
- Vector-borne Virus Research Center, Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Xiaofeng Zhang
- Vector-borne Virus Research Center, Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Dongsheng Jia
- Vector-borne Virus Research Center, Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Qian Chen
- Vector-borne Virus Research Center, Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Hongyan Chen
- Vector-borne Virus Research Center, Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Taiyun Wei
- Vector-borne Virus Research Center, Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| |
Collapse
|
3
|
Prajapati VK, Vijayan V, Vadassery J. Secret Weapon of Insects: The Oral Secretion Cocktail and Its Modulation of Host Immunity. PLANT & CELL PHYSIOLOGY 2024; 65:1213-1223. [PMID: 38877965 DOI: 10.1093/pcp/pcae059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 05/11/2024] [Accepted: 05/27/2024] [Indexed: 09/04/2024]
Abstract
Plants and insects have co-existed for almost 400 million years and their interactions can be beneficial or harmful, thus reflecting their intricate co-evolutionary dynamics. Many herbivorous arthropods cause tremendous crop loss, impacting the agro-economy worldwide. Plants possess an arsenal of chemical defenses that comprise diverse secondary metabolites that help protect against harmful herbivorous arthropods. In response, the strategies that herbivores use to cope with plant defenses can be behavioral, or molecular and/or biochemical of which salivary secretions are a key determinant. Insect salivary secretions/oral secretions (OSs) play a crucial role in plant immunity as they contain several biologically active elicitors and effector proteins that modulate plants' defense responses. Using this oral secretion cocktail, insects overcome plant natural defenses to allow successful feeding. However, a lack of knowledge of the nature of the signals present in oral secretion cocktails has resulted in reduced mechanistic knowledge of their cellular perception. In this review, we discuss the latest knowledge on herbivore oral secretion derived elicitors and effectors and various mechanisms involved in plant defense modulation. Identification of novel herbivore-released molecules and their plant targets should pave the way for understanding the intricate strategies employed by both herbivorous arthropods and plants in their interactions.
Collapse
Affiliation(s)
| | - Vishakh Vijayan
- National Institute of Plant Genome Research, New Delhi 110067, India
| | | |
Collapse
|
4
|
Noctor G, Cohen M, Trémulot L, Châtel-Innocenti G, Van Breusegem F, Mhamdi A. Glutathione: a key modulator of plant defence and metabolism through multiple mechanisms. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4549-4572. [PMID: 38676714 DOI: 10.1093/jxb/erae194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/25/2024] [Indexed: 04/29/2024]
Abstract
Redox reactions are fundamental to energy conversion in living cells, and also determine and tune responses to the environment. Within this context, the tripeptide glutathione plays numerous roles. As an important antioxidant, glutathione confers redox stability on the cell and also acts as an interface between signalling pathways and metabolic reactions that fuel growth and development. It also contributes to the assembly of cell components, biosynthesis of sulfur-containing metabolites, inactivation of potentially deleterious compounds, and control of hormonal signalling intensity. The multiplicity of these roles probably explains why glutathione status has been implicated in influencing plant responses to many different conditions. In particular, there is now a considerable body of evidence showing that glutathione is a crucial player in governing the outcome of biotic stresses. This review provides an overview of glutathione synthesis, transport, degradation, and redox turnover in plants. It examines the expression of genes associated with these processes during pathogen challenge and related conditions, and considers the diversity of mechanisms by which glutathione can influence protein function and gene expression.
Collapse
Affiliation(s)
- Graham Noctor
- Institut des Sciences des Plantes de Paris-Saclay, Unité Mixte de Recherche 8618 Centre National de la Recherche Scientifique, Université de Paris-Sud, 91405 Orsay cedex, France
- Institut Universitaire de France (IUF), France
| | - Mathias Cohen
- Institut des Sciences des Plantes de Paris-Saclay, Unité Mixte de Recherche 8618 Centre National de la Recherche Scientifique, Université de Paris-Sud, 91405 Orsay cedex, France
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Lug Trémulot
- Institut des Sciences des Plantes de Paris-Saclay, Unité Mixte de Recherche 8618 Centre National de la Recherche Scientifique, Université de Paris-Sud, 91405 Orsay cedex, France
| | - Gilles Châtel-Innocenti
- Institut des Sciences des Plantes de Paris-Saclay, Unité Mixte de Recherche 8618 Centre National de la Recherche Scientifique, Université de Paris-Sud, 91405 Orsay cedex, France
| | - Frank Van Breusegem
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Amna Mhamdi
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| |
Collapse
|
5
|
Toyota M. Conservation of Long-Range Signaling in Land Plants via Glutamate Receptor-Like Channels. PLANT & CELL PHYSIOLOGY 2024; 65:657-659. [PMID: 38581665 DOI: 10.1093/pcp/pcae034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/23/2024] [Accepted: 04/04/2024] [Indexed: 04/08/2024]
Affiliation(s)
- Masatsugu Toyota
- Department of Biochemistry and Molecular Biology, Saitama University, Saitama, 338-8570 Japan
- Suntory Rising Stars Encouragement Program in Life Sciences (SunRiSE), Suntory Foundation for Life Sciences, Kyoto, 619-0284 Japan
- Department of Botany, University of Wisconsin, Madison, WI 53706, USA
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
6
|
Sun Y, Xie Z, Jin L, Qin T, Zhan C, Huang J. Histone deacetylase OsHDA716 represses rice chilling tolerance by deacetylating OsbZIP46 to reduce its transactivation function and protein stability. THE PLANT CELL 2024; 36:1913-1936. [PMID: 38242836 PMCID: PMC11062455 DOI: 10.1093/plcell/koae010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 12/15/2023] [Accepted: 01/11/2024] [Indexed: 01/21/2024]
Abstract
Low temperature is a major environmental factor limiting plant growth and crop production. Epigenetic regulation of gene expression is important for plant adaptation to environmental changes, whereas the epigenetic mechanism of cold signaling in rice (Oryza sativa) remains largely elusive. Here, we report that the histone deacetylase (HDAC) OsHDA716 represses rice cold tolerance by interacting with and deacetylating the transcription factor OsbZIP46. The loss-of-function mutants of OsHDA716 exhibit enhanced chilling tolerance, compared with the wild-type plants, while OsHDA716 overexpression plants show chilling hypersensitivity. On the contrary, OsbZIP46 confers chilling tolerance in rice through transcriptionally activating OsDREB1A and COLD1 to regulate cold-induced calcium influx and cytoplasmic calcium elevation. Mechanistic investigation showed that OsHDA716-mediated OsbZIP46 deacetylation in the DNA-binding domain reduces the DNA-binding ability and transcriptional activity as well as decreasing OsbZIP46 protein stability. Genetic evidence indicated that OsbZIP46 deacetylation mediated by OsHDA716 reduces rice chilling tolerance. Collectively, these findings reveal that the functional interplay between the chromatin regulator and transcription factor fine-tunes the cold response in plant and uncover a mechanism by which HDACs repress gene transcription through deacetylating nonhistone proteins and regulating their biochemical functions.
Collapse
Affiliation(s)
- Ying Sun
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China
| | - Zizhao Xie
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China
| | - Liang Jin
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China
| | - Tian Qin
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China
| | - Chenghang Zhan
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China
| | - Junli Huang
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China
| |
Collapse
|
7
|
Gokce A, Sekmen Cetinel AH, Turkan I. Involvement of GLR-mediated nitric oxide effects on ROS metabolism in Arabidopsis plants under salt stress. JOURNAL OF PLANT RESEARCH 2024; 137:485-503. [PMID: 38448641 PMCID: PMC11082007 DOI: 10.1007/s10265-024-01528-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 01/28/2024] [Indexed: 03/08/2024]
Abstract
Plant glutamate receptor-like channels (GLRs) play important roles in plant development, immune response, defense signaling and Nitric oxide (NO) production. However, their involvement in abiotic stress responses, particularly in regulating Reactive Oxygen Species (ROS), is not well understood. This study aimed to investigate GLR-mediated NO production on ROS regulation in salt-stressed cells. To achieve this, Arabidopsis thaliana Columbia (Col-0) were treated with NaCl, glutamate antagonists [(DNQX (6,7-dinitroquinoxaline-2,3-dione and AP-5(D-2-amino-5-phosphono pentanoic acid)], and NO scavenger [cPTIO (2-(4-Carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide potassium salt)]. Salt-stressed plants in combination with DNQX and AP-5 have exhibited higher increase in lipid peroxidation (TBARS), hydrogen peroxide (H2O2) and superoxide radical (O-2) contents as compared to solely NaCl-treated plants. Furthermore, NO and total glutathione contents, and S-nitrosoglutathione reductase (GSNOR) activity decreased with these treatments. AP-5 and DNQX increased the activities of NADPH oxidase (NOX), catalase (CAT), peroxidase (POX), cell wall peroxidase (CWPOX) in salt-stressed Arabidopsis leaves. However, their activities (except NOX) were significantly inhibited by cPTIO. Conversely, the combination of NaCl and GLR antagonists, NO scavenger decreased the activities of ascorbate peroxidase (APX), superoxide dismutase (SOD), glutathione reductase (GR), dehydroascorbate reductase (DHAR) and monodehydroascorbate reductase (MDHAR) resulting in elevated GSSG levels, a low GSH/GSSG ratio, impaired ROS scavenging, excessive ROS accumulation and cell membrane damage. The findings of this study provide evidence that GLR-mediated NO plays a crucial role in improvement of the tolerance of Arabidopsis plants to salt-induced oxidative stress. It helps to maintain cellular redox homeostasis by reducing ROS accumulation and increasing the activity of SOD, GSNOR, and the ASC-GSH cycle enzymes.
Collapse
Affiliation(s)
- Azime Gokce
- Department of Biology, Faculty of Science, Ege University, Bornova, Izmir, 35100, Turkey
| | | | - Ismail Turkan
- Department of Biology, Faculty of Science, Ege University, Bornova, Izmir, 35100, Turkey
| |
Collapse
|
8
|
Shen Q, Hasegawa K, Oelerich N, Prakken A, Tersch LW, Wang J, Reichhardt F, Tersch A, Choo JC, Timmers T, Hofmann K, Parker JE, Chai J, Maekawa T. Cytoplasmic calcium influx mediated by plant MLKLs confers TNL-triggered immunity. Cell Host Microbe 2024; 32:453-465.e6. [PMID: 38513655 DOI: 10.1016/j.chom.2024.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/29/2024] [Accepted: 02/28/2024] [Indexed: 03/23/2024]
Abstract
The plant homolog of vertebrate necroptosis inducer mixed-lineage kinase domain-like (MLKL) contributes to downstream steps in Toll-interleukin-1 receptor domain NLR (TNL)-receptor-triggered immunity. Here, we show that Arabidopsis MLKL1 (AtMLKL1) clusters into puncta at the plasma membrane upon TNL activation and that this sub-cellular reorganization is dependent on the TNL signal transducer, EDS1. We find that AtMLKLs confer TNL-triggered immunity in parallel with RPW8-type HeLo-domain-containing NLRs (RNLs) and that the AtMLKL N-terminal HeLo domain is indispensable for both immunity and clustering. We show that the AtMLKL HeLo domain mediates cytoplasmic Ca2+ ([Ca2+]cyt) influx in plant and human cells, and AtMLKLs are responsible for sustained [Ca2+]cyt influx during TNL-triggered, but not CNL-triggered, immunity. Our study reveals parallel immune signaling functions of plant MLKLs and RNLs as mediators of [Ca2+]cyt influx and a potentially common role of the HeLo domain fold in the Ca2+-signal relay of diverse organisms.
Collapse
Affiliation(s)
- Qiaochu Shen
- Institute for Plant Sciences, University of Cologne, 50674 Cologne, NRW, Germany
| | - Keiichi Hasegawa
- Institute for Biochemistry, University of Cologne, 50674 Cologne, NRW, Germany
| | - Nicole Oelerich
- Institute for Genetics, University of Cologne, 50674 Cologne, NRW, Germany
| | - Anna Prakken
- Institute for Plant Sciences, University of Cologne, 50674 Cologne, NRW, Germany
| | - Lea Weiler Tersch
- Institute for Plant Sciences, University of Cologne, 50674 Cologne, NRW, Germany
| | - Junli Wang
- Max Planck Institute for Plant Breeding Research, 50829 Cologne, NRW, Germany
| | - Frowin Reichhardt
- Institute for Plant Sciences, University of Cologne, 50674 Cologne, NRW, Germany
| | - Alexandra Tersch
- Institute for Plant Sciences, University of Cologne, 50674 Cologne, NRW, Germany
| | - Je Cuan Choo
- Institute for Plant Sciences, University of Cologne, 50674 Cologne, NRW, Germany
| | - Ton Timmers
- Max Planck Institute for Plant Breeding Research, 50829 Cologne, NRW, Germany
| | - Kay Hofmann
- Institute for Genetics, University of Cologne, 50674 Cologne, NRW, Germany
| | - Jane E Parker
- Max Planck Institute for Plant Breeding Research, 50829 Cologne, NRW, Germany; Cluster of Excellence on Plant Sciences (CEPLAS), Cologne, NRW, Germany
| | - Jijie Chai
- Institute for Biochemistry, University of Cologne, 50674 Cologne, NRW, Germany; Max Planck Institute for Plant Breeding Research, 50829 Cologne, NRW, Germany; Cluster of Excellence on Plant Sciences (CEPLAS), Cologne, NRW, Germany
| | - Takaki Maekawa
- Institute for Plant Sciences, University of Cologne, 50674 Cologne, NRW, Germany; Cluster of Excellence on Plant Sciences (CEPLAS), Cologne, NRW, Germany.
| |
Collapse
|
9
|
Zhang X, Xue W, Qi L, Zhang C, Wang C, Huang Y, Wang Y, Peng L, Liu Z. Malic acid inhibits accumulation of cadmium, lead, nickel and chromium by down-regulation of OsCESA and up-regulation of OsGLR3 in rice plant. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 341:122934. [PMID: 37967709 DOI: 10.1016/j.envpol.2023.122934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/26/2023] [Accepted: 11/12/2023] [Indexed: 11/17/2023]
Abstract
Malic acid (MA) plays an important role in plant tolerance to toxic metals, but its effect in restricting the transport of harmful metals remains unclear. In this study, japonica rice NPB and its fragile-culm mutant fc8 with low cellulose and thin cell wall were used to investigate the influence of MA on the accumulation of 4 toxic elements (Cd, Pb, Ni, and Cr) and 8 essential elements (K, Mg, Ca, Fe, Mn, Zn, Cu and Mo) in rice. The results showed that fc8 accumulated less toxic elements but more Ca and glutamate in grains and vegetative organs than NPB. After foliar application with MA at rice anthesis stage, the content of Cd, Pb, Ni significantly decreased by 27.9-41.0%, while those of Ca and glutamate significantly increased in both NPB and fc8. Therefore, the ratios between Cd and Ca in grains of NPB (3.4‰) and fc8 (1.5‰) were greatly higher than that in grains of NPB + MA (1.1‰) and fc8+MA (0.8‰) treatments. Meanwhile, the expression of OsCEAS4,7,8,9 for the cellulose synthesis in secondary cell walls were down-regulated and cellulose content in vegetative organs of NPB and fc8 decreased by 16.7-21.1%. However, MA application significantly up-regulated the expression of GLR genes (OsGLR3.1-3.5) and raised the activity of glutamic-oxalacetic transaminease for glutamate synthesis in NPB and fc8. These results indicate that hazard risks of toxic elements in foods can be efficiently reduced through regulating cellulose biosynthesis and GLR channels in plant by combining genetic modification in vivo and malic acid application in vitro.
Collapse
Affiliation(s)
- Xin Zhang
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, P.R. China, Tianjin, 300191, China; Hainan Research Academy of Environmental Sciences, Haikou, 571126, China
| | - Weijie Xue
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, P.R. China, Tianjin, 300191, China
| | - Lin Qi
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, P.R. China, Tianjin, 300191, China
| | - Changbo Zhang
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, P.R. China, Tianjin, 300191, China
| | - Changrong Wang
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, P.R. China, Tianjin, 300191, China
| | - Yongchun Huang
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, P.R. China, Tianjin, 300191, China
| | - Yanting Wang
- Key Laboratory of Fermentation Engineering (Ministry of Education), College of Biotechnology & Food Science, Hubei University of Technology, Wuhan, 430068, China
| | - Liangcai Peng
- Key Laboratory of Fermentation Engineering (Ministry of Education), College of Biotechnology & Food Science, Hubei University of Technology, Wuhan, 430068, China
| | - Zhongqi Liu
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, P.R. China, Tianjin, 300191, China.
| |
Collapse
|
10
|
Ghosh S, Dahiya M, Kumar A, Bheri M, Pandey GK. Calcium imaging: a technique to monitor calcium dynamics in biological systems. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:1777-1811. [PMID: 38222278 PMCID: PMC10784449 DOI: 10.1007/s12298-023-01405-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 12/07/2023] [Accepted: 12/11/2023] [Indexed: 01/16/2024]
Abstract
Calcium ion (Ca2+) is a multifaceted signaling molecule that acts as an important second messenger. During the course of evolution, plants and animals have developed Ca2+ signaling in order to respond against diverse stimuli, to regulate a large number of physiological and developmental pathways. Our understanding of Ca2+ signaling and its components in physiological phenomena ranging from lower to higher organisms, and from single cell to multiple tissues has grown exponentially. The generation of Ca2+ transients or signatures for various stress factor is a well-known mechanism adopted in plant and animal systems. However, the decoding of such remarkable signatures is an uphill task and is always an interesting goal for the scientific community. In the past few decades, studies on the concentration and dynamics of intracellular Ca2+ are significantly increasing and have become a trend in modern biology. The advancement in approaches from Ca2+ binding dyes to in vivo Ca2+ imaging through the use of Ca2+ biosensors to achieve spatio-temporal resolution in micro and milliseconds range, provide us phenomenal opportunities to study live cell Ca2+ imaging or dynamics. Here, we describe the usage, improvement and advancement of Ca2+ based dyes, genetically encoded probes and sensors to achieve extraordinary Ca2+ imaging in plants and animals. Graphical abstract
Collapse
Affiliation(s)
- Soma Ghosh
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, 110021 India
| | - Monika Dahiya
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, 110021 India
| | - Amit Kumar
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, 110021 India
| | - Malathi Bheri
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, 110021 India
| | - Girdhar K. Pandey
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, 110021 India
| |
Collapse
|
11
|
Mudrilov MA, Ladeynova MM, Kuznetsova DV, Vodeneev VA. Ion Channels in Electrical Signaling in Higher Plants. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:1467-1487. [PMID: 38105018 DOI: 10.1134/s000629792310005x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/16/2023] [Accepted: 09/18/2023] [Indexed: 12/19/2023]
Abstract
Electrical signals (ESs) appearing in plants under the action of various external factors play an important role in adaptation to changing environmental conditions. Generation of ES in higher plant cells is associated with activation of Ca2+, K+, and anion fluxes, as well as with changes in the activity of plasma membrane H+-ATPase. In the present review, molecular nature of the ion channels contributing to ESs transmission in higher plants is analyzed based on comparison of the data from molecular-genetic and electrophysiological studies. Based on such characteristics of ion channels as selectivity, activation mechanism, and intracellular and tissue localization, those ion channels that meet the requirements for potential participation in ES generation were selected from a wide variety of ion channels in higher plants. Analysis of the data of experimental studies performed on mutants with suppressed or enhanced expression of a certain channel gene revealed those channels whose activation contributes to ESs formation. The channels responsible for Ca2+ flux during generation of ESs include channels of the GLR family, for K+ flux - GORK, for anions - MSL. Consideration of the prospects of further studies suggests the need to combine electrophysiological and genetic approaches along with analysis of ion concentrations in intact plants within a single study.
Collapse
Affiliation(s)
- Maxim A Mudrilov
- Department of Biophysics, Lobachevsky National Research State University of Nizhny Novgorod, Nizhny Novgorod, 603950, Russia
| | - Maria M Ladeynova
- Department of Biophysics, Lobachevsky National Research State University of Nizhny Novgorod, Nizhny Novgorod, 603950, Russia
| | - Darya V Kuznetsova
- Department of Biophysics, Lobachevsky National Research State University of Nizhny Novgorod, Nizhny Novgorod, 603950, Russia
| | - Vladimir A Vodeneev
- Department of Biophysics, Lobachevsky National Research State University of Nizhny Novgorod, Nizhny Novgorod, 603950, Russia.
| |
Collapse
|
12
|
Xiang X, Liu S, Li H, Danso Ofori A, Yi X, Zheng A. Defense Strategies of Rice in Response to the Attack of the Herbivorous Insect, Chilo suppressalis. Int J Mol Sci 2023; 24:14361. [PMID: 37762665 PMCID: PMC10531896 DOI: 10.3390/ijms241814361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/07/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Chilo suppressalis is a notorious pest that attacks rice, feeding throughout the entire growth period of rice and posing a serious threat to rice production worldwide. Due to the boring behavior and overlapping generations of C. suppressalis, the pest is difficult to control. Moreover, no rice variety with high resistance to the striped stem borer (SSB) has been found in the available rice germplasm, which also poses a challenge to controlling the SSB. At present, chemical control is widely used in agricultural production to manage the problem, but its effect is limited and it also pollutes the environment. Therefore, developing genetic resistance is the only way to avoid the use of chemical insecticides. This article primarily focuses on the research status of the induced defense of rice against the SSB from the perspective of immunity, in which plant hormones (such as jasmonic acid and ethylene) and mitogen-activated protein kinases (MAPKs) play an important role in the immune response of rice to the SSB. The article also reviews progress in using transgenic technology to study the relationship between rice and the SSB as well as exploring the resistance genes. Lastly, the article discusses prospects for future research on rice's resistance to the SSB.
Collapse
Affiliation(s)
| | | | | | | | | | - Aiping Zheng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China; (X.X.); (S.L.); (H.L.); (A.D.O.); (X.Y.)
| |
Collapse
|
13
|
Pantazopoulou CK, Buti S, Nguyen CT, Oskam L, Weits DA, Farmer EE, Kajala K, Pierik R. Mechanodetection of neighbor plants elicits adaptive leaf movements through calcium dynamics. Nat Commun 2023; 14:5827. [PMID: 37730832 PMCID: PMC10511701 DOI: 10.1038/s41467-023-41530-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 09/07/2023] [Indexed: 09/22/2023] Open
Abstract
Plants detect their neighbors via various cues, including reflected light and touching of leaf tips, which elicit upward leaf movement (hyponasty). It is currently unknown how touch is sensed and how the signal is transferred from the leaf tip to the petiole base that drives hyponasty. Here, we show that touch-induced hyponasty involves a signal transduction pathway that is distinct from light-mediated hyponasty. We found that mechanostimulation of the leaf tip upon touching causes cytosolic calcium ([Ca2+]cyt induction in leaf tip trichomes that spreads towards the petiole. Both perturbation of the calcium response and the absence of trichomes reduce touch-induced hyponasty. Finally, using plant competition assays, we show that touch-induced hyponasty is adaptive in dense stands of Arabidopsis. We thus establish a novel, adaptive mechanism regulating hyponastic leaf movement in response to mechanostimulation by neighbors in dense vegetation.
Collapse
Affiliation(s)
- Chrysoula K Pantazopoulou
- Plant-Environment Signaling, Institute of Environment Biology, Utrecht University, Utrecht, The Netherlands.
| | - Sara Buti
- Plant-Environment Signaling, Institute of Environment Biology, Utrecht University, Utrecht, The Netherlands
| | - Chi Tam Nguyen
- Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland
| | - Lisa Oskam
- Plant-Environment Signaling, Institute of Environment Biology, Utrecht University, Utrecht, The Netherlands
| | - Daan A Weits
- Plant-Environment Signaling, Institute of Environment Biology, Utrecht University, Utrecht, The Netherlands
| | - Edward E Farmer
- Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland
| | - Kaisa Kajala
- Plant-Environment Signaling, Institute of Environment Biology, Utrecht University, Utrecht, The Netherlands
| | - Ronald Pierik
- Plant-Environment Signaling, Institute of Environment Biology, Utrecht University, Utrecht, The Netherlands.
- Laboratory of Molecular Biology, Wageningen University, Wageningen, The Netherlands.
| |
Collapse
|
14
|
Xia Q, Zheng Y, Wang L, Chen X. Proposing Signaling Molecules as Key Optimization Targets for Intensifying the Phytochemical Biosynthesis Induced by Emerging Nonthermal Stress Pretreatments of Plant-Based Foods: A Focus on γ-Aminobutyric Acid. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:12622-12644. [PMID: 37599447 DOI: 10.1021/acs.jafc.3c04413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Emerging evidence has confirmed the role of emerging nonthermal stressors (e.g., electromagnetic fields, ultrasonication, plasma) in accumulating bioactive metabolites in plant-based food. However, the signal decoding mechanisms behind NonTt-driven phytochemical production remain unclear, hindering postharvest bioactive component intensification. This study aims to summarize the association between signaling molecules and bioactive secondary metabolite production under nonthermal conditions, demonstrating the feasibility of enhancing phytochemical accumulation through signaling molecule crosstalk manipulation. Nonthermal elicitors were found to be capable of inducing stress metabolisms and activating various signaling molecules, similar to conventional abiotic stress. A simplified pathway model for nonthermally induced γ-aminobutyric acid accumulation was proposed with reactive oxygen species and calcium signaling being versatile pathways responsive to nonthermal elicitors. Manipulating signal molecules/pathways under nonthermal conditions can intensify phytochemical biosynthesis. Further research is needed to integrate signaling molecule responses and metabolic network shifts in nonthermally stressed plant-based matrices, balancing quality modifications and intensification of food functionality potential.
Collapse
Affiliation(s)
- Qiang Xia
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau
- College of Food and Pharmaceutical Sciences, Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Ningbo University, Ningbo 315832, China
| | - Yuanrong Zheng
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai 200436, China
| | - Libin Wang
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xiaojia Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau
| |
Collapse
|
15
|
Zhu C, Yi X, Yang M, Liu Y, Yao Y, Zi S, Chen B, Xiao G. Comparative Transcriptome Analysis of Defense Response of Potato to Phthorimaea operculella Infestation. PLANTS (BASEL, SWITZERLAND) 2023; 12:3092. [PMID: 37687339 PMCID: PMC10490199 DOI: 10.3390/plants12173092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 08/20/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023]
Abstract
The potato tuber moth (PTM), Phthorimaea operculella Zeller (Lepidoptera: Gelechiidae), is one of the most destructive pests of potato crops worldwide. Although it has been reported how potatoes integrate the early responses to various PTM herbivory stimuli by accumulatively adding the components, the broad-scale defense signaling network of potato to single stimuli at multiple time points are unclear. Therefore, we compared three potato transcriptional profiles of undamaged plants, mechanically damaged plants and PTM-feeding plants at 3 h, 48 h, and 96 h, and further analyzed the gene expression patterns of a multitude of insect resistance-related signaling pathways, including phytohormones, reactive oxygen species, secondary metabolites, transcription factors, MAPK cascades, plant-pathogen interactions, protease inhibitors, chitinase, and lectins, etc. in the potato under mechanical damage and PTM infestation. Our results suggested that the potato transcriptome showed significant responses to mechanical damage and potato tuber moth infestation, respectively. The potato transcriptome responses modulated over time and were higher at 96 than at 48 h, so transcriptional changes in later stages of PTM infestation may underlie the potato recovery response. Although the transcriptional profiles of mechanically damaged and PTM-infested plants overlap extensively in multiple signaling pathways, some genes are uniquely induced or repressed. True herbivore feeding induced more and stronger gene expression compared to mechanical damage. In addition, we identified 2976, 1499, and 117 genes that only appeared in M-vs-P comparison groups by comparing the transcriptomes of PTM-damaged and mechanically damaged potatoes at 3 h, 48 h, and 96 h, respectively, and these genes deserve further study in the future. This transcriptomic dataset further enhances the understanding of the interactions between potato and potato tuber moth, enriches the molecular resources in this research area and paves the way for breeding insect-resistant potatoes.
Collapse
Affiliation(s)
- Chunyue Zhu
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China; (C.Z.); (X.Y.); (M.Y.); (S.Z.); (Y.L.); (Y.Y.)
| | - Xiaocui Yi
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China; (C.Z.); (X.Y.); (M.Y.); (S.Z.); (Y.L.); (Y.Y.)
| | - Miao Yang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China; (C.Z.); (X.Y.); (M.Y.); (S.Z.); (Y.L.); (Y.Y.)
| | - Yiyi Liu
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China; (C.Z.); (X.Y.); (M.Y.); (S.Z.); (Y.L.); (Y.Y.)
| | - Yao Yao
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China; (C.Z.); (X.Y.); (M.Y.); (S.Z.); (Y.L.); (Y.Y.)
| | - Shengjiang Zi
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China; (C.Z.); (X.Y.); (M.Y.); (S.Z.); (Y.L.); (Y.Y.)
| | - Bin Chen
- College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China
| | - Guanli Xiao
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China; (C.Z.); (X.Y.); (M.Y.); (S.Z.); (Y.L.); (Y.Y.)
| |
Collapse
|
16
|
Wang FZ, Li JF. WeiTsing: a new face of Ca 2+-permeable channels in plant immunity. STRESS BIOLOGY 2023; 3:25. [PMID: 37676355 PMCID: PMC10441888 DOI: 10.1007/s44154-023-00110-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 07/11/2023] [Indexed: 09/08/2023]
Abstract
Plants employ pattern- and effector-triggered immunity (PTI and ETI) to synergistically defend invading pathogens and insect herbivores. Both PTI and ETI can induce cytosolic Ca2+ spikes, despite in different spatiotemporal patterns, to activate downstream Ca2+-dependent immune signaling cascades. While multiple families of Ca2+-permeable channels at the plasma membrane have been uncovered, the counterparts responsible for Ca2+ release from intracellular stores remain poorly understood. In a groundbreaking paper published recently by Cell, the authors reported that WeiTsing, an Arabidopsis endoplasmic reticulum (ER)-resident protein that was specifically expressed in the pericycle upon Plasmodiophora brassicae (Pb) infection, could form resistosome-like Ca2+-conducting channel and protect the stele of Brassica crops from Pb colonization. As the channel activity of WeiTsing was indispensable for its immune function, the findings highlight a previously underappreciated role of Ca2+ release from intracellular repertoire in promoting plant disease resistance.
Collapse
Affiliation(s)
- Feng-Zhu Wang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Jian-Feng Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China.
| |
Collapse
|
17
|
Hedrich R, Müller TD, Marten I, Becker D. TPC1 vacuole SV channel gains further shape - voltage priming of calcium-dependent gating. TRENDS IN PLANT SCIENCE 2023; 28:673-684. [PMID: 36740491 DOI: 10.1016/j.tplants.2023.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/20/2022] [Accepted: 01/11/2023] [Indexed: 05/13/2023]
Abstract
Across phyla, voltage-gated ion channels (VGICs) allow excitability. The vacuolar two-pore channel AtTPC1 from the tiny mustard plant Arabidopsis thaliana has emerged as a paradigm for deciphering the role of voltage and calcium signals in membrane excitation. Among the numerous experimentally determined structures of VGICs, AtTPC1 was the first to be revealed in a closed and resting state, fueling speculation about structural rearrangements during channel activation. Two independent reports on the structure of a partially opened AtTPC1 channel protein have led to working models that offer promising insights into the molecular switches associated with the gating process. We review new structure-function models and also discuss the evolutionary impact of two-pore channels (TPCs) on K+ homeostasis and vacuolar excitability.
Collapse
Affiliation(s)
- Rainer Hedrich
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, Julius-von-Sachs Platz 2, 97082 Würzburg, Germany.
| | - Thomas D Müller
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, Julius-von-Sachs Platz 2, 97082 Würzburg, Germany
| | - Irene Marten
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, Julius-von-Sachs Platz 2, 97082 Würzburg, Germany
| | - Dirk Becker
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, Julius-von-Sachs Platz 2, 97082 Würzburg, Germany
| |
Collapse
|
18
|
Simon AA, Navarro-Retamal C, Feijó JA. Merging Signaling with Structure: Functions and Mechanisms of Plant Glutamate Receptor Ion Channels. ANNUAL REVIEW OF PLANT BIOLOGY 2023; 74:415-452. [PMID: 36854472 PMCID: PMC11479355 DOI: 10.1146/annurev-arplant-070522-033255] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Plant glutamate receptor-like (GLR) genes encode ion channels with demonstrated roles in electrical and calcium (Ca2+) signaling. The expansion of the GLR family along the lineage of land plants, culminating in the appearance of a multiclade system among flowering plants, has been a topic of interest since their discovery nearly 25 years ago. GLRs are involved in many physiological processes, from wound signaling to transcriptional regulation to sexual reproduction. Emerging evidence supports the notion that their fundamental functions are conserved among different groups of plants as well. In this review, we update the physiological and genetic evidence for GLRs, establishing their role in signaling and cell-cell communication. Special emphasis is given to the recent discussion of GLRs' atomic structures. Along with functional assays, a structural view of GLRs' molecular organization presents a window for novel hypotheses regarding the molecular mechanisms underpinning signaling associated with the ionic fluxes that GLRs regulate. Newly uncovered transcriptional regulations associated with GLRs-which propose the involvement of genes from all clades ofArabidopsis thaliana in ways not previously observed-are discussed in the context of the broader impacts of GLR activity. We posit that the functions of GLRs in plant biology are probably much broader than anticipated, but describing their widespread involvement will only be possible with (a) a comprehensive understanding of the channel's properties at the molecular and structural levels, including protein-protein interactions, and (b) the design of new genetic approaches to explore stress and pathogen responses where precise transcriptional control may result in more precise testable hypotheses to overcome their apparent functional redundancies.
Collapse
Affiliation(s)
- Alexander A Simon
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA;
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY, USA;
| | - Carlos Navarro-Retamal
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA;
| | - José A Feijó
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA;
| |
Collapse
|
19
|
Paulmann MK, Wegner L, Gershenzon J, Furch ACU, Kunert G. Pea Aphid ( Acyrthosiphon pisum) Host Races Reduce Heat-Induced Forisome Dispersion in Vicia faba and Trifolium pratense. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091888. [PMID: 37176952 PMCID: PMC10181200 DOI: 10.3390/plants12091888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/21/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023]
Abstract
Although phloem-feeding insects such as aphids can cause significant damage to plants, relatively little is known about early plant defenses against these insects. As a first line of defense, legumes can stop the phloem mass flow through a conformational change in phloem proteins known as forisomes in response to Ca2+ influx. However, specialized phloem-feeding insects might be able to suppress the conformational change of forisomes and thereby prevent sieve element occlusion. To investigate this possibility, we triggered forisome dispersion through application of a local heat stimulus to the leaf tips of pea (Pisum sativum), clover (Trifolium pratense) and broad bean (Vicia faba) plants infested with different pea aphid (Acyrthosiphon pisum) host races and monitored forisome responses. Pea aphids were able to suppress forisome dispersion, but this depended on the infesting aphid host race, the plant species, and the age of the plant. Differences in the ability of aphids to suppress forisome dispersion may be explained by differences in the composition and quantity of the aphid saliva injected into the plant. Various mechanisms of how pea aphids might suppress forisome dispersion are discussed.
Collapse
Affiliation(s)
- Maria K Paulmann
- Max Planck Institute for Chemical Ecology, Department of Biochemistry, Hans-Knöll-Str. 8, D-07745 Jena, Germany
- Plant Physiology, Matthias Schleiden Institute for Genetics, Bioinformatics and Molecular Botany, Faculty of Biological Science, Friedrich Schiller University Jena, Dornburger Straße 159, D-07743 Jena, Germany
| | - Linus Wegner
- Plant Physiology, Matthias Schleiden Institute for Genetics, Bioinformatics and Molecular Botany, Faculty of Biological Science, Friedrich Schiller University Jena, Dornburger Straße 159, D-07743 Jena, Germany
- Institute of Botany, Justus Liebig University, Heinrich-Buff-Ring 38, 35292 Giessen, Germany
| | - Jonathan Gershenzon
- Max Planck Institute for Chemical Ecology, Department of Biochemistry, Hans-Knöll-Str. 8, D-07745 Jena, Germany
| | - Alexandra C U Furch
- Plant Physiology, Matthias Schleiden Institute for Genetics, Bioinformatics and Molecular Botany, Faculty of Biological Science, Friedrich Schiller University Jena, Dornburger Straße 159, D-07743 Jena, Germany
| | - Grit Kunert
- Max Planck Institute for Chemical Ecology, Department of Biochemistry, Hans-Knöll-Str. 8, D-07745 Jena, Germany
| |
Collapse
|
20
|
Mou DF, Kundu P, Pingault L, Puri H, Shinde S, Louis J. Monocot crop-aphid interactions: plant resilience and aphid adaptation. CURRENT OPINION IN INSECT SCIENCE 2023; 57:101038. [PMID: 37105496 DOI: 10.1016/j.cois.2023.101038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/15/2023] [Accepted: 04/17/2023] [Indexed: 05/24/2023]
Abstract
Globally, aphids cause immense economic damage to several crop plants. In addition, aphids vector several plant viral diseases that accelerate crop yield losses. While feeding, aphids release saliva that contains effectors, which modulate plant defense responses. Although there are many studies that describe the mechanisms that contribute to dicot plant-aphid interactions, our understanding of monocot crop defense mechanisms against aphids is limited. In this review, we focus on the interactions between monocot crops and aphids and report the recently characterized aphid effectors and their functions in aphid adaptation to plant immunity. Recent studies on plant defense against aphids in monocot-resistant and -tolerant crop lines have exploited various 'omic' approaches to understand the roles of early signaling molecules, phytohormones, and secondary metabolites in plant response to aphid herbivory. Unraveling key regulatory mechanisms underlying monocot crop resistance to aphids will lead to deeper understanding of sap-feeding insect management strategies for increased food security and sustainable agriculture.
Collapse
Affiliation(s)
- De-Fen Mou
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Pritha Kundu
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Lise Pingault
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Heena Puri
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Sanket Shinde
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Joe Louis
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68583, USA.
| |
Collapse
|
21
|
Ahmed I, Kumar A, Bheri M, Srivastava AK, Pandey GK. Glutamate receptor like channels: Emerging players in calcium mediated signaling in plants. Int J Biol Macromol 2023; 234:123522. [PMID: 36758765 DOI: 10.1016/j.ijbiomac.2023.123522] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 01/26/2023] [Accepted: 01/30/2023] [Indexed: 02/09/2023]
Abstract
Glutamate receptors like channels (GLRs) are ligand gated non-selective cation channels and are multigenic in nature. They are homologs of mammalian ionic glutamate receptors (iGLRs) that play an important role in neurotransmission. It has been more than 25 years of discovery of plant GLRs, since then, significant progress has been made to unravel their structure and function in plants. Recently, the first crystal structure of plant GLR has been resolved that suggests that, though, plant GLRs contain the conserved signature domains of iGLRs, their unique features enable agonist/antagonist-dependent change in their activity. GLRs exhibit diverse subcellular localization and undergo dynamic expression variation in response to developmental and environmental stress conditions in plants. The combined use of genetic, electrophysiology and calcium imaging using different genetically encoded calcium indicators has revealed that GLRs are involved in generating calcium (Ca2+) influx across the plasma membrane and are involved in shaping the Ca2+ signature in response to different developmental and environmental stimuli. These findings indicate that GLRs influence cytosolic Ca2+ dynamics, thus, highlighting "GLR-Ca2+-crosstalk (GCC)" in developmental and stress-responsive signaling pathways. With this background, the present review summarises the recent developments pertaining to GLR function, in the broader context of regulation of stress tolerance in plants.
Collapse
Affiliation(s)
- Israr Ahmed
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi 110021, India
| | - Amit Kumar
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi 110021, India
| | - Malathi Bheri
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi 110021, India
| | - Ashish K Srivastava
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Girdhar K Pandey
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi 110021, India.
| |
Collapse
|
22
|
Shih PY, Sugio A, Simon JC. Molecular Mechanisms Underlying Host Plant Specificity in Aphids. ANNUAL REVIEW OF ENTOMOLOGY 2023; 68:431-450. [PMID: 36228134 DOI: 10.1146/annurev-ento-120220-020526] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Aphids are serious pests of agricultural and ornamental plants and important model systems for hemipteran-plant interactions. The long evolutionary history of aphids with their host plants has resulted in a variety of systems that provide insight into the different adaptation strategies of aphids to plants and vice versa. In the past, various plant-aphid interactions have been documented, but lack of functional tools has limited molecular studies on the mechanisms of plant-aphid interactions. Recent technological advances have begun to reveal plant-aphid interactions at the molecular level and to increase our knowledge of the mechanisms of aphid adaptation or specialization to different host plants. In this article, we compile and analyze available information on plant-aphid interactions, discuss the limitations of current knowledge, and argue for new research directions. We advocate for more work that takes advantage of natural systems and recently established molecular techniques to obtain a comprehensive view of plant-aphid interaction mechanisms.
Collapse
Affiliation(s)
- Po-Yuan Shih
- INRAE (National Institute of Agriculture, Food and Environment), UMR IGEPP, Le Rheu, France; , ,
| | - Akiko Sugio
- INRAE (National Institute of Agriculture, Food and Environment), UMR IGEPP, Le Rheu, France; , ,
| | - Jean-Christophe Simon
- INRAE (National Institute of Agriculture, Food and Environment), UMR IGEPP, Le Rheu, France; , ,
| |
Collapse
|
23
|
Dreyer I, Vergara-Valladares F, Mérida-Quesada F, Rubio-Meléndez ME, Hernández-Rojas N, Riedelsberger J, Astola-Mariscal SZ, Heitmüller C, Yanez-Chávez M, Arrey-Salas O, San Martín-Davison A, Navarro-Retamal C, Michard E. The Surprising Dynamics of Electrochemical Coupling at Membrane Sandwiches in Plants. PLANTS (BASEL, SWITZERLAND) 2023; 12:204. [PMID: 36616332 PMCID: PMC9824766 DOI: 10.3390/plants12010204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/22/2022] [Accepted: 12/30/2022] [Indexed: 06/17/2023]
Abstract
Transport processes across membranes play central roles in any biological system. They are essential for homeostasis, cell nutrition, and signaling. Fluxes across membranes are governed by fundamental thermodynamic rules and are influenced by electrical potentials and concentration gradients. Transmembrane transport processes have been largely studied on single membranes. However, several important cellular or subcellular structures consist of two closely spaced membranes that form a membrane sandwich. Such a dual membrane structure results in remarkable properties for the transport processes that are not present in isolated membranes. At the core of membrane sandwich properties, a small intermembrane volume is responsible for efficient coupling between the transport systems at the two otherwise independent membranes. Here, we present the physicochemical principles of transport coupling at two adjacent membranes and illustrate this concept with three examples. In the supplementary material, we provide animated PowerPoint presentations that visualize the relationships. They could be used for teaching purposes, as has already been completed successfully at the University of Talca.
Collapse
Affiliation(s)
- Ingo Dreyer
- Electrical Signaling in Plants (ESP) Laboratory, Centro de Bioinformática, Simulación y Modelado (CBSM), Facultad de Ingeniería, Universidad de Talca, 2 Norte 685, Talca 3460000, Chile
| | - Fernando Vergara-Valladares
- Doctorado en Ciencias mención Modelado de Sistemas Químicos y Biológicos, Universidad de Talca, 2 Norte 685, Talca 3460000, Chile
| | - Franko Mérida-Quesada
- Doctorado en Ciencias mención Modelado de Sistemas Químicos y Biológicos, Universidad de Talca, 2 Norte 685, Talca 3460000, Chile
| | - María Eugenia Rubio-Meléndez
- Electrical Signaling in Plants (ESP) Laboratory, Centro de Bioinformática, Simulación y Modelado (CBSM), Facultad de Ingeniería, Universidad de Talca, 2 Norte 685, Talca 3460000, Chile
| | - Naomí Hernández-Rojas
- Electrical Signaling in Plants (ESP) Laboratory, Centro de Bioinformática, Simulación y Modelado (CBSM), Facultad de Ingeniería, Universidad de Talca, 2 Norte 685, Talca 3460000, Chile
| | - Janin Riedelsberger
- Electrical Signaling in Plants (ESP) Laboratory, Centro de Bioinformática, Simulación y Modelado (CBSM), Facultad de Ingeniería, Universidad de Talca, 2 Norte 685, Talca 3460000, Chile
| | - Sadith Zobeida Astola-Mariscal
- Electrical Signaling in Plants (ESP) Laboratory, Centro de Bioinformática, Simulación y Modelado (CBSM), Facultad de Ingeniería, Universidad de Talca, 2 Norte 685, Talca 3460000, Chile
| | - Charlotte Heitmüller
- Electrical Signaling in Plants (ESP) Laboratory, Centro de Bioinformática, Simulación y Modelado (CBSM), Facultad de Ingeniería, Universidad de Talca, 2 Norte 685, Talca 3460000, Chile
- Department of Plant Biotechnology, Institute of Plant Genetics, Leibniz Universität Hannover, 30419 Hannover, Germany
| | - Mónica Yanez-Chávez
- Instituto de Ciencias Biológicas, Universidad de Talca, Campus Talca, Avenida Lircay, Talca 3460000, Chile
| | - Oscar Arrey-Salas
- Instituto de Ciencias Biológicas, Universidad de Talca, Campus Talca, Avenida Lircay, Talca 3460000, Chile
| | - Alex San Martín-Davison
- Instituto de Investigación Interdisciplinaria, Universidad de Talca, 2 Norte 685, Talca 3460000, Chile
| | - Carlos Navarro-Retamal
- Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742–5815, USA
| | - Erwan Michard
- Instituto de Ciencias Biológicas, Universidad de Talca, Campus Talca, Avenida Lircay, Talca 3460000, Chile
| |
Collapse
|
24
|
Tsuruda T, Yoshida R. l-Glutamate activates salicylic acid signaling to promote stomatal closure and PR1 expression in Arabidopsis. PHYSIOLOGIA PLANTARUM 2023; 175:e13858. [PMID: 36658465 DOI: 10.1111/ppl.13858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/06/2023] [Accepted: 01/13/2023] [Indexed: 06/17/2023]
Abstract
Glutamate (l-Glu), an animal neurotransmitter, plays an essential role in plant signaling and regulates various plant physiological responses. We previously showed that l-Glu regulates stomatal closure in Arabidopsis via the glutamate receptor-like 3.5 gene (GLR3.5). Here, we showed that l-Glu activates salicylic acid (SA) signaling in Arabidopsis. l-Glu not only promoted stomatal closure but also triggered the expression of the PR1 gene via GLR3.5. These l-Glu-dependent actions were strongly suppressed in SA-insensitive npr1-1 and SA-deficient sid2-2 mutants, indicating that SA is involved in l-Glu signaling. A loss-of-function mutant of the gene encoding the SRK2E/OST1 kinase, which plays a pivotal role in abscisic acid signaling, was insensitive to both l-Glu-induced stomatal closure and PR1 expression. The glr3.5 mutants did not alleviate SA-induced stomatal closure, indicating that SA may function downstream of GLR3.5. These results indicate that l-Glu activates SA signaling, and that SRK2E/OST1 may play pivotal roles in such signaling.
Collapse
Affiliation(s)
- Toshihiko Tsuruda
- Laboratory of Horticultural Science, Faculty of Agriculture, Kagoshima University, Kagoshima, Kagoshima, Japan
| | - Riichiro Yoshida
- Laboratory of Horticultural Science, Faculty of Agriculture, Kagoshima University, Kagoshima, Kagoshima, Japan
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Kagoshima, Japan
| |
Collapse
|
25
|
Yu B, Liu N, Tang S, Qin T, Huang J. Roles of Glutamate Receptor-Like Channels (GLRs) in Plant Growth and Response to Environmental Stimuli. PLANTS (BASEL, SWITZERLAND) 2022; 11:3450. [PMID: 36559561 PMCID: PMC9782139 DOI: 10.3390/plants11243450] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/06/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Plant glutamate receptor-like channels (GLRs) are the homologues of ionotropic glutamate receptors (iGluRs) that mediate neurotransmission in mammals, and they play important roles in various plant-specific physiological processes, such as pollen tube growth, sexual reproduction, root meristem proliferation, internode cell elongation, stomata aperture regulation, and innate immune and wound responses. Notably, these biological functions of GLRs have been mostly linked to the Ca2+-permeable channel activity as GLRs can directly channel the transmembrane flux of Ca2+, which acts as a key second messenger in plant cell responses to both endogenous and exogenous stimuli. Thus, it was hypothesized that GLRs are mainly involved in Ca2+ signaling processes in plant cells. Recently, great progress has been made in GLRs for their roles in long-distance signal transduction pathways mediated by electrical activity and Ca2+ signaling. Here, we review the recent progress on plant GLRs, and special attention is paid to recent insights into the roles of GLRs in response to environmental stimuli via Ca2+ signaling, electrical activity, ROS, as well as hormone signaling networks. Understanding the roles of GLRs in integrating internal and external signaling for plant developmental adaptations to a changing environment will definitely help to enhance abiotic stress tolerance.
Collapse
|
26
|
Xue N, Zhan C, Song J, Li Y, Zhang J, Qi J, Wu J. The glutamate receptor-like 3.3 and 3.6 mediate systemic resistance to insect herbivores in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:7611-7627. [PMID: 36214841 PMCID: PMC9730813 DOI: 10.1093/jxb/erac399] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Herbivory activates responses in local and systemic leaves, and the glutamate receptor-like genes GLR3.3 and GLR3.6 are critical in leaf-to-leaf systemic signalling. However, whether and how these genes mediate plant systemic resistance to insects remain largely unexplored. We show that a piercing-sucking insect Myzus persicae (green peach aphid, GPA) or chewing insect Spodoptera litura (cotton leafworm, CLW) feeding-induced systemic defences were attenuated in the glr3.3 glr3.6 mutants. In response to herbivory from either insect, glr3.3 glr3.6 mutants exhibited reduced accumulation of the hormone jasmonic acid (JA) and defensive metabolites glucosinolates (GSs) in systemic (but not local) leaves. Transcriptome analysis indicated that GLR3.3 and GLR3.6 play an important role in regulating the transcriptional responses to GPA and simulated CLW feeding in both local and systemic leaves, including JA- and GS-related genes. Metabolome analysis also revealed that in response to GPA or simulated CLW feeding, GLR3.3 and GLR3.6 are involved in the regulation of various metabolites locally and systemically, including amino acids, carbohydrates, and organic acids. Taken together, this study provides new insights into the function of GLR3.3 and GLR3.6 in mediating transcripts and metabolites in local and systemic leaves under insect attack, and highlights their role in regulating insect resistance in systemic leaves.
Collapse
Affiliation(s)
- Na Xue
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Che Zhan
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Juan Song
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong Li
- Yunnan Academy of Tobacco Agriculture Science, Kunming 650201, China
| | - Jingxiong Zhang
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinfeng Qi
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | | |
Collapse
|
27
|
Huang WQ, Zeng G, Zhi JR, Qiu XY, Yin ZJ. Exogenous Calcium Suppresses the Oviposition Choices of Frankliniella occidentalis (Thysanoptera: Thripidae) and Promotes the Attraction of Orius similis (Hemiptera: Anthocoridae) by Altering Volatile Blend Emissions in Kidney Bean Plants. INSECTS 2022; 13:1127. [PMID: 36555037 PMCID: PMC9785530 DOI: 10.3390/insects13121127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/03/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Frankliniella occidentalis is a destructive pest of horticultural plants, while Orius similis is a natural enemy of thrips. It has been demonstrated that exogenous calcium could induce plant defenses against herbivore attack. We examined whether CaCl2 supplementation altered the volatile emissions of kidney bean plants, which influence the oviposition preference of F. occidentalis. We also assessed the influence of volatile cues on O. similis. Using Y-tube olfactometer tests, we found that exogenous CaCl2 treatment inhibited the selectivity of F. occidentalis but attracted O. similis. In addition, CaCl2 treatment reduced the oviposition preference of F. occidentalis. Gas chromatography-mass spectrometry analyses revealed that CaCl2 treatment altered the number and relative abundance of the volatile compounds in kidney bean plants and that (E)-2-hexen-1-ol, 1-octen-3-ol, β-lonone, and (E,E)-2,4-hexadienal might be potential olfactory cues. Furthermore, the results of the six-arm olfactometer test indicated that 1-octen-3-ol (10-2 μL/μL), β-lonone (10-2 μL/μL), and (E,E)-2,4-hexadienal (10-3 μL/μL) repelled F. occidentalis but attracted O. similis. Overall, our results suggested that exogenous CaCl2 treatment induced defense responses in kidney bean plants, suggesting that CaCl2 supplementation may be a promising strategy to enhance the biological control of F. occidentalis.
Collapse
Affiliation(s)
- Wan-Qing Huang
- Guizhou Provincial Key Laboratory for Agricultural Pest Management in the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang 550025, China
| | - Guang Zeng
- Department of Resources and Environment, Moutai Institute, Renhuai 564507, China
| | - Jun-Rui Zhi
- Guizhou Provincial Key Laboratory for Agricultural Pest Management in the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang 550025, China
| | - Xin-Yue Qiu
- Guizhou Provincial Key Laboratory for Agricultural Pest Management in the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang 550025, China
| | - Zhen-Juan Yin
- Guizhou Provincial Key Laboratory for Agricultural Pest Management in the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang 550025, China
| |
Collapse
|
28
|
Schoonbeek H, Yalcin HA, Burns R, Taylor RE, Casey A, Holt S, Van den Ackerveken G, Wells R, Ridout CJ. Necrosis and ethylene-inducing-like peptide patterns from crop pathogens induce differential responses within seven brassicaceous species. PLANT PATHOLOGY 2022; 71:2004-2016. [PMID: 36605780 PMCID: PMC9804309 DOI: 10.1111/ppa.13615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 07/12/2022] [Indexed: 06/17/2023]
Abstract
Translational research is required to advance fundamental knowledge on plant immunity towards application in crop improvement. Recognition of microbe/pathogen-associated molecular patterns (MAMPs/PAMPs) triggers a first layer of immunity in plants. The broadly occurring family of necrosis- and ethylene-inducing peptide 1 (NEP1)-like proteins (NLPs) contains immunogenic peptide patterns that are recognized by a number of plant species. Arabidopsis can recognize NLPs by the pattern recognition receptor AtRLP23 and its co-receptors SOBIR1, BAK1, and BKK1, leading to induction of defence responses including the production of reactive oxygen species (ROS) and elevation of intracellular [Ca2+]. However, little is known about NLP perception in Brassica crop species. Within 12 diverse accessions for each of six Brassica crop species, we demonstrate variation in response to Botrytis cinerea NLP BcNEP2, with Brassica oleracea (CC genome) being nonresponsive and only two Brassica napus cultivars responding to BcNEP2. Peptides derived from four fungal pathogens of these crop species elicited responses similar to BcNEP2 in B. napus and Arabidopsis. Induction of ROS by NLP peptides was strongly reduced in Atrlp23, Atsobir1 and Atbak1-5 Atbkk1-1 mutants, confirming that recognition of Brassica pathogen NLPs occurs in a similar manner to that of HaNLP3 from Hyaloperonospora arabidopsidis in Arabidopsis. In silico analysis of the genomes of two B. napus accessions showed similar presence of homologues for AtBAK1, AtBKK1 and AtSOBIR1 but variation in the organization of AtRLP23 homologues. We could not detect a strong correlation between the ability to respond to NLP peptides and resistance to B. cinerea.
Collapse
Affiliation(s)
- Henk‐jan Schoonbeek
- Department of Crop GeneticsJohn Innes CentreNorwichUK
- Present address:
Department of Metabolic BiologyJohn Innes CentreNR4 7UHNorwichUK
| | - Hicret Asli Yalcin
- Department of Crop GeneticsJohn Innes CentreNorwichUK
- Present address:
The Scientific and Technical Research Council of Turkey (TÜBITAK), Marmara Research CentreGenetic Engineering and Biotechnology InstituteKocaeliTurkey
| | - Rachel Burns
- Department of Crop GeneticsJohn Innes CentreNorwichUK
| | - Rachel Emma Taylor
- Department of Crop GeneticsJohn Innes CentreNorwichUK
- Present address:
Centre of Plant Sciences, Faculty of Biological SciencesUniversity of LeedsLS2 9JTLeedsUK
| | - Adam Casey
- Department of Crop GeneticsJohn Innes CentreNorwichUK
| | - Sam Holt
- Department of Crop GeneticsJohn Innes CentreNorwichUK
- Pacific Biosciences Ltd. Rolling Stock Yard188 York WayLondonN7 9ASUK
| | | | - Rachel Wells
- Department of Crop GeneticsJohn Innes CentreNorwichUK
| | | |
Collapse
|
29
|
Bellandi A, Papp D, Breakspear A, Joyce J, Johnston MG, de Keijzer J, Raven EC, Ohtsu M, Vincent TR, Miller AJ, Sanders D, Hogenhout SA, Morris RJ, Faulkner C. Diffusion and bulk flow of amino acids mediate calcium waves in plants. SCIENCE ADVANCES 2022; 8:eabo6693. [PMID: 36269836 PMCID: PMC9586480 DOI: 10.1126/sciadv.abo6693] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 09/01/2022] [Indexed: 05/26/2023]
Abstract
In plants, a variety of stimuli trigger long-range calcium signals that travel rapidly along the vasculature to distal tissues via poorly understood mechanisms. Here, we use quantitative imaging and analysis to demonstrate that traveling calcium waves are mediated by diffusion and bulk flow of amino acid chemical messengers. We propose that wounding triggers release of amino acids that diffuse locally through the apoplast, activating the calcium-permeable channel GLUTAMATE RECEPTOR-LIKE 3.3 as they pass. Over long distances through the vasculature, the wound-triggered dynamics of a fluorescent tracer show that calcium waves are likely driven by bulk flow of a channel-activating chemical. We observed that multiple stimuli trigger calcium waves with similar dynamics, but calcium waves alone cannot initiate all systemic defense responses, suggesting that mobile chemical messengers are a core component of complex systemic signaling in plants.
Collapse
Affiliation(s)
- Annalisa Bellandi
- Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, UK
| | - Diana Papp
- Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, UK
| | - Andrew Breakspear
- Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, UK
| | - Joshua Joyce
- Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, UK
| | | | - Jeroen de Keijzer
- Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, UK
| | - Emma C. Raven
- Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, UK
| | - Mina Ohtsu
- Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, UK
| | - Thomas R. Vincent
- Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, UK
| | - Anthony J. Miller
- Biochemistry and Metabolism, John Innes Centre, Norwich Research Park, Norwich, UK
| | - Dale Sanders
- Biochemistry and Metabolism, John Innes Centre, Norwich Research Park, Norwich, UK
| | | | - Richard J. Morris
- Computational and Systems Biology, John Innes Centre, Norwich Research Park, Norwich, UK
| | | |
Collapse
|
30
|
Parmagnani AS, Maffei ME. Calcium Signaling in Plant-Insect Interactions. PLANTS (BASEL, SWITZERLAND) 2022; 11:2689. [PMID: 36297718 PMCID: PMC9609891 DOI: 10.3390/plants11202689] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/09/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
In plant-insect interactions, calcium (Ca2+) variations are among the earliest events associated with the plant perception of biotic stress. Upon herbivory, Ca2+ waves travel long distances to transmit and convert the local signal to a systemic defense program. Reactive oxygen species (ROS), Ca2+ and electrical signaling are interlinked to form a network supporting rapid signal transmission, whereas the Ca2+ message is decoded and relayed by Ca2+-binding proteins (including calmodulin, Ca2+-dependent protein kinases, annexins and calcineurin B-like proteins). Monitoring the generation of Ca2+ signals at the whole plant or cell level and their long-distance propagation during biotic interactions requires innovative imaging techniques based on sensitive sensors and using genetically encoded indicators. This review summarizes the recent advances in Ca2+ signaling upon herbivory and reviews the most recent Ca2+ imaging techniques and methods.
Collapse
|
31
|
Le Boulch P, Poëssel JL, Roux D, Lugan R. Molecular mechanisms of resistance to Myzus persicae conferred by the peach Rm2 gene: A multi-omics view. FRONTIERS IN PLANT SCIENCE 2022; 13:992544. [PMID: 36275570 PMCID: PMC9581297 DOI: 10.3389/fpls.2022.992544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/08/2022] [Indexed: 06/16/2023]
Abstract
The transcriptomic and metabolomic responses of peach to Myzus persicae infestation were studied in Rubira, an accession carrying the major resistance gene Rm2 causing antixenosis, and GF305, a susceptible accession. Transcriptome and metabolome showed both a massive reconfiguration in Rubira 48 hours after infestation while GF305 displayed very limited changes. The Rubira immune system was massively stimulated, with simultaneous activation of genes encoding cell surface receptors involved in pattern-triggered immunity and cytoplasmic NLRs (nucleotide-binding domain, leucine-rich repeat containing proteins) involved in effector-triggered immunity. Hypersensitive reaction featured by necrotic lesions surrounding stylet punctures was supported by the induction of cell death stimulating NLRs/helpers couples, as well as the activation of H2O2-generating metabolic pathways: photorespiratory glyoxylate synthesis and activation of the futile P5C/proline cycle. The triggering of systemic acquired resistance was suggested by the activation of pipecolate pathway and accumulation of this defense hormone together with salicylate. Important reduction in carbon, nitrogen and sulphur metabolic pools and the repression of many genes related to cell division and growth, consistent with reduced apices elongation, suggested a decline in the nutritional value of apices. Finally, the accumulation of caffeic acid conjugates pointed toward their contribution as deterrent and/or toxic compounds in the mechanisms of resistance.
Collapse
Affiliation(s)
| | | | - David Roux
- UMR Qualisud, Avignon Université, Avignon, France
| | | |
Collapse
|
32
|
Wang Y, Shen C, Jiang Q, Wang Z, Gao C, Wang W. Seed priming with calcium chloride enhances stress tolerance in rice seedlings. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 323:111381. [PMID: 35853520 DOI: 10.1016/j.plantsci.2022.111381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 07/08/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
Calcium is a crucial second messenger in plant cells and contributes to plant resistance against biotic and abiotic stress. Plant defense priming with natural or synthetic compounds leads to quicker and stronger resistance responses. However, whether pretreatment of plant seeds with calcium could improve their resistance to stress remains poorly understood. In this study, we showed that rice seedlings grown from calcium chloride (CaCl2)-pretreated seeds displayed enhanced resistance to the rice blast fungus Magnaporthe oryzae and the rice bacterial pathogen Xanthomonas oryzae pv. Oryzae (Xoo). Seed priming with CaCl2 also led to enhanced rice tolerance to salt and cold. Furthermore, the reactive oxygen species (ROS) burst increased significantly upon immunity activation in the leaves of rice seedlings grown from CaCl2-pretreated seeds. Additionally, we analyzed the rice calmodulin-binding protein 60 (OsCBP60) family and found that there were 19 OsCBP60s in rice cultivar Zhonghua 11 (ZH11). The transcripts of several OsCBP60s were chitin- and M. oryzae-inducible, suggesting that they may contribute to rice resistance. Taken together, these data indicate that seed priming with CaCl2 can effectively enhance rice tolerance to multiple stresses, perhaps by boosting the burst of ROS, and OsCBP60 family members may also play an essential role in this process.
Collapse
Affiliation(s)
- Yameng Wang
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chengbin Shen
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qiaochu Jiang
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhanchun Wang
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chenyang Gao
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Wei Wang
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
33
|
Naz R, Khan A, Alghamdi BS, Ashraf GM, Alghanmi M, Ahmad A, Bashir SS, Haq QMR. An Insight into Animal Glutamate Receptors Homolog of Arabidopsis thaliana and Their Potential Applications-A Review. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11192580. [PMID: 36235446 PMCID: PMC9572488 DOI: 10.3390/plants11192580] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/19/2022] [Accepted: 08/26/2022] [Indexed: 06/01/2023]
Abstract
Most excitatory impulses received by neurons are mediated by ionotropic glutamate receptors (iGluRs). These receptors are located at the apex and play an important role in memory, neuronal development, and synaptic plasticity. These receptors are ligand-dependent ion channels that allow a wide range of cations to pass through. Glutamate, a neurotransmitter, activates three central ionotropic receptors: N-methyl-D-aspartic acid (NMDA), -amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA), and kainic acid (KA). According to the available research, excessive glutamate release causes neuronal cell death and promotes neurodegenerative disorders. Arabidopsis thaliana contains 20 glutamate receptor genes (AtGluR) comparable to the human ionotropic glutamate (iGluRs) receptor. Many studies have proved that AtGL-rec genes are involved in a number of plant growth and physiological activities, such as in the germination of seeds, roots, abiotic and biotic stress, and cell signaling, which clarify the place of these genes in plant biology. In spite of these, the iGluRs, Arabidopsis glutamate receptors (AtGluR), is associated with the ligand binding activity, which confirms the evolutionary relationship between animal and plant glutamate receptors. Along with the above activities, the impact of mammalian agonists and antagonists on Arabidopsis suggests a correlation between plant and animal glutamate receptors. In addition, these glutamate receptors (plant/animal) are being utilized for the early detection of neurogenerative diseases using the fluorescence resonance energy transfer (FRET) approach. However, a number of scientific laboratories and institutes are consistently working on glutamate receptors with different aspects. Currently, we are also focusing on Arabidopsis glutamate receptors. The current review is focused on updating knowledge on AtGluR genes, their evolution, functions, and expression, and as well as in comparison with iGluRs. Furthermore, a high throughput approach based on FRET nanosensors developed for understanding neurotransmitter signaling in animals and plants via glutamate receptors has been discussed. The updated information will aid in the future comprehension of the complex molecular dynamics of glutamate receptors and the exploration of new facts in plant/animal biology.
Collapse
Affiliation(s)
- Ruphi Naz
- Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Andleeb Khan
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Badrah S. Alghamdi
- Department of Physiology, Neuroscience Unit, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ghulam Md Ashraf
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Maimonah Alghanmi
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Altaf Ahmad
- Department of Botany, Aligarh Muslim University, Aligarh 202002, India
| | | | | |
Collapse
|
34
|
Chesnais Q, Golyaev V, Velt A, Rustenholz C, Brault V, Pooggin MM, Drucker M. Comparative Plant Transcriptome Profiling of Arabidopsis thaliana Col-0 and Camelina sativa var. Celine Infested with Myzus persicae Aphids Acquiring Circulative and Noncirculative Viruses Reveals Virus- and Plant-Specific Alterations Relevant to Aphid Feeding Behavior and Transmission. Microbiol Spectr 2022; 10:e0013622. [PMID: 35856906 PMCID: PMC9430646 DOI: 10.1128/spectrum.00136-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 06/19/2022] [Indexed: 11/20/2022] Open
Abstract
Evidence is accumulating that plant viruses alter host plant traits in ways that modify their insect vectors' behavior. These alterations often enhance virus transmission, which has led to the hypothesis that these effects are manipulations caused by viral adaptation. However, we lack a mechanistic understanding of the genetic basis of these indirect, plant-mediated effects on vectors, their dependence on the plant host, and their relation to the mode of virus transmission. Transcriptome profiling of Arabidopsis thaliana and Camelina sativa plants infected with turnip yellows virus (TuYV) or cauliflower mosaic virus (CaMV) and infested with the common aphid vector Myzus persicae revealed strong virus- and host-specific differences in gene expression patterns. CaMV infection caused more severe effects on the phenotype of both plant hosts than did TuYV infection, and the severity of symptoms correlated strongly with the proportion of differentially expressed genes, especially photosynthesis genes. Accordingly, CaMV infection modified aphid behavior and fecundity more strongly than did infection with TuYV. Overall, infection with CaMV, relying on the noncirculative transmission mode, tends to have effects on metabolic pathways, with strong potential implications for insect vector-plant host interactions (e.g., photosynthesis, jasmonic acid, ethylene, and glucosinolate biosynthetic processes), while TuYV, using the circulative transmission mode, alters these pathways only weakly. These virus-induced deregulations of genes that are related to plant physiology and defense responses might impact both aphid probing and feeding behavior on infected host plants, with potentially distinct effects on virus transmission. IMPORTANCE Plant viruses change the phenotype of their plant hosts. Some of the changes impact interactions of the plant with insects that feed on the plants and transmit these viruses. These modifications may result in better virus transmission. We examine here the transcriptomes of two plant species infected with two viruses with different transmission modes to work out whether there are plant species-specific and transmission mode-specific transcriptome changes. Our results show that both are the case.
Collapse
Affiliation(s)
- Quentin Chesnais
- SVQV, UMR1131, INRAE Centre Grand Est–Colmar, Université Strasbourg, Strasbourg, France
| | - Victor Golyaev
- PHIM Plant Health Institute, Université Montpellier, INRAE, CIRAD, IRD, Institut Agro, Montpellier, France
| | - Amandine Velt
- SVQV, UMR1131, INRAE Centre Grand Est–Colmar, Université Strasbourg, Strasbourg, France
| | - Camille Rustenholz
- SVQV, UMR1131, INRAE Centre Grand Est–Colmar, Université Strasbourg, Strasbourg, France
| | - Véronique Brault
- SVQV, UMR1131, INRAE Centre Grand Est–Colmar, Université Strasbourg, Strasbourg, France
| | - Mikhail M. Pooggin
- PHIM Plant Health Institute, Université Montpellier, INRAE, CIRAD, IRD, Institut Agro, Montpellier, France
| | - Martin Drucker
- SVQV, UMR1131, INRAE Centre Grand Est–Colmar, Université Strasbourg, Strasbourg, France
| |
Collapse
|
35
|
Pottosin I, Dobrovinskaya O. Major vacuolar TPC1 channel in stress signaling: what matters, K +, Ca 2+ conductance or an ion-flux independent mechanism? STRESS BIOLOGY 2022; 2:31. [PMID: 37676554 PMCID: PMC10441842 DOI: 10.1007/s44154-022-00055-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 07/29/2022] [Indexed: 09/08/2023]
Abstract
Two-pore cation channel, TPC1, is ubiquitous in the vacuolar membrane of terrestrial plants and mediates the long distance signaling upon biotic and abiotic stresses. It possesses a wide pore, which transports small mono- and divalent cations. K+ is transported more than 10-fold faster than Ca2+, which binds with a higher affinity within the pore. Key pore residues, responsible for Ca2+ binding, have been recently identified. There is also a substantial progress in the mechanistic and structural understanding of the plant TPC1 gating by membrane voltage and cytosolic and luminal Ca2+. Collectively, these gating factors at resting conditions strongly reduce the potentially lethal Ca2+ leak from the vacuole. Such tight control is impressive, bearing in mind high unitary conductance of the TPC1 and its abundance, with thousands of active channel copies per vacuole. But it remains a mystery how this high threshold is overcome upon signaling, and what type of signal is emitted by TPC1, whether it is Ca2+ or electrical one, or a transduction via protein conformational change, independent on ion conductance. Here we discuss non-exclusive scenarios for the TPC1 integration into Ca2+, ROS and electrical signaling.
Collapse
Affiliation(s)
- Igor Pottosin
- Biomedical Center, University of Colima, 28045, Colima, Mexico.
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan, 528041, China.
| | | |
Collapse
|
36
|
Grenzi M, Bonza MC, Costa A. Signaling by plant glutamate receptor-like channels: What else! CURRENT OPINION IN PLANT BIOLOGY 2022; 68:102253. [PMID: 35780692 DOI: 10.1016/j.pbi.2022.102253] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/24/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
Plant glutamate receptor-like channels (GLRs) are transmembrane proteins that allow the movement of several ions across membranes. In the model plant Arabidopsis, there are 20 GLR isoforms grouped in three clades and, since their discovery, it was hypothesized that GLRs were mainly involved in signaling processes. Indeed, in the last years, several pieces of evidence demonstrate different signaling roles played by GLRs, related to pollen development, sexual reproduction, chemotaxis, root development, regulation of stomatal aperture, and response to pathogens. Recently, GLRs have gained attention for their role in long-distance electric and calcium signaling. In this review, we resume the evidence about the role of GLRs in signaling processes. This role is mostly linked to the GLRs involvement in the regulation of ion fluxes across membranes and, in particular, of calcium, which represents a key second messenger in plant cell responses to both endogenous and exogenous stimuli.
Collapse
Affiliation(s)
- Matteo Grenzi
- Department of Biosciences, University of Milan, Via G. Celoria 26, 20133 Milano, Italy
| | - Maria Cristina Bonza
- Department of Biosciences, University of Milan, Via G. Celoria 26, 20133 Milano, Italy
| | - Alex Costa
- Department of Biosciences, University of Milan, Via G. Celoria 26, 20133 Milano, Italy; Institute of Biophysics, National Research Council of Italy (CNR), Via G. Celoria 26, 20133 Milano, Italy.
| |
Collapse
|
37
|
Matthus E, Wilkins KA, Mohammad-Sidik A, Ning Y, Davies JM. Spatial origin of the extracellular ATP-induced cytosolic calcium signature in Arabidopsis thaliana roots: wave formation and variation with phosphate nutrition. PLANT BIOLOGY (STUTTGART, GERMANY) 2022; 24:863-873. [PMID: 35395136 DOI: 10.1111/plb.13427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 03/30/2022] [Indexed: 06/14/2023]
Abstract
Extracellular ATP (eATP) increases cytosolic free calcium ([Ca2+ ]cyt ) as a specific second messenger 'signature' through the plasma membrane DORN1/P2K1 receptor. Previous studies revealed a biphasic signature in Arabidopsis thaliana roots that is altered by inorganic phosphate (Pi) deprivation. The relationship between the two phases of the signature and possible wave formation have been tested as a function of Pi nutrition. The bioluminescent aequorin and intensiometric GCaMP3 reporters were used to resolve the spatial origin of the eATP [Ca2+ ]cyt signature in Arabidopsis root tips. Application of eATP only to the root apex allowed [Ca2+ ]cyt wave resolution without the confounding effects of eATP delivery by superfusion. The first apical millimetre of the root generates the first [Ca2+ ]cyt increase by eATP, regardless of nutritional status. The second increase occurs sub-apically in the root hair zone, has some autonomy and is significantly reduced in Pi-starved roots. A significant component of the Pi-replete signature does not require DORN1/P2K1, but Pi-starved roots appear to have an absolute requirement for that receptor. Application of eATP specifically to the root apex provides evidence for cell-to-cell propagation of a [Ca2+ ]cyt wave that diminishes sub-apically. The apex maintains a robust [Ca2+ ]cyt increase (even under Pi starvation) that is the basis of a propagative wave, with implications for the ability of the root's eATP signalling systems to signal systemically. Partial autonomy of the sub-apical region may be relevant to the perception of eATP from microbes. eATP-induced [Ca2+ ]cyt increase may not have always have an obligate requirement for DORN1/P2K1.
Collapse
Affiliation(s)
- E Matthus
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
- Leibniz Centre for Agricultural Landscape Research (ZALF), Müncheberg, Germany
| | - K A Wilkins
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - A Mohammad-Sidik
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - Y Ning
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - J M Davies
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| |
Collapse
|
38
|
Kloth KJ, Dicke M. Rapid systemic responses to herbivory. CURRENT OPINION IN PLANT BIOLOGY 2022; 68:102242. [PMID: 35696775 DOI: 10.1016/j.pbi.2022.102242] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/26/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
Rapid systemic signals travel within the first seconds and minutes after herbivore infestation to mount defense responses in distal tissues. Recent studies have revealed that wound-induced hydraulic pressure changes play an important role in systemic electrical signaling and subsequent calcium and reactive oxygen species waves. These insights raise new questions about signal specificity, the role of insect feeding guild and feeding style and the impact on longer term plant defenses. Here, we integrate the current molecular understanding of wound-induced rapid systemic signaling in the framework of insect-plant interactions.
Collapse
Affiliation(s)
- Karen J Kloth
- Laboratory of Entomology, Wageningen University & Research, PO Box 16, 6700 AA Wageningen, the Netherlands.
| | - Marcel Dicke
- Laboratory of Entomology, Wageningen University & Research, PO Box 16, 6700 AA Wageningen, the Netherlands
| |
Collapse
|
39
|
Allan C, Morris RJ, Meisrimler CN. Encoding, transmission, decoding, and specificity of calcium signals in plants. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:3372-3385. [PMID: 35298633 PMCID: PMC9162177 DOI: 10.1093/jxb/erac105] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/10/2022] [Indexed: 06/14/2023]
Abstract
Calcium acts as a signal and transmits information in all eukaryotes. Encoding machinery consisting of calcium channels, stores, buffers, and pumps can generate a variety of calcium transients in response to external stimuli, thus shaping the calcium signature. Mechanisms for the transmission of calcium signals have been described, and a large repertoire of calcium binding proteins exist that can decode calcium signatures into specific responses. Whilst straightforward as a concept, mysteries remain as to exactly how such information processing is biochemically implemented. Novel developments in imaging technology and genetically encoded sensors (such as calcium indicators), in particular for multi-signal detection, are delivering exciting new insights into intra- and intercellular calcium signaling. Here, we review recent advances in characterizing the encoding, transmission, and decoding mechanisms, with a focus on long-distance calcium signaling. We present technological advances and computational frameworks for studying the specificity of calcium signaling, highlight current gaps in our understanding and propose techniques and approaches for unravelling the underlying mechanisms.
Collapse
Affiliation(s)
- Claudia Allan
- University of Canterbury, School of Biological Science, Christchurch, New Zealand
| | - Richard J Morris
- Computational and Systems Biology, John Innes Centre, Norwich, UK
| | | |
Collapse
|
40
|
Wang Z, Yao Y, Yang Y. Fulvic acid-like substance-Ca(II) complexes improved the utilization of calcium in rice: Chelating and absorption mechanism. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 237:113502. [PMID: 35447470 DOI: 10.1016/j.ecoenv.2022.113502] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 04/05/2022] [Accepted: 04/07/2022] [Indexed: 06/14/2023]
Abstract
Water-soluble chelated calcium has been widely used in agriculture as a fertilizer to improve the absorption and utilization of calcium by plants. This paper prepared a new organic mineral fertilizer, based on fulvic acid-like substance chelated calcium (PFA-Ca2+ complex), using optimal parameters (i.e., pH, time, temperature, and Ca2+ concentration) to achieve a high chelation efficiency. The absorption, utilization, and distribution of the PFA-Ca2+ complex in rice roots were analyzed using laser scanning confocal microscopy (LSCM). Our results demonstrated that the optimal PFA-Ca2+ complex chelating efficiency (87%) was achieved at an initial Ca2+ concentration of 0.1 mol L-1, an equilibration time of 120 min, a pH of 5.0, and a temperature of 40 °C. The chelating reaction of a fulvic acid-like substance with Ca2+ primarily occurred on phenol hydroxyl, alcohol hydroxyl, and carboxyl groups. The PFA-Ca2+ complex was primarily enriched in the roots' pericycle, cortical, and epidermis cells, in both chelating and non-chelating forms. To our knowledge, this is the first report investigating how the PFA-Ca2+complex affects transformation in plants, which has significant implications for research on plant nutrition and nutrient distribution.
Collapse
Affiliation(s)
- Zhonghua Wang
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources; National Engineering & Technology Research Center for Slow and Controlled-Release Fertilizers, College of Resources and Environment, Shandong Agricultural University, Daizong Road No. 61, Taian, Shandong 271018, China
| | - Yuanyuan Yao
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources; National Engineering & Technology Research Center for Slow and Controlled-Release Fertilizers, College of Resources and Environment, Shandong Agricultural University, Daizong Road No. 61, Taian, Shandong 271018, China
| | - Yuechao Yang
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources; National Engineering & Technology Research Center for Slow and Controlled-Release Fertilizers, College of Resources and Environment, Shandong Agricultural University, Daizong Road No. 61, Taian, Shandong 271018, China; Department of Soil and Water Science, Tropical Research and Education Center, University of Florida, Homestead, FL 33031, United States.
| |
Collapse
|
41
|
Köster P, DeFalco TA, Zipfel C. Ca 2+ signals in plant immunity. EMBO J 2022; 41:e110741. [PMID: 35560235 PMCID: PMC9194748 DOI: 10.15252/embj.2022110741] [Citation(s) in RCA: 75] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/03/2022] [Accepted: 04/27/2022] [Indexed: 12/22/2022] Open
Abstract
Calcium ions function as a key second messenger ion in eukaryotes. Spatially and temporally defined cytoplasmic Ca2+ signals are shaped through the concerted activity of ion channels, exchangers, and pumps in response to diverse stimuli; these signals are then decoded through the activity of Ca2+ -binding sensor proteins. In plants, Ca2+ signaling is central to both pattern- and effector-triggered immunity, with the generation of characteristic cytoplasmic Ca2+ elevations in response to potential pathogens being common to both. However, despite their importance, and a long history of scientific interest, the transport proteins that shape Ca2+ signals and their integration remain poorly characterized. Here, we discuss recent work that has both shed light on and deepened the mysteries of Ca2+ signaling in plant immunity.
Collapse
Affiliation(s)
- Philipp Köster
- Institute of Plant and Microbial Biology and Zürich-Basel Plant Science Center, University of Zürich, Zürich, Switzerland
| | - Thomas A DeFalco
- Institute of Plant and Microbial Biology and Zürich-Basel Plant Science Center, University of Zürich, Zürich, Switzerland
| | - Cyril Zipfel
- Institute of Plant and Microbial Biology and Zürich-Basel Plant Science Center, University of Zürich, Zürich, Switzerland.,The Sainsbury Laboratory, University of East Anglia, Norwich, UK
| |
Collapse
|
42
|
Liao HS, Chung YH, Hsieh MH. Glutamate: A multifunctional amino acid in plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 318:111238. [PMID: 35351313 DOI: 10.1016/j.plantsci.2022.111238] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/15/2022] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
Glutamate (Glu) is a versatile metabolite and a signaling molecule in plants. Glu biosynthesis is associated with the primary nitrogen assimilation pathway. The conversion between Glu and 2-oxoglutarate connects Glu metabolism to the tricarboxylic acid cycle, carbon metabolism, and energy production. Glu is the predominant amino donor for transamination reactions in the cell. In addition to protein synthesis, Glu is a building block for tetrapyrroles, glutathione, and folate. Glu is the precursor of γ-aminobutyric acid that plays an important role in balancing carbon/nitrogen metabolism and various cellular processes. Glu can conjugate to the major auxin indole 3-acetic acid (IAA), and IAA-Glu is destined for oxidative degradation. Glu also conjugates with isochorismate for the production of salicylic acid. Accumulating evidence indicates that Glu functions as a signaling molecule to regulate plant growth, development, and defense responses. The ligand-gated Glu receptor-like proteins (GLRs) mediate some of these responses. However, many of the Glu signaling events are GLR-independent. The receptor perceiving extracellular Glu as a danger signal is still unknown. In addition to GLRs, Glu may act on receptor-like kinases or receptor-like proteins to trigger immune responses. Glu metabolism and Glu signaling may entwine to regulate growth, development, and defense responses in plants.
Collapse
Affiliation(s)
- Hong-Sheng Liao
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Yi-Hsin Chung
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Ming-Hsiun Hsieh
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan; Department of Life Sciences, National Central University, Taoyuan 32001, Taiwan.
| |
Collapse
|
43
|
Xu G, Moeder W, Yoshioka K, Shan L. A tale of many families: calcium channels in plant immunity. THE PLANT CELL 2022; 34:1551-1567. [PMID: 35134212 PMCID: PMC9048905 DOI: 10.1093/plcell/koac033] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 01/26/2022] [Indexed: 05/24/2023]
Abstract
Plants launch a concerted immune response to dampen potential infections upon sensing microbial pathogen and insect invasions. The transient and rapid elevation of the cytosolic calcium concentration [Ca2+]cyt is among the essential early cellular responses in plant immunity. The free Ca2+ concentration in the apoplast is far higher than that in the resting cytoplasm. Thus, the precise regulation of calcium channel activities upon infection is the key for an immediate and dynamic Ca2+ influx to trigger downstream signaling. Specific Ca2+ signatures in different branches of the plant immune system vary in timing, amplitude, duration, kinetics, and sources of Ca2+. Recent breakthroughs in the studies of diverse groups of classical calcium channels highlight the instrumental role of Ca2+ homeostasis in plant immunity and cell survival. Additionally, the identification of some immune receptors as noncanonical Ca2+-permeable channels opens a new view of how immune receptors initiate cell death and signaling. This review aims to provide an overview of different Ca2+-conducting channels in plant immunity and highlight their molecular and genetic mode-of-actions in facilitating immune signaling. We also discuss the regulatory mechanisms that control the stability and activity of these channels.
Collapse
Affiliation(s)
- Guangyuan Xu
- MOA Key Laboratory of Pest Monitoring and Green Management, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Wolfgang Moeder
- Department of Cell and Systems Biology, University of Toronto, 25 Willcocks Street, Toronto, Ontario, Canada M5S 3B2
| | - Keiko Yoshioka
- Department of Cell and Systems Biology, University of Toronto, 25 Willcocks Street, Toronto, Ontario, Canada M5S 3B2
- Center for the Analysis of Genome Evolution and Function (CAGEF), University of Toronto, 25 Willcocks Street, Toronto, Ontario, Canada M5S 3B2
| | - Libo Shan
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843, USA
| |
Collapse
|
44
|
ACA pumps maintain leaf excitability during herbivore onslaught. Curr Biol 2022; 32:2517-2528.e6. [PMID: 35413240 DOI: 10.1016/j.cub.2022.03.059] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 02/09/2022] [Accepted: 03/21/2022] [Indexed: 01/07/2023]
Abstract
Recurrent damage by lepidopteran folivores triggers repeated leaf-to-leaf electrical signaling. We found that the ability to propagate electrical signals-called slow wave potentials-was unexpectedly robust and was maintained in plants that had experienced severe damage. We sought genes that maintain tissue excitability during group insect attack. When Arabidopsis thaliana P-Type II Ca2+-ATPase mutants were mechanically wounded, all mutants tested displayed leaf-to-leaf electrical signals. However, when the auto-inhibited Ca2+-ATPase double-mutant aca10 aca12 was attacked by Spodoptera littoralis caterpillars, electrical signaling failed catastrophically, and the insects consumed these plants rapidly. The attacked double mutant displayed petiole base deformation and chlorosis, which spread acropetally into laminas and led to senescence. A phloem-feeding aphid recapitulated these effects, implicating the vasculature in electrical signaling failure. Consistent with this, ACA10 expressed in phloem companion cells in an aca10 aca12 background rescued electrical signaling and defense during protracted S. littoralis attack. When expressed in xylem contact cells, ACA10 partially rescued these phenotypes. Extending our analyses, we found that prolonged darkness also caused wound-response electrical signaling failure in aca10 aca12 mutants. Our results lead to a model in which the plant vasculature acts as a capacitor that discharges temporarily when leaves are subjected to energy-depleting stresses. Under these conditions, ACA10 and ACA12 function allows the restoration of vein cell membrane potentials. In the absence of these gene functions, vascular cell excitability can no longer be restored efficiently. Additionally, this work demonstrates that non-invasive electrophysiology is a powerful tool for probing early events underlying senescence.
Collapse
|
45
|
Guo J, He J, Dehesh K, Cui X, Yang Z. CamelliA-based simultaneous imaging of Ca2+ dynamics in subcellular compartments. PLANT PHYSIOLOGY 2022; 188:2253-2271. [PMID: 35218352 PMCID: PMC8968278 DOI: 10.1093/plphys/kiac020] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/17/2021] [Indexed: 06/14/2023]
Abstract
As a universal second messenger, calcium (Ca2+) transmits specific cellular signals via a spatiotemporal signature generated from its extracellular source and internal stores. Our knowledge of the mechanisms underlying the generation of a Ca2+ signature is hampered by limited tools for simultaneously monitoring dynamic Ca2+ levels in multiple subcellular compartments. To overcome the limitation and to further improve spatiotemporal resolutions, we have assembled a molecular toolset (CamelliA lines) in Arabidopsis (Arabidopsis thaliana) that enables simultaneous and high-resolution monitoring of Ca2+ dynamics in multiple subcellular compartments through imaging different single-colored genetically encoded calcium indicators. We uncovered several Ca2+ signatures in three types of Arabidopsis cells in response to internal and external cues, including rapid oscillations of cytosolic Ca2+ and apical plasma membrane Ca2+ influx in fast-growing Arabidopsis pollen tubes, the spatiotemporal relationship of Ca2+ dynamics in four subcellular compartments of root epidermal cells challenged with salt, and a shockwave-like Ca2+ wave propagating in laser-wounded leaf epidermis. These observations serve as a testimony to the wide applicability of the CamelliA lines for elucidating the subcellular sources contributing to the Ca2+ signatures in plants.
Collapse
Affiliation(s)
- Jingzhe Guo
- Institute for Integrative Genome Biology, University of California, Riverside, 92521 California, USA
- Department of Botany and Plant Sciences, University of California, Riverside, 92521 California, USA
| | - Jiangman He
- Institute for Integrative Genome Biology, University of California, Riverside, 92521 California, USA
- Department of Botany and Plant Sciences, University of California, Riverside, 92521 California, USA
| | - Katayoon Dehesh
- Institute for Integrative Genome Biology, University of California, Riverside, 92521 California, USA
- Department of Botany and Plant Sciences, University of California, Riverside, 92521 California, USA
| | - Xinping Cui
- Institute for Integrative Genome Biology, University of California, Riverside, 92521 California, USA
- Department of Statistics, University of California, Riverside, 92521 California, USA
| | | |
Collapse
|
46
|
Bassetti N, Caarls L, Bukovinszkine'Kiss G, El-Soda M, van Veen J, Bouwmeester K, Zwaan BJ, Schranz ME, Bonnema G, Fatouros NE. Genetic analysis reveals three novel QTLs underpinning a butterfly egg-induced hypersensitive response-like cell death in Brassica rapa. BMC PLANT BIOLOGY 2022; 22:140. [PMID: 35331150 PMCID: PMC8944062 DOI: 10.1186/s12870-022-03522-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 03/08/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Cabbage white butterflies (Pieris spp.) can be severe pests of Brassica crops such as Chinese cabbage, Pak choi (Brassica rapa) or cabbages (B. oleracea). Eggs of Pieris spp. can induce a hypersensitive response-like (HR-like) cell death which reduces egg survival in the wild black mustard (B. nigra). Unravelling the genetic basis of this egg-killing trait in Brassica crops could improve crop resistance to herbivory, reducing major crop losses and pesticides use. Here we investigated the genetic architecture of a HR-like cell death induced by P. brassicae eggs in B. rapa. RESULTS A germplasm screening of 56 B. rapa accessions, representing the genetic and geographical diversity of a B. rapa core collection, showed phenotypic variation for cell death. An image-based phenotyping protocol was developed to accurately measure size of HR-like cell death and was then used to identify two accessions that consistently showed weak (R-o-18) or strong cell death response (L58). Screening of 160 RILs derived from these two accessions resulted in three novel QTLs for Pieris brassicae-induced cell death on chromosomes A02 (Pbc1), A03 (Pbc2), and A06 (Pbc3). The three QTLs Pbc1-3 contain cell surface receptors, intracellular receptors and other genes involved in plant immunity processes, such as ROS accumulation and cell death formation. Synteny analysis with A. thaliana suggested that Pbc1 and Pbc2 are novel QTLs associated with this trait, while Pbc3 also contains an ortholog of LecRK-I.1, a gene of A. thaliana previously associated with cell death induced by a P. brassicae egg extract. CONCLUSIONS This study provides the first genomic regions associated with the Pieris egg-induced HR-like cell death in a Brassica crop species. It is a step closer towards unravelling the genetic basis of an egg-killing crop resistance trait, paving the way for breeders to further fine-map and validate candidate genes.
Collapse
Affiliation(s)
- Niccolò Bassetti
- Biosystematics Group, Wageningen University & Research, Wageningen, The Netherlands
| | - Lotte Caarls
- Biosystematics Group, Wageningen University & Research, Wageningen, The Netherlands
- Laboratory of Plant Breeding, Wageningen University & Research, Wageningen, The Netherlands
| | - Gabriella Bukovinszkine'Kiss
- Biosystematics Group, Wageningen University & Research, Wageningen, The Netherlands
- Laboratory of Genetics, Wageningen University & Research, Wageningen, The Netherlands
| | - Mohamed El-Soda
- Department of Genetics, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Jeroen van Veen
- Biosystematics Group, Wageningen University & Research, Wageningen, The Netherlands
| | - Klaas Bouwmeester
- Biosystematics Group, Wageningen University & Research, Wageningen, The Netherlands
- Laboratory of Entomology, Wageningen University & Research, Wageningen, The Netherlands
| | - Bas J Zwaan
- Laboratory of Genetics, Wageningen University & Research, Wageningen, The Netherlands
| | - M Eric Schranz
- Biosystematics Group, Wageningen University & Research, Wageningen, The Netherlands
| | - Guusje Bonnema
- Laboratory of Plant Breeding, Wageningen University & Research, Wageningen, The Netherlands
| | - Nina E Fatouros
- Biosystematics Group, Wageningen University & Research, Wageningen, The Netherlands.
| |
Collapse
|
47
|
Wang Y, Gong Q, Huang F, He L, Liu Y. Live imaging and quantitation of insect feeding-induced Ca 2+ signal using GCaMP3-based system in Nicotiana benthamiana. STAR Protoc 2022; 3:101040. [PMID: 34977683 PMCID: PMC8689350 DOI: 10.1016/j.xpro.2021.101040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Wounding evokes transient increases in cytosolic calcium (Ca2+) concentration. Visualizing real-time Ca2+ flux provides new insights into Ca2+-signaling pathways. Here, we outline a protocol to detect insect feeding-induced Ca2+ flux elevation in Nicotiana benthamiana leaves based on the GCaMP3 reporter system by Leica fluorescence stereo microscopes (LFSM). LFSM combines super-fast manual screening with high-end imaging capabilities. Through this protocol, we can clearly observe the calcium flow after aphid's piercing-sucking. Additionally, we describe a protocol to quantify Ca2+ level using LFSM. For complete details on the use and execution of this protocol, please refer to Wang et al. (2021).
Collapse
Affiliation(s)
- Yunjing Wang
- MOE Key Laboratory of Bioinformatics and Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Qian Gong
- MOE Key Laboratory of Bioinformatics and Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Fan Huang
- MOE Key Laboratory of Bioinformatics and Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Linfang He
- MOE Key Laboratory of Bioinformatics and Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Yule Liu
- MOE Key Laboratory of Bioinformatics and Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| |
Collapse
|
48
|
Duong HN, Cho SH, Wang L, Pham AQ, Davies JM, Stacey G. Cyclic nucleotide-gated ion channel 6 is involved in extracellular ATP signaling and plant immunity. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:1386-1396. [PMID: 34919778 PMCID: PMC9206762 DOI: 10.1111/tpj.15636] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 12/05/2021] [Accepted: 12/09/2021] [Indexed: 06/02/2023]
Abstract
Extracellular ATP (eATP) is known to act as a danger signal in both plants and animals. In plants, eATP is recognized by the plasma membrane (PM)-localized receptor P2K1 (LecRK-I.9). Among the first measurable responses to eATP addition is a rapid rise in cytoplasmic free calcium levels ([Ca2+ ]cyt ), which requires P2K1. However, the specific transporter/channel proteins that mediate this rise in [Ca2+ ]cyt are unknown. Through a forward genetic screen, we identified an Arabidopsis ethylmethanesulfonate (EMS) mutant impaired in the [Ca2+ ]cyt response to eATP. Positional cloning revealed that the mutation resided in the cngc6 gene, which encodes cyclic nucleotide-gated ion channel 6 (CNGC6). Mutation of the CNGC6 gene led to a notable decrease in the PM inward Ca2+ current in response to eATP. eATP-induced mitogen-activated protein kinase activation and gene expression were also significantly lower in cngc6 mutant plants. In addition, cngc6 mutant plants were also more susceptible to the bacterial pathogen Pseudomonas syringae. Taken together, our results indicate that CNGC6 plays a crucial role in mediating eATP-induced [Ca2+ ]cyt signaling, as well as plant immunity.
Collapse
Affiliation(s)
- Ha N. Duong
- Divisions of Plant Sciences and Technology and Biochemistry, National Center for Soybean Biotechnology, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Sung-Hwan Cho
- Divisions of Plant Sciences and Technology and Biochemistry, National Center for Soybean Biotechnology, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Limin Wang
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
| | - An Q. Pham
- Divisions of Plant Sciences and Technology and Biochemistry, National Center for Soybean Biotechnology, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Julia M. Davies
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
| | - Gary Stacey
- Divisions of Plant Sciences and Technology and Biochemistry, National Center for Soybean Biotechnology, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
49
|
Hashimoto K, Koselski M, Tsuboyama S, Dziubinska H, Trębacz K, Kuchitsu K. Functional Analyses of the Two Distinctive Types of Two-Pore Channels and the Slow Vacuolar Channel in Marchantia polymorpha. PLANT & CELL PHYSIOLOGY 2022; 63:163-175. [PMID: 34936705 DOI: 10.1093/pcp/pcab176] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/23/2021] [Accepted: 12/22/2021] [Indexed: 06/14/2023]
Abstract
The two-pore channel (TPC) family is widely conserved in eukaryotes. Many vascular plants, including Arabidopsis and rice, possess a single TPC gene which functions as a slow vacuolar (SV) channel-voltage-dependent cation-permeable channel located in the vacuolar membrane (tonoplast). On the other hand, a liverwort Marchantia polymorpha genome encodes three TPC homologs: MpTPC1 is similar to TPCs in vascular plants (type 1 TPC), while MpTPC2 and MpTPC3 are classified into a distinctive group (type 2 TPC). Phylogenetic analysis suggested that the type 2 TPC emerged before the land colonization in plant evolution and was lost in vascular plants and hornworts. All of the three MpTPCs were shown to be localized at the tonoplast. We generated knockout mutants of tpc1, tpc2, tpc3 and tpc2 tpc3 double mutant by clustered regularly interspaced short palindromic repeats/Cas9 genome editing and performed patch-clamp analyses of isolated vacuoles. The SV channel activity was abolished in the Mptpc1 loss-of-function mutant (Mptpc1-1KO), while Mptpc2-1KO, Mptpc3-1KO and Mptpc2-2/tpc3-2KO double mutant exhibited similar activity to the wild type, indicating that MpTPC1 (type 1) is solely responsible for the SV channel activity. Activators of mammalian TPCs, phosphatidylinositol-3,5-bisphosphate and nicotinic acid adenine dinucleotide phosphate, did not affect the ion channel activity of any MpTPCs. These results indicate that the type 1 TPCs, which are well conserved in all land plant species, encode the SV channel, while the type 2 TPCs likely encode other tonoplast cation channel(s) distinct from the SV channel and animal TPCs.
Collapse
Affiliation(s)
| | - Mateusz Koselski
- Department of Plant Physiology and Biophysics, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Sklodowska University, Akademicka 19, Lublin 20-033, Poland
| | - Shoko Tsuboyama
- Department of Applied Biological Science, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510 Japan
| | - Halina Dziubinska
- Department of Plant Physiology and Biophysics, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Sklodowska University, Akademicka 19, Lublin 20-033, Poland
| | - Kazimierz Trębacz
- Department of Plant Physiology and Biophysics, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Sklodowska University, Akademicka 19, Lublin 20-033, Poland
- Department of Applied Biological Science, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510 Japan
| | - Kazuyuki Kuchitsu
- Department of Applied Biological Science, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510 Japan
| |
Collapse
|
50
|
Yadav M, Pandey J, Chakraborty A, Hassan MI, Kundu JK, Roy A, Singh IK, Singh A. A Comprehensive Analysis of Calmodulin-Like Proteins of Glycine max Indicates Their Role in Calcium Signaling and Plant Defense Against Insect Attack. FRONTIERS IN PLANT SCIENCE 2022; 13:817950. [PMID: 35371141 PMCID: PMC8965522 DOI: 10.3389/fpls.2022.817950] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/25/2022] [Indexed: 05/09/2023]
Abstract
The calcium (Ca2+) signaling is a crucial event during plant-herbivore interaction, which involves a transient change in cytosolic Ca2+ concentration, which is sensed by Ca2+-sensors, and the received message is transduced to downstream target proteins leading to appropriate defense response. Calmodulin-like proteins (CMLs) are calcium-sensing plant-specific proteins. Although CMLs have been identified in a few plants, they remained uncharacterized in leguminous crop plants. Therefore, a wide-range analysis of CMLs of soybean was performed, which identified 41 true CMLs with greater than 50% similarity with Arabidopsis CMLs. The phylogenetic study revealed their evolutionary relatedness with known CMLs. Further, the identification of conserved motifs, gene structure analysis, and identification of cis-acting elements strongly supported their identity as members of this family and their involvement in stress responses. Only a few Glycine max CMLs (GmCMLs) exhibited differential expression in different tissue types, and rest of them had minimal expression. Additionally, differential expression patterns of GmCMLs were observed during Spodoptera litura-feeding, wounding, and signaling compound treatments, indicating their role in plant defense. The three-dimensional structure prediction, identification of interactive domains, and docking with Ca2+ ions of S. litura-inducible GmCMLs, indicated their identity as calcium sensors. This study on the characterization of GmCMLs provided insights into their roles in calcium signaling and plant defense during herbivory.
Collapse
Affiliation(s)
- Manisha Yadav
- Department of Botany, Hansraj College, University of Delhi, New Delhi, India
| | - Jyotsna Pandey
- Department of Botany, Hansraj College, University of Delhi, New Delhi, India
| | - Amrita Chakraborty
- EVA4.0 Unit, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czechia
| | - Md. Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Jiban Kumar Kundu
- Plant Virus and Vector Interactions Group, Crop Research Institute, Prague, Czechia
| | - Amit Roy
- EVA4.0 Unit, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czechia
- *Correspondence: Amit Roy,
| | - Indrakant Kumar Singh
- Molecular Biology Research Laboratory, Department of Zoology, Deshbandhu College, University of Delhi, New Delhi, India
- DBC-i4 Center, Deshbandhu College, University of Delhi, New Delhi, India
- Indrakant Kumar Singh,
| | - Archana Singh
- Department of Botany, Hansraj College, University of Delhi, New Delhi, India
- Archana Singh,
| |
Collapse
|