1
|
Cai M, Xiong Q, Mao R, Zhu C, Deng H, Zhang Z, Qiu F, Liu L. Determination of single or paired-kernel-rows is controlled by two quantitative loci during maize domestication. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:227. [PMID: 39299955 DOI: 10.1007/s00122-024-04742-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024]
Abstract
KEY MESSAGE qPEDS1, a major quantitative trait locus that determines kernel row number during domestication, harbors the proposed causal gene Zm00001d033675, which may affect jasmonic acid biosynthesis and determine the fate of spikelets. Maize domestication has achieved the production of maize with enlarged ears, enhancing grain productivity dramatically. Kernel row number (KRN), an important yield-related trait, has increased from two rows in teosinte to at least eight rows in modern maize. However, the genetic mechanisms underlying this process remain unclear. To understand KRN domestication, we developed a teosinte-maize BC2F7 population by introgressing teosinte into a maize background. We identified one line, Teosinte ear rank1 (Ter1), with only 5-7 kernel rows which is fewer than those in almost all maize inbred lines. We detected two quantitative trait loci underlying Ter1 and fine-mapped the major one to a 300-kb physical interval. Two candidate genes, Zm674 and Zm675, were identified from 26 maize reference genomes and teosinte bacterial artificial chromosome sequences. Finally, we proposed that Ter1 affects jasmonic acid biosynthesis in the developing ear to determine KRN by the fate of spikelets. This study provides novel insights into the genetic and molecular mechanisms underlying KRN domestication and candidates for de novo wild teosinte domestication.
Collapse
Affiliation(s)
- Manjun Cai
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, People's Republic of China
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Qing Xiong
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Ruijie Mao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Can Zhu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Hua Deng
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Zuxin Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
| | - Fazhan Qiu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
| | - Lei Liu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
2
|
Antonietta M, Martinez D, Guiamet JJ. Delayed senescence and crop performance under stress: always a functional couple? JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4244-4257. [PMID: 38635775 DOI: 10.1093/jxb/erae174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 04/17/2024] [Indexed: 04/20/2024]
Abstract
Exposure to abiotic stresses accelerates leaf senescence in most crop plant species, thereby reducing photosynthesis and other assimilatory processes. In some cases, genotypes with delayed leaf senescence (i.e. 'stay-green') show stress resistance, particularly in cases of water deficit, and this has led to the proposal that senescence delay improves crop performance under some abiotic stresses. In this review, we summarize the evidence for increased resistance to abiotic stress, mostly water deficit, in genotypes with delayed senescence, and specifically focus on the physiological mechanisms and agronomic conditions under which the stay-green trait may ameliorate grain yield under stress.
Collapse
Affiliation(s)
| | - Dana Martinez
- Instituto de Fisiología Vegetal, CONICET-UNLP, Argentina
| | - Juan J Guiamet
- Instituto de Fisiología Vegetal, CONICET-UNLP, Argentina
| |
Collapse
|
3
|
Huang Y, Schnurbusch T. The Birth and Death of Floral Organs in Cereal Crops. ANNUAL REVIEW OF PLANT BIOLOGY 2024; 75:427-458. [PMID: 38424062 DOI: 10.1146/annurev-arplant-060223-041716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Florets of cereal crops are the basic reproductive organs that produce grains for food or feed. The birth of a floret progresses through meristem initiation and floral organ identity specification and maintenance. During these processes, both endogenous and external cues can trigger a premature floral organ death, leading to reproductive failure. Recent advances in different cereal crops have identified both conserved and distinct regulators governing the birth of a floret. However, the molecular underpinnings of floral death are just beginning to be understood. In this review, we first provide a general overview of the current findings in the field of floral development in major cereals and outline different forms of floral deaths, particularly in the Triticeae crops. We then highlight the importance of vascular patterning and photosynthesis in floral development and reproductive success and argue for an expanded knowledge of floral birth-death balance in the context of agroecology.
Collapse
Affiliation(s)
- Yongyu Huang
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Seeland, Germany; ,
| | - Thorsten Schnurbusch
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Seeland, Germany; ,
- Faculty of Natural Sciences III, Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle, Germany
| |
Collapse
|
4
|
Abshire N, Hauck AL, Walia H, Obata T. Tissue- and time-dependent metabolite profiles during early grain development under normal and high night-time temperature conditions. BMC PLANT BIOLOGY 2024; 24:568. [PMID: 38886651 PMCID: PMC11184705 DOI: 10.1186/s12870-024-05190-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/23/2024] [Indexed: 06/20/2024]
Abstract
BACKGROUND Wheat grain development in the first few days after pollination determines the number of endosperm cells that influence grain yield potential and is susceptible to various environmental conditions, including high night temperatures (HNTs). Flag leaves and seed-associated bracts (glumes, awn, palea, and lemma) provide nutrients to the developing seed. However, the specific metabolic roles of these tissues are uncertain, especially their dynamics at different developmental stages and the time in a day. Tissue- and time-dependent metabolite profiling may hint at the metabolic roles of tissues and the mechanisms of how HNTs affect daytime metabolic status in early grain development. RESULTS The metabolite profiles of flag leaf, bract, seed (embryo and endosperm), and entire spike were analyzed at 12:00 (day) and 23:00 (night) on 2, 4, and 6 days after fertilization under control and HNT conditions. The metabolite levels in flag leaves and bracts showed day/night oscillations, while their behaviors were distinct between the tissues. Some metabolites, such as sucrose, cellobiose, and succinic acid, showed contrasting oscillations in the two photosynthetic tissues. In contrast, seed metabolite levels differed due to the days after fertilization rather than the time in a day. The seed metabolite profile altered earlier in the HNT than in the control condition, likely associated with accelerated grain development caused by HNT. HNT also disrupted the day/night oscillation of sugar accumulation in flag leaves and bracts. CONCLUSIONS These results highlight distinct metabolic roles of flag leaves and bracts during wheat early seed development. The seed metabolite levels are related to the developmental stages. The early metabolic events in the seeds and the disruption of the day/night metabolic cycle in photosynthetic tissues may partly explain the adverse effects of HNT on grain yield.
Collapse
Affiliation(s)
- Nathan Abshire
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, USA
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Andrew L Hauck
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, USA
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Harkamal Walia
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, USA
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Toshihiro Obata
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, USA.
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, USA.
- Department of Biochemistry, Center for Plant Science Innovation, University of Nebraska-Lincoln, 1901 Vine Street, Lincoln, Nebraska, 68588, USA.
| |
Collapse
|
5
|
Song B, Chen J, Lev-Yadun S, Niu Y, Gao Y, Ma R, Armbruster WS, Sun H. Multifunctionality of angiosperm floral bracts: a review. Biol Rev Camb Philos Soc 2024; 99:1100-1120. [PMID: 38291834 DOI: 10.1111/brv.13060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/02/2024] [Accepted: 01/22/2024] [Indexed: 02/01/2024]
Abstract
Floral bracts (bracteoles, cataphylls) are leaf-like organs that subtend flowers or inflorescences but are of non-floral origin; they occur in a wide diversity of species, representing multiple independent origins, and exhibit great variation in form and function. Although much attention has been paid to bracts over the past 150 years, our understanding of their adaptive significance remains remarkably incomplete. This is because most studies of bract function and evolution focus on only one or a few selective factors. It is widely recognised that bracts experience selection mediated by pollinators, particularly for enhancing pollinator attraction through strong visual, olfactory, or echo-acoustic contrast with the background and through signalling the presence of pollinator rewards, either honestly (providing rewards for pollinators), or deceptively (attraction without reward or even trapping pollinators). However, studies in recent decades have demonstrated that bract evolution is also affected by agents other than pollinators. Bracts can protect flowers, fruits, or seeds from herbivores by displaying warning signals, camouflaging conspicuous reproductive organs, or by providing physical barriers or toxic chemicals. Reviews of published studies show that bracts can also promote seed dispersal and ameliorate the effects of abiotic stressors, such as low temperature, strong ultraviolet radiation, heavy rain, drought, and/or mechanical abrasion, on reproductive organs or for the plants' pollinators. In addition, green bracts and greening of colourful bracts after pollination promote photosynthetic activity, providing substantial carbon (photosynthates) for fruit or seed development, especially late in a plant's life cycle or season, when leaves have started to senesce. A further layer of complexity derives from the fact that the agents of selection driving the evolution of bracts vary between species and even between different developmental stages within a species, and selection by one agent can be reinforced or opposed by other agents. In summary, our survey of the literature reveals that bracts are multifunctional and subject to multiple agents of selection. To understand fully the functional and evolutionary significance of bracts, it is necessary to consider multiple selection agents throughout the life of the plant, using integrative approaches to data collection and analysis.
Collapse
Affiliation(s)
- Bo Song
- Key Laboratory for Plant Diversity and Biogeography of East Asia/Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650201, China
| | - Jiaqi Chen
- Key Laboratory for Plant Diversity and Biogeography of East Asia/Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650201, China
- School of Life Sciences, Yunnan University, Huannan Road, East of University Town, Chenggong New Area, Kunming, 650500, China
| | - Simcha Lev-Yadun
- Department of Biology and Environment, Faculty of Natural Sciences, University of Haifa at Oranim, Kiryat Tiv'on, 36006, Israel
| | - Yang Niu
- Key Laboratory for Plant Diversity and Biogeography of East Asia/Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650201, China
| | - Yongqian Gao
- Yunnan Forestry Technological College, 1 Jindian, Kunming, 650224, China
| | - Rong Ma
- Key Laboratory for Plant Diversity and Biogeography of East Asia/Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650201, China
| | - W Scott Armbruster
- School of Biological Sciences, University of Portsmouth, King Henry Building, King Henry I Street, Portsmouth, PO1 2DY, UK
- Institute of Arctic Biology, University of Alaska, PO Box 757000, Fairbanks, AK, 99775, USA
| | - Hang Sun
- Key Laboratory for Plant Diversity and Biogeography of East Asia/Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650201, China
| |
Collapse
|
6
|
Rangan P, Furtado A, Chinnusamy V, Henry R. A multi-cell model for the C 4 photosynthetic pathway in developing wheat grains based upon tissue-specific transcriptome data. Biosystems 2024; 238:105195. [PMID: 38555052 DOI: 10.1016/j.biosystems.2024.105195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 03/20/2024] [Indexed: 04/02/2024]
Abstract
A non-Kranz C4 photosynthesis of the NAD-ME subtype, specifically in developing wheat grains (14 dpa, days post-anthesis) was originally demonstrated using transcriptome-based RNA-seq. Here we present a re-examination of evidence for C4 photosynthesis in the developing grains of wheat and, more broadly, the Pooideae and an investigation of the evolutionary processes and implications. The expression profiles for the genes associated with C4 photosynthesis (C4- and C3-specific) were evaluated using published transcriptome data for the outer pericarp, inner pericarp, and endosperm tissues of the developing wheat grains. The expression of the C4-specific genes across these three tissues revealed the involvement of all three tissues in an orderly fashion to accomplish the non-Kranz NAD-ME-dependent C4 photosynthesis. Based on their expression levels in RPKM (reads per kilobase per million mapped reads) values, a model involving multiple cell- and tissue-types is proposed for C4 photosynthesis involved in the refixation of the respired CO2 from the endosperm tissues in the developing wheat grains. This multi-cell C4 model, proposed to involve more than two cell types, requires further biochemical validation.
Collapse
Affiliation(s)
- Parimalan Rangan
- ICAR-National Bureau of Plant Genetic Resources, PUSA Campus, New Delhi, 110012, India; Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, QLD4072, Australia.
| | - Agnelo Furtado
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, QLD4072, Australia
| | | | - Robert Henry
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, QLD4072, Australia
| |
Collapse
|
7
|
Kambhampati S, Hubbard AH, Koley S, Gomez JD, Marsolais F, Evans BS, Young JD, Allen DK. SIMPEL: using stable isotopes to elucidate dynamics of context specific metabolism. Commun Biol 2024; 7:172. [PMID: 38347116 PMCID: PMC10861564 DOI: 10.1038/s42003-024-05844-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 01/23/2024] [Indexed: 02/15/2024] Open
Abstract
The capacity to leverage high resolution mass spectrometry (HRMS) with transient isotope labeling experiments is an untapped opportunity to derive insights on context-specific metabolism, that is difficult to assess quantitatively. Tools are needed to comprehensively mine isotopologue information in an automated, high-throughput way without errors. We describe a tool, Stable Isotope-assisted Metabolomics for Pathway Elucidation (SIMPEL), to simplify analysis and interpretation of isotope-enriched HRMS datasets. The efficacy of SIMPEL is demonstrated through examples of central carbon and lipid metabolism. In the first description, a dual-isotope labeling experiment is paired with SIMPEL and isotopically nonstationary metabolic flux analysis (INST-MFA) to resolve fluxes in central metabolism that would be otherwise challenging to quantify. In the second example, SIMPEL was paired with HRMS-based lipidomics data to describe lipid metabolism based on a single labeling experiment. Available as an R package, SIMPEL extends metabolomics analyses to include isotopologue signatures necessary to quantify metabolic flux.
Collapse
Affiliation(s)
- Shrikaar Kambhampati
- Donald Danforth Plant Science Center, St. Louis, MO, 63132, USA.
- Jack H. Skirball Center for Chemical Biology and Proteomics, The Salk Institute for Biological Studies, La Jolla, CA, 92037, USA.
| | - Allen H Hubbard
- Donald Danforth Plant Science Center, St. Louis, MO, 63132, USA
| | - Somnath Koley
- Donald Danforth Plant Science Center, St. Louis, MO, 63132, USA
| | - Javier D Gomez
- Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, 37235, USA
| | - Frédéric Marsolais
- London Research and Development Center, London, ON, N5V 4T3, Canada
- Department of Biology, University of Western Ontario, London, ON, N6A 5B7, Canada
| | - Bradley S Evans
- Donald Danforth Plant Science Center, St. Louis, MO, 63132, USA
| | - Jamey D Young
- Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, 37235, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37235, USA
| | - Doug K Allen
- Donald Danforth Plant Science Center, St. Louis, MO, 63132, USA.
- Agricultural Research Service, US Department of Agriculture, St. Louis, MO, 63132, USA.
| |
Collapse
|
8
|
Zhang Y, Shen C, Li G, Shi J, Yuan Y, Ye L, Song Q, Shi J, Zhang D. MADS1-regulated lemma and awn development benefits barley yield. Nat Commun 2024; 15:301. [PMID: 38182608 PMCID: PMC10770128 DOI: 10.1038/s41467-023-44457-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 12/14/2023] [Indexed: 01/07/2024] Open
Abstract
Floral organ shape and size in cereal crops can affect grain size and yield, so genes that regulate their development are promising breeding targets. The lemma, which protects inner floral organs, can physically constrain grain growth; while the awn, a needle-like extension of the lemma, creates photosynthate to developing grain. Although several genes and modules controlling grain size and awn/lemma growth in rice have been characterized, these processes, and the relationships between them, are not well understood for barley and wheat. Here, we demonstrate that the barley E-class gene HvMADS1 positively regulates awn length and lemma width, affecting grain size and weight. Cytological data indicates that HvMADS1 promotes awn and lemma growth by promoting cell proliferation, while multi-omics data reveals that HvMADS1 target genes are associated with cell cycle, phytohormone signaling, and developmental processes. We define two potential targets of HvMADS1 regulation, HvSHI and HvDL, whose knockout mutants mimic awn and/or lemma phenotypes of mads1 mutants. Additionally, we demonstrate that HvMADS1 interacts with APETALA2 (A-class) to synergistically activate downstream genes in awn/lemma development in barley. Notably, we find that MADS1 function remains conserved in wheat, promoting cell proliferation to increase awn length. These findings extend our understanding of MADS1 function in floral organ development and provide insights for Triticeae crop improvement strategies.
Collapse
Affiliation(s)
- Yueya Zhang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chaoqun Shen
- Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
- School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, Adelaide, SA, 5064, Australia
| | - Gang Li
- School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, Adelaide, SA, 5064, Australia.
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Jin Shi
- Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yajing Yuan
- Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Lingzhen Ye
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Qingfeng Song
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Jianxin Shi
- Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
- Yazhou Bay Institute of Deepsea Sci-Tech, Shanghai Jiao Tong University, Sanya, 572025, China.
| | - Dabing Zhang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
- School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, Adelaide, SA, 5064, Australia
- Yazhou Bay Institute of Deepsea Sci-Tech, Shanghai Jiao Tong University, Sanya, 572025, China
| |
Collapse
|
9
|
Xie P, Wu Y, Xie Q. Evolution of cereal floral architecture and threshability. TRENDS IN PLANT SCIENCE 2023; 28:1438-1450. [PMID: 37673701 DOI: 10.1016/j.tplants.2023.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 06/07/2023] [Accepted: 08/04/2023] [Indexed: 09/08/2023]
Abstract
Hulled grains, while providing natural protection for seeds, pose a challenge to manual threshing due to the pair of glumes tightly encasing them. Based on natural evolution and artificial domestication, gramineous crops evolved various hull-like floral organs. Recently, progress has been made in uncovering novel domesticated genes associated with cereal threshability and deciphering common regulatory modules pertinent to the specification of hull-like floral organs. Here we review morphological similarities, principal regulators, and common mechanisms implicated in the easy-threshing traits of crops. Understanding the shared and unique features in the developmental process of cereal threshability may not only shed light on the convergent evolution of cereals but also facilitate the de novo domestication of wild cereal germplasm resources through genome-editing technologies.
Collapse
Affiliation(s)
- Peng Xie
- Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, P. R. China
| | - Yaorong Wu
- Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, P. R. China
| | - Qi Xie
- Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, P. R. China; State Key Laboratory of Crop Germplasm Innovation and Molecular Breeding, National Center of Technology Innovation for Maize, Syngenta Group China, Beijing 102206, China; University of Chinese Academy of Sciences, Beijing 100049, P. R. China.
| |
Collapse
|
10
|
Zheng H, Dang Y, Sui N. Sorghum: A Multipurpose Crop. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:17570-17583. [PMID: 37933850 DOI: 10.1021/acs.jafc.3c04942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Sorghum (Sorghum bicolor L.) is one of the top five cereal crops in the world in terms of production and planting area and is widely grown in areas with severe abiotic stresses such as drought and saline-alkali land due to its excellent stress resistance. Moreover, sorghum is a rare multipurpose crop that can be classified into grain sorghum, energy sorghum, and silage sorghum according to its domestication direction and utilization traits, endowing it with broad breeding and economic value. In this review, we mainly discuss the latest research progress and regulatory genes of agronomic traits of sorghum as a grain, energy, and silage crop, as well as the future improvement direction of multipurpose sorghum. We also emphasize the feasibility of cultivating multipurpose sorghum through genetic engineering methods by exploring potential targets using wild sorghum germplasm and genetic resources, as well as genomic resources.
Collapse
Affiliation(s)
- Hongxiang Zheng
- Shandong Provincial Key Laboratory of Plant Stress, College of life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Yingying Dang
- Shandong Provincial Key Laboratory of Plant Stress, College of life Sciences, Shandong Normal University, Jinan, 250014, China
- Dongying Institute, Shandong Normal University, Dongying, 257000, China
| | - Na Sui
- Shandong Provincial Key Laboratory of Plant Stress, College of life Sciences, Shandong Normal University, Jinan, 250014, China
| |
Collapse
|
11
|
Ge F, Xie P, Wu Y, Xie Q. Genetic architecture and molecular regulation of sorghum domestication. ABIOTECH 2023; 4:57-71. [PMID: 37220542 PMCID: PMC10199992 DOI: 10.1007/s42994-022-00089-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/28/2022] [Indexed: 05/25/2023]
Abstract
Over time, wild crops have been domesticated by humans, and the knowledge gained from parallel selection and convergent domestication-related studies in cereals has contributed to current techniques used in molecular plant breeding. Sorghum (Sorghum bicolor (L.) Moench) is the world's fifth-most popular cereal crop and was one of the first crops cultivated by ancient farmers. In recent years, genetic and genomic studies have provided a better understanding of sorghum domestication and improvements. Here, we discuss the origin, diversification, and domestication processes of sorghum based on archeological discoveries and genomic analyses. This review also comprehensively summarized the genetic basis of key genes related to sorghum domestication and outlined their molecular mechanisms. It highlights that the absence of a domestication bottleneck in sorghum is the result of both evolution and human selection. Additionally, understanding beneficial alleles and their molecular interactions will allow us to quickly design new varieties by further de novo domestication.
Collapse
Affiliation(s)
- Fengyong Ge
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Peng Xie
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101 China
| | - Yaorong Wu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101 China
| | - Qi Xie
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| |
Collapse
|
12
|
Sakuma S, Koppolu R. Form follows function in Triticeae inflorescences. BREEDING SCIENCE 2023; 73:46-56. [PMID: 37168815 PMCID: PMC10165339 DOI: 10.1270/jsbbs.22085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 12/21/2022] [Indexed: 05/13/2023]
Abstract
Grass inflorescences produce grains, which are directly connected to our food. In grass crops, yields are mainly affected by grain number and weight; thus, understanding inflorescence shape is crucially important for cereal crop breeding. In the last two decades, several key genes controlling inflorescence shape have been elucidated, thanks to the availability of rich genetic resources and powerful genomics tools. In this review, we focus on the inflorescence architecture of Triticeae species, including the major cereal crops wheat and barley. We summarize recent advances in our understanding of the genetic basis of spike branching, and spikelet and floret development in the Triticeae. Considering our changing climate and its impacts on cereal crop yields, we also discuss the future orientation of research.
Collapse
Affiliation(s)
- Shun Sakuma
- Faculty of Agriculture, Tottori University, Tottori 680-8553, Japan
- Corresponding authors (e-mail: and )
| | - Ravi Koppolu
- Research Group Plant Architecture, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, 06466 Seeland, Germany
- Corresponding authors (e-mail: and )
| |
Collapse
|
13
|
Takanashi H. Genetic control of morphological traits useful for improving sorghum. BREEDING SCIENCE 2023; 73:57-69. [PMID: 37168813 PMCID: PMC10165342 DOI: 10.1270/jsbbs.22069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 11/14/2022] [Indexed: 05/13/2023]
Abstract
Global climate change and global warming, coupled with the growing population, have raised concerns about sustainable food supply and bioenergy demand. Sorghum [Sorghum bicolor (L.) Moench] ranks fifth among cereals produced worldwide; it is a C4 crop with a higher stress tolerance than other major cereals and has a wide range of uses, such as grains, forage, and biomass. Therefore, sorghum has attracted attention as a promising crop for achieving sustainable development goals (SDGs). In addition, sorghum is a suitable genetic model for C4 grasses because of its high morphological diversity and relatively small genome size compared to other C4 grasses. Although sorghum breeding and genetic studies have lagged compared to other crops such as rice and maize, recent advances in research have identified several genes and many quantitative trait loci (QTLs) that control important agronomic traits in sorghum. This review outlines traits and genetic information with a focus on morphogenetic aspects that may be useful in sorghum breeding for grain and biomass utilization.
Collapse
Affiliation(s)
- Hideki Takanashi
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
- Corresponding author (e-mail: )
| |
Collapse
|
14
|
Koley S, Chu KL, Mukherjee T, Morley SA, Klebanovych A, Czymmek KJ, Allen DK. Metabolic synergy in Camelina reproductive tissues for seed development. SCIENCE ADVANCES 2022; 8:eabo7683. [PMID: 36306367 PMCID: PMC9616503 DOI: 10.1126/sciadv.abo7683] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 09/14/2022] [Indexed: 06/15/2023]
Abstract
Photosynthesis in fruits is well documented, but its contribution to seed development and yield remains largely unquantified. In oilseeds, the pods are green and elevated with direct access to sunlight. With 13C labeling in planta and through an intact pod labeling system, a unique multi-tissue comprehensive flux model mechanistically described how pods assimilate up to one-half (33 to 45%) of seed carbon by proximal photosynthesis in Camelina sativa. By capturing integrated tissue metabolism, the studies reveal the contribution of plant architecture beyond leaves, to enable seed filling and maximize the number of viable seeds. The latent capacity of the pod wall in the absence of leaves contributes approximately 79% of seed biomass, supporting greater seed sink capacity and higher theoretical yields that suggest an opportunity for crop productivity gains.
Collapse
Affiliation(s)
- Somnath Koley
- Donald Danforth Plant Science Center, St. Louis, MO, USA
| | - Kevin L. Chu
- Donald Danforth Plant Science Center, St. Louis, MO, USA
- United States Department of Agriculture-Agricultural Research Service, Donald Danforth Plant Science Center, St. Louis, MO, USA
| | | | - Stewart A. Morley
- Donald Danforth Plant Science Center, St. Louis, MO, USA
- United States Department of Agriculture-Agricultural Research Service, Donald Danforth Plant Science Center, St. Louis, MO, USA
| | | | | | - Doug K. Allen
- Donald Danforth Plant Science Center, St. Louis, MO, USA
- United States Department of Agriculture-Agricultural Research Service, Donald Danforth Plant Science Center, St. Louis, MO, USA
| |
Collapse
|
15
|
Rangan P, Wankhede DP, Subramani R, Chinnusamy V, Malik SK, Baig MJ, Singh K, Henry R. Evolution of an intermediate C 4 photosynthesis in the non-foliar tissues of the Poaceae. PHOTOSYNTHESIS RESEARCH 2022; 153:125-134. [PMID: 35648247 DOI: 10.1007/s11120-022-00926-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 05/13/2022] [Indexed: 06/15/2023]
Abstract
Carbon concentrating mechanisms (CCMs) in plants are abaptive features that have evolved to sustain plant growth in unfavorable environments, especially at low atmospheric carbon levels and high temperatures. Uptake of CO2 and its storage in the aerenchyma tissues of Lycopsids and diurnal acidity fluctuation in aquatic plants during the Palaeozoic era (ca. 300 Ma.) would represent the earliest evolution of a CCM. The CCM parts of the dark reactions of photosynthesis have evolved many times, while the light reactions are conserved across plant lineages. A C4 type CCM, leaf C4 photosynthesis is evolved in the PACMAD clade of the Poaceae family. The evolution of C4 photosynthesis from C3 photosynthesis was an abaptation. Photosynthesis in reproductive tissues of sorghum and maize (PACMAD clade) has been shown to be of a weaker C4 type (high CO2 compensation point, low carbon isotope discrimination, and lack of Rubisco compartmentalization, when compared to the normal C4 types) than that in the leaves (normal C4 type). However, this does not fit well with the character polarity concept from an evolutionary perspective. In a recent model proposed for CCM evolution, the development of a rudimentary CCM prior to the evolution of a more efficient CCM (features contrasting to a weaker C4 type, leading to greater biomass production rate) has been suggested. An intermediate crassulacean acid metabolism (CAM) type of CCM (rudimentary) was reported in the genera, Brassia, Coryanthes, Eriopsis, Peristeria, of the orchids (well-known group of plants that display the CAM pathway). Similarly, we propose here the evolution of a rudimentary CCM (C4-like type pathway) in the non-foliar tissues of the Poaceae, prior to the evolution of the C4 pathway as identified in the leaves of the C4 species of the PACMAD clade.
Collapse
Affiliation(s)
- Parimalan Rangan
- ICAR-National Bureau of Plant Genetic Resources, PUSA Campus, New Delhi, 110012, India.
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, QLD, 4072, Australia.
| | | | - Rajkumar Subramani
- ICAR-National Bureau of Plant Genetic Resources, PUSA Campus, New Delhi, 110012, India
| | | | - Surendra K Malik
- ICAR-National Bureau of Plant Genetic Resources, PUSA Campus, New Delhi, 110012, India
| | | | - Kuldeep Singh
- ICAR-National Bureau of Plant Genetic Resources, PUSA Campus, New Delhi, 110012, India
| | - Robert Henry
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, QLD, 4072, Australia
| |
Collapse
|
16
|
Petersen KB, Kellogg EA. Diverse ecological functions and the convergent evolution of grass awns. AMERICAN JOURNAL OF BOTANY 2022; 109:1331-1345. [PMID: 36048829 PMCID: PMC9828495 DOI: 10.1002/ajb2.16060] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
The awn of grasses is a long, conspicuous outgrowth of the floral bracts in a grass spikelet. It is known to impact agricultural yield, but we know little about its broader ecological function, nor the selective forces that lead to its evolution. Grass awns are phenotypically diverse across the extant ~12,000 species of Poaceae. Awns have been lost and gained repeatedly over evolutionary time, between and within lineages, suggesting that they could be under selection and might provide adaptive benefit in some environments. Despite the phylogenetic context, we know of no studies that have tested whether the origin of awns correlates with putative selective forces on their form and function. Presence or absence of awns is not plastic; rather, heritability is high. The awns of grasses often are suggested as adaptations for dispersal, and most experimental work has been aimed at testing this hypothesis. Proposed dispersal functions include soil burial, epizoochory, and aerial orientation. Awns may also protect the seed from drought, herbivores, or fire by helping it become buried in soil. We do not fully understand the fitness or nutrient costs of awn production, but in some species awns function in photosynthesis, providing carbon to the seed. Here we show that awns likely provide an adaptive advantage, but argue that studies on awn function have lacked critical phylogenetic information to demonstrate adaptive convergent evolution, are taxonomically biased, and often lack clear alternative hypotheses.
Collapse
|
17
|
Koley S, Chu KL, Gill SS, Allen DK. An efficient LC-MS method for isomer separation and detection of sugars, phosphorylated sugars, and organic acids. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:2938-2952. [PMID: 35560196 DOI: 10.1093/jxb/erac062] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 02/15/2022] [Indexed: 06/15/2023]
Abstract
Assessing central carbon metabolism in plants can be challenging due to the dynamic range in pool sizes, with low levels of important phosphorylated sugars relative to more abundant sugars and organic acids. Here, we report a sensitive liquid chromatography-mass spectrometry method for analysing central metabolites on a hybrid column, where both anion-exchange and hydrophilic interaction chromatography (HILIC) ligands are embedded in the stationary phase. The liquid chromatography method was developed for enhanced selectivity of 27 central metabolites in a single run with sensitivity at femtomole levels observed for most phosphorylated sugars. The method resolved phosphorylated hexose, pentose, and triose isomers that are otherwise challenging. Compared with a standard HILIC approach, these metabolites had improved peak areas using our approach due to ion enhancement or low ion suppression in the biological sample matrix. The approach was applied to investigate metabolism in high lipid-producing tobacco leaves that exhibited increased levels of acetyl-CoA, a precursor for oil biosynthesis. The application of the method to isotopologue detection and quantification was considered through evaluating 13C-labeled seeds from Camelina sativa. The method provides a means to analyse intermediates more comprehensively in central metabolism of plant tissues.
Collapse
Affiliation(s)
- Somnath Koley
- Donald Danforth Plant Science Center, St Louis, MO 63132, USA
| | - Kevin L Chu
- Donald Danforth Plant Science Center, St Louis, MO 63132, USA
- United States Department of Agriculture-Agriculture Research Service, Donald Danforth Plant Science Center, St Louis, MO 63132, USA
| | - Saba S Gill
- Donald Danforth Plant Science Center, St Louis, MO 63132, USA
- United States Department of Agriculture-Agriculture Research Service, Donald Danforth Plant Science Center, St Louis, MO 63132, USA
| | - Doug K Allen
- Donald Danforth Plant Science Center, St Louis, MO 63132, USA
- United States Department of Agriculture-Agriculture Research Service, Donald Danforth Plant Science Center, St Louis, MO 63132, USA
| |
Collapse
|
18
|
Genetic Architecture of Grain Yield-Related Traits in Sorghum and Maize. Int J Mol Sci 2022; 23:ijms23052405. [PMID: 35269548 PMCID: PMC8909957 DOI: 10.3390/ijms23052405] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/06/2022] [Accepted: 02/18/2022] [Indexed: 02/08/2023] Open
Abstract
Grain size, grain number per panicle, and grain weight are crucial determinants of yield-related traits in cereals. Understanding the genetic basis of grain yield-related traits has been the main research object and nodal in crop science. Sorghum and maize, as very close C4 crops with high photosynthetic rates, stress tolerance and large biomass characteristics, are extensively used to produce food, feed, and biofuels worldwide. In this review, we comprehensively summarize a large number of quantitative trait loci (QTLs) associated with grain yield in sorghum and maize. We placed great emphasis on discussing 22 fine-mapped QTLs and 30 functionally characterized genes, which greatly hinders our deep understanding at the molecular mechanism level. This review provides a general overview of the comprehensive findings on grain yield QTLs and discusses the emerging trend in molecular marker-assisted breeding with these QTLs.
Collapse
|
19
|
Duncan KE, Czymmek KJ, Jiang N, Thies AC, Topp CN. X-ray microscopy enables multiscale high-resolution 3D imaging of plant cells, tissues, and organs. PLANT PHYSIOLOGY 2022; 188:831-845. [PMID: 34618094 PMCID: PMC8825331 DOI: 10.1093/plphys/kiab405] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 07/29/2021] [Indexed: 05/12/2023]
Abstract
Capturing complete internal anatomies of plant organs and tissues within their relevant morphological context remains a key challenge in plant science. While plant growth and development are inherently multiscale, conventional light, fluorescence, and electron microscopy platforms are typically limited to imaging of plant microstructure from small flat samples that lack a direct spatial context to, and represent only a small portion of, the relevant plant macrostructures. We demonstrate technical advances with a lab-based X-ray microscope (XRM) that bridge the imaging gap by providing multiscale high-resolution three-dimensional (3D) volumes of intact plant samples from the cell to the whole plant level. Serial imaging of a single sample is shown to provide sub-micron 3D volumes co-registered with lower magnification scans for explicit contextual reference. High-quality 3D volume data from our enhanced methods facilitate sophisticated and effective computational segmentation. Advances in sample preparation make multimodal correlative imaging workflows possible, where a single resin-embedded plant sample is scanned via XRM to generate a 3D cell-level map, and then used to identify and zoom in on sub-cellular regions of interest for high-resolution scanning electron microscopy. In total, we present the methodologies for use of XRM in the multiscale and multimodal analysis of 3D plant features using numerous economically and scientifically important plant systems.
Collapse
Affiliation(s)
- Keith E Duncan
- Donald Danforth Plant Science Center, St Louis, Missouri 63132, USA
| | - Kirk J Czymmek
- Donald Danforth Plant Science Center, St Louis, Missouri 63132, USA
| | - Ni Jiang
- Donald Danforth Plant Science Center, St Louis, Missouri 63132, USA
| | | | - Christopher N Topp
- Donald Danforth Plant Science Center, St Louis, Missouri 63132, USA
- Author for communication:
| |
Collapse
|
20
|
Genetic dissection of QTLs associated with spikelet-related traits and grain size in sorghum. Sci Rep 2021; 11:9398. [PMID: 33931706 PMCID: PMC8087780 DOI: 10.1038/s41598-021-88917-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 04/19/2021] [Indexed: 11/17/2022] Open
Abstract
Although spikelet-related traits such as size of anther, spikelet, style, and stigma are associated with sexual reproduction in grasses, no QTLs have been reported in sorghum. Additionally, there are only a few reports on sorghum QTLs related to grain size, such as grain length, width, and thickness. In this study, we performed QTL analyses of nine spikelet-related traits (length of sessile spikelet, pedicellate spikelet, pedicel, anther, style, and stigma; width of sessile spikelet and stigma; and stigma pigmentation) and six grain-related traits (length, width, thickness, length/width ratio, length/thickness ratio, and width/thickness ratio) using sorghum recombinant inbred lines. We identified 36 and 7 QTLs for spikelet-related traits and grain-related traits, respectively, and found that most sorghum spikelet organ length- and width-related traits were partially controlled by the dwarf genes Dw1 and Dw3. Conversely, we found that these Dw genes were not strongly involved in the regulation of grain size. The QTLs identified in this study aid in understanding the genetic basis of spikelet- and grain-related traits in sorghum.
Collapse
|
21
|
Henry RJ, Furtado A, Rangan P. Pathways of Photosynthesis in Non-Leaf Tissues. BIOLOGY 2020; 9:E438. [PMID: 33276443 PMCID: PMC7760132 DOI: 10.3390/biology9120438] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/21/2020] [Accepted: 11/22/2020] [Indexed: 01/12/2023]
Abstract
Plants have leaves as specialised organs that capture light energy by photosynthesis. However, photosynthesis is also found in other plant organs. Photosynthesis may be found in the petiole, stems, flowers, fruits, and seeds. All photosynthesis can contribute to the capture of carbon and growth of the plant. The benefit to the plant of photosynthesis in these other tissues or organs may often be associated with the need to re-capture carbon especially in storage organs that have high respiration rates. Some plants that conduct C3 photosynthesis in the leaves have been reported to use C4 photosynthesis in petioles, stems, flowers, fruits, or seeds. These pathways of non-leaf photosynthesis may be especially important in supporting plant growth under stress and may be a key contributor to plant growth and survival. Pathways of photosynthesis have directionally evolved many times in different plant lineages in response to environmental selection and may also have differentiated in specific parts of the plant. This consideration may be useful in the breeding of crop plants with enhanced performance in response to climate change.
Collapse
Affiliation(s)
- Robert J. Henry
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, QLD 4072, Australia; (A.F.); (P.R.)
| | - Agnelo Furtado
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, QLD 4072, Australia; (A.F.); (P.R.)
| | - Parimalan Rangan
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, QLD 4072, Australia; (A.F.); (P.R.)
- Division of Genomic Resources, ICAR-National Bureau of Plant Genetic Resources, New Delhi 110012, India
| |
Collapse
|
22
|
Strable J. Gains in Grain Yield: A Pair of Spikelets Makes All the Difference, Even When One Is Sterile. THE PLANT CELL 2020; 32:3378-3379. [PMID: 32883712 PMCID: PMC7610291 DOI: 10.1105/tpc.20.00667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Affiliation(s)
- Josh Strable
- Plant Biology SectionSchool of Integrative Plant ScienceCornell UniversityIthica, New York
| |
Collapse
|