1
|
Wang Y, Peng Y, Guo H. To curve for survival: Apical hook development. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:324-342. [PMID: 36562414 DOI: 10.1111/jipb.13441] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
Apical hook is a simple curved structure formed at the upper part of hypocotyls when dicot seeds germinate in darkness. The hook structure is transient but essential for seedlings' survival during soil emergence due to its efficient protection of the delicate shoot apex from mechanical injury. As a superb model system for studying plant differential growth, apical hook has fascinated botanists as early as the Darwin age, and significant advances have been achieved at both the morphological and molecular levels to understand how apical hook development is regulated. Here, we will mainly summarize the research progress at these two levels. We will also briefly compare the growth dynamics between apical hook and hypocotyl gravitropic bending at early seed germination phase, with the aim to deduce a certain consensus on their connections. Finally, we will outline the remaining questions and future research perspectives for apical hook development.
Collapse
Affiliation(s)
- Yichuan Wang
- Department of Biology, School of Life Sciences, Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Yang Peng
- Department of Biology, School of Life Sciences, Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Hongwei Guo
- Department of Biology, School of Life Sciences, Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| |
Collapse
|
2
|
Jun SE, Cho KH, Manzoor MA, Hwang TY, Kim YS, Schaffrath R, Kim GT. AtELP4 a subunit of the Elongator complex in Arabidopsis, mediates cell proliferation and dorsoventral polarity during leaf morphogenesis. FRONTIERS IN PLANT SCIENCE 2022; 13:1033358. [PMID: 36340367 PMCID: PMC9634574 DOI: 10.3389/fpls.2022.1033358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
The Elongator complex in eukaryotes has conserved tRNA modification functions and contributes to various physiological processes such as transcriptional control, DNA replication and repair, and chromatin accessibility. ARABIDOPSIS ELONGATOR PROTEIN 4 (AtELP4) is one of the six subunits (AtELP1-AtELP6) in Arabidopsis Elongator. In addition, there is an Elongator-associated protein, DEFORMED ROOTS AND LEAVES 1 (DRL1), whose homolog in yeast (Kti12) binds tRNAs. In this study, we explored the functions of AtELP4 in plant-specific aspects such as leaf morphogenesis and evolutionarily conserved ones between yeast and Arabidopsis. ELP4 comparison between yeast and Arabidopsis revealed that plant ELP4 possesses not only a highly conserved P-loop ATPase domain but also unknown plant-specific motifs. ELP4 function is partially conserved between Arabidopsis and yeast in the growth sensitivity toward caffeine and elevated cultivation temperature. Either single Atelp4 or drl1-102 mutants and double Atelp4 drl1-102 mutants exhibited a reduction in cell proliferation and changed the adaxial-abaxial polarity of leaves. In addition, the single Atelp4 and double Atelp4 drl1-102 mutants showed remarkable downward curling at the whole part of leaf blades in contrast to wild-type leaf blades. Furthermore, our genetic study revealed that AtELP4 might epistatically act on DRL1 in the regulation of cell proliferation and dorsoventral polarity in leaves. Taken together, we suggest that AtELP4 as part of the plant Elongator complex may act upstream of a regulatory pathway for adaxial-abaxial polarity and cell proliferation during leaf development.
Collapse
Affiliation(s)
- Sang Eun Jun
- Department of Molecular Genetics, Dong-A University, Busan, South Korea
| | - Kiu-Hyung Cho
- Department of Molecular Genetics, Dong-A University, Busan, South Korea
| | | | - Tae Young Hwang
- Graduate School of Applied Bioscience, Dong-A University, Busan, South Korea
| | - Youn Soo Kim
- Graduate School of Applied Bioscience, Dong-A University, Busan, South Korea
| | - Raffael Schaffrath
- Institut für Biologie, Fachgebiet Mikrobiologie, Universität Kassel, Kassel, Germany
| | - Gyung-Tae Kim
- Department of Molecular Genetics, Dong-A University, Busan, South Korea
- Graduate School of Applied Bioscience, Dong-A University, Busan, South Korea
| |
Collapse
|
3
|
Casanova-Sáez R, Mateo-Bonmatí E, Ljung K. Auxin Metabolism in Plants. Cold Spring Harb Perspect Biol 2021; 13:cshperspect.a039867. [PMID: 33431579 PMCID: PMC7919392 DOI: 10.1101/cshperspect.a039867] [Citation(s) in RCA: 92] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The major natural auxin in plants, indole-3-acetic acid (IAA), orchestrates a plethora of developmental responses that largely depend on the formation of auxin concentration gradients within plant tissues. Together with inter- and intracellular transport, IAA metabolism-which comprises biosynthesis, conjugation, and degradation-modulates auxin gradients and is therefore critical for plant growth. It is now very well established that IAA is mainly produced from Trp and that the IPyA pathway is a major and universally conserved biosynthetic route in plants, while other redundant pathways operate in parallel. Recent findings have shown that metabolic inactivation of IAA is also redundantly performed by oxidation and conjugation processes. An exquisite spatiotemporal expression of the genes for auxin synthesis and inactivation have been shown to drive several plant developmental processes. Moreover, a group of transcription factors and epigenetic regulators controlling the expression of auxin metabolic genes have been identified in past years, which are illuminating the road to understanding the molecular mechanisms behind the coordinated responses of local auxin metabolism to specific cues. Besides transcriptional regulation, subcellular compartmentalization of the IAA metabolism and posttranslational modifications of the metabolic enzymes are emerging as important contributors to IAA homeostasis. In this review, we summarize the current knowledge on (1) the pathways for IAA biosynthesis and inactivation in plants, (2) the influence of spatiotemporally regulated IAA metabolism on auxin-mediated responses, and (3) the regulatory mechanisms that modulate IAA levels in response to external and internal cues during plant development.
Collapse
Affiliation(s)
| | | | - Karin Ljung
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden
| |
Collapse
|
4
|
Accumulation of the Auxin Precursor Indole-3-Acetamide Curtails Growth through the Repression of Ribosome-Biogenesis and Development-Related Transcriptional Networks. Int J Mol Sci 2021; 22:ijms22042040. [PMID: 33670805 PMCID: PMC7923163 DOI: 10.3390/ijms22042040] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 12/17/2022] Open
Abstract
The major auxin, indole-3-acetic acid (IAA), is associated with a plethora of growth and developmental processes including embryo development, expansion growth, cambial activity, and the induction of lateral root growth. Accumulation of the auxin precursor indole-3-acetamide (IAM) induces stress related processes by stimulating abscisic acid (ABA) biosynthesis. How IAM signaling is controlled is, at present, unclear. Here, we characterize the ami1rooty double mutant, that we initially generated to study the metabolic and phenotypic consequences of a simultaneous genetic blockade of the indole glucosinolate and IAM pathways in Arabidopsisthaliana. Our mass spectrometric analyses of the mutant revealed that the combination of the two mutations is not sufficient to fully prevent the conversion of IAM to IAA. The detected strong accumulation of IAM was, however, recognized to substantially impair seed development. We further show by genome-wide expression studies that the double mutant is broadly affected in its translational capacity, and that a small number of plant growth regulating transcriptional circuits are repressed by the high IAM content in the seed. In accordance with the previously described growth reduction in response to elevated IAM levels, our data support the hypothesis that IAM is a growth repressing counterpart to IAA.
Collapse
|
5
|
Garrido AN, Supijono E, Boshara P, Douglas SJ, Stronghill PE, Li B, Nambara E, Kliebenstein DJ, Riggs CD. flasher, a novel mutation in a glucosinolate modifying enzyme, conditions changes in plant architecture and hormone homeostasis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:1989-2006. [PMID: 32529723 DOI: 10.1111/tpj.14878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 05/29/2020] [Indexed: 06/11/2023]
Abstract
Meristem function is underpinned by numerous genes that affect hormone levels, ultimately controlling phyllotaxy, the transition to flowering and general growth properties. Class I KNOX genes are major contributors to this process, promoting cytokinin biosynthesis but repressing gibberellin production to condition a replication competent state. We identified a suppressor mutant of the KNOX1 mutant brevipedicellus (bp) that we termed flasher (fsh), which promotes stem and pedicel elongation, suppresses early senescence, and negatively affects reproductive development. Map-based cloning and complementation tests revealed that fsh is due to an E40K change in the flavin monooxygenase GS-OX5, a gene encoding a glucosinolate (GSL) modifying enzyme. In vitro enzymatic assays revealed that fsh poorly converts substrate to product, yet the levels of several GSLs are higher in the suppressor line, implicating FSH in feedback control of GSL flux. FSH is expressed predominantly in the vasculature in patterns that do not significantly overlap those of BP, implying a non-cell autonomous mode of meristem control via one or more GSL metabolites. Hormone analyses revealed that cytokinin levels are low in bp, but fsh restores cytokinin levels to near normal by activating cytokinin biosynthesis genes. In addition, jasmonate levels in the fsh suppressor are significantly lower than in bp, which is likely due to elevated expression of JA inactivating genes. These observations suggest the involvement of the GSL pathway in generating one or more negative effectors of growth that influence inflorescence architecture and fecundity by altering the balance of hormonal regulators.
Collapse
Affiliation(s)
- Ameth N Garrido
- Department of Biological Sciences, University of Toronto, Toronto, ON, Canada
| | - Esther Supijono
- Department of Biological Sciences, University of Toronto, Toronto, ON, Canada
| | - Peter Boshara
- Department of Biological Sciences, University of Toronto, Toronto, ON, Canada
| | - Scott J Douglas
- Department of Biological Sciences, University of Toronto, Toronto, ON, Canada
| | - Patti E Stronghill
- Department of Biological Sciences, University of Toronto, Toronto, ON, Canada
| | - Baohua Li
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Eiji Nambara
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | | | - C Daniel Riggs
- Department of Biological Sciences, University of Toronto, Toronto, ON, Canada
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
6
|
Brumos J, Bobay BG, Clark CA, Alonso JM, Stepanova AN. Structure-Function Analysis of Interallelic Complementation in ROOTY Transheterozygotes. PLANT PHYSIOLOGY 2020; 183:1110-1125. [PMID: 32350121 PMCID: PMC7333694 DOI: 10.1104/pp.20.00310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 04/14/2020] [Indexed: 06/11/2023]
Abstract
Auxin is a crucial plant growth regulator. Forward genetic screens for auxin-related mutants have led to the identification of key genes involved in auxin biosynthesis, transport, and signaling. Loss-of-function mutations in genes involved in glucosinolate biosynthesis, a metabolically related route that produces defense compounds, result in auxin overproduction. We identified an allelic series of fertile, hypomorphic Arabidopsis (Arabidopsis thaliana) mutants for the essential glucosinolate biosynthetic gene ROOTY (RTY) that exhibit a range of phenotypic defects characteristic of enhanced auxin production. Genetic characterization of these lines uncovered phenotypic suppression by cyp79b2 cyp79b3, wei2, and wei7 mutations and revealed the phenomenon of interallelic complementation in several RTY transheterozygotes. Structural modeling of RTY elucidated the relationships between structure and function in the RTY homo- and heterodimers, and unveiled the likely structural basis of interallelic complementation. This work underscores the importance of employing true null mutants in genetic complementation studies.
Collapse
Affiliation(s)
- Javier Brumos
- Department of Plant and Microbial Biology, Program in Genetics, North Carolina State University, Raleigh, North Carolina 27695-7614
| | - Benjamin G Bobay
- Duke University Nuclear Magnetic Resonance Center, Duke University Medical Center, Durham, North Carolina 27710
- Department of Biochemistry, Duke University, Durham, North Carolina 27710
- Department of Radiology, Duke University, Durham, North Carolina 27710
| | | | - Jose M Alonso
- Department of Plant and Microbial Biology, Program in Genetics, North Carolina State University, Raleigh, North Carolina 27695-7614
| | - Anna N Stepanova
- Department of Plant and Microbial Biology, Program in Genetics, North Carolina State University, Raleigh, North Carolina 27695-7614
| |
Collapse
|
7
|
Orthogonal regulation of phytochrome B abundance by stress-specific plastidial retrograde signaling metabolite. Nat Commun 2019; 10:2904. [PMID: 31266952 PMCID: PMC6606753 DOI: 10.1038/s41467-019-10867-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 06/04/2019] [Indexed: 11/30/2022] Open
Abstract
Plant survival necessitates constant monitoring of fluctuating light and balancing growth demands with adaptive responses, tasks mediated via interconnected sensing and signaling networks. Photoreceptor phytochrome B (phyB) and plastidial retrograde signaling metabolite methylerythritol cyclodiphosphate (MEcPP) are evolutionarily conserved sensing and signaling components eliciting responses through unknown connection(s). Here, via a suppressor screen, we identify two phyB mutant alleles that revert the dwarf and high salicylic acid phenotypes of the high MEcPP containing mutant ceh1. Biochemical analyses show high phyB protein levels in MEcPP-accumulating plants resulting from reduced expression of phyB antagonists and decreased auxin levels. We show that auxin treatment negatively regulates phyB abundance. Additional studies identify CAMTA3, a MEcPP-activated calcium-dependent transcriptional regulator, as critical for maintaining phyB abundance. These studies provide insights into biological organization fundamentals whereby a signal from a single plastidial metabolite is transduced into an ensemble of regulatory networks controlling the abundance of phyB, positioning plastids at the information apex directing adaptive responses. MEcPP is an evolutionarily conserved metabolite that acts as a plastid-to-nucleus retrograde signal to regulate adaptive responses to fluctuating light. Here the authors show that MEcPP regulates seedling development by stabilizing the phyB photoreceptor in an auxin and Ca2+ dependent manner.
Collapse
|
8
|
Janková Drdová E, Klejchová M, Janko K, Hála M, Soukupová H, Cvrčková F, Žárský V. Developmental plasticity of Arabidopsis hypocotyl is dependent on exocyst complex function. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:1255-1265. [PMID: 30649396 PMCID: PMC6382343 DOI: 10.1093/jxb/erz005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 11/15/2018] [Accepted: 12/21/2018] [Indexed: 05/08/2023]
Abstract
The collet (root-hypocotyl junction) region is an important plant transition zone between soil and atmospheric environments. Despite its crucial importance for plant development, little is known about how this transition zone is specified. Here we document the involvement of the exocyst complex in this process. The exocyst, an octameric tethering complex, participates in secretion and membrane recycling and is central to numerous cellular and developmental processes, such as growth of root hairs, cell expansion, recycling of PIN auxin efflux carriers and many others. We show that dark-grown Arabidopsis mutants deficient in exocyst subunits can form a hair-bearing ectopic collet-like structure above the true collet, morphologically resembling the true collet but also retaining some characteristics of the hypocotyl. The penetrance of this phenotypic defect is significantly influenced by cultivation temperature and carbon source, and is related to a defect in auxin regulation. These observations provide new insights into the regulation of collet region formation and developmental plasticity of the hypocotyl.
Collapse
Affiliation(s)
- Edita Janková Drdová
- Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Prague 6, Czech Republic
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague 2, Czech Republic
- Correspondence:
| | - Martina Klejchová
- Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Prague 6, Czech Republic
| | - Karel Janko
- Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Liběchov, Czech Republic
| | - Michal Hála
- Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Prague 6, Czech Republic
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague 2, Czech Republic
| | - Hana Soukupová
- Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Prague 6, Czech Republic
| | - Fatima Cvrčková
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague 2, Czech Republic
| | - Viktor Žárský
- Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Prague 6, Czech Republic
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague 2, Czech Republic
| |
Collapse
|
9
|
Iglesias MJ, Sellaro R, Zurbriggen MD, Casal JJ. Multiple links between shade avoidance and auxin networks. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:213-228. [PMID: 29036463 DOI: 10.1093/jxb/erx295] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Auxin has emerged as a key player in the adjustment of plant morphology to the challenge imposed by variable environmental conditions. Shade-avoidance responses, including the promotion of stem and petiole growth, leaf hyponasty, and the inhibition of branching, involve an intimate connection between light and auxin signalling. Low activity of photo-sensory receptors caused by the presence of neighbouring vegetation enhances the activity of PHYTOCHROME INTERACTING FACTORs (PIFs), which directly promote the expression of genes involved in auxin biosynthesis, conjugation, transport, perception, and signalling. In seedlings, neighbour signals increase auxin levels in the foliage, which then moves to the stem, where it reaches epidermal tissues to promote growth. However, this model only partially accounts for shade-avoidance responses (which may also occur in the absence of increased auxin levels), and understanding the whole picture will require further insight into the functional significance of the multiple links between shade and auxin networks.
Collapse
Affiliation(s)
- María José Iglesias
- Instituto de Investigaciones Biológicas, CONICET-Universidad Nacional de Mar del Plata, Facultad de Ciencias Exactas y Naturales, Argentina
| | - Romina Sellaro
- IFEVA, Universidad de Buenos Aires and CONICET, Facultad de Agronomía, Argentina
| | - Matias D Zurbriggen
- Institute of Synthetic Biology and Cluster of Excellence on Plant Sciences (CEPLAS), University of Düsseldorf, Germany
| | - Jorge José Casal
- IFEVA, Universidad de Buenos Aires and CONICET, Facultad de Agronomía, Argentina
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires-CONICET, Argentina
| |
Collapse
|
10
|
Malka SK, Cheng Y. Possible Interactions between the Biosynthetic Pathways of Indole Glucosinolate and Auxin. FRONTIERS IN PLANT SCIENCE 2017; 8:2131. [PMID: 29312389 PMCID: PMC5735125 DOI: 10.3389/fpls.2017.02131] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 11/30/2017] [Indexed: 05/21/2023]
Abstract
Glucosinolates (GLS) are a group of plant secondary metabolites mainly found in Cruciferous plants, share a core structure consisting of a β-thioglucose moiety and a sulfonated oxime, but differ by a variable side chain derived from one of the several amino acids. These compounds are hydrolyzed upon cell damage by thioglucosidase (myrosinase), and the resulting degradation products are toxic to many pathogens and herbivores. Human beings use these compounds as flavor compounds, anti-carcinogens, and bio-pesticides. GLS metabolism is complexly linked to auxin homeostasis. Indole GLS contributes to auxin biosynthesis via metabolic intermediates indole-3-acetaldoxime (IAOx) and indole-3-acetonitrile (IAN). IAOx is proposed to be a metabolic branch point for biosynthesis of indole GLS, IAA, and camalexin. Interruption of metabolic channeling of IAOx into indole GLS leads to high-auxin production in GLS mutants. IAN is also produced as a hydrolyzed product of indole GLS and metabolized to IAA by nitrilases. In this review, we will discuss current knowledge on involvement of GLS in auxin homeostasis.
Collapse
Affiliation(s)
- Siva K. Malka
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Youfa Cheng
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
11
|
Saini K, AbdElgawad H, Markakis MN, Schoenaers S, Asard H, Prinsen E, Beemster GTS, Vissenberg K. Perturbation of Auxin Homeostasis and Signaling by PINOID Overexpression Induces Stress Responses in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2017; 8:1308. [PMID: 28824662 PMCID: PMC5539238 DOI: 10.3389/fpls.2017.01308] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 07/12/2017] [Indexed: 05/02/2023]
Abstract
Under normal and stress conditions plant growth require a complex interplay between phytohormones and reactive oxygen species (ROS). However, details of the nature of this crosstalk remain elusive. Here, we demonstrate that PINOID (PID), a serine threonine kinase of the AGC kinase family, perturbs auxin homeostasis, which in turn modulates rosette growth and induces stress responses in Arabidopsis plants. Arabidopsis mutants and transgenic plants with altered PID expression were used to study the effect on auxin levels and stress-related responses. In the leaves of plants with ectopic PID expression an accumulation of auxin, oxidative burst and disruption of hormonal balance was apparent. Furthermore, PID overexpression led to the accumulation of antioxidant metabolites, while pid knockout mutants showed only moderate changes in stress-related metabolites. These physiological changes in the plants overexpressing PID modulated their response toward external drought and osmotic stress treatments when compared to the wild type. Based on the morphological, transcriptome, and metabolite results, we propose that perturbations in the auxin hormone levels caused by PID overexpression, along with other hormones and ROS downstream, cause antioxidant accumulation and modify growth and stress responses in Arabidopsis. Our data provide further proof for a strong correlation between auxin and stress biology.
Collapse
Affiliation(s)
- Kumud Saini
- Integrated Molecular Plant Physiology Research, University of AntwerpAntwerp, Belgium
| | - Hamada AbdElgawad
- Integrated Molecular Plant Physiology Research, University of AntwerpAntwerp, Belgium
- Department of Botany, Faculty of Science, Beni-Suef UniversityBeni Suef, Egypt
| | - Marios N. Markakis
- Integrated Molecular Plant Physiology Research, University of AntwerpAntwerp, Belgium
- Faculty of Health and Medical Sciences, University of CopenhagenCopenhagen, Denmark
| | - Sébastjen Schoenaers
- Integrated Molecular Plant Physiology Research, University of AntwerpAntwerp, Belgium
| | - Han Asard
- Integrated Molecular Plant Physiology Research, University of AntwerpAntwerp, Belgium
| | - Els Prinsen
- Integrated Molecular Plant Physiology Research, University of AntwerpAntwerp, Belgium
| | - Gerrit T. S. Beemster
- Integrated Molecular Plant Physiology Research, University of AntwerpAntwerp, Belgium
| | - Kris Vissenberg
- Integrated Molecular Plant Physiology Research, University of AntwerpAntwerp, Belgium
- Plant and Biochemistry and Biotechnology Lab, Department of Agriculture, School of Agriculture, Food and Nutrition, Technological Educational Institute of Crete: University of Applied SciencesHeraklion, Greece
| |
Collapse
|
12
|
Zobel RW. Arabidopsis: An Adequate Model for Dicot Root Systems? FRONTIERS IN PLANT SCIENCE 2016; 7:58. [PMID: 26904040 PMCID: PMC4742568 DOI: 10.3389/fpls.2016.00058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 01/14/2016] [Indexed: 05/13/2023]
Abstract
The Arabidopsis root system is frequently considered to have only three classes of root: primary, lateral, and adventitious. Research with other plant species has suggested up to eight different developmental/functional classes of root for a given plant root system. If Arabidopsis has only three classes of root, it may not be an adequate model for eudicot plant root systems. Recent research, however, can be interpreted to suggest that pre-flowering Arabidopsis does have at least five (5) of these classes of root. This then suggests that Arabidopsis root research can be considered an adequate model for dicot plant root systems.
Collapse
|
13
|
Jost R, Pharmawati M, Lapis-Gaza HR, Rossig C, Berkowitz O, Lambers H, Finnegan PM. Differentiating phosphate-dependent and phosphate-independent systemic phosphate-starvation response networks in Arabidopsis thaliana through the application of phosphite. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:2501-14. [PMID: 25697796 PMCID: PMC4986860 DOI: 10.1093/jxb/erv025] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Phosphite is a less oxidized form of phosphorus than phosphate. Phosphite is considered to be taken up by the plant through phosphate transporters. It can mimic phosphate to some extent, but it is not metabolized into organophosphates. Phosphite could therefore interfere with phosphorus signalling networks. Typical physiological and transcriptional responses to low phosphate availability were investigated and the short-term kinetics of their reversion by phosphite, compared with phosphate, were determined in both roots and shoots of Arabidopsis thaliana. Phosphite treatment resulted in a strong growth arrest. It mimicked phosphate in causing a reduction in leaf anthocyanins and in the expression of a subset of the phosphate-starvation-responsive genes. However, the kinetics of the response were slower than for phosphate, which may be due to discrimination against phosphite by phosphate transporters PHT1;8 and PHT1;9 causing delayed shoot accumulation of phosphite. Transcripts encoding PHT1;7, lipid-remodelling enzymes such as SQD2, and phosphocholine-producing NMT3 were highly responsive to phosphite, suggesting their regulation by a direct phosphate-sensing network. Genes encoding components associated with the 'PHO regulon' in plants, such as At4, IPS1, and PHO1;H1, generally responded more slowly to phosphite than to phosphate, except for SPX1 in roots and MIR399d in shoots. Two uncharacterized phosphate-responsive E3 ligase genes, PUB35 and C3HC4, were also highly phosphite responsive. These results show that phosphite is a valuable tool to identify network components directly responsive to phosphate.
Collapse
Affiliation(s)
- Ricarda Jost
- School of Plant Biology, The University of Western Australia, Crawley (Perth), Western Australia, Australia
| | - Made Pharmawati
- School of Plant Biology, The University of Western Australia, Crawley (Perth), Western Australia, Australia Biology Department, Faculty of Mathematics and Natural Sciences, Bukit Jimbaran Campus, Udayana University, Bali, Indonesia
| | - Hazel R Lapis-Gaza
- School of Plant Biology, The University of Western Australia, Crawley (Perth), Western Australia, Australia
| | - Claudia Rossig
- School of Plant Biology, The University of Western Australia, Crawley (Perth), Western Australia, Australia
| | - Oliver Berkowitz
- School of Plant Biology, The University of Western Australia, Crawley (Perth), Western Australia, Australia School of Veterinary and Life Sciences, Murdoch University, Murdoch, Western Australia, Australia
| | - Hans Lambers
- School of Plant Biology, The University of Western Australia, Crawley (Perth), Western Australia, Australia Institute of Agriculture, The University of Western Australia, Crawley (Perth), Western Australia, Australia
| | - Patrick M Finnegan
- School of Plant Biology, The University of Western Australia, Crawley (Perth), Western Australia, Australia Institute of Agriculture, The University of Western Australia, Crawley (Perth), Western Australia, Australia
| |
Collapse
|
14
|
Smet D, Žádníková P, Vandenbussche F, Benková E, Van Der Straeten D. Dynamic infrared imaging analysis of apical hook development in Arabidopsis: the case of brassinosteroids. THE NEW PHYTOLOGIST 2014; 202:1398-1411. [PMID: 24611517 DOI: 10.1111/nph.12751] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 02/03/2014] [Indexed: 05/06/2023]
Abstract
Germination of Arabidopsis seeds in darkness induces apical hook development, based on a tightly regulated differential growth coordinated by a multiple hormone cross-talk. Here, we endeavoured to clarify the function of brassinosteroids (BRs) and cross-talk with ethylene in hook development. An automated infrared imaging system was developed to study the kinetics of hook development in etiolated Arabidopsis seedlings. To ascertain the photomorphogenic control of hook opening, the system was equipped with an automatic light dimmer. We demonstrate that ethylene and BRs are indispensable for hook formation and maintenance. Ethylene regulation of hook formation functions partly through BRs, with BR feedback inhibition of ethylene action. Conversely, BR-mediated extension of hook maintenance functions partly through ethylene. Furthermore, we revealed that a short light pulse is sufficient to induce rapid hook opening. Our dynamic infrared imaging system allows high-resolution, kinetic imaging of up to 112 seedlings in a single experimental run. At this high throughput, it is ideally suited to rapidly gain insight in pathway networks. We demonstrate that BRs and ethylene cooperatively regulate apical hook development in a phase-dependent manner. Furthermore, we show that light is a predominant regulator of hook opening, inhibiting ethylene- and BR-mediated postponement of hook opening.
Collapse
Affiliation(s)
- Dajo Smet
- Laboratory of Functional Plant Biology, Department of Physiology, Ghent University, 9000, Gent, Belgium
| | - Petra Žádníková
- Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie (VIB), 9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium
| | - Filip Vandenbussche
- Laboratory of Functional Plant Biology, Department of Physiology, Ghent University, 9000, Gent, Belgium
| | - Eva Benková
- Institute of Science and Technology, 3400, Klosterneuburg, Austria
- Genomics and Proteomics of Plant Systems, Central European Institute of Technology, Masaryk University, 62500, Brno, Czech Republic
| | | |
Collapse
|
15
|
Raya-González J, Ortiz-Castro R, Ruíz-Herrera LF, Kazan K, López-Bucio J. PHYTOCHROME AND FLOWERING TIME1/MEDIATOR25 Regulates Lateral Root Formation via Auxin Signaling in Arabidopsis. PLANT PHYSIOLOGY 2014; 165:880-894. [PMID: 24784134 PMCID: PMC4044844 DOI: 10.1104/pp.114.239806] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 04/24/2014] [Indexed: 05/22/2023]
Abstract
Root system architecture is a major determinant of water and nutrient acquisition as well as stress tolerance in plants. The Mediator complex is a conserved multiprotein complex that acts as a universal adaptor between transcription factors and the RNA polymerase II. In this article, we characterize possible roles of the MEDIATOR8 (MED8) and MED25 subunits of the plant Mediator complex in the regulation of root system architecture in Arabidopsis (Arabidopsis thaliana). We found that loss-of-function mutations in PHYTOCHROME AND FLOWERING TIME1 (PFT1)/MED25 increase primary and lateral root growth as well as lateral and adventitious root formation. In contrast, PFT1/MED25 overexpression reduces these responses, suggesting that PFT1/MED25 is an important element of meristematic cell proliferation and cell size control in both lateral and primary roots. PFT1/MED25 negatively regulates auxin transport and response gene expression in most parts of the plant, as evidenced by increased and decreased expression of the auxin-related reporters PIN-FORMED1 (PIN1)::PIN1::GFP (for green fluorescent protein), DR5:GFP, DR5:uidA, and BA3:uidA in pft1-2 mutants and in 35S:PFT1 seedlings, respectively. No alterations in endogenous auxin levels could be found in pft1-2 mutants or in 35S:PFT1-overexpressing seedlings. However, detailed analyses of DR5:GFP and DR5:uidA activity in wild-type, pft1-2, and 35S:PFT1 seedlings in response to indole-3-acetic acid, naphthaleneacetic acid, and the polar auxin transport inhibitor 1-N-naphthylphthalamic acid indicated that PFT1/MED25 principally regulates auxin transport and response. These results provide compelling evidence for a new role for PFT1/MED25 as an important transcriptional regulator of root system architecture through auxin-related mechanisms in Arabidopsis.
Collapse
Affiliation(s)
- Javier Raya-González
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, CP 58030 Morelia, Michoacan, Mexico (J.R.-G., R.O.-C., L.F.R.-H., J.L.-B.); andCommonwealth Scientific and Industrial Research Organization Plant Industry, Queensland Bioscience Precinct, St. Lucia, Queensland 4067, Australia (K.K.)
| | - Randy Ortiz-Castro
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, CP 58030 Morelia, Michoacan, Mexico (J.R.-G., R.O.-C., L.F.R.-H., J.L.-B.); andCommonwealth Scientific and Industrial Research Organization Plant Industry, Queensland Bioscience Precinct, St. Lucia, Queensland 4067, Australia (K.K.)
| | - León Francisco Ruíz-Herrera
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, CP 58030 Morelia, Michoacan, Mexico (J.R.-G., R.O.-C., L.F.R.-H., J.L.-B.); andCommonwealth Scientific and Industrial Research Organization Plant Industry, Queensland Bioscience Precinct, St. Lucia, Queensland 4067, Australia (K.K.)
| | - Kemal Kazan
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, CP 58030 Morelia, Michoacan, Mexico (J.R.-G., R.O.-C., L.F.R.-H., J.L.-B.); andCommonwealth Scientific and Industrial Research Organization Plant Industry, Queensland Bioscience Precinct, St. Lucia, Queensland 4067, Australia (K.K.)
| | - José López-Bucio
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, CP 58030 Morelia, Michoacan, Mexico (J.R.-G., R.O.-C., L.F.R.-H., J.L.-B.); andCommonwealth Scientific and Industrial Research Organization Plant Industry, Queensland Bioscience Precinct, St. Lucia, Queensland 4067, Australia (K.K.)
| |
Collapse
|
16
|
Gao X, Yuan HM, Hu YQ, Li J, Lu YT. Mutation of Arabidopsis CATALASE2 results in hyponastic leaves by changes of auxin levels. PLANT, CELL & ENVIRONMENT 2014; 37:175-88. [PMID: 23738953 DOI: 10.1111/pce.12144] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2013] [Revised: 05/26/2013] [Accepted: 05/28/2013] [Indexed: 05/05/2023]
Abstract
Auxin and H2 O2 play vital roles in plant development and environmental responses; however, it is unclear whether and how H2 O2 modulates auxin levels. Here, we investigate this question using cat2-1 mutant, which exhibits reduced catalase activity and accumulates high levels of H2 O2 under photorespiratory conditions. At a light intensity of 150 μmol m(-2) s(-1) , the mutant exhibited up-curled leaves that have increased H2 O2 contents and decreased auxin levels. At low light intensities (30 μmol m(-2) s(-1)), the leaves of the mutant were normal, but exhibited reduced H2 O2 contents and elevated auxin levels. These findings suggest that H2 O2 modulates auxin levels. When auxin was directly applied to cat2-1 leaves, the up-curled leaves curled downwards. In addition, transformation of cat2-1 plants with pCAT2:iaaM, which increases auxin levels, rescued the hyponastic leaf phenotype. Using qRT-PCR, we demonstrated that the transcription of auxin synthesis-related genes and of genes that regulate leaf curvature is suppressed in cat2-1. Furthermore, application of glutathione rescued the up-curled leaves of cat2-1 and increased auxin levels, but did not change H2 O2 levels. Thus, the hyponastic leaves of cat2-1 reveal crosstalk between H2 O2 and auxin signalling that is mediated by changes in glutathione redox status.
Collapse
Affiliation(s)
- Xiang Gao
- College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | | | | | | | | |
Collapse
|
17
|
Cuesta C, Wabnik K, Benková E. Systems approaches to study root architecture dynamics. FRONTIERS IN PLANT SCIENCE 2013; 4:537. [PMID: 24421783 PMCID: PMC3872734 DOI: 10.3389/fpls.2013.00537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 12/11/2013] [Indexed: 05/05/2023]
Abstract
The plant root system is essential for providing anchorage to the soil, supplying minerals and water, and synthesizing metabolites. It is a dynamic organ modulated by external cues such as environmental signals, water and nutrients availability, salinity and others. Lateral roots (LRs) are initiated from the primary root post-embryonically, after which they progress through discrete developmental stages which can be independently controlled, providing a high level of plasticity during root system formation. Within this review, main contributions are presented, from the classical forward genetic screens to the more recent high-throughput approaches, combined with computer model predictions, dissecting how LRs and thereby root system architecture is established and developed.
Collapse
Affiliation(s)
- Candela Cuesta
- Institute of Science and Technology AustriaKlosterneuburg, Austria
| | - Krzysztof Wabnik
- Department of Plant Systems Biology, Flanders Institute for Biotechnology (VIB) and Department of Plant Biotechnology and Genetics, Ghent UniversityTechnologiepark, Gent, Belgium
| | - Eva Benková
- Institute of Science and Technology AustriaKlosterneuburg, Austria
- Mendel Centre for Plant Genomics and Proteomics, Masaryk UniversityBrno, Czech Republic
- *Correspondence: Eva Benková, Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria e-mail:
| |
Collapse
|
18
|
Qin Z, Lv H, Zhu X, Meng C, Quan T, Wang M, Xia G. Ectopic expression of a wheat WRKY transcription factor gene TaWRKY71-1 results in hyponastic leaves in Arabidopsis thaliana. PLoS One 2013; 8:e63033. [PMID: 23671653 PMCID: PMC3650005 DOI: 10.1371/journal.pone.0063033] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Accepted: 03/27/2013] [Indexed: 01/11/2023] Open
Abstract
Leaf type is an important trait that closely associates with crop yield. WRKY transcription factors exert diverse regulatory effects in plants, but their roles in the determination of leaf type have not been reported so far. In this work, we isolated a WRKY transcription factor gene TaWRKY71-1 from a wheat introgression line SR3, which has larger leaves, superior growth capacity and higher yield than its parent common wheat JN177. TaWRKY71-1 specifically expressed in leaves, and produced more mRNA in SR3 than in JN177. TaWRKY71-1 localized in the nucleus and had no transcriptional activation activity. TaWRKY71-1 overexpression in Arabidopsis resulted in hyponastic rosette leaves, and the hyponastic strength was closely correlative with the transcription level of the transgene. The spongy mesophyll cells at abaxial side of leaves were drastically compacted by TaWRKY71-1 overexpression. In TaWRKY71-1 overexpression Arabidopsis, the expression of IAMT1 that encodes a methyltransferase converting free indole-3-acetic acid (IAA) to methyl-IAA ester (MeIAA) to alter auxin homeostatic level was induced, and the induction level was dependent on the abundance of TaWRKY71-1 transcripts. Besides, several TCP genes that had found to be restricted by IAMT1 had lower expression levels as well. Our results suggest that TaWRKY71-1 causes hyponastic leaves through altering auxin homeostatic level by promoting the conversion of IAA to MeIAA.
Collapse
Affiliation(s)
- Zhen Qin
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, Jinan, Shandong, China
| | - Hongjun Lv
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, Jinan, Shandong, China
| | - Xinlei Zhu
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, Jinan, Shandong, China
| | - Chen Meng
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, Jinan, Shandong, China
| | - Taiyong Quan
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, Jinan, Shandong, China
| | - Mengcheng Wang
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, Jinan, Shandong, China
- * E-mail: (GX); (MW)
| | - Guangmin Xia
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, Jinan, Shandong, China
- * E-mail: (GX); (MW)
| |
Collapse
|
19
|
Hentrich M, Böttcher C, Düchting P, Cheng Y, Zhao Y, Berkowitz O, Masle J, Medina J, Pollmann S. The jasmonic acid signaling pathway is linked to auxin homeostasis through the modulation of YUCCA8 and YUCCA9 gene expression. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 74:626-37. [PMID: 23425284 PMCID: PMC3654092 DOI: 10.1111/tpj.12152] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 01/24/2013] [Accepted: 02/12/2013] [Indexed: 05/18/2023]
Abstract
Interactions between phytohormones play important roles in the regulation of plant growth and development, but knowledge of the networks controlling hormonal relationships, such as between oxylipins and auxins, is just emerging. Here, we report the transcriptional regulation of two Arabidopsis YUCCA genes, YUC8 and YUC9, by oxylipins. Similar to previously characterized YUCCA family members, we show that both YUC8 and YUC9 are involved in auxin biosynthesis, as demonstrated by the increased auxin contents and auxin-dependent phenotypes displayed by gain-of-function mutants as well as the significantly decreased indole-3-acetic acid (IAA) levels in yuc8 and yuc8/9 knockout lines. Gene expression data obtained by qPCR analysis and microscopic examination of promoter-reporter lines reveal an oxylipin-mediated regulation of YUC9 expression that is dependent on the COI1 signal transduction pathway. In support of these findings, the roots of the analyzed yuc knockout mutants displayed a reduced response to methyl jasmonate (MeJA). The similar response of the yuc8 and yuc9 mutants to MeJA in cotyledons and hypocotyls suggests functional overlap of YUC8 and YUC9 in aerial tissues, while their function in roots shows some specificity, probably in part related to different spatio-temporal expression patterns of the two genes. These results provide evidence for an intimate functional relationship between oxylipin signaling and auxin homeostasis.
Collapse
Affiliation(s)
- Mathias Hentrich
- Department of Plant Physiology, Ruhr-University Bochum, Bochum, Germany
| | | | - Petra Düchting
- Department of Plant Physiology, Ruhr-University Bochum, Bochum, Germany
| | - Youfa Cheng
- Section of Cell and Developmental Biology, University of California at San Diego, La Jolla, USA
| | - Yunde Zhao
- Section of Cell and Developmental Biology, University of California at San Diego, La Jolla, USA
| | - Oliver Berkowitz
- Research School of Biology, Australian National University, Canberra, Australia
| | - Josette Masle
- Research School of Biology, Australian National University, Canberra, Australia
| | - Joaquín Medina
- Centro de Biotecnología y Genómica de Plantas (CBGP), Campus de Montegancedo, Pozuelo de Alarcón, Spain
| | - Stephan Pollmann
- Centro de Biotecnología y Genómica de Plantas (CBGP), Campus de Montegancedo, Pozuelo de Alarcón, Spain
- Corresponding author: Stephan Pollmann; Centro de Biotecnología y Genómica de Plantas (CBGP), Autopista M-40, km 38, 28223 Pozuelo de Alarcón, Madrid, Spain; Tel.: +34-91-336-4589; Fax: +34-91-715-7721;
| |
Collapse
|
20
|
Pelagio-Flores R, Ortiz-Castro R, López-Bucio J. dhm1, an Arabidopsis mutant with increased sensitivity to alkamides shows tumorous shoot development and enhanced lateral root formation. PLANT MOLECULAR BIOLOGY 2013; 81:609-625. [PMID: 23412925 DOI: 10.1007/s11103-013-0023-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 02/03/2013] [Indexed: 06/01/2023]
Abstract
The control of cell division by growth regulators is critical to proper shoot and root development. Alkamides belong to a class of small lipid amides involved in plant morphogenetic processes, from which N-isobutyl decanamide is one of the most active compounds identified. This work describes the isolation and characterization of an N-isobutyl decanamide-hypersensitive (dhm1) mutant of Arabidopsis (Arabidopsis thaliana). dhm1 seedlings grown in vitro develop disorganized tumorous tissue in petioles, leaves and stems. N-isobutyl decanamide treatment exacerbates the dhm1 phenotype resulting in widespread production of callus-like structures in the mutant. Together with these morphological alterations in shoot, dhm1 seedlings sustained increased lateral root formation and greater sensitivity to alkamides in the inhibition of primary root growth. The mutants also show reduced etiolation when grown in darkness. When grown in soil, adult dhm1 plants were characterized by reduced plant size, and decreased fertility. Genetic analysis indicated that the mutant phenotype segregates as a single recessive Mendelian trait. Developmental alterations in dhm1 were related to an enhanced expression of the cell division marker CycB1-uidA both in the shoot and root system, which correlated with altered expression of auxin and cytokinin responsive gene markers. Pharmacological inhibition of auxin transport decreased LR formation in WT and dhm1 seedlings in a similar manner, indicating that auxin transport is involved in the dhm1 root phenotype. These data show an important role of alkamide signaling in cell proliferation and plant architecture remodeling likely acting through the DHM1 protein.
Collapse
Affiliation(s)
- Ramón Pelagio-Flores
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B3, Ciudad Universitaria, C. P. 58030, Morelia, Michoacán, Mexico
| | | | | |
Collapse
|
21
|
Okumura KI, Goh T, Toyokura K, Kasahara H, Takebayashi Y, Mimura T, Kamiya Y, Fukaki H. GNOM/FEWER ROOTS is required for the establishment of an auxin response maximum for arabidopsis lateral root initiation. PLANT & CELL PHYSIOLOGY 2013; 54:406-17. [PMID: 23390202 PMCID: PMC3589829 DOI: 10.1093/pcp/pct018] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Lateral root (LR) formation in vascular plants is regulated by auxin. The mechanisms of LR formation are not fully understood. Here, we have identified a novel recessive mutation in Arabidopsis thaliana, named fewer roots (fwr), that drastically reduces the number of LRs. Expression analyses of DR5::GUS, an auxin response reporter, and pLBD16::GUS, an LR initiation marker, suggested that FWR is necessary for the establishment of an auxin response maximum in LR initiation sites. We further identified that the fwr phenotypes are caused by a missense mutation in the GNOM gene, encoding an Arf-GEF (ADP ribosylation factor-GDP/GTP exchange factor), which regulates the recycling of PINs, the auxin efflux carriers. The fwr roots showed enhanced sensitivity to brefeldin A in a root growth inhibition assay, indicating that the fwr mutation reduces the Arf-GEF activity of GNOM. However, the other developmental processes except for LR formation appeared to be unaffected in the fwr mutant, indicating that fwr is a weaker allele of gnom compared with the other gnom alleles with pleiotropic phenotypes. The localization of PIN1-green fluorescent protein (GFP) appeared to be unaffected in the fwr roots but the levels of endogenous IAA were actually higher in the fwr roots than in the wild type. These results indicate that LR initiation is one of the most sensitive processes among GNOM-dependent developmental processes, strongly suggesting that GNOM is required for the establishment of the auxin response maximum for LR initiation, probably through the regulation of local and global auxin distribution in the root.
Collapse
Affiliation(s)
- Ken-ichi Okumura
- Department of Biology, Graduate School of Science, Kobe University, 1-1 Rokkodai, Kobe, 657-8501 Japan
- These authors contributed equally to this work
| | - Tatsuaki Goh
- Department of Biology, Graduate School of Science, Kobe University, 1-1 Rokkodai, Kobe, 657-8501 Japan
- These authors contributed equally to this work
| | - Koichi Toyokura
- Department of Biology, Graduate School of Science, Kobe University, 1-1 Rokkodai, Kobe, 657-8501 Japan
| | | | | | - Tetsuro Mimura
- Department of Biology, Graduate School of Science, Kobe University, 1-1 Rokkodai, Kobe, 657-8501 Japan
| | - Yuji Kamiya
- Plant Science Center, RIKEN, Yokohama, Kanagawa, 230-0045 Japan
| | - Hidehiro Fukaki
- Department of Biology, Graduate School of Science, Kobe University, 1-1 Rokkodai, Kobe, 657-8501 Japan
- *Corresponding author: E-mail, ; Fax: +81-78-803-5721
| |
Collapse
|
22
|
Zhao SQ, Xiang JJ, Xue HW. Studies on the rice LEAF INCLINATION1 (LC1), an IAA-amido synthetase, reveal the effects of auxin in leaf inclination control. MOLECULAR PLANT 2013; 6:174-87. [PMID: 22888153 DOI: 10.1093/mp/sss064] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The angle of rice leaf inclination is an important agronomic trait and closely related to the yields and architecture of crops. Although few mutants with altered leaf angles have been reported, the molecular mechanism remains to be elucidated, especially whether hormones are involved in this process. Through genetic screening, a rice gain-of-function mutant leaf inclination1, lc1-D, was identified from the Shanghai T-DNA Insertion Population (SHIP). Phenotypic analysis confirmed the exaggerated leaf angles of lc1-D due to the stimulated cell elongation at the lamina joint. LC1 is transcribed in various tissues and encodes OsGH3-1, an indole-3-acetic acid (IAA) amido synthetase, whose homolog of Arabidopsis functions in maintaining the auxin homeostasis by conjugating excess IAA to various amino acids. Indeed, recombinant LC1 can catalyze the conjugation of IAA to Ala, Asp, and Asn in vitro, which is consistent with the decreased free IAA amount in lc1-D mutant. lc1-D is insensitive to IAA and hypersensitive to exogenous BR, in agreement with the microarray analysis that reveals the altered transcriptions of genes involved in auxin signaling and BR biosynthesis. These results indicate the crucial roles of auxin homeostasis in the leaf inclination control.
Collapse
Affiliation(s)
- Shu-Qing Zhao
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | | | | |
Collapse
|
23
|
Munt O, Prüfer D, Schulze Gronover C. A novel C-S lyase from the latex-producing plant Taraxacum brevicorniculatum displays alanine aminotransferase and l-cystine lyase activity. JOURNAL OF PLANT PHYSIOLOGY 2013; 170:33-40. [PMID: 23073363 DOI: 10.1016/j.jplph.2012.08.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 08/14/2012] [Accepted: 08/16/2012] [Indexed: 06/01/2023]
Abstract
We isolated a novel pyridoxal-5-phosphate-dependent l-cystine lyase from the dandelion Taraxacum brevicorniculatum. Real time qPCR analysis showed that C-S lyase from Taraxacum brevicorniculatum (TbCSL) mRNA is expressed in all plant tissues, although at relatively low levels in the latex and pedicel. The 1251 bp TbCSL cDNA encodes a protein with a calculated molecular mass of 46,127 kDa. It is homologous to tyrosine and alanine aminotransferases (AlaATs) as well as to an Arabidopsis thaliana carbon-sulfur lyase (C-S lyase) (SUR1), which has a role in glucosinolate metabolism. TbCSL displayed in vitrol-cystine lyase and AlaAT activities of 4 and 19nkatmg(-1) protein, respectively. However, we detected no in vitro tyrosine aminotransferase (TyrAT) activity and RNAi knockdown of the enzyme had no effect on phenotype, showing that TbCSL substrates might be channeled into redundant pathways. TbCSL is in vivo localized in the cytosol and functions as a C-S lyase or an aminotransferase in planta, but the purified enzyme converts at least two substrates specifically, and can thus be utilized for further in vitro applications.
Collapse
Affiliation(s)
- Oliver Munt
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, Hindenburgplatz 55, 48143 Münster, Germany
| | | | | |
Collapse
|
24
|
Guo D, Liang J, Qiao Y, Yan Y, Li L, Dai Y. Involvement of G1-to-S transition and AhAUX-dependent auxin transport in abscisic acid-induced inhibition of lateral root primodia initiation in Arachis hypogaea L. JOURNAL OF PLANT PHYSIOLOGY 2012; 169:1102-11. [PMID: 22633819 DOI: 10.1016/j.jplph.2012.03.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2011] [Revised: 03/19/2012] [Accepted: 03/23/2012] [Indexed: 05/04/2023]
Abstract
Previous study indicated that increasing endogenous abscisic acid (ABA) level could inhibit the lateral root (LR) formation of peanuts. In this study, we investigated the mechanisms by which ABA regulated lateral root primordia (LRP) initiation in peanuts (Arachis hypogaea L). Results suggested that ABA inhibited LRP initiation through blocking G1-to-S transition in seedlings and mature roots: e.g. 5.8% increase in the proportion of G1 phase and 18% decrease in the proportion of S phase after ABA treatment for 6 days. Further study of the expression of the cell cycle marker gene for G2-to-M transition in peanut roots suggested that AhCYCB1 expression was regulated by ABA. We also investigated the cooperative regulation of LRP initiation by ABA and indole-3-acetic acid (IAA). ABA treatment greatly reduced the effects of endogenous IAA on mature roots. The expression of the IAA polar transport gene AhAUX1 appeared to be regulated by ABA since ABA inhibited auxin-mediated LRP initiation by suppressing AhAUX-dependent auxin transport in peanut roots. We further examined the effect of ABA on the expression of DR5::GUS and AtAUX1 in the model plant Arabidopsis. The results of Arabidopsis were consistent with that of the peanut.
Collapse
Affiliation(s)
- Dongliang Guo
- College of Life Sciences, South China Normal University, Guangdong Provincial Key Lab of Biotechnology for Plant Development, Guangzhou 510631, PR China
| | | | | | | | | | | |
Collapse
|
25
|
Song JB, Huang SQ, Dalmay T, Yang ZM. Regulation of leaf morphology by microRNA394 and its target LEAF CURLING RESPONSIVENESS. PLANT & CELL PHYSIOLOGY 2012; 53:1283-94. [PMID: 22619471 DOI: 10.1093/pcp/pcs080] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The present study identified Arabidopsis miR394 and its target, an F-box (SKP1-Cullin/CDC53-F-box) gene At1g27340 (here referred to as LEAF CURLING RESPONSIVENESS, LCR), for regulation of leaf curling-related morphology. The loss-of-function lcr mutants exhibit pleiotropic defects with semi-dwarfism, altered leaf shape and a shorter stem. Overexpression of an miR394-resistant version of LCR under the 35S promoter (35S:m5LCR) and target mimicry MIM394 resulted in a curled-down leaf defect. Conversely, transgenic plants overexpressing 35S:MIR394a/b display a curled-up leaf phenotype. Detailed analyses show that there is a certain level of LCR that is optimal for leaf morphology, but lower or higher levels lead to abnormal leaf development, indicating that expression of miR394 in the leaf lamina is necessary for proper leaf morphology. Because the phytohormone auxin plays a crucial role in leaf morphogenesis and patterning, the DR5-GUS reporter gene was used to monitor the auxin response. We show that DR5 expression patterns in lcr and 35S::m5LCR plants were significantly different from those in the wild type. Also, overexpression of LCR in 35S::m5LCR plants drastically decreased the expression of the auxin-responsive genes IAA3, AXR3 and IAMT1, whereas increased expression of the genes was found in 35S::MIR394a plants. These results indicate that miR394 and its target LCR are involved in the regulation of leaf development.
Collapse
MESH Headings
- Agrobacterium tumefaciens/genetics
- Agrobacterium tumefaciens/metabolism
- Amino Acid Sequence
- Arabidopsis/genetics
- Arabidopsis/metabolism
- Arabidopsis/physiology
- Arabidopsis Proteins/genetics
- Arabidopsis Proteins/metabolism
- Chromosomes, Plant/genetics
- Chromosomes, Plant/metabolism
- Cloning, Molecular
- Gene Expression Regulation, Plant
- Genes, Plant
- Genes, Reporter
- Indoleacetic Acids/metabolism
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Molecular Sequence Data
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Phenotype
- Plant Leaves/genetics
- Plant Leaves/physiology
- Plants, Genetically Modified/genetics
- Plants, Genetically Modified/metabolism
- Plants, Genetically Modified/physiology
- Promoter Regions, Genetic
- RNA, Plant/genetics
- RNA, Plant/metabolism
- Transcription Factors
- Transformation, Genetic
Collapse
Affiliation(s)
- Jian Bo Song
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | | | | | | |
Collapse
|
26
|
Mei Y, Jia WJ, Chu YJ, Xue HW. Arabidopsis phosphatidylinositol monophosphate 5-kinase 2 is involved in root gravitropism through regulation of polar auxin transport by affecting the cycling of PIN proteins. Cell Res 2011; 22:581-97. [PMID: 21894193 DOI: 10.1038/cr.2011.150] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Phosphatidylinositol monophosphate 5-kinase (PIP5K) catalyzes the synthesis of PI-4,5-bisphosphate (PtdIns(4,5)P(2)) by phosphorylation of PI-4-phosphate at the 5 position of the inositol ring, and is involved in regulating multiple developmental processes and stress responses. We here report on the functional characterization of Arabidopsis PIP5K2, which is expressed during lateral root initiation and elongation, and whose expression is enhanced by exogenous auxin. The knockout mutant pip5k2 shows reduced lateral root formation, which could be recovered with exogenous auxin, and interestingly, delayed root gravity response that could not be recovered with exogenous auxin. Crossing with the DR5-GUS marker line and measurement of free IAA content confirmed the reduced auxin accumulation in pip5k2. In addition, analysis using the membrane-selective dye FM4-64 revealed the decelerated vesicle trafficking caused by PtdIns(4,5)P(2) reduction, which hence results in suppressed cycling of PIN proteins (PIN2 and 3), and delayed redistribution of PIN2 and auxin under gravistimulation in pip5k2 roots. On the contrary, PtdIns(4,5)P(2) significantly enhanced the vesicle trafficking and cycling of PIN proteins. These results demonstrate that PIP5K2 is involved in regulating lateral root formation and root gravity response, and reveal a critical role of PIP5K2/PtdIns(4,5)P(2) in root development through regulation of PIN proteins, providing direct evidence of crosstalk between the phosphatidylinositol signaling pathway and auxin response, and new insights into the control of polar auxin transport.
Collapse
Affiliation(s)
- Yu Mei
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology & Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China
| | | | | | | |
Collapse
|
27
|
Lee YC, Johnson JM, Chien CT, Sun C, Cai D, Lou B, Oelmüller R, Yeh KW. Growth promotion of Chinese cabbage and Arabidopsis by Piriformospora indica is not stimulated by mycelium-synthesized auxin. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2011; 24:421-31. [PMID: 21375386 DOI: 10.1094/mpmi-05-10-0110] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Piriformospora indica, an endophytic fungus of the order Sebacinales, interacts with the roots of a large variety of plant species. We compared the interaction of this fungus with Chinese cabbage (Brassica campestris subsp. chinensis) and Arabidopsis seedlings. The development of shoots and roots of Chinese cabbage seedlings was strongly promoted by P. indica and the fresh weight of the seedlings increased approximately twofold. The strong stimulation of root hair development resulted in a bushy root phenotype. The auxin level in the infected Chinese cabbage roots was twofold higher compared with the uncolonized controls. Three classes of auxin-related genes, which were upregulated by P. indica in Chinese cabbage roots, were isolated from a double-subtractive expressed sequence tag library: genes for proteins related to cell wall acidification, intercellular auxin transport carrier proteins such as AUX1, and auxin signal proteins. Overexpression of B. campestris BcAUX1 in Arabidopsis strongly promoted growth and biomass production of Arabidopsis seedlings and plants; the roots were highly branched but not bushy when compared with colonized Chinese cabbage roots. This suggests that BcAUX1 is a target of P. indica in Chinese cabbage. P. indica also promoted growth of Arabidopsis seedlings but the auxin levels were not higher and auxin genes were not upregulated, implying that auxin signaling is a more important target of P. indica in Chinese cabbage than in Arabidopsis. The fungus also stimulated growth of Arabidopsis aux1 and aux1/axr4 and rhd6 seedlings. Furthermore, a component in an exudate fraction from P. indica but not auxin stimulated growth of Chinese cabbage and Arabidopsis seedlings. We propose that activation of auxin biosynthesis and signaling in the roots might be the cause for the P. indica-mediated growth phenotype in Chinese cabbage.
Collapse
Affiliation(s)
- Yin-Chen Lee
- Institute of Plant Biology, College of Life Science, National Taiwan University, Taipei, 106, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Ross JJ, Weston DE, Davidson SE, Reid JB. Plant hormone interactions: how complex are they? PHYSIOLOGIA PLANTARUM 2011; 141:299-309. [PMID: 21214880 DOI: 10.1111/j.1399-3054.2011.01444.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Models describing plant hormone interactions are often complex and web-like. Here we assess several suggested interactions within one experimental system, elongating pea internodes. Results from this system indicate that at least some suggested interactions between auxin, gibberellins (GAs), brassinosteroids (BRs), abscisic acid (ABA) and ethylene do not occur in this system or occur in the reverse direction to that suggested. Furthermore, some of the interactions are relatively weak and may be of little physiological relevance. This is especially true if plant hormones are assumed to show a log-linear response curve as many empirical results suggest. Although there is strong evidence to support some interactions between hormones (e.g. auxin stimulating ethylene and bioactive GA levels), at least some of the web-like complexities do not appear to be justified or are overstated. Simpler and more targeted models may be developed by dissecting out key interactions with major physiological effects.
Collapse
Affiliation(s)
- John J Ross
- School of Plant Science, University of Tasmania, Private Bag 55, Hobart, Tasmania 7001, Australia
| | | | | | | |
Collapse
|
29
|
Fu J, Yu H, Li X, Xiao J, Wang S. Rice GH3 gene family: regulators of growth and development. PLANT SIGNALING & BEHAVIOR 2011; 6:570-4. [PMID: 21447996 PMCID: PMC3142395 DOI: 10.4161/psb.6.4.14947] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Accepted: 01/25/2011] [Indexed: 05/20/2023]
Abstract
Auxin is an indispensable hormone throughout the lifetime of nearly all plant species. Several aspects of plant growth and development are rigidly governed by auxin, from micro to macro hierarchies; auxin also has a close relationship with plant-pathogen interactions. Undoubtedly, precise auxin levels are vitally important to plants, which have many effective mechanisms to maintain auxin homeostasis. One mechanism is conjugating amino acid to excessive indole-3-acetic acid (IAA; main form of auxin) through some GH3 family proteins to inactivate it. Our previous study demonstrated that GH3-2 mediated broad-spectrum resistance in rice (Oryza sativa L.) by suppressing pathogen-induced IAA accumulation and downregulating auxin signaling. Here, we further investigated the expression pattern of GH3-2 and other GH3 family paralogues in the life cycle of rice and presented the possible function of GH3-2 on rice root development by histochemical analysis of GH3-2 promoter:GUS reporter transgenic plants.
Collapse
Affiliation(s)
- Jing Fu
- Huazhong Agricultural University, Wuhan, China
| | | | | | | | | |
Collapse
|
30
|
Ross JJ, Tivendale ND, Reid JB, Davies NW, Molesworth PP, Lowe EK, Smith JA, Davidson SE. Reassessing the role of YUCCAs in auxin biosynthesis. PLANT SIGNALING & BEHAVIOR 2011; 6:437-9. [PMID: 21358284 PMCID: PMC3142432 DOI: 10.4161/psb.6.3.14450] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
It is remarkable that although auxin was the first growth-promoting plant hormone to be discovered, and although more researchers work on this hormone than on any other, we cannot be definitive about the pathways of auxin synthesis in plants. In 2001, there appeared to be a dramatic development in this field, with the announcement of a new gene, and a new intermediate, purportedly from the tryptamine pathway for converting tryptophan to the main endogenous auxin, indole-3-acetic acid (IAA). Recently, however, we presented evidence challenging the original and subsequent identifications of the intermediate concerned.
Collapse
Affiliation(s)
- John J Ross
- School of Plant Science, University of Tasmania, Hobart, TAS, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Prasad ME, Schofield A, Lyzenga W, Liu H, Stone SL. Arabidopsis RING E3 ligase XBAT32 regulates lateral root production through its role in ethylene biosynthesis. PLANT PHYSIOLOGY 2010; 153:1587-96. [PMID: 20511490 PMCID: PMC2923906 DOI: 10.1104/pp.110.156976] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Accepted: 05/26/2010] [Indexed: 05/19/2023]
Abstract
XBAT32, a member of the RING domain-containing ankyrin repeat subfamily of E3 ligases, was previously identified as a positive regulator of lateral root development. Arabidopsis (Arabidopsis thaliana) plants harboring a mutation in XBAT32 produce fewer lateral roots that wild-type plants. We found that xbat32 mutants produce significantly more ethylene than wild-type plants and that inhibition of ethylene biosynthesis or perception significantly increased xbat32 lateral root production. XBAT32 interacts with the ethylene biosynthesis enzymes AMINOCYCLOPROPANE-1-CARBOXYLIC ACID SYNTHASE4 (ACS4) and ACS7 in yeast-two-hybrid assays. XBAT32 is capable of catalyzing the attachment of ubiquitin to both ACS4 and ACS7 in in vitro ubiquitination assays. These results suggest that XBAT32 negatively regulates ethylene biosynthesis by modulating the abundance of ACS proteins. Loss of XBAT32 may promote the stabilization of ACSs and lead to increased ethylene synthesis and suppression of lateral root formation. XBAT32 may also contribute to the broader hormonal cross talk that influences lateral root development. While auxin treatments only partially rescue the lateral root defect of xbat32, they completely restore wild-type levels of xbat32 lateral root production when coupled with ethylene inhibition. Abscisic acid, an antagonist of ethylene synthesis/signaling, was also found to stimulate rather than inhibit xbat32 lateral root formation, and abscisic acid acts synergistically with auxin to promote xbat32 lateral root production.
Collapse
|
32
|
Ikeyama Y, Tasaka M, Fukaki H. RLF, a cytochrome b(5)-like heme/steroid binding domain protein, controls lateral root formation independently of ARF7/19-mediated auxin signaling in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 62:865-75. [PMID: 20230485 DOI: 10.1111/j.1365-313x.2010.04199.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Lateral root (LR) formation is important for the establishment of root architecture in higher plants. Recent studies have revealed that LR formation is regulated by an auxin signaling pathway that depends on auxin response factors ARF7 and ARF19, and auxin/indole-3-acetic acid (Aux/IAA) proteins including SOLITARY-ROOT (SLR)/IAA14. To understand the molecular mechanisms of LR formation, we isolated a recessive mutant rlf (reduced lateral root formation) in Arabidopsis thaliana. The rlf-1 mutant showed reduction of not only emerged LRs but also LR primordia. Analyses using cell-cycle markers indicated that the rlf-1 mutation inhibits the first pericycle cell divisions involved in LR initiation. The rlf-1 mutation did not affect auxin-induced root growth inhibition but did affect LR formation over a wide range of auxin concentrations. However, the rlf-1 mutation had almost no effect on auxin-inducible expression of LATERAL ORGAN BOUNDARIES-DOMAIN16/ASYMMETRIC LEAVES2-LIKE18 (LBD16/ASL18) and LBD29/ASL16 genes, which are downstream targets of ARF7/19 for LR formation. These results indicate that ARF7/19-mediated auxin signaling is not blocked by the rlf-1 mutation. We found that the RLF gene encodes At5g09680, a protein with a cytochrome b(5)-like heme/steroid binding domain. RLF is ubiquitously expressed in almost all organs, and the protein localizes in the cytosol. These results, together with analysis of the genetic interaction between the rlf-1 and arf7/19 mutations, indicate that RLF is a cytosolic protein that positively controls the early cell divisions involved in LR initiation, independent of ARF7/19-mediated auxin signaling.
Collapse
Affiliation(s)
- Yoshifumi Ikeyama
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma 630-0192, Japan
| | | | | |
Collapse
|
33
|
Shi CL, Park HB, Lee JS, Ryu S, Ryu CM. Inhibition of primary roots and stimulation of lateral root development in Arabidopsis thaliana by the rhizobacterium Serratia marcescens 90-166 is through both auxin-dependent and -independent signaling pathways. Mol Cells 2010; 29:251-8. [PMID: 20108166 DOI: 10.1007/s10059-010-0032-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2009] [Revised: 11/17/2009] [Accepted: 11/18/2009] [Indexed: 11/24/2022] Open
Abstract
The rhizobacterium Serratia marcescens strain 90-166 was previously reported to promote plant growth and induce resistance in Arabidopsis thaliana. In this study, the influence of strain 90-166 on root development was studied in vitro. We observed inhibition of primary root elongation, enhanced lateral root emergence, and early emergence of second order lateral roots after inoculation with strain 90-166 at a certain distance from the root. Using the DR5::GUS transgenic A. thaliana plant and an auxin transport inhibitor, N-1-naphthylphthalamic acid, the altered root development was still elicited by strain 90-166, indicating that this was not a result of changes in plant auxin levels. Intriguingly, indole-3-acetic acid, a major auxin chemical, was only identified just above the detection limit in liquid culture of strain 90-166 using liquid chromatography-mass spectrometry. Focusing on bacterial determinants of the root alterations, we found that primary root elongation was inhibited in seedlings treated with cell supernatant (secreted compounds), while lateral root formation was induced in seedlings treated with lysate supernatant (intracellular compounds). Further study revealed that the alteration of root development elicited by strain 90-166 involved the jasmonate, ethylene, and salicylic acid signaling pathways. Collectively, our results suggest that strain 90-166 can contribute to plant root development via multiple signaling pathways.
Collapse
Affiliation(s)
- Chun-Lin Shi
- Laboratory of Microbial Genomics, Industrial Biochemistry and Bioenergy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 305-803, Korea
| | | | | | | | | |
Collapse
|
34
|
Morquecho-Contreras A, Méndez-Bravo A, Pelagio-Flores R, Raya-González J, Ortíz-Castro R, López-Bucio J. Characterization of drr1, an alkamide-resistant mutant of Arabidopsis, reveals an important role for small lipid amides in lateral root development and plant senescence. PLANT PHYSIOLOGY 2010; 152:1659-73. [PMID: 20107026 PMCID: PMC2832232 DOI: 10.1104/pp.109.149989] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2009] [Accepted: 01/20/2010] [Indexed: 05/20/2023]
Abstract
Alkamides belong to a class of small lipid signals of wide distribution in plants, which are structurally related to the bacterial quorum-sensing signals N-acyl-l-homoserine lactones. Arabidopsis (Arabidopsis thaliana) seedlings display a number of root developmental responses to alkamides, including primary root growth inhibition and greater formation of lateral roots. To gain insight into the regulatory mechanisms by which these compounds alter plant development, we performed a mutant screen for identifying Arabidopsis mutants that fail to inhibit primary root growth when grown under a high concentration of N-isobutyl decanamide. A recessive N-isobutyl decanamide-resistant mutant (decanamide resistant root [drr1]) was isolated because of its continued primary root growth and reduced lateral root formation in response to this alkamide. Detailed characterization of lateral root primordia development in the wild type and drr1 mutants revealed that DRR1 is required at an early stage of pericycle cell activation to form lateral root primordia in response to both N-isobutyl decanamide and N-decanoyl-l-homoserine lactone, a highly active bacterial quorum-sensing signal. Exogenously supplied auxin similarly inhibited primary root growth and promoted lateral root formation in wild-type and drr1 seedlings, suggesting that alkamides and auxin act by different mechanisms to alter root system architecture. When grown both in vitro and in soil, drr1 mutants showed dramatically increased longevity and reduced hormone- and age-dependent senescence, which were related to reduced lateral root formation when exposed to stimulatory concentrations of jasmonic acid. Taken together, our results provide genetic evidence indicating that alkamides and N-acyl-l-homoserine lactones can be perceived by plants to modulate root architecture and senescence-related processes possibly by interacting with jasmonic acid signaling.
Collapse
Affiliation(s)
| | | | | | | | | | - José López-Bucio
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, CP 58030 Morelia, Michoacán, Mexico
| |
Collapse
|
35
|
Kondou Y, Higuchi M, Matsui M. High-throughput characterization of plant gene functions by using gain-of-function technology. ANNUAL REVIEW OF PLANT BIOLOGY 2010; 61:373-93. [PMID: 20192750 DOI: 10.1146/annurev-arplant-042809-112143] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Gain-of-function approaches have been used as an alternative or complementary method to loss-of-function approaches as well as to confer new functions to plants. Gain-of-function is achieved by increasing gene expression levels through the random activation of endogenous genes by transcriptional enhancers or the expression of individual transgenes by transformation. The advantages of gain-of-function approaches compared to loss-of-function approaches for the characterization of gene functions include the abilities to (a) analyze individual gene family members, (b) characterize the function of genes from nonmodel plants using a heterologous expression system, and (c) identify genes that confer stress tolerance to plants that result from the introduction of transgenes. In this review, we describe the current status of gain-of-function mutagenesis and provide several examples of how gene functions have been characterized via high-throughput screening using gain-of-function technology.
Collapse
Affiliation(s)
- Youichi Kondou
- Plant Functional Genomics Research Team, RIKEN Plant Science Center, Tsurumi-ku, Yokohama, Japan.
| | | | | |
Collapse
|
36
|
Krupková E, Schmülling T. Developmental consequences of the tumorous shoot development1 mutation, a novel allele of the cellulose-synthesizing KORRIGAN1 gene. PLANT MOLECULAR BIOLOGY 2009; 71:641-55. [PMID: 19826767 DOI: 10.1007/s11103-009-9546-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Accepted: 08/28/2009] [Indexed: 05/15/2023]
Abstract
This work describes the further characterization of the tumorous shoot development1 (tsd1) mutant of Arabidopsis thaliana, which develops disorganized tumorous-like shoot tissue instead of organized leaves and stems. Map-based cloning revealed that tsd1 is a novel strong allele of the KOR1 gene, encoding a membrane-bound endo-1,4-beta-D-glucanase involved in cellulose synthesis. To study developmental changes accompanying the aberrant growth of the tsd1 mutant, patterning in the meristems and the hormonal status were analysed by marker genes. Expression of key regulators of meristem maintenance, the CLV3 and STM genes, indicated the presence of numerous meristems in the tsd1 shoot callus. Expression of the LFY::GUS marker supported the ability of the tsd1 callus to form organ primordia, which however failed to develop further. An epidermal marker showed that the L1 layer was maintained only in distinct areas of the tsd1 callus, which could be a reason of disorganized shoot growth. In the tsd1 root meristem, quiescent center activity was lost early after germination, which caused differentiation of the root meristem. The spatial expression of genes reporting the auxin and cytokinin status was altered in the tsd1 mutant. Modifying the endogenous levels of these hormones partially rescued shoot and root development of the tsd1 mutant. Together, the work shows that TSD1/KOR1 is required for maintaining a correct meristematic pattern and organ growth as well as for a normal hormonal response.
Collapse
Affiliation(s)
- Eva Krupková
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences (DCPS), Freie Universität Berlin, Albrecht-Thaer-Weg 6, 14195 Berlin, Germany
| | | |
Collapse
|
37
|
Zhang J, Chen R, Xiao J, Zou L, Li H, Ouyang B, Ye Z. Isolation and characterization ofSlIAA3, anAux/IAAgene from tomato. ACTA ACUST UNITED AC 2009; 18:407-14. [PMID: 17676470 DOI: 10.1080/10425170701517820] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Aux/IAA genes are a large gene family in plant, many of which are rapidly and specifically induced by auxin. Previous data have illustrated that Aux/IAA genes participated in both auxin signaling and plant development. In order to discover the biofunction of SlIAA3 gene, an Aux/IAA gene from tomato, we isolated the full-length cDNA and the corresponding genomic DNA of this gene. Sequence analysis results showed that there were two introns and three extrons in SlIAA3 gene. DNA gel-blot analysis revealed that SlIAA3 was a single copy in tomato and SlIAA3 was bin-mapped in chromosome 9-G region using 75 tomato introgression lines. Expression analysis showed that SlIAA3 was expressed in all tissues tested, whereas the levels of transcript abundance were different. The expression patterns indicating that SlIAA3 gene should be involved in the root development and auxin signaling.
Collapse
Affiliation(s)
- Junhong Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
38
|
Strader LC, Bartel B. The Arabidopsis PLEIOTROPIC DRUG RESISTANCE8/ABCG36 ATP binding cassette transporter modulates sensitivity to the auxin precursor indole-3-butyric acid. THE PLANT CELL 2009; 21:1992-2007. [PMID: 19648296 PMCID: PMC2729616 DOI: 10.1105/tpc.109.065821] [Citation(s) in RCA: 155] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2009] [Revised: 06/27/2009] [Accepted: 07/14/2009] [Indexed: 05/18/2023]
Abstract
Plants have developed numerous mechanisms to store hormones in inactive but readily available states, enabling rapid responses to environmental changes. The phytohormone auxin has a number of storage precursors, including indole-3-butyric acid (IBA), which is apparently shortened to active indole-3-acetic acid (IAA) in peroxisomes by a process similar to fatty acid beta-oxidation. Whereas metabolism of auxin precursors is beginning to be understood, the biological significance of the various precursors is virtually unknown. We identified an Arabidopsis thaliana mutant that specifically restores IBA, but not IAA, responsiveness to auxin signaling mutants. This mutant is defective in PLEIOTROPIC DRUG RESISTANCE8 (PDR8)/PENETRATION3/ABCG36, a plasma membrane-localized ATP binding cassette transporter that has established roles in pathogen responses and cadmium transport. We found that pdr8 mutants display defects in efflux of the auxin precursor IBA and developmental defects in root hair and cotyledon expansion that reveal previously unknown roles for IBA-derived IAA in plant growth and development. Our results are consistent with the possibility that limiting accumulation of the IAA precursor IBA via PDR8-promoted efflux contributes to auxin homeostasis.
Collapse
Affiliation(s)
- Lucia C Strader
- Department of Biochemistry and Cell Biology, Rice University, Houston, Texas 77005, USA
| | | |
Collapse
|
39
|
Li H, Cheng Y, Murphy A, Hagen G, Guilfoyle TJ. Constitutive repression and activation of auxin signaling in Arabidopsis. PLANT PHYSIOLOGY 2009; 149:1277-88. [PMID: 19129421 PMCID: PMC2649382 DOI: 10.1104/pp.108.129973] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2008] [Accepted: 01/02/2009] [Indexed: 05/21/2023]
Abstract
Aux/IAA proteins are proposed to be transcriptional repressors that play a crucial role in auxin signaling by interacting with auxin response factors and repressing early/primary auxin response gene expression. In assays with transfected protoplasts, this repression was previously shown to occur when auxin concentrations in a cell are low, and derepression/activation was observed when auxin concentrations are elevated. Here we show that a stabilized version of the Arabidopsis (Arabidopsis thaliana) IAA17 repressor, when expressed constitutively or in a specific cell type in Arabidopsis plants, confers phenotypes similar to plants with decreased auxin levels. In contrast, a stabilized version of IAA17 that was converted to a transcriptional activator confers phenotypes similar to plants with increased auxin levels, when expressed under the same conditions in Arabidopsis plants. Free auxin levels were unchanged compared to control (DR5:beta-glucuronidase), however, in the seedlings expressing the IAA17 repressor and activator. These results together with our previous results carried out in transfected protoplasts suggest that the hormone auxin can be bypassed to regulate auxin signaling in a cell-autonomous manner in plants.
Collapse
Affiliation(s)
- Hanbing Li
- Department of Biochemistry, University of Missouri, Columbia, Missouri 65211, USA
| | | | | | | | | |
Collapse
|
40
|
Contreras-Cornejo HA, Macías-Rodríguez L, Cortés-Penagos C, López-Bucio J. Trichoderma virens, a plant beneficial fungus, enhances biomass production and promotes lateral root growth through an auxin-dependent mechanism in Arabidopsis. PLANT PHYSIOLOGY 2009; 149:1579-92. [PMID: 19176721 PMCID: PMC2649400 DOI: 10.1104/pp.108.130369] [Citation(s) in RCA: 373] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2008] [Accepted: 01/17/2009] [Indexed: 05/18/2023]
Abstract
Trichoderma species belong to a class of free-living fungi beneficial to plants that are common in the rhizosphere. We investigated the role of auxin in regulating the growth and development of Arabidopsis (Arabidopsis thaliana) seedlings in response to inoculation with Trichoderma virens and Trichoderma atroviride by developing a plant-fungus interaction system. Wild-type Arabidopsis seedlings inoculated with either T. virens or T. atroviride showed characteristic auxin-related phenotypes, including increased biomass production and stimulated lateral root development. Mutations in genes involved in auxin transport or signaling, AUX1, BIG, EIR1, and AXR1, were found to reduce the growth-promoting and root developmental effects of T. virens inoculation. When grown under axenic conditions, T. virens produced the auxin-related compounds indole-3-acetic acid, indole-3-acetaldehyde, and indole-3-ethanol. A comparative analysis of all three indolic compounds provided detailed information about the structure-activity relationship based on their efficacy at modulating root system architecture, activation of auxin-regulated gene expression, and rescue of the root hair-defective phenotype of the rhd6 auxin response Arabidopsis mutant. Our results highlight the important role of auxin signaling for plant growth promotion by T. virens.
Collapse
Affiliation(s)
- Hexon Angel Contreras-Cornejo
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, CP 58030 Morelia, Michoacan, Mexico
| | | | | | | |
Collapse
|
41
|
Pfalz M, Vogel H, Kroymann J. The gene controlling the indole glucosinolate modifier1 quantitative trait locus alters indole glucosinolate structures and aphid resistance in Arabidopsis. THE PLANT CELL 2009; 21:985-99. [PMID: 19293369 PMCID: PMC2671713 DOI: 10.1105/tpc.108.063115] [Citation(s) in RCA: 147] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2008] [Revised: 02/26/2009] [Accepted: 03/03/2009] [Indexed: 05/18/2023]
Abstract
Glucosinolates are defensive secondary compounds that display large structural diversity in Arabidopsis thaliana and related plants. Much attention has been paid to variation in the biosynthesis of Met-derived aliphatic glucosinolates and its ecological consequences, but little is known about the genes that cause qualitative and quantitative differences in Trp-derived indole glucosinolates. We use a combination of quantitative trait locus (QTL) fine-mapping and microarray-based transcript profiling to identify CYP81F2 (At5g57220), encoding a cytochrome P450 monooxygenase, as the gene underlying Indole Glucosinolate Modifier1 (IGM1), a metabolic QTL for the accumulation of two modified indole glucosinolates, 4-hydroxy-indole-3-yl-methyl and 4-methoxy-indole-3-yl-methyl glucosinolate. We verify CYP81F2 function with two SALK T-DNA insertion lines and show that CYP81F2 catalyzes the conversion of indole-3-yl-methyl to 4-hydroxy-indole-3-yl-methyl glucosinolate. We further show that the IGM1 QTL is largely caused by differences in CYP81F2 expression, which results from a combination of cis- and trans-acting expression QTL different from known regulators of indole glucosinolate biosynthesis. Finally, we elucidate a potential function of CYP81F2 in plant-insect interactions and find that CYP81F2 contributes to defense against the green peach aphid (Myzus persicae) but not to resistance against herbivory by larvae from four lepidopteran species.
Collapse
Affiliation(s)
- Marina Pfalz
- Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany
| | | | | |
Collapse
|
42
|
Berkowitz O, Jost R, Pollmann S, Masle J. Characterization of TCTP, the translationally controlled tumor protein, from Arabidopsis thaliana. THE PLANT CELL 2008; 20:3430-47. [PMID: 19060111 PMCID: PMC2630444 DOI: 10.1105/tpc.108.061010] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2008] [Revised: 09/30/2008] [Accepted: 11/12/2008] [Indexed: 05/17/2023]
Abstract
The translationally controlled tumor protein (TCTP) is an important component of the TOR (target of rapamycin) signaling pathway, the major regulator of cell growth in animals and fungi. TCTP acts as the guanine nucleotide exchange factor of the Ras GTPase Rheb that controls TOR activity in Drosophila melanogaster. We therefore examined the role of Arabidopsis thaliana TCTP in planta. Plant TCTPs exhibit distinct sequence differences from nonplant homologs but share the key GTPase binding surface. Green fluorescent protein reporter lines show that Arabidopsis TCTP is expressed throughout plant tissues and developmental stages with increased expression in meristematic and expanding cells. Knockout of TCTP leads to a male gametophytic phenotype with normal pollen formation and germination but impaired pollen tube growth. Silencing of TCTP by RNA interference slows vegetative growth; leaf expansion is reduced because of smaller cell size, lateral root formation is reduced, and root hair development is impaired. Furthermore, these lines show decreased sensitivity to an exogenously applied auxin analog and have elevated levels of endogenous auxin. These results identify TCTP as an important regulator of growth in plants and imply a function of plant TCTP as a mediator of TOR activity similar to that known in nonplant systems.
Collapse
Affiliation(s)
- Oliver Berkowitz
- Environmental Biology Group, Research School of Biological Sciences, Australian National University, Canberra ACT 0200, Australia
| | | | | | | |
Collapse
|
43
|
Yamada K, Hasegawa T, Shigemori H. Raphanusanin-induced genes and the characterization of RsCSN3, a raphanusanin-induced gene in etiolated radish hypocotyls. PHYTOCHEMISTRY 2008; 69:2781-92. [PMID: 18952246 DOI: 10.1016/j.phytochem.2008.09.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2008] [Revised: 09/03/2008] [Accepted: 09/07/2008] [Indexed: 05/23/2023]
Abstract
Raphanusanin is a light-induced growth inhibitor involved in inhibition of hypocotyl growth in response to unilateral blue light illumination in radish seedlings. To understand better the role of raphanusanin in growth inhibition, we randomly analyzed raphanusanin-induced genes using a modified DD-RT-PCR (differential display RT-PCR) approach. The differential expression RT-PCR approach resulted in identification of four known candidate genes, of which three encoded functional proteins known to be related to responsiveness to diverse environmental stimuli. One of these genes appeared to be an essential element in the inhibition of hypocotyl growth, and was named RsCSN3 (a homologue of subunit 3 of the COP9 signalosome). During the growth inhibition that was observed within minutes of irradiation, the expression of the RsCSN3 gene was increased by phototropic stimulation, as well as by raphanusanin treatment, suggesting that this gene is involved in light-induced growth inhibition. In addition, down-regulation of the RsCSN3 transcript, that is specifically expressed at 60 min after the onset of stimulation under blue light, green light, and raphanusanin treatment, shows a functional correlation with the phototropic response.
Collapse
|
44
|
Chinchilla D, Frugier F, Raices M, Merchan F, Giammaria V, Gargantini P, Gonzalez-Rizzo S, Crespi M, Ulloa R. A mutant ankyrin protein kinase from Medicago sativa affects Arabidopsis adventitious roots. FUNCTIONAL PLANT BIOLOGY : FPB 2008; 35:92-101. [PMID: 32688760 DOI: 10.1071/fp07209] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2007] [Accepted: 12/14/2007] [Indexed: 05/24/2023]
Abstract
A family of plant kinases containing ankyrin-repeats, the Ankyrin-Protein Kinases (APKs), shows structural resemblance to mammalian Integrin-Linked Kinases (ILKs), key regulators of mammalian cell adhesion. MsAPK1 expression is induced by osmotic stress in roots of Medicago sativa (L.) plants. The Escherichia coli-purified MsAPK1 could only phosphorylate tubulin among a variety of substrates and the enzymatic activity was strictly dependent on Mn2+. MsAPK1 is highly related to two APK genes in Arabidopsis thaliana (L.), AtAPK1 and AtAPK2. Promoter-GUS fusions assays revealed that the Arabidopsis APK genes show distinct expression patterns in roots and hypocotyls. Although Medicago truncatula (L.) plants affected in MsAPK1 expression could not be obtained using in vitro regeneration, A. thaliana plants expressing MsAPK1 or a mutant MsAPK1 protein, in which the conserved aspartate 315 of the kinase catalytic domain was replaced by asparagines (DN-lines), developed normally. The DN mutant lines showed increased capacity to develop adventitious roots when compared with control or MsAPK1-expressing plants. APK-mediated signalling may therefore link perception of external abiotic signals and the microtubule cytoskeleton, and influence adventitious root development.
Collapse
Affiliation(s)
- Delphine Chinchilla
- Institut des Sciences du Végétal (ISV), CNRS, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette, France
| | - Florian Frugier
- Institut des Sciences du Végétal (ISV), CNRS, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette, France
| | - Marcela Raices
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, INGEBI, FCEN-UBA, Vuelta de Obligado 2490, 2do piso, Buenos Aires, 1428 Argentina
| | - Francisco Merchan
- Institut des Sciences du Végétal (ISV), CNRS, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette, France
| | - Veronica Giammaria
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, INGEBI, FCEN-UBA, Vuelta de Obligado 2490, 2do piso, Buenos Aires, 1428 Argentina
| | - Pablo Gargantini
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, INGEBI, FCEN-UBA, Vuelta de Obligado 2490, 2do piso, Buenos Aires, 1428 Argentina
| | - Silvina Gonzalez-Rizzo
- Institut des Sciences du Végétal (ISV), CNRS, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette, France
| | - Martin Crespi
- Institut des Sciences du Végétal (ISV), CNRS, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette, France
| | - Rita Ulloa
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, INGEBI, FCEN-UBA, Vuelta de Obligado 2490, 2do piso, Buenos Aires, 1428 Argentina
| |
Collapse
|
45
|
Li LC, Qin GJ, Tsuge T, Hou XH, Ding MY, Aoyama T, Oka A, Chen Z, Gu H, Zhao Y, Qu LJ. SPOROCYTELESS modulates YUCCA expression to regulate the development of lateral organs in Arabidopsis. THE NEW PHYTOLOGIST 2008; 179:751-764. [PMID: 18557819 DOI: 10.1111/j.1469-8137.2008.02514.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
* Auxin is essential for many aspects of plant growth and development, including the determination of lateral organ shapes. * Here, the characterization of a dominant Arabidopsis thaliana mutant spl-D (SPOROCYTELESS dominant), and the roles of SPL in auxin homeostasis and plant development, are reported. * The spl-D mutant displayed a severe up-curling leaf phenotype caused by increased expression of SPOROCYTELESS/NOZZLE (SPL/NZZ), a putative transcription factor gene that was previously linked to sporocyte formation. The spl-D plants also displayed pleiotropic developmental defects including fewer lateral roots, simpler venation patterns, and reduced shoot apical dominance. The leaf and floral phenotypes of spl-D and SPL over-expression lines were reminiscent of yucca (yuc) triple and quadruple mutants, suggesting that SPL may regulate auxin homeostasis. Consistent with this hypothesis, it was found that over-expression of SPL led to down-regulation of the auxin reporter DR5-GUS, and that many auxin-responsive genes were down-regulated in spl-D leaves. Interestingly, the expression of YUC2 and YUC6, two key genes in auxin biosynthesis, was significantly repressed in spl-D plants. * Taken together with the genetic and phenotypic analysis of spl-D/yuc6-D double mutant, these data suggest that SPL may regulate auxin homeostasis by repressing the transcription of YUC2 and YUC6 and participate in lateral organ morphogenesis.
Collapse
Affiliation(s)
- Lin-Chuan Li
- National Laboratory for Protein Engineering and Plant Genetic Engineering, Peking-Yale Joint Research Center for Plant Molecular Genetics and AgroBiotechnology, College of Life Sciences, Peking University, Beijing 100871, China
| | - Gen-Ji Qin
- National Laboratory for Protein Engineering and Plant Genetic Engineering, Peking-Yale Joint Research Center for Plant Molecular Genetics and AgroBiotechnology, College of Life Sciences, Peking University, Beijing 100871, China
| | - Tomohiko Tsuge
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Xian-Hui Hou
- National Laboratory for Protein Engineering and Plant Genetic Engineering, Peking-Yale Joint Research Center for Plant Molecular Genetics and AgroBiotechnology, College of Life Sciences, Peking University, Beijing 100871, China
| | - Mao-Yu Ding
- National Laboratory for Protein Engineering and Plant Genetic Engineering, Peking-Yale Joint Research Center for Plant Molecular Genetics and AgroBiotechnology, College of Life Sciences, Peking University, Beijing 100871, China
| | - Takashi Aoyama
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Atsuhiro Oka
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Zhangliang Chen
- National Laboratory for Protein Engineering and Plant Genetic Engineering, Peking-Yale Joint Research Center for Plant Molecular Genetics and AgroBiotechnology, College of Life Sciences, Peking University, Beijing 100871, China
| | - Hongya Gu
- National Laboratory for Protein Engineering and Plant Genetic Engineering, Peking-Yale Joint Research Center for Plant Molecular Genetics and AgroBiotechnology, College of Life Sciences, Peking University, Beijing 100871, China
- The National Plant Gene Research Center (Beijing), Beijing 100101, China
| | - Yunde Zhao
- Section of Cell and Developmental Biology, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0116, USA
| | - Li-Jia Qu
- National Laboratory for Protein Engineering and Plant Genetic Engineering, Peking-Yale Joint Research Center for Plant Molecular Genetics and AgroBiotechnology, College of Life Sciences, Peking University, Beijing 100871, China
- The National Plant Gene Research Center (Beijing), Beijing 100101, China
| |
Collapse
|
46
|
Kim JI, Sharkhuu A, Jin JB, Li P, Jeong JC, Baek D, Lee SY, Blakeslee JJ, Murphy AS, Bohnert HJ, Hasegawa PM, Yun DJ, Bressan RA. yucca6, a dominant mutation in Arabidopsis, affects auxin accumulation and auxin-related phenotypes. PLANT PHYSIOLOGY 2007; 145:722-35. [PMID: 17885085 PMCID: PMC2048792 DOI: 10.1104/pp.107.104935] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2007] [Accepted: 09/10/2007] [Indexed: 05/17/2023]
Abstract
Auxin plays critical roles in many aspects of plant growth and development. Although a number of auxin biosynthetic pathways have been identified, their overlapping nature has prevented a clear elucidation of auxin biosynthesis. Recently, Arabidopsis (Arabidopsis thaliana) mutants with supernormal auxin phenotypes have been reported. These mutants exhibit hyperactivation of genes belonging to the YUCCA family, encoding putative flavin monooxygenase enzymes that result in increased endogenous auxin levels. Here, we report the discovery of fertile dominant Arabidopsis hypertall1-1D and hypertall1-2D (yucca6-1D, -2D) mutants that exhibit typical auxin overproduction phenotypic alterations, such as epinastic cotyledons, increased apical dominance, and curled leaves. However, unlike other auxin overproduction mutants, yucca6 plants do not display short or hairy root phenotypes and lack morphological changes under dark conditions. In addition, yucca6-1D and yucca6-2D have extremely tall (>1 m) inflorescences with extreme apical dominance and twisted cauline leaves. Microarray analyses revealed that expression of several indole-3-acetic acid-inducible genes, including Aux/IAA, SMALL AUXIN-UP RNA, and GH3, is severalfold higher in yucca6 mutants than in the wild type. Tryptophan (Trp) analog feeding experiments and catalytic activity assays with recombinant YUCCA6 indicate that YUCCA6 is involved in a Trp-dependent auxin biosynthesis pathway. YUCCA6:GREEN FLUORESCENT PROTEIN fusion protein indicates YUCCA6 protein exhibits a nonplastidial subcellular localization in an unidentified intracellular compartment. Taken together, our results identify YUCCA6 as a functional member of the YUCCA family with unique roles in growth and development.
Collapse
Affiliation(s)
- Jeong Im Kim
- Center for Plant Environmental Stress Physiology , Purdue University, West Lafayette, Indiana 47906-2010, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Stepanova AN, Yun J, Likhacheva AV, Alonso JM. Multilevel interactions between ethylene and auxin in Arabidopsis roots. THE PLANT CELL 2007; 19:2169-85. [PMID: 17630276 PMCID: PMC1955696 DOI: 10.1105/tpc.107.052068] [Citation(s) in RCA: 367] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Hormones play a central role in the coordination of internal developmental processes with environmental signals. Herein, a combination of physiological, genetic, cellular, and whole-genome expression profiling approaches has been employed to investigate the mechanisms of interaction between two key plant hormones: ethylene and auxin. Quantification of the morphological effects of ethylene and auxin in a variety of mutant backgrounds indicates that auxin biosynthesis, transport, signaling, and response are required for the ethylene-induced growth inhibition in roots but not in hypocotyls of dark-grown seedlings. Analysis of the activation of early auxin and ethylene responses at the cellular level, as well as of global changes in gene expression in the wild type versus auxin and ethylene mutants, suggests a simple mechanistic model for the interaction between these two hormones in roots, according to which ethylene and auxin can reciprocally regulate each other's biosyntheses, influence each other's response pathways, and/or act independently on the same target genes. This model not only implies existence of several levels of interaction but also provides a likely explanation for the strong ethylene response defects observed in auxin mutants.
Collapse
Affiliation(s)
- Anna N Stepanova
- Department of Genetics, North Carolina State University, Raleigh, North Carolina 27695, USA
| | | | | | | |
Collapse
|
48
|
Wu G, Lewis DR, Spalding EP. Mutations in Arabidopsis multidrug resistance-like ABC transporters separate the roles of acropetal and basipetal auxin transport in lateral root development. THE PLANT CELL 2007; 19:1826-37. [PMID: 17557807 PMCID: PMC1955722 DOI: 10.1105/tpc.106.048777] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Auxin affects the shape of root systems by influencing elongation and branching. Because multidrug resistance (MDR)-like ABC transporters participate in auxin transport, they may be expected to contribute to root system development. This reverse genetic study of Arabidopsis thaliana roots shows that MDR4-mediated basipetal auxin transport did not affect root elongation or branching. However, impaired acropetal auxin transport due to mutation of the MDR1 gene caused 21% of nascent lateral roots to arrest their growth and the remainder to elongate 50% more slowly than the wild type. Reporter gene analyses indicated a severe auxin deficit in the apex of mdr1 but not mdr4 lateral roots. The mdr1 deficit was explained by 40% less acropetal auxin transport within the mdr1 lateral roots. The slow elongation of mdr1 lateral roots was rescued by auxin and phenocopied in the wild type by an inhibitor of polar auxin transport. Confocal microscopy analysis of a functional green fluorescent protein-MDR1 translational fusion showed the protein to be auxin inducible and present in the tissues responsible for acropetal transport in the primary root. The protein also accumulated in lateral root primordia and later in the tissues responsible for acropetal transport within the lateral root, fully supporting the conclusion that auxin levels established by MDR1-dependent acropetal transport control lateral root growth rate to influence root system architecture.
Collapse
Affiliation(s)
- Guosheng Wu
- Department of Botany, University of Wisconsin, Madison, WI 53706, USA
| | | | | |
Collapse
|
49
|
Su N, He K, Jiao Y, Chen C, Zhou J, Li L, Bai S, Li X, Deng XW. Distinct reorganization of the genome transcription associates with organogenesis of somatic embryo, shoots, and roots in rice. PLANT MOLECULAR BIOLOGY 2007; 63:337-49. [PMID: 17072560 DOI: 10.1007/s11103-006-9092-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2006] [Accepted: 09/10/2006] [Indexed: 05/08/2023]
Abstract
Most plant cells retain the capacity to differentiate into all the other cell and organ types that constitute a plant. However, genome-wide transcriptional activities underlying the process of cell differentiation are poorly understood, especially in monocot plants. Here we used a rice (Oryza sativa) cell culture system to generate somatic embryos, which were further induced into shoots and roots. The global transcriptional reorganization during the development of somatic embryos, shoots, and roots from cultured cells was studied using a rice whole genome microarray and verified by RNA blotting analysis of representative genes. Overall, only 1-3% of expressed genes were differentially regulated during each organogenesis process at the examined time point. Also metabolic pathways were minimally regulated. Thus the genes that dictating organ formation should be relatively small in number. Comparison of these three transcriptomes revealed little overlap during these three organogenesis processes. These results indicate that each organogenesis involves specific reorganization of genome expression.
Collapse
Affiliation(s)
- Ning Su
- Peking-Yale Joint Center of Plant Molecular Genetics and Agrobiotechnology, College of Life Sciences, Peking University, Beijing 100871, China
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Osmont KS, Sibout R, Hardtke CS. Hidden branches: developments in root system architecture. ANNUAL REVIEW OF PLANT BIOLOGY 2007; 58:93-113. [PMID: 17177637 DOI: 10.1146/annurev.arplant.58.032806.104006] [Citation(s) in RCA: 286] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The root system is fundamentally important for plant growth and survival because of its role in water and nutrient uptake. Therefore, plants rely on modulation of root system architecture (RSA) to respond to a changing soil environment. Although RSA is a highly plastic trait and varies both between and among species, the basic root system morphology and its plasticity are controlled by inherent genetic factors. These mediate the modification of RSA, mostly at the level of root branching, in response to a suite of biotic and abiotic factors. Recent progress in the understanding of the molecular basis of these responses suggests that they largely feed through hormone homeostasis and signaling pathways. Novel factors implicated in the regulation of RSA in response to the myriad endogenous and exogenous signals are also increasingly isolated through alternative approaches such as quantitative trait locus analysis.
Collapse
Affiliation(s)
- Karen S Osmont
- Department of Plant Molecular Biology, University of Lausanne, CH-1015 Lausanne, Switzerland.
| | | | | |
Collapse
|