1
|
Nevosád L, Klodová B, Rudolf J, Raček T, Přerovská T, Kusová A, Svobodová R, Honys D, Procházková Schrumpfová P. GOLEM: A tool for visualizing the distribution of Gene regulatOry eLEMents within the plant promoters with a focus on male gametophyte. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e70037. [PMID: 40025784 PMCID: PMC11873679 DOI: 10.1111/tpj.70037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 12/19/2024] [Accepted: 01/27/2025] [Indexed: 03/04/2025]
Abstract
Gene expression regulation during tissue development is extremely complex. A key mechanism of gene regulation is the recognition of regulatory motifs, also known as cis-regulatory elements (CREs), by various proteins in gene promoter regions. Localization of these motifs near the transcription start site (TSS) or translation start site (ATG) is crucial for transcription initiation and rate. Transcription levels of individual genes, regulated by these motifs, can vary significantly across tissues and developmental stages, especially in processes like sexual reproduction. However, the precise localization and visualization of these motifs in relation to gene expression in specific tissues can be challenging. Here, we introduce a freely available tool called GOLEM (Gene regulatOry eLEMents; https://golem.ncbr.muni.cz), which enables users to precisely locate any motif of interest with respect to TSS or ATG within the relevant plant genomes across the plant Tree of Life (Chara, Marchantia, Physcomitrium, Azolla, Ceratopteris, Amborella, Oryza, Zea, Solanum and Arabidopsis). The visualization of the motifs is performed with respect to the transcript levels of particular genes in leaves and male reproductive tissues and can be compared with genome-wide distribution regardless of the transcription level. Additionally, genes with specific CREs at defined positions and high expression in selected tissues can be exported for further analysis. GOLEM's functionality is illustrated by its application to conserved motifs (e.g. TATA-box, ABRE, I-box, and TC-element), hormone-responsive elements (GCC-box, ARR10_binding motif), as well as to male gametophyte-related motifs (e.g., LAT52, MEF2, and DOF_core).
Collapse
Affiliation(s)
- Lukáš Nevosád
- National Centre for Biomolecular Research, Faculty of ScienceMasaryk UniversityKotlářská 2611 37BrnoCzech Republic
| | - Božena Klodová
- Laboratory of Pollen BiologyInstitute of Experimental Botany of the Czech Academy of SciencesRozvojová 263165 02PragueCzech Republic
| | - Jiří Rudolf
- National Centre for Biomolecular Research, Faculty of ScienceMasaryk UniversityKotlářská 2611 37BrnoCzech Republic
- Central European Institute of TechnologyMasaryk UniversityKamenice 5625 00BrnoCzech Republic
| | - Tomáš Raček
- National Centre for Biomolecular Research, Faculty of ScienceMasaryk UniversityKotlářská 2611 37BrnoCzech Republic
- Central European Institute of TechnologyMasaryk UniversityKamenice 5625 00BrnoCzech Republic
| | - Tereza Přerovská
- National Centre for Biomolecular Research, Faculty of ScienceMasaryk UniversityKotlářská 2611 37BrnoCzech Republic
- Central European Institute of TechnologyMasaryk UniversityKamenice 5625 00BrnoCzech Republic
| | - Alžbeta Kusová
- National Centre for Biomolecular Research, Faculty of ScienceMasaryk UniversityKotlářská 2611 37BrnoCzech Republic
- Central European Institute of TechnologyMasaryk UniversityKamenice 5625 00BrnoCzech Republic
| | - Radka Svobodová
- National Centre for Biomolecular Research, Faculty of ScienceMasaryk UniversityKotlářská 2611 37BrnoCzech Republic
- Central European Institute of TechnologyMasaryk UniversityKamenice 5625 00BrnoCzech Republic
| | - David Honys
- Laboratory of Pollen BiologyInstitute of Experimental Botany of the Czech Academy of SciencesRozvojová 263165 02PragueCzech Republic
| | - Petra Procházková Schrumpfová
- National Centre for Biomolecular Research, Faculty of ScienceMasaryk UniversityKotlářská 2611 37BrnoCzech Republic
- Central European Institute of TechnologyMasaryk UniversityKamenice 5625 00BrnoCzech Republic
| |
Collapse
|
2
|
Samson Ezeh O, Hayami N, Mitai K, Kodama W, Iuchi S, Y. Yamamoto Y. Requirement of two simultaneous environmental signals for activation of Arabidopsis ELIP2 promoter in response to high light, cold, and UV-B stresses. PLANT SIGNALING & BEHAVIOR 2024; 19:2389496. [PMID: 39132719 PMCID: PMC11321413 DOI: 10.1080/15592324.2024.2389496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/29/2024] [Accepted: 07/31/2024] [Indexed: 08/13/2024]
Abstract
Arabidopsis EARLY LIGH-INDUCIBLE PROTEIN 2 (ELIP2) is a chlorophyll- and carotenoid-binding protein and is involved in photoprotection under stress conditions. Because its expression is induced through high light, cold, or UV-B stressors, its mechanism of induction has been studied. It is known that a functional unit found in the promoter, which is composed of Element B and Element A, is required and sufficient for full activation by these stressors. In this study, the role of each element in the unit was analyzed by introducing weak mutations in each element as synthetic promoters in addition to intensive repeat constructs of each single element. The results suggest that a stressor like cold stress generates two parallel signals in plant cells, and they merge at the promoter region for the activation of ELIP2 expression, which constitutes an "AND" gate and has a potential to realize strong response with high specificity by an environmental trigger.
Collapse
Affiliation(s)
| | - Natsuki Hayami
- The United Graduate School of Agricultural Science, Gifu University, Gifu, Japan
| | - Kana Mitai
- Graduate School of Natural Science and Technology, Gifu University, Gifu, Japan
| | - Wasei Kodama
- Graduate School of Natural Science and Technology, Gifu University, Gifu, Japan
| | - Satoshi Iuchi
- Experimental Plant Division, RIKEN BioResource Research Center, Tsukuba, Ibaraki, Japan
| | - Yoshiharu Y. Yamamoto
- The United Graduate School of Agricultural Science, Gifu University, Gifu, Japan
- Graduate School of Natural Science and Technology, Gifu University, Gifu, Japan
- RIKEN CSRS, Suehiro-cho, Tsurumi-ku, Yokohama, Japan
| |
Collapse
|
3
|
Yang M, Song X, Li J, Wang S, Zhang M, Deng X, Wang H. Genome-wide identification and analysis of the EIN3/EIL gene family in broomcorn millet ( Panicum miliaceum L.). FRONTIERS IN PLANT SCIENCE 2024; 15:1440872. [PMID: 39170780 PMCID: PMC11335613 DOI: 10.3389/fpls.2024.1440872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 07/22/2024] [Indexed: 08/23/2024]
Abstract
The EIN3/EIL gene family holds a pivotal role as it encodes a crucial transcription factor in plants. During the process of polyploidization in broomcorn millet (Panicum miliaceum L.), there is an intriguing above-average amplification observed within the EIN3/EIL gene family. Nonetheless, our current knowledge of this gene family in broomcorn millet remains limited. Hence, in this study, we conducted a comprehensive analysis of the EIN3/EIL gene family in broomcorn millet, aiming to provide a deeper understanding of the potential evolutionary changes. Additionally, we analyzed the EIN3/EIL gene family of Panicum hallii L., a close relative of broomcorn millet, to enhance our characterization efforts. Within this study, we identified a total of 15 EIN3/EIL genes specific to broomcorn millet. Through covariance analysis, it was revealed that all PmEIL genes, except PmEIL1 and PmEIL15, had duplicate copies generated through genome-wide duplication events. Importantly, the Ka/Ks values of all duplicated genes were found to be less than 1, indicating strong purifying selection. Phylogenetic analysis showed that these genes could be categorized into four distinct evolutionary branches, showcasing similar characteristics among members within the same branch. However, there appeared to be an uneven distribution of cis-acting elements amid the EIN3/EIL genes. Further examination of transcriptomic data shed light on the diverse spatiotemporal and stress-related expression patterns exhibited by the EIN3/EIL genes in broomcorn millet. Notably, under cold stress, the expression of PmEIL3/4/8/14 was significantly up-regulated, while under drought stress, PmEIL4/5/6 displayed significant up-regulation. Intriguingly, the expression pattern of PmEIL15 showed an opposite pattern in resistant and sensitive cultivars. The findings of this study augment our understanding of the EIN3/EIL gene family in broomcorn millet and offer a valuable reference for future investigations into polyploid studies. Moreover, this study establishes a theoretical foundation for further exploration of the ethylene signaling pathway in broomcorn millet.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hongyan Wang
- Laboratory of Plant Epigenetics and Evolution, School of Life Sciences, Liaoning University, Shenyang, China
| |
Collapse
|
4
|
Hou Z, Liang J, Cai X, Lin J, Wang X, Liu R, Lu L, Chai G, An C, Chen S, Qin Y, Zheng P. PeHVA22 gene family in passion fruit ( Passiflora edulis): initial characterization and expression profiling diversity. FRONTIERS IN PLANT SCIENCE 2024; 14:1279001. [PMID: 38312363 PMCID: PMC10835403 DOI: 10.3389/fpls.2023.1279001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 12/28/2023] [Indexed: 02/06/2024]
Abstract
Passion fruit, an economically valuable fruit crop, is highly vulnerable to adverse climate conditions. The HVA22 genes, recognized as abscisic acid (ABA) and stress-inducible, play vital roles in stress response and growth regulation in diverse eukaryotic organisms. Here, six HVA22 genes were firstly identified in passion fruit genome and all predicted to be localized within the endoplasmic reticulum. Phylogenetic analyses showed that all PeHVA22s were divided into four subgroups. The gene structural features of PeHVA22 genes clustered in the same subgroup were relatively conserved, while the gene structure characteristics of PeHVA22s from different subgroups varied significantly. PeHVA22A and PeHVA22C closely clustered with barley HVA22 in Group II, were also induced by ABA and drought stress treatment, suggesting conserved roles similar to barley HVA22. Meanwhile, most PeHVA22s exhibited induced expression post-drought treatment but were suppressed under salt, low and high-temperature conditions, indicating a unique role in drought response. Additionally, PeHVA22s displayed tissue-specific expression patterns across diverse tissues, except for PeHVA22B which maybe a pseudogene. Notably, PeHVA22C, PeHVA22E, and PeHVA22F predominantly expressed in fruit, indicating their involvement in fruit development. Almost all PeHVA22s showed variable expression at different developmental stages of stamens or ovules, implying their roles in passion fruit's sexual reproduction. The intricate roles of PeHVA22s may result from diverse regulatory factors including transcription factors and CREs related to plant growth and development, hormone and stress responsiveness. These observations highlighted that PeHVA22s might play conserved roles in ABA response and drought stress tolerance, and also be participated in the regulation of passion fruit growth and floral development.
Collapse
Affiliation(s)
- Zhimin Hou
- College of Life Sciences, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jianxiang Liang
- College of Life Sciences, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
- Center for Viticulture and Enology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Xinkai Cai
- College of Life Sciences, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jingting Lin
- College of Life Sciences, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaomei Wang
- Horticulture Research Institute, Guangxi Academy of Agricultural Sciences, Nanning Investigation Station of South Subtropical Fruit Trees, Ministry of Agriculture, Nanning, China
| | - Ruoyu Liu
- Pingtan Science and Technology Research Institute, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Lin Lu
- College of Life Sciences, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Gaifeng Chai
- College of Life Sciences, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Chang An
- College of Life Sciences, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shengzhen Chen
- College of Life Sciences, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuan Qin
- College of Life Sciences, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
- Pingtan Science and Technology Research Institute, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ping Zheng
- College of Life Sciences, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
- Pingtan Science and Technology Research Institute, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
5
|
Kozak K, Papierniak-Wygladala A, Palusińska M, Barabasz A, Antosiewicz DM. Regulation and Function of Metal Uptake Transporter NtNRAMP3 in Tobacco. FRONTIERS IN PLANT SCIENCE 2022; 13:867967. [PMID: 35712563 PMCID: PMC9195099 DOI: 10.3389/fpls.2022.867967] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/29/2022] [Indexed: 05/06/2023]
Abstract
Natural resistance-associated macrophage protein (NRAMP) genes encode proteins with low substrate specificity, important for maintaining metal cross homeostasis in the cell. The role of these proteins in tobacco, an important crop plant with wide application in the tobacco industry as well as in phytoremediation of metal-contaminated soils, remains unknown. Here, we identified NtNRAMP3, the closest homologue to NRAMP3 proteins from other plant species, and functionally characterized it. A NtNRAMP3-GFP fusion protein was localized to the plasma membrane in tobacco epidermal cells. Expression of NtNRAMP3 in yeast was able to rescue the growth of Fe and Mn uptake defective Δfet3fet4 and Δsmf1 mutant yeast strains, respectively. Furthermore, NtNRAMP3 expression in wild-type Saccharomyces cerevisiae DY1457 yeast strain increased sensitivity to elevated concentrations of iron (Fe), manganese (Mn), copper (Cu), cobalt (Co), nickel (Ni), and cadmium (Cd). Taken together, these results point to a possible role in the uptake of metals. NtNRAMP3 was expressed in the leaves and to a lesser extent in the roots of tobacco plants. Its expression occurred mainly under control conditions and decreased very sharply in deficiency and excess of the tested metals. GUS-based analysis of the site-specific activity of the NtNRAMP3 promoter showed that it was primarily expressed in the xylem of leaf blades. Overall, our data indicate that the main function of NtNRAMP3 is to maintain cross homeostasis of Fe, Mn, Co, Cu, and Ni (also Cd) in leaves under control conditions by controlling xylem unloading.
Collapse
Affiliation(s)
| | | | | | | | - Danuta Maria Antosiewicz
- Faculty of Biology, Institute of Experimental Plant Biology and Biotechnology, University of Warsaw, Warsaw, Poland
| |
Collapse
|
6
|
Arce RC, Carrillo N, Pierella Karlusich JJ. The chloroplast redox-responsive transcriptome of solanaceous plants reveals significant nuclear gene regulatory motifs associated to stress acclimation. PLANT MOLECULAR BIOLOGY 2022; 108:513-530. [PMID: 35044587 DOI: 10.1007/s11103-022-01240-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 01/06/2022] [Indexed: 06/14/2023]
Abstract
Transcriptomes of solanaceous plants expressing a plastid-targeted antioxidant protein were analysed to identify chloroplast redox networks modulating the expression of nuclear genes associated with stress acclimation. Plastid functions depend on the coordinated expression of nuclear genes, many of them associated to developmental and stress response pathways. Plastid-generated signals mediate this coordination via retrograde signaling, which includes sensing of chloroplast redox state and levels of reactive oxygen species (ROS), although it remains a poorly understood process. Chloroplast redox poise and ROS build-up can be modified by recombinant expression of a plastid-targeted antioxidant protein, i.e., cyanobacterial flavodoxin, with the resulting plants displaying increased tolerance to multiple environmental challenges. Here we analysed the transcriptomes of these flavodoxin-expressing plants to study the coordinated transcriptional responses of the nucleus to the chloroplast redox status and ROS levels during normal growth and stress responses (drought or biotic stress) in tobacco and potato, members of the economically important Solanaceae family. We compared their transcriptomes against those from stressed and mutant plants accumulating ROS in different subcellular compartments and found distinct ROS-related imprints modulated by flavodoxin expression and/or stress. By introducing our datasets in a large-scale interaction network, we identified transcriptional factors related to ROS and stress responses potentially involved in flavodoxin-associated signaling. Finally, we discovered identical cis elements in the promoters of many genes that respond to flavodoxin in the same direction as in wild-type plants under stress, suggesting a priming effect of flavodoxin before stress manifestation. The results provide a genome-wide picture illustrating the relevance of chloroplast redox status on biotic and abiotic stress responses and suggest new cis and trans targets to generate stress-tolerant solanaceous crops.
Collapse
Affiliation(s)
- Rocío C Arce
- Instituto de Biología Molecular y Celular de Rosario (IBR-UNR/CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), 2000, Rosario, Argentina
| | - Néstor Carrillo
- Instituto de Biología Molecular y Celular de Rosario (IBR-UNR/CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), 2000, Rosario, Argentina
| | - Juan J Pierella Karlusich
- Ecole Normale Supérieure, PSL Research University, Institut de Biologie de l'Ecole Normale Supérieure (IBENS), CNRS UMR 8197, INSERM U1024, 46 rue d'Ulm, 75005, Paris, France.
| |
Collapse
|
7
|
Iqbal Z, Iqbal MS, Sangpong L, Khaksar G, Sirikantaramas S, Buaboocha T. Comprehensive genome-wide analysis of calmodulin-binding transcription activator (CAMTA) in Durio zibethinus and identification of fruit ripening-associated DzCAMTAs. BMC Genomics 2021; 22:743. [PMID: 34649525 PMCID: PMC8518175 DOI: 10.1186/s12864-021-08022-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 09/13/2021] [Indexed: 12/11/2022] Open
Abstract
Background Fruit ripening is an intricate developmental process driven by a highly coordinated action of complex hormonal networks. Ethylene is considered as the main phytohormone that regulates the ripening of climacteric fruits. Concomitantly, several ethylene-responsive transcription factors (TFs) are pivotal components of the regulatory network underlying fruit ripening. Calmodulin-binding transcription activator (CAMTA) is one such ethylene-induced TF implicated in various stress and plant developmental processes. Results Our comprehensive analysis of the CAMTA gene family in Durio zibethinus (durian, Dz) identified 10 CAMTAs with conserved domains. Phylogenetic analysis of DzCAMTAs, positioned DzCAMTA3 with its tomato ortholog that has already been validated for its role in the fruit ripening process through ethylene-mediated signaling. Furthermore, the transcriptome-wide analysis revealed DzCAMTA3 and DzCAMTA8 as the highest expressing durian CAMTA genes. These two DzCAMTAs possessed a distinct ripening-associated expression pattern during post-harvest ripening in Monthong, a durian cultivar native to Thailand. The expression profiling of DzCAMTA3 and DzCAMTA8 under natural ripening conditions and ethylene-induced/delayed ripening conditions substantiated their roles as ethylene-induced transcriptional activators of ripening. Similarly, auxin-suppressed expression of DzCAMTA3 and DzCAMTA8 confirmed their responsiveness to exogenous auxin treatment in a time-dependent manner. Accordingly, we propose that DzCAMTA3 and DzCAMTA8 synergistically crosstalk with ethylene during durian fruit ripening. In contrast, DzCAMTA3 and DzCAMTA8 antagonistically with auxin could affect the post-harvest ripening process in durian. Furthermore, DzCAMTA3 and DzCAMTA8 interacting genes contain significant CAMTA recognition motifs and regulated several pivotal fruit-ripening-associated pathways. Conclusion Taken together, the present study contributes to an in-depth understanding of the structure and probable function of CAMTA genes in the post-harvest ripening of durian. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-08022-1.
Collapse
Affiliation(s)
- Zahra Iqbal
- Molecular Crop Research Unit, Department of Biochemistry, Chulalongkorn University, Bangkok, Thailand
| | - Mohammed Shariq Iqbal
- Amity Institute of Biotechnology, Amity University, Lucknow Campus, Lucknow, Uttar Pradesh, India
| | - Lalida Sangpong
- Molecular Crop Research Unit, Department of Biochemistry, Chulalongkorn University, Bangkok, Thailand
| | - Gholamreza Khaksar
- Molecular Crop Research Unit, Department of Biochemistry, Chulalongkorn University, Bangkok, Thailand
| | - Supaart Sirikantaramas
- Molecular Crop Research Unit, Department of Biochemistry, Chulalongkorn University, Bangkok, Thailand.,Omics Sciences and Bioinformatics Center, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Teerapong Buaboocha
- Molecular Crop Research Unit, Department of Biochemistry, Chulalongkorn University, Bangkok, Thailand. .,Omics Sciences and Bioinformatics Center, Faculty of Science, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
8
|
Li Z, Xie Q, Yan J, Chen J, Chen Q. Genome-Wide Identification and Characterization of the Abiotic-Stress-Responsive GRF Gene Family in Diploid Woodland Strawberry ( Fragaria vesca). PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10091916. [PMID: 34579449 PMCID: PMC8468544 DOI: 10.3390/plants10091916] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 05/07/2023]
Abstract
Growth regulatory factors (GRF) are plant-specific transcription factors that play an important role in plant resistance to stress. This gene family in strawberry has not been investigated previously. In this study, 10 GRF genes were identified in the genome of the diploid woodland strawberry (Fragaria vesca). Chromosome analysis showed that the 10 FvGRF genes were unevenly distributed on five chromosomes. Phylogenetic analysis resolved the FvGRF proteins into five groups. Genes of similar structure were placed in the same group, which was indicative of functional redundance. Whole-genome duplication/segmental duplication and dispersed duplication events effectively promoted expansion of the strawberry GRF gene family. Quantitative reverse transcription-PCR analysis suggested that FvGRF genes played potential roles in the growth and development of vegetative organs. Expression profile analysis revealed that FvGRF3, FvGRF5, and FvGRF7 were up-regulated under low-temperature stress, FvGRF4 and FvGRF9 were up-regulated under high-temperature stress, FvGRF6 and FvGRF8 were up-regulated under drought stress, FvGRF3, FvGRF6, and FvGRF8 were up-regulated under salt stress, FvGRF2, FvGRF7, and FvGRF9 were up-regulated under salicylic acid treatment, and FvGRF3, FvGRF7, FvGRF9, and FvGRF10 were up-regulated under abscisic acid treatment. Promoter analysis indicated that FvGRF genes were involved in plant growth and development and stress response. These results provide a theoretical and empirical foundation for the elucidation of the mechanisms of abiotic stress responses in strawberry.
Collapse
Affiliation(s)
- Zhiqi Li
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.L.); (Q.X.); (J.Y.)
| | - Qian Xie
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.L.); (Q.X.); (J.Y.)
| | - Jiahui Yan
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.L.); (Q.X.); (J.Y.)
- Horticultural Plant Biology and Metabolomices Center, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jianqing Chen
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.L.); (Q.X.); (J.Y.)
- Correspondence: (J.C.); (Q.C.)
| | - Qingxi Chen
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.L.); (Q.X.); (J.Y.)
- Correspondence: (J.C.); (Q.C.)
| |
Collapse
|
9
|
Wu C, Hong C. An in vivo GA- and ABA-responsive dual-luciferase reporter system for simultaneous detection of GA and ABA responses, hormone crosstalk and heat stress response in rice. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:1486-1488. [PMID: 33991411 PMCID: PMC8384592 DOI: 10.1111/pbi.13630] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 05/05/2021] [Accepted: 05/06/2021] [Indexed: 05/25/2023]
Affiliation(s)
- Chin‐Yu Wu
- Department of Agricultural ChemistryNational Taiwan UniversityTaipeiTaiwan
| | - Chwan‐Yang Hong
- Department of Agricultural ChemistryNational Taiwan UniversityTaipeiTaiwan
| |
Collapse
|
10
|
Yang L, Cao H, Zhang X, Gui L, Chen Q, Qian G, Xiao J, Li Z. Genome-Wide Identification and Expression Analysis of Tomato ADK Gene Family during Development and Stress. Int J Mol Sci 2021; 22:ijms22147708. [PMID: 34299327 PMCID: PMC8305589 DOI: 10.3390/ijms22147708] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 11/16/2022] Open
Abstract
Adenylate kinase (ADK) is widely distributed in organisms and plays an important role in cellular energy homeostasis. In plants, ADK has important functions in plant growth and development regulation as well as in adaptation to the environment. However, little information is available about the ADK genes in tomato (Solanum lycopersicum), an important economic crop. To investigate the characteristics and functions of ADK genes in tomato, a total of 11 ADK genes were identified and named according to their chromosomal locations. The ADK family in Arabidopsis, tomato, potato, and rice was divided into six groups, and motif analysis revealed that each SlADK protein contained five to eight conserved motifs. A total of 4 to 19 exons were identified in tomato ADK gene family members, and interestingly, most members possessed 4 exons. Several stress response elements were identified in the promoter regions of SlADKs. The 11 SlADKs were randomly distributed on 9 of the 12 tomato chromosomes. Three duplication events were observed between tomato chromosomes, and a high degree of conservation of synteny was demonstrated between tomato and potato. The online TomExpress platform prediction revealed that SlADKs were expressed in various tissues and organs, basically consistent with the data obtained from real-time quantitative PCR (qPCR). The qPCR verification was also performed to determine the expression level of SlADKs and demonstrated that the genes responded to multiple abiotic stresses, such as drought, salt, and cold. Besides, the qPCR results showed that SlADK transcription was responsive to most of the applied hormone treatment. For correlation network analysis under 44 global conditions, the results showed that the number of 17, 3, 4, and 6 coexpressed genes matched with SlADK5, 8, 9, and 11, respectively. For specific gene function analysis, expression of SlADK10 was inhibited using virus-induced gene silencing (VIGS). Compared to wild-type plants, plants with silenced SlADK10 gene had poor drought resistance, indicating SlADK10 regulated drought tolerance of tomato positively. In summary, the information provided in the present study will be helpful to understand the evolutionary relationship and their roles of tomato ADK gene family in further research.
Collapse
Affiliation(s)
- Lu Yang
- Key Laboratory for the Conservation and Utilization of Important Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China; (L.Y.); (X.Z.); (L.G.); (Q.C.); (G.Q.)
| | - Haohao Cao
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 400044, China;
| | - Xiaoping Zhang
- Key Laboratory for the Conservation and Utilization of Important Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China; (L.Y.); (X.Z.); (L.G.); (Q.C.); (G.Q.)
| | - Liangxian Gui
- Key Laboratory for the Conservation and Utilization of Important Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China; (L.Y.); (X.Z.); (L.G.); (Q.C.); (G.Q.)
| | - Qiang Chen
- Key Laboratory for the Conservation and Utilization of Important Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China; (L.Y.); (X.Z.); (L.G.); (Q.C.); (G.Q.)
| | - Gui Qian
- Key Laboratory for the Conservation and Utilization of Important Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China; (L.Y.); (X.Z.); (L.G.); (Q.C.); (G.Q.)
| | - Jiaxin Xiao
- Key Laboratory for the Conservation and Utilization of Important Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China; (L.Y.); (X.Z.); (L.G.); (Q.C.); (G.Q.)
- Correspondence: (J.X.); (Z.L.)
| | - Zhengguo Li
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 400044, China;
- Correspondence: (J.X.); (Z.L.)
| |
Collapse
|
11
|
Wang D, Cao Z, Wang W, Zhu W, Hao X, Fang Z, Liu S, Wang X, Zhao C, Tang Y. Genome-Wide Characterization of OFP Family Genes in Wheat ( Triticum aestivum L.) Reveals That TaOPF29a-A Promotes Drought Tolerance. BIOMED RESEARCH INTERNATIONAL 2020; 2020:9708324. [PMID: 33224986 PMCID: PMC7666709 DOI: 10.1155/2020/9708324] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 09/15/2020] [Accepted: 09/22/2020] [Indexed: 12/21/2022]
Abstract
OVATE family proteins (OFPs) are plant-specific transcription factors that play important roles in plant development. Although common wheat (Triticum aestivum L.) is a major staple food worldwide, OFPs have not been systematically analyzed in this important crop. Here, we performed a genome-wide survey of OFP genes in wheat and identified 100 genes belonging to 34 homoeologous groups. Arabidopsis thaliana, rice (Oryza sativa), and wheat OFP genes were divided into four subgroups based on their phylogenetic relationships. Structural analysis indicated that only four TaOFPs contain introns. We mapped the TaOFP genes onto the wheat chromosomes and determined that TaOFP17 was duplicated in this crop. A survey of cis-acting elements along the promoter regions of TaOFP genes suggested that subfunctionalization of homoeologous genes might have occurred during evolution. The TaOFPs were highly expressed in wheat, with tissue- or organ-specific expression patterns. In addition, these genes were induced by various hormone and stress treatments. For instance, TaOPF29a-A was highly expressed in roots in response to drought stress. Wheat plants overexpressing TaOPF29a-A had longer roots and higher dry weights than nontransgenic plants under drought conditions, suggesting that this gene improves drought tolerance. Our findings provide a starting point for further functional analysis of this important transcription factor family and highlight the potential of using TaOPF29a-A to genetically engineer drought-tolerant crops.
Collapse
Affiliation(s)
- Dezhou Wang
- Beijing Engineering and Technique Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Zhichen Cao
- Beijing Engineering and Technique Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
- College of Agriculture, Yangtze University, Jingzhou 434023, China
| | - Weiwei Wang
- Beijing Engineering and Technique Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Wengen Zhu
- Beijing Engineering and Technique Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Xiaocong Hao
- Beijing Engineering and Technique Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Zhaofeng Fang
- Beijing Engineering and Technique Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Shan Liu
- Beijing Engineering and Technique Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Xiaoyan Wang
- College of Agriculture, Yangtze University, Jingzhou 434023, China
| | - Changping Zhao
- Beijing Engineering and Technique Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Yimiao Tang
- Beijing Engineering and Technique Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
- College of Agriculture, Yangtze University, Jingzhou 434023, China
| |
Collapse
|
12
|
Illgen S, Zintl S, Zuther E, Hincha DK, Schmülling T. Characterisation of the ERF102 to ERF105 genes of Arabidopsis thaliana and their role in the response to cold stress. PLANT MOLECULAR BIOLOGY 2020; 103:303-320. [PMID: 32185689 PMCID: PMC7220888 DOI: 10.1007/s11103-020-00993-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 03/04/2020] [Indexed: 05/19/2023]
Abstract
The four phylogenetically closely related ERF102 to ERF105 transcription factors of Arabidopsis thaliana are regulated by different stresses and are involved in the response to cold stress. The ETHYLENE RESPONSE FACTOR (ERF) genes of Arabidopsis thaliana form a large family encoding plant-specific transcription factors. Here, we characterise the four phylogenetically closely related ERF102/ERF5, ERF103/ERF6, ERF104 and ERF105 genes. Expression analyses revealed that these four genes are similarly regulated by different hormones and abiotic stresses. Analyses of tissue-specific expression using promoter:GUS reporter lines revealed their predominant expression in root tissues including the root meristem (ERF103), the quiescent center (ERF104) and the root vasculature (all). All GFP-ERF fusion proteins were nuclear-localised. The analysis of insertional mutants, amiRNA lines and 35S:ERF overexpressing transgenic lines indicated that ERF102 to ERF105 have only a limited impact on regulating shoot and root growth. Previous work had shown a role for ERF105 in the cold stress response. Here, measurement of electrolyte leakage to determine leaf freezing tolerance and expression analyses of cold-responsive genes revealed that the combined activity of ERF102 and ERF103 is also required for a full cold acclimation response likely involving the CBF regulon. These results suggest a common function of these ERF genes in the response to cold stress.
Collapse
Affiliation(s)
- Sylvia Illgen
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences (DCPS), Freie Universität Berlin, Albrecht-Thaer-Weg 6, 14195, Berlin, Germany
| | - Stefanie Zintl
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences (DCPS), Freie Universität Berlin, Albrecht-Thaer-Weg 6, 14195, Berlin, Germany
| | - Ellen Zuther
- Max-Planck-Institute of Molecular Plant Physiology, 14476, Potsdam, Germany
| | - Dirk K Hincha
- Max-Planck-Institute of Molecular Plant Physiology, 14476, Potsdam, Germany
| | - Thomas Schmülling
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences (DCPS), Freie Universität Berlin, Albrecht-Thaer-Weg 6, 14195, Berlin, Germany.
| |
Collapse
|
13
|
Abstract
Plants are subjected to extreme environmental conditions and must adapt rapidly. The phytohormone abscisic acid (ABA) accumulates during abiotic stress, signaling transcriptional changes that trigger physiological responses. Epigenetic modifications often facilitate transcription, particularly at genes exhibiting temporal, tissue-specific and environmentally-induced expression. In maize (Zea mays), MEDIATOR OF PARAMUTATION 1 (MOP1) is required for progression of an RNA-dependent epigenetic pathway that regulates transcriptional silencing of loci genomewide. MOP1 function has been previously correlated with genomic regions adjoining particular types of transposable elements and genic regions, suggesting that this regulatory pathway functions to maintain distinct transcriptional activities within genomic spaces, and that loss of MOP1 may modify the responsiveness of some loci to other regulatory pathways. As critical regulators of gene expression, MOP1 and ABA pathways each regulate specific genes. To determine whether loss of MOP1 impacts ABA-responsive gene expression in maize, mop1-1 and Mop1 homozygous seedlings were subjected to exogenous ABA and RNA-sequencing. A total of 3,242 differentially expressed genes (DEGs) were identified in four pairwise comparisons. Overall, ABA-induced changes in gene expression were enhanced in mop1-1 homozygous plants. The highest number of DEGs were identified in ABA-induced mop1-1 mutants, including many transcription factors; this suggests combinatorial regulatory scenarios including direct and indirect transcriptional responses to genetic disruption (mop1-1) and/or stimulus-induction of a hierarchical, cascading network of responsive genes. Additionally, a modest increase in CHH methylation at putative MOP1-RdDM loci in response to ABA was observed in some genotypes, suggesting that epigenetic variation might influence environmentally-induced transcriptional responses in maize.
Collapse
|
14
|
Phosphatase AtDBP1 negatively regulates drought and salt tolerance through altering leaf surface permeability in Arabidopsis. Mol Biol Rep 2020; 47:3585-3592. [PMID: 32342434 DOI: 10.1007/s11033-020-05451-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 04/09/2020] [Indexed: 02/03/2023]
Abstract
In our previous study, AtDBP1 encoding a DBP factor was identified as a putative abiotic stress candidate gene. DBP factors are important regulators that participate in both transcriptional regulation and post-translational regulation, but their roles in abiotic stress are still not well-understood. So we conducted a detailed study on the function of AtDBP1 in abiotic stress. It is found that expression of AtDBP1 could be induced by drought and salt, and the induction by salt was inhibited in ABA-deficient mutant aba2-3, indicating the expression of AtDBP1 was ABA-inducible. Overexpression of AtDBP1 resulted in a rapid stomatal closure, and elevated expression of drought/salt-responsive genes, which should help Arabidopsis to enhance the drought and salt tolerance. Unexpectedly, overexpression of AtDBP1 decreased the drought and salt tolerance of Arabidopsis. Further analysis suggested that AtDBP1 is involved in cuticle wax and cuticle membrane regulation. Overexpression of AtDBP1 showed increased cuticular conductance due to a decreased cuticle wax accumulation and cuticle membrane thickness. The cuticular wax provides an essential barrier for decreasing nonstomatal water loss during drought stress, so overexpression of AtDBP1 showed decreased drought tolerance possibly ascribed to the change of cuticle membrane structure. Our previous study elucidated that AtDBP1 was also involved in flowering time regulation. Taken together, the results above indicated that AtDBP1 was involved in both plant development and stress regulation. The mechanism of AtDBP1 in this study indicates that genes involved in both plant development and stress regulation might be not suitable for production application in breeding. Collectively, our results provide some new ideas on purposefully increasing the abiotic stress without influence on plant growth and development.
Collapse
|
15
|
Xu W, Tang W, Wang C, Ge L, Sun J, Qi X, He Z, Zhou Y, Chen J, Xu Z, Ma YZ, Chen M. SiMYB56 Confers Drought Stress Tolerance in Transgenic Rice by Regulating Lignin Biosynthesis and ABA Signaling Pathway. FRONTIERS IN PLANT SCIENCE 2020; 11:785. [PMID: 32625221 PMCID: PMC7314972 DOI: 10.3389/fpls.2020.00785] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 05/18/2020] [Indexed: 05/19/2023]
Abstract
Foxtail millet (Setaria italica) originated in China and is generally cultivated in arid and barren soil. Through long-term harsh environmental selection, foxtail millet has acquired significant drought resistance. However, the molecular mechanism of foxtail millet drought resistance is still unknown. Here, we identified a drought-induced R2R3-MYB transcription factor SiMYB56 in foxtail millet. Overexpression of SiMYB56 significantly enhances tolerance to drought stress in transgenic rice plants at both the vegetative and the reproductive stage and has no adverse effect on its normal growth. Compared with wild-type controls, SiMYB56-overexpressing rice plants had lower MDA content and higher lignin content under drought conditions. Quantitative real-time PCR and Transcriptional activity assays demonstrated that SiMYB56 could activate expression of lignin biosynthesis genes under drought conditions. Also, we found that overexpression of SiMYB56 can led to ABA accumulation in the seeds transgenic rice plants. Further experiments showed that Overexpression of SiMYB56 can upregulate the expression of ABA synthesis and response related genes under drought conditions. In conclusion, SiMYB56 may enhance the drought resistance of transgenic rice plants by regulating lignin biosynthesis and ABA signaling pathway, making SiMYB56 a candidate gene for drought resistance improvement in gramineous crops.
Collapse
Affiliation(s)
- Weiya Xu
- National Key Facility for Crop Genetic Resources and Genetic Improvement, Key Laboratory of Crop Genetics and Breeding, Ministry of Agriculture, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wensi Tang
- National Key Facility for Crop Genetic Resources and Genetic Improvement, Key Laboratory of Crop Genetics and Breeding, Ministry of Agriculture, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chunxiao Wang
- National Key Facility for Crop Genetic Resources and Genetic Improvement, Key Laboratory of Crop Genetics and Breeding, Ministry of Agriculture, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Linhao Ge
- National Key Facility for Crop Genetic Resources and Genetic Improvement, Key Laboratory of Crop Genetics and Breeding, Ministry of Agriculture, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jianchang Sun
- Institute of Crop Sciences, Ningxia Academy of Agriculture and Forestry Sciences, Yongning, China
| | - Xin Qi
- National Key Facility for Crop Genetic Resources and Genetic Improvement, Key Laboratory of Crop Genetics and Breeding, Ministry of Agriculture, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhang He
- National Key Facility for Crop Genetic Resources and Genetic Improvement, Key Laboratory of Crop Genetics and Breeding, Ministry of Agriculture, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yongbin Zhou
- National Key Facility for Crop Genetic Resources and Genetic Improvement, Key Laboratory of Crop Genetics and Breeding, Ministry of Agriculture, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jun Chen
- National Key Facility for Crop Genetic Resources and Genetic Improvement, Key Laboratory of Crop Genetics and Breeding, Ministry of Agriculture, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhaoshi Xu
- National Key Facility for Crop Genetic Resources and Genetic Improvement, Key Laboratory of Crop Genetics and Breeding, Ministry of Agriculture, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - You-Zhi Ma
- National Key Facility for Crop Genetic Resources and Genetic Improvement, Key Laboratory of Crop Genetics and Breeding, Ministry of Agriculture, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: You-Zhi Ma,
| | - Ming Chen
- National Key Facility for Crop Genetic Resources and Genetic Improvement, Key Laboratory of Crop Genetics and Breeding, Ministry of Agriculture, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
- Ming Chen,
| |
Collapse
|
16
|
Ran X, Zhao F, Wang Y, Liu J, Zhuang Y, Ye L, Qi M, Cheng J, Zhang Y. Plant Regulomics: a data-driven interface for retrieving upstream regulators from plant multi-omics data. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 101:237-248. [PMID: 31494994 DOI: 10.1111/tpj.14526] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 07/31/2019] [Accepted: 08/19/2019] [Indexed: 05/19/2023]
Abstract
High-throughput technology has become a powerful approach for routine plant research. Interpreting the biological significance of high-throughput data has largely focused on the functional characterization of a large gene list or genomic loci that involves the following two aspects: the functions of the genes or loci and how they are regulated as a whole, i.e. searching for the upstream regulators. Traditional platforms for functional annotation largely help resolving the first issue. Addressing the second issue is essential for a global understanding of the regulatory mechanism, but is more challenging, and requires additional high-throughput experimental evidence and a unified statistical framework for data-mining. The rapid accumulation of 'omics data provides a large amount of experimental data. We here present Plant Regulomics, an interface that integrates 19 925 transcriptomic and epigenomic data sets and diverse sources of functional evidence (58 112 terms and 695 414 protein-protein interactions) from six plant species along with the orthologous genes from 56 whole-genome sequenced plant species. All pair-wise transcriptomic comparisons with biological significance within the same study were performed, and all epigenomic data were processed to genomic loci targeted by various factors. These data were well organized to gene modules and loci lists, which were further implemented into the same statistical framework. For any input gene list or genomic loci, Plant Regulomics retrieves the upstream factors, treatments, and experimental/environmental conditions regulating the input from the integrated 'omics data. Additionally, multiple tools and an interactive visualization are available through a user-friendly web interface. Plant Regulomics is available at http://bioinfo.sibs.ac.cn/plant-regulomics.
Collapse
Affiliation(s)
- Xiaojuan Ran
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Fei Zhao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuejun Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Jian Liu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Yili Zhuang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Luhuan Ye
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Meifang Qi
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Jingfei Cheng
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Yijing Zhang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
17
|
Li Y, Bai B, Wen F, Zhao M, Xia Q, Yang DH, Wang G. Genome-Wide Identification and Expression Analysis of HD-ZIP I Gene Subfamily in Nicotiana tabacum. Genes (Basel) 2019; 10:E575. [PMID: 31366162 PMCID: PMC6723700 DOI: 10.3390/genes10080575] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/22/2019] [Accepted: 07/28/2019] [Indexed: 01/30/2023] Open
Abstract
The homeodomain-leucine zipper (HD-Zip) gene family, whose members play vital roles in plant growth and development, and participate in responding to various stresses, is an important class of transcription factors currently only found in plants. Although the HD-Zip gene family, especially the HD-Zip I subfamily, has been extensively studied in many plant species, the systematic report on HD-Zip I subfamily in cultivated tobacco (Nicotiana tabacum) is lacking. In this study, 39 HD-Zip I genes were systematically identified in N. tabacum (Nt). Interestingly, that 64.5% of the 31 genes with definite chromosome location information were found to originate from N. tomentosoformis, one of the two ancestral species of allotetraploid N. tabacum. Phylogenetic analysis divided the NtHD-Zip I subfamily into eight clades. Analysis of gene structures showed that NtHD-Zip I proteins contained conserved homeodomain and leucine-zipper domains. Three-dimensional structure analysis revealed that most NtHD-Zip I proteins in each clade, except for those in clade η, share a similar structure to their counterparts in Arabidopsis. Prediction of cis-regulatory elements showed that a number of elements responding to abscisic acid and different abiotic stresses, including low temperature, drought, and salinity, existed in the promoter region of NtHD-Zip I genes. The prediction of Arabidopsis ortholog-based protein-protein interaction network implied that NtHD-Zip I proteins have complex connections. The expression profile of these genes showed that different NtHD-Zip I genes were highly expressed in different tissues and could respond to abscisic acid and low-temperature treatments. Our study provides insights into the evolution and expression patterns of NtHD-Zip I genes in N. tabacum and will be useful for further functional characterization of NtHD-Zip I genes in the future.
Collapse
Affiliation(s)
- Yueyue Li
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing 400716, China
| | - Bingchuan Bai
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing 400716, China
| | - Feng Wen
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing 400716, China
| | - Min Zhao
- Chongqing Institute of Tobacco Science, Chongqing 400716, China
| | - Qingyou Xia
- Biological Science Research Center, Southwest University, Chongqing 400716, China
- Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400716, China
- Chongqing Key Laboratory of Sericulture, Southwest University, Chongqing 400716, China
| | - Da-Hai Yang
- Tobacco Breeding and Biotechnology Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Key Laboratory of Tobacco Biotechnological Breeding, National Tobacco Genetic Engineering Research Center, Kunming 650021, China.
| | - Genhong Wang
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing 400716, China.
- Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400716, China.
- Chongqing Key Laboratory of Sericulture, Southwest University, Chongqing 400716, China.
| |
Collapse
|
18
|
Cheng X, Li G, Manzoor MA, Wang H, Abdullah M, Su X, Zhang J, Jiang T, Jin Q, Cai Y, Lin Y. In Silico Genome-Wide Analysis of Respiratory Burst Oxidase Homolog (RBOH) Family Genes in Five Fruit-Producing Trees, and Potential Functional Analysis on Lignification of Stone Cells in Chinese White Pear. Cells 2019; 8:E520. [PMID: 31146469 PMCID: PMC6627160 DOI: 10.3390/cells8060520] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/22/2019] [Accepted: 05/28/2019] [Indexed: 02/06/2023] Open
Abstract
: The accumulation of lignin in fruit has a significant negative impact on the quality of fruit-producing trees, and in particular the lignin formation stimulates the development of stone cells in pear fruit. Reactive oxygen species (ROS) are essential for lignin polymerization. However, knowledge of the RBOH family, a key enzyme in ROS metabolism, remains unknown in most fruit trees. In this study, a total of 40 RBOHs were identified from five fruit-producing trees (Pyrusbretschneideri, Prunuspersica, Citrussinensis, Vitisvinifera, and Prunusmume), and 10 of these sequences came from Pyrusbretschneideri. Multiple sequence alignments revealed that all 10 PbRBOHs contained the NADPH_Ox domain and the six alpha-helical transmembrane domains (TM-I to TM-VI). Chromosome localization and interspecies phylogenetic tree analysis showed that 10 PbRBOHs irregularly distributed on 8 chromosomes and 3 PbRBOHs (PbRBOHA, PbRBOHB, and PbRBOHD) are closely related to known lignification-related RBOHs. Furthermore, hormone response pattern analysis showed that the transcription of PbRBOHs is regulated by SA, ABA and MeJA. Reverse transcription-quantitative real-time polymerase chain reaction (qRT-PCR) and transcriptome sequencing analysis showed that PbRBOHA, PbRBOHB, and PbRBOHD accumulated high transcript abundance in pear fruit, and the transcriptional trends of PbRBOHA and PbRBOHD was consistent with the change of stone cell content during fruit development. In addition, subcellular localization revealed that PbRBOHA and PbRBOHD are distributed on the plasma membrane. Combining the changes of apoplastic superoxide (O2.-) content and spatio-temporal expression analysis, these results indicate that PbRBOHA and PbRBOHD, which are candidate genes, may play an important role in ROS metabolism during the lignification of pear stone cells. This study not only provided insight into the molecular characteristics of the RBOH family in fruit-producing trees, but also lays the foundation for studying the role of ROS in plant lignification.
Collapse
Affiliation(s)
- Xi Cheng
- School of Life Science, Anhui Agricultural University, No. 130, Changjiang West Road, Hefei 230036, China.
| | - Guohui Li
- School of Life Science, Anhui Agricultural University, No. 130, Changjiang West Road, Hefei 230036, China.
| | - Muhammad Aamir Manzoor
- School of Life Science, Anhui Agricultural University, No. 130, Changjiang West Road, Hefei 230036, China.
| | - Han Wang
- School of Life Science, Anhui Agricultural University, No. 130, Changjiang West Road, Hefei 230036, China.
| | - Muhammad Abdullah
- School of Life Science, Anhui Agricultural University, No. 130, Changjiang West Road, Hefei 230036, China.
| | - Xueqiang Su
- School of Life Science, Anhui Agricultural University, No. 130, Changjiang West Road, Hefei 230036, China.
| | - Jingyun Zhang
- Horticultural Institute, Anhui Academy of Agricultural Sciences, Hefei, Anhui 230031, China.
| | - Taoshan Jiang
- School of Life Science, Anhui Agricultural University, No. 130, Changjiang West Road, Hefei 230036, China.
| | - Qing Jin
- School of Life Science, Anhui Agricultural University, No. 130, Changjiang West Road, Hefei 230036, China.
| | - Yongping Cai
- School of Life Science, Anhui Agricultural University, No. 130, Changjiang West Road, Hefei 230036, China.
| | - Yi Lin
- School of Life Science, Anhui Agricultural University, No. 130, Changjiang West Road, Hefei 230036, China.
| |
Collapse
|
19
|
Pan F, Wu M, Hu W, Liu R, Yan H, Xiang Y. Genome-Wide Identification and Expression Analyses of the bZIP Transcription Factor Genes in moso bamboo ( Phyllostachys edulis). Int J Mol Sci 2019; 20:E2203. [PMID: 31060272 PMCID: PMC6539497 DOI: 10.3390/ijms20092203] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/01/2019] [Accepted: 05/03/2019] [Indexed: 11/23/2022] Open
Abstract
The basic leucine zipper (bZIP) transcription factor (TF) family is one of the largest gene families, and play crucial roles in many processes, including stress responses, hormone effects. The TF family also participates in plant growth and development. However, limited information is available for these genes in moso bamboo (Phyllostachys edulis), one of the most important non-timber forest products in the world. In the present study, 154 putative PhebZIP genes were identified in the moso bamboo genome. The phylogenetic analyses indicate that the PhebZIP gene proteins classify into 9 subfamilies and the gene structures and conserved motifs that analyses identified among all PhebZIP proteins suggested a high group-specificity. Microsynteny and evolutionary patterns analyses of the non-synonymous (Ka) and synonymous (Ks) substitution rates and their ratios indicated that paralogous pairs of PhebZIP genes in moso bamboo underwent a large-scale genome duplication event that occurred 7-15 million years ago (MYA). According to promoter sequence analysis, we further selected 18 genes which contain the higher number of cis-regulatory elements for expression analysis. The result showed that these genes are extensively involved in GA-, ABA- and MeJA-responses, with possibly different mechanisms. The tissue-specific expression profiles of PhebZIP genes in five plant tissues/organs/developmental stages suggested that these genes are involved in moso bamboo organ development, especially seed development. Subcellular localization and transactivation activity analysis showed that PhebZIP47 and PhebZIP126 were localized in the nucleus and PhebZIP47 with no transcriptional activation in yeast. Our research provides a comprehensive understanding of PhebZIP genes and may aid in the selection of appropriate candidate genes for further cloning and functional analysis in moso bamboo growth and development, and improve their resistance to stress during their life.
Collapse
Affiliation(s)
- Feng Pan
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, China.
| | - Min Wu
- Key Laboratory of Crop Biology of Anhui Province, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China.
| | - Wenfang Hu
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, China.
| | - Rui Liu
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, China.
| | - Hanwei Yan
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, China.
- Key Laboratory of Crop Biology of Anhui Province, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China.
| | - Yan Xiang
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, China.
- Key Laboratory of Crop Biology of Anhui Province, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
20
|
Zhang N, McHale LK, Finer JJ. Changes to the core and flanking sequences of G-box elements lead to increases and decreases in gene expression in both native and synthetic soybean promoters. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:724-735. [PMID: 30191675 PMCID: PMC6419578 DOI: 10.1111/pbi.13010] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 08/05/2018] [Accepted: 08/31/2018] [Indexed: 05/22/2023]
Abstract
Cis-regulatory elements in promoters are major determinants of binding specificity of transcription factors (TFs) for transcriptional regulation. To improve our understanding of how these short DNA sequences regulate gene expression, synthetic promoters consisting of both classical (CACGTG) and variant G-box core sequences along with different flanking sequences derived from the promoters of three different highly expressing soybean genes, were constructed and used to regulate a green fluorescent protein (gfp) gene. Use of the classical 6-bp G-box provided information on the base level of GFP expression while modifications to the 2-4 flanking bases on either side of the G-box influenced the intensity of gene expression in both transiently transformed lima bean cotyledons and stably transformed soybean hairy roots. The proximal 2-bp sequences on either flank of the G-box significantly affected G-box activity, while the distal 2-bp flanking nucleotides also influenced gene expression albeit with a decreasing effect. Manipulation of the upstream 2- to 4-bp flanking sequence of a G-box variant (GACGTG), found in the proximal region of a relatively weak soybean glycinin promoter, significantly enhanced promoter activity using both transient and stable expression assays, if the G-box variant was first converted into a classical G-box (CACGTG). In addition to increasing our understanding of regulatory element composition and structure, this study shows that minimal targeted changes in native promoter sequences can lead to enhanced gene expression, and suggests that genome editing of the promoter region can result in useful and predictable changes in native gene expression.
Collapse
Affiliation(s)
- Ning Zhang
- Department of Horticulture and Crop ScienceThe Ohio State UniversityWoosterOHUSA
- Present address:
Boyce Thompson InstituteCornell UniversityIthacaNYUSA
| | - Leah K. McHale
- Department of Horticulture and Crop ScienceThe Ohio State UniversityColumbusOHUSA
| | - John J. Finer
- Department of Horticulture and Crop ScienceThe Ohio State UniversityWoosterOHUSA
| |
Collapse
|
21
|
Schneider T, Bolger A, Zeier J, Preiskowski S, Benes V, Trenkamp S, Usadel B, Farré EM, Matsubara S. Fluctuating Light Interacts with Time of Day and Leaf Development Stage to Reprogram Gene Expression. PLANT PHYSIOLOGY 2019; 179:1632-1657. [PMID: 30718349 PMCID: PMC6446761 DOI: 10.1104/pp.18.01443] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 01/23/2019] [Indexed: 05/20/2023]
Abstract
Natural light environments are highly variable. Flexible adjustment between light energy utilization and photoprotection is therefore of vital importance for plant performance and fitness in the field. Short-term reactions to changing light intensity are triggered inside chloroplasts and leaves within seconds to minutes, whereas long-term adjustments proceed over hours and days, integrating multiple signals. While the mechanisms of long-term acclimation to light intensity have been studied by changing constant growth light intensity during the day, responses to fluctuating growth light intensity have rarely been inspected in detail. We performed transcriptome profiling in Arabidopsis (Arabidopsis thaliana) leaves to investigate long-term gene expression responses to fluctuating light (FL). In particular, we examined whether responses differ between young and mature leaves or between morning and the end of the day. Our results highlight global reprogramming of gene expression under FL, including that of genes related to photoprotection, photosynthesis, and photorespiration and to pigment, prenylquinone, and vitamin metabolism. The FL-induced changes in gene expression varied between young and mature leaves at the same time point and between the same leaves in the morning and at the end of the day, indicating interactions of FL acclimation with leaf development stage and time of day. Only 46 genes were up- or down-regulated in both young and mature leaves at both time points. Combined analyses of gene coexpression and cis-elements pointed to a role of the circadian clock and light in coordinating the acclimatory responses of functionally related genes. Our results also suggest a possible cross talk between FL acclimation and systemic acquired resistance-like gene expression in young leaves.
Collapse
Affiliation(s)
- Trang Schneider
- IBG-2: Plant Sciences, Forschungszentrum Jülich, D-52425 Juelich, Germany
- Heinrich Heine University, D-40225 Duesseldorf, Germany
| | - Anthony Bolger
- Institute for Biology I: Institute for Botany and Molecular Genetics, RWTH Aachen University, D-52074 Aachen, Germany
| | - Jürgen Zeier
- Heinrich Heine University, D-40225 Duesseldorf, Germany
| | - Sabine Preiskowski
- IBG-2: Plant Sciences, Forschungszentrum Jülich, D-52425 Juelich, Germany
| | - Vladimir Benes
- Genomics Core Facility, EMBL Heidelberg, D-69117 Heidelberg, Germany
| | | | - Björn Usadel
- IBG-2: Plant Sciences, Forschungszentrum Jülich, D-52425 Juelich, Germany
- Institute for Biology I: Institute for Botany and Molecular Genetics, RWTH Aachen University, D-52074 Aachen, Germany
| | - Eva M Farré
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824
| | - Shizue Matsubara
- IBG-2: Plant Sciences, Forschungszentrum Jülich, D-52425 Juelich, Germany
| |
Collapse
|
22
|
Li M, Wang R, Liang Z, Wu X, Wang J. Genome-wide identification and analysis of the EIN3/EIL gene family in allotetraploid Brassica napus reveal its potential advantages during polyploidization. BMC PLANT BIOLOGY 2019; 19:110. [PMID: 30898097 PMCID: PMC6429743 DOI: 10.1186/s12870-019-1716-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 03/12/2019] [Indexed: 06/01/2023]
Abstract
BACKGROUND Polyploidization is a common event in the evolutionary history of angiosperms, and there will be some changes in the genomes of plants other than a simple genomic doubling after polyploidization. Allotetraploid Brassica napus and its diploid progenitors (B. rapa and B. oleracea) are a good group for studying the problems associated with polyploidization. On the other hand, the EIN3/EIL gene family is an important gene family in plants, all members of which are key genes in the ethylene signaling pathway. Until now, the EIN3/EIL gene family in B. napus and its diploid progenitors have been largely unknown, so it is necessary to comprehensively identify and analyze this gene family. RESULTS In this study, 13, 7 and 7 EIN3/EIL genes were identified in B. napus (2n = 4x = 38, AnCn), B. rapa (2n = 2x = 20, Ar) and B. oleracea (2n = 2x = 18, Co). All of the identified EIN3/EIL proteins were divided into 3 clades and further divided into 8 sub-clades. Ka/Ks analysis showed that all identified EIN3/EIL genes underwent purifying selection after the duplication events. Moreover, gene structure analysis showed that some EIN3/EIL genes in B. napus acquired introns during polyploidization, and homolog expression bias analysis showed that B. napus was biased towards its diploid progenitor B. rapa. The promoters of the EIN3/EIL genes in B. napus contained more cis-acting elements, which were mainly involved in endosperm gene expression and light responsiveness, than its diploid progenitors. Thus, B. napus might have potential advantages in some biological aspects. CONCLUSIONS The results indicated allotetraploid B. napus might have potential advantages in some biological aspects. Moreover, our results can increase the understanding of the evolution of the EIN3/EIL gene family in B. napus, and provided more reference for future research about polyploidization.
Collapse
Affiliation(s)
- Mengdi Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072 China
| | - Ruihua Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072 China
| | - Ziwei Liang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072 China
| | - Xiaoming Wu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of CAAS, Wuhan, 430062 China
| | - Jianbo Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072 China
| |
Collapse
|
23
|
Wang Y, Zhang N, Li T, Yang J, Zhu X, Fang C, Li S, Si H. Genome-wide identification and expression analysis of StTCP transcription factors of potato (Solanum tuberosum L.). Comput Biol Chem 2018; 78:53-63. [PMID: 30497020 DOI: 10.1016/j.compbiolchem.2018.11.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 11/06/2018] [Accepted: 11/15/2018] [Indexed: 12/19/2022]
Abstract
The plant-specific TCP transcription factors, which play critical roles in diverse aspects of biological processes, have been identified and analyzed in various plant species. However, no systematical study of TCP family genes in potato (Solanum tuberosum L.) has been undertaken. In this study, a total of 31 non-redundant TCP transcription factors of potato were identified and divided into two subfamilies including three distinct subclades. The various orthologous TCP genes in Arabidopsis, rice, potato and tomato were identified using synteny and phylogenetic analysis. Protein motif analysis demonstrated that StTCPs in the same subclade shared similar conserved motif structures. Gene structure analysis showed that almost all StTCPs displayed highly conserved exon-intron organization. The analysis of StTCP gene promoter regions revealed that multiple cis-acting elements were involved in plant growth, development, hormone responses as well as stress responses. The result of StTCP gene expression profiles showed they had tissue-specific expression patterns which implied their differentiated functions. According to the results of quantitative RT-PCR (qRT-PCR), 7 StTCP genes were dramatically up-regulated during the release of tuber dormancy and some specific StTCP genes were strongly responding to different abiotic stresses and multiple hormones, which suggested they had important roles in potato growth and development processes. The results of our findings could provide comprehensive insights in StTCP family genes of potato for further functional investigations.
Collapse
Affiliation(s)
- Yapeng Wang
- Gansu Provincial Key Laboratory of Aridland Crop Science/Gansu Key Laboratory of Crop Genetic and Germplasm Enhancement, Gansu Agricultural University, Lanzhou 730070, China; College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China.
| | - Ning Zhang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China.
| | - Ting Li
- Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Jiangwei Yang
- Gansu Provincial Key Laboratory of Aridland Crop Science/Gansu Key Laboratory of Crop Genetic and Germplasm Enhancement, Gansu Agricultural University, Lanzhou 730070, China; College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China.
| | - Xi Zhu
- Gansu Provincial Key Laboratory of Aridland Crop Science/Gansu Key Laboratory of Crop Genetic and Germplasm Enhancement, Gansu Agricultural University, Lanzhou 730070, China; College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China.
| | - Chenxi Fang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China.
| | - Shigui Li
- Gansu Provincial Key Laboratory of Aridland Crop Science/Gansu Key Laboratory of Crop Genetic and Germplasm Enhancement, Gansu Agricultural University, Lanzhou 730070, China; College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China.
| | - Huaijun Si
- Gansu Provincial Key Laboratory of Aridland Crop Science/Gansu Key Laboratory of Crop Genetic and Germplasm Enhancement, Gansu Agricultural University, Lanzhou 730070, China; College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China.
| |
Collapse
|
24
|
Jiménez-Guillen D, Pérez-Pascual D, Souza-Perera R, Godoy-Hernández G, Zúñiga-Aguilar JJ. Cloning of the Coffea canephora SERK1 promoter and its molecular analysis during the cell-to-embryo transition. ELECTRON J BIOTECHN 2018. [DOI: 10.1016/j.ejbt.2018.08.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
25
|
Liu HL, Wu M, Li F, Gao YM, Chen F, Xiang Y. TCP Transcription Factors in Moso Bamboo ( Phyllostachys edulis): Genome-Wide Identification and Expression Analysis. FRONTIERS IN PLANT SCIENCE 2018; 9:1263. [PMID: 30344527 PMCID: PMC6182085 DOI: 10.3389/fpls.2018.01263] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Accepted: 08/10/2018] [Indexed: 05/18/2023]
Abstract
TEOSINTE BRANCHED 1, CYCLOIDEA, and PROLIFERATING CELL FACTORS (T), members of a plant-specific gene family, play significant roles during plant growth and development, as well as in response to environmental stress. However, knowledge about this family in moso bamboo (Phyllostachys edulis) is limited. Therefore, in this study, the first genome-wide identification, classification, characterization, and expression pattern analysis of the TCP transcription factor family in moso bamboo was performed. Sixteen TCP members were identified from the moso bamboo genome using a BLASTP algorithm-based method and verified using the Pfam database. Based on a multiple-sequence alignment, the members were divided into two subfamilies, and members of the same family shared highly conserved motif structures. Subcellular localization and transactivation activity analyses of four selected genes revealed that they were nuclear localized and had self-activation activities. Additionally, the expression levels of several PeTCP members were significantly upregulated under abscisic acid, methyl jasmonate, and salicylic acid treatments, indicating that they play crucial plant hormone transduction roles in the processes of plant growth and development, as well as in responses to environmental stresses. Thus, the current study provides previously lacking information on the TCP family in moso bamboo and reveals the potential functions of this gene family in growth and development.
Collapse
Affiliation(s)
- Huan-Long Liu
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Min Wu
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Fei Li
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, China
| | - Ya-Meng Gao
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, China
| | - Feng Chen
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, China
| | - Yan Xiang
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, China
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, China
| |
Collapse
|
26
|
Zhao J, Zhai Z, Li Y, Geng S, Song G, Guan J, Jia M, Wang F, Sun G, Feng N, Kong X, Chen L, Mao L, Li A. Genome-Wide Identification and Expression Profiling of the TCP Family Genes in Spike and Grain Development of Wheat ( Triticum aestivum L.). FRONTIERS IN PLANT SCIENCE 2018; 9:1282. [PMID: 30298074 PMCID: PMC6160802 DOI: 10.3389/fpls.2018.01282] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 08/16/2018] [Indexed: 05/24/2023]
Abstract
The TCP family genes are plant-specific transcription factors and play important roles in plant development. TCPs have been evolutionarily and functionally studied in several plants. Although common wheat (Triticum aestivum L.) is a major staple crop worldwide, no systematic analysis of TCPs in this important crop has been conducted. Here, we performed a genome-wide survey in wheat and found 66 TCP genes that belonged to 22 homoeologous groups. We then mapped these genes on wheat chromosomes and found that several TCP genes were duplicated in wheat including the ortholog of the maize TEOSINTE BRANCHED 1. Expression study using both RT-PCR and in situ hybridization assay showed that most wheat TCP genes were expressed throughout development of young spike and immature seed. Cis-acting element survey along promoter regions suggests that subfunctionalization may have occurred for homoeologous genes. Moreover, protein-protein interaction experiments of three TCP proteins showed that they can form either homodimers or heterodimers. Finally, we characterized two TaTCP9 mutants from tetraploid wheat. Each of these two mutant lines contained a premature stop codon in the A subgenome homoeolog that was dominantly expressed over the B subgenome homoeolog. We observed that mutation caused increased spike and grain lengths. Together, our analysis of the wheat TCP gene family provides a start point for further functional study of these important transcription factors in wheat.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Long Mao
- *Correspondence: Long Mao, Aili Li,
| | - Aili Li
- *Correspondence: Long Mao, Aili Li,
| |
Collapse
|
27
|
Wu R, Duan L, Pruneda-Paz JL, Oh DH, Pound M, Kay S, Dinneny JR. The 6xABRE Synthetic Promoter Enables the Spatiotemporal Analysis of ABA-Mediated Transcriptional Regulation. PLANT PHYSIOLOGY 2018; 177:1650-1665. [PMID: 29884679 PMCID: PMC6084650 DOI: 10.1104/pp.18.00401] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 05/16/2018] [Indexed: 05/17/2023]
Abstract
The water stress-associated hormone abscisic acid (ABA) acts through a well-defined signal transduction cascade to mediate downstream transcriptional events important for acclimation to stress. Although ABA signaling is known to function in specific tissues to regulate root growth, little is understood regarding the spatial pattern of ABA-mediated transcriptional regulation. Here, we describe the construction and evaluation of an ABSCISIC ACID RESPONSIVE ELEMENT (ABRE)-based synthetic promoter reporter that reveals the transcriptional response of tissues to different levels of exogenous ABA and stresses. Genome-scale yeast one-hybrid screens complemented these approaches and revealed how promoter sequence and architecture affect the recruitment of diverse transcription factors (TFs) to the ABRE. Our analysis also revealed ABA-independent activity of the ABRE-reporter under nonstress conditions, with expression being enriched at the quiescent center and stem cell niche. We show that the WUSCHEL RELATED HOMEOBOX5 and NAC DOMAIN PROTEIN13 TFs regulate QC/SCN expression of the ABRE reporter, which highlights the convergence of developmental and DNA-damage signaling pathways onto this cis-element in the absence of water stress. This work establishes a tool to study the spatial pattern of ABA-mediated transcriptional regulation and a repertoire of TF-ABRE interactions that contribute to the developmental and environmental control of gene expression in roots.
Collapse
Affiliation(s)
- Rui Wu
- Carnegie Institution for Science, Department of Plant Biology, Stanford, California 94305
- Temasek Lifesciences Laboratory, 117604, Singapore, Singapore
- National University of Singapore, Department of Biological Sciences, 117543, Singapore, Singapore
| | - Lina Duan
- Carnegie Institution for Science, Department of Plant Biology, Stanford, California 94305
| | - José L Pruneda-Paz
- University of California San Diego, Section of Cell and Developmental Biology, La Jolla, California 92093
| | - Dong-Ha Oh
- Louisiana State University, Department of Biological Sciences, Baton Rouge, Louisiana 70803
| | - Michael Pound
- University of Nottingham, School of Computer Science, Jubilee Campus, Nottingham, NG8 1BB, United Kingdom
| | - Steve Kay
- University of Southern California, The Keck School of Medicine, Los Angeles, California 90089
| | - José R Dinneny
- Carnegie Institution for Science, Department of Plant Biology, Stanford, California 94305
- Temasek Lifesciences Laboratory, 117604, Singapore, Singapore
- National University of Singapore, Department of Biological Sciences, 117543, Singapore, Singapore
- Stanford University, Department of Biology, Stanford, California 94305
| |
Collapse
|
28
|
Hu W, Yan H, Luo S, Pan F, Wang Y, Xiang Y. Genome-wide analysis of poplar SAUR gene family and expression profiles under cold, polyethylene glycol and indole-3-acetic acid treatments. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 128:50-65. [PMID: 29758473 DOI: 10.1016/j.plaphy.2018.04.021] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 04/19/2018] [Accepted: 04/20/2018] [Indexed: 06/08/2023]
Abstract
Small auxin-up RNA (SAUR) proteins play an important role in the regulation of plant growth and development. Here, we identified 105 SAUR genes and comprehensively analyzed them in Populus trichocarpa. Based on the phylogenetic relationships, the PtSAURs were classified into ten subfamilies. Of the 105 PtSAURs, 100 were randomly distributed along the nineteen chromosomes, while the remaining genes were located along unassigned scafoolds. These genes mainly evolved through segmental duplications. In total, 94 PtSAURs contained no introns, and each group had a similar conserved motif structure. A promoter analysis revealed various cis-elements related to growth, development and stress responses, and a synteny analysis established orthologous relationships among SAURs in Arabidopsis, rice, grape and poplar. The qRT-PCR and tissue expression analyses indicated that PtSAURs show different expression levels in various tissues in response to different treatments. PtSAUR53 was located on the nuclear and plasma membrane by conducting subcellular localization analysis. This study provides a comprehensive overview of poplar SAUR proteins and a foundation for further investigations for functional analysis of SAURs in poplar growth and development. At the same time, it will be valuable to further study the poplar SAUR genes to reveal their biological effects.
Collapse
Affiliation(s)
- Wenfang Hu
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China.
| | - Hanwei Yan
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China; Key Laboratory of Biomass Improvement and Conversion, Anhui Agriculture University, Hefei, 230036, China.
| | - Shuangshuang Luo
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China.
| | - Feng Pan
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China.
| | - Yue Wang
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China.
| | - Yan Xiang
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China; Key Laboratory of Biomass Improvement and Conversion, Anhui Agriculture University, Hefei, 230036, China.
| |
Collapse
|
29
|
Luo S, Hu W, Wang Y, Liu B, Yan H, Xiang Y. Genome-wide identification, classification, and expression of phytocyanins in Populus trichocarpa. PLANTA 2018; 247:1133-1148. [PMID: 29383450 DOI: 10.1007/s00425-018-2849-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 01/17/2018] [Indexed: 05/19/2023]
Abstract
74 phytocyanin genes were identified in the Populus trichocarpa genome. Phylogenetic analysis grouped the PC proteins into four subfamilies (UCs, PLCs, SCs, and ENODLs). Closely related PC proteins share similar motifs, implying similar functions. Expression profiles of PtPC genes were analyzed in response to drought and salt-stress. Phytocyanins (PCs) are blue copper proteins associated with electron carrier activity that have a large influence on plant growth and resistance. The majority of PCs are chimeric arabinogalactan proteins (AGPs). In this work, we identified 74 PC genes in Populus trichocarpa and analyzed them comprehensively. Based on the ligands composition of copper-binding sites, glycosylation state, the domain structure and spectral characteristics of PC genes, PCs were divided into four subfamilies [uclacyanins (UCs), plantacyanins (PLCs), stellacyanins (SCs) and early nodulin-like proteins (ENODLs)], and phylogenetic relationship analysis classified them into seven groups. All PtPCs are randomly distributed on 17 of the 19 poplar chromosomes, and they appear to have undergone expansion via segmental duplication. Eight PtPCs do not contain introns, and each group has a similar conserved motif structure. Promoter analysis revealed cis-elements related to growth, development and stress responses, and established orthology relationships of PCs between Arabidopsis and poplar by synteny analysis. Expression profile analysis and qRT-PCR analysis showed that PtPCs were expressed widely in various tissues. Quantitative real-time RT-PCR analysis of PC genes expression in response to salt and drought stress revealed their stress-responses profiles. This work provides a theoretical basis for a further study of stress resistance mechanisms and the function of PC genes in poplar growth and development.
Collapse
Affiliation(s)
- Shuangshuang Luo
- Key Laboratory of Crop Biology of Anhui Province, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, China
| | - Wenfang Hu
- Key Laboratory of Crop Biology of Anhui Province, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, China
| | - Yue Wang
- Key Laboratory of Crop Biology of Anhui Province, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, China
| | - Bin Liu
- Key Laboratory of Crop Biology of Anhui Province, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, China
| | - Hanwei Yan
- Key Laboratory of Crop Biology of Anhui Province, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China.
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, China.
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei, China.
| | - Yan Xiang
- Key Laboratory of Crop Biology of Anhui Province, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China.
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, China.
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei, China.
| |
Collapse
|
30
|
Suekawa M, Fujikawa Y, Esaka M. Two G-box-like elements essential to high gene expression of SlAKR4B in tomato leaves. Biosci Biotechnol Biochem 2018; 82:425-432. [PMID: 29384041 DOI: 10.1080/09168451.2018.1429887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Aldo-keto reductases (AKRs) play important roles in aldehyde detoxification as well as primary and secondary metabolism in plants. We previously reported inducible expression of a Solanum lycopersicum AKR4B (SlAKR4B) in tomato leaves treated with salicylic acid and jasmonic acid, and high promoter activity of SlAKR4B in tomato leaf protoplasts. In this study, we investigated the expression response of SlAKR4B in the tomato leaves with infiltration treatment and the cis-element(s) involved in high promoter activity. Gene expression analysis in tomato leaf protoplasts and buffer-infiltrated tomato leaves suggested that cell damage caused the increased expression of SlAKR4B. Promoter activity of SlAKR4B was significantly reduced by mutation of two G-box like elements. It is suggested that the two G-box like elements are responsible for the high promoter activity.
Collapse
Affiliation(s)
- Marina Suekawa
- a Graduate School of Biosphere Sciences , Hiroshima University , Higashi-Hiroshima , Japan
| | - Yukichi Fujikawa
- a Graduate School of Biosphere Sciences , Hiroshima University , Higashi-Hiroshima , Japan
| | - Muneharu Esaka
- a Graduate School of Biosphere Sciences , Hiroshima University , Higashi-Hiroshima , Japan
| |
Collapse
|
31
|
Xie C, Zhang G, Zhang Y, Song X, Guo H, Chen X, Fang R. SRWD1, a novel target gene of DELLA and WRKY proteins, participates in the development and immune response of rice (Oryza sativa L.). Sci Bull (Beijing) 2017; 62:1639-1648. [PMID: 36659383 DOI: 10.1016/j.scib.2017.12.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 11/16/2017] [Accepted: 11/17/2017] [Indexed: 01/21/2023]
Abstract
SRWD1, a member of the WD40 protein subfamily, is induced by salt stress in rice and its homolog in barley can bind to GAMYB, implying that SRWD1 might be involved in plant defense against environmental stress and gibberellic acid (GA) signalings. In this study, we focused on the biological functions and regulation mechanisms of SRWD1 in rice. The results showed that SRWD1 expression was repressed by GA and induced by abscisic acid (ABA). Two WRKY-family transcription factors, OsWRKY45 and OsWRKY72, were found to regulate SRWD1 expression by directly binding to the W-box region in its promoter. Transient co-expression and yeast two-hybrid analyses showed that a DELLA protein strengthened the activation of OsWRKY45 and partly relieved the suppression of OsWRKY72 by binding to them. Interestingly, both SRWD1-overexpressing transgenic plants and SRWD1-knockout mutants showed dwarf phenotypes and resistance to Xanthomonas oryzae.
Collapse
Affiliation(s)
- Chuanmiao Xie
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; National Center for Plant Gene Research (Beijing), Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ge Zhang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; National Center for Plant Gene Research (Beijing), Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuman Zhang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; National Center for Plant Gene Research (Beijing), Beijing 100101, China
| | - Xiaoguang Song
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; National Center for Plant Gene Research (Beijing), Beijing 100101, China; State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Hongyan Guo
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; National Center for Plant Gene Research (Beijing), Beijing 100101, China; State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaoying Chen
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; National Center for Plant Gene Research (Beijing), Beijing 100101, China.
| | - Rongxiang Fang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; National Center for Plant Gene Research (Beijing), Beijing 100101, China.
| |
Collapse
|
32
|
Brown AV, Hudson KA. Transcriptional profiling of mechanically and genetically sink-limited soybeans. PLANT, CELL & ENVIRONMENT 2017; 40:2307-2318. [PMID: 28722115 DOI: 10.1111/pce.13030] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 06/29/2017] [Accepted: 07/02/2017] [Indexed: 06/07/2023]
Abstract
The absence of a reproductive sink causes physiological and morphological changes in soybean plants. These include increased accumulation of nitrogen and starch in the leaves and delayed leaf senescence. To identify transcriptional changes that occur in leaves of these sink-limited plants, we used RNAseq to compare gene expression levels in trifoliate leaves from depodded and ms6 male-sterile soybean plants and control plants. In both sink-limited tissues, we observed a deferral of the expression of senescence-associated genes and a continued expression of genes associated with leaf maturity. Gene Ontology-terms (GO-terms) associated with growth and development and storage proteins were over-represented in genes that were differentially expressed in sink-limited tissues. We also identified basic helix-loop-helix, auxin response factor, and squamosa binding protein transcription factors expressed in sink-limited tissues, and the senescing control leaves expressed WRKY and NAC transcription factors. We identified genes that were not expressed during normal leaf development but that were highly expressed in sink-limited plants, including the SGR3b "non-yellowing" gene. These differences highlighted several metabolic pathways that were involved in distinct modes of resource partitioning of leaves with the "stay green" phenotype.
Collapse
Affiliation(s)
- Anne V Brown
- Department of Agronomy, Purdue University, 915 West State Street, West Lafayette, IN, 47907, USA
- USDA-ARS, Corn Insects and Crop Genetics Research Unit, Ames, IA, USA
| | - Karen A Hudson
- USDA-ARS Crop Protection and Pest Control Research Unit, 915 West State Street, West Lafayette, IN, 47907, USA
| |
Collapse
|
33
|
Watanabe KA, Homayouni A, Gu L, Huang KY, Ho THD, Shen QJ. Transcriptomic analysis of rice aleurone cells identified a novel abscisic acid response element. PLANT, CELL & ENVIRONMENT 2017. [PMID: 28626890 DOI: 10.1111/pce.13006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Seeds serve as a great model to study plant responses to drought stress, which is largely mediated by abscisic acid (ABA). The ABA responsive element (ABRE) is a key cis-regulatory element in ABA signalling. However, its consensus sequence (ACGTG(G/T)C) is present in the promoters of only about 40% of ABA-induced genes in rice aleurone cells, suggesting other ABREs may exist. To identify novel ABREs, RNA sequencing was performed on aleurone cells of rice seeds treated with 20 μM ABA. Gibbs sampling was used to identify enriched elements, and particle bombardment-mediated transient expression studies were performed to verify the function. Gene ontology analysis was performed to predict the roles of genes containing the novel ABREs. This study revealed 2443 ABA-inducible genes and a novel ABRE, designated as ABREN, which was experimentally verified to mediate ABA signalling in rice aleurone cells. Many of the ABREN-containing genes are predicted to be involved in stress responses and transcription. Analysis of other species suggests that the ABREN may be monocot specific. This study also revealed interesting expression patterns of genes involved in ABA metabolism and signalling. Collectively, this study advanced our understanding of diverse cis-regulatory sequences and the transcriptomes underlying ABA responses in rice aleurone cells.
Collapse
Affiliation(s)
- Kenneth A Watanabe
- School of Life Sciences, University of Nevada Las Vegas, 4505 South Maryland Parkway, Las Vegas, NV, 89154, USA
| | - Arielle Homayouni
- School of Life Sciences, University of Nevada Las Vegas, 4505 South Maryland Parkway, Las Vegas, NV, 89154, USA
| | - Lingkun Gu
- School of Life Sciences, University of Nevada Las Vegas, 4505 South Maryland Parkway, Las Vegas, NV, 89154, USA
| | - Kuan-Ying Huang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Tuan-Hua David Ho
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
- Department of Biology, Washington University, St. Louis, MO, 63130, USA
| | - Qingxi J Shen
- School of Life Sciences, University of Nevada Las Vegas, 4505 South Maryland Parkway, Las Vegas, NV, 89154, USA
| |
Collapse
|
34
|
Drought and exogenous abscisic acid alter hydrogen peroxide accumulation and differentially regulate the expression of two maize RD22-like genes. Sci Rep 2017; 7:8821. [PMID: 28821770 PMCID: PMC5562893 DOI: 10.1038/s41598-017-08976-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 07/17/2017] [Indexed: 12/20/2022] Open
Abstract
Increased biosynthesis of abscisic acid (ABA) occurs in plants in response to water deficit, which is mediated by changes in the levels of reactive oxygen species such as H2O2. Water deficit and ABA induce expression of some RD22-like proteins. This study aimed to evaluate the effect of water deficit and exogenous ABA (50 µM ABA applied every 24 hours for a total of 72 hours) on H2O2 content in Zea mays (maize) and to characterise genes encoding two putative maize RD22-like proteins (designated ZmRD22A and ZmRD22B). The expression profiles of the two putative maize RD22-like genes in response to water deficit and treatment with ABA were examined in leaves. In silico analyses showed that the maize RD22-like proteins share domain organisation with previously characterized RD22-like proteins. Both water deficit and exogenous ABA resulted in increased H2O2 content in leaves but the increase was more pronounced in response to water deficit than to exogenous ABA. Lignin content was not affected by exogenous ABA, whereas it was decreased by water deficit. Expression of both RD22-like genes was up-regulated by drought but the ZmRD22A gene was not influenced by exogenous ABA, whereas ZmRD22B was highly responsive to exogenous ABA.
Collapse
|
35
|
Albornos L, Martín I, Labrador E, Dopico B. Three members of Medicago truncatula ST family are ubiquitous during development and modulated by nutritional status (MtST1) and dehydration (MtST2 and MtST3). BMC PLANT BIOLOGY 2017; 17:117. [PMID: 28693485 PMCID: PMC5504553 DOI: 10.1186/s12870-017-1061-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 06/22/2017] [Indexed: 05/30/2023]
Abstract
BACKGROUND ShooT specific/Specific Tissue (ST) belong to a protein family of unknown function characterized by the DUF2775 domain and produced in specific taxonomic plant families, mainly Fabaceae and Asteraceae, with the Medicago truncatula ST family being the largest. The putative roles proposed for this family are cell elongation, biotic interactions, abiotic stress and N reserve. The aim of this work was to go deeper into the role of three M. truncatula ST proteins, namely ST1, ST2 and ST3. Our starting hypothesis was that each member of the family could perform a specific role, and hence, each ST gene would be subjected to a different type of regulation. RESULTS The search for cis-acting regulatory elements (CREs) in silico in pST1, pST2 and pST3 promoters showed prevalence of tissue/organ specific motifs, especially root- and seed-specific ones. Light, hormone, biotic and abiotic related motifs were also present. None of these pSTs showed the same combination of CREs, or presented the same activity pattern. In general, pST activity was associated with the vascular cylinder, mainly in roots. Promoter activation was highly specific and dissimilar during reproductive development. The ST1, ST2 and ST3 transcripts accumulated in most of the organs and developmental stages analysed - decreasing with age - and expression was higher in the roots than in the aerial parts and more abundant in light-grown plants. The effect of the different treatments on transcript accumulation indicated that ST1 behaved differently from ST2 and ST3, mainly in response to several hormones and dehydration treatments (NaCl or mannitol), upon which ST1 transcript levels decreased and ST2 and ST3 levels increased. Finally, the ST1 protein was located in the cell wall whereas ST2 and ST3 were present both in the cytoplasm and in the cell wall. CONCLUSIONS The ST proteins studied are ubiquitous proteins that could perform distinct/complementary roles in plant biology as they are encoded by differentially regulated genes. Based on these differences we have established two functional groups among the three STs. ST1 would participate in processes affected by nutritional status, while ST2 and ST3 seem to act when plants are challenged with abiotic stresses related to water stress and in physiologically controlled desiccation processes such as the seed maturation.
Collapse
Affiliation(s)
- Lucía Albornos
- Departamento de Botánica y Fisiología Vegetal. Instituto Hispano-Luso de Investigaciones Agrarias (CIALE), University of Salamanca. C/ Licenciado Méndez Nieto s/n, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| | - Ignacio Martín
- Departamento de Botánica y Fisiología Vegetal. Instituto Hispano-Luso de Investigaciones Agrarias (CIALE), University of Salamanca. C/ Licenciado Méndez Nieto s/n, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| | - Emilia Labrador
- Departamento de Botánica y Fisiología Vegetal. Instituto Hispano-Luso de Investigaciones Agrarias (CIALE), University of Salamanca. C/ Licenciado Méndez Nieto s/n, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| | - Berta Dopico
- Departamento de Botánica y Fisiología Vegetal. Instituto Hispano-Luso de Investigaciones Agrarias (CIALE), University of Salamanca. C/ Licenciado Méndez Nieto s/n, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| |
Collapse
|
36
|
Sumoylation stabilizes RACK1B and enhance its interaction with RAP2.6 in the abscisic acid response. Sci Rep 2017; 7:44090. [PMID: 28272518 PMCID: PMC5341030 DOI: 10.1038/srep44090] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 02/01/2017] [Indexed: 12/16/2022] Open
Abstract
The highly conserved eukaryotic WD40 repeat protein, Receptor for Activated C Kinase 1 (RACK1), is involved in the abscisic acid (ABA) response in Arabidopsis. However, the regulation of RACK1 and the proteins with which it interacts are poorly understood. Here, we show that RACK1B is sumoylated at four residues, Lys50, Lys276, Lys281 and Lys291. Sumoylation increases RACK1B stability and its tolerance to ubiquitination-mediated degradation in ABA response. As a result, sumoylation leads to enhanced interaction between RACK1B and RAP2.6, an AP2/ERF family transcription factor. RACK1B binds directly to the AP2 domain of RAP2.6, which alters the affinity of RAP2.6 for CE1 and GCC cis-acting regulatory elements. Taken together, our findings illustrate that protein stability controlled by dynamic post-transcriptional modification is a critical regulatory mechanism for RACK1B, which functions as scaffold protein for RAP2.6 in ABA signaling.
Collapse
|
37
|
Zhao BY, Hu YF, Li JJ, Yao X, Liu KD. BnaABF2, a bZIP transcription factor from rapeseed (Brassica napus L.), enhances drought and salt tolerance in transgenic Arabidopsis. BOTANICAL STUDIES 2016; 57:12. [PMID: 28597422 PMCID: PMC5432893 DOI: 10.1186/s40529-016-0127-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 04/27/2016] [Indexed: 05/18/2023]
Abstract
BACKGROUND Abiotic stresses such as drought and salt stresses have a negative effect on the growth and productivity of plants. Improvement of stress tolerance through genetic engineering in plants has been reported in intense studies. Transcription factors play vital roles in plant adaptation to stresses by regulating expression of a great deal of target genes. A family of Arabidopsis basic region leucine zipper (bZIP) transcription factors that can recognize and bind to the abscisic acid (ABA)-responsive elements (ABREs) in promoter is named as ABRE binding factors (ABFs)/ABRE binding proteins (AREBs). They play a key role in the regulation of expression of downstream stress-responsive genes in ABA signalling. Genetic transformation of ABF/ABRE transcription factors has been suggested to be an effective approach for engineering stress-tolerant plants. However, whether the ABF/ABRE transcription factors are able to be used for generating stress-tolerant rapeseed plants has not yet been studied. RESULTS BnaABF2, encoding a bZIP transcription factor, was cloned from rapeseed in this study. Subcellular localization and transactivation analyses showed that BnaABF2 was localized to the nucleus with transactivation activity in plant cells. BnaABF2 gene expression was induced by drought and salt stresses and BnaABF2 positively functions in ABA signalling during the vegetative stage. Overexpression of BnaABF2 was found to render drought and salt tolerance to Arabidopsis plants. The resistance of the BnaABF2-expressing transgenic plants to drought and salt stresses is due to reduced water-loss rate and expression of stress-responsive genes such as RD29B, RAB18 and KIN2. The expression of RD29B, RAB18 and KIN2 regulated by BnaABF2 is involved in an ABA-dependent stress signalling. CONCLUSIONS Identification of the positive role of rapeseed BnaABF2 in plant tolerance to drought and salt provides evidence for ability of engineering stress-tolerant rapeseed plants by genetic transformation of BnaABF2.
Collapse
Affiliation(s)
- Bi-Yan Zhao
- College of plant science and technology, Huazhong Agricultural University, Wuhan, 430070 China
| | - Yu-Feng Hu
- College of plant science and technology, Huazhong Agricultural University, Wuhan, 430070 China
| | - Juan-juan Li
- College of plant science and technology, Huazhong Agricultural University, Wuhan, 430070 China
| | - Xuan Yao
- College of plant science and technology, Huazhong Agricultural University, Wuhan, 430070 China
| | - Ke-de Liu
- College of plant science and technology, Huazhong Agricultural University, Wuhan, 430070 China
| |
Collapse
|
38
|
Duraisamy GS, Mishra AK, Kocabek T, Matoušek J. Identification and characterization of promoters and cis-regulatory elements of genes involved in secondary metabolites production in hop (Humulus lupulus. L). Comput Biol Chem 2016; 64:346-352. [DOI: 10.1016/j.compbiolchem.2016.07.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 07/07/2016] [Accepted: 07/15/2016] [Indexed: 10/21/2022]
|
39
|
Singh RK, Jaishankar J, Muthamilarasan M, Shweta S, Dangi A, Prasad M. Genome-wide analysis of heat shock proteins in C4 model, foxtail millet identifies potential candidates for crop improvement under abiotic stress. Sci Rep 2016; 6:32641. [PMID: 27586959 PMCID: PMC5009299 DOI: 10.1038/srep32641] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 08/10/2016] [Indexed: 11/12/2022] Open
Abstract
Heat shock proteins (HSPs) perform significant roles in conferring abiotic stress tolerance to crop plants. In view of this, HSPs and their encoding genes were extensively characterized in several plant species; however, understanding their structure, organization, evolution and expression profiling in a naturally stress tolerant crop is necessary to delineate their precise roles in stress-responsive molecular machinery. In this context, the present study has been performed in C4 panicoid model, foxtail millet, which resulted in identification of 20, 9, 27, 20 and 37 genes belonging to SiHSP100, SiHSP90, SiHSP70, SiHSP60 and SisHSP families, respectively. Comprehensive in silico characterization of these genes followed by their expression profiling in response to dehydration, heat, salinity and cold stresses in foxtail millet cultivars contrastingly differing in stress tolerance revealed significant upregulation of several genes in tolerant cultivar. SisHSP-27 showed substantial higher expression in response to heat stress in tolerant cultivar, and its over-expression in yeast system conferred tolerance to several abiotic stresses. Methylation analysis of SiHSP genes suggested that, in susceptible cultivar, higher levels of methylation might be the reason for reduced expression of these genes during stress. Altogether, the study provides novel clues on the role of HSPs in conferring stress tolerance.
Collapse
Affiliation(s)
- Roshan Kumar Singh
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi - 110067, India
| | - Jananee Jaishankar
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi - 110067, India
| | | | - Shweta Shweta
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi - 110067, India
| | - Anand Dangi
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi - 110067, India
| | - Manoj Prasad
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi - 110067, India
| |
Collapse
|
40
|
Castro PH, Couto D, Freitas S, Verde N, Macho AP, Huguet S, Botella MA, Ruiz-Albert J, Tavares RM, Bejarano ER, Azevedo H. SUMO proteases ULP1c and ULP1d are required for development and osmotic stress responses in Arabidopsis thaliana. PLANT MOLECULAR BIOLOGY 2016; 92:143-59. [PMID: 27325215 DOI: 10.1007/s11103-016-0500-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 05/30/2016] [Indexed: 05/12/2023]
Abstract
Sumoylation is an essential post-translational regulator of plant development and the response to environmental stimuli. SUMO conjugation occurs via an E1-E2-E3 cascade, and can be removed by SUMO proteases (ULPs). ULPs are numerous and likely to function as sources of specificity within the pathway, yet most ULPs remain functionally unresolved. In this report we used loss-of-function reverse genetics and transcriptomics to functionally characterize Arabidopsis thaliana ULP1c and ULP1d SUMO proteases. GUS reporter assays implicated ULP1c/d in various developmental stages, and subsequent defects in growth and germination were uncovered using loss-of-function mutants. Microarray analysis evidenced not only a deregulation of genes involved in development, but also in genes controlled by various drought-associated transcriptional regulators. We demonstrated that ulp1c ulp1d displayed diminished in vitro root growth under low water potential and higher stomatal aperture, yet leaf transpirational water loss and whole drought tolerance were not significantly altered. Generation of a triple siz1 ulp1c ulp1d mutant suggests that ULP1c/d and the SUMO E3 ligase SIZ1 may display separate functions in development yet operate epistatically in response to water deficit. We provide experimental evidence that Arabidopsis ULP1c and ULP1d proteases act redundantly as positive regulators of growth, and operate mainly as isopeptidases downstream of SIZ1 in the control of water deficit responses.
Collapse
Affiliation(s)
- Pedro Humberto Castro
- Biosystems and Integrative Sciences Institute (BioISI), Plant Functional Biology Center, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Departamento Biología Celular, Genética y Fisiología, Universidad de Málaga, Campus Teatinos, 29071, Malaga, Spain
- Section for Plant and Soil Science, Department of Plant and Environmental Sciences, University of Copenhagen, 1871, Frederiksberg C, Denmark
| | - Daniel Couto
- Biosystems and Integrative Sciences Institute (BioISI), Plant Functional Biology Center, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
- The Sainsbury Laboratory, Colney Lane, Norwich, NR4 7UH, UK
| | - Sara Freitas
- Biosystems and Integrative Sciences Institute (BioISI), Plant Functional Biology Center, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Nuno Verde
- Biosystems and Integrative Sciences Institute (BioISI), Plant Functional Biology Center, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Alberto P Macho
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Departamento Biología Celular, Genética y Fisiología, Universidad de Málaga, Campus Teatinos, 29071, Malaga, Spain
- Shanghai Center for Plant Stress Biology, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, 201602, Shanghai, China
| | - Stéphanie Huguet
- Unité de Recherche en Génomique Végétale (URGV), UMR INRA 1165, Université d'Evry Val d'Essonne, ERL CNRS 8196, 2 rue G. Crémieux, CP 5708, 91057, Evry Cedex, France
| | - Miguel Angel Botella
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Departamento Biología Molecular y Bioquímica, Universidad de Málaga, Campus Teatinos, 29071, Malaga, Spain
| | - Javier Ruiz-Albert
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Departamento Biología Celular, Genética y Fisiología, Universidad de Málaga, Campus Teatinos, 29071, Malaga, Spain
| | - Rui Manuel Tavares
- Biosystems and Integrative Sciences Institute (BioISI), Plant Functional Biology Center, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Eduardo Rodríguez Bejarano
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Departamento Biología Celular, Genética y Fisiología, Universidad de Málaga, Campus Teatinos, 29071, Malaga, Spain
| | - Herlânder Azevedo
- CIBIO, InBIO-Research Network in Biodiversity and Evolutionary Biology, Universidade do Porto, Campus Agrário de Vairão, 4485-661, Vairão, Portugal.
| |
Collapse
|
41
|
Thalmann M, Pazmino D, Seung D, Horrer D, Nigro A, Meier T, Kölling K, Pfeifhofer HW, Zeeman SC, Santelia D. Regulation of Leaf Starch Degradation by Abscisic Acid Is Important for Osmotic Stress Tolerance in Plants. THE PLANT CELL 2016; 28:1860-78. [PMID: 27436713 PMCID: PMC5006701 DOI: 10.1105/tpc.16.00143] [Citation(s) in RCA: 208] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 07/05/2016] [Accepted: 07/19/2016] [Indexed: 05/18/2023]
Abstract
Starch serves functions that range over a timescale of minutes to years, according to the cell type from which it is derived. In guard cells, starch is rapidly mobilized by the synergistic action of β-AMYLASE1 (BAM1) and α-AMYLASE3 (AMY3) to promote stomatal opening. In the leaves, starch typically accumulates gradually during the day and is degraded at night by BAM3 to support heterotrophic metabolism. During osmotic stress, starch is degraded in the light by stress-activated BAM1 to release sugar and sugar-derived osmolytes. Here, we report that AMY3 is also involved in stress-induced starch degradation. Recently isolated Arabidopsis thaliana amy3 bam1 double mutants are hypersensitive to osmotic stress, showing impaired root growth. amy3 bam1 plants close their stomata under osmotic stress at similar rates as the wild type but fail to mobilize starch in the leaves. (14)C labeling showed that amy3 bam1 plants have reduced carbon export to the root, affecting osmolyte accumulation and root growth during stress. Using genetic approaches, we further demonstrate that abscisic acid controls the activity of BAM1 and AMY3 in leaves under osmotic stress through the AREB/ABF-SnRK2 kinase-signaling pathway. We propose that differential regulation and isoform subfunctionalization define starch-adaptive plasticity, ensuring an optimal carbon supply for continued growth under an ever-changing environment.
Collapse
Affiliation(s)
- Matthias Thalmann
- Department of Plant and Microbial Biology, University of Zürich, 8008 Zürich, Switzerland
| | - Diana Pazmino
- Department of Plant and Microbial Biology, University of Zürich, 8008 Zürich, Switzerland
| | - David Seung
- Institute for Agricultural Sciences, ETH Zürich, 8092 Zürich, Switzerland
| | - Daniel Horrer
- Department of Plant and Microbial Biology, University of Zürich, 8008 Zürich, Switzerland
| | - Arianna Nigro
- Department of Plant and Microbial Biology, University of Zürich, 8008 Zürich, Switzerland
| | - Tiago Meier
- Department of Plant and Microbial Biology, University of Zürich, 8008 Zürich, Switzerland
| | - Katharina Kölling
- Institute for Agricultural Sciences, ETH Zürich, 8092 Zürich, Switzerland
| | - Hartwig W Pfeifhofer
- Institut für Pflanzenwissenschaften, Karl-Franzens-Universität Graz, 8010 Graz, Austria
| | - Samuel C Zeeman
- Institute for Agricultural Sciences, ETH Zürich, 8092 Zürich, Switzerland
| | - Diana Santelia
- Department of Plant and Microbial Biology, University of Zürich, 8008 Zürich, Switzerland
| |
Collapse
|
42
|
Espinoza A, Contreras R, Zúñiga GE, Herrera R, Moya-León MA, Norambuena L, Handford M. FcLDP1, a Gene Encoding a Late Embryogenesis Abundant (LEA) Domain Protein, Responds to Brassinosteroids and Abscisic Acid during the Development of Fruits in Fragaria chiloensis. FRONTIERS IN PLANT SCIENCE 2016; 7:788. [PMID: 27379111 PMCID: PMC4905986 DOI: 10.3389/fpls.2016.00788] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 05/22/2016] [Indexed: 05/31/2023]
Abstract
White Chilean strawberries (Fragaria chiloensis) are non-climacteric fruits, with an exotic color and aroma. In order to discover genes involved in the development of these fruits, we identified a fragment of a gene encoding a late embryogenesis abundant domain protein, FcLDP1, that was expressed in early stages of fruit development, particularly in receptacles. Hormones play key roles in regulating the development of non-climacteric fruits. We show that the brassinosteroid content of the white strawberry varies during development. Additionally, FcLDP1 as well as the closest ortholog in the woodland strawberry, F. vesca (FvLDP1) possess multiple brassinosteroid, as well as abscisic acid (ABA) response motifs in the promoter region, consistent with the response of transiently expressed FcLDP1 promoter-GFP fusions to these hormones, and the rise in FcLDP1 transcript levels in white strawberry fruits treated with brassinosteroids or ABA. These findings suggest that both hormones regulate FcLDP1 expression during the development of white strawberries.
Collapse
Affiliation(s)
- Analía Espinoza
- Centro de Biología Molecular Vegetal, Departamento de Biología, Facultad de Ciencias, Universidad de ChileSantiago, Chile
| | - Rodrigo Contreras
- Facultad de Química y Biología, Universidad de Santiago de ChileSantiago, Chile
- Centro para el Desarrollo de la Nanociencia y la Nanotecnología, Universidad de Santiago de ChileSantiago, Chile
| | - Gustavo E. Zúñiga
- Facultad de Química y Biología, Universidad de Santiago de ChileSantiago, Chile
- Centro para el Desarrollo de la Nanociencia y la Nanotecnología, Universidad de Santiago de ChileSantiago, Chile
| | - Raúl Herrera
- Laboratorio de Fisiología Vegetal y Genética Molecular, Instituto de Ciencias Biológicas, Universidad de TalcaTalca, Chile
| | - María Alejandra Moya-León
- Laboratorio de Fisiología Vegetal y Genética Molecular, Instituto de Ciencias Biológicas, Universidad de TalcaTalca, Chile
| | - Lorena Norambuena
- Centro de Biología Molecular Vegetal, Departamento de Biología, Facultad de Ciencias, Universidad de ChileSantiago, Chile
| | - Michael Handford
- Centro de Biología Molecular Vegetal, Departamento de Biología, Facultad de Ciencias, Universidad de ChileSantiago, Chile
| |
Collapse
|
43
|
Ghosh TK, Kaneko M, Akter K, Murai S, Komatsu K, Ishizaki K, Yamato KT, Kohchi T, Takezawa D. Abscisic acid-induced gene expression in the liverwort Marchantia polymorpha is mediated by evolutionarily conserved promoter elements. PHYSIOLOGIA PLANTARUM 2016; 156:407-20. [PMID: 26456006 DOI: 10.1111/ppl.12385] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 07/04/2015] [Accepted: 07/17/2015] [Indexed: 05/23/2023]
Abstract
Abscisic acid (ABA) is a phytohormone widely distributed among members of the land plant lineage (Embryophyta), regulating dormancy, stomata closure and tolerance to environmental stresses. In angiosperms (Magnoliophyta), ABA-induced gene expression is mediated by promoter elements such as the G-box-like ACGT-core motifs recognized by bZIP transcription factors. In contrast, the mode of regulation by ABA of gene expression in liverworts (Marchantiophyta), representing one of the earliest diverging land plant groups, has not been elucidated. In this study, we used promoters of the liverwort Marchantia polymorpha dehydrin and the wheat Em genes fused to the β-glucuronidase (GUS) reporter gene to investigate ABA-induced gene expression in liverworts. Transient assays of cultured cells of Marchantia indicated that ACGT-core motifs proximal to the transcription initiation site play a role in the ABA-induced gene expression. The RY sequence recognized by B3 transcriptional regulators was also shown to be responsible for the ABA-induced gene expression. In transgenic Marchantia plants, ABA treatment elicited an increase in GUS expression in young gemmalings, which was abolished by simultaneous disruption of the ACGT-core and RY elements. ABA-induced GUS expression was less obvious in mature thalli than in young gemmalings, associated with reductions in sensitivity to exogenous ABA during gametophyte growth. In contrast, lunularic acid, which had been suggested to function as an ABA-like substance, had no effect on GUS expression. The results demonstrate the presence of ABA-specific response mechanisms mediated by conserved cis-regulatory elements in liverworts, implying that the mechanisms had been acquired in the common ancestors of embryophytes.
Collapse
Affiliation(s)
- Totan K Ghosh
- Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| | - Midori Kaneko
- Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| | - Khaleda Akter
- Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| | - Shuhei Murai
- Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| | - Kenji Komatsu
- Department of Bioproduction Technology, Junior College of Tokyo University of Agriculture, Tokyo, Japan
| | | | - Katsuyuki T Yamato
- Faculty of Biology-Oriented Science and Engineering, Kinki University, Higashiosaka, Japan
| | - Takayuki Kohchi
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Daisuke Takezawa
- Graduate School of Science and Engineering, Saitama University, Saitama, Japan
- Institute for Environmental Science and Technology, Saitama University, Saitama, Japan
| |
Collapse
|
44
|
Zhao Y, Chan Z, Gao J, Xing L, Cao M, Yu C, Hu Y, You J, Shi H, Zhu Y, Gong Y, Mu Z, Wang H, Deng X, Wang P, Bressan RA, Zhu JK. ABA receptor PYL9 promotes drought resistance and leaf senescence. Proc Natl Acad Sci U S A 2016; 113:1949-54. [PMID: 26831097 PMCID: PMC4763734 DOI: 10.1073/pnas.1522840113] [Citation(s) in RCA: 402] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Drought stress is an important environmental factor limiting plant productivity. In this study, we screened drought-resistant transgenic plants from 65 promoter-pyrabactin resistance 1-like (PYL) abscisic acid (ABA) receptor gene combinations and discovered that pRD29A::PYL9 transgenic lines showed dramatically increased drought resistance and drought-induced leaf senescence in both Arabidopsis and rice. Previous studies suggested that ABA promotes senescence by causing ethylene production. However, we found that ABA promotes leaf senescence in an ethylene-independent manner by activating sucrose nonfermenting 1-related protein kinase 2s (SnRK2s), which subsequently phosphorylate ABA-responsive element-binding factors (ABFs) and Related to ABA-Insensitive 3/VP1 (RAV1) transcription factors. The phosphorylated ABFs and RAV1 up-regulate the expression of senescence-associated genes, partly by up-regulating the expression of Oresara 1. The pyl9 and ABA-insensitive 1-1 single mutants, pyl8-1pyl9 double mutant, and snrk2.2/3/6 triple mutant showed reduced ABA-induced leaf senescence relative to the WT, whereas pRD29A::PYL9 transgenic plants showed enhanced ABA-induced leaf senescence. We found that leaf senescence may benefit drought resistance by helping to generate an osmotic potential gradient, which is increased in pRD29A::PYL9 transgenic plants and causes water to preferentially flow to developing tissues. Our results uncover the molecular mechanism of ABA-induced leaf senescence and suggest an important role of PYL9 and leaf senescence in promoting resistance to extreme drought stress.
Collapse
Affiliation(s)
- Yang Zhao
- Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China; Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907
| | - Zhulong Chan
- Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China; Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden/Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
| | - Jinghui Gao
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907; College of Animal Science and Technology, Northwest A&F University, Shaan'xi 712100, China
| | - Lu Xing
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907; School of Life Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Minjie Cao
- Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Chunmei Yu
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907; College of Life Sciences, Nantong University, Jiangsu 226019, China
| | - Yuanlei Hu
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907; College of Life Sciences, Peking University, Beijing 100871, China
| | - Jun You
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden/Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
| | - Haitao Shi
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden/Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
| | - Yingfang Zhu
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907
| | - Yuehua Gong
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907; College of Life Science and Food Engineering, Yibin University, Sichuan 644000, China
| | - Zixin Mu
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907; College of Life Science, Northwest A&F University, Shaan'xi 712100, China
| | - Haiqing Wang
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907; Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Plateau Institute of Biology, Chinese Academy of Sciences, Xining 810001, China
| | - Xin Deng
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907; Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Science, Beijing 100093, China
| | - Pengcheng Wang
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907
| | - Ray A Bressan
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907
| | - Jian-Kang Zhu
- Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China; Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907;
| |
Collapse
|
45
|
Wei W, Hu Y, Cui MY, Han YT, Gao K, Feng JY. Identification and Transcript Analysis of the TCP Transcription Factors in the Diploid Woodland Strawberry Fragaria vesca. FRONTIERS IN PLANT SCIENCE 2016; 7:1937. [PMID: 28066489 PMCID: PMC5177655 DOI: 10.3389/fpls.2016.01937] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 12/06/2016] [Indexed: 05/18/2023]
Abstract
Plant-specific TEOSINTE BRANCHED 1, CYCLOIDEA, and PROLIFERATING CELL FACTORS (TCP) transcription factors play versatile functions in multiple processes of plant growth and development. However, no systematic study has been performed in strawberry. In this study, 19 FvTCP genes were identified in the diploid woodland strawberry (Fragaria vesca) accession Heilongjiang-3. Phylogenetic analysis suggested that the FvTCP genes were classified into two main classes, with the second class further divided into two subclasses, which was supported by the exon-intron organizations and the conserved motif structures. Promoter analysis revealed various cis-acting elements related to growth and development, hormone and/or stress responses. We analyzed FvTCP gene transcript accumulation patterns in different tissues and fruit developmental stages. Among them, 12 FvTCP genes exhibited distinct tissue-specific transcript accumulation patterns. Eleven FvTCP genes were down-regulated in different fruit developmental stages, while five FvTCP genes were up-regulated. Transcripts of FvTCP genes also varied with different subcultural propagation periods and were induced by hormone treatments and biotic and abiotic stresses. Subcellular localization analysis showed that six FvTCP-GFP fusion proteins showed distinct localizations in Arabidopsis mesophyll protoplasts. Notably, transient over-expression of FvTCP9 in strawberry fruits dramatically affected the expression of a series of genes implicated in fruit development and ripening. Taken together, the present study may provide the basis for functional studies to reveal the role of this gene family in strawberry growth and development.
Collapse
Affiliation(s)
- Wei Wei
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F UniversityShaanxi, China
- Key Laboratory of Protected Horticulture Engineering in Northwest China, Ministry of AgricultureShaanxi, China
| | - Yang Hu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F UniversityShaanxi, China
| | - Meng-Yuan Cui
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F UniversityShaanxi, China
- Key Laboratory of Protected Horticulture Engineering in Northwest China, Ministry of AgricultureShaanxi, China
| | - Yong-Tao Han
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F UniversityShaanxi, China
| | - Kuan Gao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F UniversityShaanxi, China
- Key Laboratory of Protected Horticulture Engineering in Northwest China, Ministry of AgricultureShaanxi, China
| | - Jia-Yue Feng
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F UniversityShaanxi, China
- Key Laboratory of Protected Horticulture Engineering in Northwest China, Ministry of AgricultureShaanxi, China
- *Correspondence: Jia-Yue Feng,
| |
Collapse
|
46
|
Wang Y, Yang L, Chen X, Ye T, Zhong B, Liu R, Wu Y, Chan Z. Major latex protein-like protein 43 (MLP43) functions as a positive regulator during abscisic acid responses and confers drought tolerance in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:421-34. [PMID: 26512059 PMCID: PMC4682443 DOI: 10.1093/jxb/erv477] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Drought stress is one of the disadvantageous environmental conditions for plant growth and reproduction. Given the importance of abscisic acid (ABA) to plant growth and abiotic stress responses, identification of novel components involved in ABA signalling transduction is critical. In this study, we screened numerous Arabidopsis thaliana mutants by seed germination assay and identified a mutant mlp43 (major latex protein-like 43) with decreased ABA sensitivity in seed germination. The mlp43 mutant was sensitive to drought stress while the MLP43-overexpressed transgenic plants were drought tolerant. The tissue-specific expression pattern analysis showed that MLP43 was predominantly expressed in cotyledons, primary roots and apical meristems, and a subcellular localization study indicated that MLP43 was localized in the nucleus and cytoplasm. Physiological and biochemical analyses indicated that MLP43 functioned as a positive regulator in ABA- and drought-stress responses in Arabidopsis through regulating water loss efficiency, electrolyte leakage, ROS levels, and as well as ABA-responsive gene expression. Moreover, metabolite profiling analysis indicated that MLP43 could modulate the production of primary metabolites under drought stress conditions. Reconstitution of ABA signalling components in Arabidopsis protoplasts indicated that MLP43 was involved in ABA signalling transduction and acted upstream of SnRK2s by directly interacting with SnRK2.6 and ABF1 in a yeast two-hybrid assay. Moreover, ABA and drought stress down-regulated MLP43 expression as a negative feedback loop regulation to the performance of MLP43 in ABA and drought stress responses. Therefore, this study provided new insights for interpretation of physiological and molecular mechanisms of Arabidopsis MLP43 mediating ABA signalling transduction and drought stress responses.
Collapse
Affiliation(s)
- Yanping Wang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei Province, China
| | - Li Yang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei Province, China University of Chinese Academy of Sciences, Beijing, China
| | - Xi Chen
- State Key Laboratory of Hybrid Rice, College of Life Science, Wuhan University, Wuhan, Hubei Province, China
| | - Tiantian Ye
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei Province, China University of Chinese Academy of Sciences, Beijing, China
| | - Bao Zhong
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei Province, China University of Chinese Academy of Sciences, Beijing, China
| | - Ruijie Liu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei Province, China University of Chinese Academy of Sciences, Beijing, China
| | - Yan Wu
- State Key Laboratory of Hybrid Rice, College of Life Science, Wuhan University, Wuhan, Hubei Province, China
| | - Zhulong Chan
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei Province, China
| |
Collapse
|
47
|
Lehmeyer M, Kanofsky K, Hanko EKR, Ahrendt S, Wehrs M, Machens F, Hehl R. Functional dissection of a strong and specific microbe-associated molecular pattern-responsive synthetic promoter. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:61-71. [PMID: 25819608 PMCID: PMC11388824 DOI: 10.1111/pbi.12357] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 01/12/2015] [Accepted: 02/06/2015] [Indexed: 06/04/2023]
Abstract
Synthetic promoters are important for temporal and spatial gene expression in transgenic plants. To identify novel microbe-associated molecular pattern (MAMP)-responsive cis-regulatory sequences for synthetic promoter design, a combination of bioinformatics and experimental approaches was employed. One cis-sequence was identified which confers strong MAMP-responsive reporter gene activity with low background activity. The 35-bp-long cis-sequence was identified in the promoter of the Arabidopsis thaliana DJ1E gene, a homologue of the human oncogene DJ1. In this study, this cis-sequence is shown to be a tripartite cis-regulatory module (CRM). A synthetic promoter with four copies of the CRM linked to a minimal promoter increases MAMP-responsive reporter gene expression compared to the wild-type DJ1E promoter. The CRM consists of two WT-boxes (GGACTTTT and GGACTTTG) and a variant of the GCC-box (GCCACC), all required for MAMP and salicylic acid (SA) responsivity. Yeast one-hybrid screenings using a transcription factor (TF)-only prey library identified two AP2/ERFs, ORA59 and ERF10, interacting antagonistically with the CRM. ORA59 activates reporter gene activity and requires the consensus core sequence GCCNCC for gene expression activation. ERF10 down-regulates MAMP-responsive gene expression. No TFs interacting with the WT-boxes GGACTTTT and GGACTTTG were selected in yeast one-hybrid screenings with the TF-only prey library. In transgenic Arabidopsis, the synthetic promoter confers strong and specific reporter gene activity in response to biotrophs and necrotrophs as well as SA.
Collapse
Affiliation(s)
- Mona Lehmeyer
- Institut für Genetik, Technische Universität Braunschweig, Braunschweig, Germany
| | - Konstantin Kanofsky
- Institut für Genetik, Technische Universität Braunschweig, Braunschweig, Germany
| | - Erik K R Hanko
- Institut für Genetik, Technische Universität Braunschweig, Braunschweig, Germany
| | - Sarah Ahrendt
- Institut für Genetik, Technische Universität Braunschweig, Braunschweig, Germany
| | - Maren Wehrs
- Institut für Genetik, Technische Universität Braunschweig, Braunschweig, Germany
| | - Fabian Machens
- Institut für Genetik, Technische Universität Braunschweig, Braunschweig, Germany
| | - Reinhard Hehl
- Institut für Genetik, Technische Universität Braunschweig, Braunschweig, Germany
| |
Collapse
|
48
|
MzPIP2;1: An Aquaporin Involved in Radial Water Movement in Both Water Uptake and Transportation, Altered the Drought and Salt Tolerance of Transgenic Arabidopsis. PLoS One 2015; 10:e0142446. [PMID: 26562158 PMCID: PMC4643029 DOI: 10.1371/journal.pone.0142446] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 10/21/2015] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Plants are unavoidably subjected to various abiotic stressors, including high salinity, drought and low temperature, which results in water deficit and even death. Water uptake and transportation play a critical role in response to these stresses. Many aquaporin proteins, localized at different tissues, function in various transmembrane water movements. We targeted at the key aquaporin in charge of both water uptake in roots and radial water transportation from vascular tissues through the whole plant. RESULTS The MzPIP2;1 gene encoding a plasma membrane intrinsic protein was cloned from salt-tolerant apple rootstock Malus zumi Mats. The GUS gene was driven by MzPIP2;1 promoter in transgenic Arabidopsis. It indicated that MzPIP2;1 might function in the epidermal and vascular cells of roots, parenchyma cells around vessels through the stems and vascular tissues of leaves. The ectopically expressed MzPIP2;1 conferred the transgenic Arabidopsis plants enhanced tolerance to slight salt and drought stresses, but sensitive to moderate salt stress, which was indicated by root length, lateral root number, fresh weight and K+/Na+ ratio. In addition, the possible key cis-elements in response to salt, drought and cold stresses were isolated by the promoter deletion experiment. CONCLUSION The MzPIP2;1 protein, as a PIP2 aquaporins subgroup member, involved in radial water movement, controls water absorption and usage efficiency and alters transgenic plants drought and salt tolerance.
Collapse
|
49
|
Dey N, Sarkar S, Acharya S, Maiti IB. Synthetic promoters in planta. PLANTA 2015; 242:1077-94. [PMID: 26250538 DOI: 10.1007/s00425-015-2377-2] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 07/22/2015] [Indexed: 05/03/2023]
Abstract
This paper reviews the importance, prospective and development of synthetic promoters reported in planta. A review of the synthetic promoters developed in planta would help researchers utilize the available resources and design new promoters to benefit fundamental research and agricultural applications. The demand for promoters for the improvement and application of transgenic techniques in research and agricultural production is increasing. Native/naturally occurring promoters have some limitations in terms of their induction conditions, transcription efficiency and size. The strength and specificity of native promoter can be tailored by manipulating its 'cis-architecture' by the use of several recombinant DNA technologies. Newly derived chimeric promoters with specific attributes are emerging as an efficient tool for plant molecular biology. In the last three decades, synthetic promoters have been used to regulate plant gene expression. To better understand synthetic promoters, in this article, we reviewed promoter structure, the scope of cis-engineering, strategies for their development, their importance in plant biology and the total number of such promoters (188) developed in planta to date; we then categorized them under different functional regimes as biotic stress-inducible, abiotic stress-inducible, light-responsive, chemical-inducible, hormone-inducible, constitutive and tissue-specific. Furthermore, we identified a set of 36 synthetic promoters that control multiple types of expression in planta. Additionally, we illustrated the differences between native and synthetic promoters and among different synthetic promoter in each group, especially in terms of efficiency and induction conditions. As a prospective of this review, the use of ideal synthetic promoters is one of the prime requirements for generating transgenic plants suitable for promoting sustainable agriculture and plant molecular farming.
Collapse
Affiliation(s)
- Nrisingha Dey
- Department of Gene Function and Regulation, Institute of Life Sciences, Department of Biotechnology, Government of India, Chandrasekharpur, Bhubaneswar, Odisha, India.
| | - Shayan Sarkar
- Department of Gene Function and Regulation, Institute of Life Sciences, Department of Biotechnology, Government of India, Chandrasekharpur, Bhubaneswar, Odisha, India
| | - Sefali Acharya
- Department of Gene Function and Regulation, Institute of Life Sciences, Department of Biotechnology, Government of India, Chandrasekharpur, Bhubaneswar, Odisha, India
| | - Indu B Maiti
- KTRDC, College of Agriculture-Food and Environment, University of Kentucky, Lexington, KY, 40546, USA
| |
Collapse
|
50
|
Hayami N, Sakai Y, Kimura M, Saito T, Tokizawa M, Iuchi S, Kurihara Y, Matsui M, Nomoto M, Tada Y, Yamamoto YY. The Responses of Arabidopsis Early Light-Induced Protein2 to Ultraviolet B, High Light, and Cold Stress Are Regulated by a Transcriptional Regulatory Unit Composed of Two Elements. PLANT PHYSIOLOGY 2015; 169:840-55. [PMID: 26175515 PMCID: PMC4577391 DOI: 10.1104/pp.15.00398] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Accepted: 07/13/2015] [Indexed: 05/05/2023]
Abstract
The Arabidopsis (Arabidopsis thaliana) Early Light-Induced Protein (ELIP) is thought to act as a photoprotectant, reducing the damaging effects of high light (HL). Expression of ELIP2 is activated by multiple environmental stresses related to photoinhibition. We have identified putative regulatory elements in an ELIP2 promoter using an octamer-based frequency comparison method, analyzed the role of these elements using synthetic promoters, and revealed a key transcriptional regulatory unit for ultraviolet B (UV-B) radiation, HL, and cold stress responses. The unit is composed of two elements, designated as Elements A (TACACACC) and B (GGCCACGCCA), and shows functionality only when paired. Our genome-wide correlation analysis between possession of these elements in the promoter region and expression profiles in response to UV-B, HL, and cold suggests that Element B receives and integrates these multiple stress signals. In vitro protein-DNA binding assays revealed that LONG HYPOCOTYL5 (HY5), a basic domain-Leucine zipper transcription factor, directly binds to Element B. In addition, mutant analysis of HY5 showed partial involvement in the UV-B and HL responses but not in the cold stress response. These results suggest that signals for UV-B, HL, and cold stress join at Element B, which recognizes the signals of multiple transcription factors, including HY5.
Collapse
Affiliation(s)
- Natsuki Hayami
- Faculty of Applied Biological Sciences (N.H., Y.S., T.S., Y.Y.Y.) and United Graduate School of Agricultural Science (M.T., Y.Y.Y.), Gifu University, Gifu 501-1103, Japan; Department of Frontier Research, Kazusa DNA Research Institute, Kazusa-kamatari 2-6-7, Kisarazu, Chiba 292-0818, Japan (M.K.);RIKEN Bioresource Center, Koyadai 3-1-1, Tsukuba, Ibaraki 305-0074, Japan (S.I.);RIKEN Center for Sustainable Resource Science, Suehiro-cho 1-7-22, Tsurumi-ku, Yokohama City, Kanagawa 230-0045, Japan (Y.K., M.M., Y.Y.Y.); andCenter for Gene Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan (M.N., Y.T.)
| | - Yusaku Sakai
- Faculty of Applied Biological Sciences (N.H., Y.S., T.S., Y.Y.Y.) and United Graduate School of Agricultural Science (M.T., Y.Y.Y.), Gifu University, Gifu 501-1103, Japan; Department of Frontier Research, Kazusa DNA Research Institute, Kazusa-kamatari 2-6-7, Kisarazu, Chiba 292-0818, Japan (M.K.);RIKEN Bioresource Center, Koyadai 3-1-1, Tsukuba, Ibaraki 305-0074, Japan (S.I.);RIKEN Center for Sustainable Resource Science, Suehiro-cho 1-7-22, Tsurumi-ku, Yokohama City, Kanagawa 230-0045, Japan (Y.K., M.M., Y.Y.Y.); andCenter for Gene Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan (M.N., Y.T.)
| | - Mitsuhiro Kimura
- Faculty of Applied Biological Sciences (N.H., Y.S., T.S., Y.Y.Y.) and United Graduate School of Agricultural Science (M.T., Y.Y.Y.), Gifu University, Gifu 501-1103, Japan; Department of Frontier Research, Kazusa DNA Research Institute, Kazusa-kamatari 2-6-7, Kisarazu, Chiba 292-0818, Japan (M.K.);RIKEN Bioresource Center, Koyadai 3-1-1, Tsukuba, Ibaraki 305-0074, Japan (S.I.);RIKEN Center for Sustainable Resource Science, Suehiro-cho 1-7-22, Tsurumi-ku, Yokohama City, Kanagawa 230-0045, Japan (Y.K., M.M., Y.Y.Y.); andCenter for Gene Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan (M.N., Y.T.)
| | - Tatsunori Saito
- Faculty of Applied Biological Sciences (N.H., Y.S., T.S., Y.Y.Y.) and United Graduate School of Agricultural Science (M.T., Y.Y.Y.), Gifu University, Gifu 501-1103, Japan; Department of Frontier Research, Kazusa DNA Research Institute, Kazusa-kamatari 2-6-7, Kisarazu, Chiba 292-0818, Japan (M.K.);RIKEN Bioresource Center, Koyadai 3-1-1, Tsukuba, Ibaraki 305-0074, Japan (S.I.);RIKEN Center for Sustainable Resource Science, Suehiro-cho 1-7-22, Tsurumi-ku, Yokohama City, Kanagawa 230-0045, Japan (Y.K., M.M., Y.Y.Y.); andCenter for Gene Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan (M.N., Y.T.)
| | - Mutsutomo Tokizawa
- Faculty of Applied Biological Sciences (N.H., Y.S., T.S., Y.Y.Y.) and United Graduate School of Agricultural Science (M.T., Y.Y.Y.), Gifu University, Gifu 501-1103, Japan; Department of Frontier Research, Kazusa DNA Research Institute, Kazusa-kamatari 2-6-7, Kisarazu, Chiba 292-0818, Japan (M.K.);RIKEN Bioresource Center, Koyadai 3-1-1, Tsukuba, Ibaraki 305-0074, Japan (S.I.);RIKEN Center for Sustainable Resource Science, Suehiro-cho 1-7-22, Tsurumi-ku, Yokohama City, Kanagawa 230-0045, Japan (Y.K., M.M., Y.Y.Y.); andCenter for Gene Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan (M.N., Y.T.)
| | - Satoshi Iuchi
- Faculty of Applied Biological Sciences (N.H., Y.S., T.S., Y.Y.Y.) and United Graduate School of Agricultural Science (M.T., Y.Y.Y.), Gifu University, Gifu 501-1103, Japan; Department of Frontier Research, Kazusa DNA Research Institute, Kazusa-kamatari 2-6-7, Kisarazu, Chiba 292-0818, Japan (M.K.);RIKEN Bioresource Center, Koyadai 3-1-1, Tsukuba, Ibaraki 305-0074, Japan (S.I.);RIKEN Center for Sustainable Resource Science, Suehiro-cho 1-7-22, Tsurumi-ku, Yokohama City, Kanagawa 230-0045, Japan (Y.K., M.M., Y.Y.Y.); andCenter for Gene Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan (M.N., Y.T.)
| | - Yukio Kurihara
- Faculty of Applied Biological Sciences (N.H., Y.S., T.S., Y.Y.Y.) and United Graduate School of Agricultural Science (M.T., Y.Y.Y.), Gifu University, Gifu 501-1103, Japan; Department of Frontier Research, Kazusa DNA Research Institute, Kazusa-kamatari 2-6-7, Kisarazu, Chiba 292-0818, Japan (M.K.);RIKEN Bioresource Center, Koyadai 3-1-1, Tsukuba, Ibaraki 305-0074, Japan (S.I.);RIKEN Center for Sustainable Resource Science, Suehiro-cho 1-7-22, Tsurumi-ku, Yokohama City, Kanagawa 230-0045, Japan (Y.K., M.M., Y.Y.Y.); andCenter for Gene Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan (M.N., Y.T.)
| | - Minami Matsui
- Faculty of Applied Biological Sciences (N.H., Y.S., T.S., Y.Y.Y.) and United Graduate School of Agricultural Science (M.T., Y.Y.Y.), Gifu University, Gifu 501-1103, Japan; Department of Frontier Research, Kazusa DNA Research Institute, Kazusa-kamatari 2-6-7, Kisarazu, Chiba 292-0818, Japan (M.K.);RIKEN Bioresource Center, Koyadai 3-1-1, Tsukuba, Ibaraki 305-0074, Japan (S.I.);RIKEN Center for Sustainable Resource Science, Suehiro-cho 1-7-22, Tsurumi-ku, Yokohama City, Kanagawa 230-0045, Japan (Y.K., M.M., Y.Y.Y.); andCenter for Gene Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan (M.N., Y.T.)
| | - Mika Nomoto
- Faculty of Applied Biological Sciences (N.H., Y.S., T.S., Y.Y.Y.) and United Graduate School of Agricultural Science (M.T., Y.Y.Y.), Gifu University, Gifu 501-1103, Japan; Department of Frontier Research, Kazusa DNA Research Institute, Kazusa-kamatari 2-6-7, Kisarazu, Chiba 292-0818, Japan (M.K.);RIKEN Bioresource Center, Koyadai 3-1-1, Tsukuba, Ibaraki 305-0074, Japan (S.I.);RIKEN Center for Sustainable Resource Science, Suehiro-cho 1-7-22, Tsurumi-ku, Yokohama City, Kanagawa 230-0045, Japan (Y.K., M.M., Y.Y.Y.); andCenter for Gene Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan (M.N., Y.T.)
| | - Yasuomi Tada
- Faculty of Applied Biological Sciences (N.H., Y.S., T.S., Y.Y.Y.) and United Graduate School of Agricultural Science (M.T., Y.Y.Y.), Gifu University, Gifu 501-1103, Japan; Department of Frontier Research, Kazusa DNA Research Institute, Kazusa-kamatari 2-6-7, Kisarazu, Chiba 292-0818, Japan (M.K.);RIKEN Bioresource Center, Koyadai 3-1-1, Tsukuba, Ibaraki 305-0074, Japan (S.I.);RIKEN Center for Sustainable Resource Science, Suehiro-cho 1-7-22, Tsurumi-ku, Yokohama City, Kanagawa 230-0045, Japan (Y.K., M.M., Y.Y.Y.); andCenter for Gene Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan (M.N., Y.T.)
| | - Yoshiharu Y Yamamoto
- Faculty of Applied Biological Sciences (N.H., Y.S., T.S., Y.Y.Y.) and United Graduate School of Agricultural Science (M.T., Y.Y.Y.), Gifu University, Gifu 501-1103, Japan; Department of Frontier Research, Kazusa DNA Research Institute, Kazusa-kamatari 2-6-7, Kisarazu, Chiba 292-0818, Japan (M.K.);RIKEN Bioresource Center, Koyadai 3-1-1, Tsukuba, Ibaraki 305-0074, Japan (S.I.);RIKEN Center for Sustainable Resource Science, Suehiro-cho 1-7-22, Tsurumi-ku, Yokohama City, Kanagawa 230-0045, Japan (Y.K., M.M., Y.Y.Y.); andCenter for Gene Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan (M.N., Y.T.)
| |
Collapse
|