1
|
Ruma YN, Bu G, Hattne J, Gonen T. MicroED structure of the C11 cysteine protease clostripain. J Struct Biol X 2024; 10:100107. [PMID: 39100863 PMCID: PMC11296011 DOI: 10.1016/j.yjsbx.2024.100107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 07/03/2024] [Accepted: 07/05/2024] [Indexed: 08/06/2024] Open
Abstract
Clostripain secreted from Clostridium histolyticum is the founding member of the C11 family of Clan CD cysteine peptidases, which is an important group of peptidases secreted by numerous bacteria. Clostripain is an arginine-specific endopeptidase. Because of its efficacy as a cysteine peptidase, it is widely used in laboratory settings. Despite its importance the structure of clostripain remains unsolved. Here we describe the first structure of an active form of C. histolyticum clostripain determined at 2.5 Å resolution using microcrystal electron diffraction (MicroED). The structure was determined from a single nanocrystal after focused ion beam milling. The structure of clostripain shows a typical Clan CD α/β/α sandwich architecture and the Cys231/His176 catalytic dyad in the active site. It has a large electronegative substrate binding pocket showing its ability to accommodate large and diverse substrates. A loop in the heavy chain formed between residues 452 and 457 is potentially important for substrate binding. In conclusion, this result demonstrates the importance of MicroED to determine the unknown structure of macromolecules such as clostripain, which can be further used as a platform to study substrate binding and design of potential inhibitors against this class of peptidases.
Collapse
Affiliation(s)
- Yasmeen N. Ruma
- Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, CA 90095, United States
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA 90095, United States
| | - Guanhong Bu
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA 90095, United States
| | - Johan Hattne
- Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, CA 90095, United States
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA 90095, United States
| | - Tamir Gonen
- Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, CA 90095, United States
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA 90095, United States
- Department of Physiology, University of California, Los Angeles, Los Angeles, CA 90095, United States
| |
Collapse
|
2
|
Zilecka E, Klima M, Stefek M, Dejmek M, Nencka R, Boura E. Structure of SARS-CoV-2 MTase nsp14 with the inhibitor STM957 reveals inhibition mechanism that is shared with a poxviral MTase VP39. J Struct Biol X 2024; 10:100109. [PMID: 39188530 PMCID: PMC11345338 DOI: 10.1016/j.yjsbx.2024.100109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 07/26/2024] [Accepted: 07/27/2024] [Indexed: 08/28/2024] Open
Abstract
Nsp14 is an RNA methyltransferase (MTase) encoded by all coronaviruses. In fact, many viral families, including DNA viruses, encode MTases that catalyze the methylation of the RNA precap structure, resulting in fully capped viral RNA. This capping is crucial for efficient viral RNA translation, stability, and immune evasion. Our previous research identified nsp14 inhibitors based on the chemical scaffold of its methyl donor - the S-adenosyl methionine (SAM) - featuring a modified adenine base and a substituted arylsulfonamide. However, the binding mode of these inhibitors was based only on docking experiments. To uncover atomic details of nsp14 inhibition we solved the crystal structure of nsp14 bound to STM957. The structure revealed the atomic details of nsp14 inhibition such that the 7-deaza-adenine moiety of STM957 forms specific interactions with Tyr368, Ala353, and Phe367, while the arylsulfonamide moiety engages with Asn388 and Phe506. The large aromatic substituent at the 7-deaza position displaces a network of water molecules near the adenine base. Surprisingly, this was recently observed in the case of an unrelated monkeypox MTase VP39, where the 7-deaza modified SAH analogs also displaced water molecules from the vicinity of the active site.
Collapse
Affiliation(s)
- Eva Zilecka
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Martin Klima
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Milan Stefek
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Milan Dejmek
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Radim Nencka
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Evzen Boura
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| |
Collapse
|
3
|
Watanabe M, Nakamichi Y, Mine S. Elucidation of d-allulose recognition mechanism in ketose 3-epimerase. J Biosci Bioeng 2024; 138:488-494. [PMID: 39317619 DOI: 10.1016/j.jbiosc.2024.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/22/2024] [Accepted: 08/29/2024] [Indexed: 09/26/2024]
Abstract
d-Allulose is a low-calorie sweetener with multiple nutritional functions that can be produced through d-fructose isomerization by ketose 3-epimerase (KEase). l-Ribulose 3-epimerase from Arthrobacterglobiformis (AgLRE) is one of the most important enzymes that produce d-allulose; however, its substrate recognition mechanism is unknown. In this study, the crystal structures of AgLRE and its complex with d-allulose and d-fructose were determined. Upon substrate binding, the hydrophobic residues around the active-site entrance move toward the bound substrate. A comparison of AgLRE and other KEase structures revealed that the substrate-binding residues are not the main factors responsible for its marked specificity for d-allulose and d-fructose, but the hydrophobicity of the active site pocket influences substrate recognition. Particularly, the two hydrophobic regions at the active site entrance are the regulatory elements that modulate substrate recognition by AgLRE. This study provides useful information for designing AgLRE to increase its affinity for d-allulose and d-fructose.
Collapse
Affiliation(s)
- Masahiro Watanabe
- Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), 3-11-32 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-0046, Japan
| | - Yusuke Nakamichi
- Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), 3-11-32 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-0046, Japan
| | - Shohei Mine
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577, Japan.
| |
Collapse
|
4
|
Jeong KH, Son SB, Ko JH, Lee M, Lee JY. Structural insights into BirA from Haemophilus influenzae, a bifunctional protein as a biotin protein ligase and a transcriptional repressor. Biochem Biophys Res Commun 2024; 733:150601. [PMID: 39213703 DOI: 10.1016/j.bbrc.2024.150601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
Biotin is an essential coenzyme involved in various metabolic processes across all known organisms, with biotinylation being crucial for the activity of carboxylases. BirA from Haemophilus influenzae is a bifunctional protein that acts as a biotin protein ligase and a transcriptional repressor. This study reveals the crystal structures of Hin BirA in both its apo- and holo-(biotinyl-5'-AMP bound) forms. As a class II BirA, it consists of three domains: N-terminal DNA binding domain, central catalytic domain, and C-terminal SH3-like domain. The structural analysis shows that the biotin-binding loop forms an ordered structure upon biotinyl-5'-AMP binding. This facilitates its interaction with the ligand and promotes protein dimerization. Comparative studies with other BirA homologs from different organisms indicate that the residues responsible for binding biotinyl-5'-AMP are highly conserved. This study also utilized AlphaFold2 to model the potential heterodimeric interaction between Hin BirA and biotin carboxyl carrier protein, thereby providing insights into the structural basis for biotinylation. These findings enhance our understanding of the structural and functional characteristics of Hin BirA, highlighting its potential as a target for novel antibiotics that disrupt the bacterial biotin synthesis pathways.
Collapse
Affiliation(s)
- Kang Hwa Jeong
- Department of Life Science, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggi-do, 10326, Republic of Korea
| | - Su Bin Son
- Department of Life Science, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggi-do, 10326, Republic of Korea
| | - Ji Hyuk Ko
- Department of Life Science, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggi-do, 10326, Republic of Korea
| | - Minho Lee
- Department of Life Science, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggi-do, 10326, Republic of Korea.
| | - Jae Young Lee
- Department of Life Science, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggi-do, 10326, Republic of Korea.
| |
Collapse
|
5
|
Kumar RP, Matos JO, Black BY, Ellenburg WH, Chen J, Patterson M, Gehtman JA, Theobald DL, Krauss IJ, Oprian DD. Crystal Structure of Caryolan-1-ol Synthase, a Sesquiterpene Synthase Catalyzing an Initial Anti-Markovnikov Cyclization Reaction. Biochemistry 2024; 63:2904-2915. [PMID: 39400323 DOI: 10.1021/acs.biochem.4c00547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
In a continuing effort to understand reaction mechanisms of terpene synthases catalyzing initial anti-Markovnikov cyclization reactions, we solved the X-ray crystal structure of (+)-caryolan-1-ol synthase (CS) from Streptomyces griseus, with and without an inactive analog of the farnesyl diphosphate (FPP) substrate, 2-fluorofarnesyl diphosphate (2FFPP), bound in the active site of the enzyme. The CS-2FFPP structure was solved to 2.65 Å resolution and showed the ligand in an elongated orientation, incapable of undergoing the initial cyclization event to form a C1-C11 bond. Intriguingly, the apo CS structure (2.2 Å) also had electron density in the active site, in this case, well fit by a curled-up tetraethylene glycol molecule recruited, presumably, from the crystallization medium. The density was also well fit by a molecule of farnesene suggesting that the structure may mimic an intermediate along the reaction coordinate. The curled-up conformation of tetraethylene glycol was accompanied by dramatic rotation of some active-site residues in comparison to the 2FFPP-structure. Most notably, W56 and F183 undergo 90° rotations between the 2FFPP complex and apoenzyme structures, suggesting that these residues provide interactions that help curl the tetraethylene glycol molecule in the active site, and by extension perhaps also a derivative of the FPP substrate in the normal course of the cyclization reaction. In support of this proposal, the CS W56L and F183A variants were observed to be severely restricted in their ability to catalyze C1-C11 cyclization of the FPP substrate and instead produced predominantly acyclic terpene products dominated by farnesol, β-farnesene, and nerolidol.
Collapse
Affiliation(s)
- Ramasamy P Kumar
- Department of Biochemistry, Brandeis University, Waltham, Massachusetts 02454, United States
| | - Jason O Matos
- Department of Biochemistry, Brandeis University, Waltham, Massachusetts 02454, United States
| | - Brandon Y Black
- Department of Biochemistry, Brandeis University, Waltham, Massachusetts 02454, United States
| | - William H Ellenburg
- Department of Biochemistry, Brandeis University, Waltham, Massachusetts 02454, United States
| | - Jiahua Chen
- Department of Biochemistry, Brandeis University, Waltham, Massachusetts 02454, United States
| | - MacKenzie Patterson
- Department of Biochemistry, Brandeis University, Waltham, Massachusetts 02454, United States
| | - Jacob A Gehtman
- Department of Biochemistry, Brandeis University, Waltham, Massachusetts 02454, United States
| | - Douglas L Theobald
- Department of Biochemistry, Brandeis University, Waltham, Massachusetts 02454, United States
| | - Isaac J Krauss
- Department of Chemistry, Brandeis University, Waltham, Massachusetts 02454, United States
| | - Daniel D Oprian
- Department of Biochemistry, Brandeis University, Waltham, Massachusetts 02454, United States
| |
Collapse
|
6
|
Tanner JJ, Ji J, Bogner AN, Scott GK, Patel SM, Seravalli J, Gates KS, Benz CC, Becker DF. Noncovalent Inhibition and Covalent Inactivation of Proline Dehydrogenase by Analogs of N-Propargylglycine. Biochemistry 2024; 63:2855-2867. [PMID: 39437336 DOI: 10.1021/acs.biochem.4c00429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
The flavoenzyme proline dehydrogenase (PRODH) catalyzes the first step of proline catabolism, the oxidation of l-proline to Δ1-pyrroline-5-carboxylate. The enzyme is a target for chemical probe discovery because of its role in the metabolism of certain cancer cells. N-propargylglycine is the first and best characterized mechanism-based covalent inactivator of PRODH. This compound consists of a recognition module (glycine) that directs the inactivator to the active site and an alkyne warhead that reacts with the FAD after oxidative activation, leading to covalent modification of the FAD N5 atom. Here we report structural and kinetic data on analogs of N-propargylglycine with the goals of understanding the initial docking step of the inactivation mechanism and to test the allyl group as a warhead. The crystal structures of PRODH complexed with unreactive analogs in which N is replaced by S show how the recognition module mimics the substrate proline by forming ion pairs with conserved arginine and lysine residues. Further, the C atom adjacent to the alkyne warhead is optimally positioned for hydride transfer to the FAD, providing the structural basis for the first bond-breaking step of the inactivation mechanism. The structures also suggest new strategies for designing improved N-propargylglycine analogs. N-allylglycine, which consists of a glycine recognition module and allyl warhead, is shown to be a covalent inactivator; however, it is less efficient than N-propargylglycine in both enzyme inactivation and cellular assays. Crystal structures of the N-allylglycine-inactivated enzyme are consistent with covalent modification of the N5 by propanal.
Collapse
Affiliation(s)
- John J Tanner
- Department of Biochemistry, University of Missouri, Columbia, Missouri 65211, United States
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Juan Ji
- Department of Biochemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Alexandra N Bogner
- Department of Biochemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Gary K Scott
- Buck Institute for Research on Aging, Novato, California 94945, United States
| | - Sagar M Patel
- Department of Biochemistry and Redox Biology Center, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Javier Seravalli
- Department of Biochemistry and Redox Biology Center, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Kent S Gates
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Christopher C Benz
- Buck Institute for Research on Aging, Novato, California 94945, United States
| | - Donald F Becker
- Department of Biochemistry and Redox Biology Center, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| |
Collapse
|
7
|
Fornasier E, Fabbian S, Shehi H, Enderle J, Gatto B, Volpin D, Biondi B, Bellanda M, Giachin G, Sosic A, Battistutta R. Allostery in homodimeric SARS-CoV-2 main protease. Commun Biol 2024; 7:1435. [PMID: 39496839 DOI: 10.1038/s42003-024-07138-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 10/24/2024] [Indexed: 11/06/2024] Open
Abstract
Many enzymes work as homodimers with two distant catalytic sites, but the reason for this choice is often not clear. For the main protease Mpro of SARS-CoV-2, dimerization is essential for function and plays a regulatory role during the coronaviral replication process. Here, to analyze a possible allosteric mechanism, we use X-ray crystallography, native mass spectrometry, isothermal titration calorimetry, and activity assays to study the interaction of Mpro with three peptide substrates. Crystal structures show how the plasticity of Mpro is exploited to face differences in the sequences of the natural substrates. Importantly, unlike in the free form, the Mpro dimer in complex with these peptides is asymmetric and the structures of the substrates nsp5/6 and nsp14/15 bound to a single subunit show allosteric communications between active sites. We identified arginines 4 and 298 as key elements in the transition from symmetric to asymmetric dimers. Kinetic data allowed the identification of positive cooperativity based on the increase in the processing efficiency (kinetic allostery) and not on the better binding of the substrates (thermodynamic allostery). At the physiological level, this allosteric behavior may be justified by the need to regulate the processing of viral polyproteins in time and space.
Collapse
Affiliation(s)
- Emanuele Fornasier
- Department of Chemical Sciences, University of Padova, via F. Marzolo 1, 35131, Padova, Italy
| | - Simone Fabbian
- Department of Chemical Sciences, University of Padova, via F. Marzolo 1, 35131, Padova, Italy
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via F. Marzolo 5, 35131, Padova, Italy
| | - Haidi Shehi
- Department of Chemical Sciences, University of Padova, via F. Marzolo 1, 35131, Padova, Italy
| | - Janine Enderle
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via F. Marzolo 5, 35131, Padova, Italy
| | - Barbara Gatto
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via F. Marzolo 5, 35131, Padova, Italy
| | - Daniele Volpin
- Department of Chemical Sciences, University of Padova, via F. Marzolo 1, 35131, Padova, Italy
| | - Barbara Biondi
- Institute of Biomolecular Chemistry of CNR, Padova Unit, via F. Marzolo 1, 35131, Padova, Italy
| | - Massimo Bellanda
- Department of Chemical Sciences, University of Padova, via F. Marzolo 1, 35131, Padova, Italy
- Institute of Biomolecular Chemistry of CNR, Padova Unit, via F. Marzolo 1, 35131, Padova, Italy
| | - Gabriele Giachin
- Department of Chemical Sciences, University of Padova, via F. Marzolo 1, 35131, Padova, Italy
| | - Alice Sosic
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via F. Marzolo 5, 35131, Padova, Italy
| | - Roberto Battistutta
- Department of Chemical Sciences, University of Padova, via F. Marzolo 1, 35131, Padova, Italy.
- Institute of Biomolecular Chemistry of CNR, Padova Unit, via F. Marzolo 1, 35131, Padova, Italy.
| |
Collapse
|
8
|
Cheng J, Li CY, Meng M, Li JX, Liu SJ, Cao HY, Wang N, Zhang YZ, Liu LN. Molecular interactions of the chaperone CcmS and carboxysome shell protein CcmK1 that mediate β-carboxysome assembly. PLANT PHYSIOLOGY 2024; 196:1778-1787. [PMID: 39172695 DOI: 10.1093/plphys/kiae438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/26/2024] [Accepted: 07/28/2024] [Indexed: 08/24/2024]
Abstract
The carboxysome is a natural proteinaceous organelle for carbon fixation in cyanobacteria and chemoautotrophs. It comprises hundreds of protein homologs that self-assemble to form a polyhedral shell structure to sequester cargo enzymes, ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco), and carbonic anhydrases. How these protein components assemble to construct a functional carboxysome is a central question in not only understanding carboxysome structure and function but also synthetic engineering of carboxysomes for biotechnological applications. Here, we determined the structure of the chaperone protein CcmS, which has recently been identified to be involved in β-carboxysome assembly, and its interactions with β-carboxysome proteins. The crystal structure at 1.99 Å resolution reveals CcmS from Nostoc sp. PCC 7120 forms a homodimer, and each CcmS monomer consists of five α-helices and four β-sheets. Biochemical assays indicate that CcmS specifically interacts with the C-terminal extension of the carboxysome shell protein CcmK1, but not the shell protein homolog CcmK2 or the carboxysome scaffolding protein CcmM. Moreover, we solved the structure of a stable complex of CcmS and the C-terminus of CcmK1 at 1.67 Å resolution and unveiled how the CcmS dimer interacts with the C-terminus of CcmK1. These findings allowed us to propose a model to illustrate CcmS-mediated β-carboxysome assembly by interacting with CcmK1 at the outer shell surface. Collectively, our study provides detailed insights into the accessory factors that drive and regulate carboxysome assembly, thereby improving our knowledge of carboxysome structure, function, and bioengineering.
Collapse
Affiliation(s)
- Jin Cheng
- MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
- Joint Research Center for Marine Microbial Science and Technology, Shandong University and Ocean University of China, Qingdao 266071, China
| | - Chun-Yang Li
- MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
- Joint Research Center for Marine Microbial Science and Technology, Shandong University and Ocean University of China, Qingdao 266071, China
| | - Meng Meng
- MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
- Joint Research Center for Marine Microbial Science and Technology, Shandong University and Ocean University of China, Qingdao 266071, China
| | - Jian-Xun Li
- Joint Research Center for Marine Microbial Science and Technology, Shandong University and Ocean University of China, Qingdao 266071, China
- Marine Biotechnology Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Shu-Jun Liu
- MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
- Joint Research Center for Marine Microbial Science and Technology, Shandong University and Ocean University of China, Qingdao 266071, China
| | - Hai-Yan Cao
- MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
- Joint Research Center for Marine Microbial Science and Technology, Shandong University and Ocean University of China, Qingdao 266071, China
| | - Ning Wang
- MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
- Joint Research Center for Marine Microbial Science and Technology, Shandong University and Ocean University of China, Qingdao 266071, China
| | - Yu-Zhong Zhang
- MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
- Joint Research Center for Marine Microbial Science and Technology, Shandong University and Ocean University of China, Qingdao 266071, China
- Marine Biotechnology Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Lu-Ning Liu
- MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| |
Collapse
|
9
|
Zang X, Bat-Erdene U, Huang W, Wu Z, Jacobsen SE, Tang Y, Zhou J. Structural Bases of Dihydroxy Acid Dehydratase Inhibition and Biodesign for Self-Resistance. BIODESIGN RESEARCH 2024; 6:0046. [PMID: 39494391 PMCID: PMC11528067 DOI: 10.34133/bdr.0046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/25/2024] [Accepted: 07/27/2024] [Indexed: 11/05/2024] Open
Abstract
Dihydroxy acid dehydratase (DHAD) is the third enzyme in the plant branched-chain amino acid biosynthetic pathway and the target for commercial herbicide development. We have previously reported the discovery of fungal natural product aspterric acid (AA) as a submicromolar inhibitor of DHAD through self-resistance gene directed genome mining. Here, we reveal the mechanism of AA inhibition on DHAD and the self-resistance mechanism of AstD, which is encoded by the self-resistance gene astD. As a competitive inhibitor, the hydroxycarboxylic acid group of AA mimics the binding of the natural substrate of DHAD, while the hydrophobic moiety of AA occupies the substrate entrance cavity. Compared to DHAD, AstD has a relatively narrow substrate channel to prevent AA from binding. Several mutants of DHAD were generated and assayed to validate the self-resistance mechanism and to confer Arabidopsis thaliana DHAD with AA resistance. These results will lead to the engineering of new type of herbicides targeting DHAD and provide direction for the ecological construction of herbicide-resistant crops.
Collapse
Affiliation(s)
- Xin Zang
- Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology,
Chinese Academy of Sciences, Shenzhen 518055, China
| | - Undramaa Bat-Erdene
- Department of Chemical and Biomolecular Engineering,
University of California, Los Angeles, CA, USA
| | - Weixue Huang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry,
Chinese Academy of Sciences, Shanghai 200032, China
| | - Zhongshou Wu
- Department of Molecular Cell and Developmental Biology,
University of California, Los Angeles, CA 90095, USA
- Howard Hughes Medical Institute,
University of California, Los Angeles, CA 90095, USA
| | - Steve E. Jacobsen
- Department of Molecular Cell and Developmental Biology,
University of California, Los Angeles, CA 90095, USA
- Howard Hughes Medical Institute,
University of California, Los Angeles, CA 90095, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research,
University of California, Los Angeles, CA 90095, USA
- Department of Biological Chemistry,
University of California, Los Angeles, CA 90095, USA
| | - Yi Tang
- Department of Chemical and Biomolecular Engineering,
University of California, Los Angeles, CA, USA
| | - Jiahai Zhou
- Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology,
Chinese Academy of Sciences, Shenzhen 518055, China
- School of Food Science and Pharmaceutical Engineering,
Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
10
|
Lundgren KJM, Caldararu O, Oksanen E, Ryde U. Quantum refinement in real and reciprocal space using the Phenix and ORCA software. IUCRJ 2024; 11:921-937. [PMID: 39345101 DOI: 10.1107/s2052252524008406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 08/23/2024] [Indexed: 10/01/2024]
Abstract
X-ray and neutron crystallography, as well as cryogenic electron microscopy (cryo-EM), are the most common methods to obtain atomic structures of biological macromolecules. A feature they all have in common is that, at typical resolutions, the experimental data need to be supplemented by empirical restraints, ensuring that the final structure is chemically reasonable. The restraints are accurate for amino acids and nucleic acids, but often less accurate for substrates, inhibitors, small-molecule ligands and metal sites, for which experimental data are scarce or empirical potentials are harder to formulate. This can be solved using quantum mechanical calculations for a small but interesting part of the structure. Such an approach, called quantum refinement, has been shown to improve structures locally, allow the determination of the protonation and oxidation states of ligands and metals, and discriminate between different interpretations of the structure. Here, we present a new implementation of quantum refinement interfacing the widely used structure-refinement software Phenix and the freely available quantum mechanical software ORCA. Through application to manganese superoxide dismutase and V- and Fe-nitrogenase, we show that the approach works effectively for X-ray and neutron crystal structures, that old results can be reproduced and structural discrimination can be performed. We discuss how the weight factor between the experimental data and the empirical restraints should be selected and how quantum mechanical quality measures such as strain energies should be calculated. We also present an application of quantum refinement to cryo-EM data for particulate methane monooxygenase and show that this may be the method of choice for metal sites in such structures because no accurate empirical restraints are currently available for metals.
Collapse
Affiliation(s)
- Kristoffer J M Lundgren
- Department of Computational Chemistry, Lund University, Chemical Centre, PO Box 124, SE-221 00 Lund, Sweden
| | - Octav Caldararu
- Department of Computational Chemistry, Lund University, Chemical Centre, PO Box 124, SE-221 00 Lund, Sweden
| | - Esko Oksanen
- Department of Computational Chemistry, Lund University, Chemical Centre, PO Box 124, SE-221 00 Lund, Sweden
| | - Ulf Ryde
- Department of Computational Chemistry, Lund University, Chemical Centre, PO Box 124, SE-221 00 Lund, Sweden
| |
Collapse
|
11
|
Lu P, Cheng Y, Xue L, Ren X, Xu X, Chen C, Cao L, Li J, Wu Q, Sun S, Hou J, Jia W, Wang W, Ma Y, Jiang Z, Li C, Qi X, Huang N, Han T. Selective degradation of multimeric proteins by TRIM21-based molecular glue and PROTAC degraders. Cell 2024:S0092-8674(24)01197-8. [PMID: 39488207 DOI: 10.1016/j.cell.2024.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 09/10/2024] [Accepted: 10/11/2024] [Indexed: 11/04/2024]
Abstract
Targeted protein degradation (TPD) utilizes molecular glues or proteolysis-targeting chimeras (PROTACs) to eliminate disease-causing proteins by promoting their interaction with E3 ubiquitin ligases. Current TPD approaches are limited by reliance on a small number of constitutively active E3 ubiquitin ligases. Here, we report that (S)-ACE-OH, a metabolite of the antipsychotic drug acepromazine, acts as a molecular glue to induce an interaction between the E3 ubiquitin ligase TRIM21 and the nucleoporin NUP98, leading to the degradation of nuclear pore proteins and disruption of nucleocytoplasmic trafficking. Functionalization of acepromazine into PROTACs enabled selective degradation of multimeric proteins, such as those within biomolecular condensates, while sparing monomeric proteins. This selectivity is consistent with the requirement of substrate-induced clustering for TRIM21 activation. As aberrant protein assemblies cause diseases such as autoimmunity, neurodegeneration, and cancer, our findings highlight the potential of TRIM21-based multimer-selective degraders as a strategy to tackle the direct causes of these diseases.
Collapse
Affiliation(s)
- Panrui Lu
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 102206, China; National Institute of Biological Sciences, Beijing 102206, China
| | - Yalong Cheng
- National Institute of Biological Sciences, Beijing 102206, China; College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Lei Xue
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 102206, China; National Institute of Biological Sciences, Beijing 102206, China
| | - Xintong Ren
- National Institute of Biological Sciences, Beijing 102206, China; College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Xilong Xu
- National Institute of Biological Sciences, Beijing 102206, China
| | - Chenglong Chen
- National Institute of Biological Sciences, Beijing 102206, China; College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Longzhi Cao
- National Institute of Biological Sciences, Beijing 102206, China
| | - Jiaojiao Li
- National Institute of Biological Sciences, Beijing 102206, China
| | - Qingcui Wu
- National Institute of Biological Sciences, Beijing 102206, China
| | - Shan Sun
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structures, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Junjie Hou
- Deepkinase Co, Ltd, Beijing 102206, China
| | - Wei Jia
- Deepkinase Co, Ltd, Beijing 102206, China
| | - Wei Wang
- National Institute of Biological Sciences, Beijing 102206, China
| | - Yan Ma
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 102206, China; National Institute of Biological Sciences, Beijing 102206, China
| | - Zhaodi Jiang
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 102206, China; National Institute of Biological Sciences, Beijing 102206, China
| | - Chao Li
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 102206, China; National Institute of Biological Sciences, Beijing 102206, China
| | - Xiangbing Qi
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 102206, China; National Institute of Biological Sciences, Beijing 102206, China
| | - Niu Huang
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 102206, China; National Institute of Biological Sciences, Beijing 102206, China.
| | - Ting Han
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 102206, China; National Institute of Biological Sciences, Beijing 102206, China.
| |
Collapse
|
12
|
Jin F, Lin YY, Wang RC, Xie TX, Zhao Y, Shen C, Sheng D, Ichikawa M, Yu Y, Wang J, Hattori M. Cryo-EM structure of the zinc-activated channel (ZAC) in the Cys-loop receptor superfamily. Proc Natl Acad Sci U S A 2024; 121:e2405659121. [PMID: 39441630 DOI: 10.1073/pnas.2405659121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 08/28/2024] [Indexed: 10/25/2024] Open
Abstract
Cys-loop receptors are a large superfamily of pentameric ligand-gated ion channels with various physiological roles, especially in neurotransmission in the central nervous system. Among them, zinc-activated channel (ZAC) is a Zn2+-activated ion channel that is widely expressed in the human body and is conserved among eukaryotes. Due to its gating by extracellular Zn2+, ZAC has been considered a Zn2+ sensor, but it has undergone minimal structural and functional characterization since its molecular cloning. Among the families in the Cys-loop receptor superfamily, only the structure of ZAC has yet to be determined. Here, we determined the cryo-EM structure of ZAC in the apo state and performed structure-based mutation analyses. We identified a few residues in the extracellular domain whose mutations had a mild impact on Zn2+ sensitivity. The constriction site in the ion-conducting pore differs from the one in other Cys-loop receptor structures, and further mutational analysis identified a key residue that is important for ion selectivity. In summary, our work provides a structural framework for understanding the ion-conducting mechanism of ZAC.
Collapse
Affiliation(s)
- Fei Jin
- State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Bioactive Small Molecules, Collaborative Innovation Center of Genetics and Development, Department of Physiology and Neurobiology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Yi-Yu Lin
- Department of Basic Medicine, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 200098, China
| | - Ru-Chun Wang
- Department of Basic Medicine, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 200098, China
| | - Tang-Xuan Xie
- Department of Basic Medicine, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 200098, China
| | - Yimeng Zhao
- State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Bioactive Small Molecules, Collaborative Innovation Center of Genetics and Development, Department of Physiology and Neurobiology, School of Life Sciences, Fudan University, Shanghai 200438, China
- Human Phenome Institute, Fudan University, Shanghai 201203, China
| | - Cheng Shen
- State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Bioactive Small Molecules, Collaborative Innovation Center of Genetics and Development, Department of Physiology and Neurobiology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Danqi Sheng
- State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Bioactive Small Molecules, Collaborative Innovation Center of Genetics and Development, Department of Physiology and Neurobiology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Muneyoshi Ichikawa
- State Key Laboratory of Genetic Engineering, Department of Biochemistry and Biophysics, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Ye Yu
- Department of Basic Medicine, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 200098, China
| | - Jin Wang
- Department of Chemistry, School of Science, China Pharmaceutical University, Nanjing 200098, China
| | - Motoyuki Hattori
- State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Bioactive Small Molecules, Collaborative Innovation Center of Genetics and Development, Department of Physiology and Neurobiology, School of Life Sciences, Fudan University, Shanghai 200438, China
| |
Collapse
|
13
|
Aimeur S, Fas BA, Serfaty X, Santuz H, Sacquin-Mora S, Bizouarn T, Taly A, Baciou L. Structural profiles of the full phagocyte NADPH oxidase unveiled by combining computational biology and experimental knowledge. J Biol Chem 2024:107943. [PMID: 39481598 DOI: 10.1016/j.jbc.2024.107943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 10/05/2024] [Accepted: 10/23/2024] [Indexed: 11/02/2024] Open
Abstract
The phagocyte NADPH oxidase (NOX2) is an enzyme, crucial for innate immune defense, producing reactive oxygen species necessary for pathogen destruction. Its activation requires the assembly of soluble proteins (p47phox, p40phox, p67phox, and Rac) with the membrane-bound flavocytochrome b558 (cytb558). We combined circular-dichroism analyses, with decades of experimental data, to filter structural models of the NADPH oxidase complex generated by the artificial intelligence program AlphaFold2 (AF2). The predicted patterns tend to closely resemble the active states of the proteins, as shown by the compact structure of the cytb558, whose dehydrogenase domain is stabilized closer to the membrane. The modeling of the interaction of p47phox with cytb558, which is the initial assembly and activation steps of the NADPH oxidase, enables us to describe how the C-terminus of p47phox interacts with the cytb558. Combining the AF2 cytb558 -p47phox model and its classical molecular dynamics simulations, we highlighted new hydrophobic lipid insertions of p47phox, particularly at residues Trp80-Phe81 of its PX domain. The AF2 models also revealed the implications of intrinsically disordered regions, such as the fragment between the PX domain and the SH3 regions of p47phox, in ensuring distant protein-protein and membrane-protein interactions. Finally, the AF2 prediction of the cytb558-Trimera model highlighted the importance of leaving Rac1 as a separate protein to reach an active state of the NADPH oxidase complex. Altogether, our step-by-step approach provides a structural model of the active complex showing how disordered regions and specific lipid and protein interactions can enable and stabilize the multi-subunit assembly.
Collapse
Affiliation(s)
- Sana Aimeur
- Institut de Chimie Physique, UMR 8000, CNRS, Université Paris Saclay, 91405 Orsay Cedex, France
| | - Burcu Aykac Fas
- Laboratoire de Biochimie Théorique, CNRS, UPR 9080, Université Paris-Cité, 75005, Paris, France
| | - Xavier Serfaty
- Institut de Chimie Physique, UMR 8000, CNRS, Université Paris Saclay, 91405 Orsay Cedex, France
| | - Hubert Santuz
- Laboratoire de Biochimie Théorique, CNRS, UPR 9080, Université Paris-Cité, 75005, Paris, France
| | - Sophie Sacquin-Mora
- Laboratoire de Biochimie Théorique, CNRS, UPR 9080, Université Paris-Cité, 75005, Paris, France
| | - Tania Bizouarn
- Institut de Chimie Physique, UMR 8000, CNRS, Université Paris Saclay, 91405 Orsay Cedex, France
| | - Antoine Taly
- Laboratoire de Biochimie Théorique, CNRS, UPR 9080, Université Paris-Cité, 75005, Paris, France
| | - Laura Baciou
- Institut de Chimie Physique, UMR 8000, CNRS, Université Paris Saclay, 91405 Orsay Cedex, France.
| |
Collapse
|
14
|
Alam P, Hoyt F, Artikis E, Soukup J, Hughson AG, Schwartz CL, Barbian K, Miller MW, Race B, Caughey B. Cryo-EM structure of a natural prion: chronic wasting disease fibrils from deer. Acta Neuropathol 2024; 148:56. [PMID: 39448454 PMCID: PMC11502585 DOI: 10.1007/s00401-024-02813-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 10/26/2024]
Abstract
Chronic wasting disease (CWD) is a widely distributed prion disease of cervids with implications for wildlife conservation and also for human and livestock health. The structures of infectious prions that cause CWD and other natural prion diseases of mammalian hosts have been poorly understood. Here we report a 2.8 Å resolution cryogenic electron microscopy-based structure of CWD prion fibrils from the brain of a naturally infected white-tailed deer expressing the most common wild-type PrP sequence. Like recently solved rodent-adapted scrapie prion fibrils, our atomic model of CWD fibrils contains single stacks of PrP molecules forming parallel in-register intermolecular β-sheets and intervening loops comprising major N- and C-terminal lobes within the fibril cross-section. However, CWD fibrils from a natural cervid host differ markedly from the rodent structures in many other features, including a ~ 180° twist in the relative orientation of the lobes. This CWD structure suggests mechanisms underlying the apparent CWD transmission barrier to humans and should facilitate more rational approaches to the development of CWD vaccines and therapeutics.
Collapse
Affiliation(s)
- Parvez Alam
- Laboratory of Neurological Infections and Immunity, Rocky Mountain Laboratories, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, 59840, USA
| | - Forrest Hoyt
- Research Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, 59840, USA
| | - Efrosini Artikis
- Laboratory of Neurological Infections and Immunity, Rocky Mountain Laboratories, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, 59840, USA
| | - Jakub Soukup
- Laboratory of Neurological Infections and Immunity, Rocky Mountain Laboratories, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, 59840, USA
| | - Andrew G Hughson
- Laboratory of Neurological Infections and Immunity, Rocky Mountain Laboratories, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, 59840, USA
| | - Cindi L Schwartz
- Research Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, 59840, USA
| | - Kent Barbian
- Research Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, 59840, USA
| | | | - Brent Race
- Laboratory of Neurological Infections and Immunity, Rocky Mountain Laboratories, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, 59840, USA
| | - Byron Caughey
- Laboratory of Neurological Infections and Immunity, Rocky Mountain Laboratories, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, 59840, USA.
| |
Collapse
|
15
|
Rish AD, Fosuah E, Shen Z, Marathe IA, Wysocki VH, Fu TM. Topological rearrangements activate the HerA-DUF anti-phage defense system. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.24.620088. [PMID: 39484427 PMCID: PMC11527107 DOI: 10.1101/2024.10.24.620088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Leveraging the rich structural information provided by AlphaFold, we used integrated experimental approaches to characterize the HerA-DUF4297 (DUF) anti-phage defense system, in which DUF is of unknown function. To infer the function of DUF, we performed structure-guided genomic analysis and found that DUF homologs are universally present in bacterial immune defense systems. One notable homolog of DUF is Cap4, a universal effector with nuclease activity in CBASS, the most prevalent anti-phage system in bacteria. To test the inferred nuclease function of DUF, we performed biochemical experiments and discovered that the DUF only exhibits activity against DNA substrates when it is bound by HerA. To understand how HerA activates DUF, we determined the structures of DUF and the HerA-DUF complex. DUF forms large oligomeric assemblies with or without HerA, suggesting that oligomerization per se is not sufficient for DUF activation. Instead, DUF activation requires dramatic topological rearrangements that propagate from HerA to the entire HerA-DUF complex, leading to reorganization of DUF for effective DNA cleavage. We further validated these structural insights by structure- guided mutagenesis. Together, these findings reveal dramatic topological rearrangements throughout the HerA-DUF complex, challenge the long-standing dogma that protein oligomerization alone activates immune signaling, and may inform the activation mechanism of CBASS.
Collapse
|
16
|
Vayssières M, Jüttner M, Haas K, Ancelin A, Marchfelder A, Leulliot N, Ferreira-Cerca S, Blaud M. RNase W, a conserved ribonuclease family with a novel active site. Nucleic Acids Res 2024:gkae907. [PMID: 39445822 DOI: 10.1093/nar/gkae907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 09/26/2024] [Accepted: 10/16/2024] [Indexed: 10/25/2024] Open
Abstract
Ribosome biogenesis is a complex process requiring multiple precursor ribosomal RNA (rRNA) cleavage steps. In archaea, the full set of ribonucleases (RNases) involved in rRNA processing remains to be discovered. A previous study suggested that FAU-1, a conserved protein containing an RNase G/E-like protein domain fused to a domain of unknown function (DUF402), acts as an RNase in archaea. However, the molecular basis of this activity remained so far elusive. Here, we report two X-ray crystallographic structures of RNase G/E-like-DUF402 hybrid proteins from Pyrococcus furiosus and Sulfolobus acidocaldarius, at 2.1 and 2.0 Å, respectively. The structures highlight a structural homology with the 5' RNA recognition domain of Escherichia coli RNase E but no homology with other known catalytic nuclease domains. Surprisingly, we demonstrate that the C-terminal domain of this hybrid protein, annotated as a putative diphosphatase domain, harbors the RNase activity. Our functional analysis also supports a model by which the RNase G/E-like domain acts as a regulatory subunit of the RNase activity. Finally, in vivo experiments in Haloferax volcanii suggest that this RNase participates in the maturation of pre-16S rRNA. Together, our study defines a new RNase family, which we termed the RNase W family, as the first archaea-specific contributor to archaeal ribosome biogenesis.
Collapse
Affiliation(s)
- Marlène Vayssières
- Université Paris Cité, CNRS, CiTCoM, 4 avenue de l'Observatoire, F-75006 Paris, France
| | - Michael Jüttner
- Regensburg Centre for Biochemistry, Biochemistry III-Institute for Biochemistry, Genetics and Microbiology, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Karina Haas
- Molecular Biology and Biotechnology of Prokaryotes, Ulm University, Albert-Einstein-Allee 11, 89069 Ulm, Germany
| | - Aurélie Ancelin
- Université Paris Cité, CNRS, CiTCoM, 4 avenue de l'Observatoire, F-75006 Paris, France
| | - Anita Marchfelder
- Molecular Biology and Biotechnology of Prokaryotes, Ulm University, Albert-Einstein-Allee 11, 89069 Ulm, Germany
| | - Nicolas Leulliot
- Université Paris Cité, CNRS, CiTCoM, 4 avenue de l'Observatoire, F-75006 Paris, France
| | - Sébastien Ferreira-Cerca
- Regensburg Centre for Biochemistry, Biochemistry III-Institute for Biochemistry, Genetics and Microbiology, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
- Laboratoire de Biologie Structurale de la Cellule (BIOC), UMR 7654-CNRS, École polytechnique, Institut Polytechnique de Paris, Route de Saclay, 91128 Palaiseau, France
| | - Magali Blaud
- Université Paris Cité, CNRS, CiTCoM, 4 avenue de l'Observatoire, F-75006 Paris, France
| |
Collapse
|
17
|
Cowie AE, Pereira JH, DeGiovanni A, McAndrew RP, Palayam M, Peek JO, Muchlinski AJ, Yoshikuni Y, Shabek N, Adams PD, Zerbe P. The crystal structure of Grindelia robusta 7,13-copalyl diphosphate synthase reveals active site features controlling catalytic specificity. J Biol Chem 2024:107921. [PMID: 39454950 DOI: 10.1016/j.jbc.2024.107921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
Diterpenoid natural products serve critical functions in plant development and ecological adaptation and many diterpenoids have economic value as bioproducts. The family of class II diterpene synthases catalyzes the committed reactions in diterpenoid biosynthesis, converting a common geranylgeranyl diphosphate precursor into different bicyclic prenyl diphosphate scaffolds. Enzymatic rearrangement and modification of these precursors generates the diversity of bioactive diterpenoids. We report the crystal structure of Grindelia robusta 7,13-copalyl diphosphate synthase, GrTPS2, at 2.1 Å of resolution. GrTPS2 catalyzes the committed reaction in the biosynthesis of grindelic acid, which represents the signature metabolite in species of gumweed (Grindelia spp., Asteraceae). Grindelic acid has been explored as a potential source for drug leads and biofuel production. The GrTPS2 crystal structure adopts the conserved three-domain fold of class II diterpene synthases featuring a functional active site in the γβ-domain and a vestigial ɑ-domain. Substrate docking into the active site of the GrTPS2 apo protein structure predicted catalytic amino acids. Biochemical characterization of protein variants identified residues with impact on enzyme activity and catalytic specificity. Specifically, mutagenesis of Y457 provided mechanistic insight into the position-specific deprotonation of the intermediary carbocation to form the characteristic 7,13 double bond of 7,13-copalyl diphosphate.
Collapse
Affiliation(s)
- Anna E Cowie
- Department of Plant Biology, University of California-Davis, 1 Shields Avenue, Davis, CA 95616, USA
| | - Jose H Pereira
- Joint BioEnergy Institute, Emeryville, CA 94608, USA; Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Andy DeGiovanni
- Joint BioEnergy Institute, Emeryville, CA 94608, USA; Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | | | - Malathy Palayam
- Department of Plant Biology, University of California-Davis, 1 Shields Avenue, Davis, CA 95616, USA
| | - Jedidiah O Peek
- Department of Plant Biology, University of California-Davis, 1 Shields Avenue, Davis, CA 95616, USA
| | - Andrew J Muchlinski
- Department of Plant Biology, University of California-Davis, 1 Shields Avenue, Davis, CA 95616, USA
| | - Yasuo Yoshikuni
- US DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, CA 94720, USA
| | - Nitzan Shabek
- Department of Plant Biology, University of California-Davis, 1 Shields Avenue, Davis, CA 95616, USA
| | - Paul D Adams
- Joint BioEnergy Institute, Emeryville, CA 94608, USA; Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Department of Bioengineering, University of California Berkeley, Berkeley, CA 94720, USA
| | - Philipp Zerbe
- Department of Plant Biology, University of California-Davis, 1 Shields Avenue, Davis, CA 95616, USA.
| |
Collapse
|
18
|
Thuc Dang V, Engineer A, McElheny D, Drena A, Telser J, Tomczak K, Nguyen AI. Crystallography Reveals Metal-Triggered Restructuring of β-Hairpins. Chemistry 2024; 30:e202402101. [PMID: 39152095 DOI: 10.1002/chem.202402101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/04/2024] [Accepted: 08/16/2024] [Indexed: 08/19/2024]
Abstract
Metal binding to β-sheets occurs in many metalloproteins and is also implicated in the pathology of Alzheimer's disease. De novo designed metallo-β-sheets have been pursued as models and mimics of these proteins. However, no crystal structures of canonical β-sheet metallopeptides have yet been obtained, in stark contrast to many examples for ɑ-helical metallopeptides, leading to a poor understanding for their chemistry. To address this, we have engineered tryptophan zippers, stable 12-residue β-sheet peptides, to bind Cu(II) ions and obtained crystal structures through single crystal X-ray diffraction (SC-XRD). We find that metal binding triggers several unexpected supramolecular assemblies that demonstrate the range of higher-order structures available to metallo-β-sheets. Overall, these findings underscore the importance of crystallography in elucidating the rich structural landscape of metallo-β-sheet peptides.
Collapse
Affiliation(s)
- Viet Thuc Dang
- Department of Chemistry, University of Illinois Chicago, 845 W. Taylor St., Chicago, IL, 60607, USA
| | - Aryan Engineer
- Department of Chemistry, University of Illinois Chicago, 845 W. Taylor St., Chicago, IL, 60607, USA
| | - Dan McElheny
- Department of Chemistry, University of Illinois Chicago, 845 W. Taylor St., Chicago, IL, 60607, USA
| | - Alexander Drena
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL, 60208, USA
| | - Joshua Telser
- Department of Science, Health and Pharmacy Chemistry, Roosevelt University, 430 S. Michigan Ave., Chicago, IL, 60605, USA
| | - Kyle Tomczak
- Department of Chemistry, University of Illinois Chicago, 845 W. Taylor St., Chicago, IL, 60607, USA
| | - Andy I Nguyen
- Department of Chemistry, University of Illinois Chicago, 845 W. Taylor St., Chicago, IL, 60607, USA
| |
Collapse
|
19
|
Kumar A, Kumar R, Boradia VM, Malhotra H, Kumar A, Seth S, Garg P, Karthikeyan S, Raje M, Iyengar Raje C. Stoichiometry of ligand binding and role of C-terminal lysines in Mycobacterium tuberculosis and human GAPDH multifunctionality. FEBS J 2024. [PMID: 39436721 DOI: 10.1111/febs.17298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/22/2024] [Accepted: 10/03/2024] [Indexed: 10/25/2024]
Abstract
Glyceraldehyde-3-phosphate-dehydrogenase (GAPDH; EC1.2.1.12) has several functions in Mycobacterium tuberculosis (Mtb) and the human host. Apart from its role in glycolysis, it serves both as a cell surface and a secreted receptor for plasmin(ogen) (Plg/Plm), transferrin (Tf), and lactoferrin (Lf). Plg sequestration by Mtb GAPDH facilitates bacterial adhesion and tissue invasion, while an equivalent interaction with host GAPDH regulates immune cell migration. In both, host and microbe, internalization of Tf/Lf-GAPDH complexes serves as a route for iron acquisition. To date, the structure of Mtb GAPDH or the residues involved in these moonlighting interactions have not been identified. This study provides the first known X-ray crystal structure of Mtb GAPDH. Through further mutagenesis and functional assays, we found that the C-terminal lysines of Mtb and human GAPDH affect enzyme activity and ligand binding. We also establish the stoichiometry of Plg, Tf and Lf interactions with the GAPDH tetramer. Lastly, molecular simulation studies reveal the interactions of the C-terminal lysine residues.
Collapse
Affiliation(s)
- Ajay Kumar
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Sahibzada Ajit Singh Nagar, Punjab, India
| | - Rajender Kumar
- Department of Clinical Microbiology, Umeå University, Sweden
| | - Vishant Mahendra Boradia
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Sahibzada Ajit Singh Nagar, Punjab, India
| | | | - Adarsh Kumar
- CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Sriraj Seth
- CSIR-Institute of Microbial Technology, Chandigarh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Prabha Garg
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, Sahibzada Ajit Singh Nagar, Punjab, India
| | - Subramanian Karthikeyan
- CSIR-Institute of Microbial Technology, Chandigarh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Manoj Raje
- CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Chaaya Iyengar Raje
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Sahibzada Ajit Singh Nagar, Punjab, India
| |
Collapse
|
20
|
He QY, Zhao HF, Meng L, Geng Z, Gao ZQ, Qi XY, Dong YH, Zhang H. A cardioviral 2C-ATP complex structure reveals the essential role of a conserved arginine in regulation of cardioviral 2C activity. J Virol 2024; 98:e0091124. [PMID: 39240112 PMCID: PMC11495053 DOI: 10.1128/jvi.00911-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/02/2024] [Indexed: 09/07/2024] Open
Abstract
2C is a highly conserved picornaviral non-structural protein with ATPase activity and plays a multifunctional role in the viral life cycle as a promising target for anti-picornavirus drug development. While the structure-function of enteroviral 2Cs have been well studied, cardioviral 2Cs remain largely uncharacterized. Here, an endogenous ATP molecule was identified in the crystal structure of 2C from encephalomyocarditis virus (EMCV, Cardiovirus A). The ATP is bound into the ATPase active site with a unique compact conformation. Notably, the γ-phosphate of ATP directly interacts with Arg311 (conserved in cardioviral 2Cs), and its mutation significantly inhibits the ATPase activity. Unexpectedly, this mutation remarkably promotes 2C self-oligomerization and viral replication efficiency. Molecular dynamic simulations showed that the Arg311 side chain is highly dynamic, indicating it may function as a switch between the activation state and the inhibition state of ATPase activity. A hexameric ring model of EMCV 2C full length indicated that the C-terminal helix may get close to the N-terminal amphipathic helices to form a continuous positive region for RNA binding. The RNA-binding studies of EMCV 2C revealed that the RNA length is closely associated with the RNA-binding affinities and indicated that the substrate may wrap around the outer surface of the hexamer. Our studies provide a biochemical framework to guide the characterization of EMCV 2C and the essential role of arginine in cardioviral 2C functions. IMPORTANCE Encephalomyocarditis virus (Cardiovirus A) is the causative agent of the homonymous disease, which may induce myocarditis, encephalitis, and reproductive disorders in various mammals. 2C protein is functionally indispensable and a promising target for drug development involving broad-spectrum picornaviral inhibitors. Here, an endogenous ATP molecule with a unique conformation was discovered by a combination of protein crystallography and high-performance liquid chromatography in the encephalomyocarditis virus (EMCV) 2C structure. Biochemical and structural characterization analysis of EMCV 2C revealed the critical role of conserved Arg311 in ATPase activity and self-oligomerization of EMCV 2C. The viral replication kinetics and infectivity study suggested that the residue negatively regulated the infectivity titer and virus encapsulation efficiency of EMCV and is, therefore, crucial for 2C protein to promote viral replication. Our systemic structure-function analysis provides unique insights into the function and regulation mechanism of cardioviral 2C protein.
Collapse
Affiliation(s)
- Qing-Yi He
- School of Life Sciences, University of Science and Technology of China, Hefei, China
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
| | - Hai-Fan Zhao
- School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Liang Meng
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Zhi Geng
- School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Zeng-Qiang Gao
- School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Xin-Yu Qi
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yu-Hui Dong
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
| | - Heng Zhang
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
21
|
Gedeon A, Yab E, Dinut A, Sadowski E, Capton E, Dreneau A, Petit J, Gioia B, Piveteau C, Djaout K, Lecat E, Wehenkel AM, Gubellini F, Mechaly A, Alzari PM, Deprez B, Baulard A, Aubry A, Willand N, Petrella S. Molecular mechanism of a triazole-containing inhibitor of Mycobacterium tuberculosis DNA gyrase. iScience 2024; 27:110967. [PMID: 39429773 PMCID: PMC11489056 DOI: 10.1016/j.isci.2024.110967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 07/02/2024] [Accepted: 09/12/2024] [Indexed: 10/22/2024] Open
Abstract
Antimicrobial resistance remains a persistent and pressing public health concern. Here, we describe the synthesis of original triazole-containing inhibitors targeting the DNA gyrase, a well-validated drug target for developing new antibiotics. Our compounds demonstrate potent antibacterial activity against various pathogenic bacteria, with notable potency against Mycobacterium tuberculosis (Mtb). Moreover, one hit, compound 10a, named BDM71403, was shown to be more potent in Mtb than the NBTI of reference, gepotidacin. Mechanistic enzymology assays reveal a competitive interaction of BDM71403 with fluoroquinolones within the Mtb gyrase cleavage core. High-resolution cryo-electron microscopy structural analysis provides detailed insights into the ternary complex formed by the Mtb gyrase, double-stranded DNA, and either BDM71403 or gepotidacin, providing a rational framework to understand the superior in vitro efficacy on Mtb. This study highlights the potential of triazole-based scaffolds as promising gyrase inhibitors, offering new avenues for drug development in the fight against antimicrobial resistance.
Collapse
Affiliation(s)
- Antoine Gedeon
- Institut Pasteur, Université Paris Cité, CNRS UMR 3528, Unité de Microbiologie Structurale, 75015 Paris, France
| | - Emilie Yab
- Institut Pasteur, Université Paris Cité, CNRS UMR 3528, Unité de Microbiologie Structurale, 75015 Paris, France
| | - Aurelia Dinut
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules for living Systems, 59000 Lille, France
| | - Elodie Sadowski
- Cimi-Paris, INSERM U1135, Sorbonne Université, AP-HP. Sorbonne Université, Laboratoire de Bactériologie-Hygiène, CNR des Mycobactéries et de la Résistance des Mycobactéries aux Antituberculeux, 75005 Paris, France
| | - Estelle Capton
- Cimi-Paris, INSERM U1135, Sorbonne Université, AP-HP. Sorbonne Université, Laboratoire de Bactériologie-Hygiène, CNR des Mycobactéries et de la Résistance des Mycobactéries aux Antituberculeux, 75005 Paris, France
| | - Aurore Dreneau
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules for living Systems, 59000 Lille, France
| | - Julienne Petit
- Institut Pasteur, Université Paris Cité, CNRS UMR 3528, Unité de Microbiologie Structurale, 75015 Paris, France
| | - Bruna Gioia
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules for living Systems, 59000 Lille, France
| | - Catherine Piveteau
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules for living Systems, 59000 Lille, France
| | - Kamel Djaout
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Center for Infection and Immunity of Lille, 59000 Lille, France
| | - Estelle Lecat
- Institut Pasteur, Université Paris Cité, CNRS UMR 3528, Unité de Microbiologie Structurale, 75015 Paris, France
| | - Anne Marie Wehenkel
- Institut Pasteur, Université Paris Cité, CNRS UMR 3528, Unité de Microbiologie Structurale, 75015 Paris, France
- Institut Pasteur, Université Paris Cité, CNRS UMR 3528, Bacterial Cell Cycle Mechanisms Unit, 75015 Paris, France
| | - Francesca Gubellini
- Institut Pasteur, Université Paris Cité, CNRS UMR 3528, Unité de Microbiologie Structurale, 75015 Paris, France
| | - Ariel Mechaly
- Institut Pasteur, Plate-Forme de Cristallographie, CNRS UMR 3528, 75015 Paris, France
| | - Pedro M. Alzari
- Institut Pasteur, Université Paris Cité, CNRS UMR 3528, Unité de Microbiologie Structurale, 75015 Paris, France
| | - Benoît Deprez
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules for living Systems, 59000 Lille, France
| | - Alain Baulard
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Center for Infection and Immunity of Lille, 59000 Lille, France
| | - Alexandra Aubry
- Cimi-Paris, INSERM U1135, Sorbonne Université, AP-HP. Sorbonne Université, Laboratoire de Bactériologie-Hygiène, CNR des Mycobactéries et de la Résistance des Mycobactéries aux Antituberculeux, 75005 Paris, France
| | - Nicolas Willand
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules for living Systems, 59000 Lille, France
| | - Stéphanie Petrella
- Institut Pasteur, Université Paris Cité, CNRS UMR 3528, Unité de Microbiologie Structurale, 75015 Paris, France
- Institut Pasteur, Université Paris Cité, CNRS UMR 3528, Bacterial Cell Cycle Mechanisms Unit, 75015 Paris, France
| |
Collapse
|
22
|
De S, Zhou M, Brown ZP, Burton-Smith RN, Hashem Y, Pestova T, Hellen CUT, Frank J. Inconsistencies in the published rabbit ribosomal rRNAs: a proposal for uniformity in sequence and site numbering. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.11.617640. [PMID: 39416079 PMCID: PMC11482936 DOI: 10.1101/2024.10.11.617640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Examination of all publicly available Oryctolagus cuniculus (rabbit) ribosome cryo-EM structures reveals numerous confusing inconsistencies. First, there are a plethora of single nucleotide differences among the various rabbit 28S and 18S rRNA structures. Second, two nucleotides are absent from the NCBI Reference Sequence for the 18S rRNA gene. Moving forward, we propose using the Broad Institute's rabbit whole genome shotgun sequence and numbering to reduce modeling ambiguity and improve consistency between ribosome models.
Collapse
|
23
|
Zhao L, Xu K, Talyzina I, Shi J, Li S, Yang Y, Zhang S, Zheng J, Sobolevsky AI, Chen H, Cui J. Human TRPV4 engineering yields an ultrasound-sensitive actuator for sonogenetics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.16.618766. [PMID: 39464052 PMCID: PMC11507911 DOI: 10.1101/2024.10.16.618766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Sonogenetics offers non-invasive and cell-type specific modulation of cells genetically engineered to express ultrasound-sensitive actuators. Finding an ion channel to serve as sonogenetic actuator it critical for advancing this promising technique. Here, we show that ultrasound can activate human TRP channel hTRPV4. By screening different hTRPV4 variants, we identify a mutation F617L that increases mechano-sensitivity of this channel to ultrasound, while reduces its sensitivity to hypo-osmolarity, elevated temperature, and agonist. This altered sensitivity profile correlates with structural differences in hTRPV4-F617L compared to wild-type channels revealed by our cryo-electron microscopy analysis. We also show that hTRPV4-F617L can serve as a sonogenetic actuator for neuromodulation in freely moving mice. Our findings demonstrate the use of structure-guided mutagenesis to engineer ion channels with tailored properties of ideal sonogenetic actuators.
Collapse
|
24
|
Wever MJA, Scommegna FR, Egea-Rodriguez S, Dehghani-Tafti S, Brandao-Neto J, Poisson JF, Helfrich I, Antson AA, Rodeschini V, Bax B, Roche D, Sanders CM. Structure-based discovery of first inhibitors targeting the helicase activity of human PIF1. Nucleic Acids Res 2024:gkae897. [PMID: 39417423 DOI: 10.1093/nar/gkae897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/23/2024] [Accepted: 09/30/2024] [Indexed: 10/19/2024] Open
Abstract
PIF1 is a conserved helicase and G4 DNA binding and unwinding enzyme, with roles in genome stability. Human PIF1 (hPIF1) is poorly understood, but its functions can become critical for tumour cell survival during oncogene-driven replication stress. Here we report the discovery, via an X-ray crystallographic fragment screen (XChem), of hPIF1 DNA binding and unwinding inhibitors. A structure was obtained with a 4-phenylthiazol-2-amine fragment bound in a pocket between helicase domains 2A and 2B, with additional contacts to Valine 258 from domain 1A. The compound makes specific interactions, notably through Leucine 548 and Alanine 551, that constrain conformational adjustments between domains 2A and 2B, previously linked to ATP hydrolysis and DNA unwinding. We next synthesized a range of related compounds and characterized their effects on hPIF1 DNA-binding and helicase activity in vitro, expanding the structure activity relationship (SAR) around the initial hit. A systematic analysis of clinical cancer databases is also presented here, supporting the notion that hPIF1 upregulation may represent a specific cancer cell vulnerability. The research demonstrates that hPIF1 is a tractable target through 4-phenylthiazol-2-amine derivatives as inhibitors of its helicase action, setting a foundation for creation of a novel class of anti-cancer therapeutics.
Collapse
Affiliation(s)
- Mark J A Wever
- Edelris, Bioparc, Bioserra 1 Building, 69008 Lyon, France
- Univ. Grenoble Alpes, CNRS, DCM, 38000 Grenoble, France
| | - Francesca R Scommegna
- Division of Clinical Medicine, School of Medicine & Population Health, University of Sheffield, Beech Hill Rd., Sheffield S10 2RX, United Kingdom
| | - Sara Egea-Rodriguez
- Department of Dermatology and Allergy, Ludwig-Maximilians-Universität (LMU) Munich & German Cancer Consortium (DKTK), partner site Munich, Frauenlobstrasse 9-11, D-80337 Munich, Germany
- Skin Cancer Unit of the Dermatology Department, Medical Faculty, West German Cancer Center, University Duisburg-Essen, Hufelandstraße 55, D-45147 Essen, Germany
| | - Saba Dehghani-Tafti
- Division of Clinical Medicine, School of Medicine & Population Health, University of Sheffield, Beech Hill Rd., Sheffield S10 2RX, United Kingdom
| | - Jose Brandao-Neto
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Research Complex at Harwell, Harwell Campus, Didcot, United Kingdom
| | | | - Iris Helfrich
- Department of Dermatology and Allergy, Ludwig-Maximilians-Universität (LMU) Munich & German Cancer Consortium (DKTK), partner site Munich, Frauenlobstrasse 9-11, D-80337 Munich, Germany
- Skin Cancer Unit of the Dermatology Department, Medical Faculty, West German Cancer Center, University Duisburg-Essen, Hufelandstraße 55, D-45147 Essen, Germany
| | - Alfred A Antson
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, United Kingdom
| | | | - Ben Bax
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, United Kingdom
- Medicines Discovery Institute, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, United Kingdom
| | - Didier Roche
- Edelris, Bioparc, Bioserra 1 Building, 69008 Lyon, France
| | - Cyril M Sanders
- Division of Clinical Medicine, School of Medicine & Population Health, University of Sheffield, Beech Hill Rd., Sheffield S10 2RX, United Kingdom
| |
Collapse
|
25
|
Qin Y, Poulsen C, Narayanan D, Chan CB, Chen X, Montes BR, Tran KT, Mukminova E, Lin C, Gajhede M, Bullock AN, Olagnier D, Bach A. Structure-Guided Conformational Restriction Leading to High-Affinity, Selective, and Cell-Active Tetrahydroisoquinoline-Based Noncovalent Keap1-Nrf2 Inhibitors. J Med Chem 2024. [PMID: 39418396 DOI: 10.1021/acs.jmedchem.4c01221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Inhibition of the protein-protein interaction between Kelch-like ECH-associated protein 1 (Keap1) and nuclear factor erythroid 2-related factor 2 (Nrf2) has been recognized as an attractive approach for treating oxidative stress-related diseases. Here, we present a new series of noncovalent Keap1-Nrf2 inhibitors developed by a conformational restriction strategy of our fluorenone-based compounds previously identified by fragment-based drug discovery. The design was guided by X-ray cocrystal structures, and the subsequent optimization process aimed at improving affinity, cellular activity, and metabolic stability. From the noncyclic compound 7 (Ki = 2.9 μM), a new series of tetrahydroisoquinoline-based Keap1 inhibitors with up to 223-fold improvement in binding affinity (57, Ki = 13 nM), better metabolic stability, and enhanced cellular activity was obtained. In addition, the compounds showed selectivity for the Keap1 Kelch domain across a panel of 15 homologous proteins. We thereby demonstrate the utility of cyclic rigidification in the design of potent and more drug-like Keap1-Nrf2 inhibitors.
Collapse
Affiliation(s)
- Yuting Qin
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Cecilie Poulsen
- Department of Biomedicine, Faculty of Health, Aarhus University, 8000 Aarhus C, Denmark
| | - Dilip Narayanan
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Camilla B Chan
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Xiangrong Chen
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, U.K
| | - Beatriz Ralsi Montes
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, U.K
| | - Kim T Tran
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Elina Mukminova
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Chunyu Lin
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Michael Gajhede
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Alex N Bullock
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, U.K
| | - David Olagnier
- Department of Biomedicine, Faculty of Health, Aarhus University, 8000 Aarhus C, Denmark
| | - Anders Bach
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| |
Collapse
|
26
|
Zhang T, Cepauskas A, Nadieina A, Thureau A, Coppieters 't Wallant K, Martens C, Lim DC, Garcia-Pino A, Laub MT. A bacterial immunity protein directly senses two disparate phage proteins. Nature 2024:10.1038/s41586-024-08039-y. [PMID: 39415022 DOI: 10.1038/s41586-024-08039-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 09/11/2024] [Indexed: 10/18/2024]
Abstract
Eukaryotic innate immune systems use pattern recognition receptors to sense infection by detecting pathogen-associated molecular patterns, which then triggers an immune response. Bacteria have similarly evolved immunity proteins that sense certain components of their viral predators, known as bacteriophages1-6. Although different immunity proteins can recognize different phage-encoded triggers, individual bacterial immunity proteins have been found to sense only a single trigger during infection, suggesting a one-to-one relationship between bacterial pattern recognition receptors and their ligands7-11. Here we demonstrate that the antiphage defence protein CapRelSJ46 in Escherichia coli can directly bind and sense two completely unrelated and structurally different proteins using the same sensory domain, with overlapping but distinct interfaces. Our results highlight the notable versatility of an immune sensory domain, which may be a common property of antiphage defence systems that enables them to keep pace with their rapidly evolving viral predators. We found that Bas11 phages harbour both trigger proteins that are sensed by CapRelSJ46 during infection, and we demonstrate that such phages can fully evade CapRelSJ46 defence only when both triggers are mutated. Our work shows how a bacterial immune system that senses more than one trigger can help prevent phages from easily escaping detection, and it may allow the detection of a broader range of phages. More generally, our findings illustrate unexpected multifactorial sensing by bacterial defence systems and complex coevolutionary relationships between them and their phage-encoded triggers.
Collapse
Affiliation(s)
- Tong Zhang
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Albinas Cepauskas
- Cellular and Molecular Microbiology, Faculté des Sciences, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Anastasiia Nadieina
- Cellular and Molecular Microbiology, Faculté des Sciences, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Aurelien Thureau
- Centre for Structural Biology and Bioinformatics, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | | | | | - Daniel C Lim
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Abel Garcia-Pino
- Cellular and Molecular Microbiology, Faculté des Sciences, Université Libre de Bruxelles (ULB), Brussels, Belgium.
- WELBIO, Brussels, Belgium.
| | - Michael T Laub
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
27
|
Joshi T, Demmer U, Schneider C, Glaser T, Warkentin E, Ermler U, Mack M. The Phosphatase RosC from Streptomyces davaonensis is Used for Roseoflavin Biosynthesis and has Evolved to Largely Prevent Dephosphorylation of the Important Cofactor Riboflavin-5'-phosphate. J Mol Biol 2024; 436:168734. [PMID: 39097184 DOI: 10.1016/j.jmb.2024.168734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 08/05/2024]
Abstract
The antibiotic roseoflavin is a riboflavin (vitamin B2) analog. One step of the roseoflavin biosynthetic pathway is catalyzed by the phosphatase RosC, which dephosphorylates 8-demethyl-8-amino-riboflavin-5'-phosphate (AFP) to 8-demethyl-8-amino-riboflavin (AF). RosC also catalyzes the potentially cell-damaging dephosphorylation of the AFP analog riboflavin-5'-phosphate also called "flavin mononucleotide" (FMN), however, with a lower efficiency. We performed X-ray structural analyses and mutagenesis studies on RosC from Streptomyces davaonensis to understand binding of the flavin substrates, the distinction between AFP and FMN and the catalytic mechanism of this enzyme. This work is the first structural analysis of an AFP phosphatase. Each monomer of the RosC dimer consists of an α/β-fold core, which is extended by three specific elongated strand-to-helix sections and a specific N-terminal helix. Altogether these segments envelope the flavin thereby forming a novel flavin-binding site. We propose that distinction between AFP and FMN is provided by substrate-induced rigidification of the four RosC specific supplementary segments mentioned above and by an interaction between the amino group at C8 of AFP and the β-carboxylate of D166. This key amino acid is involved in binding the ring system of AFP and positioning its ribitol phosphate part. Accordingly, site-specific exchanges at D166 disturbed the active site geometry of the enzyme and drastically reduced the catalytic activity. Based on the structure of the catalytic core we constructed a whole series of RosC variants but a disturbing, FMN dephosphorylating "killer enzyme", was not generated.
Collapse
Affiliation(s)
- Tanya Joshi
- Institute for Technical Microbiology, Department of Biotechnology, Mannheim University of Applied Sciences, 68163 Mannheim, Germany
| | - Ulrike Demmer
- Max-Planck-Institute for Biophysics, Max-von-Laue-Strasse 3, 60438 Frankfurt am Main, Germany
| | - Carmen Schneider
- Institute for Technical Microbiology, Department of Biotechnology, Mannheim University of Applied Sciences, 68163 Mannheim, Germany
| | - Theresa Glaser
- Institute for Technical Microbiology, Department of Biotechnology, Mannheim University of Applied Sciences, 68163 Mannheim, Germany
| | - Eberhard Warkentin
- Max-Planck-Institute for Biophysics, Max-von-Laue-Strasse 3, 60438 Frankfurt am Main, Germany
| | - Ulrich Ermler
- Max-Planck-Institute for Biophysics, Max-von-Laue-Strasse 3, 60438 Frankfurt am Main, Germany
| | - Matthias Mack
- Institute for Technical Microbiology, Department of Biotechnology, Mannheim University of Applied Sciences, 68163 Mannheim, Germany.
| |
Collapse
|
28
|
Kroupova A, Spiteri VA, Rutter ZJ, Furihata H, Darren D, Ramachandran S, Chakraborti S, Haubrich K, Pethe J, Gonzales D, Wijaya AJ, Rodriguez-Rios M, Sturbaut M, Lynch DM, Farnaby W, Nakasone MA, Zollman D, Ciulli A. Design of a Cereblon construct for crystallographic and biophysical studies of protein degraders. Nat Commun 2024; 15:8885. [PMID: 39406745 PMCID: PMC11480361 DOI: 10.1038/s41467-024-52871-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 09/19/2024] [Indexed: 10/19/2024] Open
Abstract
The ubiquitin E3 ligase cereblon (CRBN) is the target of therapeutic drugs thalidomide and lenalidomide and is recruited by most targeted protein degraders (PROTACs and molecular glues) in clinical development. Biophysical and structural investigation of CRBN has been limited by current constructs that either require co-expression with the adaptor DDB1 or inadequately represent full-length protein, with high-resolution structures of degrader ternary complexes remaining rare. We present the design of CRBNmidi, a construct that readily expresses from E. coli with high yields as soluble, stable protein without DDB1. We benchmark CRBNmidi for wild-type functionality through a suite of biophysical techniques and solve high-resolution co-crystal structures of its binary and ternary complexes with degraders. We qualify CRBNmidi as an enabling tool to accelerate structure-based discovery of the next generation of CRBN based therapeutics.
Collapse
Grants
- Almirall, Protac Programme, 35480b_CRT (118945), 03.01.2021-31.12.2024 Boehringer Ingelheim, Building a Protac, 8144e_CRT (115737), 01.12.16-31.12.2025 EUbOPEN (CEC), Enabling and Unlocking Biology in the Open, 35733_GR (118810), 01.05.2020-30.04.2025 Eisai, Research Collaboration, 34788_CRT (118489), 01.07.19-30.09-2025 JSPS Fellowship, 03.04.2023 but no separate funding for consumables Tocris, Development of a Covalent BromoTag System, 39186_CRT (119776), 10.01.2023-10.01.2025
Collapse
Affiliation(s)
- Alena Kroupova
- Centre for Targeted Protein Degradation, School of Life Sciences, University of Dundee, Dundee, DD1 5JJ, UK
| | - Valentina A Spiteri
- Centre for Targeted Protein Degradation, School of Life Sciences, University of Dundee, Dundee, DD1 5JJ, UK
| | - Zoe J Rutter
- Centre for Targeted Protein Degradation, School of Life Sciences, University of Dundee, Dundee, DD1 5JJ, UK
| | - Hirotake Furihata
- Centre for Targeted Protein Degradation, School of Life Sciences, University of Dundee, Dundee, DD1 5JJ, UK
| | - Darren Darren
- Centre for Targeted Protein Degradation, School of Life Sciences, University of Dundee, Dundee, DD1 5JJ, UK
- Cancer Science Institute Singapore, National University of Singapore, Singapore, 117599, Singapore
| | - Sarath Ramachandran
- Centre for Targeted Protein Degradation, School of Life Sciences, University of Dundee, Dundee, DD1 5JJ, UK
- Biocon BMS R&D Center, Bommasandra Industrial Area, Bommasandra, Karnataka, 560099, India
| | - Sohini Chakraborti
- Centre for Targeted Protein Degradation, School of Life Sciences, University of Dundee, Dundee, DD1 5JJ, UK
| | - Kevin Haubrich
- Centre for Targeted Protein Degradation, School of Life Sciences, University of Dundee, Dundee, DD1 5JJ, UK
| | - Julie Pethe
- Centre for Targeted Protein Degradation, School of Life Sciences, University of Dundee, Dundee, DD1 5JJ, UK
- National Heart and Lung Institute, Imperial College London, London, SW3 6LY, UK
| | - Denzel Gonzales
- Centre for Targeted Protein Degradation, School of Life Sciences, University of Dundee, Dundee, DD1 5JJ, UK
- Institute of Cell Biology, University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Andre J Wijaya
- Centre for Targeted Protein Degradation, School of Life Sciences, University of Dundee, Dundee, DD1 5JJ, UK
- PT Kalbe Farma, Jl. Let. Jend Suprapto Kav 4, Kalbe Farma, Jakarta, 10510, Indonesia
| | - Maria Rodriguez-Rios
- Centre for Targeted Protein Degradation, School of Life Sciences, University of Dundee, Dundee, DD1 5JJ, UK
| | - Manon Sturbaut
- Centre for Targeted Protein Degradation, School of Life Sciences, University of Dundee, Dundee, DD1 5JJ, UK
| | - Dylan M Lynch
- Centre for Targeted Protein Degradation, School of Life Sciences, University of Dundee, Dundee, DD1 5JJ, UK
| | - William Farnaby
- Centre for Targeted Protein Degradation, School of Life Sciences, University of Dundee, Dundee, DD1 5JJ, UK
| | - Mark A Nakasone
- Centre for Targeted Protein Degradation, School of Life Sciences, University of Dundee, Dundee, DD1 5JJ, UK
| | - David Zollman
- Centre for Targeted Protein Degradation, School of Life Sciences, University of Dundee, Dundee, DD1 5JJ, UK.
| | - Alessio Ciulli
- Centre for Targeted Protein Degradation, School of Life Sciences, University of Dundee, Dundee, DD1 5JJ, UK.
| |
Collapse
|
29
|
Nomura K, An S, Kobayashi Y, Kondo J, Shi T, Murase H, Nakamoto K, Kimura Y, Abe N, Ui-Tei K, Abe H. Synthesis of 2'-formamidonucleoside phosphoramidites for suppressing the seed-based off-target effects of siRNAs. Nucleic Acids Res 2024; 52:10754-10774. [PMID: 39231537 PMCID: PMC11472056 DOI: 10.1093/nar/gkae741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 07/31/2024] [Accepted: 08/18/2024] [Indexed: 09/06/2024] Open
Abstract
In this study, we report the synthesis of 2'-formamidonucleoside phosphoramidite derivatives and their incorporation into siRNA strands to reduce seed-based off-target effects of small interfering RNAs (siRNAs). Formamido derivatives of all four nucleosides (A, G, C and U) were synthesized in 5-11 steps from commercial compounds. Introducing these derivatives into double-stranded RNA slightly reduced its thermodynamic stability, but X-ray crystallography and CD spectrum analysis confirmed that the RNA maintained its natural A-form structure. Although the introduction of the 2'-formamidonucleoside derivative at the 2nd position in the guide strand of the siRNA led to a slight decrease in the on-target RNAi activity, the siRNAs with different sequences incorporating 2'-formamidonucleoside with four kinds of nucleobases into any position other than 2nd position in the seed region revealed a significant suppression of off-target activity while maintaining on-target RNAi activity. This indicates that 2'-formamidonucleosides represent a promising approach for mitigating off-target effects in siRNA therapeutics.
Collapse
Affiliation(s)
- Kohei Nomura
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Seongjin An
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8561, Japan
| | - Yoshiaki Kobayashi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Jiro Kondo
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioi-cho, Chiyoda-ku 102-8554 Tokyo, Japan
| | - Ting Shi
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Hirotaka Murase
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Kosuke Nakamoto
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Yasuaki Kimura
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Naoko Abe
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Kumiko Ui-Tei
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8561, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Hiroshi Abe
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
- Research Center for Materials Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
- CREST, Japan Science and Technology Agency, 7 Gobancho, Chiyoda-ku, Tokyo 102-0076, Japan
- Institute for Glyco-core Research (iGCORE), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi464-8601, Japan
| |
Collapse
|
30
|
Mandelli F, Martins MP, Chinaglia M, Lima EAD, Morais MAB, Lima TB, Cabral L, Pirolla RAS, Fuzita FJ, Paixão DAA, Andrade MDO, Wolf LD, Vieira PS, Persinoti GF, Murakami MT. A functionally augmented carbohydrate utilization locus from herbivore gut microbiota fueled by dietary β-glucans. NPJ Biofilms Microbiomes 2024; 10:105. [PMID: 39397008 PMCID: PMC11471779 DOI: 10.1038/s41522-024-00578-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 10/01/2024] [Indexed: 10/15/2024] Open
Abstract
Gut microbiota members from the Bacteroidota phylum play a pivotal role in mammalian health and metabolism. They thrive in this diverse ecosystem due to their notable ability to cope with distinct recalcitrant dietary glycans via polysaccharide utilization loci (PULs). Our study reveals that a PUL from an herbivore gut bacterium belonging to the Bacteroidota phylum, with a gene composition similar to that in the human gut, exhibits extended functionality. While the human gut PUL targets mixed-linkage β-glucans specifically, the herbivore gut PUL also efficiently processes linear and substituted β-1,3-glucans. This gain of function emerges from molecular adaptations in recognition proteins and carbohydrate-active enzymes, including a β-glucosidase specialized for β(1,6)-glucosyl linkages, a typical substitution in β(1,3)-glucans. These findings broaden the existing model for non-cellulosic β-glucans utilization by gut bacteria, revealing an additional layer of functional and evolutionary complexity within the gut microbiota, beyond conventional gene insertions/deletions to intricate biochemical interactions.
Collapse
Affiliation(s)
- Fernanda Mandelli
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, 13083-970, Brazil
| | - Marcele Pandeló Martins
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, 13083-970, Brazil
| | - Mariana Chinaglia
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, 13083-970, Brazil
| | - Evandro Antonio de Lima
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, 13083-970, Brazil
| | - Mariana Abrahão Bueno Morais
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, 13083-970, Brazil
| | - Tatiani Brenelli Lima
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, 13083-970, Brazil
| | - Lucélia Cabral
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, 13083-970, Brazil
| | - Renan Augusto Siqueira Pirolla
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, 13083-970, Brazil
| | - Felipe Jun Fuzita
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, 13083-970, Brazil
| | - Douglas Antônio Alvaredo Paixão
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, 13083-970, Brazil
| | - Maxuel de Oliveira Andrade
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, 13083-970, Brazil
| | - Lucia Daniela Wolf
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, 13083-970, Brazil
| | - Plinio Salmazo Vieira
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, 13083-970, Brazil
| | - Gabriela Felix Persinoti
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, 13083-970, Brazil
| | - Mario Tyago Murakami
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, 13083-970, Brazil.
| |
Collapse
|
31
|
Zhou J, Chen Q, Ren R, Yang J, Liu B, Horton JR, Chang C, Li C, Maksoud L, Yang Y, Rotili D, Jain AK, Zhang X, Blumenthal RM, Chen T, Gao Y, Valente S, Mai A, Cheng X. Quinoline-based compounds can inhibit diverse enzymes that act on DNA. Cell Chem Biol 2024:S2451-9456(24)00403-3. [PMID: 39437789 DOI: 10.1016/j.chembiol.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 08/07/2024] [Accepted: 09/25/2024] [Indexed: 10/25/2024]
Abstract
DNA methylation, as exemplified by cytosine-C5 methylation in mammals and adenine-N6 methylation in bacteria, is a key epigenetic process. Developing non-nucleoside inhibitors to cause DNA hypomethylation is crucial for treating various conditions without the toxicities associated with existing cytidine-based hypomethylating agents. This study characterized fifteen quinoline-based analogs, particularly compounds with additions like a methylamine (9) or methylpiperazine (11), which demonstrate similar low micromolar inhibitory potency against human DNMT1 and Clostridioides difficile CamA. These compounds (9 and 11) intercalate into CamA-bound DNA via the minor groove, causing a conformational shift that moves the catalytic domain away from the DNA. This study adds to the limited examples of DNA methyltransferases being inhibited by non-nucleotide compounds through DNA intercalation. Additionally, some quinoline-based analogs inhibit other DNA-interacting enzymes, such as polymerases and base excision repair glycosylases. Finally, compound 11 elicits DNA damage response via p53 activation in cancer cells.
Collapse
Affiliation(s)
- Jujun Zhou
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Qin Chen
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ren Ren
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jie Yang
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Bigang Liu
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - John R Horton
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Caleb Chang
- Department of Biosciences, Rice University, Houston, TX 77005, USA
| | - Chuxuan Li
- Department of Biosciences, Rice University, Houston, TX 77005, USA
| | - Leora Maksoud
- Department of Biosciences, Rice University, Houston, TX 77005, USA
| | - Yifei Yang
- Department of Biosciences, Rice University, Houston, TX 77005, USA
| | - Dante Rotili
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Abhinav K Jain
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xing Zhang
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Robert M Blumenthal
- Department of Medical Microbiology and Immunology, and Program in Bioinformatics, The University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Taiping Chen
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yang Gao
- Department of Biosciences, Rice University, Houston, TX 77005, USA
| | - Sergio Valente
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Antonello Mai
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy; Pasteur Institute, Cenci-Bolognetti Foundation, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Xiaodong Cheng
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
32
|
Yang JE, Mitchell JM, Bingman CA, Mosher DF, Wright ER. In situ crystalline structure of the human eosinophil major basic protein-1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.09.617336. [PMID: 39416224 PMCID: PMC11483036 DOI: 10.1101/2024.10.09.617336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Eosinophils are white blood cells that participate in innate immune responses and have an essential role in the pathogenesis of inflammatory and neoplastic disorders. Upon activation, eosinophils release cytotoxic proteins such as major basic protein-1 (MBP-1) from cytoplasmic secretory granules (SGr) wherein MBP-1 is stored as nanocrystals. How the MBP-1 nanocrystalline core is formed, stabilized, and subsequently mobilized remains unknown. Here, we report the in-situ structure of crystalline MBP-1 within SGrs of human eosinophils. The structure reveals a mechanism for intragranular crystal packing and stabilization of MBP-1 via a structurally conserved loop region that is associated with calcium-dependent carbohydrate binding in other C-type lectin (CTL) proteins. Single-cell and single-SGr profiling correlating real-space three-dimensional information from cellular montage cryo-electron tomography (cryo-ET) and microcrystal electron diffraction (MicroED) data obtained from non-activated and IL33-activated eosinophils revealed activation-dependent crystal expansion and extrusion of expanded crystals from SGr. These results suggest that MBP-1 crystals play a dynamic role in the release of SGr contents. Collectively, this research demonstrates the importance of in-situ macromolecular structure determination.
Collapse
Affiliation(s)
- Jie E Yang
- Department of Biochemistry, University of Wisconsin, Madison, WI USA
- Cryo-Electron Microscopy Research Center, Department of Biochemistry, University of Wisconsin, Madison, WI USA
- Midwest Center for Cryo-Electron Tomography, Department of Biochemistry, University of Wisconsin, Madison, WI USA
| | - Joshua M Mitchell
- Departments of Biomolecular Chemistry and Medicine, University of Wisconsin, Madison, WI USA
| | - Craig A Bingman
- Department of Biochemistry, University of Wisconsin, Madison, WI USA
- Collaborative Crystallography Core, University of Wisconsin, Madison, WI USA
| | - Deane F Mosher
- Departments of Biomolecular Chemistry and Medicine, University of Wisconsin, Madison, WI USA
- Morgridge Institute for Research, Madison, WI, USA
| | - Elizabeth R Wright
- Department of Biochemistry, University of Wisconsin, Madison, WI USA
- Cryo-Electron Microscopy Research Center, Department of Biochemistry, University of Wisconsin, Madison, WI USA
- Midwest Center for Cryo-Electron Tomography, Department of Biochemistry, University of Wisconsin, Madison, WI USA
- Morgridge Institute for Research, Madison, WI, USA
| |
Collapse
|
33
|
Almeida CF, Gully BS, Jones CM, Kedzierski L, Gunasinghe SD, Rice MT, Berry R, Gherardin NA, Nguyen TT, Mok YF, Reijneveld JF, Moody DB, Van Rhijn I, La Gruta NL, Uldrich AP, Rossjohn J, Godfrey DI. Direct recognition of an intact foreign protein by an αβ T cell receptor. Nat Commun 2024; 15:8816. [PMID: 39394178 PMCID: PMC11470135 DOI: 10.1038/s41467-024-51897-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 08/21/2024] [Indexed: 10/13/2024] Open
Abstract
αβ T cell receptors (αβTCRs) co-recognise antigens when bound to Major Histocompatibility Complex (MHC) or MHC class I-like molecules. Additionally, some αβTCRs can bind non-MHC molecules, but how much intact antigen reactivities are achieved remains unknown. Here, we identify an αβ T cell clone that directly recognises the intact foreign protein, R-phycoerythrin (PE), a multimeric (αβ)6γ protein complex. This direct αβTCR-PE interaction occurs in an MHC-independent manner, yet triggers T cell activation and bound PE with an affinity comparable to αβTCR-peptide-MHC interactions. The crystal structure reveals how six αβTCR molecules simultaneously engage the PE hexamer, mediated by the complementarity-determining regions (CDRs) of the αβTCR. Here, the αβTCR mainly binds to two α-helices of the globin fold in the PE α-subunit, which is analogous to the antigen-binding platform of the MHC molecule. Using retrogenic mice expressing this TCR, we show that it supports intrathymic T cell development, maturation, and exit into the periphery as mature CD4/CD8 double negative (DN) T cells with TCR-mediated functional capacity. Accordingly, we show how an αβTCR can recognise an intact foreign protein in an antibody-like manner.
Collapse
MESH Headings
- Animals
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Mice
- Phycoerythrin/metabolism
- Phycoerythrin/chemistry
- Lymphocyte Activation/immunology
- Protein Binding
- Crystallography, X-Ray
- Mice, Inbred C57BL
- Humans
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Complementarity Determining Regions/chemistry
- Complementarity Determining Regions/genetics
- Complementarity Determining Regions/metabolism
- Models, Molecular
Collapse
Affiliation(s)
- Catarina F Almeida
- Department of Microbiology & Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Benjamin S Gully
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Claerwen M Jones
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Lukasz Kedzierski
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- Department of Microbiology and Immunology, at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Sachith D Gunasinghe
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- European Molecular Biology Laboratory (EMBL) Australia Node in Single Molecule Science, School of Medical Sciences, University of New South Wales, New South Wales, Australia
| | - Michael T Rice
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Richard Berry
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Nicholas A Gherardin
- Department of Microbiology & Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Trang T Nguyen
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Yee-Foong Mok
- Melbourne Protein Characterisation Platform, Bio21 Molecular Science and Biotechnology Institute, Melbourne, VIC, Australia
| | - Josephine F Reijneveld
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
- Stratingh Institute for Chemistry, University of Groningen, Groningen, The Netherlands
| | - D Branch Moody
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ildiko Van Rhijn
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Nicole L La Gruta
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Adam P Uldrich
- Department of Microbiology & Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia.
| | - Jamie Rossjohn
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia.
- Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff, UK.
| | - Dale I Godfrey
- Department of Microbiology & Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
34
|
Zong Z, Zhang X, Chen P, Fu Z, Zeng Y, Wang Q, Chipot C, Leggio LL, Sun Y. Elucidation of the noncovalent interactions driving enzyme activity guides branching enzyme engineering for α-glucan modification. Nat Commun 2024; 15:8760. [PMID: 39384762 PMCID: PMC11464733 DOI: 10.1038/s41467-024-53018-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 09/23/2024] [Indexed: 10/11/2024] Open
Abstract
Branching enzymes (BEs) confer to α-glucans, the primary energy-storage reservoir in nature, a variety of features, like slow digestion. The full catalytic cycle of BEs can be divided in six steps, namely two covalent catalytic steps involving glycosylation and transglycosylation, and four noncatalytic steps involving substrate binding and transfers (SBTs). Despite the ever-growing wealth of biochemical and structural information on BEs, clear mechanistic insights into SBTs from an industrial-performance perspective are still missing. Here, we report a Rhodothermus profundi BE (RpBE) endowed with twice as much enzymatic activity as the Rhodothermus obamensis BE currently used in industry. Furthermore, we focus on the SBTs for RpBE by means of large-scale computations supported by experiment. Engineering of the crucial positions responsible for the initial substrate-binding step improves enzymatic activity significantly, while offering a possibility to customize product types. In addition, we show that the high-efficiency substrate-transfer steps preceding glycosylation and transglycosylation are the main reason for the remarkable enzymatic activity of RpBE, suggestive of engineering directions for the BE family.
Collapse
Affiliation(s)
- Zhiyou Zong
- National Engineering Research Center of Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.
- National Center of Technology Innovation for Synthetic Biology, Tianjin, China.
| | - Xuewen Zhang
- National Engineering Research Center of Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, China
| | - Peng Chen
- National Engineering Research Center of Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, China
| | - Zhuoyue Fu
- National Engineering Research Center of Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, China
| | - Yan Zeng
- National Engineering Research Center of Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, China
| | - Qian Wang
- National Engineering Research Center of Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, China
| | - Christophe Chipot
- Laboratoire International Associé CNRS and University of Illinois at Urbana-Champaign, LPCT, UMR 7019 Université de Lorraine CNRS, Vandœuvre-lès-Nancy, France
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, USA
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, USA
| | - Leila Lo Leggio
- Department of Chemistry, University of Copenhagen, Copenhagen, Denmark
| | - Yuanxia Sun
- National Engineering Research Center of Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.
- National Center of Technology Innovation for Synthetic Biology, Tianjin, China.
| |
Collapse
|
35
|
Roschdi S, Montemayor EJ, Vivek R, Bingman CA, Butcher SE. Self-assembly and condensation of intermolecular poly(UG) RNA quadruplexes. Nucleic Acids Res 2024:gkae870. [PMID: 39373474 DOI: 10.1093/nar/gkae870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/17/2024] [Accepted: 09/24/2024] [Indexed: 10/08/2024] Open
Abstract
Poly(UG) or 'pUG' dinucleotide repeats are highly abundant sequences in eukaryotic RNAs. In Caenorhabditis elegans, pUGs are added to RNA 3' ends to direct gene silencing within Mutator foci, a germ granule condensate. Here, we show that pUG RNAs efficiently self-assemble into gel condensates through quadruplex (G4) interactions. Short pUG sequences form right-handed intermolecular G4s (pUG G4s), while longer pUGs form left-handed intramolecular G4s (pUG folds). We determined a 1.05 Å crystal structure of an intermolecular pUG G4, which reveals an eight stranded G4 dimer involving 48 nucleotides, 7 different G and U quartet conformations, 7 coordinated potassium ions, 8 sodium ions and a buried water molecule. A comparison of the intermolecular pUG G4 and intramolecular pUG fold structures provides insights into the molecular basis for G4 handedness and illustrates how a simple dinucleotide repeat sequence can form complex structures with diverse topologies.
Collapse
Affiliation(s)
- Saeed Roschdi
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Eric J Montemayor
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Rahul Vivek
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Craig A Bingman
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Samuel E Butcher
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
36
|
Yang J, Jeon HJ, Park S, Park J, Jang S, Shin B, Bang K, Hawkes HJK, Park S, Kim S, Hwang KY. Structural Insights and Catalytic Mechanism of 3-Hydroxybutyryl-CoA Dehydrogenase from Faecalibacterium Prausnitzii A2-165. Int J Mol Sci 2024; 25:10711. [PMID: 39409040 PMCID: PMC11476959 DOI: 10.3390/ijms251910711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/01/2024] [Accepted: 10/01/2024] [Indexed: 10/20/2024] Open
Abstract
Atopic dermatitis (AD) is characterized by a T-helper cell type 2 (Th2) inflammatory response leading to skin damage with erythema and edema. Comparative fecal sample analysis has uncovered a strong correlation between AD and Faecalibacterium prausnitzii strain A2-165, specifically associated with butyrate production. Therefore, understanding the functional mechanisms of crucial enzymes in the butyrate pathway, such as 3-hydroxybutyryl-CoA dehydrogenase of A2-165 (A2HBD), is imperative. Here, we have successfully elucidated the three-dimensional structure of A2HBD in complex with acetoacetyl-CoA and NAD+ at a resolution of 2.2Å using the PAL-11C beamline (third generation). Additionally, X-ray data of A2HBD in complex with acetoacetyl-CoA at a resolution of 1.9 Å were collected at PAL-XFEL (fourth generation) utilizing Serial Femtosecond Crystallography (SFX). The monomeric structure of A2HBD consists of two domains, N-terminal and C-terminal, with cofactor binding occurring at the N-terminal domain, while the C-terminal domain facilitates dimerization. Our findings elucidate the binding mode of NAD+ to A2HBD. Upon acetoacetyl-CoA binding, the crystal structure revealed a significant conformational change in the Clamp-roof domain (root-mean-square deviation of 2.202 Å). Notably, residue R143 plays a critical role in capturing the adenine phosphate ring, underlining its significance in substrate recognition and catalytic activity. The binding mode of acetoacetyl-CoA was also clarified, indicating its lower stability compared to NAD+. Furthermore, the conformational change of hydrophobic residues near the catalytic cavity upon substrate binding resulted in cavity shrinkage from an open to closed conformation. This study confirms the conformational changes of catalytic triads involved in the catalytic reaction and presents a proposed mechanism for substrate reduction based on structural observations.
Collapse
Affiliation(s)
- Jaewon Yang
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea; (J.Y.); (H.J.J.); (S.P.); (J.P.); (S.J.); (B.S.); (K.B.); (S.K.)
| | - Hyung Jin Jeon
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea; (J.Y.); (H.J.J.); (S.P.); (J.P.); (S.J.); (B.S.); (K.B.); (S.K.)
| | - Seonha Park
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea; (J.Y.); (H.J.J.); (S.P.); (J.P.); (S.J.); (B.S.); (K.B.); (S.K.)
| | - Junga Park
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea; (J.Y.); (H.J.J.); (S.P.); (J.P.); (S.J.); (B.S.); (K.B.); (S.K.)
| | - Seonhye Jang
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea; (J.Y.); (H.J.J.); (S.P.); (J.P.); (S.J.); (B.S.); (K.B.); (S.K.)
| | - Byeongmin Shin
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea; (J.Y.); (H.J.J.); (S.P.); (J.P.); (S.J.); (B.S.); (K.B.); (S.K.)
| | - Kyuhyeon Bang
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea; (J.Y.); (H.J.J.); (S.P.); (J.P.); (S.J.); (B.S.); (K.B.); (S.K.)
| | - Hye-Jin Kim Hawkes
- Center for Creative Convergence Education, Hanyang University, Seoul 04763, Republic of Korea;
| | - Sungha Park
- Department of Bioengineering, Incheon JEI University, Incheon 21987, Republic of Korea;
| | - Sulhee Kim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea; (J.Y.); (H.J.J.); (S.P.); (J.P.); (S.J.); (B.S.); (K.B.); (S.K.)
- Korea BioDefense Research Institute, Korea University, Seoul 02841, Republic of Korea
| | - Kwang Yeon Hwang
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea; (J.Y.); (H.J.J.); (S.P.); (J.P.); (S.J.); (B.S.); (K.B.); (S.K.)
- Korea BioDefense Research Institute, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
37
|
Małecki PH, Fassauer GM, Rüger N, Schulig L, Link A, Krylova O, Heinemann U, Weiss MS. Structure-based mapping of the histone-binding pocket of KDM4D using functionalized tetrazole and pyridine core compounds. Eur J Med Chem 2024; 276:116642. [PMID: 38981336 DOI: 10.1016/j.ejmech.2024.116642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/28/2024] [Accepted: 06/29/2024] [Indexed: 07/11/2024]
Abstract
KDM4 histone demethylases became an exciting target for inhibitor development as the evidence linking them directly to tumorigenesis mounts. In this study, we set out to better understand the binding cavity using an X-ray crystallographic approach to provide a detailed landscape of possible interactions within the under-investigated region of KDM4. Our design strategy was based on utilizing known KDM binding motifs, such as nicotinic acid and tetrazolylhydrazides, as core motifs that we decided to enrich with flexible tails to map the distal histone binding site. The resulting X-ray structures of the novel compounds bound to KDM4D, a representative of the KDM4 family, revealed the interaction pattern with distal residues in the histone-binding site. The most prominent protein rearrangement detected upon ligand binding is the loop movement that blocks the accessibility to the histone binding site. Apart from providing new sites that potential inhibitors can target, the novel compounds may prove helpful in exploring the capacity of ligands to bind in sites distal to the cofactor-binding site of other KDMs or 2-oxoglutarate (2OG)-dependent oxygenases. The case study proves that combining a strong small binding motif with flexible tails to probe the binding pocket will facilitate lead discovery in classical drug-discovery campaigns, given the ease of accessing X-ray quality crystals.
Collapse
Affiliation(s)
- Piotr H Małecki
- Macromolecular Structure and Interaction, Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Str. 10, 13125, Berlin, Germany; Macromolecular Crystallography, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Str. 15, 12489, Berlin, Germany; Department of Structural Biology of Prokaryotic Organisms, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Z. Noskowskiego-Str. 12/14, 61-704, Poznań, Poland.
| | - Georg M Fassauer
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Universität Greifswald, Friedrich-Ludwig-Jahn-Straße 17, 17489, Greifswald, Germany
| | - Nicole Rüger
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Universität Greifswald, Friedrich-Ludwig-Jahn-Straße 17, 17489, Greifswald, Germany
| | - Lukas Schulig
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Universität Greifswald, Friedrich-Ludwig-Jahn-Straße 17, 17489, Greifswald, Germany
| | - Andreas Link
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Universität Greifswald, Friedrich-Ludwig-Jahn-Straße 17, 17489, Greifswald, Germany
| | - Oxana Krylova
- Department of Molecular Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Udo Heinemann
- Macromolecular Structure and Interaction, Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Manfred S Weiss
- Macromolecular Crystallography, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Str. 15, 12489, Berlin, Germany
| |
Collapse
|
38
|
Bodra N, Toh E, Nadeem A, Wai SN, Persson K. MakC and MakD are two proteins associated with a tripartite toxin of Vibrio cholerae. Front Microbiol 2024; 15:1457850. [PMID: 39421563 PMCID: PMC11484084 DOI: 10.3389/fmicb.2024.1457850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/11/2024] [Indexed: 10/19/2024] Open
Abstract
Pathogenic serotypes of Vibrio cholerae, transmitted through contaminated water and food, are responsible for outbreaks of cholera, an acute diarrheal disease. While the cholera toxin is the primary virulence factor, V. cholerae also expresses other virulence factors, such as the tripartite toxin MakABE that is secreted via the bacterial flagellum. These three proteins are co-expressed with two accessory proteins, MakC and MakD, whose functions remain unknown. Here, we present the crystal structures of MakC and MakD, revealing that they are similar in both sequence and structure but lack other close structural relatives. Our study further investigates the roles of MakC and MakD, focusing on their impact on the expression and secretion of the components of the MakABE tripartite toxin. Through deletion mutant analysis, we found that individual deletions of makC or makD do not significantly affect MakA expression or secretion. However, the deletion of both makC and makD impairs the expression of MakB, which is directly downstream, and decreases the expression of MakE, which is separated from makCD by two genes. Conversely, MakA, encoded by the makA gene located between makB and makE, is expressed normally but its secretion is impaired. Additionally, our findings indicate that MakC, in contrast to MakD, exhibits strong interactions with other proteins. Furthermore, both MakC and MakD were observed to be localized within the cytosol of the bacterial cell. This study provides new insights into the regulatory mechanisms affecting the Mak protein family in V. cholerae and highlights the complex interplay between gene proximity and protein expression.
Collapse
Affiliation(s)
- Nandita Bodra
- Department of Chemistry, Umeå University, Umeå, Sweden
- Umeå Center for Microbial Research (UCMR), Umeå University, Umeå, Sweden
| | - Eric Toh
- Umeå Center for Microbial Research (UCMR), Umeå University, Umeå, Sweden
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
| | - Aftab Nadeem
- Umeå Center for Microbial Research (UCMR), Umeå University, Umeå, Sweden
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Sun Nyunt Wai
- Umeå Center for Microbial Research (UCMR), Umeå University, Umeå, Sweden
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
| | - Karina Persson
- Department of Chemistry, Umeå University, Umeå, Sweden
- Umeå Center for Microbial Research (UCMR), Umeå University, Umeå, Sweden
| |
Collapse
|
39
|
Faucon A, Renault J, Josts I, Couchot J, Renaud JL, Hoegy F, Plésiat P, Tidow H, Gaillard S, Mislin GLA. Synthesis and antibacterial properties under blue LED light of conjugates between the siderophore desferrioxamine B (DFOB) and an Iridium(III) complex. Bioorg Med Chem 2024; 112:117842. [PMID: 39173538 DOI: 10.1016/j.bmc.2024.117842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/05/2024] [Accepted: 07/16/2024] [Indexed: 08/24/2024]
Abstract
The decline of antibiotics efficacy worldwide has recently reached a critical point urging for the development of new strategies to regain upper hand on multidrug resistant bacterial strains. In this context, the raise of photodynamic therapy (PDT), initially based on organic photosensitizers (PS) and more recently on organometallic PS, offers promising perspectives. Many PS exert their biological effects through the generation of reactive oxygen species (ROS) able to freely diffuse into and to kill surrounding bacteria. Hijacking of the bacterial iron-uptake systems with siderophore-PS conjugates would specifically target pathogens. Here, we report the synthesis of unprecedented conjugates between the siderophore desferrioxamine B (DFOB) and an antibacterial iridium(III) PS. Redox properties of the new conjugates have been determined at excited states and compared to that of an antibacterial iridium PS previously reported by our groups. Tested on nosocomial pathogen Pseudomonas aeruginosa and other bacteria, these conjugates demonstrated significant inhibitory activity when activated with blue LED light. Ir(III) conjugate and iridium free DFOB-2,2'-dipyridylamine ligands were crystallized in complex with FoxA, the outer membrane transporter involved in DFOB uptake in P. aeruginosa and revealed details of the binding mode of these unprecedented conjugates.
Collapse
Affiliation(s)
- Aline Faucon
- CNRS, UMR7242 Biotechnologie et Signalisation Cellulaire, 300 Boulevard Sébastien Brant, F-67412 Illkirch, Strasbourg, France; Université de Strasbourg, Institut de Recherche de l'Ecole de Biotechnologie de Strasbourg (IREBS), 300 Boulevard Sébastien Brant, F-67412 Illkirch, Strasbourg, France
| | - Julien Renault
- Normandie University, LCMT, ENSICAEN, UNICAEN, CNRS, 6 Bd du Maréchal Juin, 14050 Caen, France
| | - Inokentijs Josts
- The Hamburg Advanced Research Center for Bioorganic Chemistry (HARBOR), 22761 Hamburg, Germany; Department of Chemistry, Institute for Biochemistry and Molecular Biology, University of Hamburg, 22761 Hamburg, Germany
| | - Julie Couchot
- Université de Franche-Comté, UMR6249 CNRS Chrono-environnement, F-25000 Besançon, France
| | - Jean-Luc Renaud
- Normandie University, LCMT, ENSICAEN, UNICAEN, CNRS, 6 Bd du Maréchal Juin, 14050 Caen, France; Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, UMR 8232, 75005 Paris, France
| | - Françoise Hoegy
- CNRS, UMR7242 Biotechnologie et Signalisation Cellulaire, 300 Boulevard Sébastien Brant, F-67412 Illkirch, Strasbourg, France; Université de Strasbourg, Institut de Recherche de l'Ecole de Biotechnologie de Strasbourg (IREBS), 300 Boulevard Sébastien Brant, F-67412 Illkirch, Strasbourg, France
| | - Patrick Plésiat
- Université de Franche-Comté, UMR6249 CNRS Chrono-environnement, F-25000 Besançon, France
| | - Henning Tidow
- The Hamburg Advanced Research Center for Bioorganic Chemistry (HARBOR), 22761 Hamburg, Germany; Department of Chemistry, Institute for Biochemistry and Molecular Biology, University of Hamburg, 22761 Hamburg, Germany
| | - Sylvain Gaillard
- Normandie University, LCMT, ENSICAEN, UNICAEN, CNRS, 6 Bd du Maréchal Juin, 14050 Caen, France
| | - Gaëtan L A Mislin
- CNRS, UMR7242 Biotechnologie et Signalisation Cellulaire, 300 Boulevard Sébastien Brant, F-67412 Illkirch, Strasbourg, France; Université de Strasbourg, Institut de Recherche de l'Ecole de Biotechnologie de Strasbourg (IREBS), 300 Boulevard Sébastien Brant, F-67412 Illkirch, Strasbourg, France.
| |
Collapse
|
40
|
Rodrigues AV, Moriarty NW, Kakumanu R, DeGiovanni A, Pereira JH, Gin JW, Chen Y, Baidoo EEK, Petzold CJ, Adams PD. Characterization of lignin-degrading enzyme PmdC, which catalyzes a key step in the synthesis of polymer precursor 2-pyrone-4,6-dicarboxylic acid. J Biol Chem 2024; 300:107736. [PMID: 39222681 PMCID: PMC11489326 DOI: 10.1016/j.jbc.2024.107736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/22/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
Pyrone-2,4-dicarboxylic acid (PDC) is a valuable polymer precursor that can be derived from the microbial degradation of lignin. The key enzyme in the microbial production of PDC is 4-carboxy-2-hydroxymuconate-6-semialdehyde (CHMS) dehydrogenase, which acts on the substrate CHMS. We present the crystal structure of CHMS dehydrogenase (PmdC from Comamonas testosteroni) bound to the cofactor NADP, shedding light on its three-dimensional architecture, and revealing residues responsible for binding NADP. Using a combination of structural homology, molecular docking, and quantum chemistry calculations, we have predicted the binding site of CHMS. Key histidine residues in a conserved sequence are identified as crucial for binding the hydroxyl group of CHMS and facilitating dehydrogenation with NADP. Mutating these histidine residues results in a loss of enzyme activity, leading to a proposed model for the enzyme's mechanism. These findings are expected to help guide efforts in protein and metabolic engineering to enhance PDC yields in biological routes to polymer feedstock synthesis.
Collapse
Affiliation(s)
- Andria V Rodrigues
- Joint BioEnergy Institute, Emeryville, California, United States; Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California, United States.
| | - Nigel W Moriarty
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California, United States
| | - Ramu Kakumanu
- Joint BioEnergy Institute, Emeryville, California, United States; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States
| | - Andy DeGiovanni
- Joint BioEnergy Institute, Emeryville, California, United States; Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California, United States
| | - Jose Henrique Pereira
- Joint BioEnergy Institute, Emeryville, California, United States; Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California, United States
| | - Jennifer W Gin
- Joint BioEnergy Institute, Emeryville, California, United States; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States; Department of Energy Agile BioFoundry, Emeryville, California, United States
| | - Yan Chen
- Joint BioEnergy Institute, Emeryville, California, United States; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States; Department of Energy Agile BioFoundry, Emeryville, California, United States
| | - Edward E K Baidoo
- Joint BioEnergy Institute, Emeryville, California, United States; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States
| | - Christopher J Petzold
- Joint BioEnergy Institute, Emeryville, California, United States; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States; Department of Energy Agile BioFoundry, Emeryville, California, United States
| | - Paul D Adams
- Joint BioEnergy Institute, Emeryville, California, United States; Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California, United States; Department of Bioengineering, University of California Berkeley, Berkeley, California, United States.
| |
Collapse
|
41
|
Abe K, Eki H, Hirose Y, Park S, Chinnathambi S, Namasivayam GP, Takeda K, Sugiyama H, Endo M. Creation of Metal-Complex-Integrated Tensegrity Triangle DNA Crystals. Molecules 2024; 29:4674. [PMID: 39407603 PMCID: PMC11478291 DOI: 10.3390/molecules29194674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/26/2024] [Accepted: 09/29/2024] [Indexed: 10/20/2024] Open
Abstract
Structural DNA nanotechnology is an emerging field and is expected to be used for various applications in materials science. In this study, we designed a DNA tensegrity triangle to accommodate the bipyridine complexes with metal ions (Ni2+ and Fe2+) at the center of the space within the triangle. A metal-bipyridine-incorporated DNA tensegrity triangle was crystalized, and the presence of metals within it was confirmed through X-ray crystal structure analysis. A signal of the anomalous dispersion effect derived from metal was observed in the center of the DNA triangle.
Collapse
Affiliation(s)
- Katsuhiko Abe
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Kyoto, Japan
| | - Haruhiko Eki
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Kyoto, Japan
| | - Yuki Hirose
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Kyoto, Japan
| | - Soyoung Park
- Department Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Sakyo-ku, Kyoto 606-8501, Kyoto, Japan
- Immunology Frontier Research Center (IFReC), Osaka University, Suita 565-0871, Osaka, Japan
| | - Shanmugavel Chinnathambi
- Department Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Sakyo-ku, Kyoto 606-8501, Kyoto, Japan
| | - Ganesh Pandian Namasivayam
- Department Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Sakyo-ku, Kyoto 606-8501, Kyoto, Japan
| | - Kazuki Takeda
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Kyoto, Japan
| | - Hiroshi Sugiyama
- Department Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Sakyo-ku, Kyoto 606-8501, Kyoto, Japan
| | - Masayuki Endo
- Department Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Sakyo-ku, Kyoto 606-8501, Kyoto, Japan
- Research Development Division, Kansai University, Suita 565-8680, Osaka, Japan
| |
Collapse
|
42
|
Asar R, Dhindwal P, Ruzzini A. Structural and functional analysis of a bile salt hydrolase from the bison microbiome. J Biol Chem 2024; 300:107769. [PMID: 39276930 DOI: 10.1016/j.jbc.2024.107769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/15/2024] [Accepted: 08/26/2024] [Indexed: 09/17/2024] Open
Abstract
The bile salt hydrolases (BSHs) are significant constituents of animal microbiomes. An evolving appreciation of their roles in health and disease has established them as targets of pharmacological inhibition. These bacterial enzymes belong to the N-terminal nucleophile superfamily and are best known to catalyze the deconjugation of glycine or taurine from bile salts to release bile acid substrates for transformation and or metabolism in the gastrointestinal tract. Here, we identify and describe the BSH from a common member of the Plains bison microbiome, Arthrobacter citreus (BSHAc). Steady-state kinetic analyses demonstrated that BSHAc is a broad-spectrum hydrolase with a preference for glycine-conjugates and deoxycholic acid (DCA). Second-order rate constants (kcat/KM) for BSHAc-catalyzed reactions of relevant bile salts-glyco- and tauro-conjugates of cholic acid and DCA- varied by ∼30-fold and measured between 1.4 × 105 and 4.3 × 106 M-1s-1. Interestingly, a pan-BSH inhibitor named AAA-10 acted as a slow irreversible inhibitor of BSHAc with a rate of inactivation (kinact) of ∼2 h-1 and a second order rate constant (kinact/KI) of ∼24 M-1s-1 for the process. Structural characterization of BSHAc reacted with AAA-10 showed covalent modification of the N-terminal cysteine nucleophile, providing molecular details for an enzyme-stabilized product formed from this mechanism-based inhibitor's α-fluoromethyl ketone warhead. Structural comparison of the BSHs and BSH:inhibitor complexes highlighted the plasticity of the steroid-binding site, including a flexible loop that is variable across well-studied BSHs.
Collapse
Affiliation(s)
- Radwa Asar
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Poonam Dhindwal
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Antonio Ruzzini
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada; Department of Biochemistry, Microbiology and Immunology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada.
| |
Collapse
|
43
|
Favretto F, Jiménez‐Faraco E, Catucci G, Di Matteo A, Travaglini‐Allocatelli C, Sadeghi SJ, Dominici P, Hermoso JA, Astegno A. Evaluating the potential of non-immunosuppressive cyclosporin analogs for targeting Toxoplasma gondii cyclophilin: Insights from structural studies. Protein Sci 2024; 33:e5157. [PMID: 39312281 PMCID: PMC11418636 DOI: 10.1002/pro.5157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/22/2024] [Accepted: 08/11/2024] [Indexed: 09/25/2024]
Abstract
Toxoplasmosis persists as a prevalent disease, facing challenges from parasite resistance and treatment side effects. Consequently, identifying new drugs by exploring novel protein targets is essential for effective intervention. Cyclosporin A (CsA) possesses antiparasitic activity against Toxoplasma gondii, with cyclophilins identified as possible targets. However, CsA immunosuppressive nature hinders its use as an antitoxoplasmosis agent. Here, we evaluate the potential of three CsA derivatives devoid of immunosuppressive activity, namely, NIM811, Alisporivir, and dihydrocyclosporin A to target a previously characterized cyclophilin from Toxoplasma gondii (TgCyp23). We determined the X-ray crystal structures of TgCyp23 in complex with the three analogs and elucidated their binding and inhibitory properties. The high resolution of the structures revealed the precise positioning of ligands within the TgCyp23 binding site and the details of protein-ligand interactions. A comparison with the established ternary structure involving calcineurin indicates that substitutions at position 4 in CsA derivatives prevent calcineurin binding. This finding provides a molecular explanation for why CsA analogs can target Toxoplasma cyclophilins without compromising the human immune response.
Collapse
Affiliation(s)
| | - Eva Jiménez‐Faraco
- Department of Crystallography and Structural BiologyInstitute of Physical Chemistry Blas Cabrera (IQF), CSICMadridSpain
| | - Gianluca Catucci
- Department of Life Sciences and Systems BiologyUniversity of TurinTurinItaly
| | | | | | - Sheila J. Sadeghi
- Department of Life Sciences and Systems BiologyUniversity of TurinTurinItaly
| | - Paola Dominici
- Department of BiotechnologyUniversity of VeronaVeronaItaly
| | - Juan A. Hermoso
- Department of Crystallography and Structural BiologyInstitute of Physical Chemistry Blas Cabrera (IQF), CSICMadridSpain
| | | |
Collapse
|
44
|
Grzechowiak M, Sliwiak J, Link A, Ruszkowski M. Legume-type glutamate dehydrogenase: Structure, activity, and inhibition studies. Int J Biol Macromol 2024; 278:134648. [PMID: 39142482 DOI: 10.1016/j.ijbiomac.2024.134648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/28/2024] [Accepted: 08/08/2024] [Indexed: 08/16/2024]
Abstract
Glutamate dehydrogenases (GDHs) are key enzymes at the crossroads of N and C metabolism in plants. Legumes, whose N metabolism is particularly intricate, possess a unique type of GDH. This study presents an analysis of a legume-type GDH (isoform 2) from Medicago truncatula (MtGDH2). We measured MtGDH2 activity in both the Glu → 2-oxoglutarate (2OG) and 2OG → Glu reaction directions and obtained kinetic parameters for Glu, 2OG, NAD+, and NADH. Inhibition assays revealed that compounds possessing di- or tricarboxylates act as inhibitors of plant GDHs. Interestingly, 2,6-pyridinedicarboxylate (PYR) weakly inhibits MtGDH2 compared to Arabidopsis thaliana homologs. Furthermore, we explored tetrazole derivatives to discover 3-(1H-tetrazol-5-yl)benzoic acid (TBA) as an MtGDH2 inhibitor. The kinetic experiments are supported by six crystal structures, solved as: (i) unliganded enzyme, (ii) trapping the reaction intermediate 2-amino-2-hydroxyglutarate and NAD+, and also complexed with NAD+ and inhibitors such as (iii) citrate, (iv) PYR, (v) isophthalate, and (vi) TBA. The complex with TBA revealed a new mode of action that, in contrast to other inhibitors, prevents domain closure. This discovery points to TBA as a starting point for the development of novel GDH inhibitors to study the functions of GDH in plants and potentially boost biomass production.
Collapse
Affiliation(s)
- Marta Grzechowiak
- Department of Structural Biology of Eukaryotes, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan 61-704, Poland
| | - Joanna Sliwiak
- Laboratory of Protein Engineering, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan 61-704, Poland
| | - Andreas Link
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, University of Greifswald, 17489 Greifswald, Germany
| | - Milosz Ruszkowski
- Department of Structural Biology of Eukaryotes, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan 61-704, Poland.
| |
Collapse
|
45
|
Treviño MA, Amankwah KA, Fernandez D, Weston SA, Stewart CJ, Gallardo JM, Shahgholi M, Sharaf NG. Expression, purification, and characterization of diacylated Lipo-YcjN from Escherichia coli. J Biol Chem 2024; 300:107853. [PMID: 39362470 DOI: 10.1016/j.jbc.2024.107853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/17/2024] [Accepted: 09/25/2024] [Indexed: 10/05/2024] Open
Abstract
YcjN is a putative substrate binding protein expressed from a cluster of genes involved in carbohydrate import and metabolism in Escherichia coli. Here, we determine the crystal structure of YcjN to a resolution of 1.95 Å, revealing that its three-dimensional structure is similar to substrate binding proteins in subcluster D-I, which includes the well-characterized maltose binding protein. Furthermore, we found that recombinant overexpression of YcjN results in the formation of a lipidated form of YcjN that is posttranslationally diacylated at cysteine 21. Comparisons of size-exclusion chromatography profiles and dynamic light scattering measurements of lipidated and nonlipidated YcjN proteins suggest that lipidated YcjN aggregates in solution via its lipid moiety. Additionally, bioinformatic analysis indicates that YcjN-like proteins may exist in both Bacteria and Archaea, potentially in both lipidated and nonlipidated forms. Together, our results provide a better understanding of the aggregation properties of recombinantly expressed bacterial lipoproteins in solution and establish a foundation for future studies that aim to elucidate the role of these proteins in bacterial physiology.
Collapse
Affiliation(s)
- Matthew A Treviño
- Department of Biology, Stanford University, Stanford, California, USA
| | - Kofi A Amankwah
- Department of Biology, Stanford University, Stanford, California, USA
| | - Daniel Fernandez
- Macromolecular Structure Knowledge Center (MSKC) at Sarafan ChEM-H, Stanford University, Stanford, California, USA; Sarafan ChEM-H Institute, Stanford University, Stanford, California, USA
| | - Scott A Weston
- Department of Biology, Stanford University, Stanford, California, USA
| | - Claire J Stewart
- Department of Biology, Stanford University, Stanford, California, USA
| | | | - Mona Shahgholi
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena California, USA
| | - Naima G Sharaf
- Department of Biology, Stanford University, Stanford, California, USA.
| |
Collapse
|
46
|
Cheng C, Lu D, Sun H, Zhang K, Yin L, Luan G, Liu Y, Ma H, Lu X. Structural insight into the functional regulation of Elongation factor Tu by reactive oxygen species in Synechococcus elongatus PCC 7942. Int J Biol Macromol 2024; 277:133632. [PMID: 38971279 DOI: 10.1016/j.ijbiomac.2024.133632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/24/2024] [Accepted: 07/01/2024] [Indexed: 07/08/2024]
Abstract
In cyanobacteria, Elongation factor Tu (EF-Tu) plays a crucial role in the repair of photosystem II (PSII), which is highly susceptible to oxidative stress induced by light exposure and regulated by reactive oxygen species (ROS). However, the specific molecular mechanism governing the functional regulation of EF-Tu by ROS remains unclear. Previous research has shown that a mutated EF-Tu, where C82 is substituted with a Ser residue, can alleviate photoinhibition, highlighting the important role of C82 in EF-Tu photosensitivity. In this study, we elucidated how ROS deactivate EF-Tu by examining the crystal structures of EF-Tu in both wild-type and mutated form (C82S) individually at resolutions of 1.7 Å and 2.0 Å in Synechococcus elongatus PCC 7942 complexed with GDP. Specifically, the GDP-bound form of EF-Tu adopts an open conformation with C82 located internally, making it resistant to oxidation. Coordinated conformational changes in switches I and II create a tunnel that positions C82 for ROS interaction, revealing the vulnerability of the closed conformation of EF-Tu to oxidation. An analysis of these two structures reveals that the precise spatial arrangement of C82 plays a crucial role in modulating EF-Tu's response to ROS, serving as a regulatory element that governs photosynthetic biosynthesis.
Collapse
Affiliation(s)
- Chen Cheng
- School of Chemical Engineering, Marine and Life Sciences, Dalian University of Technology, Panjin 124221, China; Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Songling Rd 189, Qingdao 266101, China
| | - Di Lu
- School of Chemical Engineering, Marine and Life Sciences, Dalian University of Technology, Panjin 124221, China; Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Songling Rd 189, Qingdao 266101, China
| | - Huili Sun
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Songling Rd 189, Qingdao 266101, China; Shandong Energy Institute, Songling Rd 189, Qingdao 266101, China; Qingdao New Energy Shandong Laboratory, Songling Rd 189, Qingdao 266101, China
| | - Keke Zhang
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Songling Rd 189, Qingdao 266101, China; Shandong Energy Institute, Songling Rd 189, Qingdao 266101, China; Qingdao New Energy Shandong Laboratory, Songling Rd 189, Qingdao 266101, China
| | - Lei Yin
- School of Chemical Engineering, Marine and Life Sciences, Dalian University of Technology, Panjin 124221, China
| | - Guodong Luan
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Songling Rd 189, Qingdao 266101, China; Shandong Energy Institute, Songling Rd 189, Qingdao 266101, China; Qingdao New Energy Shandong Laboratory, Songling Rd 189, Qingdao 266101, China
| | - YaJun Liu
- School of Chemical Engineering, Marine and Life Sciences, Dalian University of Technology, Panjin 124221, China.
| | - Honglei Ma
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Songling Rd 189, Qingdao 266101, China; Shandong Energy Institute, Songling Rd 189, Qingdao 266101, China; Qingdao New Energy Shandong Laboratory, Songling Rd 189, Qingdao 266101, China.
| | - Xuefeng Lu
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Songling Rd 189, Qingdao 266101, China; Shandong Energy Institute, Songling Rd 189, Qingdao 266101, China; Qingdao New Energy Shandong Laboratory, Songling Rd 189, Qingdao 266101, China
| |
Collapse
|
47
|
Witek W, Imiolczyk B, Ruszkowski M. Structural, kinetic, and evolutionary peculiarities of HISN3, a plant 5'-ProFAR isomerase. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 215:109065. [PMID: 39186852 DOI: 10.1016/j.plaphy.2024.109065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 08/28/2024]
Abstract
Histidine biosynthesis is essential for the growth and development of plants, where it occurs within chloroplasts. The eleven reactions are catalyzed by eight enzymes, known as HISN1-8, each acting sequentially. Here, we present the crystal structures of a 5'-ProFAR isomerase (HISN3) from the model legume Medicago truncatula bound to its enzymatically synthesized substrate (ProFAR) and product (PrFAR). The active site of MtHISN3 contains a sodium cation that participates in ligand recognition, a feature not observed in bacterial and fungal structures of homologous enzymes. The steady-state kinetics of wild-type MtHISN3 revealed a slightly higher turnover rate compared to its bacterial homologs. Plant HISN3 sequences contain an unusually elongated Lys60-Ser91 fragment, while deletion of the 74-80 region resulted in a 30-fold loss in catalytic efficiency compared to the wild-type. Molecular dynamics simulations suggested that the fragment facilitates product release, thereby contributing to a higher kcat. Moreover, conservation analyses suggested a non-cyanobacterial origin for plant HISN3 enzymes, which is another instance of a non-cyanobacterial enzyme in the plant histidine biosynthetic pathway. Finally, a virtual screening campaign yielded five molecules, with the energy gains ranging between -13.6 and -13.1 kcal/mol, which provide new scaffolds for the future development of herbicides.
Collapse
Affiliation(s)
- Wojciech Witek
- Department of Structural Biology of Eukaryotes, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland
| | - Barbara Imiolczyk
- Department of Structural Biology of Eukaryotes, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland
| | - Milosz Ruszkowski
- Department of Structural Biology of Eukaryotes, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland.
| |
Collapse
|
48
|
Li W, Hu J, Song F, Yu J, Peng X, Zhang S, Wang L, Hu M, Liu JC, Wei Y, Xiao X, Li Y, Li D, Wang H, Zhou BR, Dai L, Mou Z, Zhou M, Zhang H, Zhou Z, Zhang H, Bai Y, Zhou JQ, Li W, Li G, Zhu P. Structural basis for linker histone H5-nucleosome binding and chromatin fiber compaction. Cell Res 2024; 34:707-724. [PMID: 39103524 PMCID: PMC11442585 DOI: 10.1038/s41422-024-01009-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 07/20/2024] [Indexed: 08/07/2024] Open
Abstract
The hierarchical packaging of chromatin fibers plays a critical role in gene regulation. The 30-nm chromatin fibers, a central-level structure bridging nucleosomal arrays to higher-order organizations, function as the first level of transcriptional dormant chromatin. The dynamics of 30-nm chromatin fiber play a crucial role in biological processes related to DNA. Here, we report a 3.6-angstrom resolution cryogenic electron microscopy structure of H5-bound dodecanucleosome, i.e., the chromatin fiber reconstituted in the presence of linker histone H5, which shows a two-start left-handed double helical structure twisted by tetranucleosomal units. An atomic structural model of the H5-bound chromatin fiber, including an intact chromatosome, is built, which provides structural details of the full-length linker histone H5, including its N-terminal domain and an HMG-motif-like C-terminal domain. The chromatosome structure shows that H5 binds the nucleosome off-dyad through a three-contact mode in the chromatin fiber. More importantly, the H5-chromatin structure provides a fine molecular basis for the intra-tetranucleosomal and inter-tetranucleosomal interactions. In addition, we systematically validated the physiological functions and structural characteristics of the tetranucleosomal unit through a series of genetic and genomic studies in Saccharomyces cerevisiae and in vitro biophysical experiments. Furthermore, our structure reveals that multiple structural asymmetries of histone tails confer a polarity to the chromatin fiber. These findings provide structural and mechanistic insights into how a nucleosomal array folds into a higher-order chromatin fiber with a polarity in vitro and in vivo.
Collapse
Affiliation(s)
- Wenyan Li
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jie Hu
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Feng Song
- New Cornerstone Science Laboratory, Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, China
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, Shangdong, China
| | - Juan Yu
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Xin Peng
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shuming Zhang
- Department of Public Health Laboratory Sciences, West China School of Public Health, Sichuan University, Chengdu, Sichuan, China
| | - Lin Wang
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Mingli Hu
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jia-Cheng Liu
- The State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Yu Wei
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xue Xiao
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- National Laboratory for Condensed Matter Physics and Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Yan Li
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Dongyu Li
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hui Wang
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Bing-Rui Zhou
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Linchang Dai
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zongjun Mou
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Min Zhou
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Haonan Zhang
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zheng Zhou
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Huidong Zhang
- Research Center for Environment and Female Reproductive Health, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Yawen Bai
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jin-Qiu Zhou
- The State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Wei Li
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- National Laboratory for Condensed Matter Physics and Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Guohong Li
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- New Cornerstone Science Laboratory, Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, China.
| | - Ping Zhu
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
49
|
Jantarit N, Tanaka H, Lin Y, Lee Y, Kurisu G. Crystal structure of pectocin M1 reveals diverse conformations and interactions during its initial step via the ferredoxin uptake system. FEBS Open Bio 2024; 14:1731-1745. [PMID: 39123319 PMCID: PMC11452297 DOI: 10.1002/2211-5463.13874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/09/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
Pectocin M1 (PM1), the bacteriocin from phytopathogenic Pectobacterium carotovorum which causes soft rot disease, has a unique ferredoxin domain that allows it to use FusA of the plant ferredoxin uptake system. To probe the structure-based mechanism of PM1 uptake, we determined the X-ray structure of full-length PM1, containing an N-terminal ferredoxin and C-terminal catalytic domain connected by helical linker, at 2.04 Å resolution. Based on published FusA structure and NMR data for PM1 ferredoxin domain titrated with FusA, we modeled docking of the ferredoxin domain with FusA. Combining the docking models with the X-ray structures of PM1 and FusA enables us to propose the mechanism by which PM1 undergoes dynamic domain rearrangement to translocate across the target cell outer membrane.
Collapse
Affiliation(s)
- Nawee Jantarit
- Protein Crystallography Laboratory, Institute for Protein ResearchOsaka UniversitySuitaJapan
- Department of Macromolecular Sciences, Graduate School of ScienceOsaka UniversityToyonakaJapan
| | - Hideaki Tanaka
- Protein Crystallography Laboratory, Institute for Protein ResearchOsaka UniversitySuitaJapan
- Department of Macromolecular Sciences, Graduate School of ScienceOsaka UniversityToyonakaJapan
| | - Yuxi Lin
- Biopharmaceutical Research CenterKorea Basic Science InstituteOchangSouth Korea
| | - Young‐Ho Lee
- Biopharmaceutical Research CenterKorea Basic Science InstituteOchangSouth Korea
- Bio‐Analytical ScienceUniversity of Science and TechnologyDaejeonSouth Korea
- Graduate School of Analytical Science and TechnologyChungnam National UniversityDaejeonSouth Korea
- Department of Systems BiotechnologyChung‐Ang UniversityGyeonggiSouth Korea
- Frontier Research Institute for Interdisciplinary SciencesTohoku UniversitySendaiJapan
| | - Genji Kurisu
- Protein Crystallography Laboratory, Institute for Protein ResearchOsaka UniversitySuitaJapan
- Department of Macromolecular Sciences, Graduate School of ScienceOsaka UniversityToyonakaJapan
- Institute for Open and Transdisciplinary Research Initiatives (OTRI)Osaka UniversitySuitaJapan
- Institute of ScienceSuranaree University of TechnologyNakohn RatchasimaThailand
| |
Collapse
|
50
|
Kilgas S, Syed A, Toolan-Kerr P, Swift ML, Roychoudhury S, Sarkar A, Wilkins S, Quigley M, Poetsch AR, Botuyan MV, Cui G, Mer G, Ule J, Drané P, Chowdhury D. NEAT1 modulates the TIRR/53BP1 complex to maintain genome integrity. Nat Commun 2024; 15:8438. [PMID: 39349456 PMCID: PMC11443056 DOI: 10.1038/s41467-024-52862-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 09/20/2024] [Indexed: 10/02/2024] Open
Abstract
Tudor Interacting Repair Regulator (TIRR) is an RNA-binding protein (RBP) that interacts directly with 53BP1, restricting its access to DNA double-strand breaks (DSBs) and its association with p53. We utilized iCLIP to identify RNAs that directly bind to TIRR within cells, identifying the long non-coding RNA NEAT1 as the primary RNA partner. The high affinity of TIRR for NEAT1 is due to prevalent G-rich motifs in the short isoform (NEAT1_1) region of NEAT1. This interaction destabilizes the TIRR/53BP1 complex, promoting 53BP1's function. NEAT1_1 is enriched during the G1 phase of the cell cycle, thereby ensuring that TIRR-dependent inhibition of 53BP1's function is cell cycle-dependent. TDP-43, an RBP that is implicated in neurodegenerative diseases, modulates the TIRR/53BP1 complex by promoting the production of the NEAT1 short isoform, NEAT1_1. Together, we infer that NEAT1_1, and factors regulating NEAT1_1, may impact 53BP1-dependent DNA repair processes, with implications for a spectrum of diseases.
Collapse
Affiliation(s)
- Susan Kilgas
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Aleem Syed
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Patrick Toolan-Kerr
- The Francis Crick Institute, 1 Midland Road, London, UK
- UK Dementia Research Institute at King's College London, 5 Cutcombe Rd, London, UK
| | - Michelle L Swift
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Shrabasti Roychoudhury
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Aniruddha Sarkar
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Sarah Wilkins
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Yale School of Medicine, 333 Cedar St, New Haven, CT, USA
| | - Mikayla Quigley
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Boston Children's Hospital, 300 Longwood Ave, Boston, MA, USA
| | - Anna R Poetsch
- Biotechnology Center (BIOTEC), Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47-49, Dresden, Germany
| | | | - Gaofeng Cui
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Georges Mer
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Jernej Ule
- The Francis Crick Institute, 1 Midland Road, London, UK
- UK Dementia Research Institute at King's College London, 5 Cutcombe Rd, London, UK
| | - Pascal Drané
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
| | - Dipanjan Chowdhury
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|