1
|
Mermans F, Mattelin V, Van den Eeckhoudt R, García-Timermans C, Van Landuyt J, Guo Y, Taurino I, Tavernier F, Kraft M, Khan H, Boon N. Opportunities in optical and electrical single-cell technologies to study microbial ecosystems. Front Microbiol 2023; 14:1233705. [PMID: 37692384 PMCID: PMC10486927 DOI: 10.3389/fmicb.2023.1233705] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 08/03/2023] [Indexed: 09/12/2023] Open
Abstract
New techniques are revolutionizing single-cell research, allowing us to study microbes at unprecedented scales and in unparalleled depth. This review highlights the state-of-the-art technologies in single-cell analysis in microbial ecology applications, with particular attention to both optical tools, i.e., specialized use of flow cytometry and Raman spectroscopy and emerging electrical techniques. The objectives of this review include showcasing the diversity of single-cell optical approaches for studying microbiological phenomena, highlighting successful applications in understanding microbial systems, discussing emerging techniques, and encouraging the combination of established and novel approaches to address research questions. The review aims to answer key questions such as how single-cell approaches have advanced our understanding of individual and interacting cells, how they have been used to study uncultured microbes, which new analysis tools will become widespread, and how they contribute to our knowledge of ecological interactions.
Collapse
Affiliation(s)
- Fabian Mermans
- Center for Microbial Ecology and Technology (CMET), Department of Biotechnology, Ghent University, Ghent, Belgium
- Department of Oral Health Sciences, KU Leuven, Leuven, Belgium
| | - Valérie Mattelin
- Center for Microbial Ecology and Technology (CMET), Department of Biotechnology, Ghent University, Ghent, Belgium
| | - Ruben Van den Eeckhoudt
- Micro- and Nanosystems (MNS), Department of Electrical Engineering (ESAT), KU Leuven, Leuven, Belgium
| | - Cristina García-Timermans
- Center for Microbial Ecology and Technology (CMET), Department of Biotechnology, Ghent University, Ghent, Belgium
| | - Josefien Van Landuyt
- Center for Microbial Ecology and Technology (CMET), Department of Biotechnology, Ghent University, Ghent, Belgium
| | - Yuting Guo
- Center for Microbial Ecology and Technology (CMET), Department of Biotechnology, Ghent University, Ghent, Belgium
| | - Irene Taurino
- Micro- and Nanosystems (MNS), Department of Electrical Engineering (ESAT), KU Leuven, Leuven, Belgium
- Semiconductor Physics, Department of Physics and Astronomy, KU Leuven, Leuven, Belgium
| | - Filip Tavernier
- MICAS, Department of Electrical Engineering (ESAT), KU Leuven, Leuven, Belgium
| | - Michael Kraft
- Micro- and Nanosystems (MNS), Department of Electrical Engineering (ESAT), KU Leuven, Leuven, Belgium
- Leuven Institute of Micro- and Nanoscale Integration (LIMNI), KU Leuven, Leuven, Belgium
| | - Hira Khan
- Center for Microbial Ecology and Technology (CMET), Department of Biotechnology, Ghent University, Ghent, Belgium
| | - Nico Boon
- Center for Microbial Ecology and Technology (CMET), Department of Biotechnology, Ghent University, Ghent, Belgium
| |
Collapse
|
2
|
Kumar N, Lin YJ, Huang YC, Liao YT, Lin SP. Detection of lactate in human sweat via surface-modified, screen-printed carbon electrodes. Talanta 2023; 265:124888. [PMID: 37393714 DOI: 10.1016/j.talanta.2023.124888] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/03/2023] [Accepted: 06/27/2023] [Indexed: 07/04/2023]
Abstract
Real-time and continuous monitoring of lactate levels in sweat has been used as an indicator of physiological information to evaluate exercise outcomes and sports performance. We developed an optimal enzyme-based biosensor to detect the concentrations of lactate in different fluids (i.e., a buffer solution and human sweat). The surface of the screen-printed carbon electrode (SPCE) was first treated with oxygen plasma and then surface-modified by lactate dehydrogenase (LDH). The optimal sensing surface of the LDH-modified SPCE was identified by Fourier transform infrared spectroscopy and electron spectroscopy for chemical analysis. After connecting the LDH-modified SPCE to a benchtop E4980A precision LCR meter, our results showed that the measured response was dependent on the lactate concentration. The recorded data exhibited a broad dynamic range of 0.1-100 mM (R2 = 0.95) and a limit of detection of 0.1 mM, which was unachievable without the incorporation of redox species. A state-of-the-art electrochemical impedance spectroscopy (EIS) chip was developed to integrate the LDH-modified SPCE for a portable bioelectronic platform in the detection of lactate in human sweat. We believe the optimal sensing surface can improve the sensitivity of lactate sensing in a portable bioelectronic EIS platform for early diagnosis or real-time monitoring during different physical activities.
Collapse
Affiliation(s)
- Nitish Kumar
- Graduate Institute of Biomedical Engineering, National Chung Hsing University, Taichung, 40227, Taiwan, ROC
| | - Yi-Jie Lin
- Department of Electronics and Electrical Engineering, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan, ROC
| | - Yu-Chiao Huang
- Department of Electronics and Electrical Engineering, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan, ROC
| | - Yu-Te Liao
- Department of Electronics and Electrical Engineering, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan, ROC
| | - Shu-Ping Lin
- Graduate Institute of Biomedical Engineering, National Chung Hsing University, Taichung, 40227, Taiwan, ROC.
| |
Collapse
|
3
|
Iyer V, Issadore DA, Aflatouni F. The next generation of hybrid microfluidic/integrated circuit chips: recent and upcoming advances in high-speed, high-throughput, and multifunctional lab-on-IC systems. LAB ON A CHIP 2023; 23:2553-2576. [PMID: 37114950 DOI: 10.1039/d2lc01163h] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Since the field's inception, pioneers in microfluidics have made significant progress towards realizing complete lab-on-chip systems capable of sophisticated sample analysis and processing. One avenue towards this goal has been to join forces with the related field of microelectronics, using integrated circuits (ICs) to perform on-chip actuation and sensing. While early demonstrations focused on using microfluidic-IC hybrid chips to miniaturize benchtop instruments, steady advancements in the field have enabled a new generation of devices that expand past miniaturization into high-performance applications that would not be possible without IC hybrid integration. In this review, we identify recent examples of labs-on-chip that use high-resolution, high-speed, and multifunctional electronic and photonic chips to expand the capabilities of conventional sample analysis. We focus on three particularly active areas: a) high-throughput integrated flow cytometers; b) large-scale microelectrode arrays for stimulation and multimodal sensing of cells over a wide field of view; c) high-speed biosensors for studying molecules with high temporal resolution. We also discuss recent advancements in IC technology, including on-chip data processing techniques and lens-free optics based on integrated photonics, that are poised to further advance microfluidic-IC hybrid chips.
Collapse
Affiliation(s)
- Vasant Iyer
- Department of Electrical and Systems Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| | - David A Issadore
- Department of Electrical and Systems Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Firooz Aflatouni
- Department of Electrical and Systems Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
4
|
Neshani S, Momeni K, Chen DJ, Neihart NM. Highly Sensitive Readout Interface for Real-Time Differential Precision Measurements with Impedance Biosensors. BIOSENSORS 2023; 13:77. [PMID: 36671912 PMCID: PMC9856043 DOI: 10.3390/bios13010077] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 12/27/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
Field deployment is critical to developing numerous sensitive impedance transducers. Precise, cost-effective, and real-time readout units are being sought to interface these sensitive impedance transducers for various clinical or environmental applications. This paper presents a general readout method with a detailed design procedure for interfacing impedance transducers that generate small fractional changes in the impedance characteristics after detection. The emphasis of the design is obtaining a target response resolution considering the accuracy in real-time. An entire readout unit with amplification/filtering and real-time data acquisition and processing using a single microcontroller is proposed. Most important design parameters, such as the signal-to-noise ratio (SNR), common-mode-to-differential conversion, digitization configuration/speed, and the data processing method are discussed here. The studied process can be used as a general guideline to design custom readout units to interface with various developed transducers in the laboratory and verify the performance for field deployment and commercialization. A single frequency readout unit with a target 8-bit resolution to interface differentially placed transducers (e.g., bridge configuration) is designed and implemented. A single MCU is programmed for real-time data acquisition and sine fitting. The 8-bit resolution is achieved even at low SNR levels of roughly 7 dB by setting the component values and fitting algorithm parameters with the given methods.
Collapse
Affiliation(s)
- Sara Neshani
- Electrical and Computer Engineering Department, University of Alabama, Tuscaloosa, AL 35401, USA
| | - Kasra Momeni
- Mechanical Engineering Department, University of Alabama, Tuscaloosa, AL 35401, USA
| | - Degang J. Chen
- Electrical Engineering Department, Iowa State University, Ames, IA 50010, USA
| | - Nathan M. Neihart
- Electrical Engineering Department, Iowa State University, Ames, IA 50010, USA
| |
Collapse
|
5
|
Novik S, Drageseth MF, Grondalen MB, Nilsen O, Krauss SJK, Martinsen OG, Hafliger PD. A CMOS Multi-Electrode Array for Four-Electrode Bioimpedance Measurements. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2022; 16:1276-1286. [PMID: 36227817 DOI: 10.1109/tbcas.2022.3214243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
This work demonstrates how a multi-electrode array (MEA) dedicated to four-electrode bioimpedance measurements can be implemented on a complementary metal-oxide-semiconductor (CMOS) chip. As a proof of concept, an 8 × 8 pixel array along with dedicated amplifiers was designed and fabricated in the TSMC 180 nm process. Each pixel in the array contains a circular current carrying (CC) electrode that can act as a current source or sink. In order to measure a differential voltage between the pixels, each CC electrode is surrounded by a ring shaped pick up (PU) electrode. The differential voltages can be measured by an on-board instrumentation amplifier, while the currents can be measured with an on-bard transimpedance amplifier. Openings in the passivation layer exposed the aluminum top metal layer, and a metal stack of zinc, nickel and gold was deposited in an electroless plating process. The chips were then wire bonded to a ceramic package and prepared for wet experiments by encapsulating the bonding wires and pads in the photoresist SU-8. Measurements in liquids with different conductivities were performed to demonstrate the functionality of the chip.
Collapse
|
6
|
Wang AY, Sheng Y, Li W, Jung D, Junek GV, Liu H, Park J, Lee D, Wang M, Maharjan S, Kumashi S, Hao J, Zhang YS, Eggan K, Wang H. A Multimodal and Multifunctional CMOS Cellular Interfacing Array for Digital Physiology and Pathology Featuring an Ultra Dense Pixel Array and Reconfigurable Sampling Rate. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2022; 16:1057-1074. [PMID: 36417722 DOI: 10.1109/tbcas.2022.3224064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The article presents a fully integrated multimodal and multifunctional CMOS biosensing/actuating array chip and system for multi-dimensional cellular/tissue characterization. The CMOS chip supports up to 1,568 simultaneous parallel readout channels across 21,952 individually addressable multimodal pixels with 13 μm × 13 μm 2-D pixel pitch along with 1,568 Pt reference electrodes. These features allow the CMOS array chip to perform multimodal physiological measurements on living cell/tissue samples with both high throughput and single-cell resolution. Each pixel supports three sensing and one actuating modalities, each reconfigurable for different functionalities, in the form of full array (FA) or fast scan (FS) voltage recording schemes, bright/dim optical detection, 2-/4-point impedance sensing (ZS), and biphasic current stimulation (BCS) with adjustable stimulation area for single-cell or tissue-level stimulation. Each multi-modal pixel contains an 8.84 μm × 11 μm Pt electrode, 4.16 μm × 7.2 μm photodiode (PD), and in-pixel circuits for PD measurements and pixel selection. The chip is fabricated in a standard 130nm BiCMOS process as a proof of concept. The on-chip electrodes are constructed by unique design and in-house post-CMOS fabrication processes, including a critical Al shorting of all pixels during fabrication and Al etching after fabrication that ensures a high-yield planar electrode array on CMOS with high biocompatibility and long-term measurement reliability. For demonstration, extensive biological testing is performed with human and mouse progenitor cells, in which multidimensional biophysiological data are acquired for comprehensive cellular characterization.
Collapse
|
7
|
Hassan RYA. Advances in Electrochemical Nano-Biosensors for Biomedical and Environmental Applications: From Current Work to Future Perspectives. SENSORS (BASEL, SWITZERLAND) 2022; 22:s22197539. [PMID: 36236638 PMCID: PMC9573286 DOI: 10.3390/s22197539] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/26/2022] [Accepted: 09/30/2022] [Indexed: 05/17/2023]
Abstract
Modern life quality is strongly supported by the advances made in biosensors, which has been attributed to their crucial and viable contribution in point-of-care (POC) technology developments. POC devices are exploited for the fast tracing of disease progression, rapid analysis of water, and food quality assessment. Blood glucose meters, home pregnancy strips, and COVID-19 rapid tests all represent common examples of successful biosensors. Biosensors can provide great specificity due to the incorporation of selective bio-recognition elements and portability at significantly reduced costs. Electrochemical biosensor platforms are one of the most advantageous of these platforms because they offer many merits, such as being cheap, selective, specific, rapid, and portable. Furthermore, they can be incorporated into smartphones and various analytical approaches in order to increase their sensitivity and many other properties. As a very broad and interdisciplinary area of research and development, biosensors include all disciplines and backgrounds from materials science, chemistry, physics, medicine, microbiology/biology, and engineering. Accordingly, in this state-of-the-art article, historical background alongside the long journey of biosensing construction and development, starting from the Clark oxygen electrode until reaching highly advanced wearable stretchable biosensing devices, are discussed. Consequently, selected examples among the miscellaneous applications of nanobiosensors (such as microbial detection, cancer diagnosis, toxicity analysis, food quality-control assurance, point of care, and health prognosis) are described. Eventually, future perspectives for intelligent biosensor commercialization and exploitation in real-life that is going to be supported by machine learning and artificial intelligence (AI) are stated.
Collapse
Affiliation(s)
- Rabeay Y. A. Hassan
- Applied Organic Chemistry Department, National Research Centre Dokki, Cairo 12622, Egypt; ; Tel.: +20-11292-16152
- Nanoscience Program, University of Science and Technology (UST), Zewail City of Science and Technology, Giza 12578, Egypt
| |
Collapse
|
8
|
Shen B, Dawes J, Johnston ML. A 10 M Ω, 50 kHz-40 MHz Impedance Measurement Architecture for Source-Differential Flow Cytometry. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2022; 16:766-778. [PMID: 35727776 DOI: 10.1109/tbcas.2022.3182905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A low-power, impedance-based integrated circuit (IC) readout architecture is presented for cell analysis and cytometry applications. A three-electrode layout and source-differential excitation cancels baseline current prior to the sensor front-end, which enables the use of a high-gain readout circuit for the difference current. A lock-in architecture is employed with down-conversion and up-conversion in the feedback loop, enabling high closed-loop gain (up to 10 M Ω) and high bandwidth (up to 40 MHz). A hybrid-RC feedback network mitigates the SNR degradation seen over a wide operating frequency range when using purely capacitive feedback. The effect of phase shift on the closed-loop system gain and noise performance are analyzed in detail, along with optimization strategies, and the design includes fine-grained phase adjustment to minimize phase error. The impedance sensor was fabricated in a 0.18 μ m CMOS process and consumes 9.7 mW with an operating frequency from 50 kHz to 40 MHz and provides adjustable bandwidth. Measurements demonstrate that the impedance sensor achieves 6 pA [Formula: see text] input-referred noise over 200 Hz bandwidth at 0.5 MHz modulation frequency. Combined with a microfluidic flow cell, measured results using this source-differential measurement approach are presented using both monodisperse and polydisperse sample solutions and demonstrate single-cell resolution, detecting 3 μ m diameter particles in solution with 22 dB SNR.
Collapse
|
9
|
Tsukahara A, Yamaguchi T, Tanaka Y, Ueno A. FPGA-Based Processor for Continual Capacitive-Coupling Impedance Spectroscopy and Circuit Parameter Estimation. SENSORS (BASEL, SWITZERLAND) 2022; 22:4406. [PMID: 35746187 PMCID: PMC9228433 DOI: 10.3390/s22124406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/30/2022] [Accepted: 06/08/2022] [Indexed: 06/15/2023]
Abstract
In principle, the recently proposed capacitive-coupling impedance spectroscopy (CIS) has the capability to acquire frequency spectra of complex electrical impedance sequentially on a millisecond timescale. Even when the measured object with time-varying unknown resistance Rx is capacitively coupled with the measurement electrodes with time-varying unknown capacitance Cx, CIS can be measured. As a proof of concept, this study aimed to develop a prototype that implemented the novel algorithm of CIS and circuit parameter estimation to verify whether the frequency spectra and circuit parameters could be obtained in milliseconds and whether time-varying impedance could be measured. This study proposes a dedicated processor that was implemented as field-programmable gate arrays to perform CIS, estimate Rx and Cx, and their digital-to-analog conversions at a certain time, and to repeat them continually. The proposed processor executed the entire sequence in the order of milliseconds. Combined with a front-end nonsinusoidal oscillator and interfacing circuits, the processor estimated the fixed Rx and fixed Cx with reasonable accuracy. Additionally, the combined system with the processor succeeded in detecting a quick optical response in the resistance of the cadmium sulfide (CdS) photocell connected in series with a capacitor, and in reading out their resistance and capacitance independently as voltages in real-time.
Collapse
Affiliation(s)
- Akihiko Tsukahara
- School of Science and Engineering, Division of Electronic Engineering, Tokyo Denki, Saitama 350-0394, Japan
| | - Tomiharu Yamaguchi
- Department of Electrical and Electronic Engineering, Tokyo Denki University, Tokyo 120-8551, Japan; (T.Y.); (Y.T.); (A.U.)
| | - Yuho Tanaka
- Department of Electrical and Electronic Engineering, Tokyo Denki University, Tokyo 120-8551, Japan; (T.Y.); (Y.T.); (A.U.)
| | - Akinori Ueno
- Department of Electrical and Electronic Engineering, Tokyo Denki University, Tokyo 120-8551, Japan; (T.Y.); (Y.T.); (A.U.)
| |
Collapse
|
10
|
Bounik R, Cardes F, Ulusan H, Modena MM, Hierlemann A. Impedance Imaging of Cells and Tissues: Design and Applications. BME FRONTIERS 2022; 2022:1-21. [PMID: 35761901 PMCID: PMC7612906 DOI: 10.34133/2022/9857485] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 03/28/2022] [Indexed: 11/09/2022] Open
Abstract
Due to their label-free and noninvasive nature, impedance measurements have attracted increasing interest in biological research. Advances in microfabrication and integrated-circuit technology have opened a route to using large-scale microelectrode arrays for real-time, high-spatiotemporal-resolution impedance measurements of biological samples. In this review, we discuss different methods and applications of measuring impedance for cell and tissue analysis with a focus on impedance imaging with microelectrode arrays in in vitro applications. We first introduce how electrode configurations and the frequency range of the impedance analysis determine the information that can be extracted. We then delve into relevant circuit topologies that can be used to implement impedance measurements and their characteristic features, such as resolution and data-acquisition time. Afterwards, we detail design considerations for the implementation of new impedance-imaging devices. We conclude by discussing future fields of application of impedance imaging in biomedical research, in particular applications where optical imaging is not possible, such as monitoring of ex vivo tissue slices or microelectrode-based brain implants.
Collapse
Affiliation(s)
- Raziyeh Bounik
- ETH Zürich, Department of Biosystems Science and Engineering, Basel, Switzerland
| | - Fernando Cardes
- ETH Zürich, Department of Biosystems Science and Engineering, Basel, Switzerland
| | - Hasan Ulusan
- ETH Zürich, Department of Biosystems Science and Engineering, Basel, Switzerland
| | - Mario M. Modena
- ETH Zürich, Department of Biosystems Science and Engineering, Basel, Switzerland
| | - Andreas Hierlemann
- ETH Zürich, Department of Biosystems Science and Engineering, Basel, Switzerland
| |
Collapse
|
11
|
Selective Passivation of Three-Dimensional Carbon Microelectrodes by Polydopamine Electrodeposition and Local Laser Ablation. MICROMACHINES 2022; 13:mi13030371. [PMID: 35334663 PMCID: PMC8950879 DOI: 10.3390/mi13030371] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 02/04/2023]
Abstract
In this article, a novel approach for selective passivation of three-dimensional pyrolytic carbon microelectrodes via a facile electrochemical polymerization of a non-conductive polymer (polydopamine, PDA) onto the surface of carbon electrodes, followed by a selective laser ablation is elaborated. The 3D carbon electrodes consisting of 284 micropillars on a circular 2D carbon base layer were fabricated by pyrolysis of lithographically patterned negative photoresist SU-8. As a second step, dopamine was electropolymerized onto the electrode by cyclic voltammetry (CV) to provide an insulating layer at its surface. The CV parameters, such as the scan rate and the number of cycles, were investigated and optimized to achieve a reliable and uniform non-conductive coating on the surface of the 3D pyrolytic carbon electrode. Finally, the polydopamine was selectively removed only from the tips of the pillars, by using localized laser ablation. The selectively passivated electrodes were characterized by scanning electron microscopy, cyclic voltammetry and electrochemical impedance spectroscopy methods. Due to the surface being composed of highly biocompatible materials, such as pyrolytic carbon and polydopamine, these 3D electrodes are particularly suited for biological application, such as electrochemical monitoring of cells or retinal implants, where highly localized electrical stimulation of nerve cells is beneficial.
Collapse
|
12
|
Mathioudaki E, Alifragis Y, Fouskaki M, Chochlakis D, Xie H, Psaroulaki A, Tsiotis G, Chaniotakis N. Electrochemical antigenic sensor for the diagnosis of chronic Q fever. CURRENT RESEARCH IN BIOTECHNOLOGY 2022. [DOI: 10.1016/j.crbiot.2022.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
13
|
Han H, Nobusawa K, Yamashita I. Anomalous Enhancement of Electrochemical Charge Transfer by a Ru Complex Ion Intercalator. Anal Chem 2021; 94:571-576. [PMID: 34928123 DOI: 10.1021/acs.analchem.1c03681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have found that the DNA intercalator [Ru(bpy)2DPPZ]2+ (bpy = 2,2'-bipyridine; DPPZ = dipyrido[3,2-a:2',3'-c]phenazine) causes an anomalous increase in charge transfer in electrochemical impedance spectroscopy (EIS). With a carbonaceous electrode and a 1 mM hexacyanoferrate (1 mM [Fe(CN)6]3- and 1 mM [Fe(CN)6]4-) mediator, we found that adding only 1 μM [Ru(bpy)2DPPZ]2+ greatly enhanced the charge transfer between the electrode and hexacyanoferrate mediator, independently of other electrolytes or buffer components. The effect started with a one millionth amount of hexacyanoferrate. Since [Ru(bpy)2DPPZ]2+ can intercalate with dsDNA, the effect is highly applicable for dsDNA detection or PCR monitoring. With further developments of this method, EIS sensors not requiring specific electrode modifications should be possible.
Collapse
Affiliation(s)
- HuanWen Han
- Graduate School of Engineering, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Kazuyuki Nobusawa
- Graduate School of Engineering, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Ichiro Yamashita
- Graduate School of Engineering, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| |
Collapse
|
14
|
Zhu C, Maldonado J, Sengupta K. CMOS-Based Electrokinetic Microfluidics With Multi-Modal Cellular and Bio-Molecular Sensing for End-to-End Point-of-Care System. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2021; 15:1250-1267. [PMID: 34914597 DOI: 10.1109/tbcas.2021.3136165] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The importance of point-of-care (POC) bio-molecular diagnostics capable of rapid analysis has become abundantly evident after the outbreak of the Covid-19 pandemic. While sensing interfaces for both protein and nucleic-acid based assays have been demonstrated with chip-scale systems, sample preparation in compact form factor has often been a major bottleneck in enabling end-to-end POC diagnostics. Miniaturization of an end-to-end system requires addressing the front-end sample processing, without which, the goal for low-cost POC diagnostics remain elusive. In this paper, we address bulk fluid processing with AC-osmotic based electrokinetic fluid flows that can be fully controlled, processed and automated by CMOS ICs, fabricated in TSMC 65 nm LP process. Here, we combine bulk fluid flow control with bio-molecular sensing, cell manipulation, cytometry, and separation-all of which are controlled with silicon chips for an all-in-one bio-sensing device. We show CMOS controlled pneumatic-free bulk fluid flow with fluid velocities reaching up to 160 μm/s within a microfluidic channel of 100 × 50 μm 2 of cross-sectional area. We incorporate electrode arrays to allow precise control and focused cell flows ( ±2 μm precision) for robust cytometry, and for subsequent separation. We also incorporate a 16-element impedance spectroscopy receiver array for cell and label-free protein sensing. The massive scalability of CMOS-driven microfluidics, manipulation, and sensing can lead to a new design space and a new class of miniaturized sensing technologies.
Collapse
|
15
|
Morcelles KF, Bertemes-Filho P. Hardware for cell culture electrical impedance tomography: A critical review. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2021; 92:104704. [PMID: 34717415 DOI: 10.1063/5.0053707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 09/20/2021] [Indexed: 06/13/2023]
Abstract
Human cell cultures are powerful laboratory tools for biological models of diseases, drug development, and tissue engineering. However, the success of biological experiments often depends on real-time monitoring of the culture state. Conventional culture evaluation methods consist of end-point laborious techniques, not capable of real-time operation and not suitable for three-dimensional cultures. Electrical Impedance Tomography (EIT) is a non-invasive imaging technique with high potential to be used in cell culture monitoring due to its biocompatibility, non-invasiveness, high temporal resolution, compact hardware, automatic operation, and high throughput. This review approaches the different hardware strategies for cell culture EIT that are presented in the literature, discussing the main components of the measurement system: excitation circuit, voltage/current sensing, switching stage, signal specifications, electrode configurations, measurement protocols, and calibration strategies. The different approaches are qualitatively discussed and compared, and design guidelines are proposed.
Collapse
Affiliation(s)
- K F Morcelles
- Department of Electrical Engineering, Santa Catarina State University, Joinville 89219-710, Brazil
| | - P Bertemes-Filho
- Department of Electrical Engineering, Santa Catarina State University, Joinville 89219-710, Brazil
| |
Collapse
|
16
|
Electrochemical Impedance Spectroscopy (EIS): Principles, Construction, and Biosensing Applications. SENSORS 2021; 21:s21196578. [PMID: 34640898 PMCID: PMC8512860 DOI: 10.3390/s21196578] [Citation(s) in RCA: 216] [Impact Index Per Article: 72.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/17/2021] [Accepted: 09/26/2021] [Indexed: 01/10/2023]
Abstract
Electrochemical impedance spectroscopy (EIS) is a powerful technique used for the analysis of interfacial properties related to bio-recognition events occurring at the electrode surface, such as antibody–antigen recognition, substrate–enzyme interaction, or whole cell capturing. Thus, EIS could be exploited in several important biomedical diagnosis and environmental applications. However, the EIS is one of the most complex electrochemical methods, therefore, this review introduced the basic concepts and the theoretical background of the impedimetric technique along with the state of the art of the impedimetric biosensors and the impact of nanomaterials on the EIS performance. The use of nanomaterials such as nanoparticles, nanotubes, nanowires, and nanocomposites provided catalytic activity, enhanced sensing elements immobilization, promoted faster electron transfer, and increased reliability and accuracy of the reported EIS sensors. Thus, the EIS was used for the effective quantitative and qualitative detections of pathogens, DNA, cancer-associated biomarkers, etc. Through this review article, intensive literature review is provided to highlight the impact of nanomaterials on enhancing the analytical features of impedimetric biosensors.
Collapse
|
17
|
Hofmann A, Meister M, Rolapp A, Reich P, Scholz F, Schafer E. Light Absorption Measurement With a CMOS Biochip for Quantitative Immunoassay Based Point-of-Care Applications. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2021; 15:369-379. [PMID: 34033547 DOI: 10.1109/tbcas.2021.3083359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We present a CMOS biochip-based photometer for quantitative immunoassay diagnostics. The photometer quantifies the concentration of antigens based on light absorption, which allows for a low-cost implementation without expensive optical components. We propose a light controller to lower the start-up and settling time of the light source to 30 seconds, to facilitate fast measurement starts, and to decrease the overall measurement times. The application-specific integrated circuit (ASIC) contains a 6 x 7-sensor array with 100 μm x 100 μm photodiodes that serve as signal transducers. The ASIC was developed in a normal 0.35- μm CMOS technology, avoiding the need for expensive post-CMOS processes. We present our strategy for the assembly of the ASIC and the immobilization of antibodies. For its first time, we demonstrate the quantification of prostate specific antigen (PSA) with an optoelectronic CMOS biochip using this approach. A PSA immunoassay is performed on the top surface of the CMOS sensor array, enzyme kinetics and PSA concentration are measured within 6 minutes with a limit of detection (LoD) of 0.5 ng/ml, which meets clinical testing requirements. We achieve an overall coefficient of variation (CV) of 7%, which is good compared to other point-of-care (PoC) systems.
Collapse
|
18
|
Abdallah M. Design, Simulation, and Development of a BioSensor for Viruses Detection Using FPGA. IEEE JOURNAL OF TRANSLATIONAL ENGINEERING IN HEALTH AND MEDICINE-JTEHM 2021; 9:1700106. [PMID: 33598367 PMCID: PMC7880301 DOI: 10.1109/jtehm.2021.3055984] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 01/07/2021] [Accepted: 01/14/2021] [Indexed: 12/03/2022]
Abstract
Objective: Impedance based biosensing provides a unique, highly sensitive electrical approach to biomolecule detection, cell growth, and other biological events. To date, an impedance change due to the cell growth has been considered as a solution to detect some changes in a cell’s behavior. The impedance change detection is normally measured via an impedance analyzer which is expensive and also cumbersome. Rapid and definitive diagnosis of viral infections is imperative in patient treatment process. Early detection followed by appropriate lifestyle and treatment may result to a longer, healthier life. Certain patients require continues monitoring that may require regular visits to hospitals which is not practical. Therefore, a continuous home healthcare device is needed to monitor and detect any change in a patient’s health condition. Methods & Results: In this research, a novel sensor and healthcare monitoring system is modeled, simulated, developed, and tested to detect viruses by detecting the change in the impedance due to antibodies and antigens binding. First, COMSOL simulation tool is used to develop a model to prove the concept. The model predicts increasing impedance during functionalization of electrodes with antibodies and after antigen binding steps. Second, to understand how nanoscale electrode size and spacing would affect biosensing assay (antibody-based affinity binding of a protein antigen), a model using COMSOL is developed. Third, Field Programmable Gate Arrays (FPGA) based signal processing system is developed as well to be connected to analog to digital converter (ADC) to acquire the current and voltage readings of the sensors over time. This healthcare monitoring system is used to continuously monitoring a patient’s condition and reports any changes in the impedance readings which represents virus detection or at least change in the cell’s behavior. Conclusions: The proposed sensor model is simulated, tested and verified via COMSOL and the FPGA prototype is tested and it verified the COMSOL model. This work reports that the proposed sensor can be used to detect viruses via detecting a change in the impedance.
Collapse
Affiliation(s)
- M Abdallah
- SUNY Polytechnic InstituteUticaNY13504USA
| |
Collapse
|
19
|
Wu Y, Jiang D, Habibollahi M, Almarri N, Demosthenous A. Time Stamp - A Novel Time-to-Digital Demodulation Method for Bioimpedance Implant Applications. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2020; 14:997-1007. [PMID: 32746362 DOI: 10.1109/tbcas.2020.3012057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Bioimpedance analysis is a noninvasive and inexpensive technology used to investigate the electrical properties of biological tissues. The analysis requires demodulation to extract the real and imaginary parts of the impedance. Conventional systems use complex architectures such as I-Q demodulation. In this paper, a very simple alternative time-to-digital demodulation method or 'time stamp' is proposed. It employs only three comparators to identify or stamp in the time domain, the crossing points of the excitation signal, and the measured signal. In a CMOS proof of concept design, the accuracy of impedance magnitude and phase is 97.06% and 98.81% respectively over a bandwidth of 10 kHz to 500 kHz. The effect of fractional-N synthesis is analysed for the counter-based zero crossing phase detector obtaining a finer phase resolution (0.51˚ at 500 kHz) using a counter clock frequency ( fclk = 12.5 MHz). Because of its circuit simplicity and ease of transmitting the time stamps, the method is very suited to implantable devices requiring low area and power consumption.
Collapse
|
20
|
You KD, Cuniberto E, Hsu SC, Wu B, Huang Z, Pei X, Shahrjerdi D. An Electrochemical Biochip for Measuring Low Concentrations of Analytes With Adjustable Temporal Resolutions. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2020; 14:903-917. [PMID: 32746358 DOI: 10.1109/tbcas.2020.3009303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Electrochemical micro-sensors made of nano-graphitic (NG) carbon materials could offer high sensitivity and support voltammetry measurements at vastly different temporal resolutions. Here, we implement a configurable CMOS biochip for measuring low concentrations of bio-analytes by leveraging these advantageous features of NG micro-sensors. In particular, the core of the biochip is a discrete-time ∆Σ modulator, which can be configured for optimal power consumption according to the temporal resolution requirements of the sensing experiments while providing a required precision of ≈ 13 effective number of bits. We achieve this new functionality by developing a design methodology using the physical models of transistors, which allows the operating region of the modulator to be switched on-demand between weak and strong inversion. We show the application of this configurable biochip through in-vitro measurements of dopamine with concentrations as low as 50 nM and 200 nM at temporal resolutions of 100 ms and 10 s, respectively.
Collapse
|
21
|
Shen B, Johnston ML. DC-100 kHz Tunable Readout IC for Impedance Spectroscopy and Amperometric Measurement of Electrochemical Sensors. THE ... MIDWEST SYMPOSIUM ON CIRCUITS AND SYSTEMS CONFERENCE PROCEEDINGS : MWSCAS. MIDWEST SYMPOSIUM ON CIRCUITS AND SYSTEMS 2020; 2020:651-654. [PMID: 33312081 DOI: 10.1109/mwscas48704.2020.9184465] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
This paper presents a low-noise, front-end sensor IC that includes both AC impedance spectroscopy and DC amperometric measurement capabilities for electrochemical and biosensor applications. A common-gate current buffer topology is proposed that supports both current-mode and voltage-mode sensor signals to allow an input frequency range from DC to 100 kHz. Low-noise operation is achieved across a wide input frequency range using tunable high-pass and low-pass frequency response. In addition, an incremental delta-sigma modulator with embedded frequency response analysis serves as both on-chip impedance analyzer and current-driven analog-to-digital converter. Implemented using a 0.18 μm CMOS process, this work achieves 45 fA/√Hz input current noise density at 1 kHz. Input dynamic range exceeding 80 dB is achieved up to 10 kHz bandwidth, with a maximum of 104 dB dynamic range at 10 Hz.
Collapse
Affiliation(s)
- Boyu Shen
- School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, OR, USA
| | - Matthew L Johnston
- School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, OR, USA
| |
Collapse
|
22
|
Tanaka S, Kimura K, Miyamoto KI, Yanase Y, Uno S. Simulation and Experiment for Electrode Coverage Evaluation by Electrochemical Impedance Spectroscopy Using Parallel Facing Electrodes. ANAL SCI 2020; 36:853-858. [PMID: 31983717 DOI: 10.2116/analsci.19p451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A parallel facing electrode (PFE) structure for adherent cell monitoring by electrochemical impedance spectroscopy (EIS) was developed, and its characteristics were investigated by both computer simulation and experiment. The PFE model consists of two facing gold electrode strips separated by 40 μm, and the area of its intersection is 500 × 500 μm. Computer simulation of EIS with adherent cells showed a distinct difference in solution resistance for different cell coverage, which was confirmed by experimental results using latex beads suspension. A well-defined relationship between solution resistance and cell coverage in our PFE is promising for quantitative evaluation of cell density, morphology and fatality.
Collapse
Affiliation(s)
- Shinya Tanaka
- Department of Electrical Systems, Graduate School of Science and Engineering, Ritsumeikan University
| | - Kaiken Kimura
- Department of Electrical Systems, Graduate School of Science and Engineering, Ritsumeikan University
| | | | - Yuhki Yanase
- Department of Dermatology, Graduate School of Biomedical and Health Science, Hiroshima University
| | - Shigeyasu Uno
- Department of Electrical Systems, Graduate School of Science and Engineering, Ritsumeikan University
| |
Collapse
|
23
|
VLSI Structures for DNA Sequencing-A Survey. Bioengineering (Basel) 2020; 7:bioengineering7020049. [PMID: 32486381 PMCID: PMC7355958 DOI: 10.3390/bioengineering7020049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/22/2020] [Accepted: 05/29/2020] [Indexed: 01/23/2023] Open
Abstract
DNA sequencing is a critical functionality in biomedical research, and technical advances that improve it have important implications for human health. Novel methods by which sequencing can be accomplished in more accurate, high-throughput, and faster ways are in development. Here, we review VLSI biosensors for nucleotide detection and DNA sequencing. Implementation strategies are discussed and split into function-specific architectures that are presented for reported design examples from the literature. Lastly, we briefly introduce a new approach to sequencing using Gate All-Around (GAA) nanowire Metal Oxide Semiconductor Field Effect Transistors (MOSFETs) that has significant implications for the field.
Collapse
|
24
|
Trotter M, Borst N, Thewes R, von Stetten F. Review: Electrochemical DNA sensing – Principles, commercial systems, and applications. Biosens Bioelectron 2020; 154:112069. [DOI: 10.1016/j.bios.2020.112069] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/28/2020] [Accepted: 02/01/2020] [Indexed: 02/06/2023]
|
25
|
Shin S, Jung Y, Kweon SJ, Lee E, Park JH, Kim J, Yoo HJ, Je M. Design of Reconfigurable Time-to-Digital Converter Based on Cascaded Time Interpolators for Electrical Impedance Spectroscopy. SENSORS 2020; 20:s20071889. [PMID: 32235311 PMCID: PMC7180776 DOI: 10.3390/s20071889] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/16/2020] [Accepted: 03/26/2020] [Indexed: 12/02/2022]
Abstract
This paper presents a reconfigurable time-to-digital converter (TDC) used to quantize the phase of the impedance in electrical impedance spectroscopy (EIS). The TDC in the EIS system must handle a wide input-time range for analysis in the low-frequency range and have a high resolution for analysis in the high-frequency range. The proposed TDC adopts a coarse counter to support a wide input-time range and cascaded time interpolators to improve the time resolution in the high-frequency analysis without increasing the counting clock speed. When the same large interpolation factor is adopted, the cascaded time interpolators have shorter measurement time and smaller chip area than a single-stage time interpolator. A reconfigurable time interpolation factor is adopted to maintain the phase resolution with reasonable measurement time. The fabricated TDC has a peak-to-peak phase error of less than 0.72° over the input frequency range from 1 kHz to 512 kHz and the phase error of less than 2.70° when the range is extended to 2.048 MHz, which demonstrates a competitive performance when compared with previously reported designs.
Collapse
Affiliation(s)
- Sounghun Shin
- Foundry Business, Samsung Electronics Co., Ltd., Hwaseong-si, Gyeonggi-do 18448, Korea;
| | - Yoontae Jung
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea; (Y.J.); (E.L.); (J.K.); (H.-J.Y.); (M.J.)
| | - Soon-Jae Kweon
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea; (Y.J.); (E.L.); (J.K.); (H.-J.Y.); (M.J.)
- Correspondence:
| | - Eunseok Lee
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea; (Y.J.); (E.L.); (J.K.); (H.-J.Y.); (M.J.)
| | - Jeong-Ho Park
- System LSI Business, Samsung Electronics Co., Ltd., Hwaseong-si, Gyeonggi-do 18448, Korea;
| | - Jinuk Kim
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea; (Y.J.); (E.L.); (J.K.); (H.-J.Y.); (M.J.)
| | - Hyung-Joun Yoo
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea; (Y.J.); (E.L.); (J.K.); (H.-J.Y.); (M.J.)
| | - Minkyu Je
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea; (Y.J.); (E.L.); (J.K.); (H.-J.Y.); (M.J.)
| |
Collapse
|
26
|
Sopoušek J, Věžník J, Skládal P, Lacina K. Blocking the Nanopores in a Layer of Nonconductive Nanoparticles: Dominant Effects Therein and Challenges for Electrochemical Impedimetric Biosensing. ACS APPLIED MATERIALS & INTERFACES 2020; 12:14620-14628. [PMID: 32134623 DOI: 10.1021/acsami.0c02650] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Blockage of a nanopore by an analyte molecule has emerged as a promising concept for electrochemical biosensing. Nanoporous structures can be formed on the electrode surface simply by packing spherical nanoparticles in a dense planar arrangement. Modification of the nanoparticles with human serum albumin (HSA) and its interaction with the corresponding antibody (anti-HSA) can induce nanopore-blockage which significantly hinders permeation of the redox probe ([Fe(CN6)]4-/3-). Interfaces of different parameters were studied using Electrochemical Impedance Spectroscopy (EIS), and counterintuitively, the influence of charge of the nanoparticles and other immobilized entities played a substantial role in the measurement. Our study reveals dominant effects including the presence of mixed output signal and resolves corresponding EIS biosensing-related challenges. Consequently, blocking the nanopores was introduced as an efficient technique which enables the application of EIS-based biosensing to real-world analytical issues.
Collapse
Affiliation(s)
- Jakub Sopoušek
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 753/5 625 00, Brno, Czech Republic
- Central European Institute of Technology CEITEC, Masaryk University, Kamenice 753/5 625 00, Brno, Czech Republic
| | - Jakub Věžník
- Central European Institute of Technology CEITEC, Masaryk University, Kamenice 753/5 625 00, Brno, Czech Republic
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 753/5 625 00, Brno, Czech Republic
| | - Petr Skládal
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 753/5 625 00, Brno, Czech Republic
- Central European Institute of Technology CEITEC, Masaryk University, Kamenice 753/5 625 00, Brno, Czech Republic
| | - Karel Lacina
- Central European Institute of Technology CEITEC, Masaryk University, Kamenice 753/5 625 00, Brno, Czech Republic
| |
Collapse
|
27
|
Neshani S, Nyamekye CKA, Melvin S, Smith EA, Chen DJ, Neihart NM. AC and DC Differential Bridge Structure Suitable for Electrochemical Interfacial Capacitance Biosensing Applications. BIOSENSORS 2020; 10:E28. [PMID: 32235710 PMCID: PMC7146243 DOI: 10.3390/bios10030028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/18/2020] [Accepted: 03/19/2020] [Indexed: 11/16/2022]
Abstract
This paper presents a capacitive differential bridge structure with both AC and DC excitation and balancing capability for low cost electrode-solution interfacial capacitance biosensing applications. The proposed series RC balancing structure offers higher sensitivity, lower susceptibility to common-mode interferences, and drift control. To evaluate the bridge performance in practice, possible effects of initial bridge imbalance due to component mismatches are investigated considering the required resolution of the balancing networks, sensitivity, and linearity. This evaluation is also a guideline to designing the balancing networks, balancing algorithm and the proceeding readout interface circuitry. The proposed series RC bridge structure is implemented along with a custom single frequency real-time amplification/filtering readout board with real-time data acquisition and sine fitting. The main specifications for the implemented structure are 8-bit detection resolution if the total expected fractional capacitance change at the interface is roughly 1%. The characterization and measurement results show the effectiveness of the proposed structure in achieving the design target. The implemented structure successfully achieves distinct detection levels for tiny total capacitance change at the electrode-solution interface, utilizing Microcystin-(Leucine-Arginine) toxin dilutions as a proof of concept.
Collapse
Affiliation(s)
- Sara Neshani
- Electrical Engineering Department, Iowa State University, Ames, IA 50010, USA
| | | | - Scott Melvin
- Electrical Engineering Department, Iowa State University, Ames, IA 50010, USA
| | - Emily A Smith
- Department of Chemistry, Iowa State University, Ames, IA 50010, USA
| | - Degang J Chen
- Electrical Engineering Department, Iowa State University, Ames, IA 50010, USA
| | - Nathan M Neihart
- Electrical Engineering Department, Iowa State University, Ames, IA 50010, USA
| |
Collapse
|
28
|
Punjiya M, Mocker A, Napier B, Zeeshan A, Gutsche M, Sonkusale S. CMOS microcavity arrays for single-cell electroporation and lysis. Biosens Bioelectron 2020; 150:111931. [DOI: 10.1016/j.bios.2019.111931] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 11/03/2019] [Accepted: 11/25/2019] [Indexed: 12/27/2022]
|
29
|
Low Cost Autonomous Lock-In Amplifier for Resistance/Capacitance Sensor Measurements. ELECTRONICS 2019. [DOI: 10.3390/electronics8121413] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This paper presents the design and experimental characterization of a portable high-precision single-phase lock-in instrument with phase adjustment. The core consists of an analog lock-in amplifier IC prototype, integrated in 0.18 µm CMOS technology with 1.8 V supply, which features programmable gain and operating frequency, resulting in a versatile on-chip solution with power consumption below 834 µW. It incorporates automatic phase alignment of the input and reference signals, performed through both a fixed −90° and a 4-bit digitally programmable phase shifter, specifically designed using commercially available components to operate at 1 kHz frequency. The system is driven by an Arduino YUN board, thus overall conforming a low-cost autonomous signal recovery instrument to determine, in real time, the electrical equivalent of resistive and capacitive sensors with a sensitivity of 16.3 µV/Ω @ εrS < 3% and 37 kV/F @ εrS < 5%, respectively.
Collapse
|
30
|
Schwarz M, Jendrusch M, Constantinou I. Spatially resolved electrical impedance methods for cell and particle characterization. Electrophoresis 2019; 41:65-80. [PMID: 31663624 DOI: 10.1002/elps.201900286] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/25/2019] [Accepted: 10/25/2019] [Indexed: 12/24/2022]
Abstract
Electrical impedance is an established technique used for cell and particle characterization. The temporal and spectral resolution of electrical impedance have been used to resolve basic cell characteristics like size and type, as well as to determine cell viability and activity. Such electrical impedance measurements are typically performed across the entire sample volume and can only provide an overall indication concerning the properties and state of that sample. For the study of heterogeneous structures such as cell layers, biological tissue, or polydisperse particle mixtures, an overall measured impedance value can only provide limited information and can lead to data misinterpretation. For the investigation of localized sample properties in complex heterogeneous structures/mixtures, the addition of spatial resolution to impedance measurements is necessary. Several spatially resolved impedance measurement techniques have been developed and applied to cell and particle research, including electrical impedance tomography, scanning electrochemical microscopy, and microelectrode arrays. This review provides an overview of spatially resolved impedance measurement methods and assesses their applicability for cell and particle characterization.
Collapse
Affiliation(s)
- Marvin Schwarz
- Institute of Microtechnology, Technische Universität Braunschweig, Braunschweig, Germany.,Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, Braunschweig, Germany
| | | | - Iordania Constantinou
- Institute of Microtechnology, Technische Universität Braunschweig, Braunschweig, Germany.,Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, Braunschweig, Germany
| |
Collapse
|
31
|
Hedayatipour A, Aslanzadeh S, McFarlane N. CMOS based whole cell impedance sensing: Challenges and future outlook. Biosens Bioelectron 2019; 143:111600. [PMID: 31479988 DOI: 10.1016/j.bios.2019.111600] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 08/05/2019] [Accepted: 08/13/2019] [Indexed: 01/14/2023]
Abstract
With the increasing need for multi-analyte point-of-care diagnosis devices, cell impedance measurement is a promising technique for integration with other sensing modalities. In this comprehensive review, the theory underlying cell impedance sensing, including the history, complementary metal-oxide-semiconductor (CMOS) based implementations, and applications are critically assessed. Whole cell impedance sensing, also known as electric cell-substrate impedance sensing (ECIS) or electrical impedance spectroscopy (EIS), is an approach for studying and diagnosing living cells in in-vitro and in-vivo environments. The technique is popular since it is label-free, non-invasive, and low cost when compared to standard biochemical assays. CMOS cell impedance measurement systems have been focused on expanding their applications to numerous aspects of biological, environmental, and food safety applications. This paper presents and evaluates circuit topologies for whole cell impedance measurement. The presented review compares several existing CMOS designs, including the classification, measurement speed, and sensitivity of varying topologies.
Collapse
Affiliation(s)
- Ava Hedayatipour
- Department of Electrical Engineering and Computer Science, University of Tennessee, Knoxville, TN, USA.
| | - Shaghayegh Aslanzadeh
- Department of Electrical Engineering and Computer Science, University of Tennessee, Knoxville, TN, USA
| | - Nicole McFarlane
- Department of Electrical Engineering and Computer Science, University of Tennessee, Knoxville, TN, USA
| |
Collapse
|
32
|
Subhan S, Ha S. A Harmonic Error Cancellation Method for Accurate Clock-Based Electrochemical Impedance Spectroscopy. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2019; 13:710-724. [PMID: 31226085 DOI: 10.1109/tbcas.2019.2923719] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Electrochemical impedance spectroscopy (EIS) is a widely used method to characterize the biological materials. In traditional methods for EIS, a sinusoidal current is used to excite the material under test and the measured voltage across that material is demodulated by a linear multiplication with quadrature sinusoidal signals. From the resulting demodulated output, the impedance (magnitude and phase) can be calculated. Although this sine-wave-based impedance measurement method can produce accurate impedance measurements, it requires bulky components and suffers from poor power efficiency due to sinusoidal waveform generation and linear multiplication. Alternatively, a method using square-wave signal, which is simply a clock, for both excitation and demodulation can be much more area and power efficient, but inherently suffers from substantial errors in the result due to significant harmonics in square waves. In this paper, we propose a technique to cancel out the errors caused by such harmonics of the square-wave-based excitation and demodulation. The proposed technique, based on the fact that the magnitude ratio of all the harmonics of a square wave are known, cancels out harmonic errors by subtracting or adding the square-wave-based measured results at higher harmonic frequencies as a simple post-processing calculation. Simulations on specific and also generic impedance models demonstrate the applicability of this technique to various impedance models. Experimental results using a discrete circuit model show that this technique can provide a precise measurement of the impedance with 1% magnitude error and 0.5° phase error considering just five terms. In addition, measurements with a biological tissue show an average magnitude and phase error of 0.7% and [Formula: see text], respectively, using the proposed error cancellation. Because this method replaces sinusoidal signal generation and linear multiplication with clock generation and simple switching, it has great potential to be integrated in a wearable and implantable health monitoring device at low area and power consumption.
Collapse
|
33
|
Miccoli B, Lopez CM, Goikoetxea E, Putzeys J, Sekeri M, Krylychkina O, Chang SW, Firrincieli A, Andrei A, Reumers V, Braeken D. High-Density Electrical Recording and Impedance Imaging With a Multi-Modal CMOS Multi-Electrode Array Chip. Front Neurosci 2019; 13:641. [PMID: 31293372 PMCID: PMC6603149 DOI: 10.3389/fnins.2019.00641] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 06/04/2019] [Indexed: 01/11/2023] Open
Abstract
Multi-electrode arrays, both active or passive, emerged as ideal technologies to unveil intricated electrophysiological dynamics of cells and tissues. Active MEAs, designed using complementary metal oxide semiconductor technology (CMOS), stand over passive devices thanks to the possibility of achieving single-cell resolution, the reduced electrode size, the reduced crosstalk and the higher functionality and portability. Nevertheless, most of the reported CMOS MEA systems mainly rely on a single operational modality, which strongly hampers the applicability range of a single device. This can be a limiting factor considering that most biological and electrophysiological dynamics are often based on the synergy of multiple and complex mechanisms acting from different angles on the same phenomena. Here, we designed a CMOS MEA chip with 16,384 titanium nitride electrodes, 6 independent operational modalities and 1,024 parallel recording channels for neuro-electrophysiological studies. Sixteen independent active areas are patterned on the chip surface forming a 4 × 4 matrix, each one including 1,024 electrodes. Electrodes of four different sizes are present on the chip surface, ranging from 2.5 × 3.5 μm2 up to 11 × 11.0 μm2, with 15 μm pitch. In this paper, we exploited the impedance monitoring and voltage recording modalities not only to monitor the growth and development of primary rat hippocampal neurons, but also to assess their electrophysiological activity over time showing a mean spike amplitude of 144.8 ± 84.6 μV. Fixed frequency (1 kHz) and high sampling rate (30 kHz) impedance measurements were used to evaluate the cellular adhesion and growth on the chip surface. Thanks to the high-density configuration of the electrodes, as well as their dimension and pitch, the chip can appreciate the evolutions of the cell culture morphology starting from the moment of the seeding up to mature culture conditions. The measurements were confirmed by fluorescent staining. The effect of the different electrode sizes on the spike amplitudes and noise were also discussed. The multi-modality of the presented CMOS MEA allows for the simultaneous assessment of different physiological properties of the cultured neurons. Therefore, it can pave the way both to answer complex fundamental neuroscience questions as well as to aid the current drug-development paradigm.
Collapse
|
34
|
A review of microfabricated electrochemical biosensors for DNA detection. Biosens Bioelectron 2019; 134:57-67. [DOI: 10.1016/j.bios.2019.03.055] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/21/2019] [Accepted: 03/26/2019] [Indexed: 02/07/2023]
|
35
|
CMOS Interfaces for Internet-of-Wearables Electrochemical Sensors: Trends and Challenges. ELECTRONICS 2019. [DOI: 10.3390/electronics8020150] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Smart wearables, among immediate future IoT devices, are creating a huge and fast growing market that will encompass all of the next decade by merging the user with the Cloud in a easy and natural way. Biological fluids, such as sweat, tears, saliva and urine offer the possibility to access molecular-level dynamics of the body in a non-invasive way and in real time, disclosing a wide range of applications: from sports tracking to military enhancement, from healthcare to safety at work, from body hacking to augmented social interactions. The term Internet of Wearables (IoW) is coined here to describe IoT devices composed by flexible smart transducers conformed around the human body and able to communicate wirelessly. In addition the biochemical transducer, an IoW-ready sensor must include a paired electronic interface, which should implement specific stimulation/acquisition cycles while being extremely compact and drain power in the microwatts range. Development of an effective readout interface is a key element for the success of an IoW device and application. This review focuses on the latest efforts in the field of Complementary Metal–Oxide–Semiconductor (CMOS) interfaces for electrochemical sensors, and analyses them under the light of the challenges of the IoW: cost, portability, integrability and connectivity.
Collapse
|
36
|
Widdershoven F, Cossettini A, Laborde C, Bandiziol A, van Swinderen PP, Lemay SG, Selmi L. A CMOS Pixelated Nanocapacitor Biosensor Platform for High-Frequency Impedance Spectroscopy and Imaging. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2018; 12:1369-1382. [PMID: 30059320 DOI: 10.1109/tbcas.2018.2861558] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
We describe the realization of a fully electronic label-free temperature-controlled biosensing platform aimed to overcome the Debye screening limit over a wide range of electrolyte salt concentrations. It is based on an improved version of a 90-nm CMOS-integrated circuit featuring a nanocapacitor array, readout and A/D conversion circuitry, and a field programmable gate array (FPGA)-based interface board with NIOS II soft processor. We describe chip's processing, mounting, microfluidics, temperature control system, as well as the calibration and compensation procedures to reduce systematic errors, which altogether make up a complete quantitative sensor platform. Capacitance spectra recorded up to 70 MHz are shown and successfully compared to predictions by finite element method (FEM) numerical simulations in the Poisson-Drift-Diffusion formalism. They demonstrate the ability of the chip to reach high upper frequency of operation, thus overcoming the low-frequency Debye screening limit at nearly physiological salt concentrations in the electrolyte, and allowing for detection of events occurring beyond the extent of the electrical double layer. Furthermore, calibrated multifrequency measurements enable quantitative recording of capacitance spectra, whose features can reveal new properties of the analytes. The scalability of the electrode dimensions, interelectrode pitch, and size of the array make this sensing approach of quite general applicability, even in a non-bio context (e.g., gas sensing).
Collapse
|
37
|
Viswam V, Bounik R, Shadmani A. Impedance Spectroscopy and Electrophysiological Imaging of Cells With a High-Density CMOS Microelectrode Array System. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2018; 12:1356-1368. [PMID: 30418922 PMCID: PMC6330095 DOI: 10.1109/tbcas.2018.2881044] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
A monolithic multi-functional CMOS microelectrode array system was developed that enables label-free electrochemical impedance spectroscopy of cells in vitro at high spatiotemporal resolution. The electrode array includes 59,760 platinum microelectrodes, densely packed within a 4.5 mm × 2.5 mm sensing region at a pitch of 13.5 μm. A total of 32 on-chip lock-in amplifiers can be used to measure the impedance of any arbitrarily chosen subset of electrodes in the array. A sinusoidal voltage, generated by an on-chip waveform generator with a frequency range from 1 Hz to 1 MHz, was applied to the reference electrode. The sensing currents through the selected recording electrodes were amplified, demodulated, filtered, and digitized to obtain the magnitude and phase information of the respective impedances. The circuitry consumes only 412 μW at 3.3 V supply voltage and occupies only 0.1 mm2, for each channel. The system also included 2048 extracellular action-potential recording channels on the same chip. Proof of concept measurements of electrical impedance imaging and electrophysiology recording of cardiac cells and brain slices are demonstrated in this paper. Optical and impedance images showed a strong correlation.
Collapse
Affiliation(s)
- Vijay Viswam
- Department of Biosystems Science and Engineering (D-BSSE), ETH Zurich, 4058 Basel, Switzerland
| | - Raziyeh Bounik
- Department of Biosystems Science and Engineering (D-BSSE), ETH Zurich, 4058 Basel, Switzerland
| | - Amir Shadmani
- Department of Biosystems Science and Engineering (D-BSSE), ETH Zurich, 4058 Basel, Switzerland
| |
Collapse
|
38
|
Affiliation(s)
- Alexander C. Sun
- Electrical and Computer Engineering; University of California in; San Diego, La Jolla, CA
| | - Drew A. Hall
- Electrical and Computer Engineering; University of California in; San Diego, La Jolla, CA
| |
Collapse
|
39
|
Lindsay M, Bishop K, Sengupta S, Co M, Cumbie M, Chen CH, Johnston ML. Heterogeneous Integration of CMOS Sensors and Fluidic Networks Using Wafer-Level Molding. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2018; 12:1046-1055. [PMID: 30010595 DOI: 10.1109/tbcas.2018.2845867] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Direct sensing in liquids using CMOS-integrated optical and electrical sensors is attractive for lab-on-chip applications, where close physical proximity between sample and sensor can obviate optical lenses, enhance electrical sensitivity, and decrease noise due to parasitics. However, controlled delivery of fluid samples to the chip surface presents an ongoing challenge for lab-on-CMOS development, where traditional wire-bond packaging prevents integration of planar microfluidics. In this paper, we present a method for scalable heterogeneous integration of microfluidic channels and silicon-integrated circuit substrates using a commercial fan-out wafer-level packaging approach. The planar surface supports multiple approaches for fluidic integration; we present both a stacked laser-cut fluidic assembly and the fabrication of monolithic SU-8 microchannels over the IC surface. As a proof-of-principle, both electrical and fluidic routing are provided to a custom 0.18-m CMOS optical sensor IC, and optical transmission and fluorescence measurement experiments are demonstrated.
Collapse
|
40
|
Park JS, Grijalva SI, Aziz MK, Chi T, Li S, Sayegh MN, Wang A, Cho HC, Wang H. Multi-parametric cell profiling with a CMOS quad-modality cellular interfacing array for label-free fully automated drug screening. LAB ON A CHIP 2018; 18:3037-3050. [PMID: 30168827 PMCID: PMC8513687 DOI: 10.1039/c8lc00156a] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Cells are complex systems with concurrent multi-physical responses, and cell physiological signals are often encoded with spatiotemporal dynamics and further coupled with multiple cellular activities. However, most existing electronic sensors are only single-modality and cannot capture multi-parametric cellular responses. In this paper, a 1024-pixel CMOS quad-modality cellular interfacing array that enables multi-parametric cell profiling for drug development is presented. The quad-modality CMOS array features cellular impedance characterization, optical detection, extracellular potential recording, and biphasic current stimulation. The fibroblast transparency and surface adhesion are jointly monitored by cellular impedance and optical sensing modalities for comprehensive cell growth evaluation. Simultaneous current stimulation and opto-mechanical monitoring based on cardiomyocytes are demonstrated without any stimulation/sensing dead-zone. Furthermore, drug dose-dependent multi-parametric feature extractions in cardiomyocytes from their extracellular potentials and opto-mechanical signals are presented. The CMOS array demonstrates great potential for fully automated drug screening and drug safety assessments, which may substantially reduce the drug screening time and cost in future new drug development.
Collapse
Affiliation(s)
- Jong Seok Park
- The School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30308, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Hassibi A, Manickam A, Singh R, Bolouki S, Sinha R, Jirage KB, McDermott MW, Hassibi B, Vikalo H, Mazarei G, Pei L, Bousse L, Miller M, Heshami M, Savage MP, Taylor MT, Gamini N, Wood N, Mantina P, Grogan P, Kuimelis P, Savalia P, Conradson S, Li Y, Meyer RB, Ku E, Ebert J, Pinsky BA, Dolganov G, Van T, Johnson KA, Naraghi-Arani P, Kuimelis RG, Schoolnik G. Multiplexed identification, quantification and genotyping of infectious agents using a semiconductor biochip. Nat Biotechnol 2018; 36:738-745. [PMID: 30010676 DOI: 10.1038/nbt.4179] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 05/23/2018] [Indexed: 02/04/2023]
Abstract
The emergence of pathogens resistant to existing antimicrobial drugs is a growing worldwide health crisis that threatens a return to the pre-antibiotic era. To decrease the overuse of antibiotics, molecular diagnostics systems are needed that can rapidly identify pathogens in a clinical sample and determine the presence of mutations that confer drug resistance at the point of care. We developed a fully integrated, miniaturized semiconductor biochip and closed-tube detection chemistry that performs multiplex nucleic acid amplification and sequence analysis. The approach had a high dynamic range of quantification of microbial load and was able to perform comprehensive mutation analysis on up to 1,000 sequences or strands simultaneously in <2 h. We detected and quantified multiple DNA and RNA respiratory viruses in clinical samples with complete concordance to a commercially available test. We also identified 54 drug-resistance-associated mutations that were present in six genes of Mycobacterium tuberculosis, all of which were confirmed by next-generation sequencing.
Collapse
Affiliation(s)
| | | | | | | | - Ruma Sinha
- InSilixa, Inc., Sunnyvale, California, USA
| | | | | | - Babak Hassibi
- Electrical Engineering Department, California Institute of Technology, Pasadena, California, USA
| | - Haris Vikalo
- Electrical and Computer Engineering Department, University of Texas at Austin, Austin, Texas, USA
| | | | - Lei Pei
- InSilixa, Inc., Sunnyvale, California, USA
| | - Luc Bousse
- InSilixa, Inc., Sunnyvale, California, USA
| | | | | | | | | | | | | | | | | | | | | | | | - Yuan Li
- InSilixa, Inc., Sunnyvale, California, USA
| | | | - Edmond Ku
- InSilixa, Inc., Sunnyvale, California, USA
| | | | - Benjamin A Pinsky
- Department of Medicine, Stanford University, Stanford, California, USA
| | | | - Tran Van
- InSilixa, Inc., Sunnyvale, California, USA
| | | | | | | | - Gary Schoolnik
- InSilixa, Inc., Sunnyvale, California, USA.,Department of Medicine, Stanford University, Stanford, California, USA
| |
Collapse
|
42
|
Abstract
An alternative approach for cell-culture end-point protocols is proposed herein. This new technique is suitable for real-time remote sensing. It is based on Electrical Cell-substrate Impedance Spectroscopy (ECIS) and employs the Oscillation-Based Test (OBT) method. Simple and straightforward circuit blocks form the basis of the proposed measurement system. Oscillation parameters – frequency and amplitude – constitute the outcome, directly correlated with the culture status. A user can remotely track the evolution of cell cultures in real time over the complete experiment through a web tool continuously displaying the acquired data. Experiments carried out with commercial electrodes and a well-established cell line (AA8) are described, obtaining the cell number in real time from growth assays. The electrodes have been electrically characterized along the design flow in order to predict the system performance and the sensitivity curves. Curves for 1-week cell growth are reported. The obtained experimental results validate the proposed OBT for cell-culture characterization. Furthermore, the proposed electrode model provides a good approximation for the cell number and the time evolution of the studied cultures.
Collapse
|
43
|
Márquez A, Pérez-Bailón J, Calvo B, Medrano N, Martínez PA. A CMOS Self-Contained Quadrature Signal Generator for SoC Impedance Spectroscopy. SENSORS 2018; 18:s18051382. [PMID: 29710861 PMCID: PMC5981684 DOI: 10.3390/s18051382] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 04/26/2018] [Accepted: 04/27/2018] [Indexed: 11/18/2022]
Abstract
This paper presents a low-power fully integrated quadrature signal generator for system-on-chip (SoC) impedance spectroscopy applications. It has been designed in a 0.18 μm-1.8 V CMOS technology as a self-contained oscillator, without the need for an external reference clock. The frequency can be digitally tuned from 10 to 345 kHz with 12-bit accuracy and a relative mean error below 1.7%, thus supporting a wide range of impedance sensing applications. The proposal is experimentally validated in two impedance spectrometry examples, achieving good magnitude and phase recovery results compared to the results obtained using a commercial LCR-meter. Besides the wide frequency tuning range, the proposed programmable oscillator features a total power consumption lower than 0.77 mW and an active area of 0.129 mm2, thus constituting a highly suitable choice as stimulation module for instrument-on-a-chip devices.
Collapse
Affiliation(s)
- Alejandro Márquez
- Group of Electronic Design, Aragon Institute for Engineering Research (GDE-I3A), University of Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain.
| | - Jorge Pérez-Bailón
- Group of Electronic Design, Aragon Institute for Engineering Research (GDE-I3A), University of Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain.
| | - Belén Calvo
- Group of Electronic Design, Aragon Institute for Engineering Research (GDE-I3A), University of Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain.
| | - Nicolás Medrano
- Group of Electronic Design, Aragon Institute for Engineering Research (GDE-I3A), University of Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain.
| | - Pedro A Martínez
- Group of Electronic Design, Aragon Institute for Engineering Research (GDE-I3A), University of Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain.
| |
Collapse
|
44
|
Liu F, Ni L, Zhe J. Lab-on-a-chip electrical multiplexing techniques for cellular and molecular biomarker detection. BIOMICROFLUIDICS 2018; 12:021501. [PMID: 29682143 PMCID: PMC5893332 DOI: 10.1063/1.5022168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 03/28/2018] [Indexed: 06/08/2023]
Abstract
Signal multiplexing is vital to develop lab-on-a-chip devices that can detect and quantify multiple cellular and molecular biomarkers with high throughput, short analysis time, and low cost. Electrical detection of biomarkers has been widely used in lab-on-a-chip devices because it requires less external equipment and simple signal processing and provides higher scalability. Various electrical multiplexing for lab-on-a-chip devices have been developed for comprehensive, high throughput, and rapid analysis of biomarkers. In this paper, we first briefly introduce the widely used electrochemical and electrical impedance sensing methods. Next, we focus on reviewing various electrical multiplexing techniques that had achieved certain successes on rapid cellular and molecular biomarker detection, including direct methods (spatial and time multiplexing), and emerging technologies (frequency, codes, particle-based multiplexing). Lastly, the future opportunities and challenges on electrical multiplexing techniques are also discussed.
Collapse
Affiliation(s)
- Fan Liu
- Department of Mechanical Engineering, University of Akron, Akron, Ohio 44325, USA
| | - Liwei Ni
- Department of Mechanical Engineering, University of Akron, Akron, Ohio 44325, USA
| | - Jiang Zhe
- Department of Mechanical Engineering, University of Akron, Akron, Ohio 44325, USA
| |
Collapse
|
45
|
Park JS, Aziz MK, Li S, Chi T, Grijalva SI, Sung JH, Cho HC, Wang H. 1024-Pixel CMOS Multimodality Joint Cellular Sensor/Stimulator Array for Real-Time Holistic Cellular Characterization and Cell-Based Drug Screening. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2018; 12:80-94. [PMID: 29377798 PMCID: PMC8552991 DOI: 10.1109/tbcas.2017.2759220] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
This paper presents a fully integrated CMOS multimodality joint sensor/stimulator array with 1024 pixels for real-time holistic cellular characterization and drug screening. The proposed system consists of four pixel groups and four parallel signal-conditioning blocks. Every pixel group contains 16 × 16 pixels, and each pixel includes one gold-plated electrode, four photodiodes, and in-pixel circuits, within a pixel footprint. Each pixel supports real-time extracellular potential recording, optical detection, charge-balanced biphasic current stimulation, and cellular impedance measurement for the same cellular sample. The proposed system is fabricated in a standard 130-nm CMOS process. Rat cardiomyocytes are successfully cultured on-chip. Measured high-resolution optical opacity images, extracellular potential recordings, biphasic current stimulations, and cellular impedance images demonstrate the unique advantages of the system for holistic cell characterization and drug screening. Furthermore, this paper demonstrates the use of optical detection on the on-chip cultured cardiomyocytes to real-time track their cyclic beating pattern and beating rate.
Collapse
|
46
|
Manickam A, Singh R, McDermott M, Wood N, Bolouki S, Naraghi-Arani P, Johnson K, Kuimelis RG, Schoolnik G, Hassibi A. A Fully Integrated CMOS Fluorescence Biochip for DNA and RNA Testing. IEEE JOURNAL OF SOLID-STATE CIRCUITS 2017; 52:2857-2870. [PMID: 30853715 PMCID: PMC6407865 DOI: 10.1109/jssc.2017.2754363] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Design and successful implementation of a fully-integrated CMOS fluorescence biochip for DNA/RNA testing in molecular diagnostics (MDx) is presented. The biochip includes a 32×32 array of continuous wave fluorescence detection biosensing elements. Each biosensing element is capable of having unique DNA probe sequences, wavelength-selective multi-dielectric emission filter (OD of 3.6), resistive heater for thermal cycling, and a high performance and programmable photodetector. The dimension of each biosensor is 100µm×100µm with a 50µm×50µm Nwell-Psub photodiode acting as the optical transducer, and a ΣΔ modulator based photocurrent sensor. The measured photodetector performance shows ~116 dB detection dynamic range (10fA - 10nA) over the 25°C - 100°C temperature range, while being ~1 dB away from the fundamental shot-noise limit. To empirically demonstrate the compatibility of this biochip with MDx applications, we have successfully utilized the array and its thermal cycling capability to adopt a 7-plex panel for detection of 6 human upper respiratory viruses.
Collapse
|
47
|
Alhoshany A, Sivashankar S, Mashraei Y, Omran H, Salama KN. A Biosensor-CMOS Platform and Integrated Readout Circuit in 0.18-μm CMOS Technology for Cancer Biomarker Detection. SENSORS (BASEL, SWITZERLAND) 2017; 17:E1942. [PMID: 28832523 PMCID: PMC5620726 DOI: 10.3390/s17091942] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 08/20/2017] [Accepted: 08/21/2017] [Indexed: 11/16/2022]
Abstract
This paper presents a biosensor-CMOS platform for measuring the capacitive coupling of biorecognition elements. The biosensor is designed, fabricated, and tested for the detection and quantification of a protein that reveals the presence of early-stage cancer. For the first time, the spermidine/spermine N1 acetyltransferase (SSAT) enzyme has been screened and quantified on the surface of a capacitive sensor. The sensor surface is treated to immobilize antibodies, and the baseline capacitance of the biosensor is reduced by connecting an array of capacitors in series for fixed exposure area to the analyte. A large sensing area with small baseline capacitance is implemented to achieve a high sensitivity to SSAT enzyme concentrations. The sensed capacitance value is digitized by using a 12-bit highly digital successive-approximation capacitance-to-digital converter that is implemented in a 0.18 μm CMOS technology. The readout circuit operates in the near-subthreshold regime and provides power and area efficient operation. The capacitance range is 16.137 pF with a 4.5 fF absolute resolution, which adequately covers the concentrations of 10 mg/L, 5 mg/L, 2.5 mg/L, and 1.25 mg/L of the SSAT enzyme. The concentrations were selected as a pilot study, and the platform was shown to demonstrate high sensitivity for SSAT enzymes on the surface of the capacitive sensor. The tested prototype demonstrated 42.5 μS of measurement time and a total power consumption of 2.1 μW.
Collapse
Affiliation(s)
- Abdulaziz Alhoshany
- Computer, Electrical and Mathematical Science and Engineering Division (CEMSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.
| | - Shilpa Sivashankar
- Department of Biomedical Engineering, University of Chapel Hill/North Carolina State University, Raleigh, NC 27695, USA.
| | - Yousof Mashraei
- Computer, Electrical and Mathematical Science and Engineering Division (CEMSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.
| | - Hesham Omran
- The Integrated Circuits Lab, Faculty of Engineering, Ain Shams University, Cairo 11535, Egypt.
| | - Khaled N Salama
- Computer, Electrical and Mathematical Science and Engineering Division (CEMSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.
| |
Collapse
|
48
|
Dragas J, Viswam V, Shadmani A, Chen Y, Bounik R, Stettler A, Radivojevic M, Geissler S, Obien M, Müller J, Hierlemann A. A Multi-Functional Microelectrode Array Featuring 59760 Electrodes, 2048 Electrophysiology Channels, Stimulation, Impedance Measurement and Neurotransmitter Detection Channels. IEEE JOURNAL OF SOLID-STATE CIRCUITS 2017; 52:1576-1590. [PMID: 28579632 PMCID: PMC5447818 DOI: 10.1109/jssc.2017.2686580] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Biological cells are characterized by highly complex phenomena and processes that are, to a great extent, interdependent. To gain detailed insights, devices designed to study cellular phenomena need to enable tracking and manipulation of multiple cell parameters in parallel; they have to provide high signal quality and high spatiotemporal resolution. To this end, we have developed a CMOS-based microelectrode array system that integrates six measurement and stimulation functions, the largest number to date. Moreover, the system features the largest active electrode array area to date (4.48×2.43 mm2) to accommodate 59,760 electrodes, while its power consumption, noise characteristics, and spatial resolution (13.5 μm electrode pitch) are comparable to the best state-of-the-art devices. The system includes: 2,048 action-potential (AP, bandwidth: 300 Hz to 10 kHz) recording units, 32 local-field-potential (LFP, bandwidth: 1 Hz to 300 Hz) recording units, 32 current recording units, 32 impedance measurement units, and 28 neurotransmitter detection units, in addition to the 16 dual-mode voltage-only or current/voltage-controlled stimulation units. The electrode array architecture is based on a switch matrix, which allows for connecting any measurement/stimulation unit to any electrode in the array and for performing different measurement/stimulation functions in parallel.
Collapse
Affiliation(s)
- Jelena Dragas
- ETH Zurich, Department of Biosystems Science and Engineering (D-BSSE), 4058 Basel, Switzerland
| | - Vijay Viswam
- ETH Zurich, Department of Biosystems Science and Engineering (D-BSSE), 4058 Basel, Switzerland
| | - Amir Shadmani
- ETH Zurich, Department of Biosystems Science and Engineering (D-BSSE), 4058 Basel, Switzerland
| | - Yihui Chen
- ETH Zurich, D-BSSE, 4058 Basel, Switzerland, and now is with Analog Devices Shanghai Co. Ltd., Shanghai, China
| | - Raziyeh Bounik
- ETH Zurich, Department of Biosystems Science and Engineering (D-BSSE), 4058 Basel, Switzerland
| | - Alexander Stettler
- ETH Zurich, Department of Biosystems Science and Engineering (D-BSSE), 4058 Basel, Switzerland
| | - Milos Radivojevic
- ETH Zurich, Department of Biosystems Science and Engineering (D-BSSE), 4058 Basel, Switzerland
| | - Sydney Geissler
- ETH Zurich, Department of Biosystems Science and Engineering (D-BSSE), 4058 Basel, Switzerland
| | - Marie Obien
- ETH Zurich, Department of Biosystems Science and Engineering (D-BSSE), 4058 Basel, Switzerland
| | - Jan Müller
- ETH Zurich, Department of Biosystems Science and Engineering (D-BSSE), 4058 Basel, Switzerland
| | - Andreas Hierlemann
- ETH Zurich, Department of Biosystems Science and Engineering (D-BSSE), 4058 Basel, Switzerland
| |
Collapse
|
49
|
Barman U, Mukhopadhyay G, Goswami N, Ghosh SS, Paily RP. Detection of Glutathione by Glutathione-S-Transferase-Nanoconjugate Ensemble Electrochemical Device. IEEE Trans Nanobioscience 2017; 16:271-279. [DOI: 10.1109/tnb.2017.2698241] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
50
|
Xie P, Cao X, Lin Z, Javanmard M. Top-down fabrication meets bottom-up synthesis for nanoelectronic barcoding of microparticles. LAB ON A CHIP 2017; 17:1939-1947. [PMID: 28470316 DOI: 10.1039/c7lc00035a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Traditional optical and plasmonic techniques for barcoding of micro-particles for multiplexed bioassays are generally high in throughput, however bulky instrumentation is often required for performing readout. Electrical impedance based detection allows for ultra-compact instrumentation footprint necessary for wearable devices, however to date, the lack of ability to electronically barcode micro-particles has been a long standing bottleneck towards enabling multiplexed electronic biomarker assays. Nanoelectronic barcoding, which to the best of our knowledge is the first impedance based solution for micro-particle barcoding, works by forming tunable nano-capacitors on the surface of micro-spheres, effectively modulating the frequency dependent dielectric properties of the spheres allowing one bead barcode to be distinguished from another. Nanoelectronic barcoding uses a well-known, but unexplored electromagnetic phenomenon of micro-particles: the Clausius-Mossotti (CM) factor spectrum of a Janus particle (JP) shifts depending on the zeta (wall) potential of the metallic half of the microsphere, and the fact that the complex impedance spectrum of a particle directly corresponds to the CM factor spectrum. A one-to-one correspondence will be established between each biomarker and the corresponding engineered microsphere. This transformative new method for barcoding will enable a new class of handheld and wearable biosensors capable of multiplexed continuous temporal bio-monitoring. The proposed nano-electronically barcoded particles utilize both bottom-up synthesis and top-down fabrication to enable precisely engineered frequency dependent dielectric signatures. Multi-frequency lock-in measurements of the complex impedance, in conjunction with multi-variate analysis of impedance data, allows for particle differentiation using a fully functional ultra-compact electronic detector.
Collapse
Affiliation(s)
- Pengfei Xie
- Department of Electrical and Computer Engineering, Rutgers University, USA.
| | | | | | | |
Collapse
|