1
|
Shah DD, Carter P, Shivdasani MN, Fong N, Duan W, Esrafilzadeh D, Poole-Warren LA, Aregueta Robles UA. Deciphering platinum dissolution in neural stimulation electrodes: Electrochemistry or biology? Biomaterials 2024; 309:122575. [PMID: 38677220 DOI: 10.1016/j.biomaterials.2024.122575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/28/2024] [Accepted: 04/13/2024] [Indexed: 04/29/2024]
Abstract
Platinum (Pt) is the metal of choice for electrodes in implantable neural prostheses like the cochlear implants, deep brain stimulating devices, and brain-computer interfacing technologies. However, it is well known since the 1970s that Pt dissolution occurs with electrical stimulation. More recent clinical and in vivo studies have shown signs of corrosion in explanted electrode arrays and the presence of Pt-containing particulates in tissue samples. The process of degradation and release of metallic ions and particles can significantly impact on device performance. Moreover, the effects of Pt dissolution products on tissue health and function are still largely unknown. This is due to the highly complex chemistry underlying the dissolution process and the difficulty in decoupling electrical and chemical effects on biological responses. Understanding the mechanisms and effects of Pt dissolution proves challenging as the dissolution process can be influenced by electrical, chemical, physical, and biological factors, all of them highly variable between experimental settings. By evaluating comprehensive findings on Pt dissolution mechanisms reported in the fuel cell field, this review presents a critical analysis of the possible mechanisms that drive Pt dissolution in neural stimulation in vitro and in vivo. Stimulation parameters, such as aggregate charge, charge density, and electrochemical potential can all impact the levels of dissolved Pt. However, chemical factors such as electrolyte types, dissolved gases, and pH can all influence dissolution, confounding the findings of in vitro studies with multiple variables. Biological factors, such as proteins, have been documented to exhibit a mitigating effect on the dissolution process. Other biological factors like cells and fibro-proliferative responses, such as fibrosis and gliosis, impact on electrode properties and are suspected to impact on Pt dissolution. However, the relationship between electrical properties of stimulating electrodes and Pt dissolution remains contentious. Host responses to Pt degradation products are also controversial due to the unknown chemistry of Pt compounds formed and the lack of understanding of Pt distribution in clinical scenarios. The cytotoxicity of Pt produced via electrical stimulation appears similar to Pt-based compounds, including hexachloroplatinates and chemotherapeutic agents like cisplatin. While the levels of Pt produced under clinical and acute stimulation regimes were typically an order of magnitude lower than toxic concentrations observed in vitro, further research is needed to accurately assess the mass balance and type of Pt produced during long-term stimulation and its impact on tissue response. Finally, approaches to mitigating the dissolution process are reviewed. A wide variety of approaches, including stimulation strategies, coating electrode materials, and surface modification techniques to avoid excess charge during stimulation and minimise tissue response, may ultimately support long-term and safe operation of neural stimulating devices.
Collapse
Affiliation(s)
- Dhyey Devashish Shah
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, Australia
| | - Paul Carter
- Cochlear Ltd, Macquarie University, NSW, Australia
| | | | - Nicole Fong
- Cochlear Ltd, Macquarie University, NSW, Australia
| | - Wenlu Duan
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, Australia
| | - Dorna Esrafilzadeh
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, Australia
| | - Laura Anne Poole-Warren
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, Australia; The Tyree Foundation Institute of Health Engineering, University of New South Wales, Sydney, Australia.
| | | |
Collapse
|
2
|
Tang H, Li Y, Liao S, Liu H, Qiao Y, Zhou J. Multifunctional Conductive Hydrogel Interface for Bioelectronic Recording and Stimulation. Adv Healthc Mater 2024; 13:e2400562. [PMID: 38773929 DOI: 10.1002/adhm.202400562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/11/2024] [Indexed: 05/24/2024]
Abstract
The past few decades have witnessed the rapid advancement and broad applications of flexible bioelectronics, in wearable and implantable electronics, brain-computer interfaces, neural science and technology, clinical diagnosis, treatment, etc. It is noteworthy that soft and elastic conductive hydrogels, owing to their multiple similarities with biological tissues in terms of mechanics, electronics, water-rich, and biological functions, have successfully bridged the gap between rigid electronics and soft biology. Multifunctional hydrogel bioelectronics, emerging as a new generation of promising material candidates, have authentically established highly compatible and reliable, high-quality bioelectronic interfaces, particularly in bioelectronic recording and stimulation. This review summarizes the material basis and design principles involved in constructing hydrogel bioelectronic interfaces, and systematically discusses the fundamental mechanism and unique advantages in bioelectrical interfacing with the biological surface. Furthermore, an overview of the state-of-the-art manufacturing strategies for hydrogel bioelectronic interfaces with enhanced biocompatibility and integration with the biological system is presented. This review finally exemplifies the unprecedented advancement and impetus toward bioelectronic recording and stimulation, especially in implantable and integrated hydrogel bioelectronic systems, and concludes with a perspective expectation for hydrogel bioelectronics in clinical and biomedical applications.
Collapse
Affiliation(s)
- Hao Tang
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, 518107, P. R. China
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Yuanfang Li
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, 518107, P. R. China
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Shufei Liao
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, 518107, P. R. China
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Houfang Liu
- School of Integrated Circuits and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100084, China
| | - Yancong Qiao
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, 518107, P. R. China
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Jianhua Zhou
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, 518107, P. R. China
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| |
Collapse
|
3
|
Zhang B, Hu Y, Du H, Han S, Ren L, Cheng H, Wang Y, Gao X, Zheng S, Cui Q, Tian L, Liu T, Sun J, Chai R. Tissue engineering strategies for spiral ganglion neuron protection and regeneration. J Nanobiotechnology 2024; 22:458. [PMID: 39085923 PMCID: PMC11293049 DOI: 10.1186/s12951-024-02742-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 07/25/2024] [Indexed: 08/02/2024] Open
Abstract
Cochlear implants can directly activate the auditory system's primary sensory neurons, the spiral ganglion neurons (SGNs), via circumvention of defective cochlear hair cells. This bypass restores auditory input to the brainstem. SGN loss etiologies are complex, with limited mammalian regeneration. Protecting and revitalizing SGN is critical. Tissue engineering offers a novel therapeutic strategy, utilizing seed cells, biomolecules, and scaffold materials to create a cellular environment and regulate molecular cues. This review encapsulates the spectrum of both human and animal research, collating the factors contributing to SGN loss, the latest advancements in the utilization of exogenous stem cells for auditory nerve repair and preservation, the taxonomy and mechanism of action of standard biomolecules, and the architectural components of scaffold materials tailored for the inner ear. Furthermore, we delineate the potential and benefits of the biohybrid neural interface, an incipient technology in the realm of implantable devices. Nonetheless, tissue engineering requires refined cell selection and differentiation protocols for consistent SGN quality. In addition, strategies to improve stem cell survival, scaffold biocompatibility, and molecular cue timing are essential for biohybrid neural interface integration.
Collapse
Affiliation(s)
- Bin Zhang
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Public Health, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Yangnan Hu
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Public Health, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China.
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China.
| | - Haoliang Du
- Department of Otolaryngology Head and Neck Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing University, Nanjing, 210008, China
| | - Shanying Han
- Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Lei Ren
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Public Health, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Hong Cheng
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Public Health, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Yusong Wang
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Public Health, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Xin Gao
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Public Health, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Shasha Zheng
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Public Health, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Qingyue Cui
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Public Health, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Lei Tian
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Public Health, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China.
| | - Tingting Liu
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Public Health, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China.
| | - Jiaqiang Sun
- Department of Otolaryngology-Head and Neck Surgery, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, 230001, China.
| | - Renjie Chai
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Public Health, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China.
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China.
- Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China.
- Department of Neurology, Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Science, Beijing, China.
- Southeast University Shenzhen Research Institute, Shenzhen, 518063, China.
| |
Collapse
|
4
|
Duan W, Robles UA, Poole‐Warren L, Esrafilzadeh D. Bioelectronic Neural Interfaces: Improving Neuromodulation Through Organic Conductive Coatings. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306275. [PMID: 38115740 PMCID: PMC11251570 DOI: 10.1002/advs.202306275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/07/2023] [Indexed: 12/21/2023]
Abstract
Integration of bioelectronic devices in clinical practice is expanding rapidly, focusing on conditions ranging from sensory to neurological and mental health disorders. While platinum (Pt) electrodes in neuromodulation devices such as cochlear implants and deep brain stimulators have shown promising results, challenges still affect their long-term performance. Key among these are electrode and device longevity in vivo, and formation of encapsulating fibrous tissue. To overcome these challenges, organic conductors with unique chemical and physical properties are being explored. They hold great promise as coatings for neural interfaces, offering more rapid regulatory pathways and clinical implementation than standalone bioelectronics. This study provides a comprehensive review of the potential benefits of organic coatings in neuromodulation electrodes and the challenges that limit their effective integration into existing devices. It discusses issues related to metallic electrode use and introduces physical, electrical, and biological properties of organic coatings applied in neuromodulation. Furthermore, previously reported challenges related to organic coating stability, durability, manufacturing, and biocompatibility are thoroughly reviewed and proposed coating adhesion mechanisms are summarized. Understanding organic coating properties, modifications, and current challenges of organic coatings in clinical and industrial settings is expected to provide valuable insights for their future development and integration into organic bioelectronics.
Collapse
Affiliation(s)
- Wenlu Duan
- The Graduate School of Biomedical EngineeringUNSWSydneyNSW2052Australia
| | | | - Laura Poole‐Warren
- The Graduate School of Biomedical EngineeringUNSWSydneyNSW2052Australia
- Tyree Foundation Institute of Health EngineeringUNSWSydneyNSW2052Australia
| | | |
Collapse
|
5
|
Boulingre M, Portillo-Lara R, Green RA. Biohybrid neural interfaces: improving the biological integration of neural implants. Chem Commun (Camb) 2023; 59:14745-14758. [PMID: 37991846 PMCID: PMC10720954 DOI: 10.1039/d3cc05006h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 11/10/2023] [Indexed: 11/24/2023]
Abstract
Implantable neural interfaces (NIs) have emerged in the clinic as outstanding tools for the management of a variety of neurological conditions caused by trauma or disease. However, the foreign body reaction triggered upon implantation remains one of the major challenges hindering the safety and longevity of NIs. The integration of tools and principles from biomaterial design and tissue engineering has been investigated as a promising strategy to develop NIs with enhanced functionality and performance. In this Feature Article, we highlight the main bioengineering approaches for the development of biohybrid NIs with an emphasis on relevant device design criteria. Technical and scientific challenges associated with the fabrication and functional assessment of technologies composed of both artificial and biological components are discussed. Lastly, we provide future perspectives related to engineering, regulatory, and neuroethical challenges to be addressed towards the realisation of the promise of biohybrid neurotechnology.
Collapse
Affiliation(s)
- Marjolaine Boulingre
- Department of Bioengineering, Imperial College London, South Kensington, London, SW7 2AZ, UK
| | - Roberto Portillo-Lara
- Department of Bioengineering, Imperial College London, South Kensington, London, SW7 2AZ, UK
| | - Rylie A Green
- Department of Bioengineering, Imperial College London, South Kensington, London, SW7 2AZ, UK
| |
Collapse
|
6
|
Hu Y, Fang L, Zhang H, Zheng S, Liao M, Cui Q, Wei H, Wu D, Cheng H, Qi Y, Wang H, Xin T, Wang T, Chai R. Emerging biotechnologies and biomedical engineering technologies for hearing reconstruction. SMART MEDICINE 2023; 2:e20230021. [PMID: 39188297 PMCID: PMC11235852 DOI: 10.1002/smmd.20230021] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 09/09/2023] [Indexed: 08/28/2024]
Abstract
Hearing impairment is a global health problem that affects social communications and the economy. The damage and loss of cochlear hair cells and spiral ganglion neurons (SGNs) as well as the degeneration of neurites of SGNs are the core causes of sensorineural hearing loss. Biotechnologies and biomedical engineering technologies provide new hope for the treatment of auditory diseases, which utilizes biological strategies or tissue engineering methods to achieve drug delivery and the regeneration of cells, tissues, and even organs. Here, the advancements in the applications of biotechnologies (including gene therapy and cochlear organoids) and biomedical engineering technologies (including drug delivery, electrode coating, electrical stimulation and bionic scaffolds) in the field of hearing reconstruction are presented. Moreover, we summarize the challenges and provide a perspective on this field.
Collapse
Affiliation(s)
- Yangnan Hu
- State Key Laboratory of Digital Medical EngineeringDepartment of Otolaryngology Head and Neck SurgeryZhongda HospitalSchool of Life Sciences and TechnologyAdvanced Institute for Life and HealthJiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjingChina
- Co‐Innovation Center of NeuroregenerationNantong UniversityNantongChina
| | - Le Fang
- Department of NeurologyThe China‐Japan Union Hospital of Jilin UniversityChangchunJilinChina
| | - Hui Zhang
- State Key Laboratory of Digital Medical EngineeringDepartment of Otolaryngology Head and Neck SurgeryZhongda HospitalSchool of Life Sciences and TechnologyAdvanced Institute for Life and HealthJiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjingChina
| | - Shasha Zheng
- State Key Laboratory of Digital Medical EngineeringDepartment of Otolaryngology Head and Neck SurgeryZhongda HospitalSchool of Life Sciences and TechnologyAdvanced Institute for Life and HealthJiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjingChina
| | - Menghui Liao
- State Key Laboratory of Digital Medical EngineeringDepartment of Otolaryngology Head and Neck SurgeryZhongda HospitalSchool of Life Sciences and TechnologyAdvanced Institute for Life and HealthJiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjingChina
| | - Qingyue Cui
- State Key Laboratory of Digital Medical EngineeringDepartment of Otolaryngology Head and Neck SurgeryZhongda HospitalSchool of Life Sciences and TechnologyAdvanced Institute for Life and HealthJiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjingChina
| | - Hao Wei
- Department of Otolaryngology Head and Neck SurgeryAffiliated Drum Tower Hospital of Nanjing University Medical SchoolJiangsu Provincial Key Medical DisciplineNanjingChina
| | - Danqi Wu
- State Key Laboratory of Digital Medical EngineeringDepartment of Otolaryngology Head and Neck SurgeryZhongda HospitalSchool of Life Sciences and TechnologyAdvanced Institute for Life and HealthJiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjingChina
| | - Hong Cheng
- State Key Laboratory of Digital Medical EngineeringDepartment of Otolaryngology Head and Neck SurgeryZhongda HospitalSchool of Life Sciences and TechnologyAdvanced Institute for Life and HealthJiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjingChina
| | - Yanru Qi
- State Key Laboratory of Digital Medical EngineeringDepartment of Otolaryngology Head and Neck SurgeryZhongda HospitalSchool of Life Sciences and TechnologyAdvanced Institute for Life and HealthJiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjingChina
| | - Huan Wang
- The Eighth Affiliated HospitalSun Yat‐Sen UniversityShenzhenChina
| | - Tao Xin
- Department of NeurosurgeryThe First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan HospitalJinanChina
- Medical Science and Technology Innovation CenterShandong First Medical University and Shandong Academy of Medical SciencesJinanChina
| | - Tian Wang
- Department of Otolaryngology‐Head and Neck SurgeryStanford University School of MedicineStanfordCaliforniaUSA
- Department of Otolaryngology‐Head and Neck SurgeryThe Second Xiangya HospitalCentral South UniversityChangshaHunan ProvinceChina
| | - Renjie Chai
- State Key Laboratory of Digital Medical EngineeringDepartment of Otolaryngology Head and Neck SurgeryZhongda HospitalSchool of Life Sciences and TechnologyAdvanced Institute for Life and HealthJiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjingChina
- Co‐Innovation Center of NeuroregenerationNantong UniversityNantongChina
- Department of Otolaryngology Head and Neck SurgerySichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengduChina
- Institute for Stem Cell and RegenerationChinese Academy of SciencesBeijingChina
- Beijing Key Laboratory of Neural Regeneration and RepairCapital Medical UniversityBeijingChina
| |
Collapse
|
7
|
Shah DD, Garcia PM, Aregueta Robles UA, Poole-Warren LA. Validation of a platinum bioelectrode model for preclinical electrical and biological performance evaluation . ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-4. [PMID: 38083526 DOI: 10.1109/embc40787.2023.10340761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
High throughput testing of clinically representative Pt electrodes requires an inexpensive, efficient method of production. The aim of this study was to develop a facile platinum (Pt) model electrode (PME) and assess its production process, stability, and reproducibility. In this study a new model electrode was developed using representative substrates and dimensions as state-of-the-art electrode arrays used for neural stimulation. It was found that the PME is a highly reproducible robust system with similar electrochemical performance but with lower variability than other neural prosthetic arrays.Clinical Relevance- As an estimate these novel model electrodes cost 300 times less than a cochlear implant, can be manufactured in a tenth of the time and with a less than 10% failure rate. It is expected that model electrodes with low variability of electrical properties will significantly improve preclinical validation testing of electrochemical stimulation, surface modifications, and coatings.
Collapse
|
8
|
Abolpour Moshizi S, Pastras CJ, Sharma R, Parvez Mahmud MA, Ryan R, Razmjou A, Asadnia M. Recent advancements in bioelectronic devices to interface with the peripheral vestibular system. Biosens Bioelectron 2022; 214:114521. [PMID: 35820254 DOI: 10.1016/j.bios.2022.114521] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 06/23/2022] [Accepted: 06/27/2022] [Indexed: 11/26/2022]
Abstract
Balance disorders affect approximately 30% of the population throughout their lives and result in debilitating symptoms, such as spontaneous vertigo, nystagmus, and oscillopsia. The main cause of balance disorders is peripheral vestibular dysfunction, which may occur as a result of hair cell loss, neural dysfunction, or mechanical (and morphological) abnormality. The most common cause of vestibular dysfunction is arguably vestibular hair cell damage, which can result from an array of factors, such as ototoxicity, trauma, genetics, and ageing. One promising therapy is the vestibular prosthesis, which leverages the success of the cochlear implant, and endeavours to electrically integrate the primary vestibular afferents with the vestibular scene. Other translational approaches of interest include stem cell regeneration and gene therapies, which aim to restore or modify inner ear receptor function. However, both of these techniques are in their infancy and are currently undergoing further characterization and development in the laboratory, using animal models. Another promising translational avenue to treating vestibular hair cell dysfunction is the potential development of artificial biocompatible hair cell sensors, aiming to replicate functional hair cells and generate synthetic 'receptor potentials' for sensory coding of vestibular stimuli to the brain. Recently, artificial hair cell sensors have demonstrated significant promise, with improvements in their output, such as sensitivity and frequency selectivity. This article reviews the history and current state of bioelectronic devices to interface with the labyrinth, spanning the vestibular implant and artificial hair cell sensors.
Collapse
Affiliation(s)
| | - Christopher John Pastras
- School of Engineering, Macquarie University, Sydney, NSW, Australia; School of Medical Sciences, University of Sydney, NSW, Australia
| | - Rajni Sharma
- School of Engineering, Macquarie University, Sydney, NSW, Australia
| | - M A Parvez Mahmud
- School of Engineering, Deakin University, Geelong, VIC, 3216, Australia
| | - Rachel Ryan
- College of Public Health, The Ohio State University, Columbus, OH, 43210, United States
| | - Amir Razmjou
- School of Engineering, Macquarie University, Sydney, NSW, Australia; School of Engineering, Edith Cowan University, Joondalup, Perth, WA, 6027, Australia
| | - Mohsen Asadnia
- School of Engineering, Macquarie University, Sydney, NSW, Australia.
| |
Collapse
|
9
|
Printing biohybrid materials for bioelectronic cardio-3D-cellular constructs. iScience 2022; 25:104552. [PMID: 35784786 PMCID: PMC9240791 DOI: 10.1016/j.isci.2022.104552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/11/2022] [Accepted: 06/02/2022] [Indexed: 11/24/2022] Open
Abstract
Conductive hydrogels are emerging as promising materials for bioelectronic applications as they minimize the mismatch between biological and electronic systems. We propose a strategy to bioprint biohybrid conductive bioinks based on decellularized extracellular matrix (dECM) and multiwalled carbon nanotubes. These inks contained conductive features and morphology of the dECM fibers. Electrical stimulation (ES) was applied to bioprinted structures containing human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs). It was observed that in the absence of external ES, the conductive properties of the materials can improve the contractile behavior of the hPSC-CMs, and this effect is enhanced under the application of external ES. Genetic markers indicated a trend toward a more mature state of the cells with upregulated calcium handling proteins and downregulation of calcium channels involved in the generation of pacemaking currents. These results demonstrate the potential of our strategy to manufacture conductive hydrogels in complex geometries for actuating purposes. Conductive biohybrid hydrogels were 3D bioprinted using the FRESH method MWCNTs increased the conductivity and fiber diameter of dECM hydrogels Bioactuating applications were explored on the bioprinted structures Material’s conductivity and external electrical stimulation improved cell contractility
Collapse
|
10
|
Khan ZM, Wilts E, Vlaisavljevich E, Long TE, Verbridge SS. Electroresponsive Hydrogels for Therapeutic Applications in the Brain. Macromol Biosci 2021; 22:e2100355. [PMID: 34800348 DOI: 10.1002/mabi.202100355] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/29/2021] [Indexed: 12/22/2022]
Abstract
Electroresponsive hydrogels possess a conducting material component and respond to electric stimulation through reversible absorption and expulsion of water. The high level of hydration, soft elastomeric compliance, biocompatibility, and enhanced electrochemical properties render these hydrogels suitable for implantation in the brain to enhance the transmission of neural electric signals and ion transport. This review provides an overview of critical electroresponsive hydrogel properties for augmenting electric stimulation in the brain. A background on electric stimulation in the brain through electroresponsive hydrogels is provided. Common conducting materials and general techniques to integrate them into hydrogels are briefly discussed. This review focuses on and summarizes advances in electric stimulation of electroconductive hydrogels for therapeutic applications in the brain, such as for controlling delivery of drugs, directing neural stem cell differentiation and neurogenesis, improving neural biosensor capabilities, and enhancing neural electrode-tissue interfaces. The key challenges in each of these applications are discussed and recommendations for future research are also provided.
Collapse
Affiliation(s)
- Zerin M Khan
- Virginia Tech - Wake Forest University School of Biomedical Engineering and Sciences, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Emily Wilts
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada
| | - Eli Vlaisavljevich
- Virginia Tech - Wake Forest University School of Biomedical Engineering and Sciences, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Timothy E Long
- Biodesign Center for Sustainable Macromolecular Materials and Manufacturing, Arizona State University, Tempe, AZ, 85287, USA
| | - Scott S Verbridge
- Virginia Tech - Wake Forest University School of Biomedical Engineering and Sciences, Virginia Tech, Blacksburg, VA, 24061, USA
| |
Collapse
|
11
|
Yin P, Liu Y, Xiao L, Zhang C. Advanced Metallic and Polymeric Coatings for Neural Interfacing: Structures, Properties and Tissue Responses. Polymers (Basel) 2021; 13:2834. [PMID: 34451372 PMCID: PMC8401399 DOI: 10.3390/polym13162834] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/15/2021] [Accepted: 08/17/2021] [Indexed: 02/07/2023] Open
Abstract
Neural electrodes are essential for nerve signal recording, neurostimulation, neuroprosthetics and neuroregeneration, which are critical for the advancement of brain science and the establishment of the next-generation brain-electronic interface, central nerve system therapeutics and artificial intelligence. However, the existing neural electrodes suffer from drawbacks such as foreign body responses, low sensitivity and limited functionalities. In order to overcome the drawbacks, efforts have been made to create new constructions and configurations of neural electrodes from soft materials, but it is also more practical and economic to improve the functionalities of the existing neural electrodes via surface coatings. In this article, recently reported surface coatings for neural electrodes are carefully categorized and analyzed. The coatings are classified into different categories based on their chemical compositions, i.e., metals, metal oxides, carbons, conducting polymers and hydrogels. The characteristic microstructures, electrochemical properties and fabrication methods of the coatings are comprehensively presented, and their structure-property correlations are discussed. Special focus is given to the biocompatibilities of the coatings, including their foreign-body response, cell affinity, and long-term stability during implantation. This review article can provide useful and sophisticated insights into the functional design, material selection and structural configuration for the next-generation multifunctional coatings of neural electrodes.
Collapse
Affiliation(s)
| | - Yang Liu
- Department of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, China; (P.Y.); (L.X.)
| | | | - Chao Zhang
- Department of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, China; (P.Y.); (L.X.)
| |
Collapse
|
12
|
Abstract
Flexible bioelectronics have promising applications in electronic skin, wearable devices, biomedical electronics, etc. Hydrogels have unique advantages for bioelectronics due to their tissue-like mechanical properties and excellent biocompatibility. Particularly, conductive and tissue adhesive hydrogels can self-adhere to bio-tissues and have great potential in implantable wearable bioelectronics. This review focuses on the recent progress in tissue adhesive hydrogel bioelectronics, including the mechanism and preparation of tissue adhesive hydrogels, the fabrication strategies of conductive hydrogels, and tissue adhesive hydrogel bioelectronics and applications. Some perspectives on tissue adhesive hydrogel bioelectronics are provided at the end of the review.
Collapse
Affiliation(s)
- Shengnan Li
- Key Laboratory of Polymeric Composite and Functional Materials of Ministry of Education, Guangdong Functional Biomaterials Engineering Technology Research Center, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials Science and Engineering, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, China.
| | - Yang Cong
- College of Materials Science and Chemical Engineering, Ningbo University of Technology, Ningbo 315201, China
| | - Jun Fu
- Key Laboratory of Polymeric Composite and Functional Materials of Ministry of Education, Guangdong Functional Biomaterials Engineering Technology Research Center, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials Science and Engineering, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, China.
| |
Collapse
|
13
|
Cuttaz EA, Chapman CAR, Syed O, Goding JA, Green RA. Stretchable, Fully Polymeric Electrode Arrays for Peripheral Nerve Stimulation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2004033. [PMID: 33898185 PMCID: PMC8061359 DOI: 10.1002/advs.202004033] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 01/19/2021] [Indexed: 05/08/2023]
Abstract
There is a critical need to transition research level flexible polymer bioelectronics toward the clinic by demonstrating both reliability in fabrication and stable device performance. Conductive elastomers (CEs) are composites of conductive polymers in elastomeric matrices that provide both flexibility and enhanced electrochemical properties compared to conventional metallic electrodes. This work focuses on the development of nerve cuff devices and the assessment of the device functionality at each development stage, from CE material to fully polymeric electrode arrays. Two device types are fabricated by laser machining of a thick and thin CE sheet variant on an insulative polydimethylsiloxane substrate and lamination into tubing to produce pre-curled cuffs. Device performance and stability following sterilization and mechanical loading are compared to a state-of-the-art stretchable metallic nerve cuff. The CE cuffs are found to be electrically and mechanically stable with improved charge transfer properties compared to the commercial cuff. All devices are applied to an ex vivo whole sciatic nerve and shown to be functional, with the CE cuffs demonstrating superior charge transfer and electrochemical safety in the biological environment.
Collapse
Affiliation(s)
- Estelle A. Cuttaz
- Department of BioengineeringImperial CollegeSouth KensingtonLondonSW7 2AZUK
| | | | - Omaer Syed
- Department of BioengineeringImperial CollegeSouth KensingtonLondonSW7 2AZUK
| | - Josef A. Goding
- Department of BioengineeringImperial CollegeSouth KensingtonLondonSW7 2AZUK
| | - Rylie A. Green
- Department of BioengineeringImperial CollegeSouth KensingtonLondonSW7 2AZUK
| |
Collapse
|
14
|
Wang C, Yokota T, Someya T. Natural Biopolymer-Based Biocompatible Conductors for Stretchable Bioelectronics. Chem Rev 2021; 121:2109-2146. [DOI: 10.1021/acs.chemrev.0c00897] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Chunya Wang
- Department of Electrical Engineering and Information Systems, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Tomoyuki Yokota
- Department of Electrical Engineering and Information Systems, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Takao Someya
- Department of Electrical Engineering and Information Systems, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Center for Emergent Matter Science, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Thin-Film Device Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
15
|
Liu J, Qu S, Suo Z, Yang W. Functional hydrogel coatings. Natl Sci Rev 2020; 8:nwaa254. [PMID: 34691578 PMCID: PMC8288423 DOI: 10.1093/nsr/nwaa254] [Citation(s) in RCA: 129] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 09/22/2020] [Accepted: 09/23/2020] [Indexed: 12/21/2022] Open
Abstract
Hydrogels—natural or synthetic polymer networks that swell in water—can be made mechanically, chemically and electrically compatible with living tissues. There has been intense research and development of hydrogels for medical applications since the invention of hydrogel contact lenses in 1960. More recently, functional hydrogel coatings with controlled thickness and tough adhesion have been achieved on various substrates. Hydrogel-coated substrates combine the advantages of hydrogels, such as lubricity, biocompatibility and anti-biofouling properties, with the advantages of substrates, such as stiffness, toughness and strength. In this review, we focus on three aspects of functional hydrogel coatings: (i) applications and functions enabled by hydrogel coatings, (ii) methods of coating various substrates with different functional hydrogels with tough adhesion, and (iii) tests to evaluate the adhesion between functional hydrogel coatings and substrates. Conclusions and outlook are given at the end of this review.
Collapse
Affiliation(s)
- Junjie Liu
- Center for X-Mechanics, Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province and Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, China
- State Key Laboratory of Fluid Power and Mechatronic System, Zhejiang University, Hangzhou 310027, China
- Applied Mechanics and Structure Safety Key Laboratory of Sichuan Province, School of Mechanics and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Shaoxing Qu
- Center for X-Mechanics, Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province and Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, China
- State Key Laboratory of Fluid Power and Mechatronic System, Zhejiang University, Hangzhou 310027, China
| | - Zhigang Suo
- John A. Paulson School of Engineering and Applied Sciences, Kavli Institute for Bionano Science and Technology, Harvard University, Cambridge, MA 02138, USA
| | - Wei Yang
- Center for X-Mechanics, Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province and Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
16
|
Dalrymple AN, Huynh M, Nayagam BA, Lee CD, Weiland GR, Petrossians A, J J, Iii W, Fallon JB, Shepherd RK. Electrochemical and biological characterization of thin-film platinum-iridium alloy electrode coatings: a chronic in vivo study. J Neural Eng 2020; 17:036012. [PMID: 32408281 DOI: 10.1088/1741-2552/ab933d] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
OBJECTIVE To evaluate the electrochemical properties, biological response, and surface characterization of an electrodeposited Platinum-Iridium (Pt-Ir) electrode coating on cochlear implants subjected to chronic stimulation in vivo. APPROACH Electrochemical impedance spectroscopy (EIS), charge storage capacity (CSC), charge injection limit (CIL), and voltage transient (VT) impedance were measured bench-top before and after implant and in vivo. Coated Pt-Ir and uncoated Pt electrode arrays were implanted into cochlea of normal hearing rats and stimulated for ∼4 h d, 5 d week-1 for 5 weeks at levels within the normal clinical range. Neural function was monitored using electrically-evoked auditory brainstem responses. After explant, the electrode surfaces were assessed, and cochleae examined histologically. MAIN RESULTS When measured on bench-top before and after stimulation, Pt-Ir coated electrodes had significantly lower VT impedance (p < 0.001) and significantly higher CSC (p < 0.001) and CIL (p < 0.001) compared to uncoated Pt electrodes. In vivo, the CSC and CIL of Pt-Ir were significantly higher than Pt throughout the implantation period (p= 0.047 and p< 0.001, respectively); however, the VT impedance (p= 0.3) was not. There was no difference in foreign body response between material cohorts, although cochleae implanted with coated electrodes contained small deposits of Pt-Ir. There was no evidence of increased neural loss or loss of neural function in either group. Surface examination revealed no Pt corrosion on any electrodes. SIGNIFICANCE Electrodeposited Pt-Ir electrodes demonstrated significant improvements in electrochemical performance on the bench-top and in vivo compared to uncoated Pt. Neural function and tissue response to Pt-Ir electrodes were not different from uncoated Pt, despite small deposits of Pt-Ir in the tissue capsule. Electrodeposited Pt-Ir coatings offer promise as an improved electrode coating for active neural prostheses.
Collapse
|
17
|
Parashar K, Prajapati D, McIntyre R, Kandasubramanian B. Advancements in Biological Neural Interfaces Using Conducting Polymers: A Review. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c00174] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Kashish Parashar
- Nanofabrication and Characterization Lab, Centre for Converging Technologies, University of Rajasthan, JLN Marg, Jaipur-302004, India
| | - Deepak Prajapati
- Material Science and Engineering, Indian Institute of Technology, Gandhinagar, Gujarat 382355, India
| | | | - Balasubramanian Kandasubramanian
- Nano Surface Texturing Lab, Dept. of Metallurgical and Materials Engineering, Defence Institute of Advanced Technology (DIAT), Ministry of Defence, DRDO, Girinagar, Pune-411025, India
| |
Collapse
|
18
|
Dalrymple AN, Robles UA, Huynh M, Nayagam BA, Green RA, Poole-Warren LA, Fallon JB, Shepherd RK. Electrochemical and biological performance of chronically stimulated conductive hydrogel electrodes. J Neural Eng 2020; 17:026018. [DOI: 10.1088/1741-2552/ab7cfc] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
19
|
Dalrymple AN, Huynh M, Robles UA, Marroquin JB, Lee CD, Petrossians A, Whalen JJ, Li D, Parkington HC, Forsythe JS, Green RA, Poole-Warren LA, Shepherd RK, Fallon JB. Electrochemical and mechanical performance of reduced graphene oxide, conductive hydrogel, and electrodeposited Pt-Ir coated electrodes: an active in vitro study. J Neural Eng 2019; 17:016015. [PMID: 31652427 DOI: 10.1088/1741-2552/ab5163] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
OBJECTIVE To systematically compare the in vitro electrochemical and mechanical properties of several electrode coatings that have been reported to increase the efficacy of medical bionics devices by increasing the amount of charge that can be delivered safely to the target neural tissue. APPROACH Smooth platinum (Pt) ring and disc electrodes were coated with reduced graphene oxide, conductive hydrogel, or electrodeposited Pt-Ir. Electrodes with coatings were compared with uncoated smooth Pt electrodes before and after an in vitro accelerated aging protocol. The various coatings were compared mechanically using the adhesion-by-tape test. Electrodes were stimulated in saline for 24 hours/day 7 days/week for 21 d at 85 °C (1.6-year equivalence) at a constant charge density of 200 µC/cm2/phase. Electrodes were graded on surface corrosion and trace analysis of Pt in the electrolyte after aging. Electrochemical measurements performed before, during, and after aging included electrochemical impedance spectroscopy, cyclic voltammetry, and charge injection limit and impedance from voltage transient recordings. MAIN RESULTS All three coatings adhered well to smooth Pt and exhibited electrochemical advantage over smooth Pt electrodes prior to aging. After aging, graphene coated electrodes displayed a stimulation-induced increase in impedance and reduction in the charge injection limit (p < 0.001), alongside extensive corrosion and release of Pt into the electrolyte. In contrast, both conductive hydrogel and Pt-Ir coated electrodes had smaller impedances and larger charge injection limits than smooth Pt electrodes (p < 0.001) following aging regardless of the stimulus level and with little evidence of corrosion or Pt dissolution. SIGNIFICANCE This study rigorously tested the mechanical and electrochemical performance of electrode coatings in vitro and provided suitable candidates for future in vivo testing.
Collapse
|
20
|
Hügl S, Scheper V, Gepp MM, Lenarz T, Rau TS, Schwieger J. Coating stability and insertion forces of an alginate-cell-based drug delivery implant system for the inner ear. J Mech Behav Biomed Mater 2019; 97:90-98. [DOI: 10.1016/j.jmbbm.2019.05.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 04/01/2019] [Accepted: 05/03/2019] [Indexed: 12/20/2022]
|
21
|
Kleber C, Lienkamp K, Rühe J, Asplund M. Wafer-Scale Fabrication of Conducting Polymer Hydrogels for Microelectrodes and Flexible Bioelectronics. ACTA ACUST UNITED AC 2019; 3:e1900072. [PMID: 32648703 DOI: 10.1002/adbi.201900072] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 06/13/2019] [Indexed: 11/06/2022]
Abstract
Future-oriented directions in neural interface technologies point towards the development of multimodal devices that combine different functionalities such as neural stimulation, neurotransmitter sensing, and drug release within one platform. Conducting polymer hydrogels (CPHs) are suggested as materials for the coating of standard metal electrodes to add functionalities such as local delivery of therapeutic drugs. However, to make such coatings truly useful for multimodal devices, it is necessary to develop process technologies that allow the micropatterning of CPHs onto selected electrode sites. In this study, a wafer-scale fabrication procedure is presented, which is used to coat the CPH, based on the hydrogel P(DMAA-co-5%MABP-co-2,5%SSNa) and the conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT), onto flexible neural probes. The resulting material has favorable properties for the generation of recording electrodes and in addition offers a convenient platform for biofunctionalization. By controlling the PEDOT content within the hydrogel matrix, charge injection limits of up to 3.7 mC cm- 2 are obtained. Long-term stability is tested by immersing coated samples in phosphate-buffered saline solution at 37 °C for 1 year. Non-cytotoxicity of the coatings is confirmed with a direct cell culture test using a fluorescent neuroblastoma cell line.
Collapse
Affiliation(s)
- Carolin Kleber
- Department of Microsystems Engineering, IMTEK, University of Freiburg, 79110, Freiburg, Germany.,Brainlinks-Braintools, University of Freiburg, 79110, Freiburg, Germany
| | - Karen Lienkamp
- Department of Microsystems Engineering, IMTEK, University of Freiburg, 79110, Freiburg, Germany.,FIT - Freiburg Centre for Interactive Materials and Bioinspired Technologies, University of Freiburg, 79110, Freiburg, Germany
| | - Jürgen Rühe
- Department of Microsystems Engineering, IMTEK, University of Freiburg, 79110, Freiburg, Germany.,Brainlinks-Braintools, University of Freiburg, 79110, Freiburg, Germany.,FIT - Freiburg Centre for Interactive Materials and Bioinspired Technologies, University of Freiburg, 79110, Freiburg, Germany
| | - Maria Asplund
- Department of Microsystems Engineering, IMTEK, University of Freiburg, 79110, Freiburg, Germany.,Brainlinks-Braintools, University of Freiburg, 79110, Freiburg, Germany
| |
Collapse
|
22
|
Lu H, Zhang N, Ma M. Electroconductive hydrogels for biomedical applications. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2019; 11:e1568. [DOI: 10.1002/wnan.1568] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 05/22/2019] [Accepted: 05/23/2019] [Indexed: 02/06/2023]
Affiliation(s)
- Han Lu
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at Microscale University of Science and Technology of China Hefei China
| | - Ning Zhang
- Department of Biology and Environmental Engineering Hefei University Hefei China
| | - Mingming Ma
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at Microscale University of Science and Technology of China Hefei China
| |
Collapse
|
23
|
Walker BW, Lara RP, Mogadam E, Yu CH, Kimball W, Annabi N. Rational Design of Microfabricated Electroconductive Hydrogels for Biomedical Applications. Prog Polym Sci 2019; 92:135-157. [PMID: 32831422 PMCID: PMC7441850 DOI: 10.1016/j.progpolymsci.2019.02.007] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Electroconductive hydrogels (ECHs) are highly hydrated 3D networks generated through the incorporation of conductive polymers, nanoparticles, and other conductive materials into polymeric hydrogels. ECHs combine several advantageous properties of inherently conductive materials with the highly tunable physical and biochemical properties of hydrogels. Recently, the development of biocompatible ECHs has been investigated for various biomedical applications, such as tissue engineering, drug delivery, biosensors, flexible electronics, and other implantable medical devices. Several methods for the synthesis of ECHs have been reported, which include the incorporation of electrically conductive materials such as gold and silver nanoparticles, graphene, and carbon nanotubes, as well as various conductive polymers (CPs), such as polyaniline, polypyrrole, and poly(3,4-ethylenedioxyythiophene) into hydrogel networks. Theses electroconductive composite hydrogels can be used as scaffolds with high swellability, tunable mechanical properties, and the capability to support cell growth both in vitro and in vivo. Furthermore, recent advancements in microfabrication techniques such as three dimensional (3D) bioprinting, micropatterning, and electrospinning have led to the development of ECHs with biomimetic microarchitectures that reproduce the characteristics of the native extracellular matrix (ECM). In addition, smart ECHs with controlled structures and healing properties have also been engineered into devices with prolonged half-lives and increased durability. The combination of sophisticated synthesis chemistries and modern microfabrication techniques have led to engineer smart ECHs with advanced architectures, geometries, and functionalities that are being increasingly used in drug delivery systems, biosensors, tissue engineering, and soft electronics. In this review, we will summarize different strategies to synthesize conductive biomaterials. We will also discuss the advanced microfabrication techniques used to fabricate ECHs with complex 3D architectures, as well as various biomedical applications of microfabricated ECHs.
Collapse
Affiliation(s)
- Brian W Walker
- Department of Chemical and Biomolecular Engineering, University of California-Los Angeles, Los Angeles, CA, 90095, USA
| | - Roberto Portillo Lara
- Department of Chemical Engineering, Northeastern University, Boston, MA, 02115, USA
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Zapopan, JAL, Mexico
| | - Emad Mogadam
- Department of Internal Medicine, Huntington Hospital, Pasadena, CA, 91105, USA
- Department of Internal Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Chu Hsiang Yu
- Department of Chemical Engineering, Northeastern University, Boston, MA, 02115, USA
| | - William Kimball
- Department of Chemical Engineering, Northeastern University, Boston, MA, 02115, USA
| | - Nasim Annabi
- Department of Chemical and Biomolecular Engineering, University of California-Los Angeles, Los Angeles, CA, 90095, USA
- Biomaterials Innovation Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Center for Minimally Invasive Therapeutics (C-MIT), California NanoSystems Institute (CNSI), University of California - Los Angeles, Los Angeles, CA, 90095, USA
| |
Collapse
|
24
|
Palmer JC, Green RA, Boscher F, Poole-Warren LA, Carter PM, Enke YL, Lovell NH, Lord MS. Development and performance of a biomimetic artificial perilymph for in vitro testing of medical devices. J Neural Eng 2019; 16:026006. [DOI: 10.1088/1741-2552/aaf482] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
25
|
Soft and elastic hydrogel-based microelectronics for localized low-voltage neuromodulation. Nat Biomed Eng 2019; 3:58-68. [DOI: 10.1038/s41551-018-0335-6] [Citation(s) in RCA: 299] [Impact Index Per Article: 59.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 11/27/2018] [Indexed: 12/11/2022]
|
26
|
Cuttaz E, Goding J, Vallejo-Giraldo C, Aregueta-Robles U, Lovell N, Ghezzi D, Green RA. Conductive elastomer composites for fully polymeric, flexible bioelectronics. Biomater Sci 2019; 7:1372-1385. [DOI: 10.1039/c8bm01235k] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Soft, flexible and stretchable conductive elastomers made of polyurethane and PEDOT:PSS blends were fabricated into fully polymeric implantable bioelectrode arrays.
Collapse
Affiliation(s)
- Estelle Cuttaz
- Department of Bioengineering
- Imperial College London
- London
- UK
- Medtronic Chair in Neuroengineering
| | - Josef Goding
- Department of Bioengineering
- Imperial College London
- London
- UK
| | | | | | - Nigel Lovell
- Graduate School of Biomedical Engineering
- UNSW
- Sydney 2052
- Australia
| | - Diego Ghezzi
- Medtronic Chair in Neuroengineering
- Center for Neuroprosthetics and Institute of Bioengineering
- School of Engineering
- École Polytechnique Fédérale de Lausanne
- Switzerland
| | - Rylie A. Green
- Department of Bioengineering
- Imperial College London
- London
- UK
| |
Collapse
|
27
|
Green R. Are ‘next generation’ bioelectronics being designed using old technologies? ACTA ACUST UNITED AC 2018. [DOI: 10.2217/bem-2018-0008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Rylie Green
- Department of Bioengineering, Imperial College London, London, SW7 2BP, UK
| |
Collapse
|
28
|
Shepherd RK, Villalobos J, Burns O, Nayagam DAX. The development of neural stimulators: a review of preclinical safety and efficacy studies. J Neural Eng 2018; 15:041004. [PMID: 29756600 PMCID: PMC6049833 DOI: 10.1088/1741-2552/aac43c] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE Given the rapid expansion of the field of neural stimulation and the rigorous regulatory approval requirements required before these devices can be applied clinically, it is important that there is clarity around conducting preclinical safety and efficacy studies required for the development of this technology. APPROACH The present review examines basic design principles associated with the development of a safe neural stimulator and describes the suite of preclinical safety studies that need to be considered when taking a device to clinical trial. MAIN RESULTS Neural stimulators are active implantable devices that provide therapeutic intervention, sensory feedback or improved motor control via electrical stimulation of neural or neuro-muscular tissue in response to trauma or disease. Because of their complexity, regulatory bodies classify these devices in the highest risk category (Class III), and they are therefore required to go through a rigorous regulatory approval process before progressing to market. The successful development of these devices is achieved through close collaboration across disciplines including engineers, scientists and a surgical/clinical team, and the adherence to clear design principles. Preclinical studies form one of several key components in the development pathway from concept to product release of neural stimulators. Importantly, these studies provide iterative feedback in order to optimise the final design of the device. Key components of any preclinical evaluation include: in vitro studies that are focussed on device reliability and include accelerated testing under highly controlled environments; in vivo studies using animal models of the disease or injury in order to assess efficacy and, given an appropriate animal model, the safety of the technology under both passive and electrically active conditions; and human cadaver and ex vivo studies designed to ensure the device's form factor conforms to human anatomy, to optimise the surgical approach and to develop any specialist surgical tooling required. SIGNIFICANCE The pipeline from concept to commercialisation of these devices is long and expensive; careful attention to both device design and its preclinical evaluation will have significant impact on the duration and cost associated with taking a device through to commercialisation. Carefully controlled in vitro and in vivo studies together with ex vivo and human cadaver trials are key components of a thorough preclinical evaluation of any new neural stimulator.
Collapse
Affiliation(s)
- Robert K Shepherd
- Bionics Institute, East Melbourne, Australia. Medical Bionics Department, University of Melbourne, Melbourne, Australia
| | | | | | | |
Collapse
|
29
|
Hudak EM, Kumsa DW, Martin HB, Mortimer JT. Electron transfer processes occurring on platinum neural stimulating electrodes: calculated charge-storage capacities are inaccessible during applied stimulation. J Neural Eng 2018; 14:046012. [PMID: 28345534 DOI: 10.1088/1741-2552/aa6945] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
OBJECTIVE Neural prostheses employing platinum electrodes are often constrained by a charge/charge-density parameter known as the Shannon limit. In examining the relationship between charge injection and observed tissue damage, the electrochemistry at the electrode-tissue interface should be considered. The charge-storage capacity (CSC) is often used as a predictor of how much charge an electrode can inject during stimulation, but calculating charge from a steady-state i-E curve (cyclic voltammogram) over the water window misrepresents how electrodes operate during stimulation. We aim to gain insight into why CSC predictions from classic i-E curves overestimate the amount of charge that can be injected during neural stimulation pulsing. APPROACH In this study, we use a standard electrochemical technique to investigate how platinum electrochemistry depends on the potentials accessed by the electrode and on the electrolyte composition. MAIN RESULTS The experiments indicate: (1) platinum electrodes must be subjected to a 'cleaning' procedure in order to expose the maximum number of surface platinum sites for hydrogen adsorption; (2) the 'cleaned' platinum surface will likely revert to an obstructed condition under typical neural stimulation conditions; (3) irreversible oxygen reduction may occur under neural stimulation conditions, so the consequences of this reaction should be considered; and (4) the presence of the chloride ion (Cl-) or proteins (bovine serum albumin) inhibits oxide formation and alters H adsorption. SIGNIFICANCE These observations help explain why traditional CSC calculations overestimate the charge that can be injected during neural stimulation. The results underscore how careful electrochemical examination of the electrode-electrolyte interface can result in more accurate expectations of electrode performance during applied stimulation.
Collapse
Affiliation(s)
- Eric M Hudak
- Department of Chemical and Biomolecular Engineering, Case Western Reserve University, AW Smith Building, Cleveland, OH, United States of America
| | | | | | | |
Collapse
|
30
|
Won SM, Song E, Zhao J, Li J, Rivnay J, Rogers JA. Recent Advances in Materials, Devices, and Systems for Neural Interfaces. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1800534. [PMID: 29855089 DOI: 10.1002/adma.201800534] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 02/28/2018] [Indexed: 06/08/2023]
Abstract
Technologies capable of establishing intimate, long-lived optical/electrical interfaces to neural systems will play critical roles in neuroscience research and in the development of nonpharmacological treatments for neurological disorders. The development of high-density interfaces to 3D populations of neurons across entire tissue systems in living animals, including human subjects, represents a grand challenge for the field, where advanced biocompatible materials and engineered structures for electrodes and light emitters will be essential. This review summarizes recent progress in these directions, with an emphasis on the most promising demonstrated concepts, materials, devices, and systems. The article begins with an overview of electrode materials with enhanced electrical and/or mechanical performance, in forms ranging from planar films, to micro/nanostructured surfaces, to 3D porous frameworks and soft composites. Subsequent sections highlight integration with active materials and components for multiplexed addressing, local amplification, wireless data transmission, and power harvesting, with multimodal operation in soft, shape-conformal systems. These advances establish the foundations for scalable architectures in optical/electrical neural interfaces of the future, where a blurring of the lines between biotic and abiotic systems will catalyze profound progress in neuroscience research and in human health/well-being.
Collapse
Affiliation(s)
- Sang Min Won
- Department of Electrical and Computer Engineering, Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana Champaign, Urbana, IL, 61801, USA
| | - Enming Song
- Department of Materials Science and Engineering, Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana Champaign, Northwestern University, Evanston, IL, 60208, USA
| | - Jianing Zhao
- Department of Mechanical Science and Engineering, Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana Champaign, Urbana, IL, 61801, USA
| | - Jinghua Li
- Department of Materials Science and Engineering, Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana Champaign, Northwestern University, Evanston, IL, 60208, USA
| | - Jonathan Rivnay
- Department of Biomedical Engineering, Simpson Querrey Institute for Nanobiotechnology, Northwestern University, Evanston, IL, 60208, USA
| | - John A Rogers
- Center for Bio-Integrated Electronics, Department of Materials Science and Engineering, Biomedical Engineering, Chemistry, Mechanical Engineering, Electrical Engineering and Computer Science, and Neurological Surgery, Simpson Querrey Institute for Nano/biotechnology, McCormick School of Engineering and Feinberg School of Medicine, Northwestern University, Evanston, IL, 60208, USA
| |
Collapse
|
31
|
Bentil SA, Dupaix RB. Simulations of hydrogel-coated neural microelectrodes to assess biocompatibility improvement using strain as a metric for micromotion. Biomed Phys Eng Express 2018. [DOI: 10.1088/2057-1976/aab990] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
32
|
Staples NA, Goding JA, Gilmour AD, Aristovich KY, Byrnes-Preston P, Holder DS, Morley JW, Lovell NH, Chew DJ, Green RA. Conductive Hydrogel Electrodes for Delivery of Long-Term High Frequency Pulses. Front Neurosci 2018; 11:748. [PMID: 29375292 PMCID: PMC5768631 DOI: 10.3389/fnins.2017.00748] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 12/22/2017] [Indexed: 11/17/2022] Open
Abstract
Nerve block waveforms require the passage of large amounts of electrical energy at the neural interface for extended periods of time. It is desirable that such waveforms be applied chronically, consistent with the treatment of protracted immune conditions, however current metal electrode technologies are limited in their capacity to safely deliver ongoing stable blocking waveforms. Conductive hydrogel (CH) electrode coatings have been shown to improve the performance of conventional bionic devices, which use considerably lower amounts of energy than conventional metal electrodes to replace or augment sensory neuron function. In this study the application of CH materials was explored, using both a commercially available platinum iridium (PtIr) cuff electrode array and a novel low-cost stainless steel (SS) electrode array. The CH was able to significantly increase the electrochemical performance of both array types. The SS electrode coated with the CH was shown to be stable under continuous delivery of 2 mA square pulse waveforms at 40,000 Hz for 42 days. CH coatings have been shown as a beneficial electrode material compatible with long-term delivery of high current, high energy waveforms.
Collapse
Affiliation(s)
- Naomi A Staples
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, Australia
| | - Josef A Goding
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, Australia.,Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Aaron D Gilmour
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, Australia
| | - Kirill Y Aristovich
- Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Phillip Byrnes-Preston
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, Australia
| | - David S Holder
- Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - John W Morley
- School of Medical Science, University of New South Wales, Sydney, NSW, Australia.,School of Medicine, Western Sydney University, Sydney, NSW, Australia
| | - Nigel H Lovell
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, Australia
| | | | - Rylie A Green
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, Australia.,Department of Bioengineering, Imperial College London, London, United Kingdom
| |
Collapse
|
33
|
Goding J, Gilmour A, Martens P, Poole-Warren L, Green R. Interpenetrating Conducting Hydrogel Materials for Neural Interfacing Electrodes. Adv Healthc Mater 2017; 6. [PMID: 28198591 DOI: 10.1002/adhm.201601177] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 01/09/2017] [Indexed: 01/05/2023]
Abstract
Conducting hydrogels (CHs) are an emerging technology in the field of medical electrodes and brain-machine interfaces. The greatest challenge to the fabrication of CH electrodes is the hybridization of dissimilar polymers (conductive polymer and hydrogel) to ensure the formation of interpenetrating polymer networks (IPN) required to achieve both soft and electroactive materials. A new hydrogel system is developed that enables tailored placement of covalently immobilized dopant groups within the hydrogel matrix. The role of immobilized dopant in the formation of CH is investigated through covalent linking of sulfonate doping groups to poly(vinyl alcohol) (PVA) macromers. These groups control the electrochemical growth of the conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) and subsequent material properties. The effect of dopant density and interdopant spacing on the physical, electrochemical, and mechanical properties of the resultant CHs is examined. Cytocompatible PVA hydrogels with PEDOT penetration throughout the depth of the electrode are produced. Interdopant spacing is found to be the key factor in the formation of IPNs, with smaller interdopant spacing producing CH electrodes with greater charge storage capacity and lower impedance due to increased PEDOT growth throughout the network. This approach facilitates tailorable, high-performance CH electrodes for next generation, low impedance neuroprosthetic devices.
Collapse
Affiliation(s)
- Josef Goding
- Graduate School of Biomedical Engineering; University of New South Wales; Sydney NSW 2052 Australia
| | - Aaron Gilmour
- Graduate School of Biomedical Engineering; University of New South Wales; Sydney NSW 2052 Australia
| | - Penny Martens
- Graduate School of Biomedical Engineering; University of New South Wales; Sydney NSW 2052 Australia
| | - Laura Poole-Warren
- Graduate School of Biomedical Engineering; University of New South Wales; Sydney NSW 2052 Australia
| | - Rylie Green
- Graduate School of Biomedical Engineering; University of New South Wales; Sydney NSW 2052 Australia
- Department of Bioengineering; Imperial College London; London SW72BP UK
| |
Collapse
|
34
|
Lee YJ, Kim HJ, Kang JY, Do SH, Lee SH. Biofunctionalization of Nerve Interface via Biocompatible Polymer-Roughened Pt Black on Cuff Electrode for Chronic Recording. Adv Healthc Mater 2017; 6. [PMID: 28092438 DOI: 10.1002/adhm.201601022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 11/11/2016] [Indexed: 12/21/2022]
Abstract
Peripheral nerve cuff electrodes with roughened Pt black (BPt) are coated with polyethylene glycol (PEG) and Nafion (NF). Although the influence of coated PEG and Nafion on roughened BPt on the electrical properties is weak, the cuff electrode with BPt/PEG and BPt/Nafion exhibits some very important properties. For example, it markedly decreases interfacial impedance, increases charge storage capacity (CSC) due to retaining the BPt surface structure, good stability without exfoliation in repetitive cyclic voltammetry scanning because it is protected by PEG or Nafion coating. In cell viability test, Nafion-coated BPt does not show cytotoxicity to rat Schwann cell line (S16) at 24 and 72 h with the Nafion coating ranging from 0.1 to 10 mg cm-2 . In addition, real-time polymerase chain reaction (PCR) analysis indicates that Schwann cell differentiation (S100 calcium-binding protein B, myelin basic protein, peripheral myelin protein 22), proliferation (proliferating cell nuclear antigen, cyclin-dependent kinase 1 (CDK1)), and adhesion molecules (neural cell adhesion molecule, laminin, fibronectin) are upregulated up to 5 mg cm-2 of Nafion. In animal study, the BPt/Nafion reduces infiltration of fibrotic tissue with high axonal maintenance with upregulation of proliferation (CDK1), adhesion (laminin, neuronal cell adhesion molecule), and neurotrophic factor receptor-related (gdnf family receptor alpha 1) mRNA expressions.
Collapse
Affiliation(s)
- Yi Jae Lee
- Center for BioMicrosystems; Korea Institute of Science and Technology; Seoul 02792 Republic of Korea
| | - Han-Jun Kim
- Department of Clinical Pathology; College of Veterinary Medicine; Konkuk University; Seoul 05029 Republic of Korea
| | - Ji Yoon Kang
- Center for BioMicrosystems; Korea Institute of Science and Technology; Seoul 02792 Republic of Korea
| | - Sun Hee Do
- Department of Clinical Pathology; College of Veterinary Medicine; Konkuk University; Seoul 05029 Republic of Korea
| | - Soo Hyun Lee
- Center for BioMicrosystems; Korea Institute of Science and Technology; Seoul 02792 Republic of Korea
| |
Collapse
|
35
|
Grid-like surface structures in thermoplastic polyurethane induce anti-inflammatory and anti-fibrotic processes in bone marrow-derived mesenchymal stem cells. Colloids Surf B Biointerfaces 2016; 148:104-115. [DOI: 10.1016/j.colsurfb.2016.06.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 06/03/2016] [Accepted: 06/13/2016] [Indexed: 11/22/2022]
|
36
|
Dencker F, Dreyer L, Müller D, Zernetsch H, Paasche G, Sindelar R, Glasmacher B. A silicone fiber coating as approach for the reduction of fibroblast growth on implant electrodes. J Biomed Mater Res B Appl Biomater 2016; 105:2574-2580. [PMID: 27701814 DOI: 10.1002/jbm.b.33798] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Revised: 08/19/2016] [Accepted: 09/12/2016] [Indexed: 11/11/2022]
Abstract
In cochlear implant (CI) patients, an increase in electrode impedance due to fibrotic encapsulation is frequently observed. Several attempts have been proposed to reduce fibroblast growth at the electrode contacts, but none proved to be satisfactory so far. Here, a silicone fiber coating of the electrode contacts is presented that provides a complex micro-scale surface topography and increases hydrophobicity to inhibit fibroblast growth and adhesion. A silicone fiber electrospinning process was developed to create a thin and porous fiber mesh. Fiber coatings were applied on graphite specimen holders, glass cover slips and CI electrode contacts. For characterization of the coating's pore distribution, water contact angle and electrical impedance were analyzed. Cytotoxicity and in vitro fibroblast growth were evaluated to assess biological efficacy of the coatings. It could be shown that the silicone fiber mesh itself had only minor influence on electrode impedance. A uniform, hydrophobic fiber coating could be achieved that decreased fibroblast growth without showing toxic effects. Finally, CI electrode contacts were successfully coated in order to present this promising approach for a long-term improvement of CI electrodes. We are one of the first groups that could successfully adapt the electrospinning technique on the utilization of silicone. Silicone was chosen because of its high hydrophobicity, chemical stability and excellent biocompatibility and as it is one of the biomaterials already used in CIs. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 2574-2580, 2017.
Collapse
Affiliation(s)
- Folke Dencker
- Department of Material Science, Faculty II, University of Applied Sciences and Arts Hannover, Germany.,Institute of Micro Production Technology, Leibniz Universität Hannover, Germany
| | - Lutz Dreyer
- Institute for Multiphase Processes, Leibniz Universität Hannover, Germany
| | - Dietrich Müller
- Department of Material Science, Faculty II, University of Applied Sciences and Arts Hannover, Germany
| | - Holger Zernetsch
- Institute for Multiphase Processes, Leibniz Universität Hannover, Germany
| | - Gerrit Paasche
- Department of Otolaryngology, Hannover Medical School, Germany.,Cluster of Excellence "Hearing4all", Hannover Medical School, Germany
| | - Ralf Sindelar
- Department of Material Science, Faculty II, University of Applied Sciences and Arts Hannover, Germany
| | - Birgit Glasmacher
- Institute for Multiphase Processes, Leibniz Universität Hannover, Germany
| |
Collapse
|
37
|
Hassarati RT, Foster LJR, Green RA. Influence of Biphasic Stimulation on Olfactory Ensheathing Cells for Neuroprosthetic Devices. Front Neurosci 2016; 10:432. [PMID: 27757072 PMCID: PMC5048075 DOI: 10.3389/fnins.2016.00432] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 09/06/2016] [Indexed: 12/19/2022] Open
Abstract
The recent success of olfactory ensheathing cell (OEC) assisted regeneration of injured spinal cord has seen a rising interest in the use of these cells in tissue-engineered systems. Previously shown to support neural cell growth through glial scar tissue, OECs have the potential to assist neural network formation in living electrode systems to produce superior neuroprosthetic electrode surfaces. The following study sought to understand the influence of biphasic electrical stimulation (ES), inherent to bionic devices, on cell survival and function, with respect to conventional metallic and developmental conductive hydrogel (CH) coated electrodes. The CH utilized in this study was a biosynthetic hydrogel consisting of methacrylated poly(vinyl-alcohol) (PVA), heparin and gelatin through which poly(3,4-ethylenedioxythiophene) (PEDOT) was electropolymerised. OECs cultured on Pt and CH surfaces were subjected to biphasic ES. Image-based cytometry yielded little significant difference between the viability and cell cycle of OECs cultured on the stimulated and passive samples. The significantly lower voltages measured across the CH electrodes (147 ± 3 mV) compared to the Pt (317 ± 5 mV), had shown to influence a higher percentage of viable cells on CH (91–93%) compared to Pt (78–81%). To determine the functionality of these cells following electrical stimulation, OECs co-cultured with PC12 cells were found to support neural cell differentiation (an indirect measure of neurotrophic factor production) following ES.
Collapse
Affiliation(s)
- Rachelle T Hassarati
- Graduate School of Biomedical Engineering, University of New South Wales Australia Sydney, NSW, Australia
| | - L John R Foster
- Bio/Polymers Research Group, School of Biotechnology and Biomolecular Sciences, University of New South Wales Australia Sydney, NSW, Australia
| | - Rylie A Green
- Graduate School of Biomedical Engineering, University of New South Wales Australia Sydney, NSW, Australia
| |
Collapse
|
38
|
Multifunctional hydrogel coatings on the surface of neural cuff electrode for improving electrode-nerve tissue interfaces. Acta Biomater 2016; 39:25-33. [PMID: 27163406 DOI: 10.1016/j.actbio.2016.05.009] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 03/18/2016] [Accepted: 05/03/2016] [Indexed: 01/12/2023]
Abstract
UNLABELLED Recently, implantable neural electrodes have been developed for recording and stimulation of the nervous system. However, when the electrode is implanted onto the nerve trunk, the rigid polyimide has a risk of damaging the nerve and can also cause inflammation due to a mechanical mismatch between the stiff polyimide and the soft biological tissue. These processes can interrupt the transmission of nerve signaling. In this paper, we have developed a nerve electrode coated with PEG hydrogel that contains poly(lactic-co-glycolic) acid (PLGA) microspheres (MS) loaded with anti-inflammatory cyclosporin A (CsA). Micro-wells were introduced onto the electrode in order to increase their surface area. This allows for loading a high-dose of the drug. Additionally, chemically treating the surface with aminopropylmethacrylamide can improve the adhesive interface between the electrode and the hydrogel. The surface of the micro-well cuff electrode (MCE) coated with polyethylene glycol (PEG) hydrogel and drug loaded PLGA microspheres (MS) were characterized by SEM and optical microscopy. Additionally, the conductive polymers, poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT/PSS), were formed on the hydrogel layer for improving the nerve signal quality, and then characterized for their electrochemical properties. The loading efficiencies and release profiles were investigated by High Performance Liquid Chromatography (HPLC). The drug loaded electrode resulted in a sustained release of CsA. Moreover, the surface coated electrode with PEG hydrogel and CsA loaded MP showed a significantly decreased fibrous tissue deposition and increased axonal density in animal tests. We expect that the developed nerve electrode will minimize the tissue damage during regeneration of the nervous system. STATEMENT OF SIGNIFICANCE The nerve electrodes are used for interfacing with the central nervous system (CNS) or with the peripheral nervous system (PNS). The interface electrodes should facilitate a closed interconnection with the nerve tissue and provide for selective stimulation and recording from multiple, independent, neurons of the neural system. In this case, an extraneural electrodes such as cuff and perineural electrodes are widely investigated because they can completely cover the nerve trunk and provide for a wide interface area. In this study, we have designed and prepared a functionalized nerve cuff electrode coated with PEG hydrogel containing Poly lactic-co-glycol acid (PLGA) microspheres (MS) loaded with cyclosporine A (CsA). To our knowledge, our findings suggest that surface coating a soft-hydrogel along with an anti-inflammatory drug loaded MS can be a useful strategy for improving the long-term biocompatibility of electrodes.
Collapse
|
39
|
Green R, Abidian MR. Conducting Polymers for Neural Prosthetic and Neural Interface Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2015; 27:7620-37. [PMID: 26414302 PMCID: PMC4681501 DOI: 10.1002/adma.201501810] [Citation(s) in RCA: 198] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 06/11/2015] [Indexed: 05/20/2023]
Abstract
Neural-interfacing devices are an artificial mechanism for restoring or supplementing the function of the nervous system, lost as a result of injury or disease. Conducting polymers (CPs) are gaining significant attention due to their capacity to meet the performance criteria of a number of neuronal therapies including recording and stimulating neural activity, the regeneration of neural tissue and the delivery of bioactive molecules for mediating device-tissue interactions. CPs form a flexible platform technology that enables the development of tailored materials for a range of neuronal diagnostic and treatment therapies. In this review, the application of CPs for neural prostheses and other neural interfacing devices is discussed, with a specific focus on neural recording, neural stimulation, neural regeneration, and therapeutic drug delivery.
Collapse
Affiliation(s)
- Rylie Green
- Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Mohammad Reza Abidian
- Biomedical Engineering Department, Materials Science & Engineering Department, Chemical Engineering Department, Materials Research Institute, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802 (USA)
| |
Collapse
|
40
|
Hassarati RT, Marcal H, John L, Foster R, Green RA. Biofunctionalization of conductive hydrogel coatings to support olfactory ensheathing cells at implantable electrode interfaces. J Biomed Mater Res B Appl Biomater 2015; 104:712-22. [PMID: 26248597 DOI: 10.1002/jbm.b.33497] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 07/09/2015] [Accepted: 07/18/2015] [Indexed: 11/06/2022]
Abstract
Mechanical discrepancies between conventional platinum (Pt) electrodes and neural tissue often result in scar tissue encapsulation of implanted neural recording and stimulating devices. Olfactory ensheathing cells (OECs) are a supportive glial cell in the olfactory nervous system which can transition through glial scar tissue while supporting the outgrowth of neural processes. It has been proposed that this function can be used to reconnect implanted electrodes with the target neural pathways. Conductive hydrogel (CH) electrode coatings have been proposed as a substrate for supporting OEC survival and proliferation at the device interface. To determine an ideal CH to support OECs, this study explored eight CH variants, with differing biochemical composition, in comparison to a conventional Pt electrodes. All CH variants were based on a biosynthetic hydrogel, consisting of poly(vinyl alcohol) and heparin, through which the conductive polymer (CP) poly(3,4-ethylenedioxythiophene) was electropolymerized. The biochemical composition was varied through incorporation of gelatin and sericin, which were expected to provide cell adherence functionality, supporting attachment, and cell spreading. Combinations of these biomolecules varied from 1 to 3 wt %. The physical, electrical, and biological impact of these molecules on electrode performance was assessed. Cyclic voltammetry and electrochemical impedance spectroscopy demonstrated that the addition of these biological molecules had little significant effect on the coating's ability to safely transfer charge. Cell attachment studies, however, determined that the incorporation of 1 wt % gelatin in the hydrogel was sufficient to significantly increase the attachment of OECs compared to the nonfunctionalized CH.
Collapse
Affiliation(s)
- Rachelle T Hassarati
- Graduate School of Biomedical Engineering, UNSW Australia, Sydney, Australia.,Bio/polymers Research Group, School of Biotechnology and Biomolecular Sciences, UNSW Australia, Sydney, Australia
| | - Helder Marcal
- Topical Therapeutics Research Group, School of Medical Sciences, Faculty of Medicine, UNSW Australia, Sydney, Australia
| | - L John
- Bio/polymers Research Group, School of Biotechnology and Biomolecular Sciences, UNSW Australia, Sydney, Australia
| | - R Foster
- Bio/polymers Research Group, School of Biotechnology and Biomolecular Sciences, UNSW Australia, Sydney, Australia
| | - Rylie A Green
- Graduate School of Biomedical Engineering, UNSW Australia, Sydney, Australia
| |
Collapse
|
41
|
Reich U, Warnecke A, Szczepek AJ, Mazurek B, Olze H. Establishment of an experimental system to study the influence of electrical field on cochlear structures. Neurosci Lett 2015; 599:38-42. [PMID: 26002079 DOI: 10.1016/j.neulet.2015.05.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 05/13/2015] [Accepted: 05/14/2015] [Indexed: 11/26/2022]
Abstract
Treatment of partial hearing loss with the combined electrical and acoustical stimulation (EAS) aims at restoring the hearing while preserving the residual hearing. The aim of present study was to establish an in vitro system to study the effects of an electrical field on the auditory hair cells and spiral ganglion cells. Cochlear tissues containing the organ of Corti, spiral limbus and spiral ganglion neurons were dissected from post-natal Wistar rats (p3-p5) and cultured in the micro-channels. Electric current was homogenously applied on the apical, medial and basal parts of explants. Biphasic rectangular pulses were applied continuously over a period of 30 h or 42 h and the explants were fixed and stained to visualize the hair cells and neurites. Application of electrical field for 30 h has not induced significant changes in the number of inner or outer hair cells when compared to the control. However, after 42 h of electric stimulation, the number of hair cells decreased significantly by about 30%. The medial and basal fragments were particularly affected. The number of neurites has not been influenced but significant neuritic beading, consistent with neurodegeneration, was observed after 42 h of electric stimulation. Although performed with immature auditory tissues, our findings hint at the possibility of particular electric current inducing damage or loss of auditory hair cells, which should be considered when designing EAS electrodes.
Collapse
Affiliation(s)
- Uta Reich
- Research Laboratory, Department of Otorhinolaryngology, Charité, Universitätsmedizin Berlin, Germany
| | - Athanasia Warnecke
- Hannover Medical School, Department of Otolaryngology, Hannover, Germany
| | - Agnieszka J Szczepek
- Research Laboratory, Department of Otorhinolaryngology, Charité, Universitätsmedizin Berlin, Germany.
| | - Birgit Mazurek
- Research Laboratory, Department of Otorhinolaryngology, Charité, Universitätsmedizin Berlin, Germany; Tinnitus Center, Universitätsmedizin Berlin, Germany
| | - Heidi Olze
- Research Laboratory, Department of Otorhinolaryngology, Charité, Universitätsmedizin Berlin, Germany; Department of Otorhinolaryngology, Charité, Universitätsmedizin Berlin, Germany
| |
Collapse
|
42
|
Kinoshita M, Kikkawa YS, Sakamoto T, Kondo K, Ishihara K, Konno T, Pawsey N, Yamasoba T. Safety, reliability, and operability of cochlear implant electrode arrays coated with biocompatible polymer. Acta Otolaryngol 2015; 135:320-7. [PMID: 25719221 DOI: 10.3109/00016489.2014.990580] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
CONCLUSION Polymer-coated electrodes can reduce surgically-induced trauma associated with the insertion of a cochlear implant (CI) electrode array. OBJECTIVES To evaluate if insertion trauma in CI surgery can be reduced by using electrode arrays coated with 2-methacryloyloxyethyl phosphorylcholine (MPC) polymer. METHODS We analyzed characteristics of the Contour Advance electrode arrays coated with MPC polymer. To assess surgical trauma during electrode insertion, polymer-coated or uncoated (n = 5 each) animal electrode arrays were implanted in guinea pig cochleae and operability and electrophysiological and histological changes were assessed. RESULTS Under light and scanning electron microscopy, polymer-coated electrodes did not appear different from uncoated electrodes, and no change was observed after mechanical stressing of the arrays. Electrode insertion was significantly easier when polymer-coated electrodes were used. Auditory brainstem response (ABR) thresholds did not differ between groups, but p1-n1 amplitudes of the coated group were larger compared with the uncoated group at 32 kHz at 28 days after surgery. The survival of outer hair cells and spiral ganglion cells was significantly greater in the polymer-coated group.
Collapse
|
43
|
Aregueta-Robles UA, Woolley AJ, Poole-Warren LA, Lovell NH, Green RA. Organic electrode coatings for next-generation neural interfaces. FRONTIERS IN NEUROENGINEERING 2014; 7:15. [PMID: 24904405 PMCID: PMC4034607 DOI: 10.3389/fneng.2014.00015] [Citation(s) in RCA: 141] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 05/06/2014] [Indexed: 01/05/2023]
Abstract
Traditional neuronal interfaces utilize metallic electrodes which in recent years have reached a plateau in terms of the ability to provide safe stimulation at high resolution or rather with high densities of microelectrodes with improved spatial selectivity. To achieve higher resolution it has become clear that reducing the size of electrodes is required to enable higher electrode counts from the implant device. The limitations of interfacing electrodes including low charge injection limits, mechanical mismatch and foreign body response can be addressed through the use of organic electrode coatings which typically provide a softer, more roughened surface to enable both improved charge transfer and lower mechanical mismatch with neural tissue. Coating electrodes with conductive polymers or carbon nanotubes offers a substantial increase in charge transfer area compared to conventional platinum electrodes. These organic conductors provide safe electrical stimulation of tissue while avoiding undesirable chemical reactions and cell damage. However, the mechanical properties of conductive polymers are not ideal, as they are quite brittle. Hydrogel polymers present a versatile coating option for electrodes as they can be chemically modified to provide a soft and conductive scaffold. However, the in vivo chronic inflammatory response of these conductive hydrogels remains unknown. A more recent approach proposes tissue engineering the electrode interface through the use of encapsulated neurons within hydrogel coatings. This approach may provide a method for activating tissue at the cellular scale, however, several technological challenges must be addressed to demonstrate feasibility of this innovative idea. The review focuses on the various organic coatings which have been investigated to improve neural interface electrodes.
Collapse
Affiliation(s)
| | - Andrew J. Woolley
- Graduate School of Biomedical Engineering, University of New South WalesSydney, NSW, Australia
- School of Medicine, University of Western SydneySydney, NSW, Australia
| | - Laura A. Poole-Warren
- Graduate School of Biomedical Engineering, University of New South WalesSydney, NSW, Australia
| | - Nigel H. Lovell
- Graduate School of Biomedical Engineering, University of New South WalesSydney, NSW, Australia
| | - Rylie A. Green
- Graduate School of Biomedical Engineering, University of New South WalesSydney, NSW, Australia
| |
Collapse
|