1
|
Klimtchuk ES, Prokaeva T, Spencer BH, Wong S, Ghosh S, Urdaneta A, Morgan G, Wales TE, Gursky O. Conformational differences in the light chain constant domain of immunoglobulin G and free light chain may influence proteolysis in AL amyloidosis. J Mol Biol 2024:168837. [PMID: 39490919 DOI: 10.1016/j.jmb.2024.168837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/07/2024] [Accepted: 10/22/2024] [Indexed: 11/05/2024]
Abstract
Immunoglobulin light chain amyloidosis (AL) is a life-threatening disease caused by the deposition of light chain (LC) and its fragments containing variable (VL) and portions of constant (CL) domains. AL patients feature either monoclonal free LCs (FLCs) circulating as covalent and noncovalent homodimers, or monoclonal immunoglobulin (Ig) wherein the LC and heavy chain (HC) form disulfide-linked heterodimers, or both. The role of full-length Ig in AL amyloidosis is unclear as prior studies focused on FLC or VL domain. We used a mammalian cell-based expression system to generate four AL patient-derived full-length IgGs, two non-AL IgG controls, and six corresponding FLC proteins derived from an IGLV6-57 germline precursor. Comparison of proteins' secondary structure, thermal stability, proteolytic susceptibility, and disulfide link reduction suggested the importance of local vs. global conformational stability. Analysis of IgGs vs. corresponding FLCs using hydrogen-deuterium exchange mass spectrometry revealed major differences in the local conformation/dynamics of the CL domain. In all IgGs vs. FLCs, segments containing β-strand and α-helix βAC-αACBC were more dynamic/exposed while segment βDC-βEC was less dynamic/exposed. Notably, these segments overlapped proteolysis-prone regions whose in vivo cleavage generates LC fragments found in AL deposits. Altogether, the results suggest that preferential cleavage in segments βAC-αACBC of FLC or βDC-βEC of LC in IgG helps generate amyloid protein precursors. We propose that protecting these segments using small-molecule stabilizers, which bind to the interfacial cavities CL-CL in FLC and/or CL-CH1 in IgG, is a potential therapeutic strategy to complement current approaches targeting VL-VL or VL-CL stabilization of LC dimer.
Collapse
Affiliation(s)
- Elena S Klimtchuk
- Amyloidosis Center, Chobanian & Avedisian School of Medicine, Boston University, Boston MA 02118, United States.
| | - Tatiana Prokaeva
- Amyloidosis Center, Chobanian & Avedisian School of Medicine, Boston University, Boston MA 02118, United States; Department of Pathology and Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, United States.
| | - Brian H Spencer
- Amyloidosis Center, Chobanian & Avedisian School of Medicine, Boston University, Boston MA 02118, United States.
| | - Sherry Wong
- Amyloidosis Center, Chobanian & Avedisian School of Medicine, Boston University, Boston MA 02118, United States.
| | - Shreya Ghosh
- Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Avenue, Boston, MA, 02115, United States.
| | - Angela Urdaneta
- Department of Pharmacology, Physiology & Biophysics, Chobanian & Avedisian School of Medicine, Boston University, 700 Albany Street, Boston, MA, 02118, United States.
| | - Gareth Morgan
- Amyloidosis Center, Chobanian & Avedisian School of Medicine, Boston University, Boston MA 02118, United States.
| | - Thomas E Wales
- Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Avenue, Boston, MA, 02115, United States.
| | - Olga Gursky
- Department of Pharmacology, Physiology & Biophysics, Chobanian & Avedisian School of Medicine, Boston University, 700 Albany Street, Boston, MA, 02118, United States.
| |
Collapse
|
2
|
Gruškienė R, Sereikaitė J. The effect of extremolytes ectoine and hydroxyectoine on the heat-induced protein aggregation: The case of growth hormone. Biochimie 2024:S0300-9084(24)00232-3. [PMID: 39389448 DOI: 10.1016/j.biochi.2024.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/02/2024] [Accepted: 10/07/2024] [Indexed: 10/12/2024]
Abstract
The extremolytes ectoine and hydroxyectoine are osmolytes found in extremophilic microorganisms. They are stabilisers of proteins and other macromolecules, including DNA and lipids. The aim of the study was to investigate the effect of the additives on the heat-induced aggregation of mink growth hormone as a model protein. The first-order rate constants of protein aggregation were determined at 60 °C depending on the additive concentration and pH of the solution. The onset temperature of aggregation was also recorded using a circular dichroism spectropolarimeter. The study showed that the effect of the additives depended on the pH of the solution. The first-order rate constants of aggregation were lower when the protein molecule had a negative charge. The effect also depended on the structure of the extremolyte itself. When the protein molecule was positively charged, hydroxyectoine destabilised the mink growth hormone molecule and promoted the aggregation. The different effects of the additives were determined by the different interactions with the protein molecules, as shown by circular dichroism measurements and previously by fluorescence spectroscopy. Therefore, when using ectoine or hydroxyectoine for protein formulation, the effect of the additive should be carefully analysed for each protein individually.
Collapse
Affiliation(s)
- Rūta Gruškienė
- Department of Chemistry and Bioengineering, Vilnius Gediminas Technical University, Vilnius, Lithuania
| | - Jolanta Sereikaitė
- Department of Chemistry and Bioengineering, Vilnius Gediminas Technical University, Vilnius, Lithuania.
| |
Collapse
|
3
|
Salas-Garrucho FM, Carrillo-Moreno A, Contreras LM, Rodríguez-Vico F, Clemente-Jiménez JM, Las Heras-Vázquez FJ. Exploring the Kinetics and Thermodynamics of a Novel Histidine Ammonia-Lyase from Geobacillus kaustophilus. Int J Mol Sci 2024; 25:10163. [PMID: 39337646 PMCID: PMC11432326 DOI: 10.3390/ijms251810163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/17/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
Histidine ammonia-lyase (HAL) plays a pivotal role in the non-oxidative deamination of L-histidine to produce trans-urocanic, a crucial process in amino acid metabolism. This study examines the cloning, purification, and biochemical characterization of a novel HAL from Geobacillus kaustophilus (GkHAL) and eight active site mutants to assess their effects on substrate binding, catalysis, thermostability, and secondary structure. The GkHAL enzyme was successfully overexpressed and purified to homogeneity. Its primary sequence displayed 40.7% to 43.7% similarity with other known HALs and shared the same oligomeric structure in solution. Kinetic assays showed that GkHAL has optimal activity at 85 °C and pH 8.5, with high thermal stability even after preincubation at high temperatures. Mutations at Y52, H82, N194, and E411 resulted in a complete loss of catalytic activity, underscoring their essential role in enzyme function, while mutations at residues Q274, R280, and F325 did not abolish activity but did reduce catalytic efficiency. Notably, mutants R280K and F325Y displayed novel activity with L-histidinamide, expanding the substrate specificity of HAL enzymes. Circular dichroism (CD) analysis showed minor secondary structure changes in the mutants but no significant effect on global GkHAL folding. These findings suggest that GkHAL could be a promising candidate for potential biotechnological applications.
Collapse
Affiliation(s)
- Francisco Manuel Salas-Garrucho
- Departamento de Química y Física, Universidad de Almería, 04120 Almería, Spain; (F.M.S.-G.); (A.C.-M.); (F.R.-V.); (J.M.C.-J.)
| | - Alba Carrillo-Moreno
- Departamento de Química y Física, Universidad de Almería, 04120 Almería, Spain; (F.M.S.-G.); (A.C.-M.); (F.R.-V.); (J.M.C.-J.)
| | - Lellys M. Contreras
- Departamento de Química y Física, Universidad de Almería, 04120 Almería, Spain; (F.M.S.-G.); (A.C.-M.); (F.R.-V.); (J.M.C.-J.)
| | - Felipe Rodríguez-Vico
- Departamento de Química y Física, Universidad de Almería, 04120 Almería, Spain; (F.M.S.-G.); (A.C.-M.); (F.R.-V.); (J.M.C.-J.)
- Campus de Excelencia Internacional Agroalimentario ceiA3, Universidad de Almería, 04120 Almería, Spain
| | - Josefa María Clemente-Jiménez
- Departamento de Química y Física, Universidad de Almería, 04120 Almería, Spain; (F.M.S.-G.); (A.C.-M.); (F.R.-V.); (J.M.C.-J.)
- Campus de Excelencia Internacional Agroalimentario ceiA3, Universidad de Almería, 04120 Almería, Spain
| | - Francisco Javier Las Heras-Vázquez
- Departamento de Química y Física, Universidad de Almería, 04120 Almería, Spain; (F.M.S.-G.); (A.C.-M.); (F.R.-V.); (J.M.C.-J.)
- Campus de Excelencia Internacional Agroalimentario ceiA3, Universidad de Almería, 04120 Almería, Spain
| |
Collapse
|
4
|
Rajesh R, Subashri V, Zaboronski O. Exact Calculation of the Probabilities of Rare Events in Cluster-Cluster Aggregation. PHYSICAL REVIEW LETTERS 2024; 133:097101. [PMID: 39270176 DOI: 10.1103/physrevlett.133.097101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 08/05/2024] [Indexed: 09/15/2024]
Abstract
We develop an action formalism to calculate probabilities of rare events in cluster-cluster aggregation for arbitrary collision kernels and establish a pathwise large deviation principle with total mass being the rate. As an application, the rate function for the number of surviving particles as well as the optimal evolution trajectory are calculated exactly for the constant, sum, and product kernels. For the product kernel, we argue that the second derivative of the rate function has a discontinuity. The theoretical results agree with simulations tailored to the calculation of rare events.
Collapse
|
5
|
Venkatram R, García-Cano I, Jiménez-Flores R. Reduction in the antigenicity of beta-lactoglobulin in whole milk powder via supercritical CO 2 treatment. J Dairy Sci 2024; 107:4216-4234. [PMID: 38460870 DOI: 10.3168/jds.2023-24565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/02/2024] [Indexed: 03/11/2024]
Abstract
Cow milk allergy is a common phenomenon experienced in early childhood (<5 yr of age) with an average occurrence rate of roughly 2.5%. The most prevalent allergen in cow milk is believed to be β-LG. The objective of this study was to evaluate the use of hydrophobic supercritical CO2 (ScCO2) to modify the chemical structure β-LG, thus impairing its recognition by antibodies. Whole milk powder (WMP) was selected because of its closest compositional resemblance to bovine fluid milk and its applications in reconstitution and in the beverage (infant, toddler, and adult), confectionary, bakery, and meat industries. For this study, WMP was treated with food-grade CO2 at temperatures of 50, 63, and 75°C under operating pressures of 100, 150, 200, 250, and 300 bar. Proteins in WMP were examined using SDS-PAGE, western blot, and ELISA. Orbitrap Fusion liquid chromatography-tandem MS (LC-MS/MS) and periodic staining was performed to confirm post-translational modifications in β-LG. Functional properties of WMP before and after treatment were assessed by its solubility index, oil holding capacity, emulsion capacity and stability, zeta potential, particle size, and color analysis. SDS-PAGE of treated samples yielded fuzzy bands (variable mobility of molecules due to different molecular weights results in ill-defined bands) indicative of an increase in molecular weight, presumably due to chemical change in the protein, and demonstrated a maximum of 71.13 ± 0.29% decrease in the band intensity of β-LG under treatment conditions of 75°C/300 bar for 30 min. These changes were small with samples treated with heat only. Lighter, diffused bands were observed using western blot analysis. The ELISA tests proved that ScCO2 treatment specifically and significantly affected the antigenicity of β-LG with a reduction of 42.9 ± 2.83% and 54.75 ± 2.43% at 63°C/200 bar and 75°C/300 bar, respectively. Orbitrap fusion detected the presence of fatty acids and sugar moieties bound to β-LG and the latter was confirmed by periodic staining. Functional properties of ScCO2-treated milk powder yielded a decrease in solubility index and an increase in emulsion capacity of WMP was observed under ScCO2 treatment at 75°C/300 bar, with small and insignificant changes at other treatments producing a decrease in antigenicity. Color changes were small for most samples, except at 63°C/200 bar, where a significant increase in yellowness was observed. Zeta potential and particle size measurements indicated that most changes were temperature driven. This study demonstrates 2 approaches to mitigate β-LG antigenicity via fatty acid binding and lactosylation using hydrophobic ScCO2.
Collapse
Affiliation(s)
- Rahul Venkatram
- Department of Food Science and Technology, The Ohio State University, Columbus, OH 43210
| | - Israel García-Cano
- Department of Food Science and Technology, National Institute of Medical Sciences and Nutrition, Mexico City, Mexico 14080
| | - Rafael Jiménez-Flores
- Department of Food Science and Technology, The Ohio State University, Columbus, OH 43210.
| |
Collapse
|
6
|
Sengupta S, Biswas M, Gandhi KA, Gupta SK, Gera PB, Gota V, Sonawane A. Preclinical evaluation of engineered L-asparaginase variants to improve the treatment of Acute Lymphoblastic Leukemia. Transl Oncol 2024; 43:101909. [PMID: 38412663 PMCID: PMC10907863 DOI: 10.1016/j.tranon.2024.101909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/13/2024] [Accepted: 02/06/2024] [Indexed: 02/29/2024] Open
Abstract
INTRODUCTION Escherichia coli l-asparaginase (EcA), an integral part of multi-agent chemotherapy protocols of acute lymphoblastic leukemia (ALL), is constrained by safety concerns and the development of anti-asparaginase antibodies. Novel variants with better pharmacological properties are desirable. METHODS Thousands of novel EcA variants were constructed using protein engineering approach. After preliminary screening, two mutants, KHY-17 and KHYW-17 were selected for further development. The variants were characterized for asparaginase activity, glutaminase activity, cytotoxicity and antigenicity in vitro. Immunogenicity, pharmacokinetics, safety and efficacy were tested in vivo. Binding of the variants to pre-existing antibodies in primary and relapsed ALL patients' samples was evaluated. RESULTS Both variants showed similar asparaginase activity but approximately 24-fold reduced glutaminase activity compared to wild-type EcA (WT). Cytotoxicity against Reh cells was significantly higher with the mutants, although not toxic to human PBMCs than WT. The mutants showed approximately 3-fold lower IgG and IgM production compared to WT. Pharmacokinetic study in BALB/c mice showed longer half-life of the mutants (KHY-17- 267.28±9.74; KHYW-17- 167.41±14.4) compared to WT (103.24±18). Single and repeat-doses showed no toxicity up to 2000 IU/kg and 1600 IU/kg respectively. Efficacy in ALL xenograft mouse model showed 80-90 % reduction of leukemic cells with mutants compared to 40 % with WT. Consequently, survival was 90 % in each mutant group compared to 10 % with WT. KHYW-17 showed over 2-fold lower binding to pre-existing anti-asparaginase antibodies from ALL patients treated with l-asparaginase. CONCLUSION EcA variants demonstrated better pharmacological properties compared to WT that makes them good candidates for further development.
Collapse
Affiliation(s)
- Soumika Sengupta
- School of Biotechnology, Campus-11, KIIT Deemed to be University, Bhubaneswar, 751024, Odisha, India
| | - Mainak Biswas
- School of Biotechnology, Campus-11, KIIT Deemed to be University, Bhubaneswar, 751024, Odisha, India
| | - Khushboo A Gandhi
- Department of Clinical Pharmacology, ACTREC, Tata Memorial Centre, Khargarh, Navi Mumbai, 410210, India; Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, 400094, India
| | - Saurabh Kumar Gupta
- Department of Clinical Pharmacology, ACTREC, Tata Memorial Centre, Khargarh, Navi Mumbai, 410210, India; Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, 400094, India
| | - Poonam B Gera
- Department of Pathology, ACTREC, Tata Memorial Centre, Khargarh, Navi Mumbai, 410210, India; Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, 400094, India
| | - Vikram Gota
- Department of Clinical Pharmacology, ACTREC, Tata Memorial Centre, Khargarh, Navi Mumbai, 410210, India; Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, 400094, India.
| | - Avinash Sonawane
- School of Biotechnology, Campus-11, KIIT Deemed to be University, Bhubaneswar, 751024, Odisha, India; Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore (IIT Indore), Khandwa Road, Simrol, Madhya Pradesh, 453552, India.
| |
Collapse
|
7
|
Bashir S, Aiman A, Chaudhary AA, Khan N, Ahanger IA, Sami N, Almugri EA, Ali MA, Khan SUD, Shahid M, Basir SF, Hassan MI, Islam A. Probing protein aggregation through spectroscopic insights and multimodal approaches: A comprehensive review for counteracting neurodegenerative disorders. Heliyon 2024; 10:e27949. [PMID: 38689955 PMCID: PMC11059433 DOI: 10.1016/j.heliyon.2024.e27949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/01/2024] [Accepted: 03/08/2024] [Indexed: 05/02/2024] Open
Abstract
Aberrant accumulation of protein misfolding can cause aggregation and fibrillation and is one of the primary characteristic features of neurodegenerative diseases. Because they are disordered, misfolded, and aggregated proteins pose a significant setback in drug designing. The structural study of intermediate steps in these kinds of aggregated proteins will allow us to determine the conformational changes as well as the probable pathways encompassing various neurodegenerative disorders. The analysis of protein aggregates involved in neurodegenerative diseases relies on a diverse toolkit of biophysical techniques, encompassing both morphological and non-morphological methods. Additionally, Thioflavin T (ThT) assays and Circular Dichroism (CD) spectroscopy facilitate investigations into aggregation kinetics and secondary structure alterations. The collective application of these biophysical techniques empowers researchers to comprehensively unravel the intricate nature of protein aggregates associated with neurodegeneration. Furthermore, the topics covered in this review have summed up a handful of well-established techniques used for the structural analysis of protein aggregation. This multifaceted approach advances our fundamental understanding of the underlying mechanisms driving neurodegenerative diseases and informs potential therapeutic strategies.
Collapse
Affiliation(s)
- Sania Bashir
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Ayesha Aiman
- Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Anis Ahmad Chaudhary
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
| | - Nashrah Khan
- Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Ishfaq Ahmad Ahanger
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Neha Sami
- Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Eman Abdullah Almugri
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
| | - Mohamed A.M. Ali
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
- Department of Biochemistry, Faculty of Science, Ain Shams University, Abbassia, 11566, Cairo, Egypt
| | - Salah-Ud-Din Khan
- Department of Biochemistry, College of Medicine, Imam Mohammad Ibn Saud Islamic Universi-ty (IMSIU), Riyadh, 11623, Saudi Arabia
| | - Mohammad Shahid
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam Bin Abdulaziz University, AlKharj, 11942, Saudi Arabia
| | - Seemi Farhat Basir
- Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| |
Collapse
|
8
|
Wu D, Wu C, Ma W, Wang Z, Yang M, El-Seedi HR, Du M. Coiled-coil scallops (Chlamys farreri) peptide hydrogel with metal ionic and temperature tunable assembly. Food Chem 2024; 433:137230. [PMID: 37683465 DOI: 10.1016/j.foodchem.2023.137230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 08/17/2023] [Accepted: 08/19/2023] [Indexed: 09/10/2023]
Abstract
Self-assembly of peptides is a powerful method of preparing nanostructured materials. Peptides frequently utilize charged groups as a convenient switch for controlling assembly state by pH, ionic strength or temperature. In this study, the molecular properties and gel-forming ability of Chlamys farreri protein hydrolysates were studied. According to self-assembled theory, the presence of isoleucine at position 'a' and leucine at 'd' causes a switch between coiled-coil structures. Compared to P-2-CG, the components of α-helix (23.60 ± 0.56%) were changed into β-sheet (4.83 ± 2.86%) in the secondary structure of the hydrogel induced by ZnCl2. NMR siginals appeared at high field,which indicated hydrogen bonds were formed between P-2-CG and solvent environments at 20 °C. With temperature going up, the hydrogen bonds were broken and nanofibrils were changed into dense aggregates. We expected that P-2-CG could provide a new candidate for preparing metal-induced nanofibers or hydrogels with further applications in food industry.
Collapse
Affiliation(s)
- Di Wu
- School of Food Science and Technology, SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, China
| | - Chao Wu
- School of Food Science and Technology, SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, China
| | - Wuchao Ma
- School of Food Science and Technology, SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, China
| | - Zhenyu Wang
- School of Food Science and Technology, SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, China
| | - Meilian Yang
- School of Food Science and Technology, SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, China
| | - Hesham R El-Seedi
- Division of Pharmacognosy, Department of Medicinal Chemistry, Uppsala University, Biomedical Centre, Uppsala, Sweden
| | - Ming Du
- School of Food Science and Technology, SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, China.
| |
Collapse
|
9
|
Rizzuti B, Abian O, Velazquez-Campoy A, Neira JL. Conformational Stability of the N-Terminal Region of MDM2. Molecules 2023; 28:7578. [PMID: 38005300 PMCID: PMC10673428 DOI: 10.3390/molecules28227578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
MDM2 is an E3 ubiquitin ligase which is crucial for the degradation and inhibition of the key tumor-suppressor protein p53. In this work, we explored the stability and the conformational features of the N-terminal region of MDM2 (N-MDM2), through which it binds to the p53 protein as well as other protein partners. The isolated domain possessed a native-like conformational stability in a narrow pH range (7.0 to 10.0), as shown by intrinsic and 8-anilinonapthalene-1-sulfonic acid (ANS) fluorescence, far-UV circular dichroism (CD), and size exclusion chromatography (SEC). Guanidinium chloride (GdmCl) denaturation followed by intrinsic and ANS fluorescence, far-UV CD and SEC at physiological pH, and differential scanning calorimetry (DSC) and thermo-fluorescence experiments showed that (i) the conformational stability of isolated N-MDM2 was very low; and (ii) unfolding occurred through the presence of several intermediates. The presence of a hierarchy in the unfolding intermediates was also evidenced through DSC and by simulating the unfolding process with the help of computational techniques based on constraint network analysis (CNA). We propose that the low stability of this protein is related to its inherent flexibility and its ability to interact with several molecular partners through different routes.
Collapse
Affiliation(s)
- Bruno Rizzuti
- CNR-NANOTEC, SS Rende (CS), Department of Physics, University of Calabria, 87036 Rende, Italy
- Instituto de Biocomputación y Física de Sistemas Complejos (BIFI)—Unidad mixta GBsC-CSIC-BIFI, Universidad de Zaragoza, 50018 Zaragoza, Spain; (O.A.); (A.V.-C.)
| | - Olga Abian
- Instituto de Biocomputación y Física de Sistemas Complejos (BIFI)—Unidad mixta GBsC-CSIC-BIFI, Universidad de Zaragoza, 50018 Zaragoza, Spain; (O.A.); (A.V.-C.)
- Instituto de Investigación Sanitaria Aragón (IIS Aragón), 50009 Zaragoza, Spain
- Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain
- Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Adrián Velazquez-Campoy
- Instituto de Biocomputación y Física de Sistemas Complejos (BIFI)—Unidad mixta GBsC-CSIC-BIFI, Universidad de Zaragoza, 50018 Zaragoza, Spain; (O.A.); (A.V.-C.)
- Instituto de Investigación Sanitaria Aragón (IIS Aragón), 50009 Zaragoza, Spain
- Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain
- Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - José L. Neira
- Instituto de Biocomputación y Física de Sistemas Complejos (BIFI)—Unidad mixta GBsC-CSIC-BIFI, Universidad de Zaragoza, 50018 Zaragoza, Spain; (O.A.); (A.V.-C.)
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDIBE), Universidad Miguel Hernández, 03202 Elche, Spain
| |
Collapse
|
10
|
Petrosino M, Novak L, Pasquo A, Turina P, Capriotti E, Minicozzi V, Consalvi V, Chiaraluce R. The complex impact of cancer-related missense mutations on the stability and on the biophysical and biochemical properties of MAPK1 and MAPK3 somatic variants. Hum Genomics 2023; 17:95. [PMID: 37891694 PMCID: PMC10612357 DOI: 10.1186/s40246-023-00544-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Mitogen-activated protein kinases 1 and 3 (MAPK1 and MAPK3), also called extracellular regulated kinases (ERK2 and ERK1), are serine/threonine kinase activated downstream by the Ras/Raf/MEK/ERK signal transduction cascade that regulates a variety of cellular processes. A dysregulation of MAPK cascade is frequently associated to missense mutations on its protein components and may be related to many pathologies, including cancer. In this study we selected from COSMIC database a set of MAPK1 and MAPK3 somatic variants found in cancer tissues carrying missense mutations distributed all over the MAPK1 and MAPK3 sequences. The proteins were expressed as pure recombinant proteins, and their biochemical and biophysical properties have been studied in comparison with the wild type. The missense mutations lead to changes in the tertiary arrangements of all the variants. The thermodynamic stability of the wild type and variants has been investigated in the non-phosphorylated and in the phosphorylated form. Significant differences in the thermal stabilities of most of the variants have been observed, as well as changes in the catalytic efficiencies. The energetics of the catalytic reaction is affected for all the variants for both the MAPK proteins. The stability changes and the variation in the enzyme catalysis observed for most of MAPK1/3 variants suggest that a local change in a residue, distant from the catalytic site, may have long-distance effects that reflect globally on enzyme stability and functions.
Collapse
Affiliation(s)
- Maria Petrosino
- Chair of Pharmacology, Section of Medicine, University of Fribourg, Fribourg, Switzerland
| | - Leonore Novak
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza University of Rome, Rome, Italy
| | - Alessandra Pasquo
- ENEA CR Frascati, Diagnostics and Metrology Laboratory FSN-TECFIS-DIM, Frascati, Italy
| | - Paola Turina
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Emidio Capriotti
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Velia Minicozzi
- Department of Physics, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133, Rome, Italy
| | - Valerio Consalvi
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza University of Rome, Rome, Italy
| | - Roberta Chiaraluce
- Chair of Pharmacology, Section of Medicine, University of Fribourg, Fribourg, Switzerland.
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
11
|
Switzer RL, Hartman ZJ, Hewett GR, Carroll CF. Disease-Associated Mutation A554V Disrupts Normal Autoinhibition of DNMT1. DNA 2023; 3:119-133. [PMID: 37663147 PMCID: PMC10470860 DOI: 10.3390/dna3030010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
DNA methyltransferase 1 (DNMT1) is the enzyme primarily responsible for propagation of the methylation pattern in cells. Mutations in DNMT1 have been linked to the development of adult-onset neurodegenerative disorders; these disease-associated mutations occur in the regulatory replication foci-targeting sequence (RFTS) domain of the protein. The RFTS domain is an endogenous inhibitor of DNMT1 activity that binds to the active site and prevents DNA binding. Here, we examine the impact of the disease-associated mutation A554V on normal RFTS-mediated inhibition of DNMT1. Wild-type and mutant proteins were expressed and purified to homogeneity for biochemical characterization. The mutation increased DNA binding affinity ~8-fold. In addition, the mutant enzyme exhibited increased DNA methylation activity. Circular dichroism (CD) spectroscopy revealed that the mutation does not significantly impact the secondary structure or relative thermal stability of the isolated RFTS domain. However, the mutation resulted in changes in the CD spectrum in the context of the larger protein; a decrease in relative thermal stability was also observed. Collectively, this evidence suggests that A554V disrupts normal RFTS-mediated autoinhibition of DNMT1, resulting in a hyperactive mutant enzyme. While the disease-associated mutation does not significantly impact the isolated RFTS domain, the mutation results in a weakening of the interdomain stabilizing interactions generating a more open, active conformation of DNMT1. Hyperactive mutant DNMT1 could be responsible for the increased DNA methylation observed in affected individuals.
Collapse
Affiliation(s)
| | - Zach J. Hartman
- Department of Biology, Bucknell University, Lewisburg, PA 17837, USA
| | - Geoffrey R. Hewett
- Program in Cell Biology/Biochemistry, Bucknell University, Lewisburg, PA 17837, USA
| | - Clara F. Carroll
- Department of Chemistry, Bucknell University, Lewisburg, PA 17837, USA
| |
Collapse
|
12
|
Vutharadhi S, Nadimpalli SK. Isolation of Momordica charantia seed lectin and glycosidases from the protein bodies: Lectin-glycosidase (β-hexosaminidase) protein body membrane interaction reveals possible physiological function of the lectin. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 197:107663. [PMID: 36989986 DOI: 10.1016/j.plaphy.2023.107663] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 03/04/2023] [Accepted: 03/21/2023] [Indexed: 06/19/2023]
Abstract
Momordica charantia seeds are known to contain a galactose specific lectin that has been well characterized. Seed extracts also contain glycosidases such as the β-hexosaminidase, α-mannosidase and α-galactosidase. In the present study, lectin was affinity purified from the seed extracts and protein bodies isolated by sucrose density gradient centrifugation. From the protein bodies, lectin was identified and β-hexosaminidase was isolated by lectin affinity chromatography and subsequently separated from other glycosidases by gel filtration. In the native PAGE, the purified β-hexosaminidase migrated as a single band with a molecular weight of ∼235 kDa and by zymogram analysis using 4-methylumbelliferyl N-acetyl-β-D-glucosaminide substrate it was confirmed as β-hexosaminidase. Under reducing conditions in SDS-PAGE, the purified enzyme dissociated into three bands (Mr 33, 20 and 15 kDa). The prominent bands (20 and 15 kDa) showed immunological cross-reactivity with the human Hexosaminidase B antibody in a western blot experiment. In gel digestion of the purified enzyme, followed by proteomic analysis using tandom MS/MS revealed sequence identity as compared to the genomic sequence of the Momordica charantia with a score of 57 (24% sequence coverage). Additionally, by CD analysis the purified β-hexosaminidase showed 39.1% of α-helix. Furthermore, secondary structure variations were observed in presence of substrate, lectin and at different pH values. Protein body membrane prepared from the isolated protein bodies showed a pH dependent interaction with the purified lectin and mixture of glycosidases.
Collapse
Affiliation(s)
- Shivaranjani Vutharadhi
- Glycobiology and Protein Biochemistry Laboratory, Department of Biochemistry, School of Life Sciences, University of Hyderabad, 500046, Telangana, India
| | - Siva Kumar Nadimpalli
- Glycobiology and Protein Biochemistry Laboratory, Department of Biochemistry, School of Life Sciences, University of Hyderabad, 500046, Telangana, India.
| |
Collapse
|
13
|
Rottenaicher GJ, Absmeier RM, Meier L, Zacharias M, Buchner J. A constant domain mutation in a patient-derived antibody light chain reveals principles of AL amyloidosis. Commun Biol 2023; 6:209. [PMID: 36823438 PMCID: PMC9950467 DOI: 10.1038/s42003-023-04574-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 02/09/2023] [Indexed: 02/25/2023] Open
Abstract
Light chain (AL) amyloidosis is a debilitating disease in which mutant antibody light chains (LC), secreted by aberrant plasma cell clones, misfold and form insoluble fibrils, which can be deposited in various organs. In the majority of cases, the fibrillar deposits consist of LC variable domains (VL) containing destabilizing mutations compared to their germline counterparts. This is also true for the patient LC FOR005. However, this pathogenic LC sequence contains an additional mutation in the constant domain (CL). The mechanistic impact of CL mutations is not yet understood in the context of AL amyloidosis. Our analysis reveals that the FOR005 CL mutation influences the amyloid pathway in specific ways: (1) folding and stability of the patient CL domain are strongly impaired; (2) the mutation disrupts the LC dimer interface and weakens dimerization; (3) the CL mutation promotes proteolytic cleavage of the LC monomers resulting in an isolated, amyloidogenic VL domain while dimeric LCs are not cleaved. The enhanced proteolysis rates and the inability of full-length LCs to form amyloid fibrils even in the presence of a destabilized CL domain support a model for AL amyloidosis in which the CL domain plays a protective role and in which proteolytic cleavage precedes amyloid formation.
Collapse
Affiliation(s)
- Georg J Rottenaicher
- Center for Functional Protein Assemblies, Technical University Munich, Ernst-Otto-Fischer-Str. 8, 85748, Garching, Germany
- Department of Biosciences, TUM School of Natural Sciences, Technical University Munich, Boltzmannstr. 10, 85748, Garching, Germany
| | - Ramona M Absmeier
- Center for Functional Protein Assemblies, Technical University Munich, Ernst-Otto-Fischer-Str. 8, 85748, Garching, Germany
- Department of Biosciences, TUM School of Natural Sciences, Technical University Munich, Boltzmannstr. 10, 85748, Garching, Germany
| | - Laura Meier
- Center for Functional Protein Assemblies, Technical University Munich, Ernst-Otto-Fischer-Str. 8, 85748, Garching, Germany
- Department of Biosciences, TUM School of Natural Sciences, Technical University Munich, Boltzmannstr. 10, 85748, Garching, Germany
| | - Martin Zacharias
- Center for Functional Protein Assemblies, Technical University Munich, Ernst-Otto-Fischer-Str. 8, 85748, Garching, Germany
- Department of Biosciences, TUM School of Natural Sciences, Technical University Munich, Boltzmannstr. 10, 85748, Garching, Germany
| | - Johannes Buchner
- Center for Functional Protein Assemblies, Technical University Munich, Ernst-Otto-Fischer-Str. 8, 85748, Garching, Germany.
- Department of Biosciences, TUM School of Natural Sciences, Technical University Munich, Boltzmannstr. 10, 85748, Garching, Germany.
| |
Collapse
|
14
|
Pota G, Gallucci N, Cavasso D, Krauss IR, Vitiello G, López-Gallego F, Costantini A, Paduano L, Califano V. Controlling the Adsorption of β-Glucosidase onto Wrinkled SiO 2 Nanoparticles To Boost the Yield of Immobilization of an Efficient Biocatalyst. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:1482-1494. [PMID: 36651862 PMCID: PMC9893809 DOI: 10.1021/acs.langmuir.2c02861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/21/2022] [Indexed: 06/17/2023]
Abstract
β-Glucosidase (BG) catalyzes the hydrolysis of cellobiose to glucose, a substrate for fermentation to produce the carbon-neutral fuel bioethanol. Enzyme thermal stability and reusability can be improved through immobilization onto insoluble supports. Moreover, nanoscaled matrixes allow for preserving high reaction rates. In this work, BG was physically immobilized onto wrinkled SiO2 nanoparticles (WSNs). The adsorption procedure was tuned by varying the BG:WSNs weight ratio to achieve the maximum controllability and maximize the yield of immobilization, while different times of immobilization were monitored. Results show that a BG:WSNs ratio equal to 1:6 wt/wt provides for the highest colloidal stability, whereas an immobilization time of 24 h results in the highest enzyme loading (135 mg/g of support) corresponding to 80% yield of immobilization. An enzyme corona is formed in 2 h, which gradually disappears as the protein diffuses within the pores. The adsorption into the silica structure causes little change in the protein secondary structure. Furthermore, supported enzyme exhibits a remarkable gain in thermal stability, retaining complete folding up to 90 °C. Catalytic tests assessed that immobilized BG achieves 100% cellobiose conversion. The improved adsorption protocol provides simultaneously high glucose production, enhanced yield of immobilization, and good reusability, resulting in considerable reduction of enzyme waste in the immobilization stage.
Collapse
Affiliation(s)
- Giulio Pota
- University
of Naples Federico II, Department of Chemical,
Materials and Production Engineering, 80125Naples, Italy
| | - Noemi Gallucci
- University
of Naples Federico II, Department of Chemical
Sciences, 80125Naples, Italy
- CSGI, Center for Colloid and Surface Science, 50019Sesto Fiorentino(FI), Italy
| | - Domenico Cavasso
- University
of Naples Federico II, Department of Chemical
Sciences, 80125Naples, Italy
| | - Irene Russo Krauss
- University
of Naples Federico II, Department of Chemical
Sciences, 80125Naples, Italy
- CSGI, Center for Colloid and Surface Science, 50019Sesto Fiorentino(FI), Italy
| | - Giuseppe Vitiello
- University
of Naples Federico II, Department of Chemical,
Materials and Production Engineering, 80125Naples, Italy
- CSGI, Center for Colloid and Surface Science, 50019Sesto Fiorentino(FI), Italy
| | - Fernando López-Gallego
- Center
for Cooperative Research in Biomaterials (CIC BiomaGUNE), Basque Research and Technology Alliance (BRTA), 20850Donostia-San
Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, 948009Bilbao, Spain
| | - Aniello Costantini
- University
of Naples Federico II, Department of Chemical,
Materials and Production Engineering, 80125Naples, Italy
| | - Luigi Paduano
- University
of Naples Federico II, Department of Chemical
Sciences, 80125Naples, Italy
- CSGI, Center for Colloid and Surface Science, 50019Sesto Fiorentino(FI), Italy
| | - Valeria Califano
- Institute
of Sciences and Technologies for Sustainable Energy and Mobility (STEMS), National Research Council of Italy (CNR), Viale Marconi 4, 80125Naples, Italy
| |
Collapse
|
15
|
Determination of Conformational and Functional Stability of Potential Plague Vaccine Candidate in Formulation. Vaccines (Basel) 2022; 11:vaccines11010027. [PMID: 36679872 PMCID: PMC9865242 DOI: 10.3390/vaccines11010027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/07/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022] Open
Abstract
Generally, protein-based vaccines are available in liquid form and are highly susceptible to instability under elevated temperature changes including freezing conditions. There is a need to create a convenient formulation of protein/peptides that can be stored at ambient conditions without loss of activity or production of adverse effects. The efficiency of naturally occurring biocompatible polymer dextran in improving the shelf-life and biological activity of a highly thermally unstable plague vaccine candidate protein called Low Calcium Response V antigen (LcrV), which can be stored at room temperature (30 ± 2 °C), has been evaluated. To determine the preferential interactions with molecular-level insight into solvent-protein interactions, analytical techniques such asspectroscopy, particle size distribution, gel electrophoresis, microscopy, and thermal analysis have been performed along with the evaluation of humoral immune response, invivo. The analytical methods demonstrate the structural stability of the LcrV protein by expressing its interaction with the excipients in the formulation. The invivo studies elicited the biological activity of the formulated antigen with a significantly higher humoral immune response (p-value = 0.047) when compared to the native, adjuvanted antigen. We propose dextran as a potential biopolymer with its co-excipient sodium chloride (NaCl) to provide protein compactness, i.e., prevent protein unfolding by molecular crowding or masking mechanism using preferential hydrophobic interaction for up to three weeks at room temperature (30 ± 2 °C).
Collapse
|
16
|
Bragagnolo N, Audette GF. Solution characterization of the dynamic conjugative entry exclusion protein TraG. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2022; 9:064702. [PMID: 36590369 PMCID: PMC9797247 DOI: 10.1063/4.0000171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
The R100 plasmid and the secretion system it encodes are representative of F-like conjugative type IV secretion systems for the transmission of mobile DNA elements in gram-negative bacteria, serving as a major contributor to the spread of antibiotic resistance in bacterial pathogens. The TraG protein of F-like systems consists of a membrane-bound N-terminal domain and a periplasmic C-terminal domain, denoted TraG*. TraG* is essential in preventing redundant DNA transfer through a process termed entry exclusion. In the donor cell, it interacts with TraN to facilitate mating pair stabilization; however, if a mating pore forms between bacteria with identical plasmids, TraG* interacts with its cognate TraS in the inner membrane of the recipient bacterium to prevent redundant donor-donor conjugation. Structural studies of TraG* from the R100 plasmid have revealed the presence of a dynamic region between the N- and C-terminal domains of TraG. Thermofluor, circular dichroism, collision-induced unfolding-mass spectrometry, and size exclusion chromatography linked to multiangle light scattering and small angle x-ray scattering experiments indicated an N-terminal truncation mutant displayed higher stability and less disordered content relative to full-length TraG*. The 45 N-terminal residues of TraG* are hypothesized to serve as part of a flexible linker between the two independently functioning domains.
Collapse
Affiliation(s)
- Nicholas Bragagnolo
- Centre for Research on Biomolecular Interactions, Department of Chemistry, York University, Toronto, Ontario M3J 1P3, Canada
| | - Gerald F. Audette
- Centre for Research on Biomolecular Interactions, Department of Chemistry, York University, Toronto, Ontario M3J 1P3, Canada
| |
Collapse
|
17
|
Pelosi C, Arrico L, Zinna F, Wurm FR, Di Bari L, Tinè MR. A circular dichroism study of the protective role of polyphosphoesters polymer chains in polyphosphoester-myoglobin conjugates. Chirality 2022; 34:1257-1265. [PMID: 35713334 PMCID: PMC9544571 DOI: 10.1002/chir.23486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 11/08/2022]
Abstract
Protein‐polymer conjugates are a blooming class of hybrid systems with high biomedical potential. Despite a plethora of papers on their biomedical properties, the physical–chemical characterization of many protein‐polymer conjugates is missing. Here, we evaluated the thermal stability of a set of fully‐degradable polyphosphoester‐protein conjugates by variable temperature circular dichroism, a common but powerful technique. We extensively describe their thermodynamic stability in different environments (in physiological buffer or in presence of chemical denaturants, e.g., acid or urea), highlighting the protective role of the polymer in preserving the protein from denaturation. For the first time, we propose a simple but effective protocol to achieve useful information on these systems in vitro, useful to screen new samples in their early stages.
Collapse
Affiliation(s)
- Chiara Pelosi
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Pisa, Italy
| | - Lorenzo Arrico
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Pisa, Italy
| | - Francesco Zinna
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Pisa, Italy
| | - Frederik R Wurm
- Sustainable Polymer Chemistry (SPC), Department of Molecules and Materials, MESA+ Institute for Nanotechnology, Faculty of Science and Technology, University of Twente, Enschede, Netherlands
| | - Lorenzo Di Bari
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Pisa, Italy
| | - Maria R Tinè
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Pisa, Italy
| |
Collapse
|
18
|
Morante S, Botticelli S, Chiaraluce R, Consalvi V, La Penna G, Novak L, Pasquo A, Petrosino M, Proux O, Rossi G, Salina G, Stellato F. Metal Ion Binding in Wild-Type and Mutated Frataxin: A Stability Study. Front Mol Biosci 2022; 9:878017. [PMID: 35712353 PMCID: PMC9195147 DOI: 10.3389/fmolb.2022.878017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/12/2022] [Indexed: 11/13/2022] Open
Abstract
This work studies the stability of wild-type frataxin and some of its variants found in cancer tissues upon Co2+ binding. Although the physiologically involved metal ion in the frataxin enzymatic activity is Fe2+, as it is customarily done, Co2+ is most often used in experiments because Fe2+ is extremely unstable owing to the fast oxidation reaction Fe2+ → Fe3+. Protein stability is monitored following the conformational changes induced by Co2+ binding as measured by circular dichroism, fluorescence spectroscopy, and melting temperature measurements. The stability ranking among the wild-type frataxin and its variants obtained in this way is confirmed by a detailed comparative analysis of the XAS spectra of the metal-protein complex at the Co K-edge. In particular, a fit to the EXAFS region of the spectrum allows positively identifying the frataxin acidic ridge as the most likely location of the metal-binding sites. Furthermore, we can explain the surprising feature emerging from a detailed analysis of the XANES region of the spectrum, showing that the longer 81-210 frataxin fragment has a smaller propensity for Co2+ binding than the shorter 90-210 one. This fact is explained by the peculiar role of the N-terminal disordered tail in modulating the protein ability to interact with the metal.
Collapse
Affiliation(s)
- S. Morante
- Dipartimento di Fisica, Universitá di Roma Tor Vergata, Rome, Italy
- INFN, Sezione di Roma Tor Vergata, Rome, Italy
- *Correspondence: S. Morante ,
| | - S. Botticelli
- Dipartimento di Fisica, Universitá di Roma Tor Vergata, Rome, Italy
- INFN, Sezione di Roma Tor Vergata, Rome, Italy
| | - R. Chiaraluce
- Dipartimento di Scienze Biochimiche “A. Rossi Fanelli”, Sapienza Universitá di Roma, Rome, Italy
| | - V. Consalvi
- Dipartimento di Scienze Biochimiche “A. Rossi Fanelli”, Sapienza Universitá di Roma, Rome, Italy
| | - G. La Penna
- INFN, Sezione di Roma Tor Vergata, Rome, Italy
- CNR—Istituto di Chimica dei Composti Organometallici, Firenze, Italy
| | - L. Novak
- Dipartimento di Scienze Biochimiche “A. Rossi Fanelli”, Sapienza Universitá di Roma, Rome, Italy
| | - A. Pasquo
- ENEA CR Frascati, Diagnostics and Metrology Laboratory FSN-TECFIS-DIM, Frascati, Italy
| | - M. Petrosino
- Chair of Pharmacology, Section of Medicine, University of Fribourg, Fribourg, Switzerland
| | - O. Proux
- Observatoire des Sciences de L’Univers de Grenoble, UAR 832 CNRS, Université Grenoble Alpes, Grenoble, France
| | - G. Rossi
- Dipartimento di Fisica, Universitá di Roma Tor Vergata, Rome, Italy
- INFN, Sezione di Roma Tor Vergata, Rome, Italy
- Museo Storico della Fisica e Centro Studi e Ricerche E. Fermi, Roma, Italy
| | - G. Salina
- INFN, Sezione di Roma Tor Vergata, Rome, Italy
| | - F. Stellato
- Dipartimento di Fisica, Universitá di Roma Tor Vergata, Rome, Italy
- INFN, Sezione di Roma Tor Vergata, Rome, Italy
| |
Collapse
|
19
|
Chaaban H, Vallooran JJ, van de Weert M, Foderà V. Ion-Mediated Morphological Diversity in Protein Amyloid Systems. J Phys Chem Lett 2022; 13:3586-3593. [PMID: 35426676 DOI: 10.1021/acs.jpclett.2c00182] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Salt ions are considered among the major determinants ruling protein folding, stability, and self-assembly in the context of amyloid-related diseases, protein drug development, and functional biomaterials. Here, we report that Hofmeister ions not only determine the rate constants of the aggregation reaction for human insulin and hen egg white lysozyme but also control the generation of a plethora of amyloid-like morphologies ranging from the nanoscale to the microscale. We anticipate that the latter is a result of a balance between colloidal and conformational stability combined with an ion-specific effect and highlight the importance of salt ions in controlling the biological functions of protein aggregates.
Collapse
Affiliation(s)
- Hussein Chaaban
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
- Center for Biopharmaceuticals and Biobarriers in Drug Delivery, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
- Nano-Science Center, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| | - Jijo J Vallooran
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
- Center for Biopharmaceuticals and Biobarriers in Drug Delivery, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Marco van de Weert
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
- Center for Biopharmaceuticals and Biobarriers in Drug Delivery, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
- Nano-Science Center, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| | - Vito Foderà
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
- Center for Biopharmaceuticals and Biobarriers in Drug Delivery, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
- Nano-Science Center, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| |
Collapse
|
20
|
Use of Circular Dichroism in the characterization of the fusion protein SARS-CoV-2 S protein (RBD)-hFc. PURE APPL CHEM 2022. [DOI: 10.1515/pac-2021-1014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
From the receptor-binding domain (RBD) of the SARS-CoV-2 virus, which causes coronavirus disease 2019 (COVID-19), a RBD-hFc fusion protein was obtained at the Center of Molecular Immunology (Havana, Cuba). This fusion protein was used in the construction of a diagnostic device for COVID-19 called Ultramicroenzyme-Linked Immunosorbent Assay (UMELISA)-SARS-CoV-2-IgG and it is currently been used in the studies of biological activity of the Cuban vaccine Abdala (CIGB-66). In this work, Circular Dichroism (CD) is used to characterize this protein. Using Far Ultraviolet Circular Dichroism (FAR-UV CD), it was determined that the protein has a secondary structure in the form of a sheet-β fundamentally. Using this technique, a thermodynamic study was carried out and it was determined that the melting temperature (Tm) of the protein is 71.5 °C. Information about the tertiary structure of the protein was obtained using Near Ultraviolet Circular Dichroism (NEAR-UV CD) and Molecular Fluorescence; they indicates that the protein has a three-dimensional folding associated with the aromatic amino acids in its structure, where tryptophan (Trp) is located inside the folded structure of the protein while tyrosine (Tyr) is exposed to the solvent.
Collapse
|
21
|
Neira JL, Araujo-Abad S, Cámara-Artigas A, Rizzuti B, Abian O, Giudici AM, Velazquez-Campoy A, de Juan Romero C. Biochemical and biophysical characterization of PADI4 supports its involvement in cancer. Arch Biochem Biophys 2022; 717:109125. [DOI: 10.1016/j.abb.2022.109125] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 12/12/2022]
|
22
|
Interaction of membrane vesicles with the Pseudomonas functional amyloid protein FapC facilitates amyloid formation. BBA ADVANCES 2022; 2:100055. [PMID: 37082589 PMCID: PMC10074931 DOI: 10.1016/j.bbadva.2022.100055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/13/2022] [Accepted: 09/16/2022] [Indexed: 11/20/2022] Open
Abstract
Functional amyloids (FA) are proteins which are evolutionarily optimized to form highly stable fibrillar structures that strengthen the bacterial biofilm matrix. FA such as CsgA (E. coli) and FapC (Pseudomonas) are secreted to the bacterial surface where they integrate into growing fibril structures projecting from the outer membrane. FA are exposed to membrane surfaces in this process, but it remains unclear how membranes can interact with FA and potentially affect the self-assembly. Here we report the effect of different vesicles (DOPG, DMPG, DOPS, DOPC and DMPC) on the kinetics and structural endpoints of FapC fibrillation using various biophysical techniques. Particularly anionic lipids such as DMPG trigger FapC fibrillation, and the protein's second repeat sequence (R2) appears to be important for this interaction. Vesicles formed from phospholipids extracted from three different Pseudomonas strains (Δfap, ΔFapC and pfap) induce FapC fibrillation by accelerating nucleation. The general aggregation inhibitor epigallocatechin gallate (EGCG) inhibits FapC fibrillation by blocking interactions between FapC and vesicles and redirecting FapC monomers to oligomer structures. Our work indicates that biological membranes can contribute significantly to the fibrillation of functional amyloid.
Collapse
|
23
|
Abstract
Experimental studies of amyloids encounter many challenges. There are many methods available for studying proteins, which can be applied to amyloids: from basic staining techniques, allowing visualization of fibers, to complex methods, e.g., AFM-IR used to their detailed biochemical and structural characterization in nanoscale. Which method is appropriate depends on the goal of an experiment: verification of aggregational properties of a peptide, distinguishing oligomers from mature fibers, or kinetic studies. Insolubility, rapid aggregation, and the need of using a high-purity peptide may be a limiting factor in studies involving amyloids. Moreover, the results obtained by various experimental methods often differ significantly, which may lead to misclassification of amyloid peptides. Due to ambiguity of experimental results, laborious and time-consuming analysis, bioinformatical methods become more widely used for amyloids.
Collapse
Affiliation(s)
| | - Natalia Szulc
- Department of Biomedical Engineering, Wroclaw University of Science and Technology, Wrocław, Poland
| | - Monika Szefczyk
- Department of Bioorganic Chemistry, Wroclaw University of Science and Technology, Wrocław, Poland
| |
Collapse
|
24
|
Ng YK, Tajoddin NN, Scrosati PM, Konermann L. Mechanism of Thermal Protein Aggregation: Experiments and Molecular Dynamics Simulations on the High-Temperature Behavior of Myoglobin. J Phys Chem B 2021; 125:13099-13110. [PMID: 34808050 DOI: 10.1021/acs.jpcb.1c07210] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Proteins that encounter unfavorable solvent conditions are prone to aggregation, a phenomenon that remains poorly understood. This work focuses on myoglobin (Mb) as a model protein. Upon heating, Mb produces amorphous aggregates. Thermal unfolding experiments at low concentration (where aggregation is negligible), along with centrifugation assays, imply that Mb aggregation proceeds via globally unfolded conformers. This contrasts studies on other proteins that emphasized the role of partially folded structures as aggregate precursors. Molecular dynamics (MD) simulations were performed to gain insights into the mechanism by which heat-unfolded Mb molecules associate with one another. A prerequisite for these simulations was the development of a method for generating monomeric starting structures. Periodic boundary condition artifacts necessitated the implementation of a partially immobilized water layer lining the walls of the simulation box. Aggregation simulations were performed at 370 K to track the assembly of monomeric Mb into pentameric species. Binding events were preceded by multiple unsuccessful encounters. Even after association, protein-protein contacts remained in flux. Binding was mediated by hydrophobic contacts, along with salt bridges that involved hydrophobically embedded Lys residues. Overall, this work illustrates that atomistic MD simulations are well suited for garnering insights into protein aggregation mechanisms.
Collapse
Affiliation(s)
- Yuen Ki Ng
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Nastaran N Tajoddin
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Pablo M Scrosati
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Lars Konermann
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| |
Collapse
|
25
|
Maffei M, Montemiglio LC, Vitagliano G, Fedele L, Sellathurai S, Bucci F, Compagnone M, Chiarini V, Exertier C, Muzi A, Roscilli G, Vallone B, Marra E. The Nuts and Bolts of SARS-CoV-2 Spike Receptor-Binding Domain Heterologous Expression. Biomolecules 2021; 11:1812. [PMID: 34944456 PMCID: PMC8699011 DOI: 10.3390/biom11121812] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/27/2021] [Accepted: 11/30/2021] [Indexed: 12/23/2022] Open
Abstract
COVID-19 is a highly infectious disease caused by a newly emerged coronavirus (SARS-CoV-2) that has rapidly progressed into a pandemic. This unprecedent emergency has stressed the significance of developing effective therapeutics to fight the current and future outbreaks. The receptor-binding domain (RBD) of the SARS-CoV-2 surface Spike protein is the main target for vaccines and represents a helpful "tool" to produce neutralizing antibodies or diagnostic kits. In this work, we provide a detailed characterization of the native RBD produced in three major model systems: Escherichia coli, insect and HEK-293 cells. Circular dichroism, gel filtration chromatography and thermal denaturation experiments indicated that recombinant SARS-CoV-2 RBD proteins are stable and correctly folded. In addition, their functionality and receptor-binding ability were further evaluated through ELISA, flow cytometry assays and bio-layer interferometry.
Collapse
Affiliation(s)
- Mariano Maffei
- Evvivax Biotech, Via di Castel Romano 100, 00128 Rome, Italy;
| | - Linda Celeste Montemiglio
- Institute of Molecular Biology and Pathology (IBPM), National Research Council, c/o Department of Biochemical Sciences “Alessandro Rossi Fanelli”, Sapienza, University of Rome, P. le Aldo Moro, 5, 00185 Rome, Italy;
| | - Grazia Vitagliano
- Takis Biotech, Via di Castel Romano 100, 00128 Rome, Italy; (G.V.); (L.F.); (S.S.); (F.B.); (V.C.); (A.M.)
| | - Luigi Fedele
- Takis Biotech, Via di Castel Romano 100, 00128 Rome, Italy; (G.V.); (L.F.); (S.S.); (F.B.); (V.C.); (A.M.)
| | - Shaila Sellathurai
- Takis Biotech, Via di Castel Romano 100, 00128 Rome, Italy; (G.V.); (L.F.); (S.S.); (F.B.); (V.C.); (A.M.)
| | - Federica Bucci
- Takis Biotech, Via di Castel Romano 100, 00128 Rome, Italy; (G.V.); (L.F.); (S.S.); (F.B.); (V.C.); (A.M.)
| | | | - Valerio Chiarini
- Takis Biotech, Via di Castel Romano 100, 00128 Rome, Italy; (G.V.); (L.F.); (S.S.); (F.B.); (V.C.); (A.M.)
| | - Cécile Exertier
- Department of Biochemical Sciences “Alessandro Rossi Fanelli”, Sapienza, University of Rome, P. le Aldo Moro, 5, 00185 Rome, Italy; (C.E.); (B.V.)
| | - Alessia Muzi
- Takis Biotech, Via di Castel Romano 100, 00128 Rome, Italy; (G.V.); (L.F.); (S.S.); (F.B.); (V.C.); (A.M.)
| | - Giuseppe Roscilli
- Evvivax Biotech, Via di Castel Romano 100, 00128 Rome, Italy;
- Takis Biotech, Via di Castel Romano 100, 00128 Rome, Italy; (G.V.); (L.F.); (S.S.); (F.B.); (V.C.); (A.M.)
| | - Beatrice Vallone
- Department of Biochemical Sciences “Alessandro Rossi Fanelli”, Sapienza, University of Rome, P. le Aldo Moro, 5, 00185 Rome, Italy; (C.E.); (B.V.)
| | - Emanuele Marra
- Evvivax Biotech, Via di Castel Romano 100, 00128 Rome, Italy;
- Takis Biotech, Via di Castel Romano 100, 00128 Rome, Italy; (G.V.); (L.F.); (S.S.); (F.B.); (V.C.); (A.M.)
| |
Collapse
|
26
|
Zinc-Dependent Oligomerization of Thermus thermophilus Trigger Factor Chaperone. BIOLOGY 2021; 10:biology10111106. [PMID: 34827099 PMCID: PMC8614707 DOI: 10.3390/biology10111106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 10/20/2021] [Accepted: 10/23/2021] [Indexed: 11/16/2022]
Abstract
Simple Summary Metal ions often play important roles in biological processes. Thermus thermophilus trigger factor (TtTF) is a zinc-dependent molecular chaperone where Zn2+ has been shown to enhance its folding-arrest activity. However, the mechanisms of how Zn2+ binds to TtTF and how Zn2+ affects the activity of TtTF are yet to be elucidated. As a first step in understanding the mechanism, we performed in vitro biophysical experiments on TtTF to investigate the zinc-binding site on TtTF and unveil how Zn2+ alters the physical properties of TtTF, including secondary structure, thermal stability, and oligomeric state. Our results showed that TtTF binds Zn2+ in a 1:1 ratio, and all three domains of TtTF are involved in zinc-binding. We found that Zn2+ does not affect the thermal stability of TtTF, whereas it does induce partial structural change and promote the oligomerization of TtTF. Given that the folding-arrest activity of Escherichia coli TF (EcTF) is regulated by its oligomerization, our results imply that TtTF exploits Zn2+ to modulate its oligomeric state to regulate the activity. Abstract Thermus thermophilus trigger factor (TtTF) is a zinc-dependent molecular chaperone whose folding-arrest activity is regulated by Zn2+. However, little is known about the mechanism of zinc-dependent regulation of the TtTF activity. Here we exploit in vitro biophysical experiments to investigate zinc-binding, the oligomeric state, the secondary structure, and the thermal stability of TtTF in the absence and presence of Zn2+. The data show that full-length TtTF binds Zn2+, but the isolated domains and tandem domains of TtTF do not bind to Zn2+. Furthermore, circular dichroism (CD) and nuclear magnetic resonance (NMR) spectra suggested that Zn2+-binding induces the partial structural changes of TtTF, and size exclusion chromatography-multi-angle light scattering (SEC-MALS) showed that Zn2+ promotes TtTF oligomerization. Given the previous work showing that the activity regulation of E. coli trigger factor is accompanied by oligomerization, the data suggest that TtTF exploits zinc ions to induce the structural change coupled with the oligomerization to assemble the client-binding site, thereby effectively preventing proteins from misfolding in the thermal environment.
Collapse
|
27
|
Li Y, Zhang Z, Abbaspourrad A. Improved thermal stability of phycocyanin under acidic conditions by forming soluble complexes with polysaccharides. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106852] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
28
|
Park H, Ha ES, Kim MS. Complexation of exenatide and cyclodextrin: An approach for the stabilization and sustained release of exenatide in PLGA microsphere. Carbohydr Polym 2021; 266:118169. [PMID: 34044960 DOI: 10.1016/j.carbpol.2021.118169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/10/2021] [Accepted: 05/03/2021] [Indexed: 10/21/2022]
Abstract
The purpose of this study was to evaluate the effects of cyclodextrins (CyDs) to stabilize exnatide in the microencapsulation medium and influence on the pharmaceutical properties of exenatide loaded PLGA microsphere. Three CyDs interacted differently with exenatide by investigation using ultraviolet, fluorescence and circular dichroism spectroscopy. The binding affinities of CyDs to the hydrophobic tryptophan residues of exenatide increased in following order: α-CyD < β-CyD < γ-CyD. It was consistent with orders of W/O interface stabilizing and anti-adsorption effects. However, the stabilizing effect of β-CyD on liquid-state and freeze-drying of exenatide was greater than that of γ-CyD. The negative values of ΔH0, ΔS0, and ΔG0 indicated that the exenatide-CyDs complex formation was a favorable exothermic and spontaneous processes that increased the order in the complex with structural rigidity. Furthermore, it was also shown that β-CyD improved encapsulation efficiency, in vitro extended release, and in vivo pharmacokinetic and pharmacodynamic properties of prepared PLGA microspheres.
Collapse
Affiliation(s)
- Heejun Park
- College of Pharmacy, Duksung Women's University, 33, Samyangro 144-gil, Dobong-gu, Seoul 01369, Republic of Korea
| | - Eun-Sol Ha
- College of Pharmacy, Pusan National University, 2, Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea
| | - Min-Soo Kim
- College of Pharmacy, Pusan National University, 2, Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea.
| |
Collapse
|
29
|
Valadares VS, Martins LC, Roman EA, Valente AP, Cino EA, Moraes AH. Conformational dynamics of Tetracenomycin aromatase/cyclase regulate polyketide binding and enzyme aggregation propensity. Biochim Biophys Acta Gen Subj 2021; 1865:129949. [PMID: 34139289 DOI: 10.1016/j.bbagen.2021.129949] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/01/2021] [Accepted: 06/10/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND The N-terminal domain of Tetracenomycin aromatase/cyclase (TcmN), an enzyme derived from Streptomyces glaucescens, is involved in polyketide cyclization, aromatization, and folding. Polyketides are a diverse class of secondary metabolites produced by certain groups of bacteria, fungi, and plants with various pharmaceutical applications. Examples include antibiotics, such as tetracycline, and anticancer drugs, such as doxorubicin. Because TcmN is a promising enzyme for in vitro production of polyketides, it is important to identify conditions that enhance its thermal resistance and optimize its function. METHODS TcmN unfolding, stability, and dynamics were evaluated by fluorescence spectroscopy, circular dichroism, nuclear magnetic resonance 15N relaxation experiments, and microsecond molecular dynamics (MD) simulations. RESULTS TcmN thermal resistance was enhanced at low protein and high salt concentrations, was pH-dependent, and denaturation was irreversible. Conformational dynamics on the μs-ms timescale were detected for residues in the substrate-binding cavity, and two predominant conformers representing opened and closed cavity states were observed in the MD simulations. CONCLUSION Based on the results, a mechanism was proposed in which the thermodynamics and kinetics of the TcmN conformational equilibrium modulate enzyme function by favoring ligand binding and avoiding aggregation. GENERAL SIGNIFICANCE Understanding the principles underlying TcmN stability and dynamics may help in designing mutants with optimal properties for biotechnological applications.
Collapse
Affiliation(s)
- Veronica S Valadares
- Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Luan C Martins
- Graduate Program in Bioinformatics, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ernesto A Roman
- Facultad de Farmacia y Bioquimica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Ana Paula Valente
- National Center of Nuclear Magnetic Resonance, Leopoldo de Meis Institute of Medical Biochemistry, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Elio A Cino
- Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| | - Adolfo H Moraes
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of NMR-based Structural Biology, Max-Planck Institute for Biophysical Chemistry, Göttingen, Germany.
| |
Collapse
|
30
|
Neira JL, Jiménez-Alesanco A, Rizzuti B, Velazquez-Campoy A. The nuclear localization sequence of the epigenetic factor RYBP binds to human importin α3. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2021; 1869:140670. [PMID: 33945888 DOI: 10.1016/j.bbapap.2021.140670] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 04/28/2021] [Accepted: 04/29/2021] [Indexed: 11/26/2022]
Abstract
RYBP (Ring1 and YY1 binding protein, UniProt ID: Q8N488) is an epigenetic factor with a key role during embryonic development; it does also show an apoptotic function and an ubiquitin binding activity. RYBP is an intrinsically disordered protein (IDP), with a Zn-finger domain at its N-terminal region, which folds upon binding to DNA. It is predicted that RYBP has a nuclear localization sequence (NLS), comprising residues Asn58 to Lys83, to allow for nuclear translocation. We studied in this work the ability of intact RYBP to bind Impα3 and its truncated species, ΔImpα3, without the importin binding domain (IBB), by using fluorescence and circular dichroism (CD). Furthermore, the binding of the peptide matching the isolated NLS region of RYBP (NLS-RYBP) was also studied using the same methods and isothermal titration calorimetry (ITC), and in silico molecular docking. Moreover, we carried out experiments with NLS-RYBP in the absence or in the presence of NaCl (140 mM). Our results show that RYBP interacted with Impα3 and ΔImpα3, causing protein precipitation. The NLS-RYBP also interacted with both importin species (dissociation constant in the low micromolar range), at low or high ionic strength, as shown by intrinsic fluorescence and ITC. These findings indicate that the NLS region, which was mainly unfolded in isolation in solution, was essentially responsible for the binding of RYBP to each of the importin species. Furthermore, the molecular simulations predict that the anchoring of NLS-RYBP takes place in the major binding site for the NLS of cargo proteins bound to Impα3. Taken together, our findings pinpoint the theoretical predictions of the NLS region in RYBP and, more importantly, suggest that this IDP relies on an importin for its nuclear translocation.
Collapse
Affiliation(s)
- José L Neira
- IDIBE, Universidad Miguel Hernández, 03202 Elche, Alicante, Spain; Institute for Biocomputation and Physics of Complex Systems (BIFI), Joint Units IQFR-CSIC-BIFI, GBsC-CSIC-BIFI, Universidad de Zaragoza, 50018 Zaragoza, Spain.
| | - Ana Jiménez-Alesanco
- Institute for Biocomputation and Physics of Complex Systems (BIFI), Joint Units IQFR-CSIC-BIFI, GBsC-CSIC-BIFI, Universidad de Zaragoza, 50018 Zaragoza, Spain
| | - Bruno Rizzuti
- Institute for Biocomputation and Physics of Complex Systems (BIFI), Joint Units IQFR-CSIC-BIFI, GBsC-CSIC-BIFI, Universidad de Zaragoza, 50018 Zaragoza, Spain; CNR-NANOTEC, Licryl-UOS Cosenza and CEMIF.Cal, Department of Physics, University of Calabria, 87036 Rende, Italy
| | - Adrián Velazquez-Campoy
- Institute for Biocomputation and Physics of Complex Systems (BIFI), Joint Units IQFR-CSIC-BIFI, GBsC-CSIC-BIFI, Universidad de Zaragoza, 50018 Zaragoza, Spain; Instituto de Investigación Sanitaria Aragón (IIS Aragón), 50009 Zaragoza, Spain; Fundación ARAID, Government of Aragón, 50018 Zaragoza, Spain; Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, 50009 Zaragoza, Spain; Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (CIBERehd), 28006 Madrid, Spain
| |
Collapse
|
31
|
Wynendaele E, Ma GJ, Xu X, Cho NJ, De Spiegeleer B. Conformational stability as a quality attribute for the cell therapy raw material human serum albumin. RSC Adv 2021; 11:15332-15339. [PMID: 35424076 PMCID: PMC8698240 DOI: 10.1039/d1ra01064f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/19/2021] [Indexed: 01/30/2023] Open
Abstract
Although human serum albumin (HSA) has been used for many decades, there is still a lack of suitable quality control (QC) attributes. Its current use as a raw material in gene-, cell- and tissue-therapies requires more appropriate functionally-relevant quality attributes and methods. This study investigated the conformational stability of serum albumin using circular dichroism (CD) spectroscopy and dynamic light scattering (DLS) for evaluating the thermal sensitivity, and quartz crystal microbalance-dissipation (QCM-D) and localized surface plasmon resonance (LSPR) for assessing the adsorption behavior. Different serum albumin samples were used, encompassing plasma-derived HSA (pHSA), recombinant octanoate-stabilized HSA (rHSA) and bovine serum albumin (BSA). The melting temperature (T m) as well as the onset temperature (T onset) were obtained from the derivative curves of the temperature gradient CD data at 222 nm. The results from DLS, as well as from real-time QCM-D and LSPR silica-adsorption kinetic profiles confirmed the relatively higher conformational stability of the octanoate (fatty acid) containing rHSA, while the additional negative charge resulted in a lower amount adsorbed to the silica surface compared to the non-stabilized HSA and BSA. Adsorption studies further revealed that BSA has a lower conformational stability and undergoes more extensive adsorption-induced spreading compared to the non-stabilized HSA. Collectively, the temperature-based (CD and DLS) as well as adsorption-based biosensor (QCM-D and LSPR) approaches gave congruent and discriminatory information about the conformational stability of different serum albumins, indicating that these techniques provide information on valuable QC attributes.
Collapse
Affiliation(s)
- Evelien Wynendaele
- Faculty of Pharmaceutical Sciences, Ghent University Ottergemsesteenweg 460 Ghent 9000 Belgium +32 9 264 81 00
| | - Gamaliel Junren Ma
- School of Materials Science and Engineering, Nanyang Technological University 50 Nanyang Avenue Nanyang 639798 Singapore
| | - Xiaolong Xu
- Faculty of Pharmaceutical Sciences, Ghent University Ottergemsesteenweg 460 Ghent 9000 Belgium +32 9 264 81 00
| | - Nam-Joon Cho
- School of Materials Science and Engineering, Nanyang Technological University 50 Nanyang Avenue Nanyang 639798 Singapore
| | - Bart De Spiegeleer
- Faculty of Pharmaceutical Sciences, Ghent University Ottergemsesteenweg 460 Ghent 9000 Belgium +32 9 264 81 00
| |
Collapse
|
32
|
Neira JL, Rizzuti B, Ortega-Alarcón D, Giudici AM, Abián O, Fárez-Vidal ME, Velázquez-Campoy A. The armadillo-repeat domain of plakophilin 1 binds the C-terminal sterile alpha motif (SAM) of p73. Biochim Biophys Acta Gen Subj 2021; 1865:129914. [PMID: 33872756 DOI: 10.1016/j.bbagen.2021.129914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 04/13/2021] [Accepted: 04/13/2021] [Indexed: 12/31/2022]
Abstract
BACKGROUND Plakophilin 1 (PKP1) is a component of desmosomes, which are key structural components for cell-cell adhesion, and can also be found in other cell locations. The p53, p63 and p73 proteins belong to the p53 family of transcription factors, playing crucial roles in tumour suppression. The α-splice variant of p73 (p73α) has at its C terminus a sterile alpha motif (SAM); such domain, SAMp73, is involved in the interaction with other macromolecules. METHODS We studied the binding of SAMp73 with the armadillo domain of PKP1 (ARM-PKP1) in the absence and the presence of 100 mM NaCl, by using several biophysical techniques, namely fluorescence, far-ultraviolet circular dichroism (CD), nuclear magnetic resonance (NMR), isothermal titration calorimetry (ITC), and molecular docking and simulations. RESULTS Association was observed between the two proteins, with a dissociation constant of ~5 μM measured by ITC and fluorescence in the absence of NaCl. The binding region of SAMp73 involved residues of the so-called "middle-loop-end-helix" binding region (i.e., comprising the third helix, together with the C terminus of the second one, and the N-cap of the fourth), as shown by 15N, 1H- HSQC-NMR spectra. Molecular modelling provided additional information on the possible structure of the binding complex. CONCLUSIONS This newly-observed interaction could have potential therapeutic relevance in the tumour pathways where PKP1 is involved, and under conditions when there is a possible inactivation of p53. GENERAL SIGNIFICANCE The discovery of the binding between SAMp73 and ARM-PKP1 suggests a functional role for their interaction, including the possibility that SAMp73 could assist PKP1 in signalling pathways.
Collapse
Affiliation(s)
- José L Neira
- IDIBE, Universidad Miguel Hernández, 03202 Elche, Alicante, Spain; Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Joint Units IQFR-CSIC-BIFI, GBsC-CSIC-BIFI, Universidad de Zaragoza, 50009 Zaragoza, Spain.
| | - Bruno Rizzuti
- Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Joint Units IQFR-CSIC-BIFI, GBsC-CSIC-BIFI, Universidad de Zaragoza, 50009 Zaragoza, Spain; CNR-NANOTEC, Licryl-UOS Cosenza and CEMIF.Cal, Department of Physics, University of Calabria, 87036 Rende, Italy.
| | - David Ortega-Alarcón
- Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Joint Units IQFR-CSIC-BIFI, GBsC-CSIC-BIFI, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | | | - Olga Abián
- Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Joint Units IQFR-CSIC-BIFI, GBsC-CSIC-BIFI, Universidad de Zaragoza, 50009 Zaragoza, Spain; Instituto de Investigación Sanitaria Aragón (IIS Aragón), 50009 Zaragoza, Spain; Instituto Aragonés de Ciencias de la Salud (IACS), 50009 Zaragoza, Spain; Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain; Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - María Esther Fárez-Vidal
- Departamento de Bioquímica y Biología Molecular III e Inmunología, Facultad de Medicina, Universidad de Granada, 18016 Granada, Spain; Instituto de Investigación Biomédica IBS, Complejo Hospitalario Universitario de Granada, Universidad de Granada, 18071 Granada, Spain
| | - Adrián Velázquez-Campoy
- Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Joint Units IQFR-CSIC-BIFI, GBsC-CSIC-BIFI, Universidad de Zaragoza, 50009 Zaragoza, Spain; Instituto de Investigación Sanitaria Aragón (IIS Aragón), 50009 Zaragoza, Spain; Fundacion ARAID, Government of Aragon, 50009 Zaragoza, Spain; Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain; Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, 50009 Zaragoza, Spain
| |
Collapse
|
33
|
Neira JL, Cámara-Artigas A, Hernández-Cifre JG, Ortore MG. The Histidine Phosphocarrier Kinase/Phosphorylase from Bacillus Subtilis Is an Oligomer in Solution with a High Thermal Stability. Int J Mol Sci 2021; 22:3231. [PMID: 33810099 PMCID: PMC8004850 DOI: 10.3390/ijms22063231] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/12/2021] [Accepted: 03/15/2021] [Indexed: 01/25/2023] Open
Abstract
The histidine phosphocarrier protein (HPr) kinase/phosphorylase (HPrK/P) modulates the phosphorylation state of the HPr protein, and it is involved in the use of carbon sources by Gram-positive bacteria. Its X-ray structure, as concluded from crystals of proteins from several species, is a hexamer; however, there are no studies about its conformational stability, and how its structure is modified by the pH. We have embarked on the conformational characterization of HPrK/P of Bacillus subtilis (bsHPrK/P) in solution by using several spectroscopic (namely, fluorescence and circular dichroism (CD)) and biophysical techniques (namely, small-angle X-ray-scattering (SAXS) and dynamic light-scattering (DLS)). bsHPrK/P was mainly a hexamer in solution at pH 7.0, in the presence of phosphate. The protein had a high conformational stability, with an apparent thermal denaturation midpoint of ~70 °C, at pH 7.0, as monitored by fluorescence and CD. The protein was very pH-sensitive, precipitated between pH 3.5 and 6.5; below pH 3.5, it had a molten-globule-like conformation; and it acquired a native-like structure in a narrow pH range (between pH 7.0 and 8.0). Guanidinium hydrochloride (GdmCl) denaturation occurred through an oligomeric intermediate. On the other hand, urea denaturation occurred as a single transition, in the range of concentrations between 1.8 and 18 µM, as detected by far-UV CD and fluorescence.
Collapse
Affiliation(s)
- José L. Neira
- IDIBE, Universidad Miguel Hernández, 03202 Alicante, Spain
- Instituto de Biocomputación y Física de Sistemas Complejos, Joint Units IQFR-CSIC-BIFI, and GBsC-CSIC-BIFI, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Ana Cámara-Artigas
- Departamento de Química y Física, Research Center CIAIMBITAL, Universidad de Almería- ceiA3, 04120 Almería, Spain;
| | - José Ginés Hernández-Cifre
- Departamento de Química Física, Facultad de Química, Campus de Espinardo, Universidad de Murcia, 30100 Murcia, Spain;
| | - María Grazia Ortore
- Dipartimento DiSVA, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy;
| |
Collapse
|
34
|
Investigation of the LCST-Thermoresponsive Behavior of Novel Oligo(Ethylene Glycol)-Modified Pentafluorostyrene Homopolymers. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11062711] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Amphiphilic tetrafluorostyrene monomers (EFS8) carrying in the para position an oligoethylene glycol chain containing 8 oxyethylenic units on average were synthesized and used for preparation via activator regenerated by electron transfer atom transfer radical polymerization (ARGET-ATRP) of the corresponding amphiphilic homopolymers (pEFS8-x) with different degrees of polymerization (x = 26 and 46). Combining light transmittance and nano-differential scanning calorimetry (n-DSC) measurements revealed that pEFS8-x homopolymers displayed a lower critical solution temperature (LCST) thermoresponsive behavior in water solutions. Moreover, n-DSC measurements revealed the presence in heating scans of a broad endothermic peak ascribable to the dehydration process of the polymer single chains (unimers) and their collapse into aggregates. Consistently, dynamic light scattering (DLS) measurements showed below the LCST the presence of small nanostructures with a hydrodynamic diameter size Dh of 6–7 nm, which collapsed into concentration-dependent larger multichain aggregates (Dh = 300–3000 nm) above LCST. Interestingly, n-DSC data showed that the unimer-aggregate transition was reversible up to a specific temperature (Trev) of each homopolymer, which in any case was higher than Tmax. When heating above Trev the transition was no longer reversible, causing the shift of Tonset and Tmax at lower values, thus suggesting an increase in hydrophobicity of the polymer systems associated with a temperature-dependent dehydration process.
Collapse
|
35
|
Santofimia-Castaño P, Rizzuti B, Pey AL, Fárez-Vidal ME, Iovanna JL, Neira JL. Intrinsically disordered protein NUPR1 binds to the armadillo-repeat domain of Plakophilin 1. Int J Biol Macromol 2021; 170:549-560. [PMID: 33385445 DOI: 10.1016/j.ijbiomac.2020.12.193] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 12/08/2020] [Accepted: 12/25/2020] [Indexed: 11/16/2022]
Abstract
Plakophilin 1 (PKP1), a member of the armadillo repeat family of proteins, is a scaffold component of desmosomes, which are key structural components for cell-cell adhesion. However, PKP1 can be also found in the nucleus of several cells. NUPR1 is an intrinsically disordered protein (IDP) that localizes throughout the whole cell, and intervenes in the development and progression of several cancers. In this work, we studied the binding between PKP1 and NUPR1 by using several in vitro biophysical techniques and in cellulo approaches. The interaction occurred with an affinity in the low micromolar range (~10 μM), and involved the participation of at least one of the tryptophan residues of PKP1 (as shown by fluorescence and molecular docking). The binding region of NUPR1, mapped by NMR and molecular modelling, was a polypeptide patch at the 30s region of its sequence. The association between PKP1 and NUPR1 also occurred in cellulo and was localized in the nucleus, as tested by protein ligation assays (PLAs). We hypothesize that NUPR1 plays an active role in carcinogenesis modulating the function of PKP1.
Collapse
Affiliation(s)
- Patricia Santofimia-Castaño
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, 163 Avenue de Luminy, 13288 Marseille, France
| | - Bruno Rizzuti
- CNR-NANOTEC, Licryl-UOS Cosenza and CEMIF.Cal, Department of Physics, University of Calabria, via P. Bucci, Cubo 31 C, 87036 Arcavacata di Rende, Cosenza, Italy
| | - Angel L Pey
- Departamento de Química Física, Unidad de Excelencia en Química aplicada a Biomedicina y Medio-Ambiente, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain
| | - María Esther Fárez-Vidal
- Departamento de Bioquímica y Biología Molecular III e Inmunología, Facultad de Medicina, Universidad de Granada, 18016 Granada, Spain; Instituto de Investigación Biomédica IBS. Granada. Complejo Hospitalario Universitario de Granada, Universidad de Granada, 18071 Granada, Spain
| | - Juan L Iovanna
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, 163 Avenue de Luminy, 13288 Marseille, France.
| | - José L Neira
- IDIBE, Universidad Miguel Hernández, Elche, 03202 Alicante, Spain; Instituto de Biocomputación y Física de Sistemas Complejos, Joint Units IQFR-CSIC-BIFI, GBsC-CSIC-BIFI, Universidad de Zaragoza, 50009 Zaragoza, Spain.
| |
Collapse
|
36
|
Evaluation of biological activities, structural and conformational properties of bovine beta- and alpha-trypsin isoforms in aqueous-organic media. Int J Biol Macromol 2021; 176:291-303. [PMID: 33592263 DOI: 10.1016/j.ijbiomac.2021.02.079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/01/2021] [Accepted: 02/11/2021] [Indexed: 01/01/2023]
Abstract
The study of the biological activity of trypsin isoforms in aqueous-organic media is of great interest to various fields of knowledge and biochemistry applications. Thus enzymatic, structural, and energetic properties of bovine β- and α-trypsin isoforms were compared in aqueous-organic media using 30 mg of each isoform. The results showed that the changes induced on the structure and activity of the same trypsin isoform occur at different concentrations. Better results for activity (ionic strength of 0.11 mol·L-1, at 37 °C and pH 8.0) were found in 0-40% of ethanolic media in which the activity for β-trypsin was about 60% higher than ɑ-trypsin. The ethanolic system does not cause significant changes in the level of secondary structure but the β-trypsin isoform undergoes a major rearrangement. The use of until 60% (v/v) ethanol showed that β-trypsin presents a denaturation process 17% more cooperative. The organic solvent causes redistribution in the supramolecular arrangement of both isoforms: all concentrations used induced the β-trypsin molecules to rearrange into agglomerates. The ɑ-trypsin rearranges into agglomerates up to 60% (v/v) of ethanol and aggregates at 80% (v/v) of ethanol. Both isoforms keep the enzymatic activity up to 60% (v/v) of ethanol.
Collapse
|
37
|
Neira JL, Vega S, Martínez-Rodríguez S, Velázquez-Campoy A. The isolated GTPase-activating-protein-related domain of neurofibromin-1 has a low conformational stability in solution. Arch Biochem Biophys 2021; 700:108767. [PMID: 33476564 DOI: 10.1016/j.abb.2021.108767] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/07/2021] [Accepted: 01/11/2021] [Indexed: 11/28/2022]
Abstract
Neurofibromin-1 (NF1) is a large, multidomain tumour suppressor encoded by the NF1 gene. The gene is mutated in neurofibromatosis type I, a disease characterized by malignant tumours of the nervous system and benign neurofibromas. The best-known activity of NF1 is the down-regulation of the mitogen-activated protein kinase pathway via its three-hundred-residue-long GTPase-activating protein (GAP) domain (the so-called GAP-related domain (NF1-GRD)). The NF1-GRD stimulates Ras GTPase activity in turning off signalling. Despite this activity, NF1-GRD has been demonstrated to bind to other different proteins, such as SPRED1 or MC1R. We have embarked on the biophysical and conformational characterization of NF1-GRD in solution by using several spectroscopic (namely fluorescence and circular dichroism (CD)) and biophysical techniques (namely size exclusion chromatography (SEC) and differential scanning calorimetry (DSC)). This biophysical characterization is crucial in deciphering NF1-GRD interactome and in finding biochemical features, modulating possible protein interactions. The native-like structure of NF1-GRD (as monitored by intrinsic fluorescence and far-UV CD) was strongly pH-dependent showing a pH-titration causing a substantial increase in its helicity. NF1-GRD had a low conformational stability, as concluded from DSC experiments and thermal denaturations followed by intrinsic and ANS fluorescence, and CD. Chemical denaturations showed that NF1-GRD unfolded through an intermediate which has a substantial amount of solvent-exposed hydrophobic patches.
Collapse
Affiliation(s)
- José L Neira
- IDIBE, Universidad Miguel Hernández, 03202, Elche, Alicante, Spain; Instituto de Biocomputación y Física de Sistemas Complejos, Joint Units IQFR-CSIC-BIFI, and GBsC-CSIC-BIFI, Universidad de Zaragoza, 50009, Zaragoza, Spain.
| | - Sonia Vega
- Instituto de Biocomputación y Física de Sistemas Complejos, Joint Units IQFR-CSIC-BIFI, and GBsC-CSIC-BIFI, Universidad de Zaragoza, 50009, Zaragoza, Spain
| | - Sergio Martínez-Rodríguez
- Laboratorio de Estudios Cristalográficos, CSIC, 18100, Armilla, Granada, Spain; Dpto. Bioquímica y Biología Molecular III e Inmunología, Facultad de Medicina, Universidad de Granada, 18071, Granada, Spain.
| | - Adrián Velázquez-Campoy
- Instituto de Biocomputación y Física de Sistemas Complejos, Joint Units IQFR-CSIC-BIFI, and GBsC-CSIC-BIFI, Universidad de Zaragoza, 50009, Zaragoza, Spain; Instituto de Investigación Sanitaria Aragón (IIS Aragón), 50009, Zaragoza, Spain; Fundación ARAID, Government of Aragón, 50009, Zaragoza, Spain; Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, 50009, Zaragoza, Spain; Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (CIBERehd), 28006, Madrid, Spain
| |
Collapse
|
38
|
Kumar A, Ahlawat S, Mohan H, Sharma KK. Stabilization-destabilization and redox properties of laccases from medicinal mushroom Ganoderma lucidum and human pathogen Yersinia enterocolitica. Int J Biol Macromol 2020; 167:369-381. [PMID: 33275974 DOI: 10.1016/j.ijbiomac.2020.11.169] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 11/09/2020] [Accepted: 11/24/2020] [Indexed: 02/01/2023]
Abstract
Laccases or benzenediol oxygen oxidoreductases (EC 1.10.3.2) are polyphenol multicopper oxidases that are known for their structural and functional diversity in various life forms. In the present study, the molecular and physico-chemical properties (redox-potential and secondary structures) of fungal laccase isozymes (FLIs) isolated from a medicinal mushroom Ganoderma lucidum were analyzed and compared with those of the recombinant bacterial laccases (rLac) obtained from different Yersinia enterocolitica strains. It was revealed that the FLIs contained His-Cys-His as the most conserved residue in its domain I Cu site, while the fourth and fifth residues were variable (Ile, Leu, or Phe). Evidently, the cyclic voltammetric measurements of Glac L2 at Type 1 Cu site revealed greater E° for ABTS/ABTS+ (0.312 V) and ABTS+/ABTS2+ (0.773 V) compared to the E° of rLac. Furthermore, circular dichroism-based conformational analysis revealed structural stability of the FLIs at acidic pH (3.0) and low temperature (<30 °C), while the isozymes were destabilized at neutral pH (7.0) and high-temperature conditions (>70 °C). The zymographic studies further confirmed the functional inactivation of FLIs at high temperatures (≥70 °C), predominantly due to domain unfolding. These findings provide novel insight into the evolution of the catalytic efficiency and redox properties of the FLIs, contributing to the existing knowledge regarding stress responses, metabolite production, and the biotechnological utilization of metabolites.
Collapse
Affiliation(s)
- Amit Kumar
- Laboratory of Enzymology and Recombinant DNA Technology, Department of Microbiology, Maharshi Dayanand University, Rohtak 124001, Haryana, India
| | - Shruti Ahlawat
- Laboratory of Enzymology and Recombinant DNA Technology, Department of Microbiology, Maharshi Dayanand University, Rohtak 124001, Haryana, India
| | - Hari Mohan
- Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak 124001, Haryana, India
| | - Krishna Kant Sharma
- Laboratory of Enzymology and Recombinant DNA Technology, Department of Microbiology, Maharshi Dayanand University, Rohtak 124001, Haryana, India.
| |
Collapse
|
39
|
De Belder D, Ghiglione B, Pasteran F, de Mendieta JM, Corso A, Curto L, Di Bella A, Gutkind G, Gomez SA, Power P. Comparative Kinetic Analysis of OXA-438 with Related OXA-48-Type Carbapenem-Hydrolyzing Class D β-Lactamases. ACS Infect Dis 2020; 6:3026-3033. [PMID: 32970406 DOI: 10.1021/acsinfecdis.0c00537] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Novel variants of OXA-48-type enzymes with the ability to hydrolyze oxyimino-cephalosporins and carbapenems are increasingly reported. Since its first report in 2011, OXA-163 is now extensively spread throughout Argentina, and several variants like OXA-247 have emerged. Here, we characterized a new blaOXA-48-like variant, OXA-438, and we performed a comparative kinetic analysis with the local variants OXA-247 and OXA-163 and the internationally disseminated OXA-48. blaOXA-163, blaOXA-247, and blaOXA-438 were located in a 70 kb IncN2 conjugative plasmid. OXA-438 presented mutations in the vicinity of conserved KTG (214-216), with a 2-aa deletion (R220-I221) and a D224E shift (as in OXA-163) compared to OXA-48. Despite Kpn163 (OXA-163), Kpn247 (OXA-247) and Eco438 (OXA-438) were resistant to meropenem and ertapenem, and the transconjugants (TC) remained susceptible (however, the carbapenems minimum inhibitory concentrations were ≥3 times 2-fold dilutions higher than the acceptor strain). TC163 and Eco48 were resistant to oxyimino-cephalosporins, unlike TC247 and TC438. kcat/Km values for cefotaxime in OXA-163 were slightly higher than the rest of the variants that were accompanied by a lower Km for carbapenems. For OXA-163, OXA-247, and OXA-438, the addition of NaHCO3 improved kcat values for both cefotaxime and ceftazidime; carbapenems kcat/Km values were higher than for oxyimino-cephalosporins. Mutations occurring near the conserved KTG in OXA-247 and OXA-438 are probably responsible for the improved carbapenems hydrolysis and decreased inactivation of oxyimino-cephalosporins compared to OXA-163. Dichroism results suggest that deletions at the β5-β6 loop seem to impact the structural stability of OXA-48 variants. Finally, additional mechanisms are probably involved in the resistance pattern observed in the clinical isolates.
Collapse
Affiliation(s)
- Denise De Belder
- Servicio Antimicrobianos - National Reference Laboratory in Antimicrobial Resistance (NRLAR), Instituto Nacional de Enfermedades Infecciosas-ANLIS “Dr. Carlos G. Malbrán”, Buenos Aires 1282, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires 1452, Argentina
| | - Barbara Ghiglione
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires 1452, Argentina
- Facultad de Farmacia y Bioquímica, Instituto de Investigaciones en Bacteriología y Virología Molecular (IBaViM), Departamento de Microbiología, Inmunología, Biotecnología y Genética, Laboratorio de Resistencia Bacteriana, Universidad de Buenos Aires, Buenos Aires 1113, Argentina
| | - Fernando Pasteran
- Servicio Antimicrobianos - National Reference Laboratory in Antimicrobial Resistance (NRLAR), Instituto Nacional de Enfermedades Infecciosas-ANLIS “Dr. Carlos G. Malbrán”, Buenos Aires 1282, Argentina
| | - Juan Manuel de Mendieta
- Servicio Antimicrobianos - National Reference Laboratory in Antimicrobial Resistance (NRLAR), Instituto Nacional de Enfermedades Infecciosas-ANLIS “Dr. Carlos G. Malbrán”, Buenos Aires 1282, Argentina
| | - Alejandra Corso
- Servicio Antimicrobianos - National Reference Laboratory in Antimicrobial Resistance (NRLAR), Instituto Nacional de Enfermedades Infecciosas-ANLIS “Dr. Carlos G. Malbrán”, Buenos Aires 1282, Argentina
| | - Lucrecia Curto
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires 1452, Argentina
- IQUIFIB, Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Buenos Aires 1113, Argentina
| | - Adriana Di Bella
- Hospital Nacional “Profesor Alejandro Posadas”, El Palomar, Buenos Aires 1684, Argentina
| | - Gabriel Gutkind
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires 1452, Argentina
- Facultad de Farmacia y Bioquímica, Instituto de Investigaciones en Bacteriología y Virología Molecular (IBaViM), Departamento de Microbiología, Inmunología, Biotecnología y Genética, Laboratorio de Resistencia Bacteriana, Universidad de Buenos Aires, Buenos Aires 1113, Argentina
| | - Sonia A. Gomez
- Servicio Antimicrobianos - National Reference Laboratory in Antimicrobial Resistance (NRLAR), Instituto Nacional de Enfermedades Infecciosas-ANLIS “Dr. Carlos G. Malbrán”, Buenos Aires 1282, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires 1452, Argentina
| | - Pablo Power
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires 1452, Argentina
- Facultad de Farmacia y Bioquímica, Instituto de Investigaciones en Bacteriología y Virología Molecular (IBaViM), Departamento de Microbiología, Inmunología, Biotecnología y Genética, Laboratorio de Resistencia Bacteriana, Universidad de Buenos Aires, Buenos Aires 1113, Argentina
| |
Collapse
|
40
|
Molina P, Schick AJ, Welch L, Niedringhaus T, Hierro GD, Deperalta G, Hieb A. Using differential scanning calorimetry for the development of non-reduced capillary electrophoresis sodium dodecyl sulfate methods for monoclonal antibodies. Anal Biochem 2020; 609:113948. [DOI: 10.1016/j.ab.2020.113948] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 08/29/2020] [Accepted: 09/04/2020] [Indexed: 02/04/2023]
|
41
|
Pignataro MF, Herrera MG, Dodero VI. Evaluation of Peptide/Protein Self-Assembly and Aggregation by Spectroscopic Methods. Molecules 2020; 25:E4854. [PMID: 33096797 PMCID: PMC7587993 DOI: 10.3390/molecules25204854] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/17/2020] [Accepted: 10/19/2020] [Indexed: 01/08/2023] Open
Abstract
The self-assembly of proteins is an essential process for a variety of cellular functions including cell respiration, mobility and division. On the other hand, protein or peptide misfolding and aggregation is related to the development of Parkinson's disease and Alzheimer's disease, among other aggregopathies. As a consequence, significant research efforts are directed towards the understanding of this process. In this review, we are focused on the use of UV-Visible Absorption Spectroscopy, Fluorescence Spectroscopy and Circular Dichroism to evaluate the self-organization of proteins and peptides in solution. These spectroscopic techniques are commonly available in most chemistry and biochemistry research laboratories, and together they are a powerful approach for initial as well as routine evaluation of protein and peptide self-assembly and aggregation under different environmental stimulus. Furthermore, these spectroscopic techniques are even suitable for studying complex systems like those in the food industry or pharmaceutical formulations, providing an overall idea of the folding, self-assembly, and aggregation processes, which is challenging to obtain with high-resolution methods. Here, we compiled and discussed selected examples, together with our results and those that helped us better to understand the process of protein and peptide aggregation. We put particular emphasis on the basic description of the methods as well as on the experimental considerations needed to obtain meaningful information, to help those who are just getting into this exciting area of research. Moreover, this review is particularly useful to those out of the field who would like to improve reproducibility in their cellular and biomedical experiments, especially while working with peptide and protein systems as an external stimulus. Our final aim is to show the power of these low-resolution techniques to improve our understanding of the self-assembly of peptides and proteins and translate this fundamental knowledge in biomedical research or food applications.
Collapse
Affiliation(s)
- María Florencia Pignataro
- Department of Physiology and Molecular and Cellular Biology, Institute of Biosciences, Biotechnology and Translational Biology (iB3), Faculty of Exact and Natural Sciences, University of Buenos Aires, Buenos Aires C1428EG, Argentina;
- Institute of Biological Chemistry and Physical Chemistry, Dr. Alejandro Paladini, University of Buenos Aires-CONICET, Buenos Aires C1113AAD, Argentina
| | - María Georgina Herrera
- Department of Physiology and Molecular and Cellular Biology, Institute of Biosciences, Biotechnology and Translational Biology (iB3), Faculty of Exact and Natural Sciences, University of Buenos Aires, Buenos Aires C1428EG, Argentina;
- Institute of Biological Chemistry and Physical Chemistry, Dr. Alejandro Paladini, University of Buenos Aires-CONICET, Buenos Aires C1113AAD, Argentina
- Organic and Bioorganic Chemistry, Department of Chemistry, Bielefeld University, 33615 Bielefeld, Germany
| | - Verónica Isabel Dodero
- Organic and Bioorganic Chemistry, Department of Chemistry, Bielefeld University, 33615 Bielefeld, Germany
| |
Collapse
|
42
|
Ram L, Mittal C, Harsolia RS, Yadav JK. Trehalose Inhibits the Heat-Induced Formation of the Amyloid-Like Structure of Soluble Proteins Isolated from Human Cataract Lens. Protein J 2020; 39:509-518. [PMID: 33037983 DOI: 10.1007/s10930-020-09919-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2020] [Indexed: 11/25/2022]
Abstract
The age-dependent loss of solubility and aggregation of crystallins constitute the pathological hallmarks of cataract. Several biochemical and biophysical factors are responsible for the reduction of crystallins' solubility and formation of irreversible protein aggregates, which display amyloid-like characteristics. The present study reports the heat-induced aggregation of soluble proteins isolated from human cataract lenses and the formation of amyloid-like structures. Exposure of protein at 55 °C for 4 h resulted in extensive (≈ 60%) protein aggregation. The heat-induced protein aggregates displayed substantial (≈ 20 nm) redshift in the wavelength of maximum absorption (λmax) of Congo red (CR) and increase in Thioflavin T (ThT) fluorescence emission intensity, indicating the presence of amyloid-like structures in the heat-induced protein aggregates. Subsequently, the addition of trehalose resulted in substantial inhibition of heat-induced aggregation and the formation of amyloid-like structure. The ability of trehalose to inhibit the heat-induced aggregation was found to be linearly dependent upon its concentration used. The optimum effect was observed in the presence of 30-40% (w/v) trehalose where the aggregated was found to be reduced from 60 to 30%. The present study demonstrated the ability to trehalose to inhibit the protein aggregation and interfere with the formation of amyloid-like structures.
Collapse
Affiliation(s)
- Lakshman Ram
- Department of Biotechnology, Central University of Rajasthan, NH-8 Bandersindri, Kishangarh, Ajmer, Rajasthan, 305817, India
| | - Chandrika Mittal
- Department of Biotechnology, Central University of Rajasthan, NH-8 Bandersindri, Kishangarh, Ajmer, Rajasthan, 305817, India
| | - Ram Swaroop Harsolia
- Department of Ophthalmology, Jawaharlal Nehru Medical College, Ajmer, Rajasthan, India
| | - Jay Kant Yadav
- Department of Biotechnology, Central University of Rajasthan, NH-8 Bandersindri, Kishangarh, Ajmer, Rajasthan, 305817, India.
| |
Collapse
|
43
|
Neira JL, Rizzuti B, Jiménez-Alesanco A, Abián O, Velázquez-Campoy A, Iovanna JL. The Paralogue of the Intrinsically Disordered Nuclear Protein 1 Has a Nuclear Localization Sequence that Binds to Human Importin α3. Int J Mol Sci 2020; 21:ijms21197428. [PMID: 33050086 PMCID: PMC7583046 DOI: 10.3390/ijms21197428] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 09/28/2020] [Accepted: 10/03/2020] [Indexed: 02/07/2023] Open
Abstract
Numerous carrier proteins intervene in protein transport from the cytoplasm to the nucleus in eukaryotic cells. One of those is importin α, with several human isoforms; among them, importin α3 (Impα3) features a particularly high flexibility. The protein NUPR1L is an intrinsically disordered protein (IDP), evolved as a paralogue of nuclear protein 1 (NUPR1), which is involved in chromatin remodeling and DNA repair. It is predicted that NUPR1L has a nuclear localization sequence (NLS) from residues Arg51 to Gln74, in order to allow for nuclear translocation. We studied in this work the ability of intact NUPR1L to bind Impα3 and its depleted species, ∆Impα3, without the importin binding domain (IBB), using fluorescence, isothermal titration calorimetry (ITC), circular dichroism (CD), nuclear magnetic resonance (NMR), and molecular docking techniques. Furthermore, the binding of the peptide matching the isolated NLS region of NUPR1L (NLS-NUPR1L) was also studied using the same methods. Our results show that NUPR1L was bound to Imp α3 with a low micromolar affinity (~5 μM). Furthermore, a similar affinity value was observed for the binding of NLS-NUPR1L. These findings indicate that the NLS region, which was unfolded in isolation in solution, was essentially responsible for the binding of NUPR1L to both importin species. This result was also confirmed by our in silico modeling. The binding reaction of NLS-NUPR1L to ∆Impα3 showed a larger affinity (i.e., lower dissociation constant) compared with that of Impα3, confirming that the IBB could act as an auto-inhibition region of Impα3. Taken together, our findings pinpoint the theoretical predictions of the NLS region in NUPR1L and, more importantly, suggest that this IDP relies on an importin for its nuclear translocation.
Collapse
Affiliation(s)
- José L. Neira
- IDIBE, Universidad Miguel Hernández, 03202 Elche (Alicante), Spain
- Instituto de Biocomputación y Física de Sistemas Complejos, Joint Units IQFR-CSIC-BIFI, and GBsC-CSIC-BIFI, Universidad de Zaragoza, 50009 Zaragoza, Spain; (A.J.-A.); (O.A.); (A.V.-C.)
- Correspondence: (J.L.N.); (J.L.I.); Tel.: +34-966-65-8475 (J.L.N.); +33(0)491-82-8803 (J.L.I.)
| | - Bruno Rizzuti
- CNR-NANOTEC, Licryl-UOS Cosenza and CEMIF.Cal, Department of Physics, University of Calabria, Via P. Bucci, Cubo 31 C, Arcavacata di Rende, 87036 Cosenza, Italy;
| | - Ana Jiménez-Alesanco
- Instituto de Biocomputación y Física de Sistemas Complejos, Joint Units IQFR-CSIC-BIFI, and GBsC-CSIC-BIFI, Universidad de Zaragoza, 50009 Zaragoza, Spain; (A.J.-A.); (O.A.); (A.V.-C.)
| | - Olga Abián
- Instituto de Biocomputación y Física de Sistemas Complejos, Joint Units IQFR-CSIC-BIFI, and GBsC-CSIC-BIFI, Universidad de Zaragoza, 50009 Zaragoza, Spain; (A.J.-A.); (O.A.); (A.V.-C.)
- Instituto de Investigación Sanitaria Aragón (IIS Aragón), 50009 Zaragoza, Spain
- Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain
- Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, 50009 Zaragoza, Spain
- Instituto Aragonés de Ciencias de la Salud (IACS), 50009 Zaragoza, Spain
| | - Adrián Velázquez-Campoy
- Instituto de Biocomputación y Física de Sistemas Complejos, Joint Units IQFR-CSIC-BIFI, and GBsC-CSIC-BIFI, Universidad de Zaragoza, 50009 Zaragoza, Spain; (A.J.-A.); (O.A.); (A.V.-C.)
- Instituto de Investigación Sanitaria Aragón (IIS Aragón), 50009 Zaragoza, Spain
- Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain
- Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, 50009 Zaragoza, Spain
- Fundacion ARAID, Gobierno de Aragon, 50009 Zaragoza, Spain
| | - Juan L. Iovanna
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, 163 Avenue de Luminy, 13288 Marseille, France
- Correspondence: (J.L.N.); (J.L.I.); Tel.: +34-966-65-8475 (J.L.N.); +33(0)491-82-8803 (J.L.I.)
| |
Collapse
|
44
|
A Phosphorylation-Induced Switch in the Nuclear Localization Sequence of the Intrinsically Disordered NUPR1 Hampers Binding to Importin. Biomolecules 2020; 10:biom10091313. [PMID: 32933064 PMCID: PMC7565984 DOI: 10.3390/biom10091313] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 09/05/2020] [Accepted: 09/09/2020] [Indexed: 12/24/2022] Open
Abstract
Several carrier proteins are involved in protein transport from the cytoplasm to the nucleus in eukaryotic cells. One of those is importin α, of which there are several human isoforms; among them, importin α3 (Impα3) has a high flexibility. The protein NUPR1, a nuclear protein involved in the cell-stress response and cell cycle regulation, is an intrinsically disordered protein (IDP) that has a nuclear localization sequence (NLS) to allow for nuclear translocation. NUPR1 does localize through the whole cell. In this work, we studied the affinity of the isolated wild-type NLS region (residues 54–74) of NUPR1 towards Impα3 and several mutants of the NLS region by using several biophysical techniques and molecular docking approaches. The NLS region of NUPR1 interacted with Impα3, opening the way to model the nuclear translocation of disordered proteins. All the isolated NLS peptides were disordered. They bound to Impα3 with low micromolar affinity (1.7–27 μM). Binding was hampered by removal of either Lys65 or Lys69 residues, indicating that positive charges were important; furthermore, binding decreased when Thr68 was phosphorylated. The peptide phosphorylated at Thr68, as well as four phospho-mimetic peptides (all containing the Thr68Glu mutation), showed the presence of a sequential NN(i,i + 1) nuclear Overhauser effect (NOE) in the 2D-1H-NMR (two-dimensional–proton NMR) spectra, indicating the presence of turn-like conformations. Thus, the phosphorylation of Thr68 modulates the binding of NUPR1 to Impα3 by a conformational, entropy-driven switch from a random-coil conformation to a turn-like structure.
Collapse
|
45
|
Russell BL, Gildenhuys S. Bluetongue virus viral protein 7 stability in the presence of glycerol and sodium chloride. Clin Exp Vaccine Res 2020; 9:108-118. [PMID: 32864367 PMCID: PMC7445327 DOI: 10.7774/cevr.2020.9.2.108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 07/28/2020] [Indexed: 11/15/2022] Open
Abstract
Purpose The Orbivirus Bluetongue virus (BTV) is an economically significant disease that affects mainly wild and domestic ruminants. BTV is most often seen symptomatically in sheep, but is easily carried by goats, cattle, and wild ruminants. To date there are several problems with the vaccines currently available for BTV, and one of the most promising candidates to increase vaccine efficacy is a protein-based vaccine, for which viral protein 7 (VP7) is a great candidate to be included in it. In order to further these studies, the stability of BTV VP7 in common vaccine additives needs to be investigated. Materials and Methods Recombinant BTV VP7 was expressed in a bacterial cell system and purified before being analysed using spectroscopic techniques including far-ultraviolet (UV) circular dichroism and intrinsic tryptophan fluorescence. BTV was analysed in a number of different buffer conditions. Results We report here that BTV VP7 maintains its native secondary structure until at least 52℃ and native-like tertiary structure to at least 80℃. Far-UV circular dichroism and intrinsic tryptophan fluorescence emission spectra indicate significant secondary and tertiary structure remaining even at 90℃, respectively. Six M guanidinium chloride is able to unfold BTV VP7 while 8 M urea could not. Conclusion Twenty percent glycerol and 300 mM sodium chloride appear to have a protective effect on BTV VP7's structure, as significantly more structure is seen at 90℃ when compared to BTV VP7 without the addition of these chemicals. Both glycerol and sodium chloride are common vaccine additives.
Collapse
Affiliation(s)
- Bonnie Leigh Russell
- Department of Life and Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Florida, South Africa
| | - Samantha Gildenhuys
- Department of Life and Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Florida, South Africa
| |
Collapse
|
46
|
Sanchez-Guzman D, Giraudon-Colas G, Marichal L, Boulard Y, Wien F, Degrouard J, Baeza-Squiban A, Pin S, Renault JP, Devineau S. In Situ Analysis of Weakly Bound Proteins Reveals Molecular Basis of Soft Corona Formation. ACS NANO 2020; 14:9073-9088. [PMID: 32633939 DOI: 10.1021/acsnano.0c04165] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Few experimental techniques allow the analysis of the protein corona in situ. As a result, little is known on the effects of nanoparticles on weakly bound proteins that form the soft corona. Despite its biological importance, our understanding of the molecular bases driving its formation is limited. Here, we show that hemoglobin can form either a hard or a soft corona on silica nanoparticles depending on the pH conditions. Using cryoTEM and synchrotron-radiation circular dichroism, we show that nanoparticles alter the structure and the stability of weakly bound proteins in situ. Molecular dynamics simulation identified the structural elements driving protein-nanoparticle interaction. Based on thermodynamic analysis, we show that nanoparticles stabilize partially unfolded protein conformations by enthalpy-driven molecular interactions. We suggest that nanoparticles alter weakly bound proteins by shifting the equilibrium toward the unfolded states at physiological temperature. We show that the classical approach based on nanoparticle separation from the biological medium fails to detect destabilization of weakly bound proteins, and therefore cannot be used to fully predict the biological effects of nanomaterials in situ.
Collapse
Affiliation(s)
| | | | - Laurent Marichal
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405 Orsay Cedex, France
| | - Yves Boulard
- Université Paris-Saclay, CEA, CNRS, I2BC, B3S, Gif-sur-Yvette 91190, France
| | - Frank Wien
- Synchrotron SOLEIL, 91192 Gif-sur-Yvette, France
| | - Jéril Degrouard
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405 Orsay Cedex, France
| | | | - Serge Pin
- Université Paris-Saclay, CEA, CNRS, NIMBE, Gif-sur-Yvette 91190, France
| | | | | |
Collapse
|
47
|
Giudici AM, Hernández-Cifre JG, Cámara-Artigas A, Hornos F, Martínez-Rodríguez S, Carlos Alvarez-Pérez J, Díaz-Cano I, Esther Fárez-Vidal M, Neira JL. The isolated armadillo-repeat domain of Plakophilin 1 is a monomer in solution with a low conformational stability. J Struct Biol 2020; 211:107569. [PMID: 32650131 DOI: 10.1016/j.jsb.2020.107569] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 06/28/2020] [Accepted: 06/30/2020] [Indexed: 12/16/2022]
Abstract
Plakophilin 1 (PKP1) is a member of the armadillo repeat family of proteins. It serves as a scaffold component of desmosomes, which are key structural components for cell-cell adhesion. We have embarked on the biophysical and conformational characterization of the ARM domain of PKP1 (ARM-PKP1) in solution by using several spectroscopic (namely, fluorescence and circular dichroism (CD)) and biophysical techniques (namely, analytical ultracentrifugation (AUC), dynamic light scattering (DLS) and differential scanning calorimetry (DSC)). ARM-PKP1 was a monomer in solution at physiological pH, with a low conformational stability, as concluded from DSC experiments and thermal denaturations followed by fluorescence and CD. The presence or absence of disulphide bridges did not affect its low stability. The protein unfolded through an intermediate which has lost native-like secondary structure. ARM-PKP1 acquired a native-like structure in a narrow pH range (between pH 6.0 and 8.0), indicating that its adherent properties might only work in a very narrow pH range.
Collapse
Affiliation(s)
| | - José G Hernández-Cifre
- Departamento de Química Física, Facultad de Química, Campus de Espinardo, Universidad de Murcia, 30100 Murcia, Spain
| | - Ana Cámara-Artigas
- Departamento de Química y Física, Research Center CIAIMBITAL, Universidad de Almería- ceiA3, 04120 Almería, Spain
| | - Felipe Hornos
- IDIBE, Universidad Miguel Hernández, 03202 Elche Alicante, Spain
| | - Sergio Martínez-Rodríguez
- Dpto. Bioquímica y Biología Molecular III e Inmunología, Facultad de Medicina, Universidad de Granada, 18016 Granada, Spain
| | - Juan Carlos Alvarez-Pérez
- Dpto. Bioquímica y Biología Molecular I, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain
| | - Inés Díaz-Cano
- Dpto. Bioquímica y Biología Molecular III e Inmunología, Facultad de Medicina, Universidad de Granada, 18016 Granada, Spain; Instituto de Investigación Biomédica IBS. Granada. Complejo Hospitalario Universitario de Granada, Universidad de Granada, 18071 Granada, Spain
| | - María Esther Fárez-Vidal
- Dpto. Bioquímica y Biología Molecular III e Inmunología, Facultad de Medicina, Universidad de Granada, 18016 Granada, Spain; Instituto de Investigación Biomédica IBS. Granada. Complejo Hospitalario Universitario de Granada, Universidad de Granada, 18071 Granada, Spain.
| | - José L Neira
- IDIBE, Universidad Miguel Hernández, 03202 Elche Alicante, Spain; Instituto de Biocomputación y Física de Sistemas Complejos, Joint Units IQFR-CSIC-BIFI, and GBsC-CSIC-BIFI, Universidad de Zaragoza, 50009 Zaragoza, Spain.
| |
Collapse
|
48
|
Lan H, Liu H, Ye Y, Yin Z. The Role of Surface Properties on Protein Aggregation Behavior in Aqueous Solution of Different pH Values. AAPS PharmSciTech 2020; 21:122. [PMID: 32337617 DOI: 10.1208/s12249-020-01663-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 03/13/2020] [Indexed: 02/04/2023] Open
Abstract
This study aimed to investigate the effect of pH-mediated surface properties of bovine serum albumin (BSA) on protein aggregation and the changes of protein structure and colloidal stability at different solution pH levels. The hydrophobicity of BSA surface was characterized by endogenous fluorescence spectroscopy, fluorescence quenching of acrylamide, and fluorescence probe. The results showed that the hydrophobicity of BSA surface was similar at pH 5, 6, 7.4, followed by pH 4, 8, 9, 10, and finally by pH 3 and 11 with strong acidity and alkalinity. The positive charge on the BSA surface was increased gradually with the decrease of solution pH, while the negative charge on protein surface was increased gradually with the increase of solution pH. The degree of protein aggregation was examined by turbidimetry, flow cytometry, and SDS-PAGE. The results showed that the oscillating aggregation of BSA did not change with the solution pH, but was partially dependent on the relative contribution of electrostatic and hydrophobic interactions between the protein molecules. In addition, the secondary structure, conformational stability, unfolding degree, and colloidal stability of proteins were investigated by circular dichroism, fluorescence spectroscopy, protein pulse hydrolysis, and dynamic light scattering, respectively. The results suggested that the solution pH could change the structure and stability of the protein at different levels. Solution pH has distinct effects on the structural stability of protein at different levels. The change of protein surface properties mediated by solution pH is related to protein aggregation.
Collapse
|
49
|
Díaz-García C, Hornos F, Giudici AM, Cámara-Artigas A, Luque-Ortega JR, Arbe A, Rizzuti B, Alfonso C, Forwood JK, Iovanna JL, Gómez J, Prieto M, Coutinho A, Neira JL. Human importin α3 and its N-terminal truncated form, without the importin-β-binding domain, are oligomeric species with a low conformational stability in solution. Biochim Biophys Acta Gen Subj 2020; 1864:129609. [PMID: 32234409 DOI: 10.1016/j.bbagen.2020.129609] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 03/13/2020] [Accepted: 03/26/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Eukaryotic cells have a continuous transit of macromolecules between the cytoplasm and the nucleus. Several carrier proteins are involved in this transport. One of them is importin α, which must form a complex with importin β to accomplish its function, by domain-swapping its 60-residue-long N terminus. There are several human isoforms of importin α; among them, importin α3 has a particularly high flexibility. METHODS We studied the conformational stability of intact importin α3 (Impα3) and its truncated form, where the 64-residue-long, N-terminal importin-β-binding domain (IBB) has been removed (ΔImpα3), in a wide pH range, with several spectroscopic, biophysical, biochemical methods and with molecular dynamics (MD). RESULTS Both species acquired native-like structure between pH 7 and 10.0, where Impα3 was a dimer (with an apparent self-association constant of ~10 μM) and ΔImpα3 had a higher tendency to self-associate than the intact species. The acquisition of secondary, tertiary and quaternary structure, and the burial of hydrophobic patches, occurred concomitantly. Both proteins unfolded irreversibly at physiological pH, by using either temperature or chemical denaturants, through several partially folded intermediates. The MD simulations support the presence of these intermediates. CONCLUSIONS The thermal stability of Impα3 at physiological pH was very low, but was higher than that of ΔImpα3. Both proteins were stable in a narrow pH range, and they unfolded at physiological pH populating several intermediate species. GENERAL SIGNIFICANCE The low conformational stability explains the flexibility of Impα3, which is needed to carry out its recognition of complex cargo sequences.
Collapse
Affiliation(s)
- Clara Díaz-García
- iBB- Institute for Bioengineering and Bioscience, Instituto Superior Técnico, Universidade de Lisboa, 1049-001, Lisboa, Portugal
| | - Felipe Hornos
- IDIBE, Universidad Miguel Hernández, 03202 Elche, Alicante, Spain
| | | | - Ana Cámara-Artigas
- Departamento de Química y Física, Research Center CIAIMBITAL, Universidad de Almería- ceiA3, 04120 Almería, Spain
| | - Juan Román Luque-Ortega
- Centro de Investigaciones Biológicas Margarita Salas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Arantxa Arbe
- Centro de Física de Materiales (CFM) (CSIC-UPV/EHU), Materials Physics Center (MPC), 20018 San Sebastián, Spain
| | - Bruno Rizzuti
- CNR-NANOTEC, Licryl-UOS Cosenza and CEMIF.Cal, Department of Physics, University of Calabria, Via P. Bucci, Cubo 31 C, 87036 Arcavacata di Rende, Cosenza, Italy
| | - Carlos Alfonso
- Centro de Investigaciones Biológicas Margarita Salas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Jade K Forwood
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW 2678, Australia
| | - Juan L Iovanna
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, 163 Avenue de Luminy, 13288 Marseille, France
| | - Javier Gómez
- IDIBE, Universidad Miguel Hernández, 03202 Elche, Alicante, Spain
| | - Manuel Prieto
- iBB- Institute for Bioengineering and Bioscience, Instituto Superior Técnico, Universidade de Lisboa, 1049-001, Lisboa, Portugal
| | - Ana Coutinho
- iBB- Institute for Bioengineering and Bioscience, Instituto Superior Técnico, Universidade de Lisboa, 1049-001, Lisboa, Portugal; Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1649-004 Lisboa, Portugal
| | - José L Neira
- IDIBE, Universidad Miguel Hernández, 03202 Elche, Alicante, Spain; Instituto de Biocomputación y Física de Sistemas Complejos, Joint Units IQFR-CSIC-BIFI, and GBsC-CSIC-BIFI, Universidad de Zaragoza, 50009 Zaragoza, Spain.
| |
Collapse
|
50
|
Yao H, Wynendaele E, De Spiegeleer B. Thermal sensitivity as a quality control attribute for biotherapeutics: The L-asparaginase case. Drug Test Anal 2019; 12:67-77. [PMID: 31471998 DOI: 10.1002/dta.2691] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/22/2019] [Accepted: 08/23/2019] [Indexed: 01/13/2023]
Abstract
Thermal sensitivity, as a practical measure of thermostability, is an interesting quality attribute that can be used in the quality control (QC) release of biopharmaceuticals. This article investigates circular dichroism (CD) spectroscopy and nano-differential scanning fluorimetry (nano-DSF) to evaluate the thermal stability of E.coli L-asparaginase (L-ASNase) for QC purposes. In CD, molar ellipticity as a function of temperature (from 20 to 80°C) was measured at 222 nm. Different L-ASNase samples dissolved in different diluents were investigated by determining the melting temperature (Tm ) from the first derivative curve as well as the slope of the fitted sigmoidal function of the temperature gradient CD data. The obtained Tm values could be correlated with the L-ASNase sample origin as well as with the pH of the diluent. The Tm values obtained from the CD data were moreover consistent with the Tm values determined by nano-DSF, confirming their reliability. Next to the Tm value, also the slope of the fitted sigmoidal CD-function was able to differentiate different L-ASNase samples, including unstressed from stressed protein. By using both the Tm and the curve slope, the thermal stability of L-ASNase was investigated, demonstrating and recommending the use of this heat-stress characteristic as a QC quality attribute of proteins, which can be applied to detect substandard and falsified proteins.
Collapse
Affiliation(s)
- Han Yao
- Drug Quality and Registration (DruQuaR) group, Department of Pharmaceutical Analysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Evelien Wynendaele
- Drug Quality and Registration (DruQuaR) group, Department of Pharmaceutical Analysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Bart De Spiegeleer
- Drug Quality and Registration (DruQuaR) group, Department of Pharmaceutical Analysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|