1
|
Tao J, Yin L, Wu A, Zhang J, Zhang J, Shi H, Liu S, Niu L, Xu L, Feng Y, Lian S, Li L, Zeng L, Meng X, Zhou X, Liu T, Zhang L. PDIA2 Bridges Endoplasmic Reticulum Stress and Metabolic Reprogramming During Malignant Transformation of Chronic Colitis. Front Oncol 2022; 12:836087. [PMID: 35860571 PMCID: PMC9289542 DOI: 10.3389/fonc.2022.836087] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 06/02/2022] [Indexed: 12/03/2022] Open
Abstract
Background Chronic inflammation contributes to approximately 20% of cancers; the underlying mechanisms are still elusive. Here, using an animal model of colitis to colon-cancerous transformation, we demonstrated that endoplasmic reticulum (ER) stress couples with metabolic reprogramming to promote a malignant transformation of chronic inflammation. Methods The animal model for chronic colitis to colon-cancerous transformation was established in C57BL/6N mice by azoxymethane (AOM) and dextran sodium sulfate (DSS) treatments. The differential proteins in control and AOM/DSS-treated colon mucosa were determined using proteomic analysis; the kinetics of metabolic modifications were monitored by mitochondrial oxygen flux, extracellular acidification, and targeted metabolomics; the molecule linker between ER stress and metabolic modifications were identified by coimmunoprecipitation, KEGG pathway analysis, and the subcutaneous tumor model using gene-specific knockdown colon cancer cells. Tissue array analysis were used to evaluate the differential protein in cancer and cancer-adjacent tissues. Results AOM/DSS treatment induced 38 tumors in 10 mice at the 14th week with the mean tumor size 9.35 ± 3.87 mm2, which was significantly decreased to 5.85 ± 0.95 mm2 by the ER stress inhibitor 4-phenylbutyric acid (4PBA). Seven differential proteins were determined from control (1,067 ± 48) and AOM/DSS-treated mucosa (1,077 ± 59); the level of ER protein PDIA2 (protein disulfide isomerase-associated 2) was increased over 7-fold in response to AOM/DSS treatment. PDIA2 interacted with 420 proteins that were involved in 8 signaling pathways, in particular with 53 proteins in metabolic pathways. PDIA2 translocated from ER to mitochondria and interacted with the components of complexes I and II to inhibit oxophosphorylation but increase glycolysis. Knockdown PDIA2 in colon cancer cells restored the metabolic imbalance and significantly repressed tumor growth in the xenograft animal model. 4PBA therapy inhibited the AOM/DSS-mediated overexpression of PDIA2 and metabolic modifications and suppressed colon cancer growth. In clinic, PDIA2 was overexpressed in colon cancer tissues rather than cancer-adjacent tissues and was related with the late stages and lymph node metastasis of colon cancer. Conclusions Persistent ER stress reprograms the metabolism to promote the malignant transformation of chronic colitis; PDIA2 serves as a molecule linker between ER stress and metabolic reprogramming. The inhibition of ER stress restores metabolic homeostasis and attenuates the cancerous transformation of chronic inflammation.
Collapse
Affiliation(s)
- Jie Tao
- Scientific Research Institute, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Lin Yin
- Scientific Research Institute, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Ao Wu
- Scientific Research Institute, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Jiaoli Zhang
- Scientific Research Institute, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Jingpu Zhang
- Scientific Research Institute, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Huichun Shi
- Scientific Research Institute, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Siyuan Liu
- The College of Information, Mechanical and Electrical Engineering, Shanghai Normal University, Shanghai, China
| | - Liangfei Niu
- Scientific Research Institute, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Li Xu
- Scientific Research Institute, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Yanling Feng
- Clinical Pathology Laboratory, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Shixian Lian
- Department of Surgery, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Lei Li
- Department of Surgery, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Liyan Zeng
- Department of Clinical Research Center, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Xianmin Meng
- Department of Clinical Research Center, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Xiaohui Zhou
- Animal Research Center, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Tiefu Liu
- Scientific Research Institute, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
- *Correspondence: Lijun Zhang, ; Tiefu Liu,
| | - Lijun Zhang
- Scientific Research Institute, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
- Department of Clinical Research Center, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
- *Correspondence: Lijun Zhang, ; Tiefu Liu,
| |
Collapse
|
2
|
Wang Z, Zhang H, Cheng Q. PDIA4: The basic characteristics, functions and its potential connection with cancer. Biomed Pharmacother 2019; 122:109688. [PMID: 31794946 DOI: 10.1016/j.biopha.2019.109688] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 11/07/2019] [Accepted: 11/16/2019] [Indexed: 12/19/2022] Open
Abstract
Disulfide bond formation is catalyzed by the protein disulfide Isomerases (PDI) family. This is a critical step in protein folding which occurs within the endoplasmic reticulum. PDIA4, as a member of the PDI family, can cause the adjustment of αIIβ 3 affinities which activate platelet and promote thrombosis formation. Endoplasmic reticulum response is triggered by accumulation of abnormal folding proteins concomitant with increasing PDIA4 expression. Besides, current researches indicate that activated platelets and ERS response affect tumor progression. And PDIA4, as previous reported, also participates in tumor progression by affecting cell apoptosis and DNA repair machinery without specific mechanisms revealed.Therefore, PDI inhibitor might possess great potential value in against tumor progression. In this review, we summarize information on PDIA4 including its the basic characteristics and its implication on tumor.
Collapse
Affiliation(s)
- Zeyu Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, PR China
| | - Hao Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, PR China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, PR China; Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, PR China; National Clinical Research Center for Geriatric Disorders, Changsha 410008, PR China.
| |
Collapse
|
3
|
Abstract
This study provides a structure for microsomal triglyceride transfer protein, a key protein in lipid metabolism and transport. Microsomal triglyceride transfer protein is linked to a human disease state, abetalipoproteinemia. The structure helps us to understand how this protein functions and gives a rationale for how previously reported mutations result in loss of function of the protein and hence, cause disease. The structure also provides a means for rational drug design to treat cardiovascular disease, hypercholesterolemia, and obesity. Microsomal triglyceride transfer protein is composed of 2 subunits. The β-subunit, protein disulfide isomerase (PDI), also acts independently as a protein folding catalyst. The structure that we present here gives insights into how PDI functions in protein folding. Microsomal triglyceride transfer protein (MTP) plays an essential role in lipid metabolism, especially in the biogenesis of very low-density lipoproteins and chylomicrons via the transfer of neutral lipids and the assembly of apoB-containing lipoproteins. Our understanding of the molecular mechanisms of MTP has been hindered by a lack of structural information of this heterodimeric complex comprising an MTPα subunit and a protein disulfide isomerase (PDI) β-subunit. The structure of MTP presented here gives important insights into the potential mechanisms of action of this essential lipid transfer molecule, structure-based rationale for previously reported disease-causing mutations, and a means for rational drug design against cardiovascular disease and obesity. In contrast to the previously reported structure of lipovitellin, which has a funnel-like lipid-binding cavity, the lipid-binding site is encompassed in a β-sandwich formed by 2 β-sheets from the C-terminal domain of MTPα. The lipid-binding cavity of MTPα is large enough to accommodate a single lipid. PDI independently has a major role in oxidative protein folding in the endoplasmic reticulum. Comparison of the mechanism of MTPα binding by PDI with previously published structures gives insights into large protein substrate binding by PDI and suggests that the previous structures of human PDI represent the “substrate-bound” and “free” states rather than differences arising from redox state.
Collapse
|
4
|
Fujimoto T, Nakamura O, Saito M, Tsuru A, Matsumoto M, Kohno K, Inaba K, Kadokura H. Identification of the physiological substrates of PDIp, a pancreas-specific protein-disulfide isomerase family member. J Biol Chem 2018; 293:18421-18433. [PMID: 30315102 DOI: 10.1074/jbc.ra118.003694] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 10/10/2018] [Indexed: 11/06/2022] Open
Abstract
About 20 members of the protein-disulfide isomerase (PDI) family are present in the endoplasmic reticulum of mammalian cells. They are thought to catalyze thiol-disulfide exchange reactions within secretory or membrane proteins to assist in their folding or to regulate their functions. PDIp is a PDI family member highly expressed in the pancreas and known to bind estrogen in vivo and in vitro However, the physiological functions of PDIp remained unclear. In this study, we set out to identify its physiological substrates. By combining acid quenching and thiol alkylation, we stabilized and purified the complexes formed between endogenous PDIp and its target proteins from the mouse pancreas. MS analysis of these complexes helped identify the disulfide-linked PDIp targets in vivo, revealing that PDIp interacts directly with a number of pancreatic digestive enzymes. Interestingly, when pancreatic elastase, one of the identified proteins, was expressed alone in cultured cells, its proenzyme formed disulfide-linked aggregates within cells. However, when pancreatic elastase was co-expressed with PDIp, the latter prevented the formation of these aggregates and enhanced the production and secretion of proelastase in a form that could be converted to an active enzyme upon trypsin treatment. These findings indicate that the main targets of PDIp are digestive enzymes and that PDIp plays an important role in the biosynthesis of a digestive enzyme by assisting with the proper folding of the proenzyme within cells.
Collapse
Affiliation(s)
- Takushi Fujimoto
- From the Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Orie Nakamura
- From the Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Michiko Saito
- the Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan.,the Bio-science Research Center, Kyoto Pharmaceutical University, Misasagi, Yamashina, Kyoto 607-8412, Japan
| | - Akio Tsuru
- the Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Masaki Matsumoto
- the Medical Institute of Bioregulation, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
| | - Kenji Kohno
- the Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan.,the Institute for Research Initiatives, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan, and
| | - Kenji Inaba
- From the Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Aoba-ku, Sendai, Miyagi 980-8577, Japan.,CREST, Japan Science and Technology Agency (JST), Saitama 332-0012, Japan
| | - Hiroshi Kadokura
- From the Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Aoba-ku, Sendai, Miyagi 980-8577, Japan,
| |
Collapse
|
5
|
Abstract
The protein disulfide isomerase (PDI) family is a group of multifunctional endoplasmic reticulum (ER) enzymes that mediate the formation of disulfide bonds, catalyze the cysteine-based redox reactions and assist the quality control of client proteins. Recent structural and functional studies have demonstrated that PDI members not only play an essential role in the proteostasis in the ER but also exert diverse effects in numerous human disorders including cancer and neurodege-nerative diseases. Increasing evidence suggests that PDI is actively involved in the proliferation, survival, and metastasis of several types of cancer cells. Although the molecular mechanism by which PDI contributes to tumorigenesis and metastasis remains to be understood, PDI is now emerging as a new therapeutic target for cancer treatment. In fact, several attempts have been made to develop PDI inhibitors as anti-cancer drugs. In this review, we discuss the properties and diverse functions of human PDI proteins and focus on recent findings regarding their roles in the state of diseases including cancer and neurodegeneration.
Collapse
Affiliation(s)
- Eunyoug Lee
- Department of Bio and Environmental Technology, Seoul Women's University, Seoul 01797, Korea
| | - Do Hee Lee
- Department of Bio and Environmental Technology, Seoul Women's University, Seoul 01797, Korea
| |
Collapse
|
6
|
Richards KL, Rowe ML, Hudson PB, Williamson RA, Howard MJ. Combined ligand-observe (19)F and protein-observe (15)N,(1)H-HSQC NMR suggests phenylalanine as the key Δ-somatostatin residue recognized by human protein disulfide isomerase. Sci Rep 2016; 6:19518. [PMID: 26786784 PMCID: PMC4726260 DOI: 10.1038/srep19518] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 12/09/2015] [Indexed: 01/27/2023] Open
Abstract
Human protein disulphide isomerase (hPDI) is an endoplasmic reticulum (ER) based isomerase and folding chaperone. Molecular detail of ligand recognition and specificity of hPDI are poorly understood despite the importance of the hPDI for folding secreted proteins and its implication in diseases including cancer and lateral sclerosis. We report a detailed study of specificity, interaction and dissociation constants (Kd) of the peptide-ligand Δ-somatostatin (AGSKNFFWKTFTSS) binding to hPDI using 19F ligand-observe and 15N,1H-HSQC protein-observe NMR methods. Phe residues in Δ-somatostatin are hypothesised as important for recognition by hPDI therefore, step-wise peptide Phe-to-Ala changes were progressively introduced and shown to raise the Kd from 103 + 47 μM until the point where binding was abolished when all Phe residues were modified to Ala. The largest step-changes in Kd involved the F11A peptide modification which implies the C-terminus of Δ-somatostatin is a prime recognition region. Furthermore, this study also validated the combined use of 19F ligand-observe and complimentary 15N,1H-HSQC titrations to monitor interactions from the protein’s perspective. 19F ligand-observe NMR was ratified as mirroring 15N protein-observe but highlighted the advantage that 19F offers improved Kd precision due to higher spectrum resolution and greater chemical environment sensitivity.
Collapse
Affiliation(s)
- Kirsty L Richards
- Protein Science Group, School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK
| | - Michelle L Rowe
- Protein Science Group, School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK
| | - Paul B Hudson
- Protein Science Group, School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK
| | - Richard A Williamson
- Protein Science Group, School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK
| | - Mark J Howard
- Protein Science Group, School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK
| |
Collapse
|
7
|
Schulman S, Bendapudi P, Sharda A, Chen V, Bellido-Martin L, Jasuja R, Furie BC, Flaumenhaft R, Furie B. Extracellular Thiol Isomerases and Their Role in Thrombus Formation. Antioxid Redox Signal 2016; 24:1-15. [PMID: 26467859 PMCID: PMC4717499 DOI: 10.1089/ars.2015.6530] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Accepted: 10/13/2015] [Indexed: 01/01/2023]
Abstract
SIGNIFICANCE The mammalian endoplasmic reticulum (ER) houses a large family of twenty thioredoxin-like proteins of which protein disulfide isomerase (PDI) is the archetypal member. Although the PDI family is best known for its role in oxidative protein folding of secretory proteins in the ER, these thioredoxin-like proteins fulfill ever-expanding roles, both within the secretory pathway and beyond. RECENT ADVANCES Secreted PDI family proteins have now been shown to serve a critical role in platelet thrombus formation and fibrin generation. Utilizing intravital microscopy to visualize thrombus formation in mice, we have demonstrated the presence of extracellular PDI antigen during thrombus formation following injury of the vascular wall. Inhibition of PDI abrogates thrombus formation in vivo (16, 26, 46, 55). These observations have been extended to other PDI family members, including ERp57 (39, 116, 118, 123) and ERp5 (77). The vascular thiol isomerases are those PDI family members secreted from platelets and/or endothelium (40): PDI, ERp57, ERp5, ERp72, ERp44, ERp29, and TMX3. We focus here on PDI (16, 46, 55), ERp57 (39, 116, 118, 123), and ERp5 (77), which have been implicated in thrombus formation in vivo. CRITICAL ISSUES It would appear that a system of thiol isomerase redox catalysts has been hijacked from the ER to regulate thrombus formation in the vasculature. FUTURE DIRECTIONS How this redox system is trafficked to and regulated at the cell surface, the identity of extracellular substrates, why so many thiol isomerases are required, and which thiol isomerase functions are necessary are critical unanswered questions in understanding the role of thiol isomerases in thrombus formation.
Collapse
Affiliation(s)
- Sol Schulman
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center and Harvard Medical School , Boston, Massachusetts
| | - Pavan Bendapudi
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center and Harvard Medical School , Boston, Massachusetts
| | - Anish Sharda
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center and Harvard Medical School , Boston, Massachusetts
| | - Vivien Chen
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center and Harvard Medical School , Boston, Massachusetts
| | - Lola Bellido-Martin
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center and Harvard Medical School , Boston, Massachusetts
| | - Reema Jasuja
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center and Harvard Medical School , Boston, Massachusetts
| | - Barbara C Furie
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center and Harvard Medical School , Boston, Massachusetts
| | - Robert Flaumenhaft
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center and Harvard Medical School , Boston, Massachusetts
| | - Bruce Furie
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center and Harvard Medical School , Boston, Massachusetts
| |
Collapse
|
8
|
Campion SR. Conserved aromatic residues as determinants in the folding and assembly of immunoglobulin variable domains. Mol Immunol 2015; 70:63-71. [PMID: 26742085 DOI: 10.1016/j.molimm.2015.12.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 12/01/2015] [Accepted: 12/15/2015] [Indexed: 11/29/2022]
Abstract
Detailed analysis of amino acid distribution, focusing on the "framework" regions of both heavy- and light-chain variable immunoglobulin (Ig) domains, distinguished those conserved sequence elements shared by both heavy-chain (VH) and light-chain (VL) domains from those conserved determinants unique to either VH or VL domains alone. Mapping of conserved chemical functionality onto characterized PDB structures showed the analogous placement and utilization of shared determinants in VH and VL structures that are generally similar. Identical Arginine-Aspartic acid ion-pairs located symmetrically on the lateral surfaces of VH and VL domains, respectively, as well as paired glutamine residues that constitute a central contact site between VH and VL domains represent clearly shared molecular features. Three sites of shared aromaticity were found localized to symmetrical sites lining the inaccessible interface of the VH-VL duplex, suggesting an expanded role for strategically conserved aromatic residues from a postulated determinant of individual Ig domain folding to now implicate conserved aromatic sites in the subsequent multi-subunit assembly of native antibody superstructure. Differential domain-specific conservation, representing evolutionary diversification and molecular asymmetry between heavy- and light-chain variable domains was limited, but included amino acids from each functional class and must be evaluated with regard to their possible involvement in heterologous aspects of IgV protein structure-function.
Collapse
Affiliation(s)
- Stephen R Campion
- Department of Science and Mathematics, Alvernia University, Reading, PA 19607, USA.
| |
Collapse
|
9
|
Hoxha E, Campion SR. Structure-critical distribution of aromatic residues in the fibronectin type III protein family. Protein J 2014; 33:165-73. [PMID: 24563228 DOI: 10.1007/s10930-014-9549-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Over a thousand individual Fibronectin type III (FnIII) domain sequences, extracted from more than 60 different FnIII-dependent protein super-structures, were downloaded from curated database resources. Three regions of extreme sequence conservation within the well-characterized FnIII β-sandwich structure were respectively defined by near absolute conservation of a tryptophan (Trp) in β-strand-B, tyrosines (Tyr) in both β-strand-C and β-strand-F, and a leucine (Leu) residue in the unstructured region immediately preceding β-strand-F. Employing these four conserved landmarks, the entire FnIII sequence dataset was vertically registered to align the three conserved regions, and the cumulative distribution of all other amino acid functionality was determined and plotted relative to these landmark residues. Conserved aromatic sites were each found to be flanked by aliphatic residues that assure localization of these sites to the inaccessible hydrophobic interface between major sheet structures. Mapping the location of conserved aromatic sites in numerous PDB structures demonstrated the consistent pair-wise co-localization of the indole side-chain of the conserved strand-B Trp site to within 0.35 nm of the phenolic side-chain of the strand-C Tyr site located 8-14 amino acids distal. Likewise, the side-chain of the strand-F Tyr site co-localized to within 0.45 nm of the aliphatic side-chain of the conserved Leu that uniformly precedes it by six residues. While classic hydropathy-based theories would deem the "burying" of Tyr and Trp side-chains and/or their association with hydrophobic FnIII core residues thermodynamically unnecessary, alternative contributions of conserved Trp and Tyr residues, and particularly the role of the absolutely conserved tyrosine phenolic -OH in native FnIII structure-function are considered. A more global role for conserved FnIII aromaticity is also discussed in light of the aromatic conservation observed in other well-established protein families.
Collapse
Affiliation(s)
- Ema Hoxha
- Department of Science and Mathematics, Alvernia University, Reading, PA, 19607, USA
| | | |
Collapse
|
10
|
Structure of the substrate-binding b' domain of the Protein Disulfide Isomerase-Like protein of the Testis. Sci Rep 2014; 4:4464. [PMID: 24662985 PMCID: PMC4894388 DOI: 10.1038/srep04464] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 03/10/2014] [Indexed: 11/26/2022] Open
Abstract
Protein Disulfide Isomerase-Like protein of the Testis (PDILT) is a testis-specific member of the PDI family. PDILT displays similar domain architecture to PDIA1, the founding member of this protein family, but lacks catalytic cysteines needed for oxidoreduction reactions. This suggests special importance of chaperone activity of PDILT, but how it recognizes misfolded protein substrates is unknown. Here, we report the high-resolution crystal structure of the b′ domain of human PDILT. The structure reveals a conserved hydrophobic pocket, which is likely a principal substrate-binding site in PDILT. In the crystal, this pocket is occupied by side chains of tyrosine and tryptophan residues from another PDILT molecule, suggesting a preference for binding exposed aromatic residues in protein substrates. The lack of interaction of the b′ domain with the P-domains of calreticulin-3 and calmegin hints at a novel way of interaction between testis-specific lectin chaperones and PDILT. Further studies of this recently discovered PDI member would help to understand the important role that PDILT plays in the differentiation and maturation of spermatozoids.
Collapse
|
11
|
Funkner A, Parthier C, Schutkowski M, Zerweck J, Lilie H, Gyrych N, Fischer G, Stubbs MT, Ferrari DM. Peptide binding by catalytic domains of the protein disulfide isomerase-related protein ERp46. J Mol Biol 2013; 425:1340-62. [PMID: 23376096 DOI: 10.1016/j.jmb.2013.01.029] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 01/09/2013] [Accepted: 01/23/2013] [Indexed: 11/18/2022]
Abstract
The protein disulfide isomerase (PDI) family member ERp46/endoPDI/thioredoxin domain-containing protein 5 is preferentially expressed in a limited number of tissues, where it may function as a survival factor for nitrosative stress in vivo. It is involved in insulin production as well as in adiponectin signaling and interacts specifically with the redox-regulatory endoplasmic reticulum proteins endoplasmic oxidoreductin 1α (Ero1α) and peroxiredoxin-4. Here, we show that ERp46, although lacking a PDI-like redox-inactive b'-thioredoxin domain with its hydrophobic substrate binding site, is able to bind to a large pool of peptides containing aromatic and basic residues via all three of its catalytic domains (a(0), a and a'), though the a(0) domain may contain the primary binding site. ERp46, which shows relatively higher activity as a disulfide-reductase than as an oxidase/isomerase in vitro compared to PDI and ERp57, possesses chaperone activity in vivo, a property also shared by the C-terminal a' domain. A crystal structure of the a' domain is also presented, offering a view of possible substrate binding sites within catalytic domains of PDI proteins.
Collapse
Affiliation(s)
- Andreas Funkner
- Max Planck Research Unit for Enzymology of Protein Folding, Weinbergweg 22, 06120 Halle (Saale), Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Seidler NW. Dynamic oligomeric properties. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 985:207-47. [PMID: 22851451 DOI: 10.1007/978-94-007-4716-6_7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
This chapter provides a foundation for further research into the relationship between dynamic oligomeric properties and functional diversity. The structural basis that underlies the conformational sub-states of the GAPDH oligomer is discussed. The issue of protein stability is given a thorough analysis, since it is well-established that the primary strategy for protein oligomerization is to stabilize conformation. Several factors that affect oligomerization are described, including chemical modification by synthetic reagents. The effects of native substrates and coenzymes are also discussed. The curious feature of chloride ions having a de-stabilizing effect on native GAPDH structure is described. Additionally, the role of adenine dinucleotides in tetramer-dimer equilibrium dynamics is suggested to be a major part of the physiological regulation of GAPDH structure and function. This chapter also contends that a vast amount of useful information can come from comparative analyses of diverse species, particularly regarding protein stability and subunit-subunit interaction. Lastly, the concept of domain exchange is introduced as a means of understanding the stabilization of dynamic oligomers, suggesting that inter-subunit contacts may also be a way of masking docking sites to other proteins.
Collapse
Affiliation(s)
- Norbert W Seidler
- Department of Biochemistry, Kansas City University of Medicine and Biosciences, Kansas City, MO, USA
| |
Collapse
|
13
|
Schroeder BW, Verhaeghe C, Park SW, Nguyenvu LT, Huang X, Zhen G, Erle DJ. AGR2 is induced in asthma and promotes allergen-induced mucin overproduction. Am J Respir Cell Mol Biol 2012; 47:178-85. [PMID: 22403803 PMCID: PMC3423459 DOI: 10.1165/rcmb.2011-0421oc] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Accepted: 03/04/2012] [Indexed: 12/26/2022] Open
Abstract
Mucins are gel-forming proteins that are responsible for the characteristic viscoelastic properties of mucus. Mucin overproduction is a hallmark of asthma, but the cellular requirements for airway mucin production are poorly understood. The endoplasmic reticulum (ER) protein anterior gradient homolog 2 (AGR2) is required for production of the intestinal mucin MUC2, but its role in the production of the airway mucins MUC5AC and MUC5B is not established. Microarray data were analyzed to examine the relationship between AGR2 and MUC5AC expression in asthma. Immunofluorescence was used to localize AGR2 in airway cells. Coimmunoprecipitation was used to identify AGR2-immature MUC5AC complexes. Agr2(-/-) mice were used to determine the role of AGR2 in allergic airway disease. AGR2 localized to the ER of MUC5AC- and MUC5B-producing airway cells and formed a complex with immature MUC5AC. AGR2 expression increased together with MUC5AC expression in airway epithelium from "Th2-high" asthmatics. Allergen-challenged Agr2(-/-) mice had greater than 50% reductions in MUC5AC and MUC5B proteins compared with allergen-challenged wild-type mice. Impaired mucin production in Agr2(-/-) mice was accompanied by an increase in the proportion of mucins contained within the ER and by evidence of ER stress in airway epithelium. This study shows that AGR2 increases with mucin overproduction in individuals with asthma and in mouse models of allergic airway disease. AGR2 interacts with immature mucin in the ER and loss of AGR2 impairs allergen-induced MUC5AC and MUC5B overproduction.
Collapse
Affiliation(s)
- Bradley W. Schroeder
- Lung Biology Center, Department of Medicine, University of California San Francisco, San Francisco, California
| | - Catherine Verhaeghe
- Lung Biology Center, Department of Medicine, University of California San Francisco, San Francisco, California
| | - Sung-Woo Park
- Lung Biology Center, Department of Medicine, University of California San Francisco, San Francisco, California
- Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Korea; and
| | - Louis T. Nguyenvu
- Lung Biology Center, Department of Medicine, University of California San Francisco, San Francisco, California
| | - Xiaozhu Huang
- Lung Biology Center, Department of Medicine, University of California San Francisco, San Francisco, California
| | - Guohua Zhen
- Lung Biology Center, Department of Medicine, University of California San Francisco, San Francisco, California
- Department of Respiratory Diseases, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - David J. Erle
- Lung Biology Center, Department of Medicine, University of California San Francisco, San Francisco, California
| |
Collapse
|
14
|
Hashimoto S, Shiomoto K, Okada K, Imaoka S. The binding site of bisphenol A to protein disulphide isomerase. ACTA ACUST UNITED AC 2011; 151:35-45. [DOI: 10.1093/jb/mvr122] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
15
|
Safavi-Hemami H, Siero WA, Gorasia DG, Young ND, Macmillan D, Williamson NA, Purcell AW. Specialisation of the venom gland proteome in predatory cone snails reveals functional diversification of the conotoxin biosynthetic pathway. J Proteome Res 2011; 10:3904-19. [PMID: 21707029 DOI: 10.1021/pr1012976] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Conotoxins, venom peptides from marine cone snails, diversify rapidly as speciation occurs. It has been suggested that each species can synthesize between 1000 and 1900 different toxins with little to no interspecies overlap. Conotoxins exhibit an unprecedented degree of post-translational modifications, the most common one being the formation of disulfide bonds. Despite the great diversity of structurally complex peptides, little is known about the glandular proteins responsible for their biosynthesis and maturation. Here, proteomic interrogations on the Conus venom gland led to the identification of novel glandular proteins of potential importance for toxin synthesis and secretion. A total of 161 and 157 proteins and protein isoforms were identified in the venom glands of Conus novaehollandiae and Conus victoriae, respectively. Interspecies differences in the venom gland proteomes were apparent. A large proportion of the proteins identified function in protein/peptide translation, folding, and protection events. Most intriguingly, however, we demonstrate the presence of a multitude of isoforms of protein disulfide isomerase (PDI), the enzyme catalyzing the formation and isomerization of the native disulfide bond. Investigating whether different PDI isoforms interact with distinct toxin families will greatly advance our knowledge on the generation of cone snail toxins and disulfide-rich peptides in general.
Collapse
Affiliation(s)
- Helena Safavi-Hemami
- Department of Biochemistry and Molecular Biology, University of Melbourne, Victoria, Australia.
| | | | | | | | | | | | | |
Collapse
|
16
|
Wallis AK, Freedman RB. Assisting Oxidative Protein Folding: How Do Protein Disulphide-Isomerases Couple Conformational and Chemical Processes in Protein Folding? Top Curr Chem (Cham) 2011; 328:1-34. [DOI: 10.1007/128_2011_171] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
17
|
Chemical stress on protein disulfide isomerases and inhibition of their functions. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2011; 290:121-66. [PMID: 21875564 DOI: 10.1016/b978-0-12-386037-8.00003-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Protein disulfide isomerase (PDI) is a folding assistant in the endoplasmic reticulum (ER) of eukaryotic cells. PDI has multiple roles, acting as a chaperone, a binding partner of other proteins, and a hormone reservoir as well as a disulfide isomerase in the formation of disulfide bonds. PDI only interacts covalently with the cysteines of its substrates, but also binds a variety of peptides/proteins and small chemical ligands such as thyroid hormone. Oxidative stress and nitrosative stress can cause damage to chaperones, protein misfolding, and neurodegenerative disease, by affecting the functional integrity of PDI. There are 20 putative PDI-family members in the ER of human cells, but their functional differentiation is far from complete. This review discusses recent advances in our understanding of the mammalian PDI family of enzymes and focuses on their functional properties and interaction with substrates and small chemical ligands.
Collapse
|
18
|
Fu XM, Wang P, Zhu BT. Characterization of the estradiol-binding site structure of human pancreas-specific protein disulfide isomerase: indispensable role of the hydrogen bond between His278 and the estradiol 3-hydroxyl group. Biochemistry 2010; 50:106-15. [PMID: 21080683 DOI: 10.1021/bi101451g] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Estradiol (E(2)), a female sex hormone, has important biological functions. Human pancreas-specific protein disulfide isomerase (PDIp), a protein folding catalyst, was recently found to be able to bind E(2). Here we report the characterization of its E(2)-binding site by using biochemical methods coupled with molecular modeling tools. Analysis of various truncated PDIp proteins showed that the b-b' fragment contains an intact E(2)-binding site that has the same binding affinity as the full-length PDIp protein, with apparent K(d) values of approximately 170 nM. Computational modeling and docking analyses revealed that the E(2)-binding site in the b-b' fragment is located in a hydrophobic pocket composed mainly of the b' domain and partially of the b domain. The hydrogen bond, formed between the 3-hydroxyl group of E(2) (donor) and PDIp's His278 (acceptor), is indispensable for its binding. By contrast, the 17β-hydroxyl group of E(2) is of negligible importance for E(2) binding. This binding model was jointly confirmed by a series of experiments, such as selective mutation of the binding site amino acid residues and selective modification of the ligand structures.
Collapse
Affiliation(s)
- Xin-Miao Fu
- Department of Pharmacology, Toxicology and Therapeutics, School of Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160, United States
| | | | | |
Collapse
|
19
|
Elumalai P, Wu JW, Liu HL. Current advances in disulfide connectivity predictions. J Taiwan Inst Chem Eng 2010. [DOI: 10.1016/j.jtice.2010.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
20
|
Human pancreas-specific protein disulfide-isomerase (PDIp) can function as a chaperone independently of its enzymatic activity by forming stable complexes with denatured substrate proteins. Biochem J 2010; 429:157-69. [PMID: 20423326 DOI: 10.1042/bj20091954] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Members of the PDI (protein disulfide-isomerase) family are critical for the correct folding of secretory proteins by catalysing disulfide bond formation as well as by serving as molecular chaperones to prevent protein aggregation. In the present paper, we report that the chaperone activity of the human pancreas-specific PDI homologue (PDIp) is independent of its enzymatic activity on the basis of the following lines of evidence. First, alkylation of PDIp by iodoacetamide fully abolishes its enzymatic activity, whereas it still retains most of its chaperone activity in preventing the aggregation of reduced insulin B chain and denatured GAPDH (glyceraldehyde-3-phosphate dehydrogenase). Secondly, mutation of the cysteine residues in PDIp's active sites completely abolishes its enzymatic activity, but does not affect its chaperone activity. Thirdly, the b-b' fragment of PDIp, which does not contain the active sites and is devoid of enzymatic activity, still has chaperone activity. Mechanistically, we found that both the recombinant PDIp expressed in Escherichia coli and the natural PDIp present in human or monkey pancreas can form stable complexes with thermal-denatured substrate proteins independently of their enzymatic activity. The high-molecular-mass soluble complexes between PDIp and GAPDH are formed in a stoichiometric manner (subunit ratio of 1:3.5-4.5), and can dissociate after storage for a certain time. As a proof-of-concept for the biological significance of PDIp in intact cells, we demonstrated that its selective expression in E. coli confers strong protection of these cells against heat shock and oxidative-stress-induced death independently of its enzymatic activity.
Collapse
|
21
|
Di Michele M, Marcone S, Cicchillitti L, Della Corte A, Ferlini C, Scambia G, Donati MB, Rotilio D. Glycoproteomics of paclitaxel resistance in human epithelial ovarian cancer cell lines: towards the identification of putative biomarkers. J Proteomics 2009; 73:879-98. [PMID: 19951750 DOI: 10.1016/j.jprot.2009.11.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2009] [Revised: 11/19/2009] [Accepted: 11/20/2009] [Indexed: 12/25/2022]
Abstract
Glycosylation, one of the most common post translational modifications (PTMs) of proteins, is often associated with carcinogenesis and tumor malignancy. Ovarian cancer is the sixth cause of cancer-related death in Western countries. Currently, it is treated by debulking surgery followed by chemotherapy based on paclitaxel, alone or in combination with other drugs. However, chemoresistance represents a major obstacle to positive clinical outcome. We used two approaches, Multiplexed Proteomics (MP) technology and Multilectin Affinity Chromatography (MAC) to characterize the glycoproteome of the human ovarian cancer cell line A2780 and its paclitaxel resistant counterpart A2780TC1. Furthermore proteins were separated by traditional 2DE or DIGE and identified by MS (MALDI TOF or LC MS/MS). Seventy glycoproteins were successfully identified in ovarian cancer cells and 10 were found to be differentially expressed between sensitive and resistant cell lines. We focused on four glycoproteins (tumor rejection antigen (gp96) 1, triose phosphate isomerase, palmitoyl-protein thioesterase 1 precursor and ER-associated DNAJ) which were remarkably upregulated in A2780TC1 compared to A2780 cell line and which may represent biomarkers for paclitaxel resistance in ovarian cancer.
Collapse
Affiliation(s)
- Michela Di Michele
- Research Laboratories, John Paul II Centre for High Technology Research and Education in Biomedical Sciences, Catholic University, Campobasso, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Hatahet F, Ruddock LW. Protein disulfide isomerase: a critical evaluation of its function in disulfide bond formation. Antioxid Redox Signal 2009; 11:2807-50. [PMID: 19476414 DOI: 10.1089/ars.2009.2466] [Citation(s) in RCA: 498] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Disulfide bond formation is probably involved in the biogenesis of approximately one third of human proteins. A central player in this essential process is protein disulfide isomerase or PDI. PDI was the first protein-folding catalyst reported. However, despite more than four decades of study, we still do not understand much about its physiological mechanisms of action. This review examines the published literature with a critical eye. This review aims to (a) provide background on the chemistry of disulfide bond formation and rearrangement, including the concept of reduction potential, before examining the structure of PDI; (b) detail the thiol-disulfide exchange reactions that are catalyzed by PDI in vitro, including a critical examination of the assays used to determine them; (c) examine oxidation and reduction of PDI in vivo, including not only the role of ERo1 but also an extensive assessment of the role of glutathione, as well as other systems, such as peroxide, dehydroascorbate, and a discussion of vitamin K-based systems; (d) consider the in vivo reactions of PDI and the determination and implications of the redox state of PDI in vivo; and (e) discuss other human and yeast PDI-family members.
Collapse
Affiliation(s)
- Feras Hatahet
- Department of Biochemistry, University of Oulu , Oulu, Finland
| | | |
Collapse
|
23
|
Human pancreas-specific protein disulfide isomerase homolog (PDIp) is redox-regulated through formation of an inter-subunit disulfide bond. Arch Biochem Biophys 2009; 485:1-9. [DOI: 10.1016/j.abb.2008.12.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2008] [Revised: 12/24/2008] [Accepted: 12/25/2008] [Indexed: 11/23/2022]
|
24
|
Crystal Structure and Functional Analysis of the Protein Disulfide Isomerase-Related Protein ERp29. J Mol Biol 2009; 385:1630-42. [DOI: 10.1016/j.jmb.2008.11.052] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2008] [Revised: 11/24/2008] [Accepted: 11/25/2008] [Indexed: 11/22/2022]
|
25
|
Karala AR, Psarrakos P, Ruddock LW, Klappa P. Protein disulfide isomerases from C. elegans are equally efficient at thiol-disulfide exchange in simple peptide-based systems but show differences in reactivity towards protein substrates. Antioxid Redox Signal 2007; 9:1815-23. [PMID: 17711389 DOI: 10.1089/ars.2007.1624] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Although the formation of disulfide bonds is an essential process in every living organism, only little is known about the mechanisms in multicellular eukaryotic systems. The reason for this uncertainty is that in addition to the well-known key enzyme protein disulfide isomerase (PDI), several PDI-like proteins are present in the ER of metazoans. In total, there are now 18 PDI-family members in the human endoplasmic reticulum, with different domain architectures and active site chemistries. To understand why multicellular organisms express multiple proteins with similarity to the archetypal mammalian PDI, the properties of three PDIs from the nematode C. elegans were investigated. Here the authors demonstrate that PDI-1, PDI-2, and PDI-3 show comparable kinetic properties in catalyzing thiol:disulfide exchange reactions in two simple peptide-based assays. However, the three enzymes exhibited clear differences in their reactivity towards protein substrates. The authors therefore propose that the three PDIs can catalyze similar thiol-disulfide exchange reactions in a substrate, but due to differences in substrate binding, they can direct a folding polypeptide chain onto different folding pathways and hence fulfil distinct and different functions in the organism.
Collapse
Affiliation(s)
- Anna-Riikka Karala
- Department of Biochemistry and Biocenter Oulu, University of Oulu, Oulu, Finland
| | | | | | | |
Collapse
|
26
|
Abstract
Protein folding in the endoplasmic reticulum is often associated with the formation of native disulfide bonds. Their primary function is to stabilize the folded structure of the protein, although disulfide bond formation can also play a regulatory role. Native disulfide bond formation is not trivial, so it is often the rate-limiting step of protein folding both in vivo and in vitro. Complex coordinated systems of molecular chaperones and protein folding catalysts have evolved to help proteins attain their correct folded conformation. This includes a family of enzymes involved in catalyzing thiol-disulfide exchange in the endoplasmic reticulum, the protein disulfide isomerase (PDI) family. There are now 17 reported PDI family members in the endoplasmic reticulum of human cells, but the functional differentiation of these is far from complete. Despite PDI being the first catalyst of protein folding reported, there is much that is still not known about its mechanisms of action. This review will focus on the interactions of the human PDI family members with substrates, including recent research on identifying and characterizing their substrate-binding sites and on determining their natural substrates in vivo.
Collapse
Affiliation(s)
- Feras Hatahet
- Biocenter Oulu and Department of Biochemistry, University of Oulu, Finland
| | | |
Collapse
|
27
|
van Lith M, Karala AR, Bown D, Gatehouse JA, Ruddock LW, Saunders PTK, Benham AM. A developmentally regulated chaperone complex for the endoplasmic reticulum of male haploid germ cells. Mol Biol Cell 2007; 18:2795-804. [PMID: 17507649 PMCID: PMC1949379 DOI: 10.1091/mbc.e07-02-0147] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Glycoprotein folding is mediated by lectin-like chaperones and protein disulfide isomerases (PDIs) in the endoplasmic reticulum. Calnexin and the PDI homologue ERp57 work together to help fold nascent polypeptides with glycans located toward the N-terminus of a protein, whereas PDI and BiP may engage proteins that lack glycans or have sugars toward the C-terminus. In this study, we show that the PDI homologue PDILT is expressed exclusively in postmeiotic male germ cells, in contrast to the ubiquitous expression of many other PDI family members in the testis. PDILT is induced during puberty and represents the first example of a PDI family member under developmental control. We find that PDILT is not active as an oxido-reductase, but interacts with the model peptide Delta-somatostatin and nonnative bovine pancreatic trypsin inhibitor in vitro, indicative of chaperone activity. In vivo, PDILT forms a tissue-specific chaperone complex with the calnexin homologue calmegin. The identification of a redox-inactive chaperone partnership defines a new system of testis-specific protein folding with implications for male fertility.
Collapse
Affiliation(s)
- Marcel van Lith
- Department of Biological and Biomedical Sciences, University of Durham, Durham, DH1 3LE, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
28
|
Maattanen P, Kozlov G, Gehring K, Thomas DY. ERp57 and PDI: multifunctional protein disulfide isomerases with similar domain architectures but differing substrate–partner associationsThis paper is one of a selection of papers published in this Special Issue, entitled CSBMCB — Membrane Proteins in Health and Disease. Biochem Cell Biol 2006; 84:881-9. [PMID: 17215875 DOI: 10.1139/o06-186] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Secretory proteins become folded and acquire stabilizing disulfide bonds in the endoplasmic reticulum (ER). Correct disulfide bond formation is a key step in ER quality control (ERQC). Proteins with incorrect disulfide bonds are recognized by the quality control machinery and are retrotranslocated into the cytosol where they are degraded by the proteasome. The mammalian ER contains 17 disulfide isomerases and at least one of them, ERp57, works in conjunction with the ER lectin-like chaperones calnexin and calreticulin. The targeting of ERp57 to calnexin–calreticulin is mediated by its noncatalytic b′ domain, and analogous domains in other disulfide isomerases likely determine their substrate and partner preferences. This review discusses some explanations for the multiplicity of disulfide isomerases and highlights structural differences in the b′ domains of PDI and ERp57 as an example of how noncatalytic domains define specialized roles in oxidative folding.
Collapse
Affiliation(s)
- P Maattanen
- Biochemistry Department, McGill University, 3655 Promenade Sir William Osler, Montréal, QC H3G 1Y6, Canada.
| | | | | | | |
Collapse
|
29
|
Alanen HI, Williamson RA, Howard MJ, Hatahet FS, Salo KEH, Kauppila A, Kellokumpu S, Ruddock LW. ERp27, a New Non-catalytic Endoplasmic Reticulum-located Human Protein Disulfide Isomerase Family Member, Interacts with ERp57. J Biol Chem 2006; 281:33727-38. [PMID: 16940051 DOI: 10.1074/jbc.m604314200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein folding and quality control in the endoplasmic reticulum are critical processes for which our current understanding is far from complete. Here we describe the functional characterization of a new human 27.7-kDa protein (ERp27). We show that ERp27 is a two-domain protein located in the endoplasmic reticulum that is homologous to the non-catalytic b and b' domains of protein disulfide isomerase. ERp27 was shown to bind Delta-somatostatin, the standard test peptide for protein disulfide isomerase-substrate binding, and this ability was localized to the second domain of ERp27. An alignment of human ERp27 and human protein disulfide isomerase allowed for the putative identification of the peptide binding site of ERp27 indicating conservation of the location of the primary substrate binding site within the protein disulfide isomerase family. NMR studies revealed a significant conformational change in the b'-like domain of ERp27 upon substrate binding, which was not just localized to the substrate binding site. In addition, we report that ERp27 is bound by ERp57 both in vitro and in vivo by a similar mechanism by which ERp57 binds calreticulin.
Collapse
Affiliation(s)
- Heli I Alanen
- Department of Biochemistry and Biocenter Oulu, University of Oulu, P. O. Box 3000, FIN-90014, Finland
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Alanen HI, Salo KEH, Pirneskoski A, Ruddock LW. pH dependence of the peptide thiol-disulfide oxidase activity of six members of the human protein disulfide isomerase family. Antioxid Redox Signal 2006; 8:283-91. [PMID: 16677074 DOI: 10.1089/ars.2006.8.283] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Protein folding in the endoplasmic reticulum is often associated with the formation of native disulfide bonds, a process which in vivo is one of the rate limiting steps of protein folding and which is facilitated by the enzyme protein disulfide isomerase (PDI). Higher eukaryotes have multiple members of the PDI family, for example, seventeen human PDIs have been reported to date. With multiple members of the same family being present, even within the same cell, the question arises as to what differential functions are they performing? To date there has been no systematic evaluation of the enzymological properties of the different members of the PDI-family. To address the question of whether different PDI family members have differing thioldisulfide chemistry, we have recombinantly expressed and purified six members of the family, PDI, PDIp, ERp57, ERp72, P5, and PDIr from a single organism, human. An examination of the pH-dependence and nature of the rate limiting step for the peptide thiol-disulfide oxidase activity of these enzymes reveals that, with the exception of PDIr, they are all remarkably similar. In the light of this data potential differential functions for these enzymes are discussed.
Collapse
Affiliation(s)
- H I Alanen
- Biocenter Oulu and Department of Biochemistry, University of Oulu, Oulu, Finland
| | | | | | | |
Collapse
|
31
|
Collén A, Saloheimo M, Bailey M, Penttilä M, Pakula TM. Protein production and induction of the unfolded protein response in Trichoderma reesei strain Rut-C30 and its transformant expressing endoglucanase I with a hydrophobic tag. Biotechnol Bioeng 2005; 89:335-44. [PMID: 15619324 DOI: 10.1002/bit.20350] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The effect of induction of protein production was studied in bioreactor cultures of T. reesei strain Rut-C30 and its transformant expressing endoglucanase I core domain (EGI, Cel7B) fused with a hydrophobic peptide tag. The tag was previously designed for efficient purification of the fusion protein in aqueous two-phase separation. The fungi were first grown on glucose-containing minimal medium after which rich medium with lactose as a carbon source was added to induce cellulase production. Production of extracellular protein and cellulase activity and the transcript levels of the major cellulase genes were analyzed during the cultivations. Induction of the cellulase genes followed a similar temporal pattern in both strains. The first phase of induction took place after addition of lactose as soon as glucose was depleted, and the second phase after lactose was consumed. Western analysis showed that a decreased amount of fusion protein was produced in the culture medium compared with the endogenous EGI, although the strain harbors several copies of the recombinant gene under the strong cbh1 promoter. The fusion protein appeared to accumulate within the cells, indicating impaired secretion of the protein. The mRNA levels of the UPR (unfolded protein response) target genes, bip1 and pdi1, and the level of the active form of hac1 transcript encoding the UPR transcription factor increased concurrently with induction of the cellulase genes in both strains, indicating increased requirement of the folding machinery under these conditions. However, only a minor increase in bip1 and pdi1 transcript level was observed in the transformant compared with the parental strain.
Collapse
Affiliation(s)
- Anna Collén
- Department of Biochemistry, Center for Chemistry and Chemical Engineering, Lund University, Lund, Sweden
| | | | | | | | | |
Collapse
|
32
|
Ellgaard L, Ruddock LW. The human protein disulphide isomerase family: substrate interactions and functional properties. EMBO Rep 2005; 6:28-32. [PMID: 15643448 PMCID: PMC1299221 DOI: 10.1038/sj.embor.7400311] [Citation(s) in RCA: 588] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2004] [Accepted: 11/11/2004] [Indexed: 11/08/2022] Open
Abstract
The process of disulphide bond formation in the endoplasmic reticulum of eukaryotic cells was one of the first mechanisms of catalysed protein folding to be discovered. Protein disulphide isomerase (PDI) is now known to catalyse all of the reactions that are involved in native disulphide bond formation, but despite more than 40 years of study, its mechanism of action is still not fully understood. This review discusses recent advances in our understanding of the human PDI family of enzymes and focuses on their functional properties, substrate interactions and some recently identified family members.
Collapse
Affiliation(s)
- Lars Ellgaard
- Institute of Biochemistry, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Lloyd W. Ruddock
- Department of Biochemistry and Biocenter Oulu, PO Box 3000, University of Oulu, 90014 Oulu, Finland
- Tel: +358 8553 1683; Fax: +358 8553 1141;
| |
Collapse
|
33
|
Zhao TJ, Ou WB, Xie Q, Liu Y, Yan YB, Zhou HM. Catalysis of Creatine Kinase Refolding by Protein Disulfide Isomerase Involves Disulfide Cross-link and Dimer to Tetramer Switch. J Biol Chem 2005; 280:13470-6. [PMID: 15695804 DOI: 10.1074/jbc.m413882200] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein disulfide isomerase (PDI) functions as an isomerase to catalyze thiol:disulfide exchange, as a chaperone to assist protein folding, and as a subunit of prolyl-4-hydroxylase and microsomal triglyceride transfer protein. At a lower concentration of 0.2 microm, PDI facilitated the aggregation of unfolded rabbit muscle creatine kinase (CK) and exhibited anti-chaperone activity, which was shown to be mainly due to the hydrophobic interactions between PDI and CK and was independent of the cross-linking of disulfide bonds. At concentrations above 1 microm, PDI acted as a protector against aggregation but an inhibitor of reactivation during CK refolding. The inhibition effect of PDI on CK reactivation was further characterized as due to the formation of PDI-CK complexes through intermolecular disulfide bonds, a process involving Cys-36 and Cys-295 of PDI. Two disulfide-linked complexes containing both PDI and CK were obtained, and the large, soluble aggregates around 400 kDa were composed of 1 molecule of tetrameric PDI and 2 molecules of inactive intermediate dimeric CK, whereas the smaller one, around 200 kDa, was formed by 1 dimeric PDI and 1 dimeric CK. To our knowledge this is the first study revealing that PDI could switch its conformation from dimer to tetramer in its functions as a foldase. According to the observations in this research and our previous study of the folding pathways of CK, a working model was proposed for the molecular mechanism of CK refolding catalyzed by PDI.
Collapse
Affiliation(s)
- Tong-Jin Zhao
- Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing, China
| | | | | | | | | | | |
Collapse
|
34
|
Barnewitz K, Guo C, Sevvana M, Ma Q, Sheldrick GM, Söling HD, Ferrari DM. Mapping of a substrate binding site in the protein disulfide isomerase-related chaperone wind based on protein function and crystal structure. J Biol Chem 2004; 279:39829-37. [PMID: 15252019 DOI: 10.1074/jbc.m406839200] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The protein disulfide isomerase (PDI)-related protein Wind is essential in Drosophila melanogaster, and is required for correct targeting of Pipe, an essential Golgi transmembrane 2-O-sulfotransferase. Apart from a thioredoxin fold domain present in all PDI proteins, Wind also has a unique C-terminal D-domain found only in PDI-D proteins. Here, we show that Pipe processing requires dimeric Wind, which interacts directly with the soluble domain of Pipe in vitro, and we map an essential substrate binding site in Wind to the vicinity of an exposed cluster of tyrosines within the thioredoxin fold domain. In vitro, binding occurs to multiple sites within the Pipe polypeptide and shows specificity for two consecutive aromatic residues. A second site in Wind, formed by a cluster of residues within the D-domain, is likewise required for substrate processing. This domain, expressed separately, impairs Pipe processing by the full-length Wind protein, indicating competitive binding to substrate. Our data represent the most accurate map of a peptide binding site in a PDI-related protein available to date and directly show peptide specificity for a naturally occurring substrate.
Collapse
Affiliation(s)
- Kathrin Barnewitz
- Department of Neurobiology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, Germany
| | | | | | | | | | | | | |
Collapse
|
35
|
Russell SJ, Ruddock LW, Salo KEH, Oliver JD, Roebuck QP, Llewellyn DH, Roderick HL, Koivunen P, Myllyharju J, High S. The Primary Substrate Binding Site in the b′ Domain of ERp57 Is Adapted for Endoplasmic Reticulum Lectin Association. J Biol Chem 2004; 279:18861-9. [PMID: 14871899 DOI: 10.1074/jbc.m400575200] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ERp57 is a member of the protein disulfide isomerase (PDI) family that is located in the endoplasmic reticulum (ER) and characterized by its specificity for glycoproteins. Substrate selection by ERp57 is dependent upon its formation of discrete complexes with two ER resident lectins, soluble calreticulin and membrane-bound calnexin. It is these two lectins that directly associate with glycoproteins bearing correctly trimmed oligosaccharide side chains. Thus, ERp57 is presented with a preselected set of substrates upon which it can act, and the specific binding of calreticulin and calnexin to ERp57 is pivotal to the functions of the resulting complexes. To gain further insights into the formation of these ERp57-ER lectin complexes, we have investigated the regions of ERp57 that are specifically required for its binding to calreticulin. Using a quantitative pull-down assay to investigate the binding of ERp57/PDI chimeras to calreticulin, we define the b and b' domains of ERp57 as the minimal elements that are sufficient for complex formation. This analysis further identifies a novel role for the distinctive C-terminal extension of ERp57 in reconstituting complex formation to wild type levels. Using our understanding of substrate binding to the b' domain of PDI as a paradigm, we show that alterations to specific residues in the b' domain of ERp57 dramatically reduce or completely abolish its binding to calreticulin. On the basis of these data, we propose a model where the region of ERp57 equivalent to the primary substrate binding site of archetypal PDI is occupied by calreticulin and suggest that the ER lectins act as adaptor molecules that define the substrate specificity of ERp57.
Collapse
Affiliation(s)
- Sarah J Russell
- School of Biological Sciences, University of Manchester, Smith Building, Oxford Road, Manchester M13 9PT, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Pirneskoski A, Klappa P, Lobell M, Williamson RA, Byrne L, Alanen HI, Salo KEH, Kivirikko KI, Freedman RB, Ruddock LW. Molecular Characterization of the Principal Substrate Binding Site of the Ubiquitous Folding Catalyst Protein Disulfide Isomerase. J Biol Chem 2004; 279:10374-81. [PMID: 14684740 DOI: 10.1074/jbc.m312193200] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Disulfide bond formation in the endoplasmic reticulum of eukaryotes is catalyzed by the ubiquitously expressed enzyme protein disulfide isomerase (PDI). The effectiveness of PDI as a catalyst of native disulfide bond formation in folding polypeptides depends on the ability to catalyze disulfide-dithiol exchange, to bind non-native proteins, and to trigger conformational changes in the bound substrate, allowing access to buried cysteine residues. It is known that the b' domain of PDI provides the principal peptide binding site of PDI and that this domain is critical for catalysis of isomerization but not oxidation reactions in protein substrates. Here we use homology modeling to define more precisely the boundaries of the b' domain and show the existence of an intradomain linker between the b' and a' domains. We have expressed the recombinant b' domain thus defined; the stability and conformational properties of the recombinant product confirm the validity of the domain boundaries. We have modeled the tertiary structure of the b' domain and identified the primary substrate binding site within it. Mutations within this site, expressed both in the isolated domain and in full-length PDI, greatly reduce the binding affinity for small peptide substrates, with the greatest effect being I272W, a mutation that appears to have no structural effect.
Collapse
|
37
|
Alanen HI, Salo KEH, Pekkala M, Siekkinen HM, Pirneskoski A, Ruddock LW. Defining the domain boundaries of the human protein disulfide isomerases. Antioxid Redox Signal 2003; 5:367-74. [PMID: 13678523 DOI: 10.1089/152308603768295096] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The protein disulfide isomerase (PDI) family of folding catalysts are constructed from combinations of redoxactive and redox-inactive domains, all of which are probably based on the thioredoxin fold. To understand the function of each domain in the variety of catalytic reactions that each family member can perform (to differing extents), the domain boundaries of each family member must be known. By using a technique based on sequence alignments and the known structure of the a and b domains of human PDI, we generated a large number of domain constructs for all six redox-active human PDIs: PDI, PDIp, ERp72, ERp57, P5, and PDIr. The ability to generate significant amounts of soluble protein in E. coli from most of these domain constructs strongly indicates that the domain boundaries are correct. The implications for these domain boundaries on the tertiary structure of the human PDIs are discussed.
Collapse
Affiliation(s)
- H I Alanen
- Biocenter Oulu and Department of Biochemistry, P.O. Box 3000, FIN-90014 University of Oulu, Oulu, Finland
| | | | | | | | | | | |
Collapse
|
38
|
Freedman RB, Klappa P, Ruddock LW. Model peptide substrates and ligands in analysis of action of mammalian protein disulfide-isomerase. Methods Enzymol 2002; 348:342-54. [PMID: 11885289 DOI: 10.1016/s0076-6879(02)48653-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Affiliation(s)
- Robert B Freedman
- Department of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, United Kingdom
| | | | | |
Collapse
|
39
|
Freedman RB, Klappa P, Ruddock LW. Protein disulfide isomerases exploit synergy between catalytic and specific binding domains. EMBO Rep 2002; 3:136-40. [PMID: 11839698 PMCID: PMC1083976 DOI: 10.1093/embo-reports/kvf035] [Citation(s) in RCA: 148] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Protein disulfide isomerases (PDIs) catalyse the formation of native disulfide bonds in protein folding pathways. The key steps involve disulfide formation and isomerization in compact folding intermediates. The high-resolution structures of the a and b domains of PDI are now known, and the overall domain architecture of PDI and its homologues can be inferred. The isolated a and a' domains of PDI are good catalysts of simple thiol-disulfide interchange reactions but require additional domains to be effective as catalysts of the rate-limiting disulfide isomerizations in protein folding pathways. The b' domain of PDI has a specific binding site for peptides and its binding properties differ in specificity between members of the PDI family. A model of PDI function can be deduced in which the domains function synergically: the b' domain binds unstructured regions of polypeptide, while the a and a' domains catalyse the chemical isomerization steps.
Collapse
Affiliation(s)
- Robert B Freedman
- Department of Biosciences, University of Kent, Canterbury CT2 7NJ, UK.
| | | | | |
Collapse
|
40
|
Webb HM, Ruddock LW, Marchant RJ, Jonas K, Klappa P. Interaction of the periplasmic peptidylprolyl cis-trans isomerase SurA with model peptides. The N-terminal region of SurA id essential and sufficient for peptide binding. J Biol Chem 2001; 276:45622-7. [PMID: 11546789 DOI: 10.1074/jbc.m107508200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
One of the rate-limiting steps in protein folding has been shown to be the cis-trans isomerization of proline residues, which is catalyzed by a range of peptidylprolyl cis-trans isomerases. To characterize the interaction between model peptides and the periplasmic peptidylprolyl cis-trans isomerase SurA from E. coli, we employed a chemical cross-linking strategy that has been used previously to elucidate the interaction of substrates with other folding catalysts. The interaction between purified SurA and model peptides was significant in that it showed saturation and was abolished by denaturation of SurA; however the interaction was independent of the presence of proline residues in the model peptides. From results obtained by limited proteolysis we conclude that an N-terminal fragment of SurA, comprising 150 amino acids that do not contain the active sites involved in the peptidylprolyl cis-trans isomerization, is essential for the binding of peptides by SurA. This was confirmed by probing the interaction of the model peptide with the recombinant N-terminal fragment, expressed in Escherichia coli. Hence we propose that, similar to protein disulfide isomerase and other folding catalysts, SurA exhibits a modular architecture composed of a substrate binding domain and distinct catalytically active domains.
Collapse
Affiliation(s)
- H M Webb
- University of Kent, Canterbury CT2 7NJ, United Kingdom
| | | | | | | | | |
Collapse
|
41
|
Abstract
Our understanding of eukaryotic protein folding in the endoplasmic reticulum has increased enormously over the last 5 years. In this review, we summarize some of the major research themes that have captivated researchers in this field during the last years of the 20th century. We follow the path of a typical protein as it emerges from the ribosome and enters the reticular environment. While many of these events are shared between different polypeptide chains, we highlight some of the numerous differences between proteins, between cell types, and between the chaperones utilized by different ER glycoproteins. Finally, we consider the likely advances in this field as the new century unfolds and we address the prospect of a unified understanding of how protein folding, degradation, and translation are coordinated within a cell.
Collapse
Affiliation(s)
- A M Benham
- Department of Bio-Organic Chemistry, Utrecht University, The Netherlands
| | | |
Collapse
|
42
|
Klappa P, Freedman RB, Langenbuch M, Lan MS, Robinson GK, Ruddock LW. The pancreas-specific protein disulphide-isomerase PDIp interacts with a hydroxyaryl group in ligands. Biochem J 2001; 354:553-9. [PMID: 11237859 PMCID: PMC1221686 DOI: 10.1042/0264-6021:3540553] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Using a cross-linking approach, we have recently demonstrated that radiolabelled model peptides or misfolded proteins specifically interact in vitro with two members of the protein disulphide- isomerase family, namely PDI and PDIp, in a crude extract from sheep pancreas microsomes. In addition, we have shown that tyrosine and tryptophan residues within a peptide are the recognition motifs for the binding to PDIp. Here we examine non-peptide ligands and present evidence that a hydroxyaryl group is a structural motif for the binding to PDIp; simple constructs containing this group and certain xenobiotics and phytoestrogens, which contain an unmodified hydroxyaryl group, can all efficiently inhibit peptide binding to PDIp. To our knowledge this is the first time that the recognition motif of a molecular chaperone or folding catalyst has been specified as a simple chemical structure.
Collapse
Affiliation(s)
- P Klappa
- Department of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK.
| | | | | | | | | | | |
Collapse
|
43
|
Abstract
Native disulfide bond formation is critical for the proper folding of many proteins. Recent studies using newly identified protein oxidants, folding catalysts, and mutant cells provide insight into the mechanism of oxidative protein folding in vivo. This insight promises new strategies for more efficient protein production.
Collapse
Affiliation(s)
| | - Ronald T. Raines
- Department of Biochemistry, University of Wisconsin–Madison, Madison, WI 53706, USA
- Department of Chemistry, University of Wisconsin–Madison, Madison, WI 53706, USA
| |
Collapse
|