1
|
Millanes PM, Pérez-Rodríguez L, Rubalcaba JG, Gil D, Jimeno B. Corticosterone and glucose are correlated and show similar response patterns to temperature and stress in a free-living bird. J Exp Biol 2024; 227:jeb246905. [PMID: 38949462 PMCID: PMC11418182 DOI: 10.1242/jeb.246905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 06/24/2024] [Indexed: 07/02/2024]
Abstract
Glucocorticoid (GC) hormones have traditionally been interpreted as indicators of stress, but the extent to which they provide information on physiological state remains debated. GCs are metabolic hormones that amongst other functions ensure increasing fuel (i.e. glucose) supply on the face of fluctuating energetic demands, a role often overlooked by ecological studies investigating the consequences of GC variation. Furthermore, because energy budget is limited, in natural contexts where multiple stimuli coexist, the organisms' ability to respond physiologically may be constrained when multiple triggers of metabolic responses overlap in time. Using free-living spotless starling (Sturnus unicolor) chicks, we experimentally tested whether two stimuli of different nature known to trigger a metabolic or GC response, respectively, cause a comparable increase in plasma GCs and glucose. We further tested whether response patterns differed when both stimuli occurred consecutively. We found that both experimental treatments caused increases in GCs and glucose of similar magnitude, suggesting that both variables fluctuate along with variation in energy expenditure, independently of the trigger. Exposure to the two stimuli occurring subsequently did not cause a difference in GC or glucose responses compared with exposure to a single stimulus, suggesting a limited capacity to respond to an additional stimulus during an ongoing acute response. Lastly, we found a positive and significant correlation between plasma GCs and glucose after the experimental treatments. Our results add to the increasing research on the role of energy expenditure on GC variation, by providing experimental evidence on the association between plasma GCs and energy metabolism.
Collapse
Affiliation(s)
- Paola M. Millanes
- Departamento de Biología y Geología, Física y Química Inorgánica, Universidad Rey Juan Carlos, 28933 Móstoles, Madrid, Spain
| | - Lorenzo Pérez-Rodríguez
- Instituto de Investigación en Recursos Cinegéticos (IREC), CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005 Ciudad Real, Spain
| | - Juan G. Rubalcaba
- Departamento de Biología y Geología, Física y Química Inorgánica, Universidad Rey Juan Carlos, 28933 Móstoles, Madrid, Spain
- Department of Biodiversity, Ecology and Evolution, Faculty of Biological Sciences. Complutense University of Madrid, José Antonio Novais, 12, 28040 Madrid, Spain
| | - Diego Gil
- Department of Evolutionary Ecology, Museo Nacional de Ciencias Naturales (MNCN-CSIC), José Gutiérrez Abascal, 2, 28006 Madrid, Spain
| | - Blanca Jimeno
- Instituto de Investigación en Recursos Cinegéticos (IREC), CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005 Ciudad Real, Spain
- Pyrenean Institute of Ecology (IPE-CSIC), Avda Nuestra Señora de la Victoria, s/n, 22700 Jaca, Huesca, Spain
| |
Collapse
|
2
|
Rubalcaba JG, Jimeno B. Body temperature and activity patterns modulate glucocorticoid levels across lizard species: A macrophysiological approach. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.1032083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Environmental and intrinsic factors interact to determine energy requirements in vertebrates. Glucocorticoid hormones (GCs) are key mediators of this interaction, as they fluctuate with energetic demands and regulate physiological and behavioral responses to environmental challenges. While a great body of research has focused on GC variation among individuals, the mechanisms driving GC variation across species and at broad spatial scales remain largely unexplored. Here, we adopted a macrophysiological approach to investigate the environmental factors and life-history traits driving variation in baseline GCs across lizard species. We tested three hypotheses: (1) If GCs increase with body temperature to meet higher metabolic demand, we expect an association between average baseline GCs and the mean species’ body temperature in the field (GC-temperature dependence hypothesis); (2) If GCs mediate behavioral responses to avoid thermal extremes, we expect that individuals frequently exposed to extreme conditions exhibit higher baseline GC levels (Behavioral thermoregulation hypothesis); (3) If GCs increase to support higher energy demands in active foragers during their period of activity, we expect that active foraging species have higher baseline GCs than sit-and-wait foragers, and that GC levels increase in relation to the duration of daily activity windows (Activity hypothesis). We used biophysical models to calculate operative temperatures and the activity patterns of lizards in sun-exposed and shaded microenvironments. Then, we tested the association between baseline GCs, body temperature, operative temperatures, foraging mode, and activity windows across 37 lizard species, using data from HormoneBase. Our comparative analyses showed that variation in baseline GCs was primarily related to the mean field body temperature and foraging mode, with higher baseline GCs in active foragers with higher body temperatures. Our results suggest that body temperature and foraging mode drive GC variation through their effects on energy requirements across lizard species.
Collapse
|
3
|
Catitti B, Grüebler MU, Kormann UG, Scherler P, Witczak S, van Bergen VS, Jenni-Eiermann S. Hungry or angry? Experimental evidence for the effects of food availability on two measures of stress in developing wild raptor nestlings. J Exp Biol 2022; 225:276255. [PMID: 35775647 DOI: 10.1242/jeb.244102] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 06/27/2022] [Indexed: 11/20/2022]
Abstract
Food shortage challenges the development of nestlings; yet, to cope with this stressor, nestlings can induce stress responses to adjust metabolism or behaviour. Food shortage also enhances the antagonism between siblings, but it remains unclear whether the stress response induced by food shortage operates via the individual nutritional state or via the social environment experienced. In addition, the understanding of these processes is hindered by the fact that effects of food availability often co-vary with other environmental factors. We used a food supplementation experiment to test the effect of food availability on two complementary stress measures, feather corticosterone (CORTf) and Heterophil/Lymphocyte-ratio (H/L) in developing red kite (Milvus milvus) nestlings, a species with competitive brood hierarchy. By statistically controlling for the effect of food supplementation on the nestlings' body condition, we disentangled the effects of food and ambient temperature on nestlings during development. Experimental food supplementation increased body condition, and both CORTf and H/L were reduced in nestlings of high body condition. Additionally, CORTf decreased with age in non-supplemented nestlings. H/L decreased with age in all nestlings and was lower in supplemented last-hatched nestlings compared to non-supplemented ones. Ambient temperature showed a negative effect on H/L. Our results indicate that food shortage increases the nestlings' stress levels through both, a reduced food intake affecting nutritional state and the nestlings' social environment. Thus, food availability in conjunction with ambient temperature shape between- and within-nest differences in stress load, which may have carry-over effects on behaviour and performance in further life-history stages.
Collapse
Affiliation(s)
- Benedetta Catitti
- Swiss Ornithological Institute, Seerose 1, 6204 Sempach, Switzerland.,Department of Environmental Systems Science, ETH Zurich, Switzerland
| | - Martin U Grüebler
- Swiss Ornithological Institute, Seerose 1, 6204 Sempach, Switzerland
| | - Urs G Kormann
- Swiss Ornithological Institute, Seerose 1, 6204 Sempach, Switzerland
| | - Patrick Scherler
- Swiss Ornithological Institute, Seerose 1, 6204 Sempach, Switzerland
| | - Stephanie Witczak
- Swiss Ornithological Institute, Seerose 1, 6204 Sempach, Switzerland.,Department of Evolutionary Biology and Environmental Studies, University of Zurich, Switzerland
| | | | | |
Collapse
|
4
|
Mentesana L, Hau M. Glucocorticoids in a warming world: Do they help birds to cope with high environmental temperatures? Horm Behav 2022; 142:105178. [PMID: 35561643 DOI: 10.1016/j.yhbeh.2022.105178] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 04/09/2022] [Accepted: 04/16/2022] [Indexed: 11/04/2022]
Abstract
Climate change is threatening biodiversity world-wide. One of its most prominent manifestations are rising global temperatures and higher frequencies of heat waves. High environmental temperatures may be particularly challenging for endotherms, which expend considerable parts of their energy budget and water resources on thermoregulation. Thermoregulation involves phenotypic plasticity in behavioral and physiological traits. Information on causal mechanisms that support plastic thermoregulatory strategies is key to understand how environmental information is transmitted and whether they impose trade-offs or constraints that determine how endotherms cope with climate warming. In this review, we focus on glucocorticoids, metabolic hormones that orchestrate plastic responses to various environmental stimuli including temperature. To evaluate how they may mediate behavioral and physiological responses to high environmental temperatures, we 1) briefly review the major thermoregulatory strategies in birds; 2) summarize the functions of baseline and stress-induced glucocorticoid concentrations; 3) synthesize the current knowledge of the relationship between circulating glucocorticoids and high environmental temperatures in birds; 4) generate hypotheses for how glucocorticoids may support plastic thermoregulatory responses to high environmental temperatures that occur over different time-frames (i.e., acute, short- and longer-term); and 5) discuss open questions on how glucocorticoids, and their relationship with thermoregulation, may evolve. Throughout this review we highlight that our knowledge, particularly on free-living populations, is really limited and outline promising avenues for future research. As evolutionary endocrinologists we now need to step up and identify the costs, benefits, and evolution of glucocorticoid plasticity to elucidate how they may help birds cope with a warming world.
Collapse
Affiliation(s)
- Lucia Mentesana
- Max Planck Institute for Ornithology, Eberhard-Gwinner-Str., 82319 Seewiesen, Germany.
| | - Michaela Hau
- Max Planck Institute for Ornithology, Eberhard-Gwinner-Str., 82319 Seewiesen, Germany.
| |
Collapse
|
5
|
Gerritsma YH, Driessen MMG, Tangili M, de Boer SF, Verhulst S. Experimentally manipulated food availability affects offspring quality but not quantity in zebra finch meso-populations. Oecologia 2022; 199:769-783. [PMID: 35614323 PMCID: PMC9465982 DOI: 10.1007/s00442-022-05183-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 05/03/2022] [Indexed: 11/29/2022]
Abstract
Food availability modulates survival, reproduction and thereby population size. In addition to direct effects, food availability has indirect effects through density of conspecifics and predators. We tested the prediction that food availability in isolation affects reproductive success by experimentally manipulating food availability continuously for 3 years in zebra finches (Taeniopygia guttata) housed in outdoor aviaries. To this end, we applied a technique that mimics natural variation in food availability: increasing the effort required per food reward without affecting diet. Lower food availability resulted in a slight delay of start of laying and fewer clutches per season, but did not affect clutch size or number of offspring reared per annum. However, increasing foraging costs substantially reduced offspring growth. Thus, food availability in isolation did not impact the quantity of offspring reared, at the expense of offspring quality. Growth declined strongly with brood size, and we interpret the lack of response with respect to offspring number as an adaptation to environments with low predictability, at the time of egg laying, of food availability during the period of peak food demand, typically weeks later. Manipulated natal brood size of the parents did not affect reproductive success. Individuals that were more successful reproducers were more likely to survive to the next breeding season, as frequently found in natural populations. We conclude that the causal mechanisms underlying associations between food availability and reproductive success in natural conditions may be more complex than usually assumed. Experiments in semi-natural meso-populations can contribute to further unravelling these mechanisms.
Collapse
|
6
|
Montoya B, Briga M, Jimeno B, Verhulst S. Glucose tolerance predicts survival in old zebra finches. J Exp Biol 2022; 225:275426. [DOI: 10.1242/jeb.243205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 05/08/2022] [Indexed: 11/20/2022]
Abstract
The capacity to deal with external and internal challenges is thought to affect fitness, and the age-linked impairment of this capacity defines the ageing process. Using a recently developed intra-peritoneal glucose tolerance test (GTT) in zebra finches, we tested for a link between the capacity to regulate glucose levels and survival. We also investigated for the effects of ambient factors, age, sex, and manipulated developmental and adult conditions (i.e. natal brood size and foraging cost, in a full factorial design) on glucose tolerance. Glucose tolerance was quantified using the incremental ‘area under the curve’ (AUC), with lower values indicating higher tolerance. Glucose tolerance predicted survival probability in old birds, above the median age, with individuals with higher glucose tolerance showing better survival than individuals with low or intermediate glucose tolerance. In young birds there was no association between glucose tolerance and survival. Experimentally induced adverse developmental conditions did not affect glucose tolerance, but low ambient temperature at sampling and hard foraging conditions during adulthood induced a fast return to baseline levels (i.e. high glucose tolerance). These findings can be interpreted as an efficient return to baseline glucose levels when energy requirements are high, with glucose presumably being used for energy metabolism or storage. Glucose tolerance was independent of sex. Our main finding that old birds with higher glucose tolerance had better survival supports the hypothesis that the capacity to efficiently cope with a physiological challenge predicts lifespan, at least in old birds.
Collapse
Affiliation(s)
- Bibiana Montoya
- Laboratorio de Conducta Animal, Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, the Netherlands
- Estación Científica La Malinche, Centro Tlaxcala de Biología de la Conducta (CTBC), Universidad Autónoma de Tlaxcala, Mexico
| | - Michael Briga
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, the Netherlands
- Department of Biology, University of Turku, Turku, Finland
- Infectious Disease Epidemiology group, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Blanca Jimeno
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, the Netherlands
- Instituto de Investigación en Recursos Cinegéticos (IREC), CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005 Ciudad Real, Spain
| | - Simon Verhulst
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, the Netherlands
| |
Collapse
|
7
|
Ngcamphalala CA, Bouwer M, Nicolson SW, Ganswindt A, McKechnie AE. Experimental Manipulation of Air Temperature in Captivity Appears Unsuitable for Evaluating Fecal Glucocorticoid Metabolite Responses of Wild-Caught Birds to Heat Exposure. Physiol Biochem Zool 2021; 94:330-337. [PMID: 34292861 DOI: 10.1086/716043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractNoninvasive measurement of stress-related alterations in fecal glucocorticoid metabolite (fGCM) concentrations has considerable potential for quantifying physiological responses to very hot weather in free-ranging birds, but practical considerations related to sampling will often make this method feasible only for habituated study populations. Here we evaluate an alternate approach, the use of experimentally manipulated thermal environments for evaluating stress responses to high environmental temperatures in wild-caught birds housed in captivity. Using an enzyme immunoassay utilizing antibodies against 5ß-pregnane-3α,11ß,21-triol-20-one-CMO∶BSA (tetrahydrocorticosterone), we quantified fGCMs in captive individuals of three southern African arid-zone species (southern pied babblers [Turdoides bicolor], white-browed sparrow-weavers [Plocepasser mahali], and southern yellow-billed hornbills [Tockus leucomelas]) experiencing daily air temperature maxima (Tmax) ranging from 30°-32°C to 42°-44°C. For none of the three species did Tmax emerge as a significant predictor of elevated fGCM concentrations, and no stress response to simulated hot weather was evident. The apparent lack of a stress response to Tmax = 42°C in captive southern pied babblers contrasts with linear increases in fGCMs at Tmax > 38°C in free-ranging conspecifics. The lack of an effect of Tmax on fGCM levels may potentially be explained by several factors, including differences in operative temperatures and the availability of water and food between free-ranging and captive settings or the stress effect of captivity itself. Our results suggest that experimental manipulations of thermal environments experienced by wild-caught captive birds have limited usefulness for testing hypotheses concerning the effects of hot weather events on fGCM (and, by extension, glucocorticoid) concentrations.
Collapse
|
8
|
Tornabene BJ, Hossack BR, Crespi EJ, Breuner CW. Corticosterone mediates a growth-survival tradeoff for an amphibian exposed to increased salinity. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2021; 335:703-715. [PMID: 34370904 DOI: 10.1002/jez.2535] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/24/2021] [Accepted: 07/26/2021] [Indexed: 01/01/2023]
Abstract
Life-history tradeoffs are common across taxa, but growth-survival tradeoffs-usually enhancing survival at a cost to growth-are less frequently investigated. Increased salinity (NaCl) is a prevalent anthropogenic disturbance that may cause a growth-survival tradeoff for larval amphibians. Although physiological mechanisms mediating tradeoffs are seldom investigated, hormones are prime candidates. Corticosterone (CORT) is a steroid hormone that independently influences survival and growth and may provide mechanistic insight into growth-survival tradeoffs. We conducted a 24-day experiment to test effects of salinity (<32-4000 mg/L) on growth, development, survival, CORT responses, and tradeoffs among traits of larval Northern Leopard Frogs (Rana pipiens). We also experimentally suppressed CORT signaling to determine whether CORT signaling mediates effects of salinity and a growth-survival tradeoff. Increased salinity reduced survival, growth, and development. Suppressing CORT signaling in conjunction with salinity reduced survival further but also attenuated the negative effects of salinity on growth, development, and water content. CORT of control larvae increased or was stable with growth and development but decreased with growth and development for those exposed to salinity. Therefore, salinity dysregulated CORT physiology. Across all treatments, larvae that survived had higher CORT than larvae that died. By manipulating CORT signaling, we provide strong evidence that CORT physiology mediates the outcome of a growth-survival tradeoff and enhances survival. To our knowledge, this is the first study to concomitantly measure tradeoffs between growth and survival and experimentally link these changes to CORT physiology. Identifying mechanistic links between stressors and fitness-related outcomes is critical to enhance our understanding of tradeoffs.
Collapse
Affiliation(s)
- Brian J Tornabene
- Wildlife Biology Program, W.A. Franke College of Forestry and Conservation, University of Montana, Missoula, Montana, USA
| | - Blake R Hossack
- Wildlife Biology Program, W.A. Franke College of Forestry and Conservation, University of Montana, Missoula, Montana, USA.,US Geological Survey, Northern Rocky Mountain Science Center, Missoula, Montana, USA
| | - Erica J Crespi
- School of Biological Sciences, Center for Reproductive Sciences, Washington State University, Pullman, Washington, USA
| | - Creagh W Breuner
- Wildlife Biology Program, W.A. Franke College of Forestry and Conservation, University of Montana, Missoula, Montana, USA
| |
Collapse
|
9
|
Harper JM, Holmes DJ. New Perspectives on Avian Models for Studies of Basic Aging Processes. Biomedicines 2021; 9:biomedicines9060649. [PMID: 34200297 PMCID: PMC8230007 DOI: 10.3390/biomedicines9060649] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/28/2021] [Accepted: 05/29/2021] [Indexed: 12/18/2022] Open
Abstract
Avian models have the potential to elucidate basic cellular and molecular mechanisms underlying the slow aging rates and exceptional longevity typical of this group of vertebrates. To date, most studies of avian aging have focused on relatively few of the phenomena now thought to be intrinsic to the aging process, but primarily on responses to oxidative stress and telomere dynamics. But a variety of whole-animal and cell-based approaches to avian aging and stress resistance have been developed-especially the use of primary cell lines and isolated erythrocytes-which permit other processes to be investigated. In this review, we highlight newer studies using these approaches. We also discuss recent research on age-related changes in neural function in birds in the context of sensory changes relevant to homing and navigation, as well as the maintenance of song. More recently, with the advent of "-omic" methodologies, including whole-genome studies, new approaches have gained momentum for investigating the mechanistic basis of aging in birds. Overall, current research suggests that birds exhibit an enhanced resistance to the detrimental effects of oxidative damage and maintain higher than expected levels of cellular function as they age. There is also evidence that genetic signatures associated with cellular defenses, as well as metabolic and immune function, are enhanced in birds but data are still lacking relative to that available from more conventional model organisms. We are optimistic that continued development of avian models in geroscience, especially under controlled laboratory conditions, will provide novel insights into the exceptional longevity of this animal taxon.
Collapse
Affiliation(s)
- James M. Harper
- Department of Biological Sciences, Sam Houston State University, Huntsville, TX 77341, USA
- Correspondence: ; Tel.: +1-936-294-1543
| | - Donna J. Holmes
- Department of Biological Sciences and WWAMI Medical Education Program, University of Idaho, Moscow, ID 83844, USA;
| |
Collapse
|
10
|
Jimeno B, Prichard MR, Landry D, Wolf C, Larkin B, Cheviron Z, Breuner C. Metabolic Rates Predict Baseline Corticosterone and Reproductive Output in a Free-Living Passerine. Integr Org Biol 2021; 2:obaa030. [PMID: 33791569 PMCID: PMC7794023 DOI: 10.1093/iob/obaa030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Organisms continuously face environmental fluctuations, and allocation of metabolic investment to meet changing energetic demands is fundamental to survival and reproductive success. Glucocorticoid (GC) hormones (e.g., corticosterone [CORT]) play an important role in energy acquisition and allocation in the face of environmental challenges, partly through mediation of energy metabolism. Although GCs and metabolic rate are expected to covary, surprisingly few empirical studies have demonstrated such relationships, especially in wild animals. Moreover, studies testing for associations between GCs and fitness generally do not account for among-individual differences in energy expenditure or energy allocation. We measured CORT (baseline and stress-induced) and metabolic traits (resting metabolic rate [RMR], cold-induced VO2max [Msum], and aerobic scope [the difference between Msum and RMR]) in female tree swallows (Tachycineta bicolor) during chick-rearing, and tested for their associations with several variables of reproductive performance. We found a positive relationship between RMR and baseline CORT, but no consistent associations between stress-induced CORT (SI-CORT) and Msum. This suggests that while baseline CORT may be a good indicator of an individual's baseline metabolic investment, SI-CORT responses are not associated with aerobic scope or the upper limits of aerobic performance. Furthermore, we found that metabolic traits were associated with reproductive performance: females with higher reproductive output showed higher Msum, and also tended to show higher RMR. Overall, these results suggest that metabolic traits are better predictors of reproductive output in tree swallows than CORT concentrations. They further point to the maximal aerobic capacity being higher in females investing more heavily in a current reproductive event, but whether this association reflects trade-offs between current and future reproductive efforts remains to be tested.
Collapse
Affiliation(s)
- Blanca Jimeno
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Mackenzie R Prichard
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA.,Department of Psychology, Emory University, Atlanta, GA 30322, USA
| | | | - Cole Wolf
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | | | - Zachary Cheviron
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Creagh Breuner
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| |
Collapse
|
11
|
Briga M, Verhulst S. Mosaic metabolic ageing: Basal and standard metabolic rates age in opposite directions and independent of environmental quality, sex and life span in a passerine. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13785] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Michael Briga
- Groningen Institute for Evolutionary Life Sciences University of Groningen Groningen The Netherlands
| | - Simon Verhulst
- Groningen Institute for Evolutionary Life Sciences University of Groningen Groningen The Netherlands
| |
Collapse
|
12
|
Quirici V, Botero-Delgadillo E, González-Gómez PL, Espíndola-Hernández P, Zambrano B, Cuevas E, Wingfield JC, Vásquez RA. On the relationship between baseline corticosterone levels and annual survival of the thorn-tailed rayadito. Gen Comp Endocrinol 2021; 300:113635. [PMID: 33017587 DOI: 10.1016/j.ygcen.2020.113635] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 08/28/2020] [Accepted: 09/26/2020] [Indexed: 02/07/2023]
Abstract
Baseline concentrations of glucocorticoids (i.e., cortisol and/or corticosterone) can moderately increase with the degree of energy demands that an individual faces. This could be a mechanism based on which glucocorticods (GCs) can mediate life history trade-offs, and therefore fitness. The 'cort-fitness hypothesis' predicts a negative relationship between GCs and fitness, meanwhile the 'cort-adaptation hypothesis' predicts the opposite pattern. Field studies on the relation between baseline GCs and survival rate have shown mixed results, supporting both positive and negative effect. These ambiguous results could be partially consequence of the short time frame in that most of the studies are carried on. In this study, we tested the predictions of the 'cort-fitness hypothesis' and 'cort-adaptation hypothesis' by using long-term data (eight-year of capture-mark-recapture) of Thorn-tailed Rayadito (Aphrastura spinicauda) in two populations at different latitudes. We assessed whether survival varied as a function of Cort levels and whether it varied in a linear (positive: 'cort-adaptation hypothesis' or negative: 'cort-fitness hypothesis') or curvilinear way. The two populations in our study had different baseline Cort levels, then we evaluated whether the association between baseline Cort and survival probability varied between them. In the high latitude population (i.e., lower baseline Cort levels), we observed a marginally quadratic relationship that is consistent with the cort-fitness hypothesis. In contrast, in the low altitude population we did not find this relation. Our findings suggests that the association between baseline Cort and survival probability is context-dependent, and highlights the importance of comparing different populations and the use of long-term data.
Collapse
Affiliation(s)
- Verónica Quirici
- Centro de Investigación para la Sustentabilidad, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile.
| | - Esteban Botero-Delgadillo
- Department of Behavioural Ecology and Evolutionary Genetics, Max Planck Institute of Ornithology, Germany; Instituto de Ecología y Biodiversidad and Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile; SELVA: Research for Conservation in the Neotropics, Bogotá, Colombia
| | - Paulina L González-Gómez
- Department of Neurobiology, Physiology and Behavior, University of California, One Shields Avenue, Davis, United States; Universidad Autónoma de Chile, Av. Pedro de Valdivia 425, Providencia, Santiago, Chile
| | - Pamela Espíndola-Hernández
- Department of Behavioural Ecology and Evolutionary Genetics, Max Planck Institute of Ornithology, Germany
| | - Brayan Zambrano
- Doctorado en Medicina de la Conservación, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Elfego Cuevas
- Doctorado en Medicina de la Conservación, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - John C Wingfield
- Department of Neurobiology, Physiology and Behavior, University of California, One Shields Avenue, Davis, United States
| | - Rodrigo A Vásquez
- Instituto de Ecología y Biodiversidad and Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| |
Collapse
|
13
|
Béziers P, Korner-Nievergelt F, Jenni L, Roulin A, Almasi B. Glucocorticoid levels are linked to lifetime reproductive success and survival of adult barn owls. J Evol Biol 2020; 33:1689-1703. [PMID: 32945025 DOI: 10.1111/jeb.13707] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 09/04/2020] [Accepted: 09/07/2020] [Indexed: 12/26/2022]
Abstract
Glucocorticoid hormones, such as corticosterone, are crucial in regulating daily life metabolism and energy expenditure, as well as promoting short-term physiological and behavioural responses to unpredictable environmental challenges. Therefore, glucocorticoids are considered to mediate trade-offs between survival and reproduction. Relatively little is known about how selection has shaped glucocorticoid levels. We used 15 years of capture-recapture and dead recovery data combined with 13 years of corticosterone and breeding success data taken on breeding barn owls (Tyto alba) to investigate such trade-offs. We found that survival was positively correlated with stress-induced corticosterone levels in both sexes, whereas annual and lifetime reproductive success (i.e. the sum of young successfully fledged during the entire reproductive career) was positively correlated with both baseline and stress-induced corticosterone levels in females only. Our results suggest that, in the barn owl, the stress-induced corticosterone response is a good proxy for adult survival and lifetime reproductive success. However, selection pressure appears to act differently on corticosterone levels of males and females.
Collapse
Affiliation(s)
- Paul Béziers
- Swiss Ornithological Institute, Sempach, Switzerland.,Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | | | - Lukas Jenni
- Swiss Ornithological Institute, Sempach, Switzerland
| | - Alexandre Roulin
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | | |
Collapse
|
14
|
Lipowska MM, Sadowska ET, Bauchinger U, Goymann W, Bober-Sowa B, Koteja P. Does selection for behavioral and physiological performance traits alter glucocorticoid responsiveness in bank voles? J Exp Biol 2020; 223:jeb219865. [PMID: 32561625 DOI: 10.1242/jeb.219865] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 06/16/2020] [Indexed: 11/20/2022]
Abstract
One of the key elements of an animal's Darwinian fitness is its ability to adequately respond to and cope with challenging situations. Glucocorticoid hormones, such as corticosterone, affect an organism's ability to overcome such challenges. We hypothesized that changes in the glucocorticoid response curve contribute to the evolution of increased performance during challenging conditions, and tested it on bank voles (Myodes glareolus) from a multidirectional artificial selection experiment, which involves lines selected for high aerobic exercise metabolism achieved during swimming (A - Aerobic), predatory behavior towards a cricket (P - Predatory) and ability to maintain body mass on a low-quality herbivorous diet (H - Herbivorous), as well as unselected control lines (C - Control). We elicited a glucocorticoid response either by restraining the animal or by maximum pharmacological stimulation, and measured plasma corticosterone levels at baseline, during the response and during the recovery phase. Response-level corticosterone was higher in females, and recovery from maximal level was faster than that of males. Selection did not affect baseline or stress-induced corticosterone levels, but it decreased the maximum corticosterone level in Aerobic and Predatory lines, reducing the difference between stress-induced and maximum levels. Recovery from restraint-induced corticosterone level tended to be slower in the Herbivorous than in the other lines, an effect that was stronger in females than in males. In conclusion, successful selection for increased performance in challenging conditions was not associated with changes in absolute values of the glucocorticoid response to stress, but can affect other characteristics of the glucocorticoid response curve.
Collapse
Affiliation(s)
| | - Edyta T Sadowska
- Institute of Environmental Sciences, Jagiellonian University, 30-387 Kraków, Poland
| | - Ulf Bauchinger
- Institute of Environmental Sciences, Jagiellonian University, 30-387 Kraków, Poland
- Nencki Institute of Experimental Biology PAS, 02-093 Warszawa, Poland
| | - Wolfgang Goymann
- Department of Behavioral Neurobiology, Max Planck Institute for Ornithology, 82319 Seewiesen, Germany
| | - Barbara Bober-Sowa
- Institute of Environmental Sciences, Jagiellonian University, 30-387 Kraków, Poland
| | - Paweł Koteja
- Institute of Environmental Sciences, Jagiellonian University, 30-387 Kraków, Poland
| |
Collapse
|
15
|
Kraus S, Krüger O, Guenther A. Zebra finches bi-directionally selected for personality differ in repeatability of corticosterone and testosterone. Horm Behav 2020; 122:104747. [PMID: 32217065 DOI: 10.1016/j.yhbeh.2020.104747] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 03/17/2020] [Accepted: 03/20/2020] [Indexed: 12/16/2022]
Abstract
Consistent between-individual differences in behaviour have been documented across the animal kingdom. Such variation between individuals has been shown to be the basis for selection and to act as a pacemaker for evolutionary change. Recently, equivocal evidence suggests that such consistent between-individual variation is also present in hormones. This observation has sparked interest in understanding the mechanisms shaping individual differences, temporal consistency and heritability of hormonal phenotypes and to understand, if and to what extent hormonal mechanisms are involved in mediating consistent variation in behaviour between individuals. Here, we used zebra finches of the fourth generation of bi-directionally selected lines for three independent behaviours: aggression, exploration and fearlessness. We investigated how these behaviours responded to artificial selection and tested their repeatability. We further tested for repeatability of corticosterone and testosterone across and within lines. Moreover, we are presenting the decomposed variance components for within-individual variance (i.e. flexibility) and between-individual variance (i.e. more or less pronounced differences between individuals) and investigate their contribution to repeatability estimates. Both hormones as well as the exploration and fearlessness but not aggressiveness, were repeatable. However, variance components and hence repeatability differed between lines and were often lower than in unselected control animals, mainly because of a reduction in between-individual variance. Our data show that artificial selection (including active selection and genetic drift) can affect the mean and variance of traits. We stress the importance for understanding how variable a trait is both between and within individuals to assess the selective value of a trait.
Collapse
Affiliation(s)
- Sabine Kraus
- Department of Animal Behaviour, Bielefeld University, Germany.
| | - Oliver Krüger
- Department of Animal Behaviour, Bielefeld University, Germany.
| | - Anja Guenther
- Department of Animal Behaviour, Bielefeld University, Germany; Max Planck Institute for Evolutionary Biology, Plön, Germany.
| |
Collapse
|
16
|
Montoya B, Briga M, Jimeno B, Verhulst S. Glucose regulation is a repeatable trait affected by successive handling in zebra finches. J Comp Physiol B 2020; 190:455-464. [PMID: 32424441 DOI: 10.1007/s00360-020-01283-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 04/16/2020] [Accepted: 05/03/2020] [Indexed: 11/29/2022]
Abstract
The capacity to adequately respond to (physiological) perturbations is a fundamental aspect of physiology, and may affect health and thereby Darwinian fitness. However, little is known of the degree of individual variation in this capacity in non-model organisms. The glucose tolerance test evaluates the individual's ability to regulate circulating glucose levels, and is a widely used tool in medicine and biomedical research, because glucose regulation is thought to play a role in the ageing process, among other reasons. Here, we developed an application of the intraperitoneal glucose tolerance test (IP-GTT) to be used in small birds, to test whether individuals can be characterized by their regulation of glucose levels and the effect of successive handling on such regulation. Since the IP-injection (intraperitoneal glucose injection), repeated handling and blood sampling may trigger a stress response, which involves a rise in glucose levels, we also evaluated the effects of handling protocols on glucose response. Blood glucose levels decreased immediately following an IP-injection, either vehicle or glucose loaded, and increased with successive blood sampling. Blood glucose levels peaked, on average, at 20 min post-injection (PI) and had not yet returned back to initial levels at 120 min PI. Glucose measurements taken during the IP-GTT were integrated to estimate magnitude of changes in glucose levels over time using the incremental area under the curve (AUC) up to 40 min PI. Glucose levels integrated in the AUC were significantly repeatable within individuals over months (r = 50%; 95% CI 30-79%), showing that the ability to regulate glucose differs consistently between individuals.
Collapse
Affiliation(s)
- Bibiana Montoya
- Laboratorio de Conducta Animal, Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City, Mexico. .,Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands. .,Centro Tlaxcala de Biología de la Conducta (CTBC), Universidad Autónoma de Tlaxcala, Tlaxcala, México.
| | - Michael Briga
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands.,Department of Biology, University of Turku, Turku, Finland
| | - Blanca Jimeno
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands.,Division of Biological Sciences, University of Montana, Missoula, MT, USA
| | - Simon Verhulst
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
17
|
Vitousek MN, Taff CC, Ryan TA, Zimmer C. Stress Resilience and the Dynamic Regulation of Glucocorticoids. Integr Comp Biol 2019; 59:251-263. [PMID: 31168615 DOI: 10.1093/icb/icz087] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Vertebrates respond to a diversity of stressors by rapidly elevating glucocorticoid (GC) levels. The changes in physiology and behavior triggered by this response can be crucial for surviving a variety of challenges. Yet the same process that is invaluable in coping with immediate threats can also impose substantial damage over time. In addition to the pathological effects of long-term exposure to stress hormones, even relatively brief elevations can impair the expression of a variety of behaviors and physiological processes central to fitness, including sexual behavior, parental behavior, and immune function. Therefore, the ability to rapidly and effectively terminate the short-term response to stress may be fundamental to surviving and reproducing in dynamic environments. Here we review the evidence that variation in the ability to terminate the stress response through negative feedback is an important component of stress coping capacity. We suggest that coping capacity may also be influenced by variation in the dynamic regulation of GCs-specifically, the ability to rapidly turn on and off the stress response. Most tests of the fitness effects of these traits to date have focused on organisms experiencing severe or prolonged stressors. Here we use data collected from a long-term study of tree swallows (Tachycineta bicolor) to test whether variation in negative feedback, or other measures of GC regulation, predict components of fitness in non-chronically stressed populations. We find relatively consistent, but generally weak relationships between different fitness components and the strength of negative feedback. Reproductive success was highest in individuals that both mounted a robust stress response and had strong negative feedback. We did not see consistent evidence of a relationship between negative feedback and adult or nestling survival: negative feedback was retained in the best supported models of nestling and adult survival, but in two of three survival-related analyses the intercept-only model received only slightly less support. Both negative feedback and stress-induced GC levels-but not baseline GCs-were individually repeatable. These measures of GC activity did not consistently covary across ages and life history stages, indicating that they are independently regulated. Overall, the patterns seen here are consistent with the predictions that negative feedback-and the dynamic regulation of GCs-are important components of stress coping capacity, but that the fitness benefits of having strong negative feedback during the reproductive period are likely to manifest primarily in individuals exposed to chronic or repeated stressors.
Collapse
Affiliation(s)
- Maren N Vitousek
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA.,Cornell Lab of Ornithology, Ithaca, NY 14850, USA
| | - Conor C Taff
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA.,Cornell Lab of Ornithology, Ithaca, NY 14850, USA
| | - Thomas A Ryan
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA
| | - Cedric Zimmer
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
18
|
Jimeno B, Hau M, Gómez-Díaz E, Verhulst S. Developmental conditions modulate DNA methylation at the glucocorticoid receptor gene with cascading effects on expression and corticosterone levels in zebra finches. Sci Rep 2019; 9:15869. [PMID: 31676805 PMCID: PMC6825131 DOI: 10.1038/s41598-019-52203-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 10/10/2019] [Indexed: 12/27/2022] Open
Abstract
Developmental conditions can impact the adult phenotype via epigenetic changes that modulate gene expression. In mammals, methylation of the glucocorticoid receptor gene Nr3c1 has been implicated as mediator of long-term effects of developmental conditions, but this evidence is limited to humans and rodents, and few studies have simultaneously tested for associations between DNA methylation, gene expression and phenotype. Adverse environmental conditions during early life (large natal brood size) or adulthood (high foraging costs) exert multiple long-term phenotypic effects in zebra finches, and we here test for effects of these manipulations on DNA methylation and expression of the Nr3c1 gene in blood. Having been reared in a large brood induced higher DNA methylation of the Nr3c1 regulatory region in adulthood, and this effect persisted over years. Nr3c1 expression was negatively correlated with methylation at 2 out of 8 CpG sites, and was lower in hard foraging conditions, despite foraging conditions having no effect on Nr3c1 methylation at our target region. Nr3c1 expression also correlated with glucocorticoid traits: higher expression level was associated with lower plasma baseline corticosterone concentrations and enhanced corticosterone reactivity. Our results suggest that methylation of the Nr3c1 regulatory region can contribute to the mechanisms underlying the emergence of long-term effects of developmental conditions in birds, but in our system current adversity dominated over early life experiences with respect to receptor expression.
Collapse
Affiliation(s)
- Blanca Jimeno
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands.
- Max Planck Institute for Ornithology, Seewiesen, Germany.
- University of Montana, Missoula, MT, United States.
| | - Michaela Hau
- Max Planck Institute for Ornithology, Seewiesen, Germany
- University of Konstanz, Konstanz, Germany
| | - Elena Gómez-Díaz
- Instituto de Parasitología y Biomedicina "López-Neyra", CSIC, Granada, Spain
- Estación Biológica de Doñana, CSIC, Sevilla, Spain
| | - Simon Verhulst
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
19
|
Schoenle LA, Zimmer C, Vitousek MN. Understanding Context Dependence in Glucocorticoid-Fitness Relationships: The Role of the Nature of the Challenge, the Intensity and Frequency of Stressors, and Life History. Integr Comp Biol 2019; 58:777-789. [PMID: 29889246 DOI: 10.1093/icb/icy046] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
It has been well-established that there is variation in the strength and direction of the relationship between circulating glucocorticoids (GCs) and fitness. When studies demonstrate such variation or the direction of the GC-fitness relationship is unexpected, the results are often attributed to context-dependency. However, descriptors of context can be vague (e.g., "environmental context") and few studies explicitly test how the optimal hypothalamic-pituitary-adrenal (HPA) axis response to stressors varies across specific contexts. Although existing hypotheses create a strong foundation for understanding GC-fitness relationships, many do not provide explicit predictions of how, when, and why the relationships will change. Here, we discuss three broad factors which we expect to shape the relationships between HPA axis activity and fitness metrics: (1) whether the HPA axis-mediated response matches the challenge, (2) the intensity and frequency of challenges, and (3) life history. We also make predictions for how these factors might affect GC-fitness relationships and discuss ways to test these predictions. Observational studies, experimental manipulations of context, and large-scale cross-species comparisons will be critical to understanding the observed variation in GC-fitness relationships.
Collapse
Affiliation(s)
- Laura A Schoenle
- Department of Global Health, University of South Florida, Tampa, FL 33620, USA.,Department of Biology, Hamilton College, Clinton, NY 13323, USA
| | - Cedric Zimmer
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA
| | - Maren N Vitousek
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA.,Cornell Lab of Ornithology, Ithaca, NY 14850, USA
| |
Collapse
|
20
|
Weber BM, Bowers EK, Terrell KA, Falcone JF, Thompson CF, Sakaluk SK. Pre- and postnatal effects of experimentally manipulated maternal corticosterone on growth, stress reactivity and survival of nestling house wrens. Funct Ecol 2018; 32:1995-2007. [PMID: 30344358 PMCID: PMC6191837 DOI: 10.1111/1365-2435.13126] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 04/23/2018] [Indexed: 01/09/2023]
Abstract
Corticosterone plays a central role in maintaining homeostasis, promoting energy acquisition, and regulating the stress response in birds. Exposure to elevated levels of corticosterone during development can profoundly alter offspring behaviour and physiology, but the effects of elevated maternal corticosterone on offspring development remain poorly understood.We tested two competing hypotheses concerning the effect of maternally derived corticosterone on growth and development of free-living house wrens: (i) elevated maternal corticosterone causes damaging effects on nestling phenotype and fitness (collateral damage hypothesis) and (ii) increased maternal corticosterone enhances offspring fitness by preparing nestlings for the environment experienced by their mother (environmental/maternal-matching hypothesis).We used a non-invasive means to increase maternal corticosterone by providing females with corticosterone-injected mealworms prior to and during egg production in the absence of any overt pre-natal maternal stress. To disentangle pre- and post-natal effects of this elevation in maternal corticosterone, we cross-fostered young in two experiments: (i) nestlings of control and experimental females were reared by unmanipulated, natural females in a uniform maternal environment; (ii) a split-brood design that enabled us to assess the interaction between the mother's corticosterone treatment and that of the nestlings.There were significant pre-natal effects of increased maternal corticosterone on nestling growth and survival. Offspring of females experiencing experimentally increased corticosterone were heavier and larger than offspring of control females. There also was a significant interaction between maternal corticosterone treatment and the corticosterone treatment to which young were exposed within the egg in their effect on nestling survival while in the nest; experimental young exhibited greater survival than control young, but only when reared by control mothers. There was also a significant effect of maternal corticosterone treatment on nestling stress reactivity and, in both experiments, on the eventual recruitment of offspring as breeding adults in the local population.These patterns are broadly consistent with the environmental/maternal-matching hypothesis, and highlight the importance of disentangling pre- and post-natal effects of manipulations of maternal hormone levels on offspring phenotype.
Collapse
Affiliation(s)
- Beth M Weber
- Behavior, Ecology, Evolution and Systematics Section, School of Biological Sciences, Illinois State University, Normal, IL, USA
| | - E Keith Bowers
- Department of Biological Sciences, University of Memphis, Memphis, TN, USA
| | - Kimberly A Terrell
- Department of Biological Sciences, University of Memphis, Memphis, TN, USA
- Department of Research and Conservation, Memphis Zoo, Memphis, TN, USA
| | | | - Charles F Thompson
- Behavior, Ecology, Evolution and Systematics Section, School of Biological Sciences, Illinois State University, Normal, IL, USA
| | - Scott K Sakaluk
- Behavior, Ecology, Evolution and Systematics Section, School of Biological Sciences, Illinois State University, Normal, IL, USA
| |
Collapse
|
21
|
Baseline glucose level is an individual trait that is negatively associated with lifespan and increases due to adverse environmental conditions during development and adulthood. J Comp Physiol B 2018; 188:517-526. [PMID: 29313093 DOI: 10.1007/s00360-017-1143-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 12/07/2017] [Accepted: 12/19/2017] [Indexed: 01/09/2023]
Abstract
High baseline glucose levels are associated with pathologies and shorter lifespan in humans, but little is known about causes and consequences of individual variation in glucose levels in other species. We tested to what extent baseline blood glucose level is a repeatable trait in adult zebra finches, and whether glucose levels were associated with age, manipulated environmental conditions during development (rearing brood size) and adulthood (foraging cost), and lifespan. We found that: (1) repeatability of glucose levels was 30%, both within and between years. (2) Having been reared in a large brood and living with higher foraging costs as adult were independently associated with higher glucose levels. Furthermore, the finding that baseline glucose was low when ambient temperature was high, and foraging costs were low, indicates that glucose is regulated at a lower level when energy turnover is low. (3) Survival probability decreased with increasing baseline glucose. We conclude that baseline glucose is an individual trait negatively associated with survival, and increases due to adverse environmental conditions during development (rearing brood size) and adulthood (foraging cost). Blood glucose may be, therefore, part of the physiological processes linking environmental conditions to lifespan.
Collapse
|