1
|
Zhu S, Mao H, Sun S, Yang X, Zhao W, Sheng L, Chen Z. Arbuscular mycorrhizal fungi promote functional gene regulation of phosphorus cycling in rhizosphere microorganisms of Iris tectorum under Cr stress. J Environ Sci (China) 2025; 151:187-199. [PMID: 39481932 DOI: 10.1016/j.jes.2024.02.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 02/26/2024] [Accepted: 02/26/2024] [Indexed: 11/03/2024]
Abstract
The mutualistic symbiotic system formed by clumping arbuscular mycorrhizal fungi (AMF) and plants can remediate heavy metal-contaminated soils. However, the specific mechanisms underlying the interaction between AMF and inter-root microbial communities, particularly their impact on organic phosphorus (P) cycling, remain unclear. This study investigated the gene regulation processes involved in inter-root soil phosphorus cycling in wetland plants, specifically Iris tectorum, following inoculation with AMF under varying concentrations of chromium (Cr) stress. Through macro-genome sequencing, we analyzed the composition and structure of the inter-root soil microbial community associated with Iris tectorum under greenhouse pot conditions. The results demonstrated significant changes in the diversity and composition of the inter-root soil microbial community following AMF inoculation, with Proteobacteria, Actinobacteria, Chloroflexi, Acidobacteria, and Bacteroidetes being the dominant taxa. Under Cr stress, species and gene co-occurrence network analysis revealed that AMF promoted the transformation process of organic phosphorus mineralization and facilitated inorganic phosphorus uptake. Additionally, network analysis of functional genes indicated strong aggregation of (pstS, pstA, pstC, TC.PIT, phoR, pp-gppA) genes, which collectively enhanced phosphorus uptake by plants. These findings shed light on the inter-root soil phosphorus cycling process during the co-remediation of Cr-contaminated soil by AMF-Iris tectorum symbiosis, providing valuable theoretical support for the application of AMF-wetland plant symbiosis systems to remediate heavy metal-contaminated soil.
Collapse
Affiliation(s)
- Sixi Zhu
- College of Eco-environment Engineering, Guizhou Minzu University; The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guiyang 550025, China.
| | - Huan Mao
- College of Eco-environment Engineering, Guizhou Minzu University; The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guiyang 550025, China
| | - Suxia Sun
- College of Eco-environment Engineering, Guizhou Minzu University; The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guiyang 550025, China
| | - Xiuqin Yang
- College of Eco-environment Engineering, Guizhou Minzu University; The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guiyang 550025, China
| | - Wei Zhao
- College of Eco-environment Engineering, Guizhou Minzu University; The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guiyang 550025, China
| | - Luying Sheng
- College of Eco-environment Engineering, Guizhou Minzu University; The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guiyang 550025, China
| | - Zhongbing Chen
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcka 129, Praha-Suchdol 16500, Czech Republic
| |
Collapse
|
2
|
Cao Y, Shen Z, Zhang N, Deng X, Thomashow LS, Lidbury I, Liu H, Li R, Shen Q, Kowalchuk GA. Phosphorus availability influences disease-suppressive soil microbiome through plant-microbe interactions. MICROBIOME 2024; 12:185. [PMID: 39342390 PMCID: PMC11439275 DOI: 10.1186/s40168-024-01906-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/13/2024] [Indexed: 10/01/2024]
Abstract
BACKGROUND Soil nutrient status and soil-borne diseases are pivotal factors impacting modern intensive agricultural production. The interplay among plants, soil microbiome, and nutrient regimes in agroecosystems is essential for developing effective disease management. However, the influence of nutrient availability on soil-borne disease suppression and associated plant-microbe interactions remains to be fully explored. T his study aims to elucidate the mechanistic understanding of nutrient impacts on disease suppression, using phosphorous as a target nutrient. RESULTS A 6-year field trial involving monocropping of tomatoes with varied fertilizer manipulations demonstrated that phosphorus availability is a key factor driving the control of bacterial wilt disease caused by Ralstonia solanacearum. Subsequent greenhouse experiments were then conducted to delve into the underlying mechanisms of this phenomenon by varying phosphorus availability for tomatoes challenged with the pathogen. Results showed that the alleviation of phosphorus stress promoted the disease-suppressive capacity of the rhizosphere microbiome, but not that of the bulk soil microbiome. This appears to be an extension of the plant trade-off between investment in disease defense mechanisms versus phosphorus acquisition. Adequate phosphorus levels were associated with elevated secretion of root metabolites such as L-tryptophan, methoxyindoleacetic acid, O-phosphorylethanolamine, or mangiferin, increasing the relative density of microbial biocontrol populations such as Chryseobacterium in the rhizosphere. On the other hand, phosphorus deficiency triggered an alternate defense strategy, via root metabolites like blumenol A or quercetin to form symbiosis with arbuscular mycorrhizal fungi, which facilitated phosphorus acquisition as well. CONCLUSION Overall, our study shows how phosphorus availability can influence the disease suppression capability of the soil microbiome through plant-microbial interactions. These findings highlight the importance of optimizing nutrient regimes to enhance disease suppression, facilitating targeted crop management and boosting agricultural productivity. Video Abstract.
Collapse
Affiliation(s)
- Yifan Cao
- The Sanya Institute of the Nanjing Agricultural University, Key Lab of Organic-Based Fertilizers of China, Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Zongzhuan Shen
- The Sanya Institute of the Nanjing Agricultural University, Key Lab of Organic-Based Fertilizers of China, Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China.
| | - Na Zhang
- The Sanya Institute of the Nanjing Agricultural University, Key Lab of Organic-Based Fertilizers of China, Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Xuhui Deng
- The Sanya Institute of the Nanjing Agricultural University, Key Lab of Organic-Based Fertilizers of China, Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Linda S Thomashow
- Wheat Health, Genetics and Quality Research Unit, Washington State University, Pullman, WA, 99164, USA
| | - Ian Lidbury
- Molecular Microbiology, School of Biosciences, University of Sheffield, Sheffield, S10 2TN, UK
| | - Hongjun Liu
- The Sanya Institute of the Nanjing Agricultural University, Key Lab of Organic-Based Fertilizers of China, Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Rong Li
- The Sanya Institute of the Nanjing Agricultural University, Key Lab of Organic-Based Fertilizers of China, Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China.
| | - Qirong Shen
- The Sanya Institute of the Nanjing Agricultural University, Key Lab of Organic-Based Fertilizers of China, Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - George A Kowalchuk
- Ecology and Biodiversity Group, Department of Biology, Institute of Environmental Biology, Utrecht University, Padualaan 8, Utrecht, 3584 CH, the Netherlands
| |
Collapse
|
3
|
Jin Z, Jiang F, Wang L, Declerck S, Feng G, Zhang L. Arbuscular mycorrhizal fungi and Streptomyces: brothers in arms to shape the structure and function of the hyphosphere microbiome in the early stage of interaction. MICROBIOME 2024; 12:83. [PMID: 38725008 PMCID: PMC11080229 DOI: 10.1186/s40168-024-01811-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 04/07/2024] [Indexed: 05/12/2024]
Abstract
BACKGROUND Fungi and bacteria coexist in a wide variety of environments, and their interactions are now recognized as the norm in most agroecosystems. These microbial communities harbor keystone taxa, which facilitate connectivity between fungal and bacterial communities, influencing their composition and functions. The roots of most plants are associated with arbuscular mycorrhizal (AM) fungi, which develop dense networks of hyphae in the soil. The surface of these hyphae (called the hyphosphere) is the region where multiple interactions with microbial communities can occur, e.g., exchanging or responding to each other's metabolites. However, the presence and importance of keystone taxa in the AM fungal hyphosphere remain largely unknown. RESULTS Here, we used in vitro and pot cultivation systems of AM fungi to investigate whether certain keystone bacteria were able to shape the microbial communities growing in the hyphosphere and potentially improved the fitness of the AM fungal host. Based on various AM fungi, soil leachates, and synthetic microbial communities, we found that under organic phosphorus (P) conditions, AM fungi could selectively recruit bacteria that enhanced their P nutrition and competed with less P-mobilizing bacteria. Specifically, we observed a privileged interaction between the isolate Streptomyces sp. D1 and AM fungi of the genus Rhizophagus, where (1) the carbon compounds exuded by the fungus were acquired by the bacterium which could mineralize organic P and (2) the in vitro culturable bacterial community residing on the surface of hyphae was in part regulated by Streptomyces sp. D1, primarily by inhibiting the bacteria with weak P-mineralizing ability, thereby enhancing AM fungi to acquire P. CONCLUSIONS This work highlights the multi-functionality of the keystone bacteria Streptomyces sp. D1 in fungal-bacteria and bacterial-bacterial interactions at the hyphal surface of AM fungi. Video Abstract.
Collapse
Affiliation(s)
- Zexing Jin
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, 100193, China
| | - Feiyan Jiang
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, 100193, China
| | - Letian Wang
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, 100193, China
| | - Stéphane Declerck
- Applied Microbiology, Mycology, Earth and Life Institute, Université Catholique de Louvain, Croix du Sud 2, Bte L7.05.06, Louvain-La-Neuve, B-1348, Belgium
| | - Gu Feng
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, 100193, China
| | - Lin Zhang
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
4
|
Batool M, Carvalhais LC, Fu B, Schenk PM. Customized plant microbiome engineering for food security. TRENDS IN PLANT SCIENCE 2024; 29:482-494. [PMID: 37977879 DOI: 10.1016/j.tplants.2023.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 10/15/2023] [Accepted: 10/18/2023] [Indexed: 11/19/2023]
Abstract
Plant microbiomes play a vital role in promoting plant growth and resilience to cope with environmental stresses. Plant microbiome engineering holds significant promise to increase crop yields, but there is uncertainty about how this can best be achieved. We propose a step-by-step approach involving customized direct and indirect methods to condition soils and to match plants and microbiomes. Although three approaches, namely the development of (i) 'plant- and microbe-friendly' soils, (ii) 'microbe-friendly' plants, and (iii) 'plant-friendly' microbiomes, have been successfully tested in isolation, we propose that the combination of all three may lead to a step-change towards higher and more stable crop yields. This review aims to provide knowledge, future directions, and practical guidance to achieve this goal via customized plant microbiome engineering.
Collapse
Affiliation(s)
- Maria Batool
- Plant-Microbe Interactions Laboratory, School of Agriculture and Food Sustainability, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Lilia C Carvalhais
- Centre for Horticultural Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Brendan Fu
- Plant-Microbe Interactions Laboratory, School of Agriculture and Food Sustainability, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Peer M Schenk
- Plant-Microbe Interactions Laboratory, School of Agriculture and Food Sustainability, The University of Queensland, Brisbane, QLD, 4072, Australia; Sustainable Solutions Hub, Global Sustainable Solutions Pty Ltd, Brisbane, QLD 4105, Australia.
| |
Collapse
|
5
|
Recio MI, de la Torre J, Daddaoua A, Udaondo Z, Duque E, Gavira JA, López-Sánchez C, Ramos JL. Characterization of an extremophile bacterial acid phosphatase derived from metagenomics analysis. Microb Biotechnol 2024; 17:e14404. [PMID: 38588312 PMCID: PMC11001196 DOI: 10.1111/1751-7915.14404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 04/10/2024] Open
Abstract
Acid phosphatases are enzymes that play a crucial role in the hydrolysis of various organophosphorous molecules. A putative acid phosphatase called FS6 was identified using genetic profiles and sequences from different environments. FS6 showed high sequence similarity to type C acid phosphatases and retained more than 30% of consensus residues in its protein sequence. A histidine-tagged recombinant FS6 produced in Escherichia coli exhibited extremophile properties, functioning effectively in a broad pH range between 3.5 and 8.5. The enzyme demonstrated optimal activity at temperatures between 25 and 50°C, with a melting temperature of 51.6°C. Kinetic parameters were determined using various substrates, and the reaction catalysed by FS6 with physiological substrates was at least 100-fold more efficient than with p-nitrophenyl phosphate. Furthermore, FS6 was found to be a decamer in solution, unlike the dimeric forms of crystallized proteins in its family.
Collapse
Affiliation(s)
- Maria-Isabel Recio
- Consejo Superior de Investigaciones Científicas, Estación Experimental del Zaidín, Department of Environmental Protection, Granada, Spain
| | - Jesús de la Torre
- Consejo Superior de Investigaciones Científicas, Estación Experimental del Zaidín, Department of Environmental Protection, Granada, Spain
| | - Abdelali Daddaoua
- Department of Biochemistry and Molecular Biology II, Pharmacy School, Granada University, Granada, Spain
| | - Zulema Udaondo
- Department of Biomedical Informatics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Estrella Duque
- Consejo Superior de Investigaciones Científicas, Estación Experimental del Zaidín, Department of Environmental Protection, Granada, Spain
| | - José Antonio Gavira
- Consejo Superior de Investigaciones Científicas, Instituto de Ciencias de la Tierra, Granada, Spain
| | - Carmen López-Sánchez
- Consejo Superior de Investigaciones Científicas, Instituto de Ciencias de la Tierra, Granada, Spain
| | - Juan L Ramos
- Consejo Superior de Investigaciones Científicas, Estación Experimental del Zaidín, Department of Environmental Protection, Granada, Spain
| |
Collapse
|
6
|
Lidbury IDEA, Hitchcock A, Groenhof SRM, Connolly AN, Moushtaq L. New insights in bacterial organophosphorus cycling: From human pathogens to environmental bacteria. Adv Microb Physiol 2024; 84:1-49. [PMID: 38821631 DOI: 10.1016/bs.ampbs.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2024]
Abstract
In terrestrial and aquatic ecosystems, phosphorus (P) availability controls primary production, with consequences for climate regulation and global food security. Understanding the microbial controls on the global P cycle is a prerequisite for minimising our reliance on non-renewable phosphate rock reserves and reducing pollution associated with excessive P fertiliser use. This recognised importance has reinvigorated research into microbial P cycling, which was pioneered over 75 years ago through the study of human pathogenic bacteria-host interactions. Immobilised organic P represents a significant fraction of the total P pool. Hence, microbes have evolved a plethora of mechanisms to transform this fraction into labile inorganic phosphate, the building block for numerous biological molecules. The 'genomics era' has revealed an extraordinary diversity of organic P cycling genes exist in the environment and studies going 'back to the lab' are determining how this diversity relates to function. Through this integrated approach, many hitherto unknown genes and proteins that are involved in microbial P cycling have been discovered. Not only do these fundamental discoveries push the frontier of our knowledge, but several examples also provide exciting opportunities for biotechnology and present possible solutions for improving the sustainability of how we grow our food, both locally and globally. In this review, we provide a comprehensive overview of bacterial organic P cycling, covering studies on human pathogens and how this knowledge is informing new discoveries in environmental microbiology.
Collapse
Affiliation(s)
- Ian D E A Lidbury
- Molecular Microbiology - Biochemistry and Disease, School of Biosciences, The University of Sheffield, Sheffield, United Kingdom.
| | - Andrew Hitchcock
- Molecular Microbiology - Biochemistry and Disease, School of Biosciences, The University of Sheffield, Sheffield, United Kingdom; Plants, Photosynthesis, and Soil, School of Biosciences, The University of Sheffield, Sheffield, United Kingdom
| | - Sophie R M Groenhof
- Molecular Microbiology - Biochemistry and Disease, School of Biosciences, The University of Sheffield, Sheffield, United Kingdom
| | - Alex N Connolly
- Molecular Microbiology - Biochemistry and Disease, School of Biosciences, The University of Sheffield, Sheffield, United Kingdom
| | - Laila Moushtaq
- Molecular Microbiology - Biochemistry and Disease, School of Biosciences, The University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
7
|
Timofeeva AM, Galyamova MR, Sedykh SE. Plant Growth-Promoting Soil Bacteria: Nitrogen Fixation, Phosphate Solubilization, Siderophore Production, and Other Biological Activities. PLANTS (BASEL, SWITZERLAND) 2023; 12:4074. [PMID: 38140401 PMCID: PMC10748132 DOI: 10.3390/plants12244074] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/04/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023]
Abstract
This review covers the literature data on plant growth-promoting bacteria in soil, which can fix atmospheric nitrogen, solubilize phosphates, produce and secrete siderophores, and may exhibit several different behaviors simultaneously. We discuss perspectives for creating bacterial consortia and introducing them into the soil to increase crop productivity in agrosystems. The application of rhizosphere bacteria-which are capable of fixing nitrogen, solubilizing organic and inorganic phosphates, and secreting siderophores, as well as their consortia-has been demonstrated to meet the objectives of sustainable agriculture, such as increasing soil fertility and crop yields. The combining of plant growth-promoting bacteria with mineral fertilizers is a crucial trend that allows for a reduction in fertilizer use and is beneficial for crop production.
Collapse
Affiliation(s)
- Anna M. Timofeeva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia;
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia;
| | - Maria R. Galyamova
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia;
| | - Sergey E. Sedykh
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia;
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia;
| |
Collapse
|
8
|
Barra PJ, Duran P, Delgado M, Viscardi S, Claverol S, Larama G, Dumont M, Mora MDLL. Proteomic response to phosphorus deficiency and aluminum stress of three aluminum-tolerant phosphobacteria isolated from acidic soils. iScience 2023; 26:107910. [PMID: 37790272 PMCID: PMC10543181 DOI: 10.1016/j.isci.2023.107910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 07/27/2023] [Accepted: 09/11/2023] [Indexed: 10/05/2023] Open
Abstract
Aluminum (Al)-tolerant phosphobacteria enhance plant growth in acidic soils by improving Al complexing and phosphorus (P) availability. However, the impact of Al stress and P deficiency on bacterial biochemistry and physiology remains unclear. We investigated the single and mutual effects of Al stress (10 mM) and P deficiency (0.05 mM) on the proteome of three aluminum-tolerant phosphobacteria: Enterobacter sp. 198, Enterobacter sp. RJAL6, and Klebsiella sp. RCJ4. Cultivated under varying conditions, P deficiency upregulated P metabolism proteins while Al exposure downregulated iron-sulfur and heme-containing proteins and upregulated iron acquisition proteins. This demonstrated that Al influence on iron homeostasis and bacterial central metabolism. This study offers crucial insights into bacterial behavior in acidic soils, benefiting the development of bioinoculants for crops facing Al toxicity and P deficiency. This investigation marks the first proteomic study on the interaction between high Al and P deficiency in acid soils-adapted bacteria.
Collapse
Affiliation(s)
- Patricio Javier Barra
- Center of Plant, Soil Interaction and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco 4811230, Chile
- Biocontrol Research Laboratory, Universidad de La Frontera, Temuco 4811230, Chile
| | - Paola Duran
- Center of Plant, Soil Interaction and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco 4811230, Chile
- Biocontrol Research Laboratory, Universidad de La Frontera, Temuco 4811230, Chile
- Facultad de Ciencias Agropecuarias y Medioambiente, Departamento de Producción Agropecuaria, Universidad de La Frontera, Temuco 4811230, Chile
| | - Mabel Delgado
- Center of Plant, Soil Interaction and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco 4811230, Chile
| | - Sharon Viscardi
- Escuela de la Salud, Campus San Francisco, Universidad Católica de Temuco, Temuco 4811230, Chile
| | - Stéphane Claverol
- Plateforme Protéome, Centre Génomique Fonctionnelle de Bordeaux, Université de Bordeaux, Bordeaux, France
| | - Giovanni Larama
- Center of Plant, Soil Interaction and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco 4811230, Chile
- Biocontrol Research Laboratory, Universidad de La Frontera, Temuco 4811230, Chile
| | - Marc Dumont
- School of Biological Sciences, University of Southampton, Southampton, UK
| | - María de la Luz Mora
- Center of Plant, Soil Interaction and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco 4811230, Chile
| |
Collapse
|
9
|
Ruffolo F, Dinhof T, Murray L, Zangelmi E, Chin JP, Pallitsch K, Peracchi A. The Microbial Degradation of Natural and Anthropogenic Phosphonates. Molecules 2023; 28:6863. [PMID: 37836707 PMCID: PMC10574752 DOI: 10.3390/molecules28196863] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/21/2023] [Accepted: 09/23/2023] [Indexed: 10/15/2023] Open
Abstract
Phosphonates are compounds containing a direct carbon-phosphorus (C-P) bond, which is particularly resistant to chemical and enzymatic degradation. They are environmentally ubiquitous: some of them are produced by microorganisms and invertebrates, whereas others derive from anthropogenic activities. Because of their chemical stability and potential toxicity, man-made phosphonates pose pollution problems, and many studies have tried to identify biocompatible systems for their elimination. On the other hand, phosphonates are a resource for microorganisms living in environments where the availability of phosphate is limited; thus, bacteria in particular have evolved systems to uptake and catabolize phosphonates. Such systems can be either selective for a narrow subset of compounds or show a broader specificity. The role, distribution, and evolution of microbial genes and enzymes dedicated to phosphonate degradation, as well as their regulation, have been the subjects of substantial studies. At least three enzyme systems have been identified so far, schematically distinguished based on the mechanism by which the C-P bond is ultimately cleaved-i.e., through either a hydrolytic, radical, or oxidative reaction. This review summarizes our current understanding of the molecular systems and pathways that serve to catabolize phosphonates, as well as the regulatory mechanisms that govern their activity.
Collapse
Affiliation(s)
- Francesca Ruffolo
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, I-43124 Parma, Italy (E.Z.)
| | - Tamara Dinhof
- Institute of Organic Chemistry, Faculty of Chemistry, University of Vienna, A-1090 Vienna, Austria;
- Vienna Doctoral School in Chemistry (DoSChem), University of Vienna, A-1090 Vienna, Austria
| | - Leanne Murray
- School of Biological Sciences and Institute for Global Food Security, Queen’s University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, UK
| | - Erika Zangelmi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, I-43124 Parma, Italy (E.Z.)
| | - Jason P. Chin
- School of Biological Sciences and Institute for Global Food Security, Queen’s University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, UK
| | - Katharina Pallitsch
- Institute of Organic Chemistry, Faculty of Chemistry, University of Vienna, A-1090 Vienna, Austria;
| | - Alessio Peracchi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, I-43124 Parma, Italy (E.Z.)
| |
Collapse
|
10
|
Westermann LM, Lidbury ID, Li CY, Wang N, Murphy AR, Aguilo Ferretjans MDM, Quareshy M, Shanmugan M, Torcello-Requena A, Silvano E, Zhang YZ, Blindauer CA, Chen Y, Scanlan DJ. Bacterial catabolism of membrane phospholipids links marine biogeochemical cycles. SCIENCE ADVANCES 2023; 9:eadf5122. [PMID: 37126561 PMCID: PMC10132767 DOI: 10.1126/sciadv.adf5122] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 03/24/2023] [Indexed: 05/03/2023]
Abstract
In marine systems, the availability of inorganic phosphate can limit primary production leading to bacterial and phytoplankton utilization of the plethora of organic forms available. Among these are phospholipids that form the lipid bilayer of all cells as well as released extracellular vesicles. However, information on phospholipid degradation is almost nonexistent despite their relevance for biogeochemical cycling. Here, we identify complete catabolic pathways for the degradation of the common phospholipid headgroups phosphocholine (PC) and phosphorylethanolamine (PE) in marine bacteria. Using Phaeobacter sp. MED193 as a model, we provide genetic and biochemical evidence that extracellular hydrolysis of phospholipids liberates the nitrogen-containing substrates ethanolamine and choline. Transporters for ethanolamine (EtoX) and choline (BetT) are ubiquitous and highly expressed in the global ocean throughout the water column, highlighting the importance of phospholipid and especially PE catabolism in situ. Thus, catabolic activation of the ethanolamine and choline degradation pathways, subsequent to phospholipid metabolism, specifically links, and hence unites, the phosphorus, nitrogen, and carbon cycles.
Collapse
Affiliation(s)
- Linda M. Westermann
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
| | - Ian D. E. A. Lidbury
- Molecular Microbiology: Biochemistry to Disease, School of Biosciences, University of Sheffield, Sheffield, S10 2TN, UK
| | - Chun-Yang Li
- College of Marine Life Sciences and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China
| | - Ning Wang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| | - Andrew R. J. Murphy
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
| | | | - Mussa Quareshy
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
| | - Muralidharan Shanmugan
- Department of Chemistry and Photon Science Institute, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | | | - Eleonora Silvano
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
| | - Yu-Zhong Zhang
- College of Marine Life Sciences and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| | | | - Yin Chen
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
| | - David J. Scanlan
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
| |
Collapse
|
11
|
Biełło KA, Lucena C, López-Tenllado FJ, Hidalgo-Carrillo J, Rodríguez-Caballero G, Cabello P, Sáez LP, Luque-Almagro V, Roldán MD, Moreno-Vivián C, Olaya-Abril A. Holistic view of biological nitrogen fixation and phosphorus mobilization in Azotobacter chroococcum NCIMB 8003. Front Microbiol 2023; 14:1129721. [PMID: 36846808 PMCID: PMC9945222 DOI: 10.3389/fmicb.2023.1129721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 01/23/2023] [Indexed: 02/11/2023] Open
Abstract
Nitrogen (N) and phosphorus (P) deficiencies are two of the most agronomic problems that cause significant decrease in crop yield and quality. N and P chemical fertilizers are widely used in current agriculture, causing environmental problems and increasing production costs. Therefore, the development of alternative strategies to reduce the use of chemical fertilizers while maintaining N and P inputs are being investigated. Although dinitrogen is an abundant gas in the atmosphere, it requires biological nitrogen fixation (BNF) to be transformed into ammonium, a nitrogen source assimilable by living organisms. This process is bioenergetically expensive and, therefore, highly regulated. Factors like availability of other essential elements, as phosphorus, strongly influence BNF. However, the molecular mechanisms of these interactions are unclear. In this work, a physiological characterization of BNF and phosphorus mobilization (PM) from an insoluble form (Ca3(PO4)2) in Azotobacter chroococcum NCIMB 8003 was carried out. These processes were analyzed by quantitative proteomics in order to detect their molecular requirements and interactions. BNF led to a metabolic change beyond the proteins strictly necessary to carry out the process, including the metabolism related to other elements, like phosphorus. Also, changes in cell mobility, heme group synthesis and oxidative stress responses were observed. This study also revealed two phosphatases that seem to have the main role in PM, an exopolyphosphatase and a non-specific alkaline phosphatase PhoX. When both BNF and PM processes take place simultaneously, the synthesis of nitrogenous bases and L-methionine were also affected. Thus, although the interdependence is still unknown, possible biotechnological applications of these processes should take into account the indicated factors.
Collapse
Affiliation(s)
- Karolina A. Biełło
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, Campus de Rabanales, Universidad de Córdoba, Córdoba, Spain
| | - Carlos Lucena
- Departamento de Botánica, Ecología y Fisiología Vegetal, Edificio Celestino Mutis, Campus de Rabanales, Universidad de Córdoba, Córdoba, Spain
| | - Francisco J. López-Tenllado
- Departamento de Química Orgánica, Instituto Universitario de Investigación en Química Fina y Nanoquímica (IUNAN), Universidad de Córdoba, Córdoba, Spain
| | - Jesús Hidalgo-Carrillo
- Departamento de Química Orgánica, Instituto Universitario de Investigación en Química Fina y Nanoquímica (IUNAN), Universidad de Córdoba, Córdoba, Spain
| | - Gema Rodríguez-Caballero
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, Campus de Rabanales, Universidad de Córdoba, Córdoba, Spain
| | - Purificación Cabello
- Departamento de Botánica, Ecología y Fisiología Vegetal, Edificio Celestino Mutis, Campus de Rabanales, Universidad de Córdoba, Córdoba, Spain
| | - Lara P. Sáez
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, Campus de Rabanales, Universidad de Córdoba, Córdoba, Spain
| | - Víctor Luque-Almagro
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, Campus de Rabanales, Universidad de Córdoba, Córdoba, Spain
| | - María Dolores Roldán
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, Campus de Rabanales, Universidad de Córdoba, Córdoba, Spain
| | - Conrado Moreno-Vivián
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, Campus de Rabanales, Universidad de Córdoba, Córdoba, Spain
| | - Alfonso Olaya-Abril
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, Campus de Rabanales, Universidad de Córdoba, Córdoba, Spain,*Correspondence: Alfonso Olaya-Abril,
| |
Collapse
|
12
|
Genomic Analysis of Pseudomonas asiatica JP233: An Efficient Phosphate-Solubilizing Bacterium. Genes (Basel) 2022; 13:genes13122290. [PMID: 36553557 PMCID: PMC9777792 DOI: 10.3390/genes13122290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/02/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
The bacterium Pseudomonas sp. strain JP233 has been reported to efficiently solubilize sparingly soluble inorganic phosphate, promote plant growth and significantly reduce phosphorus (P) leaching loss from soil. The production of 2-keto gluconic acid (2KGA) by strain JP233 was identified as the main active metabolite responsible for phosphate solubilization. However, the genetic basis of phosphate solubilization and plant-growth promotion remained unclear. As a result, the genome of JP233 was sequenced and analyzed in this study. The JP233 genome consists of a circular chromosome with a size of 5,617,746 bp and a GC content of 62.86%. No plasmids were detected in the genome. There were 5097 protein-coding sequences (CDSs) predicted in the genome. Phylogenetic analyses based on genomes of related Pseudomonas spp. identified strain JP233 as Pseudomonas asiatica. Comparative pangenomic analysis among 9 P. asiatica strains identified 4080 core gene clusters and 111 singleton genes present only in JP233. Genes associated with 2KGA production detected in strain JP233, included those encoding glucose dehydrogenase, pyrroloquinoline quinone and gluoconate dehydrogenase. Genes associated with mechanisms of plant-growth promotion and nutrient acquisition detected in JP233 included those involved in IAA biosynthesis, ethylene catabolism and siderophore production. Numerous genes associated with other properties beneficial to plant growth were also detected in JP233, included those involved in production of acetoin, 2,3-butanediol, trehalose, and resistance to heavy metals. This study provides the genetic basis to elucidate the plant-growth promoting and bio-remediation properties of strain JP233 and its potential applications in agriculture and industry.
Collapse
|
13
|
Afridi MS, Javed MA, Ali S, De Medeiros FHV, Ali B, Salam A, Sumaira, Marc RA, Alkhalifah DHM, Selim S, Santoyo G. New opportunities in plant microbiome engineering for increasing agricultural sustainability under stressful conditions. FRONTIERS IN PLANT SCIENCE 2022; 13:899464. [PMID: 36186071 PMCID: PMC9524194 DOI: 10.3389/fpls.2022.899464] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 08/08/2022] [Indexed: 07/30/2023]
Abstract
Plant microbiome (or phytomicrobiome) engineering (PME) is an anticipated untapped alternative strategy that could be exploited for plant growth, health and productivity under different environmental conditions. It has been proven that the phytomicrobiome has crucial contributions to plant health, pathogen control and tolerance under drastic environmental (a)biotic constraints. Consistent with plant health and safety, in this article we address the fundamental role of plant microbiome and its insights in plant health and productivity. We also explore the potential of plant microbiome under environmental restrictions and the proposition of improving microbial functions that can be supportive for better plant growth and production. Understanding the crucial role of plant associated microbial communities, we propose how the associated microbial actions could be enhanced to improve plant growth-promoting mechanisms, with a particular emphasis on plant beneficial fungi. Additionally, we suggest the possible plant strategies to adapt to a harsh environment by manipulating plant microbiomes. However, our current understanding of the microbiome is still in its infancy, and the major perturbations, such as anthropocentric actions, are not fully understood. Therefore, this work highlights the importance of manipulating the beneficial plant microbiome to create more sustainable agriculture, particularly under different environmental stressors.
Collapse
Affiliation(s)
| | - Muhammad Ammar Javed
- Institute of Industrial Biotechnology, Government College University, Lahore, Pakistan
| | - Sher Ali
- Department of Food Engineering, Faculty of Animal Science and Food Engineering, University of São Paulo (USP), São Paulo, Brazil
| | | | - Baber Ali
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Abdul Salam
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Sumaira
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Romina Alina Marc
- Food Engineering Department, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania
| | - Dalal Hussien M. Alkhalifah
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Samy Selim
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia
| | - Gustavo Santoyo
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico
| |
Collapse
|
14
|
Timofeeva A, Galyamova M, Sedykh S. Prospects for Using Phosphate-Solubilizing Microorganisms as Natural Fertilizers in Agriculture. PLANTS 2022; 11:plants11162119. [PMID: 36015422 PMCID: PMC9414882 DOI: 10.3390/plants11162119] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 11/16/2022]
Abstract
Phosphates are known to be essential for plant growth and development, with phosphorus compounds being involved in various physiological and biochemical reactions. Phosphates are known as one of the most important factors limiting crop yields. The problem of phosphorus deficiency in the soil has traditionally been solved by applying phosphate fertilizers. However, chemical phosphate fertilizers are considered ineffective compared to the organic fertilizers manure and compost. Therefore, increasing the bioavailability of phosphates for plants is one of the primary goals of sustainable agriculture. Phosphate-solubilizing soil microorganisms can make soil-insoluble phosphate bioavailable for plants through solubilization and mineralization. These microorganisms are currently in the focus of interest due to their advantages, such as environmental friendliness, low cost, and high biological efficiency. In this regard, the solubilization of phosphates by soil microorganisms holds strong potential in research, and inoculation of soils or crops with phosphate-solubilizing bacteria is a promising strategy to improve plant phosphate uptake. In this review, we analyze all the species of phosphate-solubilizing bacteria described in the literature to date. We discuss key mechanisms of solubilization of mineral phosphates and mineralization of organic phosphate-containing compounds: organic acids secreted by bacteria for the mobilization of insoluble inorganic phosphates, and the enzymes hydrolyzing phosphorus-containing organic compounds. We demonstrate that phosphate-solubilizing microorganisms have enormous potency as biofertilizers since they increase phosphorus bioavailability for the plant, promote sustainable agriculture, improve soil fertility, and raise crop yields. The use of phosphate-solubilizing microbes is regarded as a new frontier in increasing plant productivity.
Collapse
Affiliation(s)
- Anna Timofeeva
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 630090 Novosibirsk, Russia
| | - Maria Galyamova
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Sergey Sedykh
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 630090 Novosibirsk, Russia
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
- Correspondence: ; Tel.: +7-91-3727-1000
| |
Collapse
|
15
|
Asin-Garcia E, Batianis C, Li Y, Fawcett JD, de Jong I, Dos Santos VAPM. Phosphite synthetic auxotrophy as an effective biocontainment strategy for the industrial chassis Pseudomonas putida. Microb Cell Fact 2022; 21:156. [PMID: 35934698 PMCID: PMC9358898 DOI: 10.1186/s12934-022-01883-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 07/26/2022] [Indexed: 11/12/2022] Open
Abstract
The inclusion of biosafety strategies into strain engineering pipelines is crucial for safe-by-design biobased processes. This in turn might enable a more rapid regulatory acceptance of bioengineered organisms in both industrial and environmental applications. For this reason, we equipped the industrially relevant microbial chassis Pseudomonas putida KT2440 with an effective biocontainment strategy based on a synthetic dependency on phosphite, which is generally not readily available in the environment. The produced PSAG-9 strain was first engineered to assimilate phosphite through the genome-integration of a phosphite dehydrogenase and a phosphite-specific transport complex. Subsequently, to deter the strain from growing on naturally assimilated phosphate, all native genes related to its transport were identified and deleted generating a strain unable to grow on media containing any phosphorous source other than phosphite. PSAG-9 exhibited fitness levels with phosphite similar to those of the wild type with phosphate, and low levels of escape frequency. Beyond biosafety, this strategy endowed P. putida with the capacity to be cultured under non-sterile conditions using phosphite as the sole phosphorous source with a reduced risk of contamination by other microbes, while displaying enhanced NADH regenerative capacity. These industrially beneficial features complement the metabolic advantages for which this species is known for, thereby strengthening it as a synthetic biology chassis with potential uses in industry, with suitability towards environmental release.
Collapse
Affiliation(s)
- Enrique Asin-Garcia
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, 6708 WE, The Netherlands
| | - Christos Batianis
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, 6708 WE, The Netherlands
| | - Yunsong Li
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, 6708 WE, The Netherlands
| | - James D Fawcett
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, 6708 WE, The Netherlands
- Department of Life Sciences, Imperial College London, Exhibition Road, South Kensington, London, SW72BX, UK
| | - Ivar de Jong
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, 6708 WE, The Netherlands
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
| | - Vitor A P Martins Dos Santos
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, 6708 WE, The Netherlands.
- LifeGlimmer GmbH, 12163, Berlin, Germany.
- Bioprocess Engineering Group, Wageningen University & Research, Wageningen, 6700 AA, The Netherlands.
| |
Collapse
|
16
|
Stimulation of Distinct Rhizosphere Bacteria Drives Phosphorus and Nitrogen Mineralization in Oilseed Rape under Field Conditions. mSystems 2022; 7:e0002522. [PMID: 35862821 PMCID: PMC9426549 DOI: 10.1128/msystems.00025-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Advances in DNA sequencing technologies have drastically changed our perception of the structure and complexity of the plant microbiome. By comparison, our ability to accurately identify the metabolically active fraction of soil microbiota and its specific functional role in augmenting plant health is relatively limited. Important ecological interactions being performed by microbes can be investigated by analyzing the extracellular protein fraction. Here, we combined a unique protein extraction method and an iterative bioinformatics pipeline to capture and identify extracellular proteins (metaexoproteomics) synthesized in the rhizosphere of Brassica spp. We first validated our method in the laboratory by successfully identifying proteins related to a host plant (Brassica rapa) and its bacterial inoculant, Pseudomonas putida BIRD-1. This identified numerous rhizosphere specific proteins linked to the acquisition of plant-derived nutrients in P. putida. Next, we analyzed natural field-soil microbial communities associated with Brassica napus L. (oilseed rape). By combining metagenomics with metaexoproteomics, 1,885 plant, insect, and microbial proteins were identified across bulk and rhizosphere samples. Metaexoproteomics identified a significant shift in the metabolically active fraction of the soil microbiota responding to the presence of B. napus roots that was not apparent in the composition of the total microbial community (metagenome). This included stimulation of rhizosphere-specialized bacteria, such as Gammaproteobacteria, Betaproteobacteria, and Flavobacteriia, and the upregulation of plant beneficial functions related to phosphorus and nitrogen mineralization. Our metaproteomic assessment of the “active” plant microbiome at the field-scale demonstrates the importance of moving beyond metagenomics to determine ecologically important plant-microbe interactions underpinning plant health. IMPORTANCE Plant-microbe interactions are critical to ecosystem function and crop production. While significant advances have been made toward understanding the structure of the plant microbiome, learning about its full functional role is still in its infancy. This is primarily due to an incomplete ability to determine in situ plant-microbe interactions actively operating under field conditions. Proteins are the functional entities of the cell. Therefore, their identification and relative quantification within a microbial community provide the best proxy for which microbes are the most metabolically active and which are driving important plant-microbe interactions. Here, we provide the first metaexoproteomics assessment of the plant microbiome using field-grown oilseed rape as the model crop species, identifying key taxa responsible for specific ecological interactions. Gaining a mechanistic understanding of the plant microbiome is central to developing engineered plant microbiomes to improve sustainable agricultural approaches and reduce our reliance on nonrenewable resources.
Collapse
|
17
|
Abstract
Nematode predation plays an essential role in determining changes in the rhizosphere microbiome. These changes affect the local nutrient balance and cycling of essential nutrients by selectively structuring interactions across functional taxa in the system. Currently, it is largely unknown to what extent nematode predation induces shifts in the microbiome associated with different rates of soil phosphorous (P) mineralization. Here, we performed an 7-year field experiment to investigate the importance of nematode predation influencing P availability and cycling. These were tracked via the changes in the alkaline phosphomonoesterase (ALP)-producing bacterial community and ALP activity in the rhizosphere of rapeseed. Here, we found that the nematode addition led to high predation pressure and thereby caused shifts in the abundance and composition of the ALP-producing bacterial community. Further analyses based on cooccurrence networks and metabolomics consistently showed that nematode addition induced competitive interactions between potentially keystone ALP-producing bacteria and other members within the community. Structural equation modeling revealed that the outcome of this competition induced by stronger predation pressure of nematodes was significantly associated with higher diversity of ALP-producing bacteria, thereby enhancing ALP activity and P availability. Taken together, our results provide evidence for the importance of predator-prey and competitive interactions in soil biology and their direct influences on nutrient cycling dynamics.
Collapse
|
18
|
Shi W, Xing Y, Zhu Y, Gao N, Ying Y. Diverse responses of pqqC- and phoD-harbouring bacterial communities to variation in soil properties of Moso bamboo forests. Microb Biotechnol 2022; 15:2097-2111. [PMID: 35298867 PMCID: PMC9249317 DOI: 10.1111/1751-7915.14029] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 11/30/2022] Open
Abstract
Phosphate‐mobilizing bacteria (PMB) play a critical role in the regulation of phosphorus availability in the soil. The microbial genes pqqC and phoD encode pyrroloquinoline quinone synthase and bacterial alkaline phosphatase, respectively, which regulate inorganic and organic phosphorus mobilization, and are therefore used as PMB markers. We examined the effects of soil properties in three Moso bamboo forest sites on the PMB communities that were profiled using high‐throughput sequencing. We observed differentiated responses of pqqC‐ and phoD‐harbouring PMB communities to various soil conditions. There was significant variation among the sites in the diversity and structure of the phoD‐harbouring community, which correlated with variation in phosphorus levels and non‐capillary porosity; soil organic carbon and soil water content also affected the structure of the phoD‐harbouring community. However, no significant difference in the diversity of pqqC‐harbouring community was observed among different sites, while the structure of the pqqC‐harbouring bacteria community was affected by soil organic carbon and soil total nitrogen, but not soil phosphorus levels. Overall, changes in soil conditions affected the phoD‐harbouring community more than the pqqC‐harbouring community. These findings provide a new insight to explore the effects of soil conditions on microbial communities that solubilize inorganic phosphate and mineralize organic phosphate.
Collapse
Affiliation(s)
- Wenhui Shi
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China
| | - Yijing Xing
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China
| | - Ying Zhu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China
| | - Ning Gao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China
| | - Yeqing Ying
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China
| |
Collapse
|
19
|
Murphy ARJ, Scanlan DJ, Chen Y, Bending GD, Hammond JP, Wellington EMH, Lidbury IDEA. 2-aminoethylphosphonate utilisation in Pseudomonas putida BIRD-1 is controlled by multiple master regulators. Environ Microbiol 2022; 24:1902-1917. [PMID: 35229442 PMCID: PMC9311074 DOI: 10.1111/1462-2920.15959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 02/24/2022] [Indexed: 11/30/2022]
Abstract
Bacteria possess various regulatory mechanisms to detect and coordinate a response to elemental nutrient limitation. In pseudomonads, the two‐component system regulators CbrAB, NtrBC and PhoBR, are responsible for regulating cellular response to carbon (C), nitrogen (N) and phosphorus (P) respectively. Phosphonates are reduced organophosphorus compounds produced by a broad range of biota and typified by a direct C‐P bond. Numerous pseudomonads can use the environmentally abundant phosphonate species 2‐aminoethylphosphonate (2AEP) as a source of C, N, or P, but only PhoBR has been shown to play a role in 2AEP utilization. On the other hand, utilization of 2AEP as a C and N source is considered substrate inducible. Here, using the plant‐growth‐promoting rhizobacterium Pseudomonas putida BIRD‐1 we present evidence that 2AEP utilization is under dual regulation and only occurs upon depletion of C, N, or P, controlled by CbrAB, NtrBC, or PhoBR respectively. However, the presence of 2AEP was necessary for full gene expression, i.e. expression was substrate inducible. Mutation of a LysR‐type regulator, termed AepR, upstream of the 2AEP transaminase‐phosphonatase system (PhnWX), confirmed this dual regulatory mechanism. To our knowledge, this is the first study identifying coordination between global stress response and substrate‐specific regulators in phosphonate metabolism.
Collapse
Affiliation(s)
- Andrew R J Murphy
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry, UK
| | - David J Scanlan
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry, UK
| | - Yin Chen
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry, UK
| | - Gary D Bending
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry, UK
| | - John P Hammond
- School of Agriculture, Policy, and Development, University of Reading, Earley Gate, Whiteknights, Reading, UK
| | | | - Ian D E A Lidbury
- Plants, Photosynthesis and Soil Research Cluster, School of Biosciences, University of Sheffield, Sheffield, UK
| |
Collapse
|
20
|
A widely distributed phosphate-insensitive phosphatase presents a route for rapid organophosphorus remineralization in the biosphere. Proc Natl Acad Sci U S A 2022; 119:2118122119. [PMID: 35082153 PMCID: PMC8812569 DOI: 10.1073/pnas.2118122119] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/11/2021] [Indexed: 11/24/2022] Open
Abstract
At several locations across the globe, terrestrial and marine primary production, which underpin global food security, biodiversity, and climate regulation, are limited by inorganic phosphate availability. A major fraction of the total phosphorus pool exists in organic form, requiring mineralization to phosphate by enzymes known as phosphatases prior to incorporation into cellular biomolecules. Phosphatases are typically synthesized in response to phosphate depletion, assisting with phosphorus acquisition. Here, we reveal that a unique bacterial phosphatase, PafA, is widely distributed in the biosphere and has a distinct functional role in carbon acquisition, releasing phosphate as a by-product. PafA, therefore, represents an overlooked mechanism in the global phosphorus cycle and a hitherto cryptic route for the regeneration of bioavailable phosphorus in nature. The regeneration of bioavailable phosphate from immobilized organophosphorus represents a key process in the global phosphorus cycle and is facilitated by enzymes known as phosphatases. Most bacteria possess at least one of three phosphatases with broad substrate specificity, known as PhoA, PhoX, and PhoD, whose activity is optimal under alkaline conditions. The production and activity of these phosphatases is repressed by phosphate availability. Therefore, they are only fully functional when bacteria experience phosphorus-limiting growth conditions. Here, we reveal a previously overlooked phosphate-insensitive phosphatase, PafA, prevalent in Bacteroidetes, which is highly abundant in nature and represents a major route for the regeneration of environmental phosphate. Using the enzyme from Flavobacterium johnsoniae, we show that PafA is highly active toward phosphomonoesters, is fully functional in the presence of excess phosphate, and is essential for growth on phosphorylated carbohydrates as a sole carbon source. These distinct properties of PafA may expand the metabolic niche of Bacteroidetes by enabling the utilization of abundant organophosphorus substrates as C and P sources, providing a competitive advantage when inhabiting zones of high microbial activity and nutrient demand. PafA, which is constitutively synthesized by soil and marine flavobacteria, rapidly remineralizes phosphomonoesters releasing bioavailable phosphate that can be acquired by neighboring cells. The pafA gene is highly diverse in plant rhizospheres and is abundant in the global ocean, where it is expressed independently of phosphate availability. PafA therefore represents an important enzyme in the context of global biogeochemical cycling and has potential applications in sustainable agriculture.
Collapse
|
21
|
Park Y, Solhtalab M, Thongsomboon W, Aristilde L. Strategies of organic phosphorus recycling by soil bacteria: acquisition, metabolism, and regulation. ENVIRONMENTAL MICROBIOLOGY REPORTS 2022; 14:3-24. [PMID: 35001516 PMCID: PMC9306846 DOI: 10.1111/1758-2229.13040] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 12/07/2021] [Accepted: 12/14/2021] [Indexed: 05/12/2023]
Abstract
Critical to meeting cellular phosphorus (P) demand, soil bacteria deploy a number of strategies to overcome limitation in inorganic P (Pi ) in soils. As a significant contributor to P recycling, soil bacteria secrete extracellular enzymes to degrade organic P (Po ) in soils into the readily bioavailable Pi . In addition, several Po compounds can be transported directly via specific transporters and subsequently enter intracellular metabolic pathways. In this review, we highlight the strategies that soil bacteria employ to recycle Po from the soil environment. We discuss the diversity of extracellular phosphatases in soils, the selectivity of these enzymes towards various Po biomolecules and the influence of the soil environmental conditions on the enzyme's activities. Moreover, we outline the intracellular metabolic pathways for Po biosynthesis and transporter-assisted Po and Pi uptake at different Pi availabilities. We further highlight the regulatory mechanisms that govern the production of phosphatases, the expression of Po transporters and the key metabolic changes in P metabolism in response to environmental Pi availability. Due to the depletion of natural resources for Pi , we propose future studies needed to leverage bacteria-mediated P recycling from the large pools of Po in soils or organic wastes to benefit agricultural productivity.
Collapse
Affiliation(s)
- Yeonsoo Park
- Department of Civil and Environmental Engineering, McCormick School of Engineering and Applied ScienceNorthwestern UniversityEvanstonIL60208USA
- Department of Biological and Environmental EngineeringCornell University, Riley‐Robb HallIthacaNY14853USA
| | - Mina Solhtalab
- Department of Civil and Environmental Engineering, McCormick School of Engineering and Applied ScienceNorthwestern UniversityEvanstonIL60208USA
- Department of Biological and Environmental EngineeringCornell University, Riley‐Robb HallIthacaNY14853USA
| | - Wiriya Thongsomboon
- Department of Civil and Environmental Engineering, McCormick School of Engineering and Applied ScienceNorthwestern UniversityEvanstonIL60208USA
- Department of Chemistry, Faculty of ScienceMahasarakham UniversityMahasarakham44150Thailand
| | - Ludmilla Aristilde
- Department of Civil and Environmental Engineering, McCormick School of Engineering and Applied ScienceNorthwestern UniversityEvanstonIL60208USA
- Department of Biological and Environmental EngineeringCornell University, Riley‐Robb HallIthacaNY14853USA
| |
Collapse
|
22
|
Jones RA, Shropshire H, Zhao C, Murphy A, Lidbury I, Wei T, Scanlan DJ, Chen Y. Phosphorus stress induces the synthesis of novel glycolipids in Pseudomonas aeruginosa that confer protection against a last-resort antibiotic. THE ISME JOURNAL 2021; 15:3303-3314. [PMID: 34031546 PMCID: PMC8528852 DOI: 10.1038/s41396-021-01008-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/20/2021] [Accepted: 05/06/2021] [Indexed: 11/09/2022]
Abstract
Pseudomonas aeruginosa is a nosocomial pathogen with a prevalence in immunocompromised individuals and is particularly abundant in the lung microbiome of cystic fibrosis patients. A clinically important adaptation for bacterial pathogens during infection is their ability to survive and proliferate under phosphorus-limited growth conditions. Here, we demonstrate that P. aeruginosa adapts to P-limitation by substituting membrane glycerophospholipids with sugar-containing glycolipids through a lipid renovation pathway involving a phospholipase and two glycosyltransferases. Combining bacterial genetics and multi-omics (proteomics, lipidomics and metatranscriptomic analyses), we show that the surrogate glycolipids monoglucosyldiacylglycerol and glucuronic acid-diacylglycerol are synthesised through the action of a new phospholipase (PA3219) and two glycosyltransferases (PA3218 and PA0842). Comparative genomic analyses revealed that this pathway is strictly conserved in all P. aeruginosa strains isolated from a range of clinical and environmental settings and actively expressed in the metatranscriptome of cystic fibrosis patients. Importantly, this phospholipid-to-glycolipid transition comes with significant ecophysiological consequence in terms of antibiotic sensitivity. Mutants defective in glycolipid synthesis survive poorly when challenged with polymyxin B, a last-resort antibiotic for treating multi-drug resistant P. aeruginosa. Thus, we demonstrate an intriguing link between adaptation to environmental stress (nutrient availability) and antibiotic resistance, mediated through membrane lipid renovation that is an important new facet in our understanding of the ecophysiology of this bacterium in the lung microbiome of cystic fibrosis patients.
Collapse
Affiliation(s)
- Rebekah A Jones
- MRC Doctoral Training Partnership, University of Warwick, CV4 7AL, Coventry, UK
- School of Life Sciences, University of Warwick, CV4 7AL, Coventry, UK
| | - Holly Shropshire
- School of Life Sciences, University of Warwick, CV4 7AL, Coventry, UK
| | - Caimeng Zhao
- School of Food and Biological Engineering, Zhengzhou University of Light Industry, 450000, Zhengzhou, China
| | - Andrew Murphy
- School of Life Sciences, University of Warwick, CV4 7AL, Coventry, UK
| | - Ian Lidbury
- School of Life Sciences, University of Warwick, CV4 7AL, Coventry, UK
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, UK
| | - Tao Wei
- School of Food and Biological Engineering, Zhengzhou University of Light Industry, 450000, Zhengzhou, China
| | - David J Scanlan
- School of Life Sciences, University of Warwick, CV4 7AL, Coventry, UK
| | - Yin Chen
- School of Life Sciences, University of Warwick, CV4 7AL, Coventry, UK.
| |
Collapse
|
23
|
Rhizospheric microbiome: Bio-based emerging strategies for sustainable agriculture development and future perspectives. Microbiol Res 2021; 254:126901. [PMID: 34700186 DOI: 10.1016/j.micres.2021.126901] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 10/16/2021] [Accepted: 10/21/2021] [Indexed: 12/12/2022]
Abstract
In the light of intensification of cropping practices and changing climatic conditions, nourishing a growing global population requires optimizing environmental sustainability and reducing ecosystem impacts of food production. The use of microbiological systems to ameliorate the agricultural production in a sustainable and eco-friendly way is widespread accepted as a future key-technology. However, the multitude of interaction possibilities between the numerous beneficial microbes and plants in their habitat calls for systematic analysis and management of the rhizospheric microbiome. This review exploits present and future strategies for rhizospheric microbiome management with the aim to generate a comprehensive understanding of the known tools and techniques. Significant information on the structure and dynamics of rhizospheric microbiota of isolated microbial communities is now available. These microbial communities have beneficial effects including increased plant growth, essential nutrient acquisition, pathogens tolerance, and increased abiotic as well as biotic stress tolerance such as drought, temperature, salinity and antagonistic activities against the phyto-pathogens. A better and comprehensive understanding of the various effects and microbial interactions can be gained by application of molecular approaches as extraction of DNA/RNA and other biochemical markers to analyze microbial soil diversity. Novel techniques like interactome network analysis and split-ubiquitin system framework will enable to gain more insight into communication and interactions between the proteins from microbes and plants. The aim of the analysis tasks leads to the novel approach of Rhizosphere microbiome engineering. The capability of forming the rhizospheric microbiome in a defined way will allow combining several microbes (e.g. bacteria and fungi) for a given environment (soil type and climatic zone) in order to exert beneficial influences on specific plants. This integration will require a large-scale effort among academic researchers, industry researchers and farmers to understand and manage interactions of plant-microbiomes within modern farming systems, and is clearly a multi-domain approach and can be mastered only jointly by microbiology, mathematics and information technology. These innovations will open up a new avenue for designing and implementing intensive farming microbiome management approaches to maximize resource productivity and stress tolerance of agro-ecosystems, which in return will create value to the increasing worldwide population, for both food production and consumption.
Collapse
|
24
|
Li Y, He Y, Wang W, Li X, Xu X, Liu X, Li C, Wu Z. Plant-beneficial functions and interactions of Bacillus subtilis SL-44 and Enterobacter cloacae Rs-2 in co-culture by transcriptomics analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:56333-56344. [PMID: 34053038 DOI: 10.1007/s11356-021-14578-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 05/21/2021] [Indexed: 06/12/2023]
Abstract
The development of mixed microbial agents can reduce the use of pesticides and fertilizers in agriculture. However, most previous studies focused only on the overall effects of mixed microbial agents and ignored the interactions between bacteria in mixed systems. In this study, Bacillus subtilis SL-44 and Enterobacter cloacae Rs-2 were used to explore the interactions between two different functional plant growth-promoting rhizobacteria (PGPR). The plant growth-promotion properties and inhibition rate of Rhizoctonia solani were determined, and the mechanism of the interactions under single and co-culture conditions was elucidated via transcriptomics analysis under single and co-culture conditions. Results showed that the co-culture was not conducive to B. subtilis SL-44 growth. Furthermore, the differentially expressed genes related to B. subtilis SL-44 developmental process and cell differentiation were downregulated by 82.7% and 84.8% respectively. Moreover, among the properties, only siderophore production by the mixed culture was higher than that of single cultures because of the upregulation of the siderophore-related genes of B. subtilis SL-44. In addition, results revealed the altruistic relationship between the two strains, and the chemical and non-chemical signals of their interaction. This study provides unique insights into PGPR interactions and offers guidance for the development and application of mixed microbial agents.
Collapse
Affiliation(s)
- Yan Li
- School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, 832003, People's Republic of China
| | - Yanhui He
- School of Environmental and Chemical Engineering, Xi'an Polytechnic University, Xi'an, 710048, People's Republic of China
| | - Wenfei Wang
- School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, 832003, People's Republic of China
| | - Xueping Li
- School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, 832003, People's Republic of China
| | - Xiaolin Xu
- School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, 832003, People's Republic of China
| | - Xiaochen Liu
- School of Environmental and Chemical Engineering, Xi'an Polytechnic University, Xi'an, 710048, People's Republic of China
| | - Chun Li
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Zhansheng Wu
- School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, 832003, People's Republic of China.
- School of Environmental and Chemical Engineering, Xi'an Polytechnic University, Xi'an, 710048, People's Republic of China.
| |
Collapse
|
25
|
Murphy ARJ, Scanlan DJ, Chen Y, Adams NBP, Cadman WA, Bottrill A, Bending G, Hammond JP, Hitchcock A, Wellington EMH, Lidbury IDEA. Transporter characterisation reveals aminoethylphosphonate mineralisation as a key step in the marine phosphorus redox cycle. Nat Commun 2021; 12:4554. [PMID: 34315891 PMCID: PMC8316502 DOI: 10.1038/s41467-021-24646-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 06/29/2021] [Indexed: 11/13/2022] Open
Abstract
The planktonic synthesis of reduced organophosphorus molecules, such as alkylphosphonates and aminophosphonates, represents one half of a vast global oceanic phosphorus redox cycle. Whilst alkylphosphonates tend to accumulate in recalcitrant dissolved organic matter, aminophosphonates do not. Here, we identify three bacterial 2-aminoethylphosphonate (2AEP) transporters, named AepXVW, AepP and AepSTU, whose synthesis is independent of phosphate concentrations (phosphate-insensitive). AepXVW is found in diverse marine heterotrophs and is ubiquitously distributed in mesopelagic and epipelagic waters. Unlike the archetypal phosphonate binding protein, PhnD, AepX has high affinity and high specificity for 2AEP (Stappia stellulata AepX Kd 23 ± 4 nM; methylphosphonate Kd 3.4 ± 0.3 mM). In the global ocean, aepX is heavily transcribed (~100-fold>phnD) independently of phosphate and nitrogen concentrations. Collectively, our data identifies a mechanism responsible for a major oxidation process in the marine phosphorus redox cycle and suggests 2AEP may be an important source of regenerated phosphate and ammonium, which are required for oceanic primary production.
Collapse
Affiliation(s)
- Andrew R J Murphy
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry, UK
| | - David J Scanlan
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry, UK
| | - Yin Chen
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry, UK
| | - Nathan B P Adams
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, UK
- Nanotemper Technologies GmbH, Flößergasse 4, Munich, Germany
| | - William A Cadman
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, UK
| | - Andrew Bottrill
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry, UK
| | - Gary Bending
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry, UK
| | - John P Hammond
- School of Agriculture, Policy, and Development, University of Reading, Earley Gate, Whiteknights, Reading, UK
| | - Andrew Hitchcock
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, UK
| | | | - Ian D E A Lidbury
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK.
| |
Collapse
|
26
|
Niche-adaptation in plant-associated Bacteroidetes favours specialisation in organic phosphorus mineralisation. THE ISME JOURNAL 2021; 15:1040-1055. [PMID: 33257812 PMCID: PMC8115612 DOI: 10.1038/s41396-020-00829-2] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 10/30/2020] [Indexed: 02/07/2023]
Abstract
Bacteroidetes are abundant pathogen-suppressing members of the plant microbiome that contribute prominently to rhizosphere phosphorus mobilisation, a frequent growth-limiting nutrient in this niche. However, the genetic traits underpinning their success in this niche remain largely unknown, particularly regarding their phosphorus acquisition strategies. By combining cultivation, multi-layered omics and biochemical analyses we first discovered that all plant-associated Bacteroidetes express constitutive phosphatase activity, linked to the ubiquitous possession of a unique phosphatase, PafA. For the first time, we also reveal a subset of Bacteroidetes outer membrane SusCD-like complexes, typically associated with carbon acquisition, and several TonB-dependent transporters, are induced during Pi-depletion. Furthermore, in response to phosphate depletion, the plant-associated Flavobacterium used in this study expressed many previously characterised and novel proteins targeting organic phosphorus. Collectively, these enzymes exhibited superior phosphatase activity compared to plant-associated Pseudomonas spp. Importantly, several of the novel low-Pi-inducible phosphatases and transporters, belong to the Bacteroidetes auxiliary genome and are an adaptive genomic signature of plant-associated strains. In conclusion, niche adaptation to the plant microbiome thus appears to have resulted in the acquisition of unique phosphorus scavenging loci in Bacteroidetes, enhancing their phosphorus acquisition capabilities. These traits may enable their success in the rhizosphere and also present exciting avenues to develop sustainable agriculture.
Collapse
|
27
|
Shropshire H, Jones RA, Aguilo-Ferretjans MM, Scanlan DJ, Chen Y. Proteomics insights into the Burkholderia cenocepacia phosphorus stress response. Environ Microbiol 2021; 23:5069-5086. [PMID: 33684254 DOI: 10.1111/1462-2920.15451] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 03/02/2021] [Indexed: 11/26/2022]
Abstract
The Burkholderia cepacia complex is a group of Burkholderia species that are opportunistic pathogens causing high mortality rates in patients with cystic fibrosis. An environmental stress often encountered by these soil-dwelling and pathogenic bacteria is phosphorus limitation, an essential element for cellular processes. Here, we describe cellular and extracellular proteins differentially regulated between phosphate-deplete (0 mM, no added phosphate) and phosphate-replete (1 mM) growth conditions using a comparative proteomics (LC-MS/MS) approach. We observed a total of 128 and 65 unique proteins were downregulated and upregulated respectively, in the B. cenocepacia proteome. Of those downregulated proteins, many have functions in amino acid transport/metabolism. We have identified 24 upregulated proteins that are directly/indirectly involved in inorganic phosphate or organic phosphorus acquisition. Also, proteins involved in virulence and antimicrobial resistance were differentially regulated, suggesting B. cenocepacia experiences a dramatic shift in metabolism under these stress conditions. Overall, this study provides a baseline for further research into the biology of Burkholderia in response to phosphorus stress.
Collapse
Affiliation(s)
- Holly Shropshire
- BBSRC Midlands Integrative Biosciences Training Partnership, University of Warwick, Coventry, CV4 7AL, UK.,School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Rebekah A Jones
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | | | - David J Scanlan
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Yin Chen
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| |
Collapse
|
28
|
Han Y, Liu S, Chen F, Deng X, Miao Z, Wu Z, Ye BC. Characteristics of plant growth-promoting rhizobacteria SCPG-7 and its effect on the growth of Capsicum annuum L. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:11323-11332. [PMID: 33118066 DOI: 10.1007/s11356-020-11388-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 10/22/2020] [Indexed: 06/11/2023]
Abstract
The strain SCPG-7 was isolated from saline soil in a cotton field. It is confirmed that the strain SCPG-7 is Pseudomonas sp. by means of the analysis of its phenotypic features and 16S rRNA sequence. SCPG-7 was capable of dissolving mineral tri-calcium phosphate (Ca3(PO4)2) and tri-magnesium phosphate (Mg3(PO4)2). In contrast, no showing iron phosphate (FePO4) or aluminum phosphate (AlPO4) solubilizing activities were detected by this experimental approach. The ratio of the dissolved P diameter to the colony diameter was 1.86. To study the phosphate dissolving mechanisms of the strain, we analyzed the changes of the pH value, the soluble phosphate content, the concentration of alkaline phosphatase, and the production of organic acid in the insoluble phosphate liquid medium. 2-keto-D-gluconicacid, α-ketoglutaric acid, succinic acid, etc. were characterized by LC-MS/MS in NBRIP medium. The concentration of 2-keto-D-gluconicacid increased to 88.6 mg/L after being cultured for 216 h. The strain decreased the pH value of the medium from 7.4 to 4.7 and the released soluble phosphate up to 516 mg/L, which proved the production of organic acids and alkaline phosphatase to be mechanism for solubilizing P. Under low phosphorus stress, Pseudomonas global regulatory protein PhoB regulates the transcription of the alkaline phosphatase gene. IAA and siderophore were secreted by SCPG-7. After treatment with SCPG-7, the individual plant height and dry weight of pepper increased by 23.3 and 31.2%, respectively, compared to the control group. The results show that the strain SCPG-7 has the potential to convert insoluble inorganic phosphorus to plant-available phosphorus. It can enhance soil phosphorus release through biological pathways, thereby increasing crop yield, and providing germplasm resources for the development of biological fertilizers.
Collapse
Affiliation(s)
- Yajie Han
- School of Chemistry and Chemical Engineering/The Key Lab. for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi, 832003, People's Republic of China
- College of Life Science, Shihezi University, Shihezi, 832003, People's Republic of China
| | - Shengxue Liu
- Analysis and Testing Center, Shihezi University, Shihezi, 832003, China
| | - Fulong Chen
- College of Life Science, Shihezi University, Shihezi, 832003, People's Republic of China
| | - Xiaolin Deng
- Teachers College, Shihezi University, Shihezi, 832003, People's Republic of China
| | - Zhuang Miao
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing, 211800, China
| | - Zhansheng Wu
- School of Environmental and Chemical Engineering, Xi'an Polytechnic University, Xi'an, 710048, China.
| | - Bang-Ce Ye
- School of Chemistry and Chemical Engineering/The Key Lab. for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi, 832003, People's Republic of China.
| |
Collapse
|
29
|
Piselli C, Benz R. Fosmidomycin transport through the phosphate-specific porins OprO and OprP of Pseudomonas aeruginosa. Mol Microbiol 2021; 116:97-108. [PMID: 33561903 DOI: 10.1111/mmi.14693] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 01/29/2021] [Accepted: 02/03/2021] [Indexed: 01/08/2023]
Abstract
The Gram-negative bacterium Pseudomonas aeruginosa is an opportunistic pathogen, responsible for many hospital-acquired infections. The bacterium is quite resistant toward many antibiotics, in particular because of the fine-tuned permeability of its outer membrane (OM). General diffusion outer membrane pores are quite rare in this organism. Instead, its OM contains many substrate-specific porins. Their expression is varying according to growth conditions and virulence. Phosphate limitations, as well as pathogenicity factors, result in the induction of the two mono- and polyphosphate-specific porins, OprP and OprO, respectively, together with an inner membrane uptake mechanism and a periplasmic binding protein. These outer membrane channels could serve as outer membrane pathways for the uptake of phosphonates. Among them are not only herbicides, but also potent antibiotics, such as fosfomycin and fosmidomycin. In this study, we investigated the interaction between OprP and OprO and fosmidomycin in detail. We could demonstrate that fosmidomycin is able to bind to the phosphate-specific binding site inside the two porins. The inhibition of chloride conductance of OprP and OprO by fosmidomycin is considerably less than that of phosphate or diphosphate, but it can be measured in titration experiments of chloride conductance and also in single-channel experiments. The results suggest that fosmidomycin transport across the OM of P. aeruginosa occurs through OprP and OprO. Our data with the ones already known in the literature show that phosphonic acid-containing antibiotics are in general good candidates to treat the infections of P. aeruginosa at the very beginning through a favorable OM transport system.
Collapse
Affiliation(s)
- Claudio Piselli
- Department of Life Sciences and Chemistry, Focus Health, Jacobs University Bremen, Bremen, Germany
| | - Roland Benz
- Rudolf-Virchow-Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany
| |
Collapse
|
30
|
Domestication affects the composition, diversity, and co-occurrence of the cereal seed microbiota. J Adv Res 2020; 31:75-86. [PMID: 34194833 PMCID: PMC8240117 DOI: 10.1016/j.jare.2020.12.008] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 12/14/2020] [Indexed: 12/15/2022] Open
Abstract
Introduction The seed-associated microbiome has a strong influence on plant ecology, fitness, and productivity. Plant microbiota could be exploited for a more responsible crop management in sustainable agriculture. However, the relationships between seed microbiota and hosts related to the changes from ancestor species to breeded crops still remain poor understood. Objectives Our aims were i) to understand the effect of cereal domestication on seed endophytes in terms of diversity, structure and co-occurrence, by comparing four cereal crops and the respective ancestor species; ii) to test the phylogenetic coherence between cereals and their seed microbiota (clue of co-evolution). Methods We investigated the seed microbiota of four cereal crops (Triticum aestivum, Triticum monococcum, Triticum durum, and Hordeum vulgare), along with their respective ancestors (Aegilops tauschii, Triticum baeoticum, Triticum dicoccoides, and Hordeum spontaneum, respectively) using 16S rRNA gene metabarcoding, Randomly Amplified Polymorphic DNA (RAPD) profiling of host plants and co-evolution analysis. Results The diversity of seed microbiota was generally higher in cultivated cereals than in wild ancestors, suggesting that domestication lead to a bacterial diversification. On the other hand, more microbe-microbe interactions were detected in wild species, indicating a better-structured, mature community. Typical human-associated taxa, such as Cutibacterium, dominated in cultivated cereals, suggesting an interkingdom transfers of microbes from human to plants during domestication. Co-evolution analysis revealed a significant phylogenetic congruence between seed endophytes and host plants, indicating clues of co-evolution between hosts and seed-associated microbes during domestication. Conclusion This study demonstrates a diversification of the seed microbiome as a consequence of domestication, and provides clues of co-evolution between cereals and their seed microbiota. This knowledge is useful to develop effective strategies of microbiome exploitation for sustainable agriculture.
Collapse
|
31
|
Brito LF, López MG, Straube L, Passaglia LMP, Wendisch VF. Inorganic Phosphate Solubilization by Rhizosphere Bacterium Paenibacillus sonchi: Gene Expression and Physiological Functions. Front Microbiol 2020; 11:588605. [PMID: 33424789 PMCID: PMC7793946 DOI: 10.3389/fmicb.2020.588605] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 11/16/2020] [Indexed: 12/13/2022] Open
Abstract
Due to the importance of phosphorus (P) in agriculture, crop inoculation with phosphate-solubilizing bacteria is a relevant subject of study. Paenibacillus sonchi genomovar Riograndensis SBR5 is a promising candidate for crop inoculation, as it can fix nitrogen and excrete ammonium at a remarkably high rate. However, its trait of phosphate solubilization (PS) has not yet been studied in detail. Here, differential gene expression and functional analyses were performed to characterize PS in this bacterium. SBR5 was cultivated with two distinct P sources: NaH2PO4 as soluble phosphate source (SPi) and hydroxyapatite as insoluble phosphate source (IPi). Total RNA of SBR5 cultivated in those two conditions was isolated and sequenced, and bacterial growth and product formation were monitored. In the IPi medium, the expression of 68 genes was upregulated, whereas 100 genes were downregulated. Among those, genes involved in carbon metabolism, including those coding for subunits of 2-oxoglutarate dehydrogenase, were identified. Quantitation of organic acids showed that the production of tricarboxylic acid cycle-derived organic acids was reduced in IPi condition, whereas acetate and gluconate were overproduced. Increased concentrations of proline, trehalose, and glycine betaine revealed active osmoprotection during growth in IPi. The cultivation with hydroxyapatite also caused the reduction in the motility of SBR5 cells as a response to Pi depletion at the beginning of its growth. SBR5 was able to solubilize hydroxyapatite, which suggests that this organism is a promising phosphate-solubilizing bacterium. Our findings are the initial step in the elucidation of the PS process in P. sonchi SBR5 and will be a valuable groundwork for further studies of this organism as a plant growth-promoting rhizobacterium.
Collapse
Affiliation(s)
- Luciana F. Brito
- Genetics of Prokaryotes, Faculty of Biology, Bielefeld University, Bielefeld, Germany
- Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Marina Gil López
- Genetics of Prokaryotes, Faculty of Biology, Bielefeld University, Bielefeld, Germany
- Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Lucas Straube
- Genetics of Prokaryotes, Faculty of Biology, Bielefeld University, Bielefeld, Germany
- Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | | | - Volker F. Wendisch
- Genetics of Prokaryotes, Faculty of Biology, Bielefeld University, Bielefeld, Germany
- Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
32
|
Yin L, Liu B, Wang H, Zhang Y, Wang S, Jiang F, Ren Y, Liu H, Liu C, Wan F, Wang H, Qian W, Fan W. The Rhizosphere Microbiome of Mikania micrantha Provides Insight Into Adaptation and Invasion. Front Microbiol 2020; 11:1462. [PMID: 32733410 PMCID: PMC7359623 DOI: 10.3389/fmicb.2020.01462] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 06/04/2020] [Indexed: 11/13/2022] Open
Abstract
Mikania micrantha is a noxious invasive plant causing enormous economic losses and ecological damage. Soil microbiome plays an important role in the invasion process of M. micrantha, while little is known about its rhizosphere microbiome composition and function. In this study, we identified the distinct rhizosphere microbial communities of M. micrantha, by comparing them with those of two coexisting native plants (Polygonum chinense and Paederia scandens) and the bulk soils, using metagenomics data from field sampling and pot experiment. As a result, the enrichment of phosphorus-solubilizing bacteria Pseudomonas and Enterobacter was consistent with the increased soil available phosphorus in M. micrantha rhizosphere. Furthermore, the pathogens of Fusarium oxysporum and Ralstonia solanacearum and pathogenic genes of type III secretion system (T3SS) were observed to be less abundant in M. micrantha rhizosphere, which might be attributed to the enrichment of biocontrol bacteria Catenulispora, Pseudomonas, and Candidatus Entotheonella and polyketide synthase (PKS) genes involved in synthesizing antibiotics and polyketides to inhibit pathogens. These findings collectively suggested that the enrichment of microbes involved in nutrient acquisition and pathogen suppression in the rhizosphere of M. micrantha largely enhances its adaptation and invasion to various environments.
Collapse
Affiliation(s)
- Lijuan Yin
- Guangdong Laboratory for Lingnan Modern Agriculture (Shenzhen Branch), Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.,Key Laboratory of Protein Function and Regulation in Agricultural Organisms of Guangdong Province, College of Life Science, South China Agricultural University, Guangzhou, China
| | - Bo Liu
- Guangdong Laboratory for Lingnan Modern Agriculture (Shenzhen Branch), Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Hengchao Wang
- Guangdong Laboratory for Lingnan Modern Agriculture (Shenzhen Branch), Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Yan Zhang
- Guangdong Laboratory for Lingnan Modern Agriculture (Shenzhen Branch), Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Sen Wang
- Guangdong Laboratory for Lingnan Modern Agriculture (Shenzhen Branch), Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Fan Jiang
- Guangdong Laboratory for Lingnan Modern Agriculture (Shenzhen Branch), Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Yuwei Ren
- Guangdong Laboratory for Lingnan Modern Agriculture (Shenzhen Branch), Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Hangwei Liu
- Guangdong Laboratory for Lingnan Modern Agriculture (Shenzhen Branch), Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Conghui Liu
- Guangdong Laboratory for Lingnan Modern Agriculture (Shenzhen Branch), Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Fanghao Wan
- Guangdong Laboratory for Lingnan Modern Agriculture (Shenzhen Branch), Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Haihong Wang
- Key Laboratory of Protein Function and Regulation in Agricultural Organisms of Guangdong Province, College of Life Science, South China Agricultural University, Guangzhou, China
| | - Wanqiang Qian
- Guangdong Laboratory for Lingnan Modern Agriculture (Shenzhen Branch), Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Wei Fan
- Guangdong Laboratory for Lingnan Modern Agriculture (Shenzhen Branch), Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| |
Collapse
|
33
|
Keshavarz-Tohid V, Vacheron J, Dubost A, Prigent-Combaret C, Taheri P, Tarighi S, Taghavi SM, Moënne-Loccoz Y, Muller D. Genomic, phylogenetic and catabolic re-assessment of the Pseudomonas putida clade supports the delineation of Pseudomonas alloputida sp. nov., Pseudomonas inefficax sp. nov., Pseudomonas persica sp. nov., and Pseudomonas shirazica sp. nov. Syst Appl Microbiol 2019; 42:468-480. [DOI: 10.1016/j.syapm.2019.04.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 04/15/2019] [Accepted: 04/21/2019] [Indexed: 12/21/2022]
|
34
|
Chen X, Jiang N, Condron LM, Dunfield KE, Chen Z, Wang J, Chen L. Impact of long-term phosphorus fertilizer inputs on bacterial phoD gene community in a maize field, Northeast China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 669:1011-1018. [PMID: 30970450 DOI: 10.1016/j.scitotenv.2019.03.172] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 03/09/2019] [Accepted: 03/12/2019] [Indexed: 06/09/2023]
Abstract
The bacterial phoD gene encodes alkaline phosphomonoesterase, an enzyme which plays an important role in the release of plant-available inorganic phosphorus (P) from organic P in soil. However, the relationships between phoD gene community, alkaline phosphomonoesterase activity, and P availability in soil are poorly understood. In this study, we investigated how alkaline phosphomonoesterase activity, phoD gene abundance, and community structure are influenced by plant-available P using soils (0-10, 10-20 and 20-40 cm) from a long-term field trial in which a continuous maize (Zea mays L.) crop had received different levels of P fertilizer inputs (30, 60 kg P ha-1 year-1) for 28 years. Quantitative PCR and high-throughput sequencing were used to analyze phoD gene abundance and community composition. Alkaline phosphomonoesterase enzyme activity was negatively correlated with soil available P, which was reflected in corresponding data for phoD gene abundance. On the other hand, positive correlations were determined between phoD gene α-diversity and available P, while shifts in phoD gene community structure were related to changes in soil pH and P availability. The relative abundance of Pseudomonas was negatively correlated with P availability and positively correlated with alkaline phosphomonoesterase activity, suggesting that Pseudomonas may play an important role in soil organic P mineralization. The findings of this study demonstrated that changes of soil P availability as a result of long-term P fertilizer inputs significantly affected alkaline phosphomonoesterase activity by regulating phoD gene abundance, diversity, as well as altering the phoD gene community composition.
Collapse
Affiliation(s)
- Xiaodong Chen
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Nan Jiang
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Leo M Condron
- Faculty of Agriculture and Life Sciences, Lincoln University, P. O. Box 85084, 7647 Christchurch, New Zealand
| | - Kari E Dunfield
- School of Environmental Science, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada
| | - Zhenhua Chen
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Jingkuan Wang
- Land and Environment College, Shenyang Agricultural University, Shenyang 110866, China
| | - Lijun Chen
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China.
| |
Collapse
|
35
|
Kröber E, Schäfer H. Identification of Proteins and Genes Expressed by Methylophaga thiooxydans During Growth on Dimethylsulfide and Their Presence in Other Members of the Genus. Front Microbiol 2019; 10:1132. [PMID: 31191477 PMCID: PMC6548844 DOI: 10.3389/fmicb.2019.01132] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 05/03/2019] [Indexed: 12/19/2022] Open
Abstract
Dimethylsulfide is a volatile organic sulfur compound that provides the largest input of biogenic sulfur from the oceans to the atmosphere, and thence back to land, constituting an important link in the global sulfur cycle. Microorganisms degrading DMS affect fluxes of DMS in the environment, but the underlying metabolic pathways are still poorly understood. Methylophaga thiooxydans is a marine methylotrophic bacterium capable of growth on DMS as sole source of carbon and energy. Using proteomics and transcriptomics we identified genes expressed during growth on dimethylsulfide and methanol to refine our knowledge of the metabolic pathways that are involved in DMS and methanol degradation in this strain. Amongst the most highly expressed genes on DMS were the two methanethiol oxidases driving the oxidation of this reactive and toxic intermediate of DMS metabolism. Growth on DMS also increased expression of the enzymes of the tetrahydrofolate linked pathway of formaldehyde oxidation, in addition to the tetrahydromethanopterin linked pathway. Key enzymes of the inorganic sulfur oxidation pathway included flavocytochrome c sulfide dehydrogenase, sulfide quinone oxidoreductase, and persulfide dioxygenases. A sulP permease was also expressed during growth on DMS. Proteomics and transcriptomics also identified a number of highly expressed proteins and gene products whose function is currently not understood. As the identity of some enzymes of organic and inorganic sulfur metabolism previously detected in Methylophaga has not been characterized at the genetic level yet, highly expressed uncharacterized genes provide new targets for further biochemical and genetic analysis. A pan-genome analysis of six available Methylophaga genomes showed that only two of the six investigated strains, M. thiooxydans and M. sulfidovorans have the gene encoding methanethiol oxidase, suggesting that growth on methylated sulfur compounds of M. aminisulfidivorans is likely to involve different enzymes and metabolic intermediates. Hence, the pathways of DMS-utilization and subsequent C1 and sulfur oxidation are not conserved across Methylophaga isolates that degrade methylated sulfur compounds.
Collapse
Affiliation(s)
| | - Hendrik Schäfer
- School of Life Sciences, Gibbet Hill Campus, University of Warwick, Coventry, United Kingdom
| |
Collapse
|
36
|
Genomic Analysis of Pseudomonas sp. Strain SCT, an Iodate-Reducing Bacterium Isolated from Marine Sediment, Reveals a Possible Use for Bioremediation. G3-GENES GENOMES GENETICS 2019; 9:1321-1329. [PMID: 30910818 PMCID: PMC6505155 DOI: 10.1534/g3.118.200978] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Strain SCT is an iodate-reducing bacterium isolated from marine sediment in Kanagawa Prefecture, Japan. In this study, we determined the draft genome sequence of strain SCT and compared it to complete genome sequences of other closely related bacteria, including Pseudomonas stutzeri. A phylogeny inferred from concatenation of core genes revealed that strain SCT was closely related to marine isolates of P. stutzeri. Genes present in the SCT genome but absent from the other analyzed P. stutzeri genomes comprised clusters corresponding to putative prophage regions and possible operons. They included pil genes, which encode type IV pili for natural transformation; the mer operon, which encodes resistance systems for mercury; and the pst operon, which encodes a Pi-specific transport system for phosphate uptake. We found that strain SCT had more prophage-like genes than the other P. stutzeri strains and that the majority (70%) of them were SCT strain-specific. These genes, encoded on distinct prophage regions, may have been acquired after branching from a common ancestor following independent phage transfer events. Thus, the genome sequence of Pseudomonas sp. strain SCT can provide detailed insights into its metabolic potential and the evolution of genetic elements associated with its unique phenotype.
Collapse
|
37
|
Dipta B, Bhardwaj S, Kaushal M, Kirti S, Sharma R. Obliteration of phosphorus deficiency in plants by microbial interceded approach. Symbiosis 2019. [DOI: 10.1007/s13199-019-00600-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
38
|
Liu J, Cade-Menun BJ, Yang J, Hu Y, Liu CW, Tremblay J, LaForge K, Schellenberg M, Hamel C, Bainard LD. Long-Term Land Use Affects Phosphorus Speciation and the Composition of Phosphorus Cycling Genes in Agricultural Soils. Front Microbiol 2018; 9:1643. [PMID: 30083148 PMCID: PMC6065304 DOI: 10.3389/fmicb.2018.01643] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 07/02/2018] [Indexed: 11/24/2022] Open
Abstract
Agriculturally-driven land transformation is increasing globally. Improving phosphorus (P) use efficiency to sustain optimum productivity in diverse ecosystems, based on knowledge of soil P dynamics, is also globally important in light of potential shortages of rock phosphate to manufacture P fertilizer. We investigated P chemical speciation and P cycling with solution 31P nuclear magnetic resonance, P K-edge X-ray absorption near-edge structure spectroscopy, phosphatase activity assays, and shotgun metagenomics in soil samples from long-term agricultural fields containing four different land-use types (native and tame grasslands, annual croplands, and roadside ditches). Across these land use types, native and tame grasslands showed high accumulation of organic P, principally orthophosphate monoesters, and high acid phosphomonoesterase activity but the lowest abundance of P cycling genes. The proportion of inositol hexaphosphates (IHP), especially the neo-IHP stereoisomer that likely originates from microbes rather than plants, was significantly increased in native grasslands than croplands. Annual croplands had the largest variances of soil P composition, and the highest potential capacity for P cycling processes based on the abundance of genes coding for P cycling processes. In contrast, roadside soils had the highest soil Olsen-P concentrations, lowest organic P, and highest tricalcium phosphate concentrations, which were likely facilitated by the neutral pH and high exchangeable Ca of these soils. Redundancy analysis demonstrated that IHP by NMR, potential phosphatase activity, Olsen-P, and pH were important P chemistry predictors of the P cycling bacterial community and functional gene composition. Combining chemical and metagenomics results provides important insights into soil P processes and dynamics in different land-use ecosystems.
Collapse
Affiliation(s)
- Jin Liu
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China.,Visiting Scientist, Agriculture and Agri-Food Canada, Swift Current Research and Development Centre, Swift Current, SK, Canada
| | - Barbara J Cade-Menun
- Swift Current Research and Development Centre, Agriculture and Agri-Food Canada, Swift Current, SK, Canada
| | - Jianjun Yang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yongfeng Hu
- Canadian Light Source, University of Saskatchewan, Saskatoon, SK, Canada
| | - Corey W Liu
- Stanford Magnetic Resonance Laboratory, Stanford University School of Medicine and ChEM-H-Stanford University, Stanford, CA, United States
| | - Julien Tremblay
- Energy, Mining and Environment, National Research Council of Canada, Montreal, QC, Canada
| | - Kerry LaForge
- Swift Current Research and Development Centre, Agriculture and Agri-Food Canada, Swift Current, SK, Canada
| | - Michael Schellenberg
- Swift Current Research and Development Centre, Agriculture and Agri-Food Canada, Swift Current, SK, Canada
| | - Chantal Hamel
- Swift Current Research and Development Centre, Agriculture and Agri-Food Canada, Swift Current, SK, Canada
| | - Luke D Bainard
- Swift Current Research and Development Centre, Agriculture and Agri-Food Canada, Swift Current, SK, Canada
| |
Collapse
|
39
|
Barra PJ, Viscardi S, Jorquera MA, Duran PA, Valentine AJ, de la Luz Mora M. Understanding the Strategies to Overcome Phosphorus-Deficiency and Aluminum-Toxicity by Ryegrass Endophytic and Rhizosphere Phosphobacteria. Front Microbiol 2018; 9:1155. [PMID: 29910787 PMCID: PMC5992465 DOI: 10.3389/fmicb.2018.01155] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 05/14/2018] [Indexed: 11/20/2022] Open
Abstract
Phosphobacteria, secreting organic acids and phosphatases, usually favor plant performance in acidic soils by increasing phosphorus (P) availability and aluminum (Al) complexing. However, it is not well-known how P-deficiency and Al-toxicity affect the phosphobacteria physiology. Since P and Al problems often co-occur in acidic soils, we have therefore proposed the evaluation of the single and combined effects of P-deficiency and Al-toxicity on growth, organic acids secretion, malate dehydrogenase (mdh) gene expression, and phosphatase activity of five Al-tolerant phosphobacteria previously isolated from ryegrass. These phosphobacteria were identified as Klebsiella sp. RC3, Stenotrophomona sp. RC5, Klebsiella sp. RCJ4, Serratia sp. RCJ6, and Enterobacter sp. RJAL6. The strains were cultivated in mineral media modified to obtain (i) high P in absence of Al–toxicity, (ii) high P in presence of Al–toxicity, (iii) low P in absence of Al–toxicity, and (iv) low P in presence of Al–toxicity. High and low P were obtained by adding KH2PO4 at final concentration of 1.4 and 0.05 mM, respectively. To avoid Al precipitation, AlCl3 × 6H2O was previously complexed to citric acid (sole carbon source) in concentrations of 10 mM. The secreted organic acids were identified and quantified by HPLC, relative mdh gene expression was determined by qRT-PCR and phosphatase activity was colorimetrically determined using p-nitrophenyl phosphate as substrate. Our results revealed that although a higher secretion of all organic acids was achieved under P–deficiency, the patterns of organic acids secretion were variable and dependent on treatment and strain. The organic acid secretion is exacerbated when Al was added into media, particularly in the form of malic and citric acid. The mdh gene expression was significantly up–regulated by the strains RC3, RC5, and RCJ6 under P–deficiency and Al–toxicity. In general, Al–tolerant phosphobacteria under P deficiency increased both acid and alkaline phosphatase activity with respect to the control, which was deepened when Al was present. The knowledge of this bacterial behavior in vitro is important to understand and predict the behavior of phosphobacteria in vivo. This knowledge is essential to generate smart and efficient biofertilizers, based in Al–tolerant phosphobacteria which could be expansively used in acidic soils.
Collapse
Affiliation(s)
- Patricio J Barra
- Center of Plant, Soil Interaction and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco, Chile
| | - Sharon Viscardi
- Center of Plant, Soil Interaction and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco, Chile.,Departamento de Procesos Diagnósticos y Evaluación, Facultad de Ciencias de la Salud, Universidad Católica de Temuco, Temuco, Chile
| | - Milko A Jorquera
- Center of Plant, Soil Interaction and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco, Chile
| | - Paola A Duran
- Center of Plant, Soil Interaction and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco, Chile
| | - Alexander J Valentine
- Department of Botany and Zoology, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa
| | - María de la Luz Mora
- Center of Plant, Soil Interaction and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco, Chile
| |
Collapse
|
40
|
Berninger T, González López Ó, Bejarano A, Preininger C, Sessitsch A. Maintenance and assessment of cell viability in formulation of non-sporulating bacterial inoculants. Microb Biotechnol 2018; 11:277-301. [PMID: 29205959 PMCID: PMC5812248 DOI: 10.1111/1751-7915.12880] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 09/11/2017] [Accepted: 10/08/2017] [Indexed: 01/20/2023] Open
Abstract
The application of beneficial, plant-associated microorganisms is a sustainable approach to improving crop performance in agriculture. However, microbial inoculants are often susceptible to prolonged periods of storage and deleterious environmental factors, which negatively impact their viability and ultimately limit efficacy in the field. This particularly concerns non-sporulating bacteria. To overcome this challenge, the availability of protective formulations is crucial. Numerous parameters influence the viability of microbial cells, with drying procedures generally being among the most critical ones. Thus, technological advances to attenuate the desiccation stress imposed on living cells are key to successful formulation development. In this review, we discuss the core aspects important to consider when aiming at high cell viability of non-sporulating bacteria to be applied as microbial inoculants in agriculture. We elaborate the suitability of commonly applied drying methods (freeze-drying, vacuum-drying, spray-drying, fluidized bed-drying, air-drying) and potential measures to prevent cell damage from desiccation (externally applied protectants, stress pre-conditioning, triggering of exopolysaccharide secretion, 'helper' strains). Furthermore, we point out methods for assessing bacterial viability, such as colony counting, spectrophotometry, microcalorimetry, flow cytometry and viability qPCR. Choosing appropriate technologies for maintenance of cell viability and evaluation thereof will render formulation development more efficient. This in turn will aid in utilizing the vast potential of promising, plant beneficial bacteria as sustainable alternatives to standard agrochemicals.
Collapse
Affiliation(s)
- Teresa Berninger
- AIT Austrian Institute of Technology GmbHCenter for Health and BioresourcesBioresources UnitKonrad‐Lorenz‐Straße 243430TullnAustria
| | - Óscar González López
- AIT Austrian Institute of Technology GmbHCenter for Health and BioresourcesBioresources UnitKonrad‐Lorenz‐Straße 243430TullnAustria
| | - Ana Bejarano
- AIT Austrian Institute of Technology GmbHCenter for Health and BioresourcesBioresources UnitKonrad‐Lorenz‐Straße 243430TullnAustria
| | - Claudia Preininger
- AIT Austrian Institute of Technology GmbHCenter for Health and BioresourcesBioresources UnitKonrad‐Lorenz‐Straße 243430TullnAustria
| | - Angela Sessitsch
- AIT Austrian Institute of Technology GmbHCenter for Health and BioresourcesBioresources UnitKonrad‐Lorenz‐Straße 243430TullnAustria
| |
Collapse
|
41
|
Subhan F, Shahzad R, Tauseef I, Haleem KS, Rehman AU, Mahmood S, Lee IJ. Isolation, identification, and pathological effects of beach sand bacterial extract on human skin keratinocytes in vitro. PeerJ 2018; 6:e4245. [PMID: 29441229 PMCID: PMC5807979 DOI: 10.7717/peerj.4245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 12/18/2017] [Indexed: 01/22/2023] Open
Abstract
Background Beaches are recreational spots for people. However, beach sand contains harmful microbes that affect human health, and there are no established methods for either sampling and identifying beach-borne pathogens or managing the quality of beach sand. Method This study was conducted with the aim of improving human safety at beaches and augmenting the quality of the beach experience. Beach sand was used as a resource to isolate bacteria due to its distinctive features and the biodiversity of the beach sand biota. A selected bacterial isolate termed FSRS was identified as Pseudomonas stutzeri using 16S rRNA sequencing and phylogenetic analysis, and the sequence was deposited in the NCBI GenBank database under the accession number MF599548. The isolated P. stutzeri bacterium was cultured in Luria-Bertani growth medium, and a crude extract was prepared using ethyl acetate to examine the potential pathogenic effect of P. stutzeri on human skin. A human skin keratinocyte cell line (HaCaT) was used to assess cell adhesion, cell viability, and cell proliferation using a morphological analysis and a WST-1 assay. Result The crude P. stutzeri extract inhibited cell adhesion and decreased cell viability in HaCaT cells. We concluded that the crude extract of P. stutzeri FSRS had a strong pathological effect on human skin cells. Discussion Beach visitors frequently get skin infections, but the exact cause of the infections is yet to be determined. The beach sand bacterium P. stutzeri may, therefore, be responsible for some of the dermatological problems experienced by people visiting the beach.
Collapse
Affiliation(s)
- Fazli Subhan
- Department of Microbiology, Hazara University, Mansehra, Pakistan
| | - Raheem Shahzad
- School of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - Isfahan Tauseef
- Department of Microbiology, Hazara University, Mansehra, Pakistan
| | | | - Atta-Ur Rehman
- Department of Zoology, Hazara University, Mansehra, Pakistan
| | - Sajid Mahmood
- Department of Zoology, Hazara University, Mansehra, Pakistan
| | - In-Jung Lee
- School of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea.,Research Institute for Dok-do and Ulleung-do Island, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
42
|
Sergaki C, Lagunas B, Lidbury I, Gifford ML, Schäfer P. Challenges and Approaches in Microbiome Research: From Fundamental to Applied. FRONTIERS IN PLANT SCIENCE 2018; 9:1205. [PMID: 30174681 PMCID: PMC6107787 DOI: 10.3389/fpls.2018.01205] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 07/26/2018] [Indexed: 05/07/2023]
Abstract
We face major agricultural challenges that remain a threat for global food security. Soil microbes harbor enormous potentials to provide sustainable and economically favorable solutions that could introduce novel approaches to improve agricultural practices and, hence, crop productivity. In this review we give an overview regarding the current state-of-the-art of microbiome research by discussing new technologies and approaches. We also provide insights into fundamental microbiome research that aim to provide a deeper understanding of the dynamics within microbial communities, as well as their interactions with different plant hosts and the environment. We aim to connect all these approaches with potential applications and reflect how we can use microbial communities in modern agricultural systems to realize a more customized and sustainable use of valuable resources (e.g., soil).
Collapse
Affiliation(s)
- Chrysi Sergaki
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
- *Correspondence: Chrysi Sergaki,
| | - Beatriz Lagunas
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Ian Lidbury
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Miriam L. Gifford
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
- Warwick Integrative Synthetic Biology Centre, University of Warwick, Coventry, United Kingdom
| | - Patrick Schäfer
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
- Warwick Integrative Synthetic Biology Centre, University of Warwick, Coventry, United Kingdom
| |
Collapse
|
43
|
The current status on the taxonomy of Pseudomonas revisited: An update. INFECTION GENETICS AND EVOLUTION 2017; 57:106-116. [PMID: 29104095 DOI: 10.1016/j.meegid.2017.10.026] [Citation(s) in RCA: 140] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 10/28/2017] [Accepted: 10/30/2017] [Indexed: 12/20/2022]
Abstract
The genus Pseudomonas described in 1894 is one of the most diverse and ubiquitous bacterial genera which encompass species isolated worldwide. In the last years more than 70 new species have been described, which were isolated from different environments, including soil, water, sediments, air, animals, plants, fungi, algae, compost, human and animal related sources. Some of these species have been isolated in extreme environments, such as Antarctica or Atacama desert, and from contaminated water or soil. Also, some species recently described are plant or animal pathogens. In this review, we revised the current status of the taxonomy of genus Pseudomonas and the methodologies currently used for the description of novel species which includes, in addition to the classic ones, new methodologies such as MALDI-TOF MS, MLSA and genome analyses. The novel Pseudomonas species described in the last years are listed, together with the available genome sequences of the type strains of Pseudomonas species present in different databases.
Collapse
|
44
|
Lidbury IDEA, Fraser T, Murphy ARJ, Scanlan DJ, Bending GD, Jones AME, Moore JD, Goodall A, Tibbett M, Hammond JP, Wellington EMH. The 'known' genetic potential for microbial communities to degrade organic phosphorus is reduced in low-pH soils. Microbiologyopen 2017; 6:e00474. [PMID: 28419748 PMCID: PMC5552915 DOI: 10.1002/mbo3.474] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 02/01/2017] [Accepted: 02/16/2017] [Indexed: 11/29/2022] Open
Abstract
In soil, bioavailable inorganic orthophosphate is found at low concentrations and thus limits biological growth. To overcome this phosphorus scarcity, plants and bacteria secrete numerous enzymes, namely acid and alkaline phosphatases, which cleave orthophosphate from various organic phosphorus substrates. Using profile hidden Markov modeling approaches, we investigated the abundance of various non specific phosphatases, both acid and alkaline, in metagenomes retrieved from soils with contrasting pH regimes. This analysis uncovered a marked reduction in the abundance and diversity of various alkaline phosphatases in low-pH soils that was not counterbalanced by an increase in acid phosphatases. Furthermore, it was also discovered that only half of the bacterial strains from different phyla deposited in the Integrated Microbial Genomes database harbor alkaline phosphatases. Taken together, our data suggests that these 'phosphatase lacking' isolates likely increase in low-pH soils and future research should ascertain how these bacteria overcome phosphorus scarcity.
Collapse
Affiliation(s)
| | - Tandra Fraser
- School of Agriculture, Policy, and DevelopmentUniversity of ReadingWhiteknightsUnited Kingdom
| | - Andrew R. J. Murphy
- School of Life SciencesUniversity of WarwickCoventryWest MidlandsUnited Kingdom
| | - David J. Scanlan
- School of Life SciencesUniversity of WarwickCoventryWest MidlandsUnited Kingdom
| | - Gary D. Bending
- School of Life SciencesUniversity of WarwickCoventryWest MidlandsUnited Kingdom
| | | | - Jonathan D. Moore
- The Genome Analysis CentreNorwich Research ParkNorwichUnited Kingdom
| | - Andrew Goodall
- School of Agriculture, Policy, and DevelopmentUniversity of ReadingWhiteknightsUnited Kingdom
| | - Mark Tibbett
- School of Agriculture, Policy, and DevelopmentUniversity of ReadingWhiteknightsUnited Kingdom
| | - John P. Hammond
- School of Agriculture, Policy, and DevelopmentUniversity of ReadingWhiteknightsUnited Kingdom
- Southern Cross Plant ScienceSouthern Cross UniversityLismoreAustralia
| | | |
Collapse
|
45
|
Lidbury IDEA, Murphy ARJ, Fraser TD, Bending GD, Jones AME, Moore JD, Goodall A, Tibbett M, Hammond JP, Scanlan DJ, Wellington EMH. Identification of extracellular glycerophosphodiesterases in Pseudomonas and their role in soil organic phosphorus remineralisation. Sci Rep 2017; 7:2179. [PMID: 28526844 PMCID: PMC5438359 DOI: 10.1038/s41598-017-02327-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 04/10/2017] [Indexed: 11/11/2022] Open
Abstract
In soils, phosphorus (P) exists in numerous organic and inorganic forms. However, plants can only acquire inorganic orthophosphate (Pi), meaning global crop production is frequently limited by P availability. To overcome this problem, rock phosphate fertilisers are heavily applied, often with negative environmental and socio-economic consequences. The organic P fraction of soil contains phospholipids that are rapidly degraded resulting in the release of bioavailable Pi. However, the mechanisms behind this process remain unknown. We identified and experimentally confirmed the function of two secreted glycerolphosphodiesterases, GlpQI and GlpQII, found in Pseudomonas stutzeri DSM4166 and Pseudomonas fluorescens SBW25, respectively. A series of co-cultivation experiments revealed that in these Pseudomonas strains, cleavage of glycerolphosphorylcholine and its breakdown product G3P occurs extracellularly allowing other bacteria to benefit from this metabolism. Analyses of metagenomic and metatranscriptomic datasets revealed that this trait is widespread among soil bacteria with Actinobacteria and Proteobacteria, specifically Betaproteobacteria and Gammaproteobacteria, the likely major players.
Collapse
Affiliation(s)
- Ian D E A Lidbury
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry, West Midlands, CV4 7AL, United Kingdom.
| | - Andrew R J Murphy
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry, West Midlands, CV4 7AL, United Kingdom
| | - Tandra D Fraser
- School of Agriculture, Policy, and Development, University of Reading, Earley Gate, Whiteknights, Reading, RG6 6AR, United Kingdom
| | - Gary D Bending
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry, West Midlands, CV4 7AL, United Kingdom
| | - Alexandra M E Jones
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry, West Midlands, CV4 7AL, United Kingdom
| | - Jonathan D Moore
- The Earlham Institute, Norwich Research Park, Norwich, NR4 7UH, United Kingdom
| | - Andrew Goodall
- School of Agriculture, Policy, and Development, University of Reading, Earley Gate, Whiteknights, Reading, RG6 6AR, United Kingdom
| | - Mark Tibbett
- School of Agriculture, Policy, and Development, University of Reading, Earley Gate, Whiteknights, Reading, RG6 6AR, United Kingdom
| | - John P Hammond
- School of Agriculture, Policy, and Development, University of Reading, Earley Gate, Whiteknights, Reading, RG6 6AR, United Kingdom
- Southern Cross Plant Science, Southern Cross University, Lismore, NSW 2480, Australia
| | - David J Scanlan
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry, West Midlands, CV4 7AL, United Kingdom
| | - Elizabeth M H Wellington
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry, West Midlands, CV4 7AL, United Kingdom
| |
Collapse
|