1
|
Diver P, Ward BA, Cunliffe M. Cell morphological plasticity in response to substrate availability of a cosmopolitan polymorphic yeast from the open ocean. Mycologia 2025; 117:95-109. [PMID: 39585805 DOI: 10.1080/00275514.2024.2418784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 10/11/2024] [Indexed: 11/27/2024]
Abstract
Polymorphic yeasts can switch between unicellular division and multicellular filamentous growth. Although prevalent in aquatic ecosystems, such as the open ocean, we have a limited understanding of the controlling factors on their morphological variation in an aquatic ecology context. Here we show that substrate concentration regulates cell morphogenesis in a cosmopolitan polymorphic yeast, Aureobasidium pullulans, isolated from the pelagic open ocean and analyzed in liquid batch culture. Filamentous cell development was triggered only under high initial substrate conditions, suggesting that hyphal growth could be more advantageous under eutrophic conditions and may influence pelagic fungal interactions with particulate organic matter. Filamentous growth proportionally declined before the exhaustion of substrate and before budding yeast-type cell division entered stationary phase, possibly modulated by quorum sensing as previously evidenced in other polymorphic yeasts. We also found that budding yeast-type unicells decreased in size and became more elongated in shape in response to substrate depletion, resulting in higher cell surface area to volume ratios, which could affect yeast dispersal and/or provide a nutrient uptake advantage under oligotrophic conditions. Our results demonstrate resource-responsive morphological plasticity in a marine-derived polymorphic yeast, providing mechanistic insight into the ability of fungi to survive fluctuating environmental conditions such as in the open ocean.
Collapse
Affiliation(s)
- Poppy Diver
- Marine Biological Association, The Laboratory, Citadel Hill, Plymouth PL1 2PB, UK
- School of Ocean and Earth Science, University of Southampton, Waterfront Campus, European Way, Southampton SO14 3ZH, UK
| | - Ben A Ward
- School of Ocean and Earth Science, University of Southampton, Waterfront Campus, European Way, Southampton SO14 3ZH, UK
| | - Michael Cunliffe
- Marine Biological Association, The Laboratory, Citadel Hill, Plymouth PL1 2PB, UK
- School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK
| |
Collapse
|
2
|
Li S, Wu X, Meng J. Draft genome sequence of Aureobasidium pullulans ATCC15233. Microbiol Resour Announc 2024:e0075624. [PMID: 39679733 DOI: 10.1128/mra.00756-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 11/15/2024] [Indexed: 12/17/2024] Open
Abstract
Aureobasidium pullulans is a well-studied polyextremotolerant generalist fungus with a ubiquitous distribution, which can efficiently secret extracellular polysaccharides, especially pullulan. Here, we reported the draft genome of A. pullulans ATCC15233, whose genome length is 30,444,007 bp, with a GC content of 50.63%.
Collapse
Affiliation(s)
- Shuang Li
- The State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, China
| | - Xiuyun Wu
- The State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, China
| | - Jing Meng
- Jinan Maternity and Child Care Hospital, Jinan, Shandong, China
| |
Collapse
|
3
|
Hariri Akbari F, Song Z, Turk M, Gunde-Cimerman N, Gostinčar C. Experimental evolution of extremotolerant and extremophilic fungi under osmotic stress. IUBMB Life 2024; 76:617-631. [PMID: 38647201 DOI: 10.1002/iub.2825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 03/15/2024] [Indexed: 04/25/2024]
Abstract
Experimental evolution was carried out to investigate the adaptive responses of extremotolerant fungi to a stressful environment. For 12 cultivation cycles, the halotolerant black yeasts Aureobasidium pullulans and Aureobasidium subglaciale were grown at high NaCl or glycerol concentrations, and the halophilic basidiomycete Wallemia ichthyophaga was grown close to its lower NaCl growth limit. All evolved Aureobasidium spp. accelerated their growth at low water activity. Whole genomes of the evolved strains were sequenced. No aneuploidies were detected in any of the genomes, contrary to previous studies on experimental evolution at high salinity with other species. However, several hundred single-nucleotide polymorphisms were identified compared with the genomes of the progenitor strains. Two functional groups of genes were overrepresented among the genes presumably affected by single-nucleotide polymorphisms: voltage-gated potassium channels in A. pullulans at high NaCl concentration, and hydrophobins in W. ichthyophaga at low NaCl concentration. Both groups of genes were previously associated with adaptation to high salinity. Finally, most evolved Aureobasidium spp. strains were found to have increased intracellular and decreased extracellular glycerol concentrations at high salinity, suggesting that the strains have optimised their management of glycerol, their most important compatible solute. Experimental evolution therefore not only confirmed the role of potassium transport, glycerol management, and cell wall in survival at low water activity, but also demonstrated that fungi from extreme environments can further improve their growth rates under constant extreme conditions in a relatively short time and without large scale genomic rearrangements.
Collapse
Affiliation(s)
- Farhad Hariri Akbari
- Biotechnical Faculty, Department of Biology, University of Ljubljana, Ljubljana, Slovenia
| | - Zewei Song
- BGI-Shenzhen, Beishan Industrial Zone, Shenzhen, China
- China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | - Martina Turk
- Biotechnical Faculty, Department of Biology, University of Ljubljana, Ljubljana, Slovenia
| | - Nina Gunde-Cimerman
- Biotechnical Faculty, Department of Biology, University of Ljubljana, Ljubljana, Slovenia
| | - Cene Gostinčar
- Biotechnical Faculty, Department of Biology, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
4
|
Dielentheis-Frenken MRE, Wibberg D, Blank LM, Tiso T. Draft genome sequence and annotation of the polyextremotolerant polyol lipid-producing fungus aureobasidium pullulans NRRL 62042. BMC Genom Data 2024; 25:75. [PMID: 39164622 PMCID: PMC11337766 DOI: 10.1186/s12863-024-01258-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 07/26/2024] [Indexed: 08/22/2024] Open
Abstract
OBJECTIVES The ascomycotic yeast-like fungus Aureobasidium exhibits the natural ability to synthesize several secondary metabolites, like polymalic acid, pullulan, or polyol lipids, with potential biotechnological applications. Combined with its polyextremotolerance, these properties make Aureobasidium a promising production host candidate. Hence, plenty of genomes of Aureobasidia have been sequenced recently. Here, we provide the annotated draft genome sequence of the polyol lipid-producing strain A. pullulans NRRL 62042. DATA DESCRIPTION The genome of A. pullulans NRRL 62042 was sequenced using Illumina NovaSeq 6000. Genome assembly revealed a genome size of 24.2 Mb divided into 39 scaffolds with a GC content of 50.1%. Genome annotation using Genemark v4.68 and GenDBE yielded 9,596 genes.
Collapse
Affiliation(s)
| | - Daniel Wibberg
- Center for Biotechnology, Universität Bielefeld, Bielefeld, Germany
- Computational Metagenomics, Institute of Bio- and Geosciences IBG-5, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Lars M Blank
- Institute of Applied Microbiology, RWTH Aachen University, Aachen, Germany
| | - Till Tiso
- Institute of Applied Microbiology, RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
5
|
Bai R, Chen J, Hao Y, Dong Y, Ren K, Gao T, Zhang S, Xu F, Zhao H. ARTP mutagenesis of Aureobasidium pullulans RM1603 for high pullulan production and transcriptome analysis of mutants. Arch Microbiol 2024; 206:375. [PMID: 39141138 DOI: 10.1007/s00203-024-04094-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 07/24/2024] [Accepted: 07/27/2024] [Indexed: 08/15/2024]
Abstract
Pullulan is a microbial exopolysaccharide produced by Aureobasidium spp. with excellent physical and chemical properties, resulting in great application value. In this study, a novel strain RM1603 of Aureobasidium pullulans with high pullulan production of 51.0 ± 1.0 g·L- 1 isolated from rhizosphere soil was subjected to atmospheric and room temperature plasma (ARTP) mutagenesis, followed by selection of mutants to obtain pullulan high-producing strains. Finally, two mutants Mu0816 and Mu1519 were obtained, with polysaccharide productions of 58.7 ± 0.8 and 60.0 ± 0.8 g∙L- 1 after 72-h fermentation, representing 15.1 and 17.6% increases compared with the original strain, respectively. Transcriptome analysis of the two mutants and the original strain revealed that the high expression of α/β-hydrolase (ABHD), α-amylase (AMY1), and sugar porter family MFS transporters (SPF-MFS) in the mutants may be related to the synthesis and secretion of pullulan. These results demonstrated the effectiveness of ARTP mutagenesis in A. pullulans, providing a basis for the investigation of genes related to pullulan synthesis and secretion.
Collapse
Affiliation(s)
- Ruoxuan Bai
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Jiale Chen
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Yaqiao Hao
- Anshan Health School, Anshan, 114013, China
| | - Yiheng Dong
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Keyao Ren
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Ting Gao
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Shuting Zhang
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Fangxu Xu
- Liaoning Province Key Laboratory of Cordyceps Militaris with Functional Value, Experimental Teaching Center, Shenyang Normal University, Shenyang, 110034, China
| | - Hongxin Zhao
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| |
Collapse
|
6
|
Xiao D, Driller M, Dielentheis‐Frenken M, Haala F, Kohl P, Stein K, Blank LM, Tiso T. Advances in Aureobasidium research: Paving the path to industrial utilization. Microb Biotechnol 2024; 17:e14535. [PMID: 39075758 PMCID: PMC11286673 DOI: 10.1111/1751-7915.14535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/10/2024] [Indexed: 07/31/2024] Open
Abstract
We here explore the potential of the fungal genus Aureobasidium as a prototype for a microbial chassis for industrial biotechnology in the context of a developing circular bioeconomy. The study emphasizes the physiological advantages of Aureobasidium, including its polyextremotolerance, broad substrate spectrum, and diverse product range, making it a promising candidate for cost-effective and sustainable industrial processes. In the second part, recent advances in genetic tool development, as well as approaches for up-scaled fermentation, are described. This review adds to the growing body of scientific literature on this remarkable fungus and reveals its potential for future use in the biotechnological industry.
Collapse
Affiliation(s)
- Difan Xiao
- iAMB – Institute of Applied Microbiology, ABBt – Aachen Biology and BiotechnologyRWTH Aachen UniversityAachenGermany
| | - Marielle Driller
- iAMB – Institute of Applied Microbiology, ABBt – Aachen Biology and BiotechnologyRWTH Aachen UniversityAachenGermany
| | - Marie Dielentheis‐Frenken
- iAMB – Institute of Applied Microbiology, ABBt – Aachen Biology and BiotechnologyRWTH Aachen UniversityAachenGermany
| | - Frederick Haala
- iAMB – Institute of Applied Microbiology, ABBt – Aachen Biology and BiotechnologyRWTH Aachen UniversityAachenGermany
| | - Philipp Kohl
- iAMB – Institute of Applied Microbiology, ABBt – Aachen Biology and BiotechnologyRWTH Aachen UniversityAachenGermany
| | - Karla Stein
- iAMB – Institute of Applied Microbiology, ABBt – Aachen Biology and BiotechnologyRWTH Aachen UniversityAachenGermany
| | - Lars M. Blank
- iAMB – Institute of Applied Microbiology, ABBt – Aachen Biology and BiotechnologyRWTH Aachen UniversityAachenGermany
| | - Till Tiso
- iAMB – Institute of Applied Microbiology, ABBt – Aachen Biology and BiotechnologyRWTH Aachen UniversityAachenGermany
| |
Collapse
|
7
|
Wang S, He JN, Wang YJ, Zhao WY, Yang QX, Wang YN, Zhang Y, Zhang LP, Liu HW. Metabolome and Genome Analysis of a Novel Endophytic Fungus Aureobasidium pullulans KB3: Discovery of Polyketones and Polyketone Biosynthesis Pathway. Biochem Genet 2024:10.1007/s10528-024-10866-7. [PMID: 38877158 DOI: 10.1007/s10528-024-10866-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 06/09/2024] [Indexed: 06/16/2024]
Abstract
Endophytic fungi associated with plants may contain undiscovered bioactive compounds. Under standard laboratory conditions, most undiscovered compounds are inactive, whereas their production could be stimulated under different cultivation conditions. In this study, six endophytic fungi were isolated from the bark of Koelreuteria paniculata in Quancheng Park, Jinan City, Shandong Province, one of which was identified as a new subspecies of Aureobasidium pullulans, named A. pullulans KB3. Additionally, metabolomic tools were used to screen suitable media for A. pullulans KB3 fermentation, and the results showed that peptone dextrose medium (PDM) was more beneficial to culture A. pullulans KB3 for isolation of novel compounds. Sphaerolone, a polyketone compound, was initially isolated from A. pullulans KB3 via scaled up fermentation utilizing PDM. Additionally, the whole-genome DNA of A. pullulans KB3 was sequenced to facilitate compound isolation and identify the biosynthesis gene clusters (BGCs). This study reports the multi-omics (metabolome and genome) analysis of A. pullulans KB3, laying the foundation for discovering novel compounds of silent BGCs and identifying their biosynthesis pathway.
Collapse
Affiliation(s)
- Shuai Wang
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, 252000, Shandong, People's Republic of China
| | - Jia-Nuo He
- Laboratory of Microbiology, Institute of Biology, Hebei Academy of Sciences, 15, Shijiazhuang, 050081, Hebei, People's Republic of China
- Laboratory of Microbiology, Main Crops Disease of Microbial Control Engineering Technology Research Center in Hebei Province, 15, Shijiazhuang, 050081, Hebei, People's Republic of China
| | - Ying-Jie Wang
- Laboratory of Microbiology, Institute of Biology, Hebei Academy of Sciences, 15, Shijiazhuang, 050081, Hebei, People's Republic of China
- Laboratory of Microbiology, Main Crops Disease of Microbial Control Engineering Technology Research Center in Hebei Province, 15, Shijiazhuang, 050081, Hebei, People's Republic of China
| | - Wen-Ya Zhao
- Laboratory of Microbiology, Institute of Biology, Hebei Academy of Sciences, 15, Shijiazhuang, 050081, Hebei, People's Republic of China
- Laboratory of Microbiology, Main Crops Disease of Microbial Control Engineering Technology Research Center in Hebei Province, 15, Shijiazhuang, 050081, Hebei, People's Republic of China
| | - Qing-Xia Yang
- Laboratory of Microbiology, Institute of Biology, Hebei Academy of Sciences, 15, Shijiazhuang, 050081, Hebei, People's Republic of China
- Laboratory of Microbiology, Main Crops Disease of Microbial Control Engineering Technology Research Center in Hebei Province, 15, Shijiazhuang, 050081, Hebei, People's Republic of China
| | - Ya-Na Wang
- Laboratory of Microbiology, Institute of Biology, Hebei Academy of Sciences, 15, Shijiazhuang, 050081, Hebei, People's Republic of China
- Laboratory of Microbiology, Main Crops Disease of Microbial Control Engineering Technology Research Center in Hebei Province, 15, Shijiazhuang, 050081, Hebei, People's Republic of China
| | - Yang Zhang
- Laboratory of Microbiology, Institute of Biology, Hebei Academy of Sciences, 15, Shijiazhuang, 050081, Hebei, People's Republic of China
- Laboratory of Microbiology, Main Crops Disease of Microbial Control Engineering Technology Research Center in Hebei Province, 15, Shijiazhuang, 050081, Hebei, People's Republic of China
| | - Li-Ping Zhang
- Laboratory of Microbiology, Institute of Biology, Hebei Academy of Sciences, 15, Shijiazhuang, 050081, Hebei, People's Republic of China
- Laboratory of Microbiology, Main Crops Disease of Microbial Control Engineering Technology Research Center in Hebei Province, 15, Shijiazhuang, 050081, Hebei, People's Republic of China
| | - Hong-Wei Liu
- Laboratory of Microbiology, Institute of Biology, Hebei Academy of Sciences, 15, Shijiazhuang, 050081, Hebei, People's Republic of China.
- Laboratory of Microbiology, Main Crops Disease of Microbial Control Engineering Technology Research Center in Hebei Province, 15, Shijiazhuang, 050081, Hebei, People's Republic of China.
| |
Collapse
|
8
|
Masi A, Wögerbauer K, Mach RL, Mach-Aigner AR. Genomic deletions in Aureobasidium pullulans by an AMA1 plasmid for gRNA and CRISPR/Cas9 expression. Fungal Biol Biotechnol 2024; 11:6. [PMID: 38824542 PMCID: PMC11143684 DOI: 10.1186/s40694-024-00175-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 05/08/2024] [Indexed: 06/03/2024] Open
Abstract
BACKGROUND Aureobasidium pullulans is a generalist polyextremotolerant black yeast fungus. It tolerates temperatures below 0 °C or salt concentrations up to 18%, among other stresses. A. pullulans genome sequencing revealed a high potential for producing bioactive metabolites. Only few molecular tools exist to edit the genome of A. pullulans, hence it is important to make full use of its potential. Two CRISPR/Cas9 methods have been proposed for the protoplast-based transformation of A. pullulans. These methods require the integration of a marker gene into the locus of the gene to be deleted, when the deletion of this gene does not yield a selectable phenotype. We present the adaptation of a plasmid-based CRISPR/Cas9 system developed in Aspergillus niger for A. pullulans to create deletion strains. RESULTS The A. niger CRISPR/Cas9 plasmid led to efficient genomic deletions in A. pullulans. In this study, strains with deletions ranging from 30 to 862 bp were obtained by using an AMA1 plasmid-based genome editing strategy. CONCLUSION The CRISPR/Cas9 transformation system presented in this study provides new opportunities for strain engineering of A. pullulans. This system allows expression of Cas9 and antibiotic resistance while being easy to adapt. This strategy could open the path to intensive genomic engineering in A. pullulans.
Collapse
Affiliation(s)
- Audrey Masi
- Christian Doppler Laboratory for Optimised Expression of Carbohydrate-Active Enzymes, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Gumpendorfer Str. 1a, A-1060, Vienna, Austria
- Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Gumpendorfer Str. 1a, A-1060, Vienna, Austria
| | - Klara Wögerbauer
- Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Gumpendorfer Str. 1a, A-1060, Vienna, Austria
| | - Robert L Mach
- Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Gumpendorfer Str. 1a, A-1060, Vienna, Austria
| | - Astrid R Mach-Aigner
- Christian Doppler Laboratory for Optimised Expression of Carbohydrate-Active Enzymes, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Gumpendorfer Str. 1a, A-1060, Vienna, Austria.
- Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Gumpendorfer Str. 1a, A-1060, Vienna, Austria.
| |
Collapse
|
9
|
Petrucco CA, Crocker AW, D’Alessandro A, Medina EM, Gorman O, McNeill J, Gladfelter AS, Lew DJ. Tools for live-cell imaging of cytoskeletal and nuclear behavior in the unconventional yeast, Aureobasidium pullulans. Mol Biol Cell 2024; 35:br10. [PMID: 38446617 PMCID: PMC11064661 DOI: 10.1091/mbc.e23-10-0388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/07/2024] [Accepted: 02/27/2024] [Indexed: 03/08/2024] Open
Abstract
Aureobasidium pullulans is a ubiquitous fungus with a wide variety of morphologies and growth modes including "typical" single-budding yeast, and interestingly, larger multinucleate yeast than can make multiple buds in a single cell cycle. The study of A. pullulans promises to uncover novel cell biology, but currently tools are lacking to achieve this goal. Here, we describe initial components of a cell biology toolkit for A. pullulans, which is used to express and image fluorescent probes for nuclei as well as components of the cytoskeleton. These tools allowed live-cell imaging of the multinucleate and multibudding cycles, revealing highly synchronous mitoses in multinucleate yeast that occur in a semiopen manner with an intact but permeable nuclear envelope. These findings open the door to using this ubiquitous polyextremotolerant fungus as a model for evolutionary cell biology.
Collapse
Affiliation(s)
- Claudia A. Petrucco
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710
| | - Alex W. Crocker
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599
| | - Alec D’Alessandro
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710
| | - Edgar M. Medina
- Department of Biology, University of Massachusetts, Amherst, MA 01003
| | - Olivia Gorman
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710
| | - Jessica McNeill
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710
| | | | - Daniel J. Lew
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710
| |
Collapse
|
10
|
Haala F, Dielentheis-Frenken MRE, Brandt FM, Karmainski T, Blank LM, Tiso T. DoE-based medium optimization for improved biosurfactant production with Aureobasidium pullulans. Front Bioeng Biotechnol 2024; 12:1379707. [PMID: 38511129 PMCID: PMC10953688 DOI: 10.3389/fbioe.2024.1379707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 02/19/2024] [Indexed: 03/22/2024] Open
Abstract
Polyol lipids (a.k.a. liamocins) produced by the polyextremotolerant, yeast-like fungus Aureobasidium pullulans are amphiphilic molecules with high potential to serve as biosurfactants. So far, cultivations of A. pullulans have been performed in media with complex components, which complicates further process optimization due to their undefined composition. In this study, we developed and optimized a minimal medium, focusing on biosurfactant production. Firstly, we replaced yeast extract and peptone in the best-performing polyol lipid production medium to date with a vitamin solution, a trace-element solution, and a nitrogen source. We employed a design of experiments approach with a factor screening using a two-level-factorial design, followed by a central composite design. The polyol lipid titer was increased by 56% to 48 g L-1, and the space-time yield from 0.13 to 0.20 g L-1 h-1 in microtiter plate cultivations. This was followed by a successful transfer to a 1 L bioreactor, reaching a polyol lipid concentration of 41 g L-1. The final minimal medium allows the investigation of alternative carbon sources and the metabolic pathways involved, to pinpoint targets for genetic modifications. The results are discussed in the context of the industrial applicability of this robust and versatile fungus.
Collapse
Affiliation(s)
| | | | | | | | | | - Till Tiso
- Institute of Applied Microbiology, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
11
|
Gostinčar C, Gunde-Cimerman N. Black yeasts in hypersaline conditions. Appl Microbiol Biotechnol 2024; 108:252. [PMID: 38441672 PMCID: PMC10914880 DOI: 10.1007/s00253-024-13052-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/26/2024] [Accepted: 02/02/2024] [Indexed: 03/07/2024]
Abstract
Extremotolerant and extremophilic fungi are an important part of microbial communities that thrive in extreme environments. Among them, the black yeasts are particularly adaptable. They use their melanized cell walls and versatile morphology, as well as a complex set of molecular adaptations, to survive in conditions that are lethal to most other species. In contrast to extremophilic bacteria and archaea, these fungi are typically extremotolerant rather than extremophilic and exhibit an unusually wide ecological amplitude. Some extremely halotolerant black yeasts can grow in near-saturated NaCl solutions, but can also grow on normal mycological media. They adapt to the low water activity caused by high salt concentrations by sensing their environment, balancing osmotic pressure by accumulating compatible solutes, removing toxic salt ions from the cell using membrane transporters, altering membrane composition and remodelling the highly melanized cell wall. As protection against extreme conditions, halotolerant black yeasts also develop different morphologies, from yeast-like to meristematic. Genomic studies of black yeasts have revealed a variety of reproductive strategies, from clonality to intense recombination and the formation of stable hybrids. Although a comprehensive understanding of the ecological role and molecular adaptations of halotolerant black yeasts remains elusive and the application of many experimental methods is challenging due to their slow growth and recalcitrant cell walls, much progress has been made in deciphering their halotolerance. Advances in molecular tools and genomics are once again accelerating the research of black yeasts, promising further insights into their survival strategies and the molecular basis of their adaptations. KEY POINTS: • Black yeasts show remarkable adaptability to environmental stress • Black yeasts are part of microbial communities in hypersaline environments • Halotolerant black yeasts utilise various molecular and morphological adaptations.
Collapse
Affiliation(s)
- Cene Gostinčar
- Biotechnical Faculty, Department of Biology, University of Ljubljana, Jamnikarjeva 101, 1000, Ljubljana, Slovenia
| | - Nina Gunde-Cimerman
- Biotechnical Faculty, Department of Biology, University of Ljubljana, Jamnikarjeva 101, 1000, Ljubljana, Slovenia.
| |
Collapse
|
12
|
Rensink S, van Nieuwenhuijzen EJ, Sailer MF, Struck C, Wösten HAB. Use of Aureobasidium in a sustainable economy. Appl Microbiol Biotechnol 2024; 108:202. [PMID: 38349550 PMCID: PMC10864419 DOI: 10.1007/s00253-024-13025-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
Aureobasidium is omnipresent and can be isolated from air, water bodies, soil, wood, and other plant materials, as well as inorganic materials such as rocks and marble. A total of 32 species of this fungal genus have been identified at the level of DNA, of which Aureobasidium pullulans is best known. Aureobasidium is of interest for a sustainable economy because it can be used to produce a wide variety of compounds, including enzymes, polysaccharides, and biosurfactants. Moreover, it can be used to promote plant growth and protect wood and crops. To this end, Aureobasidium cells adhere to wood or plants by producing extracellular polysaccharides, thereby forming a biofilm. This biofilm provides a sustainable alternative to petrol-based coatings and toxic chemicals. This and the fact that Aureobasidium biofilms have the potential of self-repair make them a potential engineered living material avant la lettre. KEY POINTS: •Aureobasidium produces products of interest to the industry •Aureobasidium can stimulate plant growth and protect crops •Biofinish of A. pullulans is a sustainable alternative to petrol-based coatings •Aureobasidium biofilms have the potential to function as engineered living materials.
Collapse
Affiliation(s)
- Stephanie Rensink
- Department of Biology, Microbiology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, the Netherlands.
- Department of Business, Building and Technology, Sustainable Building Technology, Saxion University of Applied Sciences, M.H. Tromplaan 28, 7513 AB, Enschede, the Netherlands.
| | - Elke J van Nieuwenhuijzen
- Faculty of Technology, Amsterdam University of Applied Sciences, Rhijnspoorplein 2, 1091 GC, Amsterdam, The Netherlands
| | - Michael F Sailer
- Department of Business, Building and Technology, Sustainable Building Technology, Saxion University of Applied Sciences, M.H. Tromplaan 28, 7513 AB, Enschede, the Netherlands
| | - Christian Struck
- Department of Business, Building and Technology, Sustainable Building Technology, Saxion University of Applied Sciences, M.H. Tromplaan 28, 7513 AB, Enschede, the Netherlands
| | - Han A B Wösten
- Department of Biology, Microbiology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, the Netherlands
| |
Collapse
|
13
|
Zhang M, Wei X, Wang P, Chi Z, Liu GL, Chi ZM. Liamocin biosynthesis is induced by an autogenous host acid activation in Aureobasidium melanogenum. Biotechnol J 2024; 19:e2200440. [PMID: 37740661 DOI: 10.1002/biot.202200440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 09/13/2023] [Accepted: 09/22/2023] [Indexed: 09/24/2023]
Abstract
It has been known that maximal liamocin production must be carried out at low environmental pH (around 3.0). In this study, it was found that the low pH was mainly caused by the secreted citric acid which is one precursor of acetyl-CoA for liamocin biosynthesis. Determination of citric acid in the culture, deletion, complementation and overexpression of the CEXA gene encoding specific citrate exporter demonstrated that the low pH was indeed caused by the secreted citric acid. Deletion, complementation and overexpression of the ACL gene encoding ATP-citric acid lyase and effects of different initial pHs and added citric acid showed that the low pH in the presence of citric acid was suitable for lysis of intracellular citric acid, liamocin production and expression of the PACC gene encoding the pH signaling transcription factor PacC. This meant that the PACC gene was an acid-expression gene. Deletion, complementation and overexpression of the PACC gene indicated that expression of the key gene cluster GAL1-EST1-PKS1 for liamocin biosynthesis was driven by the pH signaling transcription factor PacC and there was weak nitrogen catabolite repression on liamocin biosynthesis at the low pH. That was why liamocin biosynthesis was induced at a low pH in the presence of citric acid. The mechanisms of the enhanced liamocin biosynthesis by the autogenous host acid activation, together with the pH signaling pathway, were proposed.
Collapse
Affiliation(s)
- Mei Zhang
- College of Marine Life Science, Ocean University of China, Qingdao, China
| | - Xin Wei
- College of Marine Life Science, Ocean University of China, Qingdao, China
| | - Peng Wang
- College of Marine Life Science, Ocean University of China, Qingdao, China
| | - Zhe Chi
- College of Marine Life Science, Ocean University of China, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Guang-Lei Liu
- College of Marine Life Science, Ocean University of China, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Zhen-Ming Chi
- College of Marine Life Science, Ocean University of China, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
14
|
Pham NQ, Duong TA, Wingfield BD, Barnes I, Durán A, Wingfield MJ. Characterisation of the mating-type loci in species of Elsinoe causing scab diseases. Fungal Biol 2023; 127:1484-1490. [PMID: 38097322 DOI: 10.1016/j.funbio.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/08/2023] [Accepted: 11/10/2023] [Indexed: 12/18/2023]
Abstract
The genus Elsinoe includes many aggressive plant pathogens that infect various economically important agricultural, horticultural and forestry plants. Significant diseases include citrus scab caused by E. fawcettii and E. australis, grapevine spot anthracnose by E. ampelina, and the emerging Eucalyptus scab and shoot malformation disease caused by the recently described E. necatrix. Despite their importance as plant pathogens, little is known regarding the biology of many Elsinoe spp. To gain insights into the reproductive biology of these fungi, we characterized the mating-type loci of seven species using whole genome sequence data. Results showed that the MAT1 locus organization and its flanking genes is relatively conserved in most cases. All seven species manifested a typical heterothallic mating system characterized by having either the MAT1-1 or MAT1-2 idiomorph present in an isolate. These idiomorphs were defined by the MAT1-1-1 or the MAT1-2-1 gene, respectively. A unique MAT1-1 idiomorph containing a truncated MAT1-2-1 gene, and a MAT1-1-1 gene, was identified in E. necatrix and E. fawcettii genomes. Additionally, two idiomorph-specific proteins were found in the MAT1-1 and MAT1-2 idiomorphs of E. australis. Universal mating-type markers confirmed heterothallism across 21 Elsinoe spp., are poised to advance future studies regarding the biology of these fungi.
Collapse
Affiliation(s)
- N Q Pham
- Department of Plant and Soil Sciences, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028, South Africa.
| | - T A Duong
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028, South Africa
| | - B D Wingfield
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028, South Africa
| | - I Barnes
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028, South Africa
| | - A Durán
- Plant Health Program, Research and Development, Asia Pacific Resources International Holdings Ltd. (APRIL), Pangkalan Kerinci, 28300, Riau, Indonesia
| | - M J Wingfield
- Department of Plant and Soil Sciences, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028, South Africa
| |
Collapse
|
15
|
Abstract
Hypersaline waters and glacial ice are inhospitable environments that have low water activity and high concentrations of osmolytes. They are inhabited by diverse microbial communities, of which extremotolerant and extremophilic fungi are essential components. Some fungi are specialized in only one of these two environments and can thrive in conditions that are lethal to most other life-forms. Others are generalists, highly adaptable species that occur in both environments and tolerate a wide range of extremes. Both groups efficiently balance cellular osmotic pressure and ion concentration, stabilize cell membranes, remodel cell walls, and neutralize intracellular oxidative stress. Some species use unusual reproductive strategies. Further investigation of these adaptations with new methods and carefully designed experiments under ecologically relevant conditions will help predict the role of fungi in hypersaline and glacial environments affected by climate change, decipher their stress resistance mechanisms and exploit their biotechnological potential.
Collapse
Affiliation(s)
- Cene Gostinčar
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia; ,
| | - Nina Gunde-Cimerman
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia; ,
| |
Collapse
|
16
|
Ikewaki N, Sonoda T, Kurosawa G, Iwasaki M, Devaprasad Dedeepiya V, Senthilkumar R, Preethy S, Abraham S. Beta 1,3-1,6 Glucans Produced by Two Novel Strains of Aureobasidium Pullulans Exert Immune and Metabolic Beneficial Effects in Healthy Middle-aged Japanese Men: Results of an Exploratory Randomized Control Study. JAR LIFE 2023; 12:61-71. [PMID: 37637272 PMCID: PMC10457473 DOI: 10.14283/jarlife.2023.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 06/13/2023] [Indexed: 08/29/2023]
Abstract
Objectives In this pilot study, we have evaluated the specific metabolic and immune-related benefits of the AFO-202 strain and N-163 strain of black yeast Aureobasidium pullulans-produced beta 1,3-1,6 glucan in healthy human subjects. Methods Sixteen healthy Japanese male volunteers (aged 40 to 60 years) took part in this clinical trial. They were divided into four groups (n = 4 each): Group I consumed AFO-202 beta-glucan (2 sachets of 1 g each per day), IA for 35 days and IB for 21 days; Group II consumed a combination of AFO-202 beta-glucan (2 sachets of 1 g each) and N-163 beta-glucan (1 sachet of 15 g gel each per day), IIA for 35 days and IIB for 21 days. Results Decrease in HbA1C and glycated albumin (GA), significant increase of eosinophils and monocytes and marginal decrease in D-dimer levels, decrease in neutrophil-to-lymphocyte ratio (NLR), with an increase in the lymphocyte-to-CRP ratio (LCR) and leukocyte-to-CRP ratio (LeCR) was observed in Group I between pre- and post-treatment. Decrease in total and LDL cholesterol, a decrease of CD11b, serum ferritin, galectin-3 and fibrinogen were profound in Group II between pre- and post-treatment. However, there was no statistically significant difference between day 21 and day 35 among the groups. Conclusion This outcome warrants larger clinical trials to explore the potentials of these safe food supplements in the prevention and prophylaxis of diseases due to dysregulated metabolism, such as fatty liver disease, and infections such as COVID-19 in which balanced immunomodulation are of utmost importance, besides their administration as an adjunct to existing therapeutic approaches of both communicable and non-communicable diseases.
Collapse
Affiliation(s)
- N. Ikewaki
- Dept. of Medical Life Science, Kyushu University of Health and Welfare, Japan
- Institute of Immunology, Junsei Educational Institute, Nobeoka, Miyazaki, Japan
| | - T. Sonoda
- Institute of Immunology, Junsei Educational Institute, Nobeoka, Miyazaki, Japan
| | - G. Kurosawa
- Department of Academic Research Support Promotion Facility, Center for Research Promotion and Support, Fujita Health University, Aichi, Japan
- MabGenesis KK, Nagoya, Japan
| | - M. Iwasaki
- Centre for Advancing Clinical Research (CACR), University of Yamanashi - School of Medicine, Chuo, Japan
| | - V. Devaprasad Dedeepiya
- Mary-Yoshio Translational Hexagon (MYTH), Nichi-In Centre for Regenerative Medicine (NCRM), Chennai, India
| | - R. Senthilkumar
- Fujio-Eiji Academic Terrain (FEAT), Nichi-In Centre for Regenerative Medicine (NCRM), Chennai, India
- Antony- Xavier Interdisciplinary Scholastics (AXIS), GN Corporation Co. Ltd., Kofu, Japan
| | - S. Preethy
- Fujio-Eiji Academic Terrain (FEAT), Nichi-In Centre for Regenerative Medicine (NCRM), Chennai, India
| | - S.J.K. Abraham
- Centre for Advancing Clinical Research (CACR), University of Yamanashi - School of Medicine, Chuo, Japan
- Mary-Yoshio Translational Hexagon (MYTH), Nichi-In Centre for Regenerative Medicine (NCRM), Chennai, India
- Antony- Xavier Interdisciplinary Scholastics (AXIS), GN Corporation Co. Ltd., Kofu, Japan
- R & D, Sophy Inc., Japan
- Levy-Jurgen Transdisciplinary Exploratory (LJTE), Global Niche Corp, Wilmington, DE, USA
| |
Collapse
|
17
|
Jia SL, Zhang M, Liu GL, Chi ZM, Chi Z. Novel chromosomes and genomes provide new insights into evolution and adaptation of the whole genome duplicated yeast-like fungus TN3-1 isolated from natural honey. Funct Integr Genomics 2023; 23:206. [PMID: 37335429 DOI: 10.1007/s10142-023-01127-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/21/2023]
Abstract
Aureobasidium melanogenum TN3-1 strain and A. melanogenum P16 strain were isolated from the natural honey and the mangrove ecosystem, respectively. The former can produce much higher pullulan from high concentration of glucose than the latter. In order to know what happened to their genomes, the PacBio sequencing and Hi-C technologies were used to create the first high-quality chromosome-level reference genome assembly of A. melanogenum TN3-1 (51.61 Mb) and A. melanogenum P16 (25.82 Mb) with the contig N50 of 2.19 Mb and 2.26 Mb, respectively. Based on the Hi-C results, a total of 93.33% contigs in the TN3-1 strain and 92.31% contigs in the P16 strain were anchored onto 24 and 12 haploid chromosomes, respectively. The genomes of the TN3-1 strain had two subgenomes A and B. Synteny analysis showed that the genomic contents of the two subgenomes were asymmetric with many structural variations. Intriguingly, the TN3-1 strain was revealed as a recent hybrid/fusion between the ancestor of A. melanogenum CBS105.22/CBS110374 and the ancestor of another unidentified strain of A. melanogenum similar to P16 strain. We estimated that the two ancient progenitors diverged around 18.38 Mya and merged around 10.66-9.98 Mya. It was found that in the TN3-1 strain, telomeres of each chromosome contained high level of long interspersed nuclear elements (LINEs), but had low level of the telomerase encoding gene. Meanwhile, there were high level of transposable elements (TEs) inserted in the chromosomes of the TN3-1 strain. In addition, the positively selected genes of the TN3-1 strain were mainly enriched in the metabolic processes related to harsh environmental adaptability. Most of the stress-related genes were found to be related to the adjacent LTRs, and the glucose derepression was caused by the mutation of the Glc7-2 in the Snf-Mig1 system. All of these could contribute to its genetic instability, genome evolution, high stress resistance, and high pullulan production from glucose.
Collapse
Affiliation(s)
- Shu-Lei Jia
- College of Marine Life Sciences, Ocean University of China, Yushan Road, No. 5, Qingdao, China
| | - Mei Zhang
- College of Marine Life Sciences, Ocean University of China, Yushan Road, No. 5, Qingdao, China
| | - Guang-Lei Liu
- College of Marine Life Sciences, Ocean University of China, Yushan Road, No. 5, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266003, China
| | - Zhen-Ming Chi
- College of Marine Life Sciences, Ocean University of China, Yushan Road, No. 5, Qingdao, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266003, China.
| | - Zhe Chi
- College of Marine Life Sciences, Ocean University of China, Yushan Road, No. 5, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266003, China
| |
Collapse
|
18
|
Parra M, Libkind D, Hittinger CT, Álvarez L, Bellora N. Assembly and comparative genome analysis of a Patagonian Aureobasidium pullulans isolate reveals unexpected intraspecific variation. Yeast 2023. [PMID: 37114349 DOI: 10.1002/yea.3853] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 03/27/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Aureobasidium pullulans is a yeast-like fungus with remarkable phenotypic plasticity widely studied for its importance for the pharmaceutical and food industries. So far, genomic studies with strains from all over the world suggest they constitute a genetically unstructured population, with no association by habitat. However, the mechanisms by which this genome supports so many phenotypic permutations are still poorly understood. Recent works have shown the importance of sequencing yeast genomes from extreme environments to increase the repertoire of phenotypic diversity of unconventional yeasts. In this study, we present the genomic draft of A. pullulans strain from a Patagonian yeast diversity hotspot, re-evaluate its taxonomic classification based on taxogenomic approaches, and annotate its genome with high-depth transcriptomic data. Our analysis suggests this isolate could be considered a novel variant at an early stage of the speciation process. The discovery of divergent strains in a genomically homogeneous group, such as A. pullulans, can be valuable in understanding the evolution of the species. The identification and characterization of new variants will not only allow finding unique traits of biotechnological importance, but also optimize the choice of strains whose phenotypes will be characterized, providing new elements to explore questions about plasticity and adaptation.
Collapse
Affiliation(s)
- Micaela Parra
- Laboratorio de Genómica Computacional, Instituto de Tecnologías Nucleares para la Salud (INTECNUS), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Carlos de Bariloche, Argentina
| | - Diego Libkind
- Centro de Referencia en Levaduras y Tecnología Cervecera (CRELTEC), Instituto Andino Patagónico de Tecnologías Biológicas y Geoambientales (IPATEC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional del Comahue, San Carlos de Bariloche, Argentina
| | - Chris Todd Hittinger
- Laboratory of Genetics, Center for Genomic Science Innovation, DOE Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Lucía Álvarez
- Centro de Referencia en Levaduras y Tecnología Cervecera (CRELTEC), Instituto Andino Patagónico de Tecnologías Biológicas y Geoambientales (IPATEC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional del Comahue, San Carlos de Bariloche, Argentina
| | - Nicolás Bellora
- Laboratorio de Genómica Computacional, Instituto de Tecnologías Nucleares para la Salud (INTECNUS), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Carlos de Bariloche, Argentina
| |
Collapse
|
19
|
Magoye E, Nägeli L, Bühlmann A, Hilber-Bodmer M, Keller P, Mühlethaler K, Riat A, Schrenzel J, Freimoser FM. Clinical Aureobasidium Isolates Are More Fungicide Sensitive than Many Agricultural Isolates. Microbiol Spectr 2023; 11:e0529922. [PMID: 36943135 PMCID: PMC10100788 DOI: 10.1128/spectrum.05299-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 02/24/2023] [Indexed: 03/23/2023] Open
Abstract
Fungicide applications in agriculture and medicine can promote the evolution of resistant, pathogenic fungi, which is a growing problem for disease management in both settings. Nonpathogenic mycobiota are also exposed to fungicides, may become tolerant, and could turn into agricultural or medical problems, for example, due to climate change or in immunocompromised individuals. However, quantitative data about fungicide sensitivity of environmental fungi is mostly lacking. Aureobasidium species are widely distributed and frequently isolated yeast-like fungi. One species, A. pullulans, is used as a biocontrol agent, but is also encountered in clinical samples, regularly. Here, we compared 16 clinical and 30 agricultural Aureobasidium isolates based on whole-genome data and by sensitivity testing with the 3 fungicides captan, cyprodinil, and difenoconazole. Our phylogenetic analyses determined that 7 of the 16 clinical isolates did not belong to the species A. pullulans. These isolates clustered with other Aureobasidium species, including A. melanogenum, a recently separated species that expresses virulence traits that are mostly lacking in A. pullulans. Interestingly, the clinical Aureobasidium isolates were significantly more fungicide sensitive than many isolates from agricultural samples, which implies selection for fungicide tolerance of non-target fungi in agricultural ecosystems. IMPORTANCE Environmental microbiota are regularly found in clinical samples and can cause disease, in particular, in immunocompromised individuals. Organisms of the genus Aureobasidium belonging to this group are highly abundant, and some species are even described as pathogens. Many A. pullulans isolates from agricultural samples are tolerant to different fungicides, and it seems inevitable that such strains will eventually appear in the clinics. Selection for fungicide tolerance would be particularly worrisome for species A. melanogenum, which is also found in the environment and exhibits virulence traits. Based on our observation and the strains tested here, clinical Aureobasidium isolates are still fungicide sensitive. We, therefore, suggest monitoring fungicide sensitivity in species, such as A. pullulans and A. melanogenum, and to consider the development of fungicide tolerance in the evaluation process of fungicides.
Collapse
Affiliation(s)
- Electine Magoye
- Agroscope, Research Division Plant Protection, Nyon, Switzerland
| | - Lukas Nägeli
- Agroscope, Research Division Plant Protection, Nyon, Switzerland
| | - Andreas Bühlmann
- Agroscope, Research Division Food Microbial Systems, Wädenswil, Switzerland
| | | | - Peter Keller
- University of Bern, Institute for Infectious Diseases, Bern, Switzerland
| | - Konrad Mühlethaler
- University of Bern, Institute for Infectious Diseases, Bern, Switzerland
| | - Arnaud Riat
- Bacteriology Laboratory, Division of Laboratory Medicine, Department of Diagnostics, Geneva University Hospitals, Geneva, Switzerland
| | - Jacques Schrenzel
- Bacteriology Laboratory, Division of Laboratory Medicine, Department of Diagnostics, Geneva University Hospitals, Geneva, Switzerland
| | | |
Collapse
|
20
|
Sigova EA, Pushkova EN, Rozhmina TA, Kudryavtseva LP, Zhuchenko AA, Novakovskiy RO, Zhernova DA, Povkhova LV, Turba AA, Borkhert EV, Melnikova NV, Dmitriev AA, Dvorianinova EM. Assembling Quality Genomes of Flax Fungal Pathogens from Oxford Nanopore Technologies Data. J Fungi (Basel) 2023; 9:301. [PMID: 36983469 PMCID: PMC10055923 DOI: 10.3390/jof9030301] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 03/03/2023] Open
Abstract
Flax (Linum usitatissimum L.) is attacked by numerous devastating fungal pathogens, including Colletotrichum lini, Aureobasidium pullulans, and Fusarium verticillioides (Fusarium moniliforme). The effective control of flax diseases follows the paradigm of extensive molecular research on pathogenicity. However, such studies require quality genome sequences of the studied organisms. This article reports on the approaches to assembling a high-quality fungal genome from the Oxford Nanopore Technologies data. We sequenced the genomes of C. lini, A. pullulans, and F. verticillioides (F. moniliforme) and received different volumes of sequencing data: 1.7 Gb, 3.9 Gb, and 11.1 Gb, respectively. To obtain the optimal genome sequences, we studied the effect of input data quality and genome coverage on assembly statistics and tested the performance of different assembling and polishing software. For C. lini, the most contiguous and complete assembly was obtained by the Flye assembler and the Homopolish polisher. The genome coverage had more effect than data quality on assembly statistics, likely due to the relatively low amount of sequencing data obtained for C. lini. The final assembly was 53.4 Mb long and 96.4% complete (according to the glomerellales_odb10 BUSCO dataset), consisted of 42 contigs, and had an N50 of 4.4 Mb. For A. pullulans and F. verticillioides (F. moniliforme), the best assemblies were produced by Canu-Medaka and Canu-Homopolish, respectively. The final assembly of A. pullulans had a length of 29.5 Mb, 99.4% completeness (dothideomycetes_odb10), an N50 of 2.4 Mb and consisted of 32 contigs. F. verticillioides (F. moniliforme) assembly was 44.1 Mb long, 97.8% complete (hypocreales_odb10), consisted of 54 contigs, and had an N50 of 4.4 Mb. The obtained results can serve as a guideline for assembling a de novo genome of a fungus. In addition, our data can be used in genomic studies of fungal pathogens or plant-pathogen interactions and assist in the management of flax diseases.
Collapse
Affiliation(s)
- Elizaveta A. Sigova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
- Moscow Institute of Physics and Technology, Moscow 141701, Russia
| | - Elena N. Pushkova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | | | | | - Alexander A. Zhuchenko
- Federal Research Center for Bast Fiber Crops, Torzhok 172002, Russia
- All-Russian Horticultural Institute for Breeding, Agrotechnology and Nursery, Moscow 115598, Russia
| | - Roman O. Novakovskiy
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Daiana A. Zhernova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow 119234, Russia
| | - Liubov V. Povkhova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
- Moscow Institute of Physics and Technology, Moscow 141701, Russia
| | - Anastasia A. Turba
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Elena V. Borkhert
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Nataliya V. Melnikova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Alexey A. Dmitriev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | | |
Collapse
|
21
|
Frąc M, Hannula ES, Bełka M, Salles JF, Jedryczka M. Soil mycobiome in sustainable agriculture. Front Microbiol 2022; 13:1033824. [PMID: 36519160 PMCID: PMC9742577 DOI: 10.3389/fmicb.2022.1033824] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 10/24/2022] [Indexed: 07/21/2023] Open
Abstract
The soil microbiome contributes to several ecosystem processes. It plays a key role in sustainable agriculture, horticulture and forestry. In contrast to the vast number of studies focusing on soil bacteria, the amount of research concerning soil fungal communities is limited. This is despite the fact that fungi play a crucial role in the cycling of matter and energy on Earth. Fungi constitute a significant part of the pathobiome of plants. Moreover, many of them are indispensable to plant health. This group includes mycorrhizal fungi, superparasites of pathogens, and generalists; they stabilize the soil mycobiome and play a key role in biogeochemical cycles. Several fungal species also contribute to soil bioremediation through their uptake of high amounts of contaminants from the environment. Moreover, fungal mycelia stretch below the ground like blood vessels in the human body, transferring water and nutrients to and from various plants. Recent advances in high-throughput sequencing combined with bioinformatic tools have facilitated detailed studies of the soil mycobiome. This review discusses the beneficial effects of soil mycobiomes and their interactions with other microbes and hosts in both healthy and unhealthy ecosystems. It may be argued that studying the soil mycobiome in such a fashion is an essential step in promoting sustainable and regenerative agriculture.
Collapse
Affiliation(s)
- Magdalena Frąc
- Institute of Agrophysics, Polish Academy of Sciences, Lublin, Poland
| | | | - Marta Bełka
- Department of Forest Entomology and Pathology, Faculty of Forestry and Wood Technology, Poznań University of Life Sciences, Poznań, Poland
| | - Joana Falcao Salles
- Department of Microbial Ecology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands
| | | |
Collapse
|
22
|
Campana R, Fanelli F, Sisti M. Role of melanin in the black yeast fungi Aureobasidium pullulans and Zalaria obscura in promoting tolerance to environmental stresses and to antimicrobial compounds. Fungal Biol 2022; 126:817-825. [PMID: 36517149 DOI: 10.1016/j.funbio.2022.11.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 10/04/2022] [Accepted: 11/08/2022] [Indexed: 11/15/2022]
Abstract
The role of melanin in Aureobasidium pullulans ATCC 15233 and Zalaria obscura LS31012019, under simulated osmotic, oxidative, and high temperature stress conditions, on the susceptibility to essential oils (EOs) or antifungals and on the resistance to UV-C radiation was investigated. 93.6% of melanized A. pullulans and 92% of Z. obscura survived to 40 °C for 1 h compared to 77% and 76% of the non-melanized ones, while both yeasts tolerated a high concentration of NaCl (up to 30%) and H2O2 (up to 400 mM) regardless of melanin production. Higher EOs antifungal efficacy was observed in non-melanized cells (growth inhibition zone >30 mm) compared to the melanized ones (25 mm). Similarly, the lowest Minimum Inhibitory Concentrations (MIC) and Minimum Fungicidal Concentration (MFC) values were evidenced for Fluconazole, Clotrimazole, Bifonazole and Amphotericin in the non-melanized fungi. Increasing UV-C intensity (up to 2004.5 J/m2) caused total death in the non-melanized strains compared to about 30% growth reduction in the melanized ones. The results of this investigation, the first focused on the biological role of melanin in "black-fungi", are novel and encourage a better understanding of the biochemical features of melanin in the environmental adaptive ability of the new species Z. obscura.
Collapse
Affiliation(s)
- Raffaella Campana
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy.
| | - Fabiana Fanelli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Maurizio Sisti
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| |
Collapse
|
23
|
Gostinčar C, Sun X, Černoša A, Fang C, Gunde-Cimerman N, Song Z. Clonality, inbreeding, and hybridization in two extremotolerant black yeasts. Gigascience 2022; 11:giac095. [PMID: 36200832 PMCID: PMC9535773 DOI: 10.1093/gigascience/giac095] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 07/29/2022] [Accepted: 09/12/2022] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND The great diversity of lifestyles and survival strategies observed in fungi is reflected in the many ways in which they reproduce and recombine. Although a complete absence of recombination is rare, it has been reported for some species, among them 2 extremotolerant black yeasts from Dothideomycetes: Hortaea werneckii and Aureobasidium melanogenum. Therefore, the presence of diploid strains in these species cannot be explained as the product of conventional sexual reproduction. RESULTS Genome sequencing revealed that the ratio of diploid to haploid strains in both H. werneckii and A. melanogenum is about 2:1. Linkage disequilibrium between pairs of polymorphic loci and a high degree of concordance between the phylogenies of different genomic regions confirmed that both species are clonal. Heterozygosity of diploid strains is high, with several hybridizing genome pairs reaching the intergenomic distances typically seen between different fungal species. The origin of diploid strains collected worldwide can be traced to a handful of hybridization events that produced diploids, which were stable over long periods of time and distributed over large geographic areas. CONCLUSIONS Our results, based on the genomes of over 100 strains of 2 black yeasts, show that although they are clonal, they occasionally form stable and highly heterozygous diploid intraspecific hybrids. The mechanism of these apparently rare hybridization events, which are not followed by meiosis or haploidization, remains unknown. Both extremotolerant yeasts, H. werneckii and even more so A. melanogenum, a close relative of the intensely recombining and biotechnologically relevant Aureobasidium pullulans, provide an attractive model for studying the role of clonality and ploidy in extremotolerant fungi.
Collapse
Affiliation(s)
- Cene Gostinčar
- Department of Biology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
- Lars Bolund Institute of Regenerative Medicine, BGI-Qingdao, Qingdao 266555, China
| | - Xiaohuan Sun
- BGI-Shenzhen, Beishan Industrial Zone, Shenzhen 518083, China
| | - Anja Černoša
- Department of Biology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Chao Fang
- BGI-Shenzhen, Beishan Industrial Zone, Shenzhen 518083, China
| | - Nina Gunde-Cimerman
- Department of Biology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Zewei Song
- BGI-Shenzhen, Beishan Industrial Zone, Shenzhen 518083, China
| |
Collapse
|
24
|
Palumbo RJ, McKean N, Leatherman E, Namitz KEW, Connell L, Wolfe A, Moody K, Gostinčar C, Gunde-Cimerman N, Bah A, Hanes SD. Coevolution of the Ess1-CTD axis in polar fungi suggests a role for phase separation in cold tolerance. SCIENCE ADVANCES 2022; 8:eabq3235. [PMID: 36070379 PMCID: PMC9451162 DOI: 10.1126/sciadv.abq3235] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/21/2022] [Indexed: 06/14/2023]
Abstract
Most of the world's biodiversity lives in cold (-2° to 4°C) and hypersaline environments. To understand how cells adapt to such conditions, we isolated two key components of the transcription machinery from fungal species that live in extreme polar environments: the Ess1 prolyl isomerase and its target, the carboxy-terminal domain (CTD) of RNA polymerase II. Polar Ess1 enzymes are conserved and functional in the model yeast, Saccharomyces cerevisiae. By contrast, polar CTDs diverge from the consensus (YSPTSPS)26 and are not fully functional in S. cerevisiae. These CTDs retain the critical Ess1 Ser-Pro target motifs, but substitutions at Y1, T4, and S7 profoundly affected their ability to undergo phase separation in vitro and localize in vivo. We propose that environmentally tuned phase separation by the CTD and other intrinsically disordered regions plays an adaptive role in cold tolerance by concentrating enzymes and substrates to overcome energetic barriers to metabolic activity.
Collapse
Affiliation(s)
- Ryan J. Palumbo
- Department of Biochemistry and Molecular Biology, SUNY-Upstate Medical University, Syracuse, NY 13210, USA
| | - Nathan McKean
- Department of Biochemistry and Molecular Biology, SUNY-Upstate Medical University, Syracuse, NY 13210, USA
| | - Erinn Leatherman
- Department of Biochemistry and Molecular Biology, SUNY-Upstate Medical University, Syracuse, NY 13210, USA
| | - Kevin E. W. Namitz
- Department of Biochemistry and Molecular Biology, SUNY-Upstate Medical University, Syracuse, NY 13210, USA
| | - Laurie Connell
- School of Marine Sciences and Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME 04469, USA
| | - Aaron Wolfe
- Ichor Life Sciences Inc., 2651 US Route 11, LaFayette, NY 13084, USA
- Lewis School of Health Sciences, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699, USA
- The BioInspired Institute, Syracuse University, Syracuse, NY 13244, USA
| | - Kelsey Moody
- Ichor Life Sciences Inc., 2651 US Route 11, LaFayette, NY 13084, USA
- Lewis School of Health Sciences, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699, USA
- The BioInspired Institute, Syracuse University, Syracuse, NY 13244, USA
| | - Cene Gostinčar
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | - Nina Gunde-Cimerman
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | - Alaji Bah
- Department of Biochemistry and Molecular Biology, SUNY-Upstate Medical University, Syracuse, NY 13210, USA
| | - Steven D. Hanes
- Department of Biochemistry and Molecular Biology, SUNY-Upstate Medical University, Syracuse, NY 13210, USA
| |
Collapse
|
25
|
Cai S, Snyder AB. Genomic characterization of polyextremotolerant black yeasts isolated from food and food production environments. FRONTIERS IN FUNGAL BIOLOGY 2022; 3:928622. [PMID: 37746166 PMCID: PMC10512282 DOI: 10.3389/ffunb.2022.928622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 07/04/2022] [Indexed: 09/26/2023]
Abstract
Black yeasts have been isolated from acidic, low water activity, and thermally processed foods as well as from surfaces in food manufacturing plants. The genomic basis for their relative tolerance to food-relevant environmental stresses has not been well defined. In this study, we performed whole genome sequencing (WGS) on seven black yeast strains including Aureobasidium (n=5) and Exophiala (n=2) which were isolated from food or food production environments. These strains were previously characterized for their tolerance to heat, hyperosmotic pressure, high pressure processing, hypochlorite sanitizers, and ultraviolet light. Based on the WGS data, three of the strains previously identified as A. pullulans were reassigned as A. melanogenum. Both haploid and diploid A. melanogenum strains were identified in this collection. Single-locus phylogenies based on beta tubulin, RNA polymerase II, or translation elongation factor protein sequences were compared to the phylogeny produced through SNP analysis, revealing that duplication of the fungal genome in diploid strains complicates the use of single-locus phylogenetics. There was not a strong association between phylogeny and either environmental source or stress tolerance phenotype, nor were trends in the copy numbers of stress-related genes associated with extremotolerance within this collection. While there were obvious differences between the genera, the heterogenous distribution of stress tolerance phenotypes and genotypes suggests that food-relevant black yeasts may be ubiquitous rather than specialists associated with particular ecological niches. However, further evaluation of additional strains and the potential impact of gene sequence modification is necessary to confirm these findings.
Collapse
Affiliation(s)
| | - Abigail B. Snyder
- Department of Food Science, Cornell University, Ithaca, NY, United States
| |
Collapse
|
26
|
From Glaciers to Refrigerators: the Population Genomics and Biocontrol Potential of the Black Yeast Aureobasidium subglaciale. Microbiol Spectr 2022; 10:e0145522. [PMID: 35880866 PMCID: PMC9430960 DOI: 10.1128/spectrum.01455-22] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Apples are affected by numerous fungi known as storage rots, which cause significant losses before and after harvest. Concerns about increasing antimicrobial resistance, bans on various fungicides, and changing consumer preferences are motivating the search for safer means to prevent fruit rot. The use of antagonistic microbes has been shown to be an efficient and environmentally friendly alternative to conventional phytopharmaceuticals. Here, we investigate the potential of Aureobasidium subglaciale for postharvest rot control. We tested the antagonistic activity of 9 strains of A. subglaciale and 7 closely related strains against relevant phytopathogenic fungi under conditions simulating low-temperature storage: Botrytis cinerea, Penicillium expansum, and Colletotrichum acutatum. We also investigated a selection of phenotypic traits of all strains and sequenced their whole genomes. The tested strains significantly reduced postharvest rot of apples at low temperatures caused by B. cinerea, C. acutatum (over 60%), and P. expansum (about 40%). Several phenotypic traits were observed that may contribute to this biocontrol capacity: growth at low temperatures, tolerance to high temperatures and elevated solute concentrations, and strong production of several extracellular enzymes and siderophores. Population genomics revealed that 7 of the 15 strains originally identified as A. subglaciale most likely belong to other, possibly undescribed species of the same genus. In addition, the population structure and linkage disequilibrium of the species suggest that A. subglaciale is strictly clonal and therefore particularly well suited for use in biocontrol. Overall, these data suggest substantial biological control potential for A. subglaciale, which represents another promising biological agent for disease control in fresh fruit. IMPORTANCE After harvest, fruits are often stored at low temperatures to prolong their life. However, despite the low temperatures, much of the fruit is lost to rot caused by a variety of fungi, resulting in major economic losses and food safety risks. An increasingly important environmentally friendly alternative to conventional methods of mitigating the effects of plant diseases is the use of microorganisms that act similarly to probiotics—occupying the available space, producing antimicrobial compounds, and consuming the nutrients needed by the rot-causing species. To find a new microorganism for biological control that is particularly suitable for cold storage of fruit, we tested different isolates of the cold-loving yeast Aureobasidium subglaciale and studied their phenotypic characteristics and genomes. We demonstrated that A. subglaciale can significantly reduce rotting of apples caused by three rot-causing molds at low temperatures and thus has great potential for preventing fruit rot during cold storage.
Collapse
|
27
|
|
28
|
Segal-Kischinevzky C, Romero-Aguilar L, Alcaraz LD, López-Ortiz G, Martínez-Castillo B, Torres-Ramírez N, Sandoval G, González J. Yeasts Inhabiting Extreme Environments and Their Biotechnological Applications. Microorganisms 2022; 10:794. [PMID: 35456844 PMCID: PMC9028089 DOI: 10.3390/microorganisms10040794] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/06/2022] [Accepted: 04/06/2022] [Indexed: 11/17/2022] Open
Abstract
Yeasts are microscopic fungi inhabiting all Earth environments, including those inhospitable for most life forms, considered extreme environments. According to their habitats, yeasts could be extremotolerant or extremophiles. Some are polyextremophiles, depending on their growth capacity, tolerance, and survival in the face of their habitat's physical and chemical constitution. The extreme yeasts are relevant for the industrial production of value-added compounds, such as biofuels, lipids, carotenoids, recombinant proteins, enzymes, among others. This review calls attention to the importance of yeasts inhabiting extreme environments, including metabolic and adaptive aspects to tolerate conditions of cold, heat, water availability, pH, salinity, osmolarity, UV radiation, and metal toxicity, which are relevant for biotechnological applications. We explore the habitats of extreme yeasts, highlighting key species, physiology, adaptations, and molecular identification. Finally, we summarize several findings related to the industrially-important extremophilic yeasts and describe current trends in biotechnological applications that will impact the bioeconomy.
Collapse
Affiliation(s)
- Claudia Segal-Kischinevzky
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Coyoacán, Mexico City 04510, Mexico; (C.S.-K.); (L.D.A.); (B.M.-C.); (N.T.-R.)
| | - Lucero Romero-Aguilar
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Coyoacán, Mexico City 04510, Mexico;
| | - Luis D. Alcaraz
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Coyoacán, Mexico City 04510, Mexico; (C.S.-K.); (L.D.A.); (B.M.-C.); (N.T.-R.)
| | - Geovani López-Ortiz
- Subdivisión de Medicina Familiar, Facultad de Medicina, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Coyoacán, Mexico City 04510, Mexico;
| | - Blanca Martínez-Castillo
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Coyoacán, Mexico City 04510, Mexico; (C.S.-K.); (L.D.A.); (B.M.-C.); (N.T.-R.)
| | - Nayeli Torres-Ramírez
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Coyoacán, Mexico City 04510, Mexico; (C.S.-K.); (L.D.A.); (B.M.-C.); (N.T.-R.)
| | - Georgina Sandoval
- Laboratorio de Innovación en Bioenergéticos y Bioprocesos Avanzados (LIBBA), Unidad de Biotecnología Industrial, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco AC (CIATEJ), Av. Normalistas No. 800 Col. Colinas de la Normal, Guadalajara 44270, Mexico;
| | - James González
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Coyoacán, Mexico City 04510, Mexico; (C.S.-K.); (L.D.A.); (B.M.-C.); (N.T.-R.)
| |
Collapse
|
29
|
|
30
|
Black Fungi and Stone Heritage Conservation: Ecological and Metabolic Assays for Evaluating Colonization Potential and Responses to Traditional Biocides. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12042038] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Identifying species involved in biodeterioration processes is helpful, however further effort is needed to assess their ecological requirements and actual activity. Black fungi (BF) represent one of the most underestimated threats to stone cultural heritage in the Mediterranean basin; they are difficult to kill or remove due to their ability to grow inside the rock and cope with several stresses. Despite this, little is known about BF and factors favoring their growth on stone surfaces. Eighteen BF species were here investigated for temperature and salt tolerance, and metabolic traits by plate assays. The relation between some highly damaged monuments and their BF settlers was assessed using X-ray diffraction analysis, mercury intrusion porosimetry, and SEM. The sensitiveness to four commonly used traditional biocides was also tested. All strains were able to grow within the range of 5–25 °C and in the presence of 3.5% NaCl. Instrumental analyses were fundamental in discovering the relation between halophilic strains and weathered marble sculptures. The acid, cellulase, esterase, and protease production recorded proved BF’s potential to produce a chemical action on carbonate stones and likely affect other materials/historical artefacts. Besides, the use of carboxymethylcellulose and Tween 20 should be evaluated in restoration practice to prevent tertiary bioreceptivity. Agar diffusion tests helped identify the most resistant species to biocides, opening the perspective of its use as reference organisms in material testing procedures.
Collapse
|
31
|
Cai S, Snyder AB. Thermoresistance in Black Yeasts Is Associated with Halosensitivity and High Pressure Processing Tolerance but Not with UV Tolerance or Sanitizer Tolerance. J Food Prot 2022; 85:203-212. [PMID: 34614188 DOI: 10.4315/jfp-21-314] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 10/01/2021] [Indexed: 11/11/2022]
Abstract
ABSTRACT Black yeasts can survive extreme conditions in food production because of their polyextremotolerant character. However, significant strain-to-strain variation in black yeast thermoresistance has been observed. In this study, we assessed the variability in tolerance to nonthermal interventions among a collection of food-related black yeast strains. Variation in tolerance to UV light treatment, high pressure processing (HPP), sanitizers, and osmotic pressure was observed within each species. The two strains previously shown to possess high thermotolerance, Exophiala phaeomuriformis FSL-E2-0572 and Exophiala dermatitidis YB-734, were also the most HPP tolerant but were the least halotolerant. Meanwhile, Aureobasidium pullulans FSL-E2-0290 was the most UV and sanitizer tolerant but had been shown to have relatively low thermoresistance. Fisher's exact tests showed that thermoresistance in black yeasts was associated with HPP tolerance and inversely with halotolerance, but no association was found with UV tolerance or sanitizer tolerance. Collectively, the relative stress tolerance among strains varied across interventions. Given this variation, different food products are susceptible to black yeast spoilage. In addition, different strains should be selected in challenge studies specific to the intervention. HIGHLIGHTS
Collapse
Affiliation(s)
- Shiyu Cai
- Department of Food Science, Cornell University, Ithaca, New York 14853, USA
| | - Abigail B Snyder
- Department of Food Science, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|
32
|
The signaling pathways involved in metabolic regulation and stress responses of the yeast-like fungi Aureobasidium spp. Biotechnol Adv 2021; 55:107898. [PMID: 34974157 DOI: 10.1016/j.biotechadv.2021.107898] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/23/2021] [Accepted: 12/23/2021] [Indexed: 12/22/2022]
Abstract
Aureobasidium spp. can use a wide range of substrates and are widely distributed in different environments, suggesting that they can sense and response to various extracellular signals and be adapted to different environments. It is true that their pullulan, lipid and liamocin biosynthesis and cell growth are regulated by the cAMP-PKA signaling pathway; Polymalate (PMA) and pullulan biosynthesis is controlled by the Ca2+ and TORC1 signaling pathways; the HOG1 signaling pathway determines high osmotic tolerance and high pullulan and liamocin biosynthesis; the Snf1/Mig1 pathway controls glucose repression on pullulan and liamocin biosynthesis; DHN-melanin biosynthesis and stress resistance are regulated by the CWI signaling pathway and TORC1 signaling pathway. In addition, the HSF1 pathway may control cell growth of some novel strains of A. melanogenum at 37 °C. However, the detailed molecular mechanisms of high temperature growth and thermotolerance of some novel strains of A. melanogenum and glucose derepression in A. melanogenum TN3-1 are still unclear.
Collapse
|
33
|
Bizarria R, Pagnocca FC, Rodrigues A. Yeasts in the attine ant-fungus mutualism: Diversity, functional roles, and putative biotechnological applications. Yeast 2021; 39:25-39. [PMID: 34473375 DOI: 10.1002/yea.3667] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 07/20/2021] [Accepted: 08/30/2021] [Indexed: 01/01/2023] Open
Abstract
Insects interact with a wide variety of yeasts, often providing a suitable substrate for their growth. Some yeast-insect interactions are tractable models for understanding the relationships between the symbionts. Attine ants are prominent insects in the Neotropics and have performed an ancient fungiculture of mutualistic basidiomycete fungi for more than 55-65 million years. Yeasts gain access to this sophisticated mutualism, prompting diversity, ecological, and biotechnological studies in this environment. We review half a century research in this field, surveying for recurrent yeast taxa and their putative ecological roles in this environment. We found that previous studies mainly covered the yeast diversity from a small fraction of attine ants, being Saccharomycetales, Tremellales, and Trichosporonales as the most frequent yeast or yeast-like orders found. Apiotrichum, Aureobasidium, Candida, Cutaneotrichosporon, Debaryomyces, Meyerozyma, Papiliotrema, Rhodotorula, Trichomonascus, and Trichosporon are the most frequent recovered genera. On the other hand, studies of yeasts' ecological roles on attine ant-fungus mutualism only tapped the tip of the iceberg. Previous established hypotheses in the literature cover the production of lignocellulosic enzymes, chemical detoxification, and fungus garden protection. Some of these roles have parallels in biotechnological processes. In conclusion, the attine ant environment has a hidden potential for studying yeast biodiversity, ecology, and biotechnology, which has been particularly unexplored considering the vast diversity of fungus-growing ants.
Collapse
Affiliation(s)
- Rodolfo Bizarria
- Center for the Study of Social Insects, São Paulo State University (UNESP), Rio Claro, Brazil.,Department of General and Applied Biology, São Paulo State University (UNESP), Rio Claro, Brazil
| | | | - Andre Rodrigues
- Center for the Study of Social Insects, São Paulo State University (UNESP), Rio Claro, Brazil.,Department of General and Applied Biology, São Paulo State University (UNESP), Rio Claro, Brazil
| |
Collapse
|
34
|
Černoša A, Sun X, Gostinčar C, Fang C, Gunde-Cimerman N, Song Z. Virulence Traits and Population Genomics of the Black Yeast Aureobasidium melanogenum. J Fungi (Basel) 2021; 7:jof7080665. [PMID: 34436204 PMCID: PMC8401163 DOI: 10.3390/jof7080665] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/13/2021] [Accepted: 08/14/2021] [Indexed: 12/22/2022] Open
Abstract
The black yeast-like fungus Aureobasidium melanogenum is an opportunistic human pathogen frequently found indoors. Its traits, potentially linked to pathogenesis, have never been systematically studied. Here, we examine 49 A. melanogenum strains for growth at 37 °C, siderophore production, hemolytic activity, and assimilation of hydrocarbons and human neurotransmitters and report within-species variability. All but one strain grew at 37 °C. All strains produced siderophores and showed some hemolytic activity. The largest differences between strains were observed in the assimilation of hydrocarbons and human neurotransmitters. We show for the first time that fungi from the order Dothideales can assimilate aromatic hydrocarbons. To explain the background, we sequenced the genomes of all 49 strains and identified genes putatively involved in siderophore production and hemolysis. Genomic analysis revealed a fairly structured population of A.melanogenum, raising the possibility that some phylogenetic lineages have higher virulence potential than others. Population genomics indicated that the species is strictly clonal, although more than half of the genomes were diploid. The existence of relatively heterozygous diploids in an otherwise clonal species is described for only the second time in fungi. The genomic and phenotypic data from this study should help to resolve the non-trivial taxonomy of the genus Aureobasidium and reduce the medical hazards of exploiting the biotechnological potential of other, non-pathogenic species of this genus.
Collapse
Affiliation(s)
- Anja Černoša
- Department of Biology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; (A.Č.); (N.G.-C.)
| | - Xiaohuan Sun
- BGI-Shenzhen, Beishan Industrial Zone, Shenzhen 518083, China; (X.S.); (C.F.); (Z.S.)
| | - Cene Gostinčar
- Department of Biology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; (A.Č.); (N.G.-C.)
- Lars Bolund Institute of Regenerative Medicine, BGI-Qingdao, Qingdao 266555, China
- Correspondence: or ; Tel.: +386-1-320-3392
| | - Chao Fang
- BGI-Shenzhen, Beishan Industrial Zone, Shenzhen 518083, China; (X.S.); (C.F.); (Z.S.)
| | - Nina Gunde-Cimerman
- Department of Biology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; (A.Č.); (N.G.-C.)
| | - Zewei Song
- BGI-Shenzhen, Beishan Industrial Zone, Shenzhen 518083, China; (X.S.); (C.F.); (Z.S.)
| |
Collapse
|
35
|
El Baidouri F, Zalar P, James TY, Gladfelter AS, Amend A. Evolution and Physiology of Amphibious Yeasts. Annu Rev Microbiol 2021; 75:337-357. [PMID: 34351793 DOI: 10.1146/annurev-micro-051421-121352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Since the emergence of the first fungi some 700 million years ago, unicellular yeast-like forms have emerged multiple times in independent lineages via convergent evolution. While tens to hundreds of millions of years separate the independent evolution of these unicellular organisms, they share remarkable phenotypic and metabolic similarities, and all have streamlined genomes. Yeasts occur in every aquatic environment yet examined. Many species are aquatic; perhaps most are amphibious. How these species have evolved to thrive in aquatic habitats is fundamental to understanding functions and evolutionary mechanisms in this unique group of fungi. Here we review the state of knowledge of the physiological and ecological diversity of amphibious yeasts and their key evolutionary adaptations enabling survival in aquatic habitats. We emphasize some genera previously thought to be exclusively terrestrial. Finally, we discuss the ability of many yeasts to survive in extreme habitats and how this might lend insight into ecological plasticity, including amphibious lifestyles. Expected final online publication date for the Annual Review of Microbiology, Volume 75 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Fouad El Baidouri
- School of Life Sciences, University of Hawai'i at Mānoa, Honolulu, Hawaii 96822, USA; , .,Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, USA
| | - Polona Zalar
- Department of Biology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Timothy Y James
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Amy S Gladfelter
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA.,Marine Biological Laboratory, Woods Hole, Massachusetts 02543, USA
| | - Anthony Amend
- School of Life Sciences, University of Hawai'i at Mānoa, Honolulu, Hawaii 96822, USA; ,
| |
Collapse
|
36
|
Rueda-Mejia MP, Nägeli L, Lutz S, Hayes RD, Varadarajan AR, Grigoriev IV, Ahrens CH, Freimoser FM. Genome, transcriptome and secretome analyses of the antagonistic, yeast-like fungus Aureobasidium pullulans to identify potential biocontrol genes. MICROBIAL CELL 2021; 8:184-202. [PMID: 34395586 PMCID: PMC8329847 DOI: 10.15698/mic2021.08.757] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 05/21/2021] [Accepted: 05/26/2021] [Indexed: 12/27/2022]
Abstract
Aureobasidium pullulans is an extremotolerant, cosmopolitan yeast-like fungus that successfully colonises vastly different ecological niches. The species is widely used in biotechnology and successfully applied as a commercial biocontrol agent against postharvest diseases and fireblight. However, the exact mechanisms that are responsible for its antagonistic activity against diverse plant pathogens are not known at the molecular level. Thus, it is difficult to optimise and improve the biocontrol applications of this species. As a foundation for elucidating biocontrol mechanisms, we have de novo assembled a high-quality reference genome of a strongly antagonistic A. pullulans strain, performed dual RNA-seq experiments, and analysed proteins secreted during the interaction with the plant pathogen Fusarium oxysporum. Based on the genome annotation, potential biocontrol genes were predicted to encode secreted hydrolases or to be part of secondary metabolite clusters (e.g., NRPS-like, NRPS, T1PKS, terpene, and β-lactone clusters). Transcriptome and secretome analyses defined a subset of 79 A. pullulans genes (among the 10,925 annotated genes) that were transcriptionally upregulated or exclusively detected at the protein level during the competition with F. oxysporum. These potential biocontrol genes comprised predicted secreted hydrolases such as glycosylases, esterases, and proteases, as well as genes encoding enzymes, which are predicted to be involved in the synthesis of secondary metabolites. This study highlights the value of a sequential approach starting with genome mining and consecutive transcriptome and secretome analyses in order to identify a limited number of potential target genes for detailed, functional analyses.
Collapse
Affiliation(s)
- Maria Paula Rueda-Mejia
- Agroscope, Research Division Plant Protection, Müller-Thurgau-Strasse 29, 8820 Wädenswil, Switzerland
| | - Lukas Nägeli
- Agroscope, Research Division Plant Protection, Müller-Thurgau-Strasse 29, 8820 Wädenswil, Switzerland
| | - Stefanie Lutz
- Agroscope, Competence Division Method Development and Analytics, Müller-Thurgau-Strasse 29, 8820, Wädenswil, Switzerland
| | - Richard D Hayes
- U.S. Department of Energy Joint Genome Institute (JGI), Lawrence Berkeley National Laboratory, 1 Cyclotron Rd., Berkeley, California 94720, USA
| | - Adithi R Varadarajan
- Agroscope, Competence Division Method Development and Analytics, Müller-Thurgau-Strasse 29, 8820, Wädenswil, Switzerland
| | - Igor V Grigoriev
- U.S. Department of Energy Joint Genome Institute (JGI), Lawrence Berkeley National Laboratory, 1 Cyclotron Rd., Berkeley, California 94720, USA.,Department of Plant and Microbial Biology, University of California Berkeley, Koshland Hall, Berkeley, CA, USA
| | - Christian H Ahrens
- Agroscope, Competence Division Method Development and Analytics, Müller-Thurgau-Strasse 29, 8820, Wädenswil, Switzerland.,SIB, Swiss Institute of Bioinformatics, Wädenswil, Switzerland
| | - Florian M Freimoser
- Agroscope, Research Division Plant Protection, Müller-Thurgau-Strasse 29, 8820 Wädenswil, Switzerland
| |
Collapse
|
37
|
Di Francesco A, Zajc J, Gunde-Cimerman N, Aprea E, Gasperi F, Placì N, Caruso F, Baraldi E. Bioactivity of volatile organic compounds by Aureobasidium species against gray mold of tomato and table grape. World J Microbiol Biotechnol 2020; 36:171. [PMID: 33067644 PMCID: PMC7567711 DOI: 10.1007/s11274-020-02947-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 10/08/2020] [Indexed: 11/24/2022]
Abstract
Aureobasidium strains isolated from diverse unconventional environments belonging to the species A. pullulans, A. melanogenum, and A. subglaciale were evaluated for Volatile Organic Compounds (VOCs) production as a part of their modes of action against Botrytis cinerea of tomato and table grape. By in vitro assay, VOCs generated by the antagonists belonging to the species A. subglaciale showed the highest inhibition percentage of the pathogen mycelial growth (65.4%). In vivo tests were conducted with tomatoes and grapes artificially inoculated with B. cinerea conidial suspension, and exposed to VOCs emitted by the most efficient antagonists of each species (AP1, AM10, AS14) showing that VOCs of AP1 (A. pullulans) reduced the incidence by 67%, partially confirmed by the in vitro results. Conversely, on table grape, VOCs produced by all the strains did not control the fungal incidence but were only reducing the infection severity (< 44.4% by A. pullulans; < 30.5% by A. melanogenum, and A. subglaciale). Solid-phase microextraction (SPME) and subsequent gas chromatography coupled to mass spectrometry identified ethanol, 3-methyl-1-butanol, 2-methyl-1-propanol as the most produced VOCs. However, there were differences in the amounts of produced VOCs as well as in their repertoire. The EC50 values of VOCs for reduction of mycelial growth of B. cinerea uncovered 3-methyl-1-butanol as the most effective compound. The study demonstrated that the production and the efficacy of VOCs by Aureobasidium could be directly related to the specific species and pathosystem and uncovers new possibilities for searching more efficient VOCs producing strains in unconventional habitats other than plants.
Collapse
Affiliation(s)
- A Di Francesco
- CRIOF-Department of Agricultural Sciences, University of Bologna, Via Gandolfi, 19, 40057, Cadriano, Bologna, Italy.
- Department of Agricultural and Food Sciences, University of Bologna, Viale Fanin, 42, 40127, Bologna, Italy.
| | - J Zajc
- Plant Protection Department, Agricultural Institute of Slovenia, Hacquetova ulica 17, 1000, Ljubljana, Slovenia
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000, Ljubljana, Slovenia
| | - N Gunde-Cimerman
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000, Ljubljana, Slovenia
| | - E Aprea
- Center Agriculture Food Environment, University of Trento/Fondazione Edmund Mach, 38010, San Michele all'Adige, TN, Italy
- Research and Innovation Centre, Fondazione Edmund Mach, via Mach 1, 38010, San Michele all' Adige, Trento, Italy
| | - F Gasperi
- Center Agriculture Food Environment, University of Trento/Fondazione Edmund Mach, 38010, San Michele all'Adige, TN, Italy
- Research and Innovation Centre, Fondazione Edmund Mach, via Mach 1, 38010, San Michele all' Adige, Trento, Italy
| | - N Placì
- Department of Agricultural and Food Sciences, University of Bologna, Viale Fanin, 42, 40127, Bologna, Italy
| | - F Caruso
- Department of Agricultural and Food Sciences, University of Bologna, Viale Fanin, 42, 40127, Bologna, Italy
| | - E Baraldi
- CRIOF-Department of Agricultural Sciences, University of Bologna, Via Gandolfi, 19, 40057, Cadriano, Bologna, Italy
- Department of Agricultural and Food Sciences, University of Bologna, Viale Fanin, 42, 40127, Bologna, Italy
| |
Collapse
|
38
|
Onetto CA, Schmidt SA, Roach MJ, Borneman AR. Comparative genome analysis proposes three new Aureobasidium species isolated from grape juice. FEMS Yeast Res 2020; 20:5902852. [DOI: 10.1093/femsyr/foaa052] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 09/04/2020] [Indexed: 12/24/2022] Open
Abstract
ABSTRACT
Aureobasidium pullulans is the most abundant and ubiquitous species within the genus and is also considered a core component of the grape juice microflora. So far, a small number of other Aureobasidium species have been reported, that in contrast to A. pullulans, appear far more constrained to specific habitats. It is unknown whether grape juice is a reservoir of novel Aureobasidium species, overlooked in the course of conventional morphological and meta-barcoding analyses. In this study, eight isolates from grape juice taxonomically classified as Aureobasidium through ITS sequencing were subjected to whole-genome phylogenetic, synteny and nucleotide identity analyses, which revealed three isolates to likely represent newly discovered Aureobasidium species. Analyses of ITS and metagenomic sequencing datasets show that these species can be present in grape juice samples from different locations and vintages. Functional annotation revealed the Aureobasidium isolates possess the genetic potential to support growth on the surface of plants and grapes. However, the loss of several genes associated with tolerance to diverse environmental stresses suggest a more constrained ecological range than A. pullulans.
Collapse
Affiliation(s)
- Cristobal A Onetto
- The Australian Wine Research Institute, Glen Osmond, PO Box 197, Adelaide, SA, 5064, Australia
| | - Simon A Schmidt
- The Australian Wine Research Institute, Glen Osmond, PO Box 197, Adelaide, SA, 5064, Australia
| | - Michael J Roach
- The Australian Wine Research Institute, Glen Osmond, PO Box 197, Adelaide, SA, 5064, Australia
| | - Anthony R Borneman
- The Australian Wine Research Institute, Glen Osmond, PO Box 197, Adelaide, SA, 5064, Australia
| |
Collapse
|
39
|
Abstract
AbstractChaetothyriales is an ascomycetous order within Eurotiomycetes. The order is particularly known through the black yeasts and filamentous relatives that cause opportunistic infections in humans. All species in the order are consistently melanized. Ecology and habitats of species are highly diverse, and often rather extreme in terms of exposition and toxicity. Families are defined on the basis of evolutionary history, which is reconstructed by time of divergence and concepts of comparative biology using stochastical character mapping and a multi-rate Brownian motion model to reconstruct ecological ancestral character states. Ancestry is hypothesized to be with a rock-inhabiting life style. Ecological disparity increased significantly in late Jurassic, probably due to expansion of cytochromes followed by colonization of vacant ecospaces. Dramatic diversification took place subsequently, but at a low level of innovation resulting in strong niche conservatism for extant taxa. Families are ecologically different in degrees of specialization. One of the clades has adapted ant domatia, which are rich in hydrocarbons. In derived families, similar processes have enabled survival in domesticated environments rich in creosote and toxic hydrocarbons, and this ability might also explain the pronounced infectious ability of vertebrate hosts observed in these families. Conventional systems of morphological classification poorly correspond with recent phylogenetic data. Species are hypothesized to have low competitive ability against neighboring microbes, which interferes with their laboratory isolation on routine media. The dataset is unbalanced in that a large part of the extant biodiversity has not been analyzed by molecular methods, novel taxonomic entities being introduced at a regular pace. Our study comprises all available species sequenced to date for LSU and ITS, and a nomenclatural overview is provided. A limited number of species could not be assigned to any extant family.
Collapse
|