1
|
Rondanelli M, Borromeo S, Cavioni A, Gasparri C, Gattone I, Genovese E, Lazzarotti A, Minonne L, Moroni A, Patelli Z, Razza C, Sivieri C, Valentini EM, Barrile GC. Therapeutic Strategies to Modulate Gut Microbial Health: Approaches for Chronic Metabolic Disorder Management. Metabolites 2025; 15:127. [PMID: 39997751 PMCID: PMC11857149 DOI: 10.3390/metabo15020127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/17/2025] [Accepted: 01/28/2025] [Indexed: 02/26/2025] Open
Abstract
Numerous recent studies have suggested that the composition of the intestinal microbiota can trigger metabolic disorders, such as diabetes, prediabetes, obesity, metabolic syndrome, sarcopenia, dyslipidemia, hyperhomocysteinemia, and non-alcoholic fatty liver disease. Since then, considerable effort has been made to understand the link between the composition of intestinal microbiota and metabolic disorders, as well as the role of probiotics in the modulation of the intestinal microbiota. The aim of this review was to summarize the reviews and individual articles on the state of the art regarding ideal therapy with probiotics and prebiotics in order to obtain the reversion of dysbiosis (alteration in microbiota) to eubiosis during metabolic diseases, such as diabetes, prediabetes, obesity, hyperhomocysteinemia, dyslipidemia, sarcopenia, and non-alcoholic fatty liver diseases. This review includes 245 eligible studies. In conclusion, a condition of dysbiosis, or in general, alteration of the intestinal microbiota, could be implicated in the development of metabolic disorders through different mechanisms, mainly linked to the release of pro-inflammatory factors. Several studies have already demonstrated the potential of using probiotics and prebiotics in the treatment of this condition, detecting significant improvements in the specific symptoms of metabolic diseases. These findings reinforce the hypothesis that a condition of dysbiosis can lead to a generalized inflammatory picture with negative consequences on different organs and systems. Moreover, this review confirms that the beneficial effects of probiotics on metabolic diseases are promising, but more research is needed to determine the optimal probiotic strains, doses, and administration forms for specific metabolic conditions.
Collapse
Affiliation(s)
- Mariangela Rondanelli
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy;
| | - Sara Borromeo
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona “Istituto Santa Margherita”, University of Pavia, 27100 Pavia, Italy; (S.B.); (A.C.); (C.G.); (I.G.); (E.G.); (A.L.); (L.M.); (A.M.); (Z.P.); (C.R.); (C.S.); (E.M.V.)
| | - Alessandro Cavioni
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona “Istituto Santa Margherita”, University of Pavia, 27100 Pavia, Italy; (S.B.); (A.C.); (C.G.); (I.G.); (E.G.); (A.L.); (L.M.); (A.M.); (Z.P.); (C.R.); (C.S.); (E.M.V.)
| | - Clara Gasparri
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona “Istituto Santa Margherita”, University of Pavia, 27100 Pavia, Italy; (S.B.); (A.C.); (C.G.); (I.G.); (E.G.); (A.L.); (L.M.); (A.M.); (Z.P.); (C.R.); (C.S.); (E.M.V.)
| | - Ilaria Gattone
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona “Istituto Santa Margherita”, University of Pavia, 27100 Pavia, Italy; (S.B.); (A.C.); (C.G.); (I.G.); (E.G.); (A.L.); (L.M.); (A.M.); (Z.P.); (C.R.); (C.S.); (E.M.V.)
| | - Elisa Genovese
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona “Istituto Santa Margherita”, University of Pavia, 27100 Pavia, Italy; (S.B.); (A.C.); (C.G.); (I.G.); (E.G.); (A.L.); (L.M.); (A.M.); (Z.P.); (C.R.); (C.S.); (E.M.V.)
| | - Alessandro Lazzarotti
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona “Istituto Santa Margherita”, University of Pavia, 27100 Pavia, Italy; (S.B.); (A.C.); (C.G.); (I.G.); (E.G.); (A.L.); (L.M.); (A.M.); (Z.P.); (C.R.); (C.S.); (E.M.V.)
| | - Leonardo Minonne
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona “Istituto Santa Margherita”, University of Pavia, 27100 Pavia, Italy; (S.B.); (A.C.); (C.G.); (I.G.); (E.G.); (A.L.); (L.M.); (A.M.); (Z.P.); (C.R.); (C.S.); (E.M.V.)
| | - Alessia Moroni
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona “Istituto Santa Margherita”, University of Pavia, 27100 Pavia, Italy; (S.B.); (A.C.); (C.G.); (I.G.); (E.G.); (A.L.); (L.M.); (A.M.); (Z.P.); (C.R.); (C.S.); (E.M.V.)
| | - Zaira Patelli
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona “Istituto Santa Margherita”, University of Pavia, 27100 Pavia, Italy; (S.B.); (A.C.); (C.G.); (I.G.); (E.G.); (A.L.); (L.M.); (A.M.); (Z.P.); (C.R.); (C.S.); (E.M.V.)
| | - Claudia Razza
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona “Istituto Santa Margherita”, University of Pavia, 27100 Pavia, Italy; (S.B.); (A.C.); (C.G.); (I.G.); (E.G.); (A.L.); (L.M.); (A.M.); (Z.P.); (C.R.); (C.S.); (E.M.V.)
| | - Claudia Sivieri
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona “Istituto Santa Margherita”, University of Pavia, 27100 Pavia, Italy; (S.B.); (A.C.); (C.G.); (I.G.); (E.G.); (A.L.); (L.M.); (A.M.); (Z.P.); (C.R.); (C.S.); (E.M.V.)
| | - Eugenio Marzio Valentini
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona “Istituto Santa Margherita”, University of Pavia, 27100 Pavia, Italy; (S.B.); (A.C.); (C.G.); (I.G.); (E.G.); (A.L.); (L.M.); (A.M.); (Z.P.); (C.R.); (C.S.); (E.M.V.)
| | - Gaetan Claude Barrile
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona “Istituto Santa Margherita”, University of Pavia, 27100 Pavia, Italy; (S.B.); (A.C.); (C.G.); (I.G.); (E.G.); (A.L.); (L.M.); (A.M.); (Z.P.); (C.R.); (C.S.); (E.M.V.)
| |
Collapse
|
2
|
Park JE, Park HY, Kim YS, Park M. The Role of Diet, Additives, and Antibiotics in Metabolic Endotoxemia and Chronic Diseases. Metabolites 2024; 14:704. [PMID: 39728485 DOI: 10.3390/metabo14120704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/06/2024] [Accepted: 12/10/2024] [Indexed: 12/28/2024] Open
Abstract
Background/Objectives: Dietary patterns, including high-fat and high-carbohydrate diets (HFDs and HCDs), as well as non-dietary factors such as food additives and antibiotics, are strongly linked to metabolic endotoxemia, a critical driver of low-grade chronic inflammation. This review explores the mechanisms through which these factors impair intestinal permeability, disrupt gut microbial balance, and facilitate lipopolysaccharide (LPS) translocation into the bloodstream, contributing to metabolic disorders such as obesity, type 2 diabetes mellitus, and inflammatory bowel disease. Methods: The analysis integrates findings from recent studies on the effects of dietary components and gut microbiota interactions on intestinal barrier function and systemic inflammation. Focus is given to experimental designs assessing gut permeability using biochemical and histological methods, alongside microbiota profiling in both human and animal models. Results: HFDs and HCDs were shown to increase intestinal permeability and systemic LPS levels, inducing gut dysbiosis and compromising barrier integrity. The resulting endotoxemia promoted a state of chronic inflammation, disrupting metabolic regulation and contributing to the pathogenesis of various metabolic diseases. Food additives and antibiotics further exacerbated these effects by altering microbial composition and increasing gut permeability. Conclusions: Diet-induced alterations in gut microbiota and barrier dysfunction emerge as key mediators of metabolic endotoxemia and related disorders. Addressing dietary patterns and their impact on gut health is crucial for developing targeted interventions. Further research is warranted to standardize methodologies and elucidate mechanisms for translating these findings into clinical applications.
Collapse
Affiliation(s)
- Ji-Eun Park
- Food Functionality Research Division, Korea Food Research Institute, Jeonju 55365, Republic of Korea
- Department of Food Science and Technology, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Ho-Young Park
- Food Functionality Research Division, Korea Food Research Institute, Jeonju 55365, Republic of Korea
- Department of Food Biotechnology, Korea National University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Young-Soo Kim
- Department of Food Science and Technology, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Miri Park
- Food Functionality Research Division, Korea Food Research Institute, Jeonju 55365, Republic of Korea
| |
Collapse
|
3
|
Hakkak R, Korourian S, Li W, Spray B, Twaddle NC, Randolph CE, Børsheim E, Robeson II MS. Dietary soy protein reverses obesity-induced liver steatosis and alters fecal microbial composition independent of isoflavone level. Front Nutr 2024; 11:1487859. [PMID: 39529929 PMCID: PMC11551038 DOI: 10.3389/fnut.2024.1487859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 10/09/2024] [Indexed: 11/16/2024] Open
Abstract
Introduction Metabolic dysfunction-associated steatotic liver disease (MASLD) is a major public health concern that is exacerbated by the obesity pandemic. Dietary interventions have the potential to alleviate obesity-associated MASLD through variable mechanisms, including optimizing the gut microbiota. Previously, we reported that soy protein concentrate (SPC) with low or high levels of isoflavone (LIF or HIF) protected young obese Zucker rats from developing liver steatosis. The current study was designed to test whether SPC-LIF and SPC-HIF diets would reverse liver steatosis and alter fecal microbial composition in adult obese Zucker rats with existing steatosis. Methods Six-week-old male obese Zucker rats (n = 26) were fed a casein control diet (CAS) for 8 weeks and 7 rats were randomly selected and sacrificed to confirm liver steatosis. The remaining rats were randomly assigned to receive CAS, SPC-LIF, or SPC-HIF diet (n = 6-7/group) for an additional 10 weeks. Results Compared to CAS diet, feeding SPC-LIF and SPC-HIF diets resulted in significantly lower liver weight, liver steatosis score, and liver microvesicular score (p < 0.05), but did not lead to difference in body weight, liver macrovesicular score, serum ALT, or serum AST. Isoflavone levels (e.g., LIF vs. HIF) did not affect any of these measurements except in the SPC-HIF group, which had an additional decrease in liver weight (p < 0.05) compared to the SPC-LIF group. The SPC-HIF group also had significantly higher levels of the aglycone forms of daidzein, genistein, and equol as well as the total levels of daidzein, genistein, and equol compared to SPC-LIF or CAS diet fed rats (p < 0.05). The distribution of microbial communities based on measures of beta diversity of both SPC-LIF and SPC-HIF groups were significantly different to that of the CAS group (p ≤ 0.005). Alpha-diversity did not differ between any of the groups. Conclusion Taken together, dietary soy protein can reverse liver steatosis in adult Zucker rats, and the reversal of steatosis is accompanied by alterations in gut microbial composition.
Collapse
Affiliation(s)
- Reza Hakkak
- Department of Dietetics and Nutrition, University of Arkansas for Medical Sciences, Little Rock, AR, United States
- Arkansas Children’s Research Institute, Little Rock, AR, United States
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Soheila Korourian
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Wei Li
- Department of Dietetics and Nutrition, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Beverly Spray
- Division of Biostatistics Core, Arkansas Children’s Research Institute, Little Rock, AR, United States
| | - Nathan C. Twaddle
- Division of Biochemical Toxicology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR, United States
| | | | - Elisabet Børsheim
- Arkansas Children’s Research Institute, Little Rock, AR, United States
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
- Arkansas Children’s Nutrition Center, Little Rock, AR, United States
| | - Michael S. Robeson II
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| |
Collapse
|
4
|
Sansonetti PJ, Doré J. [The human microbiome proofed by the Anthropocene: from correlation to causality and intervention]. Med Sci (Paris) 2024; 40:757-765. [PMID: 39450961 DOI: 10.1051/medsci/2024121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024] Open
Abstract
The deleterious effects of human activities on biodiversity in the vegetal and animal world, and on climate changes are now well-established facts. However, little is yet known on the impact of human activities on microbial diversity on the planet and more specifically on the human microbiota Large implementation of metagenomics allows exaustive microbial cataloguing with broad spatio-temporal resolution of human microbiota. A reduction in bacterial richness and diversity in the human microbiota, particularly in the intestinal tract, is now established and particularly obvious in the most industrialized regions of the planet. Massive, uncontrolled use of antibiotics, drastic changes in traditional food habits and some elements of the "global exposome" that remain to identify are usually considered as stressors accounting for this situation of "missing microbes". As a consequence, a dysbiotic situation develops, a "dysbiosis" being characterized by the erosion of the central core of shared bacterial species across individuals and the development of opportunistic "pathobionts" in response to a weaker barrier capacity of these impoverished microbiota. The current challenge is to establish a causality link between the extension of these dysbiotic situations and the steady emergence of epidemic, non-communicable diseases such as asthma, allergy, obesity, diabetes, autoimmune diseases and some cancers. Experimental animal models combined with controlled, prospective clinical interventions are in demand to consolidate causality links, with the understanding that in the deciphering of the mechanisms of alteration of the human-microbiome symbiosis resides a novel exciting chapter of medicine: "microbial medicine".
Collapse
Affiliation(s)
| | - Joël Doré
- Université Paris-Saclay, INRAE, MetaGenoPolis, AgroParisTech, MICALIS Jouy-en-Josas France
| |
Collapse
|
5
|
Ding S, Hong Q, Yao Y, Gu M, Cui J, Li W, Zhang J, Zhang C, Jiang J, Hu Y. Meta-analysis of randomized controlled trials of the effects of synbiotics, probiotics, or prebiotics in controlling glucose homeostasis in non-alcoholic fatty liver disease patients. Food Funct 2024; 15:9954-9971. [PMID: 39264166 DOI: 10.1039/d4fo02561j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Background: Probiotics, prebiotics, and synbiotics have been suggested as a possible therapy for non-alcoholic fatty liver disease (NAFLD). However, their efficacy in improving blood glucose levels in NAFLD patients remains uncertain. Objective: The aim of this study was to assess the effects of supplementation with probiotics, prebiotics, or synbiotics on fasting blood glucose (FBG) levels in NAFLD patients. Methods: We searched PubMed, Web of Science, and Google Scholar for relevant trials published up to March 2024. Out of 3369 identified studies, 24 randomized controlled trials (RCTs) were included. Results: Probiotic, prebiotic, or synbiotic supplementation substantially reduced FBG (n = 23; standard mean difference (SMD) = -0.17; 95% confidence interval (CI): -0.30, -0.03; P = 0.02), fasting insulin levels (n = 12; SMD = -0.28; 95% CI: -0.49, -0.07; P = 0.01), and homeostatic model assessment for insulin resistance (HOMA-IR; n = 14; SMD = -0.28; 95% CI: -0.47, -0.09; P = 0.004). However, glycosylated hemoglobin (HbA1c; n = 3; SMD = -0.17; 95% CI: -0.48, 0.13; P = 0.27) was not significantly affected. The FBG-decreasing effect diminished as the body mass index (BMI) of volunteers increased in the baseline. Additionally, the number of probiotic strains and geographic region were shown to significantly affect FBG levels. Conclusion: This meta-analysis indicates that supplementation with probiotics, prebiotics, or synbiotics may aid in controlling glucose homeostasis in patients with NAFLD.
Collapse
Affiliation(s)
- Siqi Ding
- College of Biological and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Qing Hong
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd, Shanghai, 200436, China
| | - Yuanyue Yao
- College of Biological and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Minwen Gu
- College of Biological and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Jie Cui
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, China.
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Wenhui Li
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, China.
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Jian Zhang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, China.
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Chengcheng Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jinchi Jiang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, China.
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Yonghong Hu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, China.
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| |
Collapse
|
6
|
Green N, Chan C, Ooi CY. The gastrointestinal microbiome, small bowel bacterial overgrowth, and microbiome modulators in cystic fibrosis. Pediatr Pulmonol 2024; 59 Suppl 1:S70-S80. [PMID: 39105345 DOI: 10.1002/ppul.26913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 01/12/2024] [Accepted: 01/31/2024] [Indexed: 08/07/2024]
Abstract
People with cystic fibrosis (pwCF) have an altered gastrointestinal microbiome. These individuals also demonstrate propensity toward developing small intestinal bacterial overgrowth (SIBO). The dysbiosis present has intestinal and extraintestinal implications, including potential links with the higher rates of gastrointestinal malignancies described in CF. Given these implications, there is growing interest in therapeutic options for microbiome modulation. Alternative therapies, including probiotics and prebiotics, and current CF transmembrane conductance regulator gene modulators are promising interventions for ameliorating gut microbiome dysfunction in pwCF. This article will characterize and discuss the current state of knowledge and expert opinions on gut dysbiosis and SIBO in the context of CF, before reviewing the current evidence supporting gut microbial modulating therapies in CF.
Collapse
Affiliation(s)
- Nicole Green
- Department of Pediatrics, Division of Gastroenterology and Hepatology, Seattle Children's Hospital, University of Washington, Seattle, Washington, USA
| | - Christopher Chan
- Discipline of Paediatrics & Child Health, Randwick Clinical Campus, School of Clinical Medicine, UNSW Medicine & Health, University of New South Wales, Sydney, New South Wales, Australia
| | - Chee Y Ooi
- Discipline of Paediatrics & Child Health, Randwick Clinical Campus, School of Clinical Medicine, UNSW Medicine & Health, University of New South Wales, Sydney, New South Wales, Australia
- Department of Gastroenterology, Sydney Children's Hospital, Randwick, New South Wales, Australia
| |
Collapse
|
7
|
Watling CZ, Wojt A, Florio AA, Butera G, Albanes D, Weinstein SJ, Huang WY, Parisi D, Zhang X, Graubard BI, Petrick JL, McGlynn KA. Fiber and whole grain intakes in relation to liver cancer risk: An analysis in 2 prospective cohorts and systematic review and meta-analysis of prospective studies. Hepatology 2024; 80:552-565. [PMID: 38441973 PMCID: PMC11803500 DOI: 10.1097/hep.0000000000000819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 02/07/2024] [Indexed: 03/07/2024]
Abstract
BACKGROUND AND AIMS The association between fiber or whole grain intakes and the risk of liver cancer remains unclear. We assessed the associations between fiber or whole grain intakes and liver cancer risk among 2 prospective studies, and systematically reviewed and meta-analyzed these results with published prospective studies. APPROACH AND RESULTS A total of 111,396 participants from the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial (PLCO) and 26,085 men from the Alpha-Tocopherol, Beta-Carotene Cancer Prevention Study were included. Intakes of total fiber and whole grains were estimated from validated food frequency questionnaires. Study-specific HRs and 95% CI with liver cancer risk were estimated using multivariable-adjusted Cox regression. We systematically reviewed existing literature, and studies were combined in a dose-response meta-analysis. A total of 277 (median follow-up = 15.6 y) and 165 (median follow-up = 16.0 y) cases of liver cancer were observed in Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial and Alpha-Tocopherol, Beta-Carotene Cancer Prevention Study, respectively. Dietary fiber was inversely associated with liver cancer risk in Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial (HR 10g/day : 0.69; 95% CI: 0.55-0.86). No significant associations were observed between whole grain intakes and liver cancer risk in either study. Our meta-analysis included 2383 incident liver cancer cases (7 prospective cohorts) for fiber intake and 1523 cases (5 prospective cohorts) for whole grain intake; combined HRs for liver cancer risk were 0.83 (0.76-0.91) per 10 g/day of fiber and 0.92 (0.85-0.99) per 16 g/day (1 serving) of whole grains. CONCLUSIONS Dietary fiber and whole grains were inversely associated with liver cancer risk. Further research exploring potential mechanisms and different fiber types is needed.
Collapse
Affiliation(s)
- Cody Z Watling
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Aika Wojt
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Andrea A Florio
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, USA
| | - Gisela Butera
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Demetrius Albanes
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Stephanie J Weinstein
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Wen-Yi Huang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Dominick Parisi
- Information Management Services Inc., Calverton, Maryland, USA
| | - Xuehong Zhang
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, USA
| | - Barry I Graubard
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Jessica L Petrick
- Slone Epidemiology Center at Boston University, Boston, Massachusetts, USA
| | - Katherine A McGlynn
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| |
Collapse
|
8
|
Li XJ, Fang C, Zhao RH, Zou L, Miao H, Zhao YY. Bile acid metabolism in health and ageing-related diseases. Biochem Pharmacol 2024; 225:116313. [PMID: 38788963 DOI: 10.1016/j.bcp.2024.116313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 05/18/2024] [Accepted: 05/21/2024] [Indexed: 05/26/2024]
Abstract
Bile acids (BAs) have surpassed their traditional roles as lipid solubilizers and regulators of BA homeostasis to emerge as important signalling molecules. Recent research has revealed a connection between microbial dysbiosis and metabolism disruption of BAs, which in turn impacts ageing-related diseases. The human BAs pool is primarily composed of primary BAs and their conjugates, with a smaller proportion consisting of secondary BAs. These different BAs exert complex effects on health and ageing-related diseases through several key nuclear receptors, such as farnesoid X receptor and Takeda G protein-coupled receptor 5. However, the underlying molecular mechanisms of these effects are still debated. Therefore, the modulation of signalling pathways by regulating synthesis and composition of BAs represents an interesting and novel direction for potential therapies of ageing-related diseases. This review provides an overview of synthesis and transportion of BAs in the healthy body, emphasizing its dependence on microbial community metabolic capacity. Additionally, the review also explores how ageing and ageing-related diseases affect metabolism and composition of BAs. Understanding BA metabolism network and the impact of their nuclear receptors, such as farnesoid X receptor and G protein-coupled receptor 5 agonists, paves the way for developing therapeutic agents for targeting BA metabolism in various ageing-related diseases, such as metabolic disorder, hepatic injury, cardiovascular disease, renal damage and neurodegenerative disease.
Collapse
Affiliation(s)
- Xiao-Jun Li
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, Zhejiang 310053, China; Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, No.13, Shi Liu Gang Road, Haizhu District, Guangzhou, Guangdong 510315, China
| | - Chu Fang
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, Zhejiang 310053, China
| | - Rui-Hua Zhao
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, Zhejiang 310053, China
| | - Liang Zou
- School of Food and Bioengineering, Chengdu University, No. 2025 Chengluo Avenue, Chengdu, Sichuan 610106, China
| | - Hua Miao
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, Zhejiang 310053, China.
| | - Ying-Yong Zhao
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, Zhejiang 310053, China; National Key Laboratory of Kidney Diseases, First Medical Center of Chinese PLA General Hospital, No. 28 Fuxing Road, Beijing 100853, China.
| |
Collapse
|
9
|
Fakhoury-Sayegh N, Hamdan A, Lebbos S, Itani T, Trak-Smayra V, Khazzaka A, Dagher-Hamalian C, Sayegh LN, Mallah M, Obeid O, Sayegh R. Spirulina ( Arthrospira platensis) Improved Nonalcoholic Fatty Liver Disease Characteristics and Microbiota and Did Not Affect Organ Fibrosis Induced by a Fructose-Enriched Diet in Wistar Male Rats. Nutrients 2024; 16:1701. [PMID: 38892633 PMCID: PMC11174493 DOI: 10.3390/nu16111701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/06/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
Spirulina (Arthrospira platensis) is reported to play a role in improving nonalcoholic fatty liver disease (NAFLD) and intestinal microbiota (IM). To study spirulina's effects in the improvement of NAFLD characteristics, IM, and pancreatic-renal lesions induced by a fructose-enriched diet, 40 Wistar healthy male rats, weighing 200-250 g, were randomly divided into four groups of 10, and each rat per group was assigned a diet of equal quantities (20 g/day) for 18 weeks. The first control group (CT) was fed a standardized diet, the second group received a 40% fructose-enriched diet (HFr), and the third (HFr-S5) and fourth groups (HFr-S10) were assigned the same diet composition as the second group but enriched with 5% and 10% spirulina, respectively. At week 18, the HFr-S10 group maintained its level of serum triglycerides and had the lowest liver fat between the groups. At the phylae and family level, and for the same period, the HFr-S10 group had the lowest increase in the Firmicutes/Bacteroidetes ratio and the Ruminococcaceae and the highest fecal alpha diversity compared to all other groups (p < 0.05). These findings suggest that at a 10% concentration, spirulina could be used in nutritional intervention to improve IM, fatty liver, metabolic, and inflammatory parameters associated with NAFLD.
Collapse
Affiliation(s)
- Nicole Fakhoury-Sayegh
- Department of Nutrition, Faculty of Pharmacy, Saint Joseph University, Damascus Street, Beirut P.O. Box 11-5076, Lebanon;
| | - Aya Hamdan
- Department of Human Nutrition, College of Health Sciences, QU-Health, Qatar University, Doha 2713, Qatar;
| | - Sarah Lebbos
- Department of Nutrition, Faculty of Pharmacy, Saint Joseph University, Damascus Street, Beirut P.O. Box 11-5076, Lebanon;
| | - Tarek Itani
- Laboratory of Enteric Virus Infections, Federal Budgetary Institution of Science Federal Scientific Research Institute of Viral Infections «Virome», Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, 620030 Yekaterinburg, Russia;
| | - Viviane Trak-Smayra
- Department of Pathology, Faculty of Medicine, Saint Joseph University, Damascus Street, Beirut P.O. Box 11-5076, Lebanon;
| | - Aline Khazzaka
- Department of Surgical Research, Faculty of Medicine, Saint Joseph University, Damascus Street, Beirut P.O. Box 11-5076, Lebanon;
| | - Carole Dagher-Hamalian
- Department of Pathology, Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos P.O. Box 36, Lebanon;
| | - Lea Nicole Sayegh
- Department of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55902, USA;
| | - May Mallah
- Department of Microbiology Research, Faculty of Pharmacy, Saint Joseph University, Damascus Street, Beirut P.O. Box 11-5076, Lebanon;
| | - Omar Obeid
- Department of Nutrition and Food Sciences, Faculty of Agricultural and Food Sciences, American University of Beirut, Beirut P.O. Box 11-0236, Lebanon;
| | - Raymond Sayegh
- Department of Gastroenterology, Faculty of Medicine, Saint Joseph University, Damascus Street, Beirut P.O. Box 11-5076, Lebanon;
| |
Collapse
|
10
|
Chae YR, Lee YR, Kim YS, Park HY. Diet-Induced Gut Dysbiosis and Leaky Gut Syndrome. J Microbiol Biotechnol 2024; 34:747-756. [PMID: 38321650 DOI: 10.4014/jmb.2312.12031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 02/08/2024]
Abstract
Chronic gut inflammation promotes the development of metabolic diseases such as obesity. There is growing evidence which suggests that dysbiosis in gut microbiota and metabolites disrupt the integrity of the intestinal barrier and significantly impact the level of inflammation in various tissues, including the liver and adipose tissues. Moreover, dietary sources are connected to the development of leaky gut syndrome through their interaction with the gut microbiota. This review examines the effects of these factors on intestinal microorganisms and the communication pathways between the gut-liver and gut-brain axis. The consumption of diets rich in fats and carbohydrates has been found to weaken the adherence of tight junction proteins in the gastrointestinal tract. Consequently, this allows endotoxins, such as lipopolysaccharides produced by detrimental bacteria, to permeate through portal veins, leading to metabolic endotoxemia and alterations in the gut microbiome composition with reduced production of metabolites, such as short-chain fatty acids. However, the precise correlation between gut microbiota and alternative sweeteners remains uncertain, necessitating further investigation. This study highlights the significance of exploring the impact of diet on gut microbiota and the underlying mechanisms in the gut-liver and gut-brain axis. Nevertheless, limited research on the gut-liver axis poses challenges in comprehending the intricate connections between diet and the gut-brain axis. This underscores the need for comprehensive studies to elucidate the intricate gut-brain mechanisms underlying intestinal health and microbiota.
Collapse
Affiliation(s)
- Yu-Rim Chae
- Food Functionality Research Division, Korea Food Research Institute, Jeollabuk-do 55365, Republic of Korea
- Department of Food Science and Technology, Jeonbuk National University, Jeollabuk-do 54896, Republic of Korea
| | - Yu Ra Lee
- Food Functionality Research Division, Korea Food Research Institute, Jeollabuk-do 55365, Republic of Korea
| | - Young-Soo Kim
- Department of Food Science and Technology, Jeonbuk National University, Jeollabuk-do 54896, Republic of Korea
| | - Ho-Young Park
- Food Functionality Research Division, Korea Food Research Institute, Jeollabuk-do 55365, Republic of Korea
- Department of Food Biotechnology, Korea National University of Science and Technology, Daejeon 34113, Republic of Korea
| |
Collapse
|
11
|
Alghamdi W, Mosli M, Alqahtani SA. Gut microbiota in MAFLD: therapeutic and diagnostic implications. Ther Adv Endocrinol Metab 2024; 15:20420188241242937. [PMID: 38628492 PMCID: PMC11020731 DOI: 10.1177/20420188241242937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 02/22/2024] [Indexed: 04/19/2024] Open
Abstract
Metabolic dysfunction-associated fatty liver disease (MAFLD), formerly known as nonalcoholic fatty liver disease, is becoming a significant contributor to chronic liver disease globally, surpassing other etiologies, such as viral hepatitis. Prevention and early treatment strategies to curb its growing prevalence are urgently required. Recent evidence suggests that targeting the gut microbiota may help treat and alleviate disease progression in patients with MAFLD. This review aims to explore the complex relationship between MAFLD and the gut microbiota in relation to disease pathogenesis. Additionally, it delves into the therapeutic strategies targeting the gut microbiota, such as diet, exercise, antibiotics, probiotics, synbiotics, glucagon-like peptide-1 receptor agonists, and fecal microbiota transplantation, and discusses novel biomarkers, such as microbiota-derived testing and liquid biopsy, for their diagnostic and staging potential. Overall, the review emphasizes the urgent need for preventive and therapeutic strategies to address the devastating consequences of MAFLD at both individual and societal levels and recognizes that further exploration of the gut microbiota may open avenues for managing MAFLD effectively in the future.
Collapse
Affiliation(s)
- Waleed Alghamdi
- Division of Gastroenterology, Department of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mahmoud Mosli
- Division of Gastroenterology, Department of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Saleh A. Alqahtani
- Organ Transplant Center of Excellence, King Faisal Specialist Hospital & Research Center, Riyadh 11211, Saudi Arabia
- Division of Gastroenterology & Hepatology, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
12
|
Song Q, Cheng SW, Zou J, Li KSL, Cheng H, Wai Lau DT, Han Q, Yang X, Shaw PC, Zuo Z. Role of gut microbiota on regulation potential of Dendrobium officinale Kimura & Migo in metabolic syndrome: In-vitro fermentation screening and in-vivo verification in db/db mice. JOURNAL OF ETHNOPHARMACOLOGY 2024; 321:117437. [PMID: 37981116 DOI: 10.1016/j.jep.2023.117437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/06/2023] [Accepted: 11/13/2023] [Indexed: 11/21/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Dendrobium officinale Kimura & Migo (DEN) is a traditional medicine in China since Han dynasty. Decoction of its stem is often used in the treatment of Type-II diabetes (T2D), which is a typical metabolic disease accompanied with the impaired metabolic function of blood glucose and lipid. AIM OF THE STUDY Our study aimed to investigate the role of gut microbiota in differentiating DEN from different sources and its related pathway in the alleviation of metabolic syndromes induced by T2D. MATERIALS AND METHODS The aqueous extracts of four commercially available Dendrobium (DEN-1∼4) were prepared and screened through an in-vitro fermentation system. Based on their alterations in monosaccharide composition and short chain fatty acids (SCFA) formation during fermentation with db/db faecal fluid, one DEN extract was selected for further in vivo verification. The selected Dendrobium (DEN-4) was orally administered to db/db mice for 16 days once daily at the dosage of 200 mg/kg followed by evaluating its effect on blood glucose level, liver function and intestinal microenvironment including alterations of intestinal integrity and gut microbiota composition. In addition, liver metabolomics analysis was employed to reveal the related metabolic pathways. RESULTS Different extent of SCFA formation and utilization of monosaccharides were observed for the extracts of four DEN from different sources with a negative correlation between SCFA level and the ratio of Utilized glucose/Utilized mannose observed in the in-vitro fermentation system with db/db faecal fluid. DEN-4 with the highest SCFA formation during the in-vitro fermentation was selected and exhibited significantly hypoglycaemic effect in db/db mice with the alleviation of hepatic steatosis and impaired lipid homeostasis. Further mechanistic studies revealed that orally administered DEN-4 could improve the intestinal integrity of db/db mice via elevating their tight junction protein (ZO-1 and Occludin) expression in the colon and improve the diversity of gut microbiota with enhanced formation of SCFA. Moreover, metabolomics and KEGG pathway analysis of liver tissues suggested that the alleviated metabolic syndrome in db/db mice by DEN-4 might possibly be achieved through activation of PPAR pathway. CONCLUSION Our current study not only revealed the potential of gut microbiota in differentiating DEN from different sources, but also demonstrated that DEN exhibited its beneficial effect on the T2D induced metabolic syndrome possibly through enhancement of intestinal integrity and activation of PPAR pathway via gut-liver axis in db/db mice.
Collapse
Affiliation(s)
- Qianbo Song
- School of Pharmacy, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region
| | - Sau Wan Cheng
- State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region
| | - Junju Zou
- School of Pharmacy, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region
| | - Kendra Sek Lam Li
- Department of Microbiology, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region
| | - Huiyuan Cheng
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong Special Administrative Region
| | - David Tai Wai Lau
- School of Life Sciences and Li Dak Sum Yip Yio Chin R&D Centre for Chinese Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region
| | - Quanbin Han
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong Special Administrative Region
| | - Xiao Yang
- Department of Microbiology, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region
| | - Pang Chui Shaw
- State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region; School of Life Sciences and Li Dak Sum Yip Yio Chin R&D Centre for Chinese Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region
| | - Zhong Zuo
- School of Pharmacy, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region; State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region.
| |
Collapse
|
13
|
Xu H, Yuan M, Niu K, Yang W, Jiang M, Zhang L, Zhou J. Involvement of Bile Acid Metabolism and Gut Microbiota in the Amelioration of Experimental Metabolism-Associated Fatty Liver Disease by Nobiletin. Molecules 2024; 29:976. [PMID: 38474489 DOI: 10.3390/molecules29050976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
Metabolism-associated fatty liver disease (MAFLD), a growing health problem worldwide, is one of the major risks for the development of cirrhosis and liver cancer. Oral administration of nobiletin (NOB), a natural citrus flavonoid, modulates the gut microbes and their metabolites in mice. In the present study, we established a mouse model of MAFLD by subjecting mice to a high-fat diet (HFD) for 12 weeks. Throughout this timeframe, NOB was administered to investigate its potential benefits on gut microbial balance and bile acid (BA) metabolism using various techniques, including 16S rRNA sequencing, targeted metabolomics of BA, and biological assays. NOB effectively slowed the progression of MAFLD by reducing serum lipid levels, blood glucose levels, LPS levels, and hepatic IL-1β and TNF-α levels. Furthermore, NOB reinstated diversity within the gut microbial community, increasing the population of bacteria that produce bile salt hydrolase (BSH) to enhance BA excretion. By exploring further, we found NOB downregulated hepatic expression of the farnesoid X receptor (FXR) and its associated small heterodimer partner (SHP), and it increased the expression of downstream enzymes, including cholesterol 7α-hydroxylase (CYP7A1) and cytochrome P450 27A1 (CYP27A1). This acceleration in cholesterol conversion within the liver contributes to mitigating MAFLD. The present findings underscore the significant role of NOB in regulating gut microbial balance and BA metabolism, revealing that long-term intake of NOB plays beneficial roles in the prevention or intervention of MAFLD.
Collapse
Affiliation(s)
- Hongling Xu
- School of Traditional Chinese Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Mingming Yuan
- Laboratory Animal Center Affiliate from Research Office, Sichuan Academy of Chinese Medicine Sciences, Chengdu 610041, China
| | - Kailin Niu
- School of Traditional Chinese Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Wei Yang
- Laboratory Animal Center Affiliate from Research Office, Sichuan Academy of Chinese Medicine Sciences, Chengdu 610041, China
| | - Maoyuan Jiang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Lei Zhang
- School of Traditional Chinese Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Laboratory Animal Center Affiliate from Research Office, Sichuan Academy of Chinese Medicine Sciences, Chengdu 610041, China
| | - Jing Zhou
- Laboratory Animal Center Affiliate from Research Office, Sichuan Academy of Chinese Medicine Sciences, Chengdu 610041, China
| |
Collapse
|
14
|
Ji J, Sun J, Li J, Xie J, Xi B, Zhao M. Altered gut microbiome associated with metabolic-associated fatty liver disease in Chinese children. Clin Nutr 2024; 43:187-196. [PMID: 38070210 DOI: 10.1016/j.clnu.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 10/26/2023] [Accepted: 11/03/2023] [Indexed: 12/26/2023]
Abstract
BACKGROUND & AIM Limited studies have investigated the association between gut microbiota and metabolic dysfunction-associated fatty liver disease (MAFLD) in children and adolescents. We aimed to identify differences in gut microbiota composition and diversity between children with MAFLD and healthy counterparts. METHODS Data were collected from a nested case-control study (October to December, 2021) of the "Huantai Childhood Cardiovascular Health Cohort Study" in Huantai County, Zibo City, China. The study included 52 children aged 5-11 years with new-onset MAFLD and 52 healthy children matched by age and sex. Stool samples were collected and analyzed using 16S rRNA gene sequencing. Shannon index and Chao index were used to assess the α diversity of gut microbiota and Principal coordinates analysis (PCoA) was performed to evaluate β diversity between the two groups. The differences in the relative abundance of gut microbiota between MAFLD group and control group were compared by the Wilcoxon rank-sum test after false discovery rate (FDR) correction. Additionally, the gut-microbial metabolic pathways were identified using the phylogenetic investigation of communities by reconstruction of unobserved states (PICRUSt). RESULTS We found that children with MAFLD had significant different gut microbiota composition and reduced α diversity compared with the control group. PCoA showed that the two groups can be significantly distinguished based on the unweighted unifrac distance algorithm. Gut microbiota at the phylum level such as Verrucomicrobia and Desulfobacterial, genus level such as Blautia, Lachnospiraceae_NK4A136_group, Coprococcus, Erysipelotrichaceae_UCG-003, UCG-002 and Akkermansia, and species level such as Bifidobacterium_longum abundances were significantly decreased in children with MAFLD compared with that in children without MAFLD. Notably, the abundance of these bacteria were found to be associated with HDL-C, SBP, DBP, WC, BMI, etc. In addition, our analysis of gut-microbial metabolic pathways identified differences in carbohydrate transport and metabolism, as well as amino acid transport and metabolism between the two groups. CONCLUSION Significant differences in gut microbiota composition are observed between children with and without MAFLD, which indicate that gut microbiota may be a potential contributor to the development of MAFLD in childhood.
Collapse
Affiliation(s)
- Jing Ji
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Jiahong Sun
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; Department of Preventive Medicine, School of Public Health, Guangdong Medical University, Dongguan, Guangdong, China
| | - Juan Li
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Jintang Xie
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Bo Xi
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Min Zhao
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
| |
Collapse
|
15
|
Nicastro E, D'Antiga L. Nutritional Interventions, Probiotics, Synbiotics and Fecal Microbiota Transplantation in Steatotic Liver Disease : Pediatric Fatty Liver and Probiotics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1449:113-133. [PMID: 39060734 DOI: 10.1007/978-3-031-58572-2_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a major health problem worldwide, and the strongest determinant of liver disease in children. The possible influence of high-fat/low-fiber dietary patterns with microbiota (e.g., increased Firmicutes/Bacteroidetes ratio), and ultimately with MASLD occurrence and progression has been elucidated by several association studies. The possible mechanisms through which microbes exert their detrimental effects on MASLD include gut vascular barrier damage, a shift towards non-tolerogenic immunologic environment, and the detrimental metabolic changes, including a relative reduction of propionate and butyrate in favor of acetate, endogenous ethanol production, and impairment of the unconjugated bile acid-driven FXR-mediated gut-liver axis. The impact of nutritional and probiotic interventions in children with MASLD is described.
Collapse
Affiliation(s)
- Emanuele Nicastro
- Pediatric Hepatology, Gastroenterology, and Transplantation Unit, Hospital Papa Giovanni XXIII, Bergamo, Italy.
| | - Lorenzo D'Antiga
- Pediatric Hepatology, Gastroenterology, and Transplantation Unit, Hospital Papa Giovanni XXIII, Bergamo, Italy
- Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| |
Collapse
|
16
|
McCall KD, Walter D, Patton A, Thuma JR, Courreges MC, Palczewski G, Goetz DJ, Bergmeier S, Schwartz FL. Anti-Inflammatory and Therapeutic Effects of a Novel Small-Molecule Inhibitor of Inflammation in a Male C57BL/6J Mouse Model of Obesity-Induced NAFLD/MAFLD. J Inflamm Res 2023; 16:5339-5366. [PMID: 38026235 PMCID: PMC10658948 DOI: 10.2147/jir.s413565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 10/31/2023] [Indexed: 12/01/2023] Open
Abstract
Purpose Non-alcoholic fatty liver disease (NAFLD), recently renamed metabolic (dysfunction) associated fatty liver disease (MAFLD), is the most common chronic liver disease in the United States. Presently, there is an intense and ongoing effort to identify and develop novel therapeutics for this disease. In this study, we explored the anti-inflammatory activity of a new compound, termed IOI-214, and its therapeutic potential to ameliorate NAFLD/MAFLD in male C57BL/6J mice fed a high fat (HF) diet. Methods Murine macrophages and hepatocytes in culture were treated with lipopolysaccharide (LPS) ± IOI-214 or DMSO (vehicle), and RT-qPCR analyses of inflammatory cytokine gene expression were used to assess IOI-214's anti-inflammatory properties in vitro. Male C57BL/6J mice were also placed on a HF diet and treated once daily with IOI-214 or DMSO for 16 weeks. Tissues were collected and analyzed to determine the effects of IOI-214 on HF diet-induced NAFL D/MAFLD. Measurements such as weight, blood glucose, serum cholesterol, liver/serum triglyceride, insulin, and glucose tolerance tests, ELISAs, metabolomics, Western blots, histology, gut microbiome, and serum LPS binding protein analyses were conducted. Results IOI-214 inhibited LPS-induced inflammation in macrophages and hepatocytes in culture and abrogated HF diet-induced mesenteric fat accumulation, hepatic inflammation and steatosis/hepatocellular ballooning, as well as fasting hyperglycemia without affecting insulin resistance or fasting insulin, cholesterol or TG levels despite overall obesity in vivo in male C57BL/6J mice. IOI-214 also decreased systemic inflammation in vivo and improved gut microbiota dysbiosis and leaky gut. Conclusion Combined, these data indicate that IOI-214 works at multiple levels in parallel to inhibit the inflammation that drives HF diet-induced NAFLD/MAFLD, suggesting that it may have therapeutic potential for NAFLD/MAFLD.
Collapse
Affiliation(s)
- Kelly D McCall
- Molecular and Cellular Biology Program, Ohio University College of Arts & Sciences, Athens, OH, USA
- Department of Biological Sciences, Ohio University College of Arts & Sciences, Athens, OH, USA
- Department of Specialty Medicine, Ohio University Heritage College of Osteopathic Medicine, Athens, OH, USA
- Department of Biomedical Sciences, Ohio University Heritage College of Osteopathic Medicine, Athens, OH, USA
- Diabetes Institute, Ohio University Heritage College of Osteopathic Medicine, Athens, OH, USA
- Biomedical Engineering Program, Ohio University Russ College of Engineering and Technology, Athens, OH, USA
| | - Debra Walter
- Molecular and Cellular Biology Program, Ohio University College of Arts & Sciences, Athens, OH, USA
- Department of Biological Sciences, Ohio University College of Arts & Sciences, Athens, OH, USA
| | - Ashley Patton
- Molecular and Cellular Biology Program, Ohio University College of Arts & Sciences, Athens, OH, USA
- Department of Biological Sciences, Ohio University College of Arts & Sciences, Athens, OH, USA
| | - Jean R Thuma
- Department of Specialty Medicine, Ohio University Heritage College of Osteopathic Medicine, Athens, OH, USA
| | - Maria C Courreges
- Department of Specialty Medicine, Ohio University Heritage College of Osteopathic Medicine, Athens, OH, USA
| | | | - Douglas J Goetz
- Molecular and Cellular Biology Program, Ohio University College of Arts & Sciences, Athens, OH, USA
- Biomedical Engineering Program, Ohio University Russ College of Engineering and Technology, Athens, OH, USA
- Department of Chemical & Biomolecular Engineering, Ohio University Russ College of Engineering and Technology, Athens, OH, USA
| | - Stephen Bergmeier
- Molecular and Cellular Biology Program, Ohio University College of Arts & Sciences, Athens, OH, USA
- Biomedical Engineering Program, Ohio University Russ College of Engineering and Technology, Athens, OH, USA
- Department of Chemistry & Biochemistry, Ohio University College of Arts & Sciences, Athens, OH, USA
| | - Frank L Schwartz
- Department of Specialty Medicine, Ohio University Heritage College of Osteopathic Medicine, Athens, OH, USA
- Diabetes Institute, Ohio University Heritage College of Osteopathic Medicine, Athens, OH, USA
- Biomedical Engineering Program, Ohio University Russ College of Engineering and Technology, Athens, OH, USA
| |
Collapse
|
17
|
Ralli T, Saifi Z, Tyagi N, Vidyadhari A, Aeri V, Kohli K. Deciphering the role of gut metabolites in non-alcoholic fatty liver disease. Crit Rev Microbiol 2023; 49:815-833. [PMID: 36394607 DOI: 10.1080/1040841x.2022.2142091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/30/2022] [Accepted: 10/26/2022] [Indexed: 11/18/2022]
Abstract
Perturbations in microbial abundance or diversity in the intestinal lumen leads to intestinal inflammation and disruption of intestinal membrane which eventually facilitates the translocation of microbial metabolites or whole microbes to the liver and other organs through portal vein. This process of translocation finally leads to multitude of health disorders. In this review, we are going to focus on the mechanisms by which gut metabolites like SCFAs, tryptophan (Trp) metabolites, bile acids (BAs), ethanol, and choline can either cause the development/progression of non-alcoholic fatty liver disease (NAFLD) or serves as a therapeutic treatment for the disease. Alterations in some metabolites like SCFAs, Trp metabolites, etc., can serve as biomarker molecules whereas presence of specific metabolites like ethanol definitely leads to disease progression. Thus, proper understanding of these mechanisms will subsequently help in designing of microbiome-based therapeutic approaches. Furthermore, we have also focussed on the role of dysbiosis on the mucosal immune system. In addition, we would also compile up the microbiome-based clinical trials which are currently undergoing for the treatment of NAFLD and non-alcoholic steatohepatitis (NASH). It has been observed that the use of microbiome-based approaches like prebiotics, probiotics, symbiotics, etc., can act as a beneficial treatment option but more research needs to be done to know how to manipulate the composition of gut microbes.
Collapse
Affiliation(s)
- Tanya Ralli
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, New Delhi, India
| | - Zoya Saifi
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, New Delhi, India
| | - Neha Tyagi
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, New Delhi, India
| | - Arya Vidyadhari
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, New Delhi, India
| | - Vidhu Aeri
- Department of Pharmacognosy, School of Pharmaceutical Education and Research, New Delhi, India
| | - Kanchan Kohli
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, New Delhi, India
- Research and Publications, Llyod Institute of Management and Technology, Greater Noida, India
| |
Collapse
|
18
|
Chen G, Zhou X, Zhu Y, Shi W, Kong L. Gut microbiome characteristics in subjective cognitive decline, mild cognitive impairment and Alzheimer's disease: a systematic review and meta-analysis. Eur J Neurol 2023; 30:3568-3580. [PMID: 37399128 DOI: 10.1111/ene.15961] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 05/08/2023] [Accepted: 06/28/2023] [Indexed: 07/05/2023]
Abstract
BACKGROUND AND PURPOSE The gut microbiome has been reported to be closely related to Alzheimer's disease (AD) progression. Here, a comprehensive meta-analysis of gut microbial characteristics in AD, mild cognitive impairment (MCI) and subjective cognitive decline (SCD) was performed to compare gut microbial alterations at each stage. METHODS A total of 10 databases (CNKI, WanFang, VIP, SinoMed, WOS, PubMed, Embase, Cochrane Library, PsycINFO and Void) were searched and 34 case-control studies were included. α and β diversity and the relative abundance of gut microbiota were analysed as outcome indices. Data analysis was performed using Review Manager (5.4.1) and R. RESULTS Chao1 and Shannon index levels in AD were significantly lower compared with healthy controls (HCs), and the Chao1 index was significantly lower in MCI compared with HCs. There was a significant difference in β diversity of gut microbiomes in patients (SCD, MCI, AD) compared with HCs. The relative abundance of Firmicutes at the phylum level was significantly lower in patients with AD and MCI than HCs. However, the relative abundance of Bacteroidetes at the phylum level was significantly higher in patients with MCI than HCs. There was an increasing trend for Enterobacteriaceae and a decreasing trend for Ruminococcaceae, Lachnospiraceae and Lactobacillus during AD; Lactobacillus showed a decreasing trend early in SCD. CONCLUSION Our results indicated that there were gut microbiological abnormalities in AD, even as early as the SCD stage. The dynamic, consistent changes in gut microbes with the disease process showed that they might serve as potential biomarkers for early identification and diagnosis of AD.
Collapse
Affiliation(s)
- Guanlin Chen
- Department of Psychology, Shanghai Normal University, Shanghai, China
| | - Xiaoqi Zhou
- Center for Global Change and Ecological Forecasting, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Yikang Zhu
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wendian Shi
- Department of Psychology, Shanghai Normal University, Shanghai, China
| | - Li Kong
- Department of Psychology, Shanghai Normal University, Shanghai, China
| |
Collapse
|
19
|
Zhou X, Zhang J, Sun Y, Shen J, Sun B, Ma Q. Glutamine Ameliorates Liver Steatosis via Regulation of Glycolipid Metabolism and Gut Microbiota in High-Fat Diet-Induced Obese Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:15656-15667. [PMID: 37847053 DOI: 10.1021/acs.jafc.3c05566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
Obesity and its associated conditions, such as nonalcoholic fatty liver disease (NAFLD), are risk factors for health. The aim of this study was to explore the effects of glutamine (Gln) on liver steatosis induced by a high-fat diet (HFD) and HEPG2 cells induced by oleic acid. Gln demonstrated a positive influence on hepatic homeostasis by suppressing acetyl CoA carboxylase (ACC) and fatty acid synthase (FAS) and promoting sirtuin 1 (SIRT1) expression while improving glucose metabolism by regulating serine/threonine protein kinase (AKT)/factor forkhead box O1 (FOXO1) signals in vivo and in vitro. Obese Gln-fed mice had higher colonic short-chain fatty acid (SCFA) contents and lower inflammation factor protein levels in the liver, HEPG2 cells, and jejunum. Gln-treated obese mice had an effective decrease in Firmicutes abundance. These findings indicate that Gln serves as a nutritional tool in managing obesity and related disorders.
Collapse
Affiliation(s)
- Xinbo Zhou
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Junjie Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Yutong Sun
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Jian Shen
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Bo Sun
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Qingquan Ma
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
20
|
Sato S, Iino C, Chinda D, Sasada T, Tateda T, Kaizuka M, Nomiya H, Igarashi G, Sawada K, Mikami T, Nakaji S, Sakuraba H, Fukuda S. Effect of Liver Fibrosis on Oral and Gut Microbiota in the Japanese General Population Determined by Evaluating the FibroScan-Aspartate Aminotransferase Score. Int J Mol Sci 2023; 24:13470. [PMID: 37686272 PMCID: PMC10487682 DOI: 10.3390/ijms241713470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/18/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
The association between liver fibrosis and oral or gut microbiota has been studied before. However, epidemiological studies in the general population are limited owing to the difficulty of noninvasive liver-fibrosis assessment. FibroScan-asparate aminotransferase (FAST) scores can be used to accurately and non-invasively evaluate liver fibrosis. This study aimed to determine the association between liver fibrosis and oral or gut microbiota using the FAST score in the general population. After propensity score matching of 1059 participants based on sex, age, body mass index, homeostasis model assessment of insulin resistance, and triglyceride levels, 125 (non-liver-fibrosis group, 100; liver fibrosis group, 25) were included. The diversity of gut microbiota differed significantly between the two groups; however, no significant differences were noted in their oral microbiota. The liver fibrosis group showed an increase in the relative abundance of Fusobacteria strains and a decrease in the relative abundance of Faecalibacterium, with the presence of Fusicatenibacter in the gut microbiota. Feacalibacterium was not identified as an independent factor of liver fibrosis in adjusting the fatty liver index. In the general population, gut microbiota may be more involved in liver fibrosis than oral microbiota.
Collapse
Affiliation(s)
- Satoshi Sato
- Department of Gastroenterology and Hematology, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan; (S.S.); (T.S.); (T.T.); (M.K.); (H.N.); (G.I.); (H.S.); (S.F.)
| | - Chikara Iino
- Department of Gastroenterology and Hematology, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan; (S.S.); (T.S.); (T.T.); (M.K.); (H.N.); (G.I.); (H.S.); (S.F.)
| | - Daisuke Chinda
- Division of Endoscopy, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan
| | - Takafumi Sasada
- Department of Gastroenterology and Hematology, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan; (S.S.); (T.S.); (T.T.); (M.K.); (H.N.); (G.I.); (H.S.); (S.F.)
| | - Tetsuyuki Tateda
- Department of Gastroenterology and Hematology, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan; (S.S.); (T.S.); (T.T.); (M.K.); (H.N.); (G.I.); (H.S.); (S.F.)
| | - Masatoshi Kaizuka
- Department of Gastroenterology and Hematology, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan; (S.S.); (T.S.); (T.T.); (M.K.); (H.N.); (G.I.); (H.S.); (S.F.)
| | - Hiroki Nomiya
- Department of Gastroenterology and Hematology, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan; (S.S.); (T.S.); (T.T.); (M.K.); (H.N.); (G.I.); (H.S.); (S.F.)
| | - Go Igarashi
- Department of Gastroenterology and Hematology, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan; (S.S.); (T.S.); (T.T.); (M.K.); (H.N.); (G.I.); (H.S.); (S.F.)
| | - Kaori Sawada
- Department of Preemptive Medicine, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan; (K.S.); (T.M.)
| | - Tatsuya Mikami
- Department of Preemptive Medicine, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan; (K.S.); (T.M.)
| | - Shigeyuki Nakaji
- Center of Healthy Aging Innovation, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan;
| | - Hirotake Sakuraba
- Department of Gastroenterology and Hematology, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan; (S.S.); (T.S.); (T.T.); (M.K.); (H.N.); (G.I.); (H.S.); (S.F.)
| | - Shinsaku Fukuda
- Department of Gastroenterology and Hematology, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan; (S.S.); (T.S.); (T.T.); (M.K.); (H.N.); (G.I.); (H.S.); (S.F.)
| |
Collapse
|
21
|
Nian F, Zhu C, Jin N, Xia Q, Wu L, Lu X. Gut microbiota metabolite TMAO promoted lipid deposition and fibrosis process via KRT17 in fatty liver cells in vitro. Biochem Biophys Res Commun 2023; 669:134-142. [PMID: 37271025 DOI: 10.1016/j.bbrc.2023.05.041] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/12/2023] [Accepted: 05/13/2023] [Indexed: 06/06/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) has become the most common chronic liver disease worldwide but still lacks specific treatment modalities. The gut microbiota and its metabolites have been shown to be intimately involved in NAFLD development, participating in and regulating disease progression. Trimethylamine N-oxide (TMAO), a metabolite highly dependent on the gut microbiota, has been shown to play deleterious regulatory roles in cardiovascular disease, but the relationship between it and NAFLD lacks validation from basic experiments. This research applied TMAO intervention by constructing fatty liver cell models in vitro to observe its effect on fatty liver cells and potential key genes and performed siRNA interference on the gene to verify the action. The results showed that TMAO intervention promoted the appearance of more red-stained lipid droplets in Oil-red O staining results, increased triglyceride (TG) levels and increased mRNA levels of liver fibrosis-related genes, and also identified one of the key genes, keratin17 (KRT17) via transcriptomics. Following the reduction in its expression level, under the same treatment, there were decreased red-stained lipid droplets, decreased TG levels, decreased indicators of impaired liver function as well as decreased mRNA levels of liver fibrosis-related genes. In conclusion, the gut microbiota metabolite TMAO could promote lipid deposition and fibrosis process via the KRT17 gene in fatty liver cells in vitro.
Collapse
Affiliation(s)
- Fulin Nian
- Department of Gastroenterology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Pudong, Shanghai, 201399, China
| | - Chen Zhu
- Department of Gastroenterology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Pudong, Shanghai, 201399, China
| | - Nuyun Jin
- Department of Gastroenterology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Pudong, Shanghai, 201399, China
| | - Qiaoyun Xia
- Department of Gastroenterology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Pudong, Shanghai, 201399, China
| | - Longyun Wu
- Department of Gastroenterology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Pudong, Shanghai, 201399, China
| | - Xiaolan Lu
- Department of Gastroenterology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Pudong, Shanghai, 201399, China.
| |
Collapse
|
22
|
Loosen SH, Krieg S, Chaudhari S, Upadhyaya S, Krieg A, Luedde T, Kostev K, Roderburg C. Prediction of New-Onset Diabetes Mellitus within 12 Months after Liver Transplantation-A Machine Learning Approach. J Clin Med 2023; 12:4877. [PMID: 37510992 PMCID: PMC10381881 DOI: 10.3390/jcm12144877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 07/19/2023] [Accepted: 07/23/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND Liver transplantation (LT) is a routine therapeutic approach for patients with acute liver failure, end-stage liver disease and/or early-stage liver cancer. While 5-year survival rates have increased to over 80%, long-term outcomes are critically influenced by extrahepatic sequelae of LT and immunosuppressive therapy, including diabetes mellitus (DM). In this study, we used machine learning (ML) to predict the probability of new-onset DM following LT. METHODS A cohort of 216 LT patients was identified from the Disease Analyzer (DA) database (IQVIA) between 2005 and 2020. Three ML models comprising random forest (RF), logistic regression (LR), and eXtreme Gradient Boosting (XGBoost) were tested as predictors of new-onset DM within 12 months after LT. RESULTS 18 out of 216 LT patients (8.3%) were diagnosed with DM within 12 months after the index date. The performance of the RF model in predicting the development of DM was the highest (accuracy = 79.5%, AUC 77.5%). It correctly identified 75.0% of the DM patients and 80.0% of the non-DM patients in the testing dataset. In terms of predictive variables, patients' age, frequency and time of proton pump inhibitor prescription as well as prescriptions of analgesics, immunosuppressants, vitamin D, and two antibiotic drugs (broad spectrum penicillins, fluocinolone) were identified. CONCLUSIONS Pending external validation, our data suggest that ML models can be used to predict the occurrence of new-onset DM following LT. Such tools could help to identify LT patients at risk of unfavorable outcomes and to implement respective clinical strategies of prevention.
Collapse
Affiliation(s)
- Sven H Loosen
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Duesseldorf, Medical Faculty, Heinrich Heine University Duesseldorf, 40225 Duesseldorf, Germany
| | - Sarah Krieg
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Duesseldorf, Medical Faculty, Heinrich Heine University Duesseldorf, 40225 Duesseldorf, Germany
| | | | | | - Andreas Krieg
- Department of Surgery (A), University Hospital Duesseldorf, Medical Faculty, Heinrich Heine University Duesseldorf, 40225 Duesseldorf, Germany
| | - Tom Luedde
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Duesseldorf, Medical Faculty, Heinrich Heine University Duesseldorf, 40225 Duesseldorf, Germany
| | | | - Christoph Roderburg
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Duesseldorf, Medical Faculty, Heinrich Heine University Duesseldorf, 40225 Duesseldorf, Germany
| |
Collapse
|
23
|
Lin X, Zhu X, Xin Y, Zhang P, Xiao Y, He T, Guo H. Intermittent Fasting Alleviates Non-Alcoholic Steatohepatitis by Regulating Bile Acid Metabolism and Promoting Fecal Bile Acid Excretion in High-Fat and High-Cholesterol Diet Fed Mice. Mol Nutr Food Res 2023; 67:e2200595. [PMID: 37148502 DOI: 10.1002/mnfr.202200595] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 02/15/2023] [Indexed: 05/08/2023]
Abstract
SCOPE Intermittent fasting (IF) has a protective role across a wide range of chronic disorders, including obesity, diabetes, and cardiovascular disease, but its protection against non-alcoholic steatohepatitis (NASH) is still lacking. This study seeks to investigate how IF alleviates NASH by regulating gut microbiota and bile acids (BAs) composition. METHODS AND RESULTS Male C57BL/6 mice are fed a high-fat and high-cholesterol (HFHC) diet for 16 weeks to establish a NASH model. Mice then continued HFHC feeding and are treated with or without every other day fasting for 10 weeks. Hepatic pathology is assessed using hematoxylin-eosin staining. Gut microbiota of the cecum are profiled using 16S rDNA gene sequencing and the levels of BAs in serum, colon contents, and feces are measured using ultra-performance liquid chromatography-tandem mass spectrometry. Results indicate that IF significantly decreases murine body weight, insulin resistance, hepatic steatosis, ballooning, and lobular inflammation. IF reshapes the gut microbiota, reduces the accumulation of serum BAs, and increases total colonic and fecal BAs. Moreover, IF increases the expression of cholesterol 7α-hydroxylase 1 in liver, but decreases the expressions of both farnesoid-X-receptor and fibroblast growth factor 15 in the ileum. CONCLUSION IF alleviates NASH by regulating bile acid metabolism and promoting fecal bile acid excretion.
Collapse
Affiliation(s)
- Xiaozhuan Lin
- Department of Nutrition, School of Public Health, Guangdong Medical University, Zhanjiang, 524023, China
| | - Xuan Zhu
- Department of Nutrition, School of Public Health, Guangdong Medical University, Zhanjiang, 524023, China
| | - Yan Xin
- Department of Nutrition, School of Public Health, Guangdong Medical University, Zhanjiang, 524023, China
| | - Peiwen Zhang
- Department of Nutrition, School of Public Health, Guangdong Medical University, Zhanjiang, 524023, China
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, China
| | - Yunjun Xiao
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Taiping He
- Department of Nutrition, School of Public Health, Guangdong Medical University, Zhanjiang, 524023, China
| | - Honghui Guo
- Department of Nutrition, School of Public Health, Guangdong Medical University, Zhanjiang, 524023, China
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, China
| |
Collapse
|
24
|
Ren J, He F, Yu D, Xu H, Li N, Cao Z, Wen J. 16S rRNA Gene Amplicon Sequencing of Gut Microbiota Affected by Four Probiotic Strains in Mice. Vet Sci 2023; 10:vetsci10040288. [PMID: 37104443 PMCID: PMC10145630 DOI: 10.3390/vetsci10040288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/23/2023] [Accepted: 04/11/2023] [Indexed: 04/28/2023] Open
Abstract
Probiotics, also referred to as "living microorganisms," are mostly present in the genitals and the guts of animals. They can increase an animal's immunity, aid in digestion and absorption, control gut microbiota, protect against sickness, and even fight cancer. However, the differences in the effects of different types of probiotics on host gut microbiota composition are still unclear. In this study, 21-day-old specific pathogen-free (SPF) mice were gavaged with Lactobacillus acidophilus (La), Lactiplantibacillus plantarum (Lp), Bacillus subtilis (Bs), Enterococcus faecalis (Ef), LB broth medium, and MRS broth medium. We sequenced 16S rRNA from fecal samples from each group 14 d after gavaging. According to the results, there were significant differences among the six groups of samples in Firmicutes, Bacteroidetes, Proteobacteria, Bacteroidetes, Actinobacteria, and Desferribacter (p < 0.01) at the phylum level. Lactobacillus, Erysipelaceae Clostridium, Bacteroides, Brautella, Trichospiraceae Clostridium, Verummicroaceae Ruminococcus, Ruminococcus, Prevotella, Shigella, and Clostridium Clostridium differed significantly at the genus level (p < 0.01). Four kinds of probiotic changes in the composition and structure of the gut microbiota in mice were observed, but they did not cause changes in the diversity of the gut microbiota. In conclusion, the use of different probiotics resulted in different changes in the gut microbiota of the mice, including genera that some probiotics decreased and genera that some pathogens increased. According to the results of this study, different probiotic strains have different effects on the gut microbiota of mice, which may provide new ideas for the mechanism of action and application of microecological agents.
Collapse
Affiliation(s)
- Jianwei Ren
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Fang He
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Detao Yu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Hang Xu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Nianfeng Li
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Zhi Cao
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Jianxin Wen
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, China
| |
Collapse
|
25
|
Caballano-Infantes E, Ho-Plágaro A, López-Gómez C, Martín-Reyes F, Rodríguez-Pacheco F, Taminiau B, Daube G, Garrido-Sánchez L, Alcaín-Martínez G, Andrade RJ, García-Cortés M, Lucena MI, García-Fuentes E, Rodríguez-Díaz C. Membrane Vesicles of Toxigenic Clostridioides difficile Affect the Metabolism of Liver HepG2 Cells. Antioxidants (Basel) 2023; 12:antiox12040818. [PMID: 37107193 PMCID: PMC10135135 DOI: 10.3390/antiox12040818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/17/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023] Open
Abstract
Clostridioides difficile infection (CDI) appears to be associated with different liver diseases. C. difficile secretes membrane vesicles (MVs), which may be involved in the development of nonalcoholic fatty liver disease (NALFD) and drug-induced liver injury (DILI). In this study, we investigated the presence of C. difficile-derived MVs in patients with and without CDI, and analyzed their effects on pathways related to NAFLD and DILI in HepG2 cells. Fecal extracellular vesicles from CDI patients showed an increase of Clostridioides MVs. C. difficile-derived MVs that were internalized by HepG2 cells. Toxigenic C. difficile-derived MVs decreased mitochondrial membrane potential and increased intracellular ROS compared to non-toxigenic C. difficile-derived MVs. In addition, toxigenic C. difficile-derived MVs upregulated the expression of genes related to mitochondrial fission (FIS1 and DRP1), antioxidant status (GPX1), apoptosis (CASP3), glycolysis (HK2, PDK1, LDHA and PKM2) and β-oxidation (CPT1A), as well as anti- and pro-inflammatory genes (IL-6 and IL-10). However, non-toxigenic C. difficile-derived MVs did not produce changes in the expression of these genes, except for CPT1A, which was also increased. In conclusion, the metabolic and mitochondrial changes produced by MVs obtained from toxigenic C. difficile present in CDI feces are common pathophysiological features observed in the NAFLD spectrum and DILI.
Collapse
Affiliation(s)
- Estefanía Caballano-Infantes
- Department of Regeneration and Cell Therapy Andalusian, Center for Molecular Biology and Regenerative Medicine (CABIMER), University of Pablo de Olavide-University of Seville-CSIC, Junta de Andalucía, 41092 Seville, Spain
| | - Ailec Ho-Plágaro
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina, IBIMA Plataforma BIONAND, 29010 Málaga, Spain
- UGC de Aparato Digestivo, Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain
| | - Carlos López-Gómez
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina, IBIMA Plataforma BIONAND, 29010 Málaga, Spain
- UGC de Aparato Digestivo, Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain
| | - Flores Martín-Reyes
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina, IBIMA Plataforma BIONAND, 29010 Málaga, Spain
- UGC de Aparato Digestivo, Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain
| | - Francisca Rodríguez-Pacheco
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina, IBIMA Plataforma BIONAND, 29010 Málaga, Spain
- UGC de Aparato Digestivo, Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain
| | - Bernard Taminiau
- Fundamental and Applied Research for Animals & Health (FARAH), Department of Food Microbiology, Faculty of Veterinary Medicine, University of Liège, 4000 Liège, Belgium
| | - Georges Daube
- Fundamental and Applied Research for Animals & Health (FARAH), Department of Food Microbiology, Faculty of Veterinary Medicine, University of Liège, 4000 Liège, Belgium
| | - Lourdes Garrido-Sánchez
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina, IBIMA Plataforma BIONAND, 29010 Málaga, Spain
- UGC de Endocrinología y Nutrición, Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Guillermo Alcaín-Martínez
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina, IBIMA Plataforma BIONAND, 29010 Málaga, Spain
- UGC de Aparato Digestivo, Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain
| | - Raúl J. Andrade
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina, IBIMA Plataforma BIONAND, 29010 Málaga, Spain
- UGC de Aparato Digestivo, Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain
- Departamento de Medicina, Facultad de Medicina, Universidad de Málaga, 29010 Málaga, Spain
- CIBER de Enfermedades Hepáticas y Digestivas, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Miren García-Cortés
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina, IBIMA Plataforma BIONAND, 29010 Málaga, Spain
- UGC de Aparato Digestivo, Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain
- Departamento de Medicina, Facultad de Medicina, Universidad de Málaga, 29010 Málaga, Spain
- CIBER de Enfermedades Hepáticas y Digestivas, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - M. Isabel Lucena
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina, IBIMA Plataforma BIONAND, 29010 Málaga, Spain
- CIBER de Enfermedades Hepáticas y Digestivas, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Servicio de Farmacología Clínica, Hospital Universitario Virgen de la Victoria, Departamento de Farmacología, Facultad de Medicina, Universidad de Málaga, 29010 Málaga, Spain
- UICEC IBIMA, Plataforma SCReN (Spanish Clinical Research Network), Servicio de Farmacología Clínica, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, 29010 Málaga, Spain
| | - Eduardo García-Fuentes
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina, IBIMA Plataforma BIONAND, 29010 Málaga, Spain
- UGC de Aparato Digestivo, Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain
- CIBER de Enfermedades Hepáticas y Digestivas, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Correspondence:
| | - Cristina Rodríguez-Díaz
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina, IBIMA Plataforma BIONAND, 29010 Málaga, Spain
- UGC de Aparato Digestivo, Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain
| |
Collapse
|
26
|
Ghotaslou R, Nabizadeh E, Memar MY, Law WMH, Ozma MA, Abdi M, Yekani M, Kadkhoda H, hosseinpour R, Bafadam S, Ghotaslou A, Leylabadlo HE, Nezhadi J. The metabolic, protective, and immune functions of Akkermansia muciniphila. Microbiol Res 2023; 266:127245. [DOI: 10.1016/j.micres.2022.127245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 10/25/2022] [Accepted: 10/25/2022] [Indexed: 11/07/2022]
|
27
|
Pibiri M, Simbula G. Role of the Hippo pathway in liver regeneration and repair: recent advances. Inflamm Regen 2022; 42:59. [PMID: 36471376 PMCID: PMC9720992 DOI: 10.1186/s41232-022-00235-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 11/09/2022] [Indexed: 12/12/2022] Open
Abstract
Although the signaling pathways involved in normal liver regeneration have been well characterized, less has been done for livers affected by chronic tissue damage. These "abnormal livers" have an impaired regenerative response that leads to liver repair and fibrosis. The tumor suppressor Hippo pathway plays a key role in liver regeneration and repair. On this basis, this review discusses recent studies focusing on the involvement of the Hippo signaling pathway during "normal healthy liver regeneration" (i.e., in a normal liver after 2/3 partial hepatectomy) and "abnormal liver regeneration" (i.e., in a liver damaged by chronic disease). This could be an important question to address with respect to new therapies aimed at improving impaired liver regenerative responses. The studies reported here have shown that activation of the Hippo coactivators YAP/TAZ during normal liver regeneration promotes the formation of a new bile duct network through direct BEC proliferation or/and hepatocyte dedifferentiation to HPCs which can trans-differentiate to BECs. Moreover, YAP/TAZ signaling interaction with other signaling pathways mediates the recruitment and activation of Kupffer cells, which release mitogenic cytokines for parenchymal and/or non-parenchymal cells and engage in phagocytosis of cellular debris. In addition, YAP-mediated activation of stellate cells (HSCs) promotes liver regeneration through the synthesis of extracellular matrix. However, in chronically diseased livers, where the predetermined threshold for proper liver regeneration is exceeded, YAP/TAZ activation results in a reparative process characterized by liver fibrosis. In this condition, YAP/TAZ activation in parenchymal and non-parenchymal cells results in (i) differentiation of quiescent HSCs into myofibroblastic HSCs; (ii) recruitment of macrophages releasing inflammatory cytokines; (iii) polarization of macrophages toward the M2 phenotype. Since accumulation of damaged hepatocytes in chronic liver injury represent a significant risk factor for the development of hepatocarcinoma, this review also discussed the involvement of the Hippo pathway in the clearance of damaged cells.
Collapse
Affiliation(s)
- Monica Pibiri
- grid.7763.50000 0004 1755 3242Department of Biomedical Sciences, Oncology and Molecular Pathology Unit, University of Cagliari, Cittadella Universitaria di Monserrato, S.P. Monserrato-Sestu km 0.700, Blocco A. 09042 Monserrato, Cagliari, Italy
| | - Gabriella Simbula
- grid.7763.50000 0004 1755 3242Department of Biomedical Sciences, Oncology and Molecular Pathology Unit, University of Cagliari, Cittadella Universitaria di Monserrato, S.P. Monserrato-Sestu km 0.700, Blocco A. 09042 Monserrato, Cagliari, Italy
| |
Collapse
|
28
|
Ran X, Hu G, He F, Li K, Li F, Xu D, Liu J, Fu S. Phytic Acid Improves Hepatic Steatosis, Inflammation, and Oxidative Stress in High-Fat Diet (HFD)-Fed Mice by Modulating the Gut-Liver Axis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:11401-11411. [PMID: 36040330 DOI: 10.1021/acs.jafc.2c04406] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) induced by obesity is a grave threat to human health. Phytic acid (PA) is a natural compound found in high-fiber diets, such as soybeans. This study investigated the effects and mechanisms of PA on obesity, hepatic lipid metabolism, and gut-liver axis homeostasis in high-fat diet (HFD)-fed mice. PA was observed to significantly inhibit obesity and alleviate liver steatosis in mice. PA improved HFD-induced liver inflammation, oxidative stress and fibrosis. Moreover, PA improved HFD-induced colonic inflammation, gut barrier damage and systemic inflammation in mice. Furthermore, PA effectively ameliorated the decreased diversity and gut microbiota composition in HFD-fed mice. Additionally, PA decreased the abundance of harmful bacteria Proteobacteria and Desulfovibrionaceae and increased the abundance of probiotic bacteria Muribaculaceae and Lachnospiraceae. Thus, PA is effective in restoring the homeostasis of the gut-liver axis. It further provides a theoretical basis for the prevention and treatment of NAFLD in patients with obesity by the rational intake of foods containing PA.
Collapse
Affiliation(s)
- Xin Ran
- College of Veterinary Medicine, Jilin University, Changchun, Jilin 130012, China
| | - Guiqiu Hu
- College of Veterinary Medicine, Jilin University, Changchun, Jilin 130012, China
| | - Fuding He
- College of Veterinary Medicine, Jilin University, Changchun, Jilin 130012, China
| | - Kefei Li
- College of Veterinary Medicine, Jilin University, Changchun, Jilin 130012, China
| | - Feng Li
- College of Veterinary Medicine, Jilin University, Changchun, Jilin 130012, China
| | - Dianwen Xu
- College of Veterinary Medicine, Jilin University, Changchun, Jilin 130012, China
| | - Juxiong Liu
- College of Veterinary Medicine, Jilin University, Changchun, Jilin 130012, China
| | - Shoupeng Fu
- College of Veterinary Medicine, Jilin University, Changchun, Jilin 130012, China
| |
Collapse
|
29
|
Kechagias S, Ekstedt M, Simonsson C, Nasr P. Non-invasive diagnosis and staging of non-alcoholic fatty liver disease. Hormones (Athens) 2022; 21:349-368. [PMID: 35661987 PMCID: PMC9464753 DOI: 10.1007/s42000-022-00377-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/19/2022] [Indexed: 02/08/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is considered to be the hepatic manifestation of the metabolic syndrome and is characterized by ectopic accumulation of triglycerides in the cytoplasm of hepatocytes, i.e., steatosis. NAFLD has become the most common chronic liver disease, with an estimated global prevalence of 25%. Although the majority of NAFLD patients will never experience liver-related complications, the progressive potential of NAFLD is indisputable, with 5-10% of subjects progressing to cirrhosis, end-stage liver disease, or hepatocellular carcinoma. NAFLD patients with advanced fibrosis are at the highest risk of developing cardiovascular and cirrhosis-related complications. Liver biopsy has hitherto been considered the reference method for evaluation of hepatic steatosis and fibrosis stage. Given the limitations of biopsy for widescale screening, non-invasive tests (NITs) for assessment of steatosis and fibrosis stage, including serum-based algorithms and ultrasound- and magnetic resonance-based methods, will play an increasing role in the management of NAFLD patients. This comprehensive review presents the advantages and limitations of NITs for identification of steatosis and advanced fibrosis in NAFLD. The clinical implications of using NITs to identify and manage NAFLD patients are also discussed.
Collapse
Affiliation(s)
- Stergios Kechagias
- Department of Gastroenterology and Hepatology, University Hospital, Linköping, Sweden.
- Department of Health, Medical and Caring Sciences, Linköping University, Linköping, Sweden.
| | - Mattias Ekstedt
- Department of Gastroenterology and Hepatology, University Hospital, Linköping, Sweden
- Department of Health, Medical and Caring Sciences, Linköping University, Linköping, Sweden
| | - Christian Simonsson
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
- Department of Biomedical Engineering, Linköping University, Linköping, Sweden
| | - Patrik Nasr
- Department of Gastroenterology and Hepatology, University Hospital, Linköping, Sweden
- Department of Health, Medical and Caring Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
30
|
The Biotics Family: Current Knowledge and Future Perspectives in Metabolic Diseases. Life (Basel) 2022; 12:life12081263. [PMID: 36013442 PMCID: PMC9410396 DOI: 10.3390/life12081263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/30/2022] [Accepted: 08/14/2022] [Indexed: 11/16/2022] Open
Abstract
Globally, metabolic diseases such as obesity, type 2 diabetes mellitus and non-alcoholic fatty liver disease pose a major public health threat. Many studies have confirmed the causal relationship between risk factors and the etiopathogenesis of these diseases. Despite this, traditional therapeutic management methods such as physical education and diet have proven insufficient. Recently, researchers have focused on other potential pathways for explaining the pathophysiological variability of metabolic diseases, such as the involvement of the intestinal microbiota. An understanding of the relationship between the microbiome and metabolic diseases is a first step towards developing future therapeutic strategies. Currently, much attention is given to the use of biotics family members such as prebiotics (lactolose, soy oligosaccharides, galactooligosaccharides, xylooligosaccharides or inulin) and probiotics (genera Lactobacillus, Bifidobacterium, Lactococcus, Streptococcus or Enterococcus). They can be used both separately and together as synbiotics. Due to their direct influence on the composition of the intestinal microbiota, they have shown favorable results in the evolution of metabolic diseases. The expansion of the research area in the biotics family has led to the discovery of new members, like postbiotics. In the age of personalized medicine, their use as therapeutic options is of great interest to our study.
Collapse
|
31
|
Zhang S, Lu S, Li Z. Extrahepatic factors in hepatic immune regulation. Front Immunol 2022; 13:941721. [PMID: 36052075 PMCID: PMC9427192 DOI: 10.3389/fimmu.2022.941721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 07/28/2022] [Indexed: 11/13/2022] Open
Abstract
The liver is a site of complex immune activity. The hepatic immune system tolerates harmless immunogenic loads in homeostasis status, shelters liver function, while maintaining vigilance against possible infectious agents or tissue damage and providing immune surveillance at the same time. Activation of the hepatic immunity is initiated by a diverse repertoire of hepatic resident immune cells as well as non-hematopoietic cells, which can sense "danger signals" and trigger robust immune response. Factors that mediate the regulation of hepatic immunity are elicited not only in liver, but also in other organs, given the dual blood supply of the liver via both portal vein blood and arterial blood. Emerging evidence indicates that inter-organ crosstalk between the liver and other organs such as spleen, gut, lung, adipose tissue, and brain is involved in the pathogenesis of liver diseases. In this review, we present the features of hepatic immune regulation, with particular attention to the correlation with factors from extrahepatic organ. We describe the mechanisms by which other organs establish an immune association with the liver and then modulate the hepatic immune response. We discuss their roles and distinct mechanisms in liver homeostasis and pathological conditions from the cellular and molecular perspective, highlighting their potential for liver disease intervention. Moreover, we review the available animal models and methods for revealing the regulatory mechanisms of these extrahepatic factors. With the increasing understanding of the mechanisms by which extrahepatic factors regulate liver immunity, we believe that this will provide promising targets for liver disease therapy.
Collapse
Affiliation(s)
- Shaoying Zhang
- National-Local Joint Engineering Research Center of Biodiagnosis & Biotherapy, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
- Shaanxi Provincial Clinical Medical Research Center for Liver and Spleen Diseases, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
- Shaanxi International Cooperation Base for Inflammation and Immunity, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Shemin Lu
- National-Local Joint Engineering Research Center of Biodiagnosis & Biotherapy, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
- Shaanxi International Cooperation Base for Inflammation and Immunity, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi’an, China
| | - Zongfang Li
- National-Local Joint Engineering Research Center of Biodiagnosis & Biotherapy, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
- Shaanxi Provincial Clinical Medical Research Center for Liver and Spleen Diseases, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
- Shaanxi International Cooperation Base for Inflammation and Immunity, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
32
|
Liakina V, Strainiene S, Stundiene I, Maksimaityte V, Kazenaite E. Gut microbiota contribution to hepatocellular carcinoma manifestation in non-alcoholic steatohepatitis. World J Hepatol 2022; 14:1277-1290. [PMID: 36158907 PMCID: PMC9376773 DOI: 10.4254/wjh.v14.i7.1277] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 04/27/2022] [Accepted: 07/11/2022] [Indexed: 02/06/2023] Open
Abstract
Recently, the gut microbiota has been recognized as an obvious active player in addition to liver steatosis/steatohepatitis in the pathophysiological mechanisms of the development of hepatocellular carcinoma (HCC), even in the absence of cirrhosis. Evidence from clinical and experimental studies shows the association of specific changes in the gut microbiome and the direct contribution to maintaining liver inflammation and/or cancerogenesis in nonalcoholic fatty liver disease-induced HCC. The composition of the gut microbiota differs significantly in obese and lean individuals, especially in the abundance of pro-inflammatory lipopolysaccharide-producing phyla, and, after establishing steatohepatitis, it undergoes minor changes during the progression of the disease toward advanced fibrosis. Experimental studies proved that the microbiota of obese subjects can induce steatohepatitis in normally fed mice. On the contrary, the transplantation of healthy microbiota to obese mice relieves steatosis. However, further studies are needed to confirm these findings and the mechanisms involved. In this review, we have evaluated well-documented clinical and experimental research on the role of the gut microbiota in the manifestation and promotion of HCC in nonalcoholic steatohepatitis (NASH). Furthermore, a literature review of microbiota alterations and consequences of dysbiosis for the promotion of NASH-induced HCC was performed, and the advantages and limitations of the microbiota as an early marker of the diagnosis of HCC were discussed.
Collapse
Affiliation(s)
- Valentina Liakina
- Centre of Hepatology, Gastroenterology and Dietetics, Clinic of Gastroenterology, Nephrourology and Surgery, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Vilnius 01513, Lithuania
- Department of Chemistry and Bioengineering, Faculty of Fundamental Sciences, Vilnius Gediminas Technical University (VILNIUS TECH), Vilnius 10223, Lithuania
| | - Sandra Strainiene
- Faculty of Medicine, Vilnius University, Vilnius 01513, Lithuania
- Therapeutic and Radiological Department, Antakalnis Polyclinic, Vilnius 10207, Lithuania
| | - Ieva Stundiene
- Centre of Hepatology, Gastroenterology and Dietetics, Clinic of Gastroenterology, Nephrourology and Surgery, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Vilnius 01513, Lithuania
| | - Vaidota Maksimaityte
- Centre of Hepatology, Gastroenterology and Dietetics, Clinic of Gastroenterology, Nephrourology and Surgery, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Vilnius 01513, Lithuania
| | - Edita Kazenaite
- Centre of Hepatology, Gastroenterology and Dietetics, Clinic of Gastroenterology, Nephrourology and Surgery, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Vilnius 01513, Lithuania
- Department of Pathology, Forensic Medicine and Pharmacology, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Vilnius 01513, Lithuania
| |
Collapse
|
33
|
Zhang R, Mu H, Li Z, Zeng J, Zhou Q, Li H, Wang S, Li X, Zhao X, Sun L, Chen W, Dong J, Yang R. Oral administration of branched-chain amino acids ameliorates high-fat diet-induced metabolic-associated fatty liver disease via gut microbiota-associated mechanisms. Front Microbiol 2022; 13:920277. [PMID: 35935188 PMCID: PMC9354786 DOI: 10.3389/fmicb.2022.920277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
Branched-chain amino acids (BCAAs), essential amino acids for the human body, are mainly obtained from food. High levels of BCAAs in circulation are considered as potential markers of metabolic-associated fatty liver disease (MAFLD) in humans. However, there are conflicting reports about the effects of supplement of BCAAs on MAFLD, and research on BCAAs and gut microbiota is not comprehensive. Here, C57BL/6J mice were fed with a high-fat diet with or without BCAAs to elucidate the effects of BCAAs on the gut microbiota and metabolic functions in a mouse model of MAFLD. Compared to high-fat diet (HFD) feeding, BCAA supplementation significantly reduced the mouse body weight, ratio of liver/body weight, hepatic lipid accumulation, serum levels of total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C) and alanine aminotransferase (ALT), and the expressions of the lipogenesis-related enzymes Fas, Acc, and Scd-1 and increased expressions of the lipolysis-related enzymes Cpt1A and Atgl in the liver. BCAAs supplementation also counteracted HFD-induced elevations in serum BCAAs levels by stimulating the enzymatic activity of BCKDH. Furthermore, BCAAs supplementation markedly improved the gut bacterial diversity and altered the gut microbiota composition and abundances, especially those of genera, in association with MAFLD and BCAAs metabolism. These data suggest that BCAA treatment improves HFD-induced MAFLD through mechanisms involving intestinal microbes.
Collapse
Affiliation(s)
- Ranran Zhang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
- Institute of Geriatrics, Peking University Fifth School of Clinical Medicine, Beijing, China
| | - Hongna Mu
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
| | - Ziyun Li
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
| | - Jie Zeng
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, China
| | - Qi Zhou
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
| | - Hongxia Li
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
| | - Siming Wang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
| | - Xianghui Li
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
| | - Xianghui Zhao
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
| | - Liang Sun
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
| | - Wenxiang Chen
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, China
| | - Jun Dong
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
| | - Ruiyue Yang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
- Institute of Geriatrics, Peking University Fifth School of Clinical Medicine, Beijing, China
- *Correspondence: Ruiyue Yang,
| |
Collapse
|
34
|
Mia MM, Singh MK. Emerging roles of the Hippo signaling pathway in modulating immune response and inflammation-driven tissue repair and remodeling. FEBS J 2022; 289:4061-4081. [PMID: 35363945 DOI: 10.1111/febs.16449] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/17/2022] [Accepted: 03/30/2022] [Indexed: 02/06/2023]
Abstract
Inflammation is an evolutionarily conserved process and part of the body's defense mechanism. Inflammation leads to the activation of immune and non-immune cells that protect the host tissue/organs from injury or intruding pathogens. The Hippo pathway is an evolutionarily conserved kinase cascade with an established role in regulating cell proliferation, survival, and differentiation. It is involved in diverse biological processes, including organ size control and tissue homeostasis. Recent clinical and pre-clinical studies have shown that the Hippo signaling pathway is also associated with injury- and pathogen-induced tissue inflammation and associated immunopathology. In this review, we have summarized the recent findings related to the involvement of the Hippo signaling pathway in modulating the immune response in different acute and chronic inflammatory diseases and its impact on tissue repair and remodeling.
Collapse
Affiliation(s)
- Masum M Mia
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore
| | - Manvendra K Singh
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore.,National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore
| |
Collapse
|
35
|
Li H, Liang J, Han M, Wang X, Ren Y, Wang Y, Huang J, Li S, Liu C, Wang Z, Yue T, Gao Z. Sequentially fermented dealcoholized apple juice intervenes fatty liver induced by high-fat diets via modulation of intestinal flora and gene pathways. Food Res Int 2022; 156:111180. [DOI: 10.1016/j.foodres.2022.111180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/18/2022] [Accepted: 03/20/2022] [Indexed: 11/04/2022]
|
36
|
Eugenol alleviated nonalcoholic fatty liver disease in rat via a gut-brain-liver axis involving glucagon-like Peptide-1. Arch Biochem Biophys 2022; 725:109269. [PMID: 35508252 DOI: 10.1016/j.abb.2022.109269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 12/16/2022]
|
37
|
Akter S. Non-alcoholic Fatty Liver Disease and Steatohepatitis: Risk Factors and Pathophysiology. Middle East J Dig Dis 2022; 14:167-181. [PMID: 36619154 PMCID: PMC9489315 DOI: 10.34172/mejdd.2022.270] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 01/20/2022] [Indexed: 01/11/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) and its progressive subtype non-alcoholic steatohepatitis (NASH) are the most prevalent liver diseases, often leading to hepatocellular carcinoma (HCC). This review aims to describe the present knowledge of the risk factors responsible for the development of NAFLD and NASH. I performed a literature review identifying studies focusing on the complex pathogenic pathway and risk factors of NAFLD and steatohepatitis. The relationship between NAFLD and metabolic syndrome is well established and widely recognized. Obesity, dyslipidemia, type 2 diabetes, hypertension, and insulin resistance are the most common risk factors associated with NAFLD. Among the components of metabolic syndrome, current evidence strongly suggests obesity and type 2 diabetes as risk factors of NASH and HCC. However, other elements, namely gender divergences, ethnicity, genetic factors, participation of innate immune system, oxidative stress, apoptotic pathways, and adipocytokines, take a leading role in the onset and promotion of NAFLD. Pathophysiological mechanisms that are responsible for NAFLD development and subsequent progression to NASH are insulin resistance and hyperinsulinemia, oxidative stress, hepatic stellate cell (HSC) activation, cytokine/adipokine signaling pathways, and genetic and environmental factors. Major pathophysiological findings of NAFLD are dysfunction of adipose tissue through the enhanced flow of free fatty acids (FFAs) and release of adipokines, and altered gut microbiome that generate proinflammatory signals and cause NASH progression. Understanding the pathophysiology and risk factors of NAFLD and NASH; this review could provide insight into the development of therapeutic strategies and useful diagnostic tools.
Collapse
Affiliation(s)
- Sharmin Akter
- Department of Physiology, Bangladesh Agricultural University, Mymensingh-2202, Bangladesh,Corresponding Author: Sharmin Akter, PhD Department of Physiology, Bangladesh Agricultural University, Mymensingh-2202, Bangladesh Tel: +0088-091-67401-6 (ext. 6320) Fax: + 880 91 61510
| |
Collapse
|
38
|
Vijay A, Valdes AM. Role of the gut microbiome in chronic diseases: a narrative review. Eur J Clin Nutr 2022; 76:489-501. [PMID: 34584224 PMCID: PMC8477631 DOI: 10.1038/s41430-021-00991-6] [Citation(s) in RCA: 216] [Impact Index Per Article: 72.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 06/29/2021] [Accepted: 07/27/2021] [Indexed: 02/07/2023]
Affiliation(s)
- Amrita Vijay
- Division of Rheumatology, Orthopaedics and Dermatology, School of Medicine, The University of Nottingham, Nottingham, UK.
| | - Ana M Valdes
- Division of Rheumatology, Orthopaedics and Dermatology, School of Medicine, The University of Nottingham, Nottingham, UK
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and University of Nottingham, Nottingham, UK
| |
Collapse
|
39
|
Yue S, Shan B, Peng C, Tan C, Wang Q, Gong J. Theabrownin-targeted regulation of intestinal microorganisms to improve glucose and lipid metabolism in Goto-Kakizaki rats. Food Funct 2022; 13:1921-1940. [PMID: 35088787 DOI: 10.1039/d1fo03374c] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Diabetes is a disease that is characterized by a disturbance of glucose metabolism. Theabrownin (TB) is one of the most active and abundant pigments in Pu-erh tea, and it is a brown pigment with multiple aromatic rings and attached residues of polysaccharides and proteins. TB has been shown to be hypolipidemic and displays fasting blood glucose (FBG)-lowering properties in rats fed a high-fat diet, but the underlying mechanism has not been elucidated. This study aimed to determine the effect of TB in treating diabetes and explore the underlying mechanism of action of intestinal microbes by using Goto-Kakizaki (GK) rats. Diabetic GK rats were treated up to 8 weeks with TB (GK-TB). Following treatment, the body weight, triglyceride (TG) content, fasting blood glucose (FBG) content, and Homeostatic Model Assessment for Insulin Resistance (HOMA-IR) were significantly lower in the GK-TB group than in the GK control group (P < 0.05). Meanwhile, the circulating adiponectin (ADPN), leptin, and glucokinase levels in the serum of the GK-TB group were significantly higher than those in the GK group, while there was little difference in hepatic lipase (HL) and hormone-sensitive triglyceride lipase (HSL) enzyme activities (P > 0.05). Furthermore, with the extension of treatment time, the number of unique intestinal microorganisms in GK rats greatly increased and an interaction among intestinal microorganisms was observed. The Firmicutes/Bacteroides ratio was decreased significantly, and the composition of Actinobacteria and Proteobacteria was increased. The use of multiple omics technologies showed that TB is involved in the targeted regulation of the core characteristic intestinal flora including Bacteroides thetaiotaomicron (BT), Lactobacillus murinus (LM), Parabacteroides distasonis (PD), and Bacteroides_acidifaciens (BA) which improved the glucose and lipid metabolism of GK rats via the AMP-activated protein kinase signaling pathway, insulin signaling pathway, bile secretion and glycerophospholipid metabolism. Intragastric administration of BT, LM, PD, or BA led to a significantly reduced HOMA-IR in GK rats. Furthermore, BT significantly reduced serum lipid TG and total cholesterol (TC) and BA significantly reduced the serum lipid TC and low-density lipoprotein (LDL). PD significantly reduced serum LDL, while the effect of LM was not significant. However, LM and PD significantly increased the content of ADPN in serum. Taken together, our results indicated that the effect of TB on diabetic rats mainly depends on the targeted regulation of intestinal microorganisms and that TB is a functional food component with great potential to treat or prevent diabetes.
Collapse
Affiliation(s)
- Suijuan Yue
- College of Food Science and Technology, Yunnan Agricultural University, Heilong Tan, Kunming, Yunnan 650201, China.
| | - Bo Shan
- College of Food Science and Technology, Yunnan Agricultural University, Heilong Tan, Kunming, Yunnan 650201, China.
| | - Chunxiu Peng
- College of Horticulture and Landscape, Yunnan Agricultural University, Heilong Tan, Kunming, Yunnan 650201, China.
| | - Chao Tan
- College of Food Science and Technology, Yunnan Agricultural University, Heilong Tan, Kunming, Yunnan 650201, China.
| | - Qiuping Wang
- College of Food Science and Technology, Yunnan Agricultural University, Heilong Tan, Kunming, Yunnan 650201, China.
| | - Jiashun Gong
- College of Food Science and Technology, Yunnan Agricultural University, Heilong Tan, Kunming, Yunnan 650201, China.
| |
Collapse
|
40
|
Mao J, Zhan H, Meng F, Wang G, Huang D, Liao Z, Chen M. Costunolide protects against alcohol-induced liver injury by regulating gut microbiota, oxidative stress and attenuating inflammation in vivo and in vitro. Phytother Res 2022; 36:1268-1283. [PMID: 35084790 DOI: 10.1002/ptr.7383] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 12/14/2021] [Accepted: 12/29/2021] [Indexed: 12/17/2022]
Abstract
Costunolide (cos) derived from the roots of Dolomiaea souliei (Franch.), which belongs to the Dolomiaea genus in the family Compositae, exert the anti-inebriation effect mainly by inhibiting the absorption of alcohol in the gastrointestinal tract. However, the protective effect of cos against alcohol-induced liver injury (ALI) remains obscure. The present study was aimed to evaluate the hepatoprotective effects of cos (silymarin was used as positive control) against ALI and its potential mechanisms. MTT was used to examine the effect of cos on the cell viability of L-02 cells. Plasma was separated from blood that used to test the levels of TNF-α, IL-6 and IL-12, and LPS while serum separated from blood which used to detect the level of ALT and AST. Liver tissues were obtained for histopathological examination and western blot analysis. Fresh mice feces samples were collected for the detection of bacterial composition. Cos exhibited protective effect against alcoholic-induced liver injury by regulating gut microbiota capacities (higher relative abundance of Firmicutes and Actinobacteria while lower in Bacteroidetes and Proteobacteria), adjusting oxidative stress (reduced the activities of MDA and ROS while promoted SOD, GSH and GSH-PX in L-02 cells) and attenuating inflammation (decreased the levels of ALT, AST, LPS, IL-6, IL-12 and TNF-α) via LPS-TLR4-NF-κB p65 signaling pathway, which might be an active therapeutic agent for treatment of ALI.
Collapse
Affiliation(s)
- Jingxin Mao
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Honghong Zhan
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Fancheng Meng
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Guowei Wang
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Dan Huang
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Zhihua Liao
- School of Life Sciences, Southwest University, Chongqing, China
| | - Min Chen
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| |
Collapse
|
41
|
The enriched gut commensal Faeciroseburia intestinalis contributes to the anti-metabolic disorders effects of the Ganoderma meroterpene derivative. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2021.07.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
42
|
Drożdż K, Nabrdalik K, Hajzler W, Kwiendacz H, Gumprecht J, Lip GYH. Metabolic-Associated Fatty Liver Disease (MAFLD), Diabetes, and Cardiovascular Disease: Associations with Fructose Metabolism and Gut Microbiota. Nutrients 2021; 14:103. [PMID: 35010976 PMCID: PMC8746577 DOI: 10.3390/nu14010103] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/23/2021] [Accepted: 12/23/2021] [Indexed: 12/13/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is an increasingly common condition associated with type 2 diabetes (T2DM) and cardiovascular disease (CVD). Since systemic metabolic dysfunction underlies NAFLD, the current nomenclature has been revised, and the term metabolic-associated fatty liver disease (MAFLD) has been proposed. The new definition emphasizes the bidirectional relationships and increases awareness in looking for fatty liver disease among patients with T2DM and CVD or its risk factors, as well as looking for these diseases among patients with NAFLD. The most recommended treatment method of NAFLD is lifestyle changes, including dietary fructose limitation, although other treatment methods of NAFLD have recently emerged and are being studied. Given the focus on the liver-gut axis targeting, bacteria may also be a future aim of NAFLD treatment given the microbiome signatures discriminating healthy individuals from those with NAFLD. In this review article, we will provide an overview of the associations of fructose consumption, gut microbiota, diabetes, and CVD in patients with NAFLD.
Collapse
Affiliation(s)
- Karolina Drożdż
- Department of Internal Medicine, Diabetology and Nephrology in Zabrze, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland; (K.D.); (H.K.); (J.G.); (G.Y.H.L.)
| | - Katarzyna Nabrdalik
- Department of Internal Medicine, Diabetology and Nephrology in Zabrze, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland; (K.D.); (H.K.); (J.G.); (G.Y.H.L.)
- Liverpool Centre for Cardiovascular Science, University of Liverpool and Liverpool Heart & Chest Hospital, Liverpool L14 3PE, UK
| | - Weronika Hajzler
- Doctoral School, Department of Pediatric Hematology and Oncology in Zabrze, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland;
| | - Hanna Kwiendacz
- Department of Internal Medicine, Diabetology and Nephrology in Zabrze, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland; (K.D.); (H.K.); (J.G.); (G.Y.H.L.)
| | - Janusz Gumprecht
- Department of Internal Medicine, Diabetology and Nephrology in Zabrze, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland; (K.D.); (H.K.); (J.G.); (G.Y.H.L.)
| | - Gregory Y. H. Lip
- Department of Internal Medicine, Diabetology and Nephrology in Zabrze, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland; (K.D.); (H.K.); (J.G.); (G.Y.H.L.)
- Liverpool Centre for Cardiovascular Science, University of Liverpool and Liverpool Heart & Chest Hospital, Liverpool L14 3PE, UK
- Department of Clinical Medicine, Aalborg University, 9100 Aalborg, Denmark
| |
Collapse
|
43
|
Akkermansia muciniphila – obiecujący kandydat na probiotyk nowej generacji. POSTEP HIG MED DOSW 2021. [DOI: 10.2478/ahem-2021-0036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Abstrakt
W ostatnich czasach można zaobserwować duży wzrost zainteresowania relacjami między człowiekiem a mikroorganizmami zasiedlającymi jego organizm. Licznie występują w oraz na ciele człowieka, a ich liczba przekracza liczbę komórek ludzkiego organizmu. Udoskonalenie technik badawczych pozwala lepiej zrozumieć molekularne podłoże tych oddziaływań, co być może pozwoli na wykorzystanie w terapiach tych mikroorganizmów, które korzystnie wpływają na organizm człowieka. W artykule podsumowano dotychczasową wiedzę na temat fizjologii licznie występującej w przewodzie pokarmowym bakterii Akkermansia muciniphila i jej wpływu na organizm gospodarza. Opisano właściwości A. muciniphila, jej funkcjonowanie w środowisku przewodu pokarmowego oraz relacje (zarówno antagonistyczne jak i symbiotyczne) z innymi tam bytującymi mikroorganizmami. Przedstawiono także mechanizmy oddziaływania A. muciniphila na barierę jelitową, układ immunologiczny oraz metabolizm energetyczny gospodarza. Ponadto opisano jej rolę w patogenezie i terapii chorób, w tym m.in. cukrzycy typu 2, nieswoistego zapalenia jelit, zaburzeń neurologicznych, astmy, a także jej wpływ na odpowiedź pacjenta na terapie przeciwnowotworowe oparte na działaniu układu odpornościowego. Duże zainteresowanie tą bakterią, a także przytoczone wyniki badań, w tym tych sprawdzających bezpieczeństwo jej stosowania, wskazują, że A. muciniphila może być obiecującym kandydatem na probiotyk nowej generacji. Niewątpliwie jednak przed dopuszczeniem A. muciniphila do powszechnego stosowania konieczne są dalsze badania z udziałem ludzi, a także wnikliwa ocena bezpieczeństwa jej stosowania.
Collapse
|
44
|
Al-Awadi A, Grove J, Taylor M, Valdes A, Vijay A, Bawden S, Gowland P, Aithal G. Effects of an isoenergetic low Glycaemic Index (GI) diet on liver fat accumulation and gut microbiota composition in patients with non-alcoholic fatty liver disease (NAFLD): a study protocol of an efficacy mechanism evaluation. BMJ Open 2021; 11:e045802. [PMID: 34620653 PMCID: PMC8499287 DOI: 10.1136/bmjopen-2020-045802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION A Low Glycaemic Index (LGI) diet is a proposed lifestyle intervention in non-alcoholic fatty liver diseases (NAFLD) which is designed to reduce circulating blood glucose levels, hepatic glucose influx, insulin resistance and de novo lipogenesis. A significant reduction in liver fat content through following a 1-week LGI diet has been reported in healthy volunteers. Changes in dietary fat and carbohydrates have also been shown to alter gut microbiota composition and lead to hepatic steatosis through the gut-liver axis. There are no available trials examining the effects of an LGI diet on liver fat accumulation in patients with NAFLD; nor has the impact of consuming an LGI diet on gut microbiota composition been studied in this population. The aim of this trial is to investigate the effects of LGI diet consumption on liver fat content and its effects on gut microbiota composition in participants with NAFLD compared with a High Glycaemic Index (HGI) control diet. METHODS AND ANALYSIS A 2×2 cross-over randomised mechanistic dietary trial will allocate 16 participants with NAFLD to a 2-week either HGI or LGI diet followed by a 4-week wash-out period and then the LGI or HGI diet, alternative to that followed in the first 2 weeks. Baseline and postintervention (four visits) outcome measures will be collected to assess liver fat content (using MRI/S and controlled attenuation parameter-FibroScan), gut microbiota composition (using 16S RNA analysis) and blood biomarkers including glycaemic, insulinaemic, liver, lipid and haematological profiles, gut hormones levels and short-chain fatty acids. ETHICS AND DISSEMINATION Study protocol has been approved by the ethics committees of The University of Nottingham and East Midlands Nottingham-2 Research Ethics Committee (REC reference 19/EM/0291). Data from this trial will be used as part of a Philosophy Doctorate thesis. Publications will be in peer-reviewed journals. TRIAL REGISTRATION NUMBER NCT04415632.
Collapse
Affiliation(s)
- Amina Al-Awadi
- Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham, UK
- National Institute of Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, UK
- Al-Sabah Hospital, Ministry of Health, Civil Service Commission, Kuwait City, Kuwait
| | - Jane Grove
- Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham, UK
- National Institute of Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, UK
| | - Moira Taylor
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Ana Valdes
- National Institute of Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, UK
- School of Medicine, University of Nottingham, Nottingham, UK
| | - Amrita Vijay
- School of Medicine, University of Nottingham, Nottingham, UK
| | - Stephen Bawden
- National Institute of Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, UK
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | - Penny Gowland
- National Institute of Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, UK
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | - Guruprasad Aithal
- Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham, UK
- National Institute of Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, UK
| |
Collapse
|
45
|
Alili R, Belda E, Le P, Wirth T, Zucker JD, Prifti E, Clément K. Exploring Semi-Quantitative Metagenomic Studies Using Oxford Nanopore Sequencing: A Computational and Experimental Protocol. Genes (Basel) 2021; 12:1496. [PMID: 34680891 PMCID: PMC8536095 DOI: 10.3390/genes12101496] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/21/2021] [Accepted: 09/21/2021] [Indexed: 12/11/2022] Open
Abstract
The gut microbiome plays a major role in chronic diseases, of which several are characterized by an altered composition and diversity of bacterial communities. Large-scale sequencing projects allowed for characterizing the perturbations of these communities. However, translating these discoveries into clinical applications remains a challenge. To facilitate routine implementation of microbiome profiling in clinical settings, portable, real-time, and low-cost sequencing technologies are needed. Here, we propose a computational and experimental protocol for whole-genome semi-quantitative metagenomic studies of human gut microbiome with Oxford Nanopore sequencing technology (ONT) that could be applied to other microbial ecosystems. We developed a bioinformatics protocol to analyze ONT sequences taxonomically and functionally and optimized preanalytic protocols, including stool collection and DNA extraction methods to maximize read length. This is a critical parameter for the sequence alignment and classification. Our protocol was evaluated using simulations of metagenomic communities, which reflect naturally occurring compositional variations. Next, we validated both protocols using stool samples from a bariatric surgery cohort, sequenced with ONT, Illumina, and SOLiD technologies. Results revealed similar diversity and microbial composition profiles. This protocol can be implemented in a clinical or research setting, bringing rapid personalized whole-genome profiling of target microbiome species.
Collapse
Affiliation(s)
- Rohia Alili
- École Pratique des Hautes Études, PSL University, Les Patios Saint-Jacques, 4-14 Rue Ferrus, 75014 Paris, France; (R.A.); (T.W.); (K.C.)
- Nutrition Department, CRNH, Assistance Publique Hôpitaux de Paris, Pitié-Salpêtrière Hospital, 75013 Paris, France
- Nutrition and Obesity, Systemic Approaches (NutriOmics), INSERM, Sorbonne Université, 75013 Paris, France; (P.L.); (J.-D.Z.); (E.P.)
| | - Eugeni Belda
- Unit of Insect Vector Genetics and Genomics, Integrative Phenomics, 8 Rue des Pirogues de Bercy, 75012 Paris, France
| | - Phuong Le
- Nutrition and Obesity, Systemic Approaches (NutriOmics), INSERM, Sorbonne Université, 75013 Paris, France; (P.L.); (J.-D.Z.); (E.P.)
| | - Thierry Wirth
- École Pratique des Hautes Études, PSL University, Les Patios Saint-Jacques, 4-14 Rue Ferrus, 75014 Paris, France; (R.A.); (T.W.); (K.C.)
- Département Systématique et Evolution 16 Rue Buffon, ISYEB, UMR-CNRS, 75231 Paris, France
| | - Jean-Daniel Zucker
- Nutrition and Obesity, Systemic Approaches (NutriOmics), INSERM, Sorbonne Université, 75013 Paris, France; (P.L.); (J.-D.Z.); (E.P.)
- Unité de Modélisation Mathématique et Informatique des Systèmes Complexes, Institute of Research for Development(IRD), Sorbonne Université, 93143 Bondy, France
| | - Edi Prifti
- Nutrition and Obesity, Systemic Approaches (NutriOmics), INSERM, Sorbonne Université, 75013 Paris, France; (P.L.); (J.-D.Z.); (E.P.)
- Unité de Modélisation Mathématique et Informatique des Systèmes Complexes, Institute of Research for Development(IRD), Sorbonne Université, 93143 Bondy, France
| | - Karine Clément
- École Pratique des Hautes Études, PSL University, Les Patios Saint-Jacques, 4-14 Rue Ferrus, 75014 Paris, France; (R.A.); (T.W.); (K.C.)
- Nutrition and Obesity, Systemic Approaches (NutriOmics), INSERM, Sorbonne Université, 75013 Paris, France; (P.L.); (J.-D.Z.); (E.P.)
| |
Collapse
|
46
|
El-Sayed A, Aleya L, Kamel M. Microbiota and epigenetics: promising therapeutic approaches? ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:49343-49361. [PMID: 34319520 PMCID: PMC8316543 DOI: 10.1007/s11356-021-15623-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 07/20/2021] [Indexed: 04/15/2023]
Abstract
The direct/indirect responsibility of the gut microbiome in disease induction in and outside the digestive tract is well studied. These results are usually from the overpopulation of certain species on the cost of others, interaction with beneficial microflora, interference with normal epigenetic control mechanisms, or suppression of the immune system. Consequently, it is theoretically possible to cure such disorders by rebalancing the microbiome inside our bodies. This can be achieved by changing the lifestyle pattern and diet or by supplementation with beneficial bacteria or their metabolites. Various approaches have been explored to manipulate the normal microbial inhabitants, including nutraceutical, supplementations with prebiotics, probiotics, postbiotics, synbiotics, and antibiotics, or through microbiome transplantation (fecal, skin, or vaginal microbiome transplantation). In the present review, the interaction between the microbiome and epigenetics and their role in disease induction is discussed. Possible future therapeutic approaches via the reestablishment of equilibrium in our internal micro-ecosystem are also highlighted.
Collapse
Affiliation(s)
- Amr El-Sayed
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Lotfi Aleya
- Chrono-Environnement Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, F-25030, Besançon Cedex, France
| | - Mohamed Kamel
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt.
| |
Collapse
|
47
|
Zhao L, Qi Z, Yi L, Li J, Cui Y, Ur Rehman F, Yang J, Liu J, Li Y, Zhang J. The interaction between gut microbiota and flavonoid extract from Smilax glabra Roxb. and its potent alleviation of fatty liver. Food Funct 2021; 12:7836-7850. [PMID: 34235516 DOI: 10.1039/d1fo00727k] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Fatty liver is associated with intestinal microbiota dysbiosis and low-grade chronic inflammation. Herein we report the interaction of the flavonoid extract from Smilax glabra Roxb. (FSGR) with gut microbiota. Then, FSGR's function of modulating microbiota in a rat model of high-fat diet (HFD) induced fatty liver has been explored. These investigations indicated that the main compound in FSGR, such as astilbin and its isomers, could be metabolized to aglycone, while further splitting resulted in some phenolic acid compounds through a redox reaction. The data obtained clearly showed that FSGR not only alleviated the steatosis degree of liver cells and modulated the contents of short chain fatty acids (SCFAs) in the intestinal tract, but also reversed gut dysbiosis induced by HFD as prognosticated by the decreased ratio of Firmicutes/Bacteroidetes (F/B) and altered gene expression. The results demonstrated that FSGR probably could be used as a prebiotic agent to impede gut dysbiosis and fatty liver-related metabolic disorders.
Collapse
Affiliation(s)
- Lei Zhao
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Nishimura N, Kaji K, Kitagawa K, Sawada Y, Furukawa M, Ozutsumi T, Fujinaga Y, Tsuji Y, Takaya H, Kawaratani H, Moriya K, Namisaki T, Akahane T, Fukui H, Yoshiji H. Intestinal Permeability Is a Mechanical Rheostat in the Pathogenesis of Liver Cirrhosis. Int J Mol Sci 2021; 22:ijms22136921. [PMID: 34203178 PMCID: PMC8267717 DOI: 10.3390/ijms22136921] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/22/2021] [Accepted: 06/24/2021] [Indexed: 12/12/2022] Open
Abstract
Recent studies have suggested that an alteration in the gut microbiota and their products, particularly endotoxins derived from Gram-negative bacteria, may play a major role in the pathogenesis of liver diseases. Gut dysbiosis caused by a high-fat diet and alcohol consumption induces increased intestinal permeability, which means higher translocation of bacteria and their products and components, including endotoxins, the so-called "leaky gut". Clinical studies have found that plasma endotoxin levels are elevated in patients with chronic liver diseases, including alcoholic liver disease and nonalcoholic liver disease. A decrease in commensal nonpathogenic bacteria including Ruminococaceae and Lactobacillus and an overgrowth of pathogenic bacteria such as Bacteroidaceae and Enterobacteriaceae are observed in cirrhotic patients. The decreased diversity of the gut microbiota in cirrhotic patients before liver transplantation is also related to a higher incidence of post-transplant infections and cognitive impairment. The exposure to endotoxins activates macrophages via Toll-like receptor 4 (TLR4), leading to a greater production of proinflammatory cytokines and chemokines including tumor necrosis factor-alpha, interleukin (IL)-6, and IL-8, which play key roles in the progression of liver diseases. TLR4 is a major receptor activated by the binding of endotoxins in macrophages, and its downstream signal induces proinflammatory cytokines. The expression of TLR4 is also observed in nonimmune cells in the liver, such as hepatic stellate cells, which play a crucial role in the progression of liver fibrosis that develops into hepatocarcinogenesis, suggesting the importance of the interaction between endotoxemia and TLR4 signaling as a target for preventing liver disease progression. In this review, we summarize the findings for the role of gut-derived endotoxemia underlying the progression of liver pathogenesis.
Collapse
|
49
|
Kong X, Liang W, Li X, Qiu M, Xu W, Chen H. Characterization of an Acidic Polysaccharides from Carrot and Its Hepatoprotective Effect on Alcoholic Liver Injury in Mice. Chem Biodivers 2021; 18:e2100359. [PMID: 34170621 DOI: 10.1002/cbdv.202100359] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 06/25/2021] [Indexed: 12/20/2022]
Abstract
The characteristics of acidic polysaccharides extracted from Daucus carota L. var. sativa Hoffm were investigated and its hepatoprotective effects on alcoholic liver injury were determined in the mice model. A carrot polysaccharide (CPS-I: Carrot polysaccharide-I) with the molecular weight of 3.40×104 kDa was isolated from Daucus carota L. and purified by diethylaminoethyl-52 and Sephadex G-150 column chromatography. The components were analyzed by HPLC, which revealed that CPS-I consisted of galacturonic acid, rhamnose, xylose, arabinose, fructose, and galactose at a relative ratio of 1 : 3.16 : 1.13 : 5.53 : 3.45 : 7.76. Structural characterization analysis suggested that CPS-I was mainly composed of →6)-β-D-Galp-(1→ and →5)-α-L-Araf-(1→. The hepatoprotective effect of CPS-I was evaluated by alcoholic liver injury mice model. The results showed that the administration of CPS-I (300 mg/kg/day) alleviated the alcoholic liver injury in mice by increasing the levels of ADH and ALDH and reducing oxidative stress. CPS-I ameliorated the pathological changes of liver characterized by lipid accumulation, and reduced the number of lipid droplets.
Collapse
Affiliation(s)
- Xiangying Kong
- Bioscience and Biotechnology College, Shenyang Agriculture University, 120 Dongling Road, Shenyang, 110866, P. R. China
| | - Wei Liang
- Bioscience and Biotechnology College, Shenyang Agriculture University, 120 Dongling Road, Shenyang, 110866, P. R. China
| | - Xinyue Li
- Bioscience and Biotechnology College, Shenyang Agriculture University, 120 Dongling Road, Shenyang, 110866, P. R. China
| | - Meng Qiu
- Bioscience and Biotechnology College, Shenyang Agriculture University, 120 Dongling Road, Shenyang, 110866, P. R. China
| | - Wenjun Xu
- Bioscience and Biotechnology College, Shenyang Agriculture University, 120 Dongling Road, Shenyang, 110866, P. R. China
| | - Hongman Chen
- Bioscience and Biotechnology College, Shenyang Agriculture University, 120 Dongling Road, Shenyang, 110866, P. R. China
| |
Collapse
|
50
|
Ralli T, Neupane YR, Saifi Z, Kohli K. Gut microbiota as an emerging therapeutic avenue for the treatment of non-alcoholic fatty liver disease. Curr Pharm Des 2021; 27:4677-4685. [PMID: 34176456 DOI: 10.2174/1389201022666210625141526] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 05/10/2021] [Indexed: 12/02/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is one of the leading causes of death related to liver diseases worldwide. Despite this, there is no specific treatment that is approved for the disease till now, which could be due to a poor understanding of the pathophysiology of this disease. In the past few decades, several scientists have speculated the root cause of NAFLD to be dysbalance in the gut microbiome resulting in a susceptibility totheinflammatory cascade in the liver. Herein, we hypothesize to fabricate a novel formulation containing prebiotic with probiotics, which, thereby would help in maintaining the gut homeostasis, and used for the treatment of NAFLD. The proposed novel formulation would contain a Bifidobacteriumsp. with Faecalibacteriumprausnitzii in the presence of a dietary fibre having hepatoprotective activity. These two strains of probiotics would help in increasing the concentration of butyrate in the gut, which in turn would inhibit intestinal inflammation and maintain gut integrity. The dietary fibre would serve a dual mechanism; firstly they would act as a prebiotic, which helps in the proliferation of administered probiotics and secondly, would protect the liver via own hepatoprotective action. This combinatorial approach would pave a new therapeutic avenue for the treatment of NAFLD.
Collapse
Affiliation(s)
- Tanya Ralli
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, JamiaHamdard, New Delhi, India
| | - Yub Raj Neupane
- Department of Pharmacy, National University of Singapore, Singapore
| | - Zoya Saifi
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, JamiaHamdard, New Delhi, India
| | - Kanchan Kohli
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, JamiaHamdard, New Delhi, India
| |
Collapse
|