1
|
Hoffmann JP, Liu JA, Seddu K, Klein SL. Sex hormone signaling and regulation of immune function. Immunity 2023; 56:2472-2491. [PMID: 37967530 DOI: 10.1016/j.immuni.2023.10.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/25/2023] [Accepted: 10/14/2023] [Indexed: 11/17/2023]
Abstract
Immune responses to antigens, including innocuous, self, tumor, microbial, and vaccine antigens, differ between males and females. The quest to uncover the mechanisms for biological sex differences in the immune system has intensified, with considerable literature pointing toward sex hormonal influences on immune cell function. Sex steroids, including estrogens, androgens, and progestins, have profound effects on immune function. As such, drastic changes in sex steroid concentrations that occur with aging (e.g., after puberty or during the menopause transition) or pregnancy impact immune responses and the pathogenesis of immune-related diseases. The effect of sex steroids on immunity involves both the concentration of the ligand and the density and distribution of genomic and nongenomic receptors that serve as transcriptional regulators of immune cellular responses to affect autoimmunity, allergy, infectious diseases, cancers, and responses to vaccines. The next frontier will be harnessing these effects of sex steroids to improve therapeutic outcomes.
Collapse
Affiliation(s)
- Joseph P Hoffmann
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Jennifer A Liu
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Kumba Seddu
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Sabra L Klein
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Medicine, Division of Infectious Diseases, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
2
|
Beltrami S, Rizzo S, Schiuma G, Speltri G, Di Luca D, Rizzo R, Bortolotti D. Gestational Viral Infections: Role of Host Immune System. Microorganisms 2023; 11:1637. [PMID: 37512810 PMCID: PMC10383666 DOI: 10.3390/microorganisms11071637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/13/2023] [Accepted: 06/19/2023] [Indexed: 07/30/2023] Open
Abstract
Viral infections in pregnancy are major causes of maternal and fetal morbidity and mortality. Infections can develop in the neonate transplacentally, perinatally, or postnatally (from breast milk or other sources) and lead to different clinical manifestations, depending on the viral agent and the gestational age at exposure. Viewing the peculiar tolerogenic status which characterizes pregnancy, viruses could exploit this peculiar immunological status to spread or affect the maternal immune system, adopting several evasion strategies. In fact, both DNA and RNA virus might have a deep impact on both innate and acquired immune systems. For this reason, investigating the interaction with these pathogens and the host's immune system during pregnancy is crucial not only for the development of most effective therapies and diagnosis but mostly for prevention. In this review, we will analyze some of the most important DNA and RNA viruses related to gestational infections.
Collapse
Affiliation(s)
- Silvia Beltrami
- Department of Chemical, Pharmaceutical and Agricultural Science, University of Ferrara, 44121 Ferrara, Italy
| | - Sabrina Rizzo
- Department of Chemical, Pharmaceutical and Agricultural Science, University of Ferrara, 44121 Ferrara, Italy
| | - Giovanna Schiuma
- Department of Chemical, Pharmaceutical and Agricultural Science, University of Ferrara, 44121 Ferrara, Italy
| | - Giorgia Speltri
- Department of Chemical, Pharmaceutical and Agricultural Science, University of Ferrara, 44121 Ferrara, Italy
| | - Dario Di Luca
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Roberta Rizzo
- Department of Chemical, Pharmaceutical and Agricultural Science, University of Ferrara, 44121 Ferrara, Italy
| | - Daria Bortolotti
- Department of Chemical, Pharmaceutical and Agricultural Science, University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
3
|
Motomura K, Miller D, Galaz J, Liu TN, Romero R, Gomez-Lopez N. The effects of progesterone on immune cellular function at the maternal-fetal interface and in maternal circulation. J Steroid Biochem Mol Biol 2023; 229:106254. [PMID: 36681283 PMCID: PMC10038932 DOI: 10.1016/j.jsbmb.2023.106254] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 01/16/2023] [Accepted: 01/16/2023] [Indexed: 01/19/2023]
Abstract
Progesterone is a sex steroid hormone that plays a critical role in the establishment and maintenance of pregnancy. This hormone drives numerous maternal physiological adaptations to ensure the continuation of pregnancy and to facilitate fetal growth, including broad and potent modulation of the maternal immune system to promote maternal-fetal tolerance. In this brief review, we provide an overview of the immunomodulatory functions of progesterone in the decidua, placenta, myometrium, and maternal circulation during pregnancy. Specifically, we summarize current evidence of the regulated functions of innate and adaptive immune cells induced by progesterone and its downstream effector molecules in these compartments, including observations in human pregnancy and in animal models. Our review highlights the gaps in knowledge of interactions between progesterone and maternal cellular immunity that may direct future research.
Collapse
Affiliation(s)
- Kenichiro Motomura
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, and Detroit, MI, USA; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Derek Miller
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, and Detroit, MI, USA; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Jose Galaz
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, and Detroit, MI, USA; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA; Division of Obstetrics and Gynecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Tzu Ning Liu
- Wayne State University School of Medicine, Detroit, MI, USA
| | - Roberto Romero
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, and Detroit, MI, USA; Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, USA; Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, USA; Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA; Detroit Medical Center, Detroit, MI, USA
| | - Nardhy Gomez-Lopez
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, and Detroit, MI, USA; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA; Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA; Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, MI, USA.
| |
Collapse
|
4
|
Moldenhauer LM, Hull ML, Foyle KL, McCormack CD, Robertson SA. Immune–Metabolic Interactions and T Cell Tolerance in Pregnancy. THE JOURNAL OF IMMUNOLOGY 2022; 209:1426-1436. [DOI: 10.4049/jimmunol.2200362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/01/2022] [Indexed: 01/04/2023]
Abstract
Abstract
Pregnancy depends on a state of maternal immune tolerance mediated by CD4+ regulatory T (Treg) cells. Uterine Treg cells release anti-inflammatory factors, inhibit effector immunity, and support adaptation of the uterine vasculature to facilitate placental development. Insufficient Treg cells or inadequate functional competence is implicated in infertility and recurrent miscarriage, as well as pregnancy complications preeclampsia, fetal growth restriction, and preterm birth, which stem from placental insufficiency. In this review we address an emerging area of interest in pregnancy immunology–the significance of metabolic status in regulating the Treg cell expansion required for maternal–fetal tolerance. We describe how hyperglycemia and insulin resistance affect T cell responses to suppress generation of Treg cells, summarize data that implicate a role for altered glucose metabolism in impaired maternal–fetal tolerance, and explore the prospect of targeting dysregulated metabolism to rebalance the adaptive immune response in women experiencing reproductive disorders.
Collapse
Affiliation(s)
- Lachlan M. Moldenhauer
- *Robinson Research Institute and School of Biomedicine, University of Adelaide, Adelaide, South Australia, Australia; and
| | - M. Louise Hull
- *Robinson Research Institute and School of Biomedicine, University of Adelaide, Adelaide, South Australia, Australia; and
| | - Kerrie L. Foyle
- *Robinson Research Institute and School of Biomedicine, University of Adelaide, Adelaide, South Australia, Australia; and
| | - Catherine D. McCormack
- *Robinson Research Institute and School of Biomedicine, University of Adelaide, Adelaide, South Australia, Australia; and
- †Women’s and Children’s Hospital, North Adelaide, Adelaide, South Australia, Australia
| | - Sarah A. Robertson
- *Robinson Research Institute and School of Biomedicine, University of Adelaide, Adelaide, South Australia, Australia; and
| |
Collapse
|
5
|
Moldenhauer LM, Jin M, Wilson JJ, Green ES, Sharkey DJ, Salkeld MD, Bristow TC, Hull ML, Dekker GA, Robertson SA. Regulatory T Cell Proportion and Phenotype Are Altered in Women Using Oral Contraception. Endocrinology 2022; 163:6628694. [PMID: 35786711 PMCID: PMC9354970 DOI: 10.1210/endocr/bqac098] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Indexed: 11/19/2022]
Abstract
Regulatory T (Treg) cells are a specialized CD4+ T cell subpopulation that are essential for immune homeostasis, immune tolerance, and protection against autoimmunity. There is evidence that sex-steroid hormones estrogen and progesterone modulate Treg cell abundance and phenotype in women. Since natural oscillations in these hormones are modified by hormonal contraceptives, we examined whether oral contraception (OC) use impacts Treg cells and related T cell populations. T cells were analyzed by multiparameter flow cytometry in peripheral blood collected across the menstrual cycle from healthy women either using OC or without hormonal contraception and from age-matched men. Compared to naturally cycling women, women using OC had fewer Treg cells and an altered Treg cell phenotype. Notably, Treg cells exhibiting a strongly suppressive phenotype, defined by high FOXP3, CD25, Helios, HLADR, CTLA4, and Ki67, comprised a lower proportion of total Treg cells, particularly in the early- and mid-cycle phases. The changes were moderate compared to more substantial differences in Treg cells between women and men, wherein women had fewer Treg cells-especially of the effector memory Treg cell subset-associated with more T helper type 1 (Th1) cells and CD8+ T cells and lower Treg:Th1 cell and Treg:CD8+ T cell ratios than men. These findings imply that OC can modulate the number and phenotype of peripheral blood Treg cells and raise the possibility that Treg cells contribute to the physiological changes and altered disease susceptibility linked with OC use.
Collapse
Affiliation(s)
| | | | - Jasmine J Wilson
- Robinson Research Institute and School of Biomedicine, University of Adelaide, Adelaide, Australia
| | - Ella S Green
- Robinson Research Institute and School of Biomedicine, University of Adelaide, Adelaide, Australia
| | - David J Sharkey
- Robinson Research Institute and School of Biomedicine, University of Adelaide, Adelaide, Australia
| | - Mark D Salkeld
- Robinson Research Institute and School of Biomedicine, University of Adelaide, Adelaide, Australia
| | - Thomas C Bristow
- Robinson Research Institute and School of Biomedicine, University of Adelaide, Adelaide, Australia
| | - M Louise Hull
- Robinson Research Institute and Adelaide Medical School, University of Adelaide, Adelaide, Australia
| | - Gustaaf A Dekker
- Robinson Research Institute and Adelaide Medical School, University of Adelaide, Adelaide, Australia
- Division of Women’s Health, Lyell McEwin Hospital, Elizabeth Vale, Australia
| | - Sarah A Robertson
- Correspondence: Sarah A. Robertson, PhD, Robinson Research Institute and the School of Biomedicine, University of Adelaide, Adelaide, SA 5005, Australia.
| |
Collapse
|
6
|
Abou-Fadel J, Jiang X, Padarti A, Goswami DG, Smith M, Grajeda B, Bhalli M, Le A, Walker WE, Zhang J. mPR-Specific Actions Influence Maintenance of the Blood–Brain Barrier (BBB). Int J Mol Sci 2022; 23:ijms23179684. [PMID: 36077089 PMCID: PMC9456378 DOI: 10.3390/ijms23179684] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/15/2022] [Accepted: 08/24/2022] [Indexed: 12/11/2022] Open
Abstract
Cerebral cavernous malformations (CCMs) are characterized by abnormally dilated intracranial microvascular sinusoids that result in increased susceptibility to hemorrhagic stroke. It has been demonstrated that three CCM proteins (CCM1, CCM2, and CCM3) form the CCM signaling complex (CSC) to mediate angiogenic signaling. Disruption of the CSC will result in hemorrhagic CCMs, a consequence of compromised blood–brain barrier (BBB) integrity. Due to their characteristically incomplete penetrance, the majority of CCM mutation carriers (presumed CCM patients) are largely asymptomatic, but when symptoms occur, the disease has typically reached a clinical stage of focal hemorrhage with irreversible brain damage. We recently reported that the CSC couples both classic (nuclear; nPRs) and nonclassic (membrane; mPRs) progesterone (PRG)-receptors-mediated signaling within the CSC-mPRs-PRG (CmP) signaling network in nPR(−) breast cancer cells. In this report, we demonstrate that depletion of any of the three CCM genes or treatment with mPR-specific PRG actions (PRG/mifepristone) results in the disruption of the CmP signaling network, leading to increased permeability in the nPR(−) endothelial cells (ECs) monolayer in vitro. Finally, utilizing our in vivo hemizygous Ccm mutant mice models, we demonstrate that depletion of any of the three CCM genes, in combination with mPR-specific PRG actions, is also capable of leading to defective homeostasis of PRG in vivo and subsequent BBB disruption, allowing us to identify a specific panel of etiological blood biomarkers associated with BBB disruption. To our knowledge, this is the first report detailing the etiology to predict the occurrence of a disrupted BBB, an indication of early hemorrhagic events.
Collapse
Affiliation(s)
- Johnathan Abou-Fadel
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, El Paso, TX 79905, USA
| | - Xiaoting Jiang
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, El Paso, TX 79905, USA
| | - Akhil Padarti
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, El Paso, TX 79905, USA
| | - Dinesh G. Goswami
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, El Paso, TX 79905, USA
| | - Mark Smith
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, El Paso, TX 79905, USA
| | - Brian Grajeda
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79902, USA
| | - Muaz Bhalli
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, El Paso, TX 79905, USA
| | - Alexander Le
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, El Paso, TX 79905, USA
| | - Wendy E. Walker
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, El Paso, TX 79905, USA
| | - Jun Zhang
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, El Paso, TX 79905, USA
- Correspondence: ; Tel.: +1-915-215-4197
| |
Collapse
|
7
|
Yang Q, Li M, Zhao M, Lu F, Yu X, Li L, Gu Z, Deng Y, Guan R. Progesterone modulates CD4 + CD25 + FoxP3 + regulatory T Cells and TGF-β1 in the maternal-fetal interface of the late pregnant mouse. Am J Reprod Immunol 2022; 88:e13541. [PMID: 35338548 DOI: 10.1111/aji.13541] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/12/2022] [Accepted: 03/21/2022] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE Progesterone supplementation is recommended to prevent spontaneous preterm birth (sPTB) in clinical practice. However, the exact mechanism is still unclear. This study aims to better understand the mechanisms that progesterone can prevent PTB. METHODS Late pregnant mice were given various doses of progesterone receptor antagonist mifepristone, and pregnancy outcomes were observed. Then, non-pregnant and pregnant mice were given a subcutaneous injection of 40 mg/kg progesterone and 5 mg/kg mifepristone, respectively. CD4+ CD25+ FoxP3+ Treg cells in peripheral blood and decidua basalis were detected by FACS. Expressions of FoxP3 and TGF-β1 in the decidua basalis were detected. RESULTS Mifepristone induced preterm birth, and an obvious dose-response was found. Proportions of CD4+ CD25+ FoxP3+ Treg cells in the peripheral blood of non-pregnant mice increased significantly after progesterone injection. CD4+ CD25+ FoxP3+ Treg cells in the peripheral blood of pregnant mice increased significantly compared with those of non-pregnant mice. In pregnant mice, mifepristone significantly decreased the proportions of CD4+ CD25+ FoxP3+ Treg cells in peripheral blood, and reduced proportions of Treg cells at the maternal-fetal interface and expressions of FoxP3 and TGF-β1 in the maternal-fetal interface. Total 40 mg/kg of progesterone did not increase CD4+ CD25+ FoxP3+ Treg in the peripheral blood of pregnant mice, but increased proportions of Treg cells at the maternal-fetal interface and up-regulated FoxP3 and TGF-β1 expressions in the maternal-fetal interface. CONCLUSION Progesterone promotes pregnancy immune homeostasis by up-regulating Treg cells and TGF-β1 expression in the maternal-fetal interface. It may be one of the mechanisms of progesterone in preventing sPTB.
Collapse
Affiliation(s)
- Qianqian Yang
- Department of Obstetrics and Gynecology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Meihui Li
- Department of Obstetrics and Gynecology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Ming Zhao
- Department of Neurology, Naval Specialty Medical Center, Naval Medical University, Shanghai, China
| | - Feifan Lu
- Department of Obstetrics and Gynecology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Xiaomin Yu
- Department of Obstetrics and Gynecology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Li Li
- Department of Obstetrics and Gynecology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Zhongyi Gu
- Department of Obstetrics and Gynecology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Yifang Deng
- Department of Pharmacology, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, China
| | - Rui Guan
- Department of Obstetrics and Gynecology, Changhai Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
8
|
Losada-García A, Cortés-Ramírez SA, Cruz-Burgos M, Morales-Pacheco M, Cruz-Hernández CD, Gonzalez-Covarrubias V, Perez-Plascencia C, Cerbón MA, Rodríguez-Dorantes M. Hormone-Related Cancer and Autoimmune Diseases: A Complex Interplay to be Discovered. Front Genet 2022; 12:673180. [PMID: 35111194 PMCID: PMC8801914 DOI: 10.3389/fgene.2021.673180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 12/06/2021] [Indexed: 11/17/2022] Open
Abstract
Neoplasic transformation is a continuous process that occurs in the body. Even before clinical signs, the immune system is capable of recognizing these aberrant cells and reacting to suppress them. However, transformed cells acquire the ability to evade innate and adaptive immune defenses through the secretion of molecules that inhibit immune effector functions, resulting in tumor progression. Hormones have the ability to modulate the immune system and are involved in the pathogenesis of autoimmune diseases, and cancer. Hormones can control both the innate and adaptive immune systems in men and women. For example androgens reduce immunity through modulating the production of pro-inflammatory and anti-inflammatory mediators. Women are more prone than men to suffer from autoimmune diseases such as systemic lupus erythematosus, psoriasis and others. This is linked to female hormones modulating the immune system. Patients with autoimmune diseases consistently have an increased risk of cancer, either as a result of underlying immune system dysregulation or as a side effect of pharmaceutical treatments. Epidemiological data on cancer incidence emphasize the link between the immune system and cancer. We outline and illustrate the occurrence of hormone-related cancer and its relationship to the immune system or autoimmune diseases in this review. It is obvious that some observations are contentious and require explanation of molecular mechanisms and validation. As a result, future research should clarify the molecular pathways involved, including any causal relationships, in order to eventually allocate information that will aid in the treatment of hormone-sensitive cancer and autoimmune illness.
Collapse
Affiliation(s)
- A Losada-García
- Laboratorio de Oncogenomica Instituto Nacional de Medicina Genomica, Mexico City, Mexico
| | - SA Cortés-Ramírez
- Laboratorio de Oncogenomica Instituto Nacional de Medicina Genomica, Mexico City, Mexico
| | - M Cruz-Burgos
- Laboratorio de Oncogenomica Instituto Nacional de Medicina Genomica, Mexico City, Mexico
| | - M Morales-Pacheco
- Laboratorio de Oncogenomica Instituto Nacional de Medicina Genomica, Mexico City, Mexico
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | | | | | - Carlos Perez-Plascencia
- Unidad de Genómica y Cáncer, Subdirección de Investigación Básica, INCan, SSA and Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - MA Cerbón
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - M Rodríguez-Dorantes
- Laboratorio de Oncogenomica Instituto Nacional de Medicina Genomica, Mexico City, Mexico
- *Correspondence: M Rodríguez-Dorantes,
| |
Collapse
|
9
|
Rafiee M, Rezaei A, Alipour R, Sereshki N, Motamedi N, Naseri M. Progesterone-induced blocking factor (PIBF) influences the expression of membrane progesterone receptors (mPRs) on peripheral CD4 + T lymphocyte cells in normal fertile females. Hormones (Athens) 2021; 20:507-514. [PMID: 33914290 DOI: 10.1007/s42000-021-00291-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 04/04/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE Progesterone-induced blocking factor (PIBF) is a protein secreted by lymphocytes exposed to progesterone (P4). P4 and PIBF have immunomodulatory effects on peripheral CD4+ T cells during normal pregnancy. Membrane progesterone receptors (mPRs) may correlate with the immunomodulatory properties of P4 on T cells. Variation in expression of mPRs may influence P4 regulatory performance during pregnancy. On the other hand, PIBF increases in pregnant normal women compared to women who have experienced abortion. The present study aimed to determine whether PIBF, in addition to having a direct influence on the immune system, can affect P4 performance through its effect on mPR expression. Such novel research findings demonstrate the importance of PIBF in the maintenance of pregnancy. METHODS Isolated peripheral blood mononuclear cells (PBMCs) from 30 healthy women were stimulated with the mitogen phytohemagglutinin (PHA). Cells were either exposed to various concentrations of PIBF or had no exposure at all in a culture medium at 37 °C for 3 days. The mean fluorescence intensity (MFI) of mPRα and mPRβ was evaluated using polyclonal and monoclonal antibodies on CD4+ T cells. RESULTS PIBF was able to significantly increase mPR expression on the surface of peripheral CD4+ T cells (p ≤ 0.05). CONCLUSION This study characterized the effects of PIBF on mPR expression on peripheral CD4+ T cells of healthy fertile women. Thus, a decrease in PIBF concentration during abnormal pregnancy can modulate mPR expression and regulatory performance of P4 on T cells. Future research into this issue is likely to open up a new understanding of the etiology of abortion.
Collapse
Affiliation(s)
- Mitra Rafiee
- Cellular and Molecular Research Center, Department of Immunology, Birjand University of Medical Sciences, Birjand, Iran
| | - Abbas Rezaei
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Razieh Alipour
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Narges Motamedi
- Department of Community Medicine, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohsen Naseri
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran.
| |
Collapse
|
10
|
Piccinni MP, Raghupathy R, Saito S, Szekeres-Bartho J. Cytokines, Hormones and Cellular Regulatory Mechanisms Favoring Successful Reproduction. Front Immunol 2021; 12:717808. [PMID: 34394125 PMCID: PMC8355694 DOI: 10.3389/fimmu.2021.717808] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/06/2021] [Indexed: 01/07/2023] Open
Abstract
Its semi-allogeneic nature renders the conceptus vulnerable to attack by the maternal immune system. Several protective mechanisms operate during gestation to correct the harmful effects of anti-fetal immunity and to support a healthy pregnancy outcome. Pregnancy is characterized by gross alterations in endocrine functions. Progesterone is indispensable for pregnancy and humans, and it affects immune functions both directly and via mediators. The progesterone-induced mediator - PIBF - acts in favor of Th2-type immunity, by increasing Th2 type cytokines production. Except for implantation and parturition, pregnancy is characterized by a Th2-dominant cytokine pattern. Progesterone and the orally-administered progestogen dydrogesterone upregulate the production of Th2-type cytokines and suppress the production of Th1 and Th17 cytokine production in vitro. This is particularly relevant to the fact that the Th1-type cytokines TNF-α and IFN-γ and the Th17 cytokine IL-17 have embryotoxic and anti-trophoblast activities. These cytokine-modulating effects and the PIBF-inducing capabilities of dydrogesterone may contribute to the demonstrated beneficial effects of dydrogesterone in recurrent spontaneous miscarriage and threatened miscarriage. IL-17 and IL-22 produced by T helper cells are involved in allograft rejection, and therefore could account for the rejection of paternal HLA-C-expressing trophoblast. Th17 cells (producing IL-17 and IL-22) and Th22 cells (producing IL-22) exhibit plasticity and could produce IL-22 and IL-17 in association with Th2-type cytokines or with Th1-type cytokines. IL-17 and IL-22 producing Th cells are not harmful for the conceptus, if they also produce IL-4. Another important protective mechanism is connected with the expansion and action of regulatory T cells, which play a major role in the induction of tolerance both in pregnant women and in tumour-bearing patients. Clonally-expanded Treg cells increase at the feto-maternal interface and in tumour-infiltrating regions. While in cancer patients, clonally-expanded Treg cells are present in peripheral blood, they are scarce in pregnancy blood, suggesting that fetal antigen-specific tolerance is restricted to the foeto-maternal interface. The significance of Treg cells in maintaining a normal materno-foetal interaction is underlined by the fact that miscarriage is characterized by a decreased number of total effector Treg cells, and the number of clonally-expanded effector Treg cells is markedly reduced in preeclampsia. In this review we present an overview of the above mechanisms, attempt to show how they are connected, how they operate during normal gestation and how their failure might lead to pregnancy pathologies.
Collapse
Affiliation(s)
- Marie-Pierre Piccinni
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Raj Raghupathy
- Department of Microbiology, Faculty of Medicine, Kuwait University, Kuwait, Kuwait
| | - Shigeru Saito
- Department of Obstetrics and Gynecology, University of Toyama, Toyama, Japan
| | - Julia Szekeres-Bartho
- Department of Medical Biology, Medical School, Pecs University, Pecs, Hungary.,János Szentágothai Research Centre, Pecs University, Pecs, Hungary.,Endocrine Studies, Centre of Excellence, Pecs University, Pecs, Hungary.,MTA - PTE Human Reproduction Research Group, Pecs, Hungary.,National Laboratory for Human Reproduction, Pecs University, Pecs, Hungary
| |
Collapse
|
11
|
Rajput R, Sharma J. SARS-CoV-2 in Pregnancy: Fitting Into the Existing Viral Repertoire. Front Glob Womens Health 2021; 2:647836. [PMID: 34816202 PMCID: PMC8594046 DOI: 10.3389/fgwh.2021.647836] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 04/28/2021] [Indexed: 11/17/2022] Open
Abstract
The risk of viral infection during pregnancy is well-documented; however, the intervention modalities that in practice enable maternal-fetal protection are restricted by limited understanding. This becomes all the more challenging during pandemics. During many different epidemic and pandemic viral outbreaks, worse outcomes (fetal abnormalities, mortality, preterm labor, etc.) seem to affect pregnant women than what has been evident when compared to non-pregnant women. The condition of pregnancy, which is widely understood as "immunosuppressed," needs to be re-understood in terms of the way the immune system works during such a state. The immune system gets transformed to accommodate and facilitate fetal growth. The interference of such supportive conversion by viral infection and the risk of co-infection lead to adverse fetal outcomes. Hence, it is crucial to understand the risk and impact of potent viral infections likely to be encountered during pregnancy. In the present article, we review the effects imposed by previously established and recently emerging/re-emerging viral infections on maternal and fetal health. Such understanding is important in devising strategies for better preparedness and knowing the treatment options available to mitigate the relevant adverse outcomes.
Collapse
Affiliation(s)
| | - Jitender Sharma
- Department of Biochemistry, All India Institute of Medical Sciences, Bathinda, India
| |
Collapse
|
12
|
Reyes-García J, Montaño LM, Carbajal-García A, Wang YX. Sex Hormones and Lung Inflammation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1304:259-321. [PMID: 34019274 DOI: 10.1007/978-3-030-68748-9_15] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Inflammation is a characteristic marker in numerous lung disorders. Several immune cells, such as macrophages, dendritic cells, eosinophils, as well as T and B lymphocytes, synthetize and release cytokines involved in the inflammatory process. Gender differences in the incidence and severity of inflammatory lung ailments including asthma, chronic obstructive pulmonary disease (COPD), pulmonary fibrosis (PF), lung cancer (LC), and infectious related illnesses have been reported. Moreover, the effects of sex hormones on both androgens and estrogens, such as testosterone (TES) and 17β-estradiol (E2), driving characteristic inflammatory patterns in those lung inflammatory diseases have been investigated. In general, androgens seem to display anti-inflammatory actions, whereas estrogens produce pro-inflammatory effects. For instance, androgens regulate negatively inflammation in asthma by targeting type 2 innate lymphoid cells (ILC2s) and T-helper (Th)-2 cells to attenuate interleukin (IL)-17A-mediated responses and leukotriene (LT) biosynthesis pathway. Estrogens may promote neutrophilic inflammation in subjects with asthma and COPD. Moreover, the activation of estrogen receptors might induce tumorigenesis. In this chapter, we summarize the most recent advances in the functional roles and associated signaling pathways of inflammatory cellular responses in asthma, COPD, PF, LC, and newly occurring COVID-19 disease. We also meticulously deliberate the influence of sex steroids on the development and progress of these common and severe lung diseases.
Collapse
Affiliation(s)
- Jorge Reyes-García
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, CDMX, Mexico City, Mexico.,Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
| | - Luis M Montaño
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, CDMX, Mexico City, Mexico
| | - Abril Carbajal-García
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, CDMX, Mexico City, Mexico
| | - Yong-Xiao Wang
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA.
| |
Collapse
|
13
|
Hellberg S, Raffetseder J, Rundquist O, Magnusson R, Papapavlou G, Jenmalm MC, Ernerudh J, Gustafsson M. Progesterone Dampens Immune Responses in In Vitro Activated CD4 + T Cells and Affects Genes Associated With Autoimmune Diseases That Improve During Pregnancy. Front Immunol 2021; 12:672168. [PMID: 34054852 PMCID: PMC8149943 DOI: 10.3389/fimmu.2021.672168] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/26/2021] [Indexed: 12/13/2022] Open
Abstract
The changes in progesterone (P4) levels during and after pregnancy coincide with the temporary improvement and worsening of several autoimmune diseases like multiple sclerosis (MS) and rheumatoid arthritis (RA). Most likely immune-endocrine interactions play a major role in these pregnancy-induced effects. In this study, we used next generation sequencing to investigate the direct effects of P4 on CD4+ T cell activation, key event in pregnancy and disease. We report profound dampening effects of P4 on T cell activation, altering the gene and protein expression profile and reversing many of the changes induced during the activation. The transcriptomic changes induced by P4 were significantly enriched for genes associated with diseases known to be modulated during pregnancy such as MS, RA and psoriasis. STAT1 and STAT3 were significantly downregulated by P4 and their downstream targets were significantly enriched among the disease-associated genes. Several of these genes included well-known and disease-relevant cytokines, such as IL-12β, CXCL10 and OSM, which were further validated also at the protein level using proximity extension assay. Our results extend the previous knowledge of P4 as an immune regulatory hormone and support its importance during pregnancy for regulating potentially detrimental immune responses towards the semi-allogenic fetus. Further, our results also point toward a potential role for P4 in the pregnancy-induced disease immunomodulation and highlight the need for further studies evaluating P4 as a future treatment option.
Collapse
Affiliation(s)
- Sandra Hellberg
- Bioinformatics, Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden.,Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Johanna Raffetseder
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Olof Rundquist
- Bioinformatics, Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | - Rasmus Magnusson
- Bioinformatics, Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | - Georgia Papapavlou
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Maria C Jenmalm
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Jan Ernerudh
- Department of Clinical Immunology and Transfusion Medicine and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Mika Gustafsson
- Bioinformatics, Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| |
Collapse
|
14
|
Klossner R, Groessl M, Schumacher N, Fux M, Escher G, Verouti S, Jamin H, Vogt B, Mohaupt MG, Gennari-Moser C. Steroid hormone bioavailability is controlled by the lymphatic system. Sci Rep 2021; 11:9666. [PMID: 33958648 PMCID: PMC8102502 DOI: 10.1038/s41598-021-88508-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 04/13/2021] [Indexed: 11/09/2022] Open
Abstract
The steroid hormone progesterone accounts for immune tolerance in pregnancy. Enhanced progesterone metabolism to 6α-OH-pregnanolone occurs in complicated pregnancies such as in preeclampsia with preterm delivery or intrauterine growth restriction, and in cancer. As lymphatic endothelial cells (LECs) promote tumor immunity, we hypothesized that human LECs modify progesterone bioavailability. Primary human LECs and mice lymph nodes were incubated with progesterone and progesterone metabolism was analyzed by thin layer chromatography and liquid chromatography-mass spectrometry. Expression of steroidogenic enzymes, down-stream signal and steroid hormone receptors was assessed by Real-time PCR. The placental cell line HTR-8/SV neo was used as reference. The impact of the progesterone metabolites of interest was investigated on the immune system by fluorescence-activated cell sorting analysis. LECs metabolize progesterone to 6α-OH-pregnanolone and reactivate progesterone from a precursor. LECs highly express 17β-hydroxysteroid dehydrogenase 2 and are therefore antiandrogenic and antiestrogenic. LECs express several steroid hormone receptors and PIBF1. Progesterone and its metabolites reduced TNF-α and IFN-γ production in CD4+ and CD8+ T cells. LECs modify progesterone bioavailability and are a target of steroid hormones. Given the global area represented by LECs, they might have a critical immunomodulatory control in pregnancy and cancer.
Collapse
Affiliation(s)
- Rahel Klossner
- Department of Nephrology and Hypertension, University of Bern, 3010, Bern, Switzerland.,Department of Medicine, Lindenhofgruppe, 3006, Bern, Switzerland.,Department for BioMedical Research, University of Bern, 3010, Bern, Switzerland
| | - Michael Groessl
- Department of Nephrology and Hypertension, University of Bern, 3010, Bern, Switzerland.,Department for BioMedical Research, University of Bern, 3010, Bern, Switzerland
| | - Nadine Schumacher
- Department of Nephrology and Hypertension, University of Bern, 3010, Bern, Switzerland
| | - Michaela Fux
- Department for Clinical Chemistry, Inselspital, 3010, Bern, Switzerland
| | - Geneviève Escher
- Department of Nephrology and Hypertension, University of Bern, 3010, Bern, Switzerland.,Department for BioMedical Research, University of Bern, 3010, Bern, Switzerland
| | - Sophia Verouti
- Department of Nephrology and Hypertension, University of Bern, 3010, Bern, Switzerland.,Department for BioMedical Research, University of Bern, 3010, Bern, Switzerland
| | - Heidi Jamin
- Department of Nephrology and Hypertension, University of Bern, 3010, Bern, Switzerland.,Department for BioMedical Research, University of Bern, 3010, Bern, Switzerland
| | - Bruno Vogt
- Department of Nephrology and Hypertension, University of Bern, 3010, Bern, Switzerland.,Department for BioMedical Research, University of Bern, 3010, Bern, Switzerland
| | - Markus G Mohaupt
- Department of Medicine, Lindenhofgruppe, 3006, Bern, Switzerland.,Campus SLB, Sitem, 3010, Bern, Switzerland.,Division of Child Health, Obstetrics and Gynecology, University of Nottingham, Nottingham, NG5 1PB, UK
| | - Carine Gennari-Moser
- Department of Nephrology and Hypertension, University of Bern, 3010, Bern, Switzerland. .,Department for BioMedical Research, University of Bern, 3010, Bern, Switzerland.
| |
Collapse
|
15
|
Mendes J, Areia AL, Rodrigues-Santos P, Santos-Rosa M, Mota-Pinto A. Innate Lymphoid Cells in Human Pregnancy. Front Immunol 2020; 11:551707. [PMID: 33329512 PMCID: PMC7734178 DOI: 10.3389/fimmu.2020.551707] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 10/28/2020] [Indexed: 12/26/2022] Open
Abstract
Innate lymphoid cells (ILCs) are a new set of cells considered to be a part of the innate immune system. ILCs are classified into five subsets (according to their transcription factors and cytokine profile) as natural killer cells (NK cells), group 1 ILCs, group 2 ILCs, group 3 ILCs, and lymphoid tissue inducers (LTi). Functionally, these cells resemble the T helper population but lack the expression of recombinant genes, which is essential for the formation of T cell receptors. In this work, the authors address the distinction between peripheral and decidual NK cells, highlighting their diversity in ILC biology and its relevance to human pregnancy. ILCs are effector cells that are important in promoting immunity, inflammation, and tissue repair. Recent studies have directed their attention to ILC actions in pregnancy. Dysregulation or expansion of pro-inflammatory ILC populations as well as abnormal tolerogenic responses may directly interfere with pregnancy, ultimately resulting in pregnancy loss or adverse outcomes. In this review, we characterize these cells, considering recent findings and addressing knowledge gaps in perinatal medicine in the context of ILC biology. Moreover, we discuss the relevance of these cells not only to the process of immune tolerance, but also in disease.
Collapse
Affiliation(s)
- João Mendes
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra, Portugal
- Faculty of Medicine, Center of Investigation in Environment, Genetics and Oncobiology (CIMAGO), University of Coimbra, Coimbra, Portugal
- Faculty of Medicine, General Pathology Institute, University of Coimbra, Coimbra, Portugal
- Center for Innovation in Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
| | - Ana Luísa Areia
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra, Portugal
- Faculty of Medicine, Center of Investigation in Environment, Genetics and Oncobiology (CIMAGO), University of Coimbra, Coimbra, Portugal
- Faculty of Medicine, General Pathology Institute, University of Coimbra, Coimbra, Portugal
- Center for Innovation in Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Obstetrics Department, Coimbra University Hospital Center, Coimbra, Portugal
| | - Paulo Rodrigues-Santos
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra, Portugal
- Faculty of Medicine, Center of Investigation in Environment, Genetics and Oncobiology (CIMAGO), University of Coimbra, Coimbra, Portugal
- Center for Innovation in Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Faculty of Medicine (FMUC), Institute of Immunology, University of Coimbra, Coimbra, Portugal
- Center for Neuroscience and Cell Biology (CNC), Laboratory of Immunology and Oncology, University of Coimbra, Coimbra, Portugal
| | - Manuel Santos-Rosa
- Faculty of Medicine (FMUC), Institute of Immunology, University of Coimbra, Coimbra, Portugal
| | - Anabela Mota-Pinto
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra, Portugal
- Faculty of Medicine, Center of Investigation in Environment, Genetics and Oncobiology (CIMAGO), University of Coimbra, Coimbra, Portugal
- Faculty of Medicine, General Pathology Institute, University of Coimbra, Coimbra, Portugal
- Center for Innovation in Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
| |
Collapse
|
16
|
Alberca RW, Pereira NZ, Oliveira LMDS, Gozzi-Silva SC, Sato MN. Pregnancy, Viral Infection, and COVID-19. Front Immunol 2020; 11:1672. [PMID: 32733490 PMCID: PMC7358375 DOI: 10.3389/fimmu.2020.01672] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 06/23/2020] [Indexed: 12/14/2022] Open
Abstract
Pregnancy comprises a unique immunological condition, to allow fetal development and to protect the host from pathogenic infections. Viral infections during pregnancy can disrupt immunological tolerance and may generate deleterious effects on the fetus. Despite these possible links between pregnancy and infection-induced morbidity, it is unclear how pregnancy interferes with maternal response to some viral pathogens. In this context, the novel coronavirus (SARS-CoV-2) can induce the coronavirus diseases-2019 (COVID-19) in pregnant women. The potential risk of vertical transmission is unclear, babies born from COVID-19-positive mothers seems to have no serious clinical symptoms, the possible mechanisms are discussed, which highlights that checking the children's outcome and more research is warranted. In this review, we investigate the reports concerning viral infections and COVID-19 during pregnancy, to establish a correlation and possible implications of COVID-19 during pregnancy and neonatal's health.
Collapse
MESH Headings
- Betacoronavirus
- COVID-19
- Child, Preschool
- Coronavirus Infections/blood
- Coronavirus Infections/immunology
- Coronavirus Infections/transmission
- Coronavirus Infections/virology
- Cytokines/blood
- Female
- Fetal Development/immunology
- Humans
- Infant
- Infant, Newborn
- Infectious Disease Transmission, Vertical
- Mothers
- Pandemics
- Pneumonia, Viral/blood
- Pneumonia, Viral/immunology
- Pneumonia, Viral/transmission
- Pneumonia, Viral/virology
- Pregnancy
- Pregnancy Complications, Infectious/blood
- Pregnancy Complications, Infectious/immunology
- Pregnancy Complications, Infectious/virology
- SARS-CoV-2
Collapse
Affiliation(s)
- Ricardo Wesley Alberca
- Laboratory of Dermatology and Immunodeficiencies, LIM-56, Department of Dermatology, School of Medicine and Institute of Tropical Medicine of São Paulo, University of São Paulo, São Paulo, Brazil
| | - Nátalli Zanete Pereira
- Laboratory of Dermatology and Immunodeficiencies, LIM-56, Department of Dermatology, School of Medicine and Institute of Tropical Medicine of São Paulo, University of São Paulo, São Paulo, Brazil
| | - Luanda Mara Da Silva Oliveira
- Laboratory of Dermatology and Immunodeficiencies, LIM-56, Department of Dermatology, School of Medicine and Institute of Tropical Medicine of São Paulo, University of São Paulo, São Paulo, Brazil
| | | | - Maria Notomi Sato
- Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
17
|
Shah NM, Lai PF, Imami N, Johnson MR. Progesterone-Related Immune Modulation of Pregnancy and Labor. Front Endocrinol (Lausanne) 2019; 10:198. [PMID: 30984115 PMCID: PMC6449726 DOI: 10.3389/fendo.2019.00198] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 03/11/2019] [Indexed: 12/17/2022] Open
Abstract
Pregnancy involves a complex interplay between maternal neuroendocrine and immunological systems in order to establish and sustain a growing fetus. It is thought that the uterus at pregnancy transitions from quiescent to laboring state in response to interactions between maternal and fetal systems at least partly via altered neuroendocrine signaling. Progesterone (P4) is a vital hormone in maternal reproductive tissues and immune cells during pregnancy. As such, P4 is widely used in clinical interventions to improve the chance of embryo implantation, as well as reduce the risk of miscarriage and premature labor. Here we review research to date that focus on the pathways through which P4 mediates its actions on both the maternal reproductive and immune system. We will dissect the role of P4 as a modulator of inflammation, both systemic and intrinsic to the uterus, during human pregnancy and labor.
Collapse
Affiliation(s)
- Nishel M. Shah
- Department of Surgery and Cancer, Chelsea and Westminster Hospital, Imperial College London, London, United Kingdom
| | - Pei F. Lai
- Department of Surgery and Cancer, Chelsea and Westminster Hospital, Imperial College London, London, United Kingdom
| | - Nesrina Imami
- Department of Medicine, Chelsea and Westminster Hospital, Imperial College London, London, United Kingdom
| | - Mark R. Johnson
- Department of Surgery and Cancer, Chelsea and Westminster Hospital, Imperial College London, London, United Kingdom
| |
Collapse
|
18
|
Dydrogesterone: pharmacological profile and mechanism of action as luteal phase support in assisted reproduction. Reprod Biomed Online 2018; 38:249-259. [PMID: 30595525 DOI: 10.1016/j.rbmo.2018.11.017] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 08/15/2018] [Accepted: 11/07/2018] [Indexed: 12/29/2022]
Abstract
The pharmacological and physiological profiles of progestogens used for luteal phase support during assisted reproductive technology are likely to be important in guiding clinical choice towards the most appropriate treatment option. Various micronized progesterone formulations with differing pharmacological profiles have been investigated for several purposes. Dydrogesterone, a stereoisomer of progesterone, is available in an oral form with high oral bioavailability; it has been used to treat a variety of conditions related to progesterone deficiency since the 1960s and has recently been approved for luteal phase support as part of an assisted reproductive technology treatment. The primary objective of this review is to critically analyse the clinical implications of the pharmacological and physiological properties of dydrogesterone for its uses in luteal phase support and in early pregnancy.
Collapse
|
19
|
Robertson SA, Care AS, Moldenhauer LM. Regulatory T cells in embryo implantation and the immune response to pregnancy. J Clin Invest 2018; 128:4224-4235. [PMID: 30272581 DOI: 10.1172/jci122182] [Citation(s) in RCA: 265] [Impact Index Per Article: 37.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
At implantation, the embryo expresses paternally derived alloantigens and evokes inflammation that can threaten reproductive success. To ensure a robust placenta and sustainable pregnancy, an active state of maternal immune tolerance mediated by CD4+ regulatory T cells (Tregs) is essential. Tregs operate to inhibit effector immunity, contain inflammation, and support maternal vascular adaptations, thereby facilitating trophoblast invasion and placental access to the maternal blood supply. Insufficient Treg numbers or inadequate functional competence are implicated in idiopathic infertility and recurrent miscarriage as well as later-onset pregnancy complications stemming from placental insufficiency, including preeclampsia and fetal growth restriction. In this Review, we summarize the mechanisms acting in the conception environment to drive the Treg response and discuss prospects for targeting the T cell compartment to alleviate immune-based reproductive disorders.
Collapse
|
20
|
Shah NM, Imami N, Johnson MR. Progesterone Modulation of Pregnancy-Related Immune Responses. Front Immunol 2018; 9:1293. [PMID: 29973928 PMCID: PMC6020784 DOI: 10.3389/fimmu.2018.01293] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 05/23/2018] [Indexed: 12/20/2022] Open
Abstract
Progesterone (P4) is an important steroid hormone for the establishment and maintenance of pregnancy and its functional withdrawal in reproductive tissue is linked with the onset of parturition. However, the effects of P4 on adaptive immune responses are poorly understood. In this study, we took a novel approach by comparing the effects of P4 supplementation longitudinally, with treatment using a P4 antagonist mifepristone (RU486) in mid-trimester pregnancies. Thus, we were able to demonstrate the immune-modulatory functions of P4. We show that, in pregnancy, the immune system is increasingly activated (CD38, CCR6) with greater antigen-specific cytotoxic T cell responses (granzyme B). Simultaneously, pregnancy promotes a tolerant immune environment (IL-10 and regulatory-T cells) that gradually reverses prior to the onset of labor. P4 suppresses and RU486 enhances antigen-specific CD4 and CD8 T cell inflammatory cytokine (IFN-γ) and cytotoxic molecule release (granzyme B). P4 and RU486 effectively modulate immune cell-mediated interactions, by regulating differentiated memory T cell subset sensitivity to antigen stimulation. Our results indicate that P4 and RU486, as immune modulators, share a reciprocal relationship. These data unveil key contributions of P4 to the modulation of the maternal immune system and suggests targets for future modulation of maternal immune function during pregnancy.
Collapse
Affiliation(s)
- Nishel M. Shah
- Department of Surgery and Cancer, Imperial College London, Chelsea and Westminster Hospital, London, United Kingdom
| | - Nesrina Imami
- Department of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, United Kingdom
| | - Mark R. Johnson
- Department of Surgery and Cancer, Imperial College London, Chelsea and Westminster Hospital, London, United Kingdom
| |
Collapse
|
21
|
Recalde G, Moreno-Sosa T, Yúdica F, Quintero CA, Sánchez MB, Jahn GA, Kalergis AM, Mackern-Oberti JP. Contribution of sex steroids and prolactin to the modulation of T and B cells during autoimmunity. Autoimmun Rev 2018. [DOI: 10.1016/j.autrev.2018.03.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
22
|
Novak CM, Ozen M, McLane M, Alqutub S, Lee JY, Lei J, Burd I. Progesterone improves perinatal neuromotor outcomes in a mouse model of intrauterine inflammation via immunomodulation of the placenta. Am J Reprod Immunol 2018; 79:e12842. [PMID: 29493064 DOI: 10.1111/aji.12842] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 02/09/2018] [Indexed: 12/21/2022] Open
Abstract
To assess the fetal neuroprotective potential of progesterone using a well-validated mouse model of lipopolysaccharide (LPS)-induced intrauterine inflammation (IUI). Embryonic day 17 pregnant mouse dams (n = 69) were randomly allocated to receive 17-hydroxyprogesterone caproate (17-OHPC), micronized progesterone (MP), or vehicle 1 hour prior to intrauterine injection of phosphate-buffered saline (PBS) or LPS. After 6 hours, mice were killed for the collection of placentas and fetal brains, or pregnancy continued for the evaluation of preterm birth (PTB) and offspring neuromotor function. Placentas and fetal brains were analyzed by mini-mRNA array for 96 immune markers with individual confirmatory qPCR. Progesterone pre-treatment before LPS-induced IUI improved neuromotor tests in offspring at PND5 compared to no pre-treatment (P < .05). In placentas, 17-OHPC, but not MP, significantly reduced CXCL9 (P < .05) with a trend toward a lower level of CXCL10. In fetal brains, 17-OHPC significantly reduced CXCL9 compared to no pre-treatment (P < .05) and IL-1β compared to pre-treatment with MP (P < .01). Progesterone pre-treatment prior to LPS-induced IUI improved offspring neuromotor outcomes. 17-OHPC, but not MP, resulted in greater immunomodulation of T cell-mediated immunity in placenta and fetal brain, suggesting a possible mechanism for the observed neuroprotective effects.
Collapse
Affiliation(s)
- Christopher M Novak
- Department of Gynecology and Obstetrics, Division of Maternal Fetal Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Integrated Research Center for Fetal Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Maide Ozen
- Integrated Research Center for Fetal Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Pediatrics, Division of Neonatal-Perinatal Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michael McLane
- Integrated Research Center for Fetal Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sadiq Alqutub
- Integrated Research Center for Fetal Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ji Yeon Lee
- Integrated Research Center for Fetal Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Obstetrics and Gynecology, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Korea
| | - Jun Lei
- Integrated Research Center for Fetal Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Irina Burd
- Department of Gynecology and Obstetrics, Division of Maternal Fetal Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Integrated Research Center for Fetal Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
23
|
Schumacher A, Dauven D, Zenclussen AC. Progesterone-driven local regulatory T cell induction does not prevent fetal loss in the CBA/J×DBA/2J abortion-prone model. Am J Reprod Immunol 2017; 77. [PMID: 28224721 DOI: 10.1111/aji.12626] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 12/06/2016] [Indexed: 11/27/2022] Open
Abstract
PROBLEM Best known for its endocrine and immunologic properties, progesterone (P4) is a pivotal player for pregnancy success. However, the immunologic actions underlying P4 protection are not completely understood. Here, we investigated whether P4 application in a murine abortion-prone combination regulates regulatory T cells (Treg) and dendritic cells (DCs) and thereby affects pregnancy outcome. METHOD OF STUDY Progesterone or vehicle was applied to DBA/2J-mated CBA/J abortion-prone animals in early pregnancy. On gestation day 10, peripheral and local DC and Treg numbers were analyzed and pregnancy outcome was determined. RESULTS Progesterone application provoked a significant increase in the uterine Treg pool but did not alter the abortion rate. Moreover, no significant changes could be observed in peripheral Treg levels and DC numbers after P4 application. CONCLUSIONS Our findings suggest that P4-induced local Treg elevation is not sufficient to overcome fetal rejection in this specific model of disturbed fetal tolerance.
Collapse
Affiliation(s)
- Anne Schumacher
- Department of Experimental Obstetrics and Gynecology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| | - Dominique Dauven
- Department of Experimental Obstetrics and Gynecology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| | - Ana C Zenclussen
- Department of Experimental Obstetrics and Gynecology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| |
Collapse
|
24
|
Chang RQ, Li DJ, Li MQ. The role of indoleamine-2,3-dioxygenase in normal and pathological pregnancies. Am J Reprod Immunol 2017; 79:e12786. [PMID: 29154462 DOI: 10.1111/aji.12786] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 10/30/2017] [Indexed: 12/30/2022] Open
Abstract
The survival of allogeneic fetus during pregnancy contradicts the laws of immune responses. Behind this paradoxical phenomenon, the mechanism is quite complex. Indoleamine-2,3-dioxygenase (IDO) is the first and rate-limiting enzyme of tryptophan catabolism. Emerging evidence shows that IDO is expressed at the maternal-fetal interface, including trophoblast cells, decidual stroma cells, decidual immune cells (eg, natural killer cells, T cells, and macrophages), and vascular endothelial cells of decidua and chorion. Moreover, the expression and activity of IDO are different among non-pregnant, normal pregnant, and pathological pregnant conditions. IDO plays important roles in normal pregnancy through immune suppression and regulation of fetal invasion and circulation. However, the abnormal expression and dysfunction of IDO are associated with some pathological pregnancies (including recurrent spontaneous abortion, preeclampsia, preterm labor, and fetal growth restriction).
Collapse
Affiliation(s)
- Rui-Qi Chang
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Da-Jin Li
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China.,Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Ming-Qing Li
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China.,Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| |
Collapse
|
25
|
Lima J, Martins C, Nunes G, Sousa MJ, Branco JC, Borrego LM. Regulatory T Cells Show Dynamic Behavior During Late Pregnancy, Delivery, and the Postpartum Period. Reprod Sci 2016; 24:1025-1032. [PMID: 28618983 DOI: 10.1177/1933719116676395] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Regulatory T cells (Tregs) are critical immunomodulators during early pregnancy by preventing maternal T-cell activation against fetal cells. However, how populations of maternal Tregs vary during and after pregnancy in humans is still unclear. Therefore, we investigated Treg subsets in the peripheral blood of pregnant women from late pregnancy through the postpartum period. To accomplish this, the following circulating Treg subsets were analyzed in 43 healthy pregnant women and 35 nonpregnant women by flow cytometry during the third trimester, on the day of delivery, and postpartum: CD4DimCD25Hi, CD4+CD25HiFoxp3+, and CD4+CD25HiCD127-/dim. Additionally, the expression levels of the transcription factor Foxp3 in CD4DimCD25Hi Treg were analyzed. We have found that CD4DimCD25Hi Treg subset significantly decreased in the pregnant women on the day of delivery relative to the third trimester ( P < .05), and that all Treg subsets significantly increased postpartum compared to the third trimester and the day of delivery ( P < .05). Moreover, the Foxp3 expression ratios within the CD4DimCD25Hi Treg subset decreased during pregnancy and until delivery compared to those measured in the nonpregnant women and significantly increased postpartum compared to the third trimester and the day of delivery ( P < .05). Thus, despite their established role in offering immunoprotection to the fetus in early pregnancy, the number of circulating Tregs also varies from late pregnancy to the postpartum period. Our results offer an explanation for the possible effects of pregnancy on the clinical outcomes of some autoimmune diseases during the postpartum period.
Collapse
Affiliation(s)
- Jorge Lima
- 1 Department of Obstetrics and Gynecology, CUF Descobertas Hospital, Lisbon, Portugal
- 2 Department of Immunology, Chronic Diseases Research Center (CEDOC), Faculty of Medical Sciences, NOVA Medical School, Lisbon, Portugal
| | - Catarina Martins
- 2 Department of Immunology, Chronic Diseases Research Center (CEDOC), Faculty of Medical Sciences, NOVA Medical School, Lisbon, Portugal
| | - Glória Nunes
- 2 Department of Immunology, Chronic Diseases Research Center (CEDOC), Faculty of Medical Sciences, NOVA Medical School, Lisbon, Portugal
| | - Maria-José Sousa
- 3 Centro de Medicina Laboratorial Germano Sousa, Lisbon, Portugal
- 4 Department of Clinical Pathology, Hospital Prof. Fernando Fonseca, E.P.E., Amadora, Portugal
| | - Jorge C Branco
- 5 Obstetrics and Gynecology, Private Medical Clinic, Lisbon, Portugal
| | - Luís-Miguel Borrego
- 2 Department of Immunology, Chronic Diseases Research Center (CEDOC), Faculty of Medical Sciences, NOVA Medical School, Lisbon, Portugal
- 6 Department of Immunoallergy, CUF Descobertas Hospital, Lisbon, Portugal
| |
Collapse
|
26
|
Kälble F, Mai C, Wagner M, Schober L, Schaier M, Zeier M, Spratte J, Fluhr H, Steinborn A. Aberrant ICOS + -T cell differentiation in women with spontaneous preterm labor. Am J Reprod Immunol 2016; 76:415-425. [PMID: 27650411 DOI: 10.1111/aji.12565] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 08/18/2016] [Indexed: 12/23/2022] Open
Abstract
PROBLEM Recent studies revealed appropriate differentiation of recent thymic emigrant (RTE)-regulatory T cells (Tregs) to be crucial for maintaining healthy pregnancy. Currently, the role of responder T cells (Tresps) is not known. METHOD OF STUDY Six-color flow cytometric analysis was used to detect differences in the differentiation of highly proliferative inducible co-stimulatory (ICOS)+ -RTE-Tregs/Tresps and apoptosis-sensitive ICOS- -RTE-Tregs/Tresps into mature naïve (MN)-, CD31+ -memory and CD31- -memory Tregs/Tresps in women with spontaneous preterm labor (sPL) compared to healthy pregnancy. RESULTS Healthy pregnancy was characterized by an increased differentiation of ICOS+ - and ICOS- -RTE-Tregs, as well as ICOS+ -RTE-Tresps via CD31+ -memory Tregs/Tresps into CD31- -memory Tregs/Tresps. Women with sPL showed an early interruption of RTE-Treg/Tresp differentiation. Instead, ICOS+ -MN-Tresps and partly ICOS- -MN-Tregs differentiated into CD31- -memory Tregs/Tresps, causing a significant reduction of both ICOS+ -Tregs and ICOS+ -Tresps, but an increase of ICOS- -Tresps within total CD4+ -T-helper cells. CONCLUSION Aberrant differentiation of ICOS+ -T cells is associated with sPL.
Collapse
Affiliation(s)
- Florian Kälble
- Department of Medicine I (Nephrology), University of Heidelberg, Heidelberg, Germany
| | - Charlotte Mai
- Department of Obstetrics and Gynecology, University of Heidelberg, Heidelberg, Germany
| | - Miriam Wagner
- Department of Obstetrics and Gynecology, University of Heidelberg, Heidelberg, Germany
| | - Linda Schober
- Department of Obstetrics and Gynecology, University Medical Center Mannheim, University of Heidelberg, Mannheim, Germany
| | - Matthias Schaier
- Department of Medicine I (Nephrology), University of Heidelberg, Heidelberg, Germany
| | - Martin Zeier
- Department of Medicine I (Nephrology), University of Heidelberg, Heidelberg, Germany
| | - Julia Spratte
- Department of Obstetrics and Gynecology, University of Heidelberg, Heidelberg, Germany
| | - Herbert Fluhr
- Department of Obstetrics and Gynecology, University of Heidelberg, Heidelberg, Germany
| | - Andrea Steinborn
- Department of Obstetrics and Gynecology, University of Heidelberg, Heidelberg, Germany.
| |
Collapse
|
27
|
Hall OJ, Limjunyawong N, Vermillion MS, Robinson DP, Wohlgemuth N, Pekosz A, Mitzner W, Klein SL. Progesterone-Based Therapy Protects Against Influenza by Promoting Lung Repair and Recovery in Females. PLoS Pathog 2016; 12:e1005840. [PMID: 27631986 PMCID: PMC5025002 DOI: 10.1371/journal.ppat.1005840] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 08/02/2016] [Indexed: 01/07/2023] Open
Abstract
Over 100 million women use progesterone therapies worldwide. Despite having immunomodulatory and repair properties, their effects on the outcome of viral diseases outside of the reproductive tract have not been evaluated. Administration of exogenous progesterone (at concentrations that mimic the luteal phase) to progesterone-depleted adult female mice conferred protection from both lethal and sublethal influenza A virus (IAV) infection. Progesterone treatment altered the inflammatory environment of the lungs, but had no effects on viral load. Progesterone treatment promoted faster recovery by increasing TGF-β, IL-6, IL-22, numbers of regulatory Th17 cells expressing CD39, and cellular proliferation, reducing protein leakage into the airway, improving pulmonary function, and upregulating the epidermal growth factor amphiregulin (AREG) in the lungs. Administration of rAREG to progesterone-depleted females promoted pulmonary repair and improved the outcome of IAV infection. Progesterone-treatment of AREG-deficient females could not restore protection, indicating that progesterone-mediated induction of AREG caused repair in the lungs and accelerated recovery from IAV infection. Repair and production of AREG by damaged respiratory epithelial cell cultures in vitro was increased by progesterone. Our results illustrate that progesterone is a critical host factor mediating production of AREG by epithelial cells and pulmonary tissue repair following infection, which has important implications for women's health.
Collapse
Affiliation(s)
- Olivia J. Hall
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Nathachit Limjunyawong
- Department of Environmental Health Sciences, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Meghan S. Vermillion
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
- Department of Molecular and Comparative Pathobiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Dionne P. Robinson
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Nicholas Wohlgemuth
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Andrew Pekosz
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
- Department of Environmental Health Sciences, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Wayne Mitzner
- Department of Environmental Health Sciences, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Sabra L. Klein
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
- Department of Biochemistry and Molecular Biology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| |
Collapse
|
28
|
Figueiredo AS, Schumacher A. The T helper type 17/regulatory T cell paradigm in pregnancy. Immunology 2016; 148:13-21. [PMID: 26855005 DOI: 10.1111/imm.12595] [Citation(s) in RCA: 200] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 01/15/2016] [Accepted: 02/04/2016] [Indexed: 12/28/2022] Open
Abstract
T helper type 17 (Th17) and regulatory T (Treg) cells are active players in the establishment of tolerance and defence. These attributes of the immune system enmesh to guarantee the right level of protection. The healthy immune system, on the one hand, recognizes and eliminates dangerous non-self pathogens and, on the other hand, protects the healthy self. However, there are circumstances where this fine balance is disrupted. In fact, in situations such as in pregnancy, the foreign fetal antigens challenge the maternal immune system and Treg cells will dominate Th17 cells to guarantee fetal survival. In other situations such as autoimmunity, where the Th17 responses are often overwhelming, the immune system shifts towards an inflammatory profile and attacks the healthy tissue from the self. Interestingly, autoimmune patients have meliorating symptoms during pregnancy. This connects with the antagonist role of Th17 and Treg cells, and their specific profiles during these two immune challenging situations. In this review, we put into perspective the Th17/Treg ratio during pregnancy and autoimmunity, as well as in pregnant women with autoimmune conditions. We further review existing systems biology approaches that study specific mechanisms of these immune cells using mathematical modelling and we point out possible future directions of investigation. Understanding what maintains or disrupts the balance between these two opponent yet reciprocal cells in healthy physiological settings, sheds light into the development of innovative pharmacological approaches to fight pregnancy loss and autoimmunity.
Collapse
Affiliation(s)
- Ana Sofia Figueiredo
- Medical Faculty, Institute for Experimental Internal Medicine, Otto-von-Guericke University, Magdeburg, Germany
| | - Anne Schumacher
- Medical Faculty, Institute for Experimental Obstetrics and Gynecology, Otto-von-Guericke University, Magdeburg, Germany
| |
Collapse
|
29
|
Lin VHC, Chen JJ, Liao CC, Lee SS, Chien EJ. The rapid immunosuppression in phytohemagglutinin-activated human T cells is inhibited by the proliferative Ca(2+) influx induced by progesterone and analogs. Steroids 2016; 111:71-78. [PMID: 26808612 DOI: 10.1016/j.steroids.2016.01.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 01/11/2016] [Accepted: 01/20/2016] [Indexed: 10/22/2022]
Abstract
Progesterone, an endogenous immunomodulator, suppresses human T-cell activation during pregnancy. A sustained Ca(2 +) influx is an important signal for T-cell proliferation after crosslinking of T-cell receptor/CD3 complexes by anti-CD3 antibodies or phytohemagglutinin (PHA). Progesterone targets cell membrane sites inducing rapid responses including elevated intracellular free calcium concentration ([Ca(2+)]i) and suppressed T-cell PHA-activated proliferation. Interestingly, both PHA and progesterone induce [Ca(2+)]i elevation, but it remains unclear whether the PHA-induced Ca(2+) influx is affected by progesterone leading to T-cell immunosuppression. Primary T-cells were isolated from human peripheral blood and the quench effect on intracellular fura-2 fluorescence of Mn(2+) was used to explore the responses to Ca(2+) influx with cell proliferation being determined by MTT assay. PHA-stimulated Ca(2+) influx was dose-dependently suppressed by progesterone and its agonist R5020, which correlated with PHA-activated T-cell proliferation inhibition. A similar dose-dependent suppression effect on cellular Ca(2+) influx and proliferation occurred with the TRPC channel inhibitor BTP2 and selective TRPC3 channel inhibitor Pyr3. In addition, two progesterone analogs, Org OD 02-0 and 20α-hydroxyprogesterone (20α-OHP), also produced dose-dependent suppression of Ca(2+) influx, but had no effect on proliferation. Finally, inhibition of PHA-activated T-cell proliferation by progesterone is further suppressed by 20α-OHP, but not by Org OD 02-0. Overall, progesterone and R5020 are able to rapidly decrease PHA-stimulated sustained Ca(2+) influx, probably via blockade of TRPC3 channels, which suppresses T-cell proliferation. Taken together, the roles of progesterone and its analogs regarding the rapid response Ca(2+) influx need to be further explored in relation to cytokine secretion and proliferation in activated T-cells.
Collapse
Affiliation(s)
- Veronica Hui-Chen Lin
- Institute and Department of Physiology, School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan, ROC
| | - Jiann-Jong Chen
- Department of Nursing, Cardinal Tien Junior College of Healthcare and Management, New Taipei City 23143, Taiwan, ROC
| | - Chen-Chung Liao
- Proteomics Research Center, National Yang-Ming University, Taipei 11221, Taiwan, ROC
| | - Shinn-Shing Lee
- Department of Medicine, Cheng Hsin General Hospital, Taipei 11220, Taiwan, ROC.
| | - Eileen Jea Chien
- Institute and Department of Physiology, School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan, ROC; Graduate Institute of Basic Medical Science, College of Medicine, China Medical University, Taichung 40402, Taiwan, ROC; Department of Healthcare Administration, Asia University, Taichung 41354, Taiwan, ROC.
| |
Collapse
|
30
|
Areia A, Vale-Pereira S, Alves V, Rodrigues-Santos P, Santos-Rosa M, Moura P, Mota-Pinto A. Can membrane progesterone receptor α on T regulatory cells explain the ensuing human labour? J Reprod Immunol 2016; 113:22-6. [DOI: 10.1016/j.jri.2015.10.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 09/15/2015] [Accepted: 10/14/2015] [Indexed: 11/29/2022]
|
31
|
Adar T, Grisaru-Granovsky S, Ben Ya'acov A, Goldin E, Bar-Gil Shitrit A. Pregnancy and the Immune System: General Overview and the Gastroenterological Perspective. Dig Dis Sci 2015; 60:2581-9. [PMID: 25947331 DOI: 10.1007/s10620-015-3683-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 04/22/2015] [Indexed: 12/11/2022]
Abstract
Pregnancy represents a unique immune tolerant condition that cannot be attributed merely to generalized immunosuppression. A variety of mechanisms have been described, ranging from the non-self recognition, immunomodulation of specific inflammatory cell populations and a Th2-directed shift of the immune response, which are mediated by both localized and systemic mediators. Furthermore, an inflammatory response directed toward the conceptus is no longer considered an obligatory deleterious response; instead, it is considered an important factor that is necessary for normal growth and development. These immunomodulatory changes during pregnancy may also affect concurrent conditions and alter the course of inflammatory diseases. Herein, we review the main immunomodulatory changes that occur during pregnancy and their effect on coexisting inflammatory conditions, with a specific focus on gastrointestinal disorders.
Collapse
Affiliation(s)
- Tomer Adar
- Digestive Disease Institute, Shaare Zedek Medical Center, Affiliated with the School of Medicine in the Hebrew University of Jerusalem, 12 Bayit St., 91031, Jerusalem, Israel
| | | | | | | | | |
Collapse
|