1
|
Kweon JY, Mun H, Choi MR, Kim HS, Ahn YJ. Maternal obesity induced metabolic disorders in offspring and myeloid reprogramming by epigenetic regulation. Front Endocrinol (Lausanne) 2024; 14:1256075. [PMID: 38292775 PMCID: PMC10824939 DOI: 10.3389/fendo.2023.1256075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 12/27/2023] [Indexed: 02/01/2024] Open
Abstract
Maternal obesity and gestational diabetes are associated with childhood obesity and increased cardiovascular risk. In this review, we will discuss and summarize extensive clinical and experimental studies that metabolically imbalanced environment exposure in early life plays a critical role in influencing later susceptibility to chronic inflammatory diseases and metabolic syndrome. The effect of maternal obesity and metabolic disorders, including gestational diabetes cause Large-for-gestational-age (LGA) children to link future development of adverse health issues such as obesity, atherosclerosis, hypertension, and non-alcoholic fatty liver disease by immune reprogramming to adverse micro-environment. This review also addresses intrauterine environment-driven myeloid reprogramming by epigenetic regulations and the epigenetic markers as an underlying mechanism. This will facilitate future investigations regarding maternal-to-fetal immune regulation and the epigenetic mechanisms of obesity and cardiovascular diseases.
Collapse
Affiliation(s)
- Joo Young Kweon
- Medical Science and Engineering, Graduate School of Convergence Science and Technology, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Hyeonji Mun
- Medical Science and Engineering, Graduate School of Convergence Science and Technology, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Myeong Ryeol Choi
- Medical Science and Engineering, Graduate School of Convergence Science and Technology, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Hong Seok Kim
- Department of Molecular Medicine, College of Medicine, Inha University, Incheon, Republic of Korea
| | - Yong Joo Ahn
- Medical Science and Engineering, Graduate School of Convergence Science and Technology, Pohang University of Science and Technology, Pohang, Republic of Korea
- Department IT Convergence, Pohang University of Science and Technology, Pohang, Republic of Korea
| |
Collapse
|
2
|
Hridoy HM, Haidar MN, Khatun C, Sarker A, Hossain MP, Aziz MA, Hossain MT. In silico based analysis to explore genetic linkage between atherosclerosis and its potential risk factors. Biochem Biophys Rep 2023; 36:101574. [PMID: 38024867 PMCID: PMC10652116 DOI: 10.1016/j.bbrep.2023.101574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/31/2023] [Accepted: 10/31/2023] [Indexed: 12/01/2023] Open
Abstract
Atherosclerosis (ATH) is a chronic cardiovascular disease characterized by plaque formation in arteries, and it is a major cause of illness and death. Although therapeutic advances have significantly improved the prognosis of ATH, missing therapeutic targets pose a significant residual threat. This research used a systems biology approach to identify the molecular biomarkers involved in the onset and progression of ATH, analysing microarray gene expression datasets from ATH and tissues impacted by risk factors such as high cholesterol, adipose tissue, smoking, obesity, sedentary lifestyle, stress, alcohol consumption, hypertension, hyperlipidaemia, high fat, diabetes to find the differentially expressed genes (DEGs). Bioinformatic analyses of Protein-Protein Interaction (PPI), Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) were conducted on differentially expressed genes, revealing metabolic and signaling pathways (the chemokine signaling pathway, cytokine-cytokine receptor interaction, the cytosolic DNA-sensing pathway, the peroxisome proliferator-activated receptors signaling pathway, and the nuclear factor-kappa B signaling pathway), ten hubs proteins (CCL5, CCR1, TLR1, CCR2, FCGR2A, IL1B, CD163, AIF1, CXCL-1 and TNF), five transcription factors (YY1, FOXL1, FOXC1, SRF, and GATA2), and five miRNAs (mir-27a-3p, mir-124-3p, mir-16-5p, mir-129-2-3p, mir-1-3p). These findings identify potential biomarkers that may increase knowledge of the mechanisms underlying ATH and their connection to risk factors, aiding in the development of new therapies.
Collapse
Affiliation(s)
- Hossain Mohammad Hridoy
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, Bangladesh
| | - Md. Nasim Haidar
- Department of Electrical and Electronic Engineering, Rangpur Engineering College, Rangpur, Bangladesh
| | - Chadni Khatun
- Bioinformatics and Structural Biology Lab, Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, Bangladesh
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, Bangladesh
| | - Arnob Sarker
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, Bangladesh
| | - Md. Pervez Hossain
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, Bangladesh
| | - Md. Abdul Aziz
- Bioinformatics and Structural Biology Lab, Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, Bangladesh
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, Bangladesh
| | - Md. Tofazzal Hossain
- Bioinformatics and Structural Biology Lab, Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, Bangladesh
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, Bangladesh
| |
Collapse
|
3
|
Bioinformatics and System Biological Approaches for the Identification of Genetic Risk Factors in the Progression of Cardiovascular Disease. Cardiovasc Ther 2022; 2022:9034996. [PMID: 36035865 PMCID: PMC9381297 DOI: 10.1155/2022/9034996] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/17/2022] [Accepted: 07/23/2022] [Indexed: 11/17/2022] Open
Abstract
Background Cardiovascular disease (CVD) is the combination of coronary heart disease, myocardial infarction, rheumatic heart disease, and peripheral vascular disease of the heart and blood vessels. It is one of the leading deadly diseases that causes one-third of the deaths yearly in the globe. Additionally, the risk factors associated with it make the situation more complex for cardiovascular patients, which lead them towards mortality, but the genetic association between CVD and its risk factors is not clearly explored in the global literature. We addressed this issue and explored the linkage between CVD and its risk factors. Methods We developed an analytical approach to reveal the risk factors and their linkages with CVD. We used GEO microarray datasets for the CVD and other risk factors in this study. We performed several analyses including gene expression analysis, diseasome analysis, protein-protein interaction (PPI) analysis, and pathway analysis for discovering the relationship between CVD and its risk factors. We also examined the validation of our study using gold benchmark databases OMIM, dbGAP, and DisGeNET. Results We observed that the number of 32, 17, 53, 70, and 89 differentially expressed genes (DEGs) is overlapped between CVD and its risk factors of hypertension (HTN), type 2 diabetes (T2D), hypercholesterolemia (HCL), obesity, and aging, respectively. We identified 10 major hub proteins (FPR2, TNF, CXCL8, CXCL1, IL1B, VEGFA, CYBB, PTGS2, ITGAX, and CCR5), 12 significant functional pathways, and 11 gene ontological pathways that are associated with CVD. We also found the connection of CVD with its risk factors in the gold benchmark databases. Our experimental outcomes indicate a strong association of CVD with its risk factors of HTN, T2D, HCL, obesity, and aging. Conclusions Our computational approach explored the genetic association of CVD with its risk factors by identifying the significant DEGs, hub proteins, and signaling and ontological pathways. The outcomes of this study may be further used in the lab-based analysis for developing the effective treatment strategies of CVD.
Collapse
|
4
|
Matias SL, Pearl M, Lyall K, Croen LA, Kral TVE, Fallin D, Lee LC, Bradley CB, Schieve LA, Windham GC. Maternal prepregnancy weight and gestational weight gain in association with autism and developmental disorders in offspring. Obesity (Silver Spring) 2021; 29:1554-1564. [PMID: 34347372 PMCID: PMC9186321 DOI: 10.1002/oby.23228] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 04/14/2021] [Accepted: 05/06/2021] [Indexed: 01/13/2023]
Abstract
OBJECTIVE Maternal prepregnancy BMI and gestational weight gain (GWG) are examined in relation to autism spectrum disorder (ASD) and other developmental disorders (DD) in offspring in a multisite case-control study. METHODS Maternal prepregnancy BMI, obtained from medical records or self-report, was categorized as underweight, normal weight, overweight, obesity Class 1, or obesity Class 2/3. GWG was standardized for gestational age (GWG z score), and the rate (pounds/week) was categorized per adherence with clinical recommendations. Logistic regression models, adjusting for demographic factors, were used to assess associations with ASD (n = 1,159) and DD (n = 1,617), versus control children (n = 1,633). RESULTS Maternal obesity Class 2/3 was associated with ASD (adjusted odds ratio [AOR] = 1.87, 95% CI: 1.40-2.51) and DD (AOR = 1.61, 95% CI: 1.22-2.13). GWG z score was not associated with DD (AOR = 1.14, 95% CI: 0.95-1.36), but the GWG z score highest tertile was associated with higher odds of ASD, particularly among male children (AOR = 1.47, 95% CI: 1.15-1.88). CONCLUSIONS Results indicate that maternal prepregnancy severe obesity increases risk of ASD and DD in children and suggest high gestational-age-adjusted GWG is a risk factor for ASD in male children. Because maternal BMI and GWG are routinely measured and potentially modifiable, these findings could inform early interventions for high-risk mother-child dyads.
Collapse
Affiliation(s)
- Susana L. Matias
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, California, USA
| | - Michelle Pearl
- Environmental Health Investigation Branch, California Department of Public Health, Richmond, California, USA
| | - Kristen Lyall
- AJ Drexel Autism Institute, Drexel University, Philadelphia, Pennsylvania, USA
| | - Lisa A. Croen
- Division of Research, Kaiser Permanente, Oakland, California, USA
| | - Tanja V. E. Kral
- Department of Biobehavioral Health Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Daniele Fallin
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Li-Ching Lee
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Chyrise B. Bradley
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Laura A. Schieve
- National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Gayle C. Windham
- Environmental Health Investigation Branch, California Department of Public Health, Richmond, California, USA
| |
Collapse
|
5
|
Mitha A, Chen R, Johansson S, Razaz N, Cnattingius S. Maternal body mass index in early pregnancy and severe asphyxia-related complications in preterm infants. Int J Epidemiol 2021; 49:1647-1660. [PMID: 32588048 PMCID: PMC7746401 DOI: 10.1093/ije/dyaa088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/24/2020] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Little is known about the associations between maternal body mass index (BMI) and asphyxia-related morbidity in preterm infants (<37 weeks). We aimed to investigate associations between maternal BMI in early pregnancy and severe asphyxia-related neonatal complications in preterm infants (<37 weeks) and to examine whether possible associations were mediated by overweight- or obesity-related complications. METHODS In this Swedish population-based cohort of 62 499 singleton non-malformed preterm infants born from 1997 to 2011, risks of low Apgar scores (0-3) at 5 and 10 minutes, neonatal seizures and intraventricular haemorrhage (IVH) were estimated through two analytical approaches. In the conventional approach, the denominator for risk was all live births at a given gestational age. In the fetuses-at-risk (FAR) approach, the denominator for risk was ongoing pregnancies at a given gestational age. RESULTS Using the conventional approach, adjusted risk ratios per 10-unit BMI increase were 1.32 [95% confidence interval (CI) 1.13-1.54] and 1.37 (95% CI 1.12-1.67) for low Apgar scores at 5 and 10 minutes, respectively; 1.28 (95% CI 1.00-1.65) for neonatal seizures; and 1.18 (95% CI 1.01-1.37) for IVH. Using the FAR approach, corresponding risks were higher. These associations varied by gestational age (<32 and 32-36 weeks). Associations between maternal BMI and asphyxia-related outcomes were partly mediated through lower gestational age. CONCLUSIONS Increasing maternal BMI in early pregnancy is associated with increased risks of severe asphyxia-related complications in preterm infants. Our findings add to the evidence to support interventions to reduce obesity in woman of reproductive age.
Collapse
Affiliation(s)
- Ayoub Mitha
- Division of Clinical Epidemiology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- CHU Lille, Department of Neonatal Medicine, Jeanne de Flandre Hospital, Lille, France
- Université de Paris, Epidemiology and Statistics Research Center/CRESS, INSERM (U1153-Obstetrical, perinatal and Pediatric Epidemiology Research Team (EPOPé)), INRA, Hôpital Tenon, Bâtiment Recherche, Rue de la Chine, Paris, France
| | - Ruoqing Chen
- Division of Clinical Epidemiology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Corresponding author. Division of Clinical Epidemiology, Department of Medicine Solna, Karolinska Institutet, SE-171 76 Stockholm, Sweden. E-mail:
| | - Stefan Johansson
- Division of Clinical Epidemiology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Science and Education, Södersjukhuset, Stockholm, Sweden
| | - Neda Razaz
- Division of Clinical Epidemiology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Sven Cnattingius
- Division of Clinical Epidemiology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
6
|
The Amniotic Fluid Cell-Free Transcriptome Provides Novel Information about Fetal Development and Placental Cellular Dynamics. Int J Mol Sci 2021; 22:ijms22052612. [PMID: 33807645 PMCID: PMC7961801 DOI: 10.3390/ijms22052612] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 02/28/2021] [Accepted: 03/02/2021] [Indexed: 12/16/2022] Open
Abstract
The amniotic fluid (AF) is a complex biofluid that reflects fetal well-being during development. AF con be divided into two fractions, the supernatant and amniocytes. The supernatant contains cell-free components, including placenta-derived microparticles, protein, cell-free fetal DNA, and cell-free fetal RNA from the fetus. Cell-free mRNA (cfRNA) analysis holds a special position among high-throughput analyses, such as transcriptomics, proteomics, and metabolomics, owing to its ease of profiling. The AF cell-free transcriptome differs from the amniocyte transcriptome and alters with the progression of pregnancy and is often associated with the development of various organ systems including the fetal lung, skin, brain, pancreas, adrenal gland, gastrointestinal system, etc. The AF cell-free transcriptome is affected not only by normal physiologies, such as fetal sex, gestational age, and fetal maturity, but also by pathologic mechanisms such as maternal obesity, and genetic syndromes (Down, Edward, Turner, etc.), as well as pregnancy complications (preeclampsia, intrauterine growth restriction, preterm birth, etc.). cfRNA in the amniotic fluid originates from the placenta and fetal organs directly contacting the amniotic fluid as well as from the fetal plasma across the placenta. The AF transcriptome may reflect the fetal and placental development and therefore aid in the monitoring of normal and abnormal development.
Collapse
|
7
|
Maternal Melatonin Deficiency Leads to Endocrine Pathologies in Children in Early Ontogenesis. Int J Mol Sci 2021; 22:ijms22042058. [PMID: 33669686 PMCID: PMC7922827 DOI: 10.3390/ijms22042058] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/08/2021] [Accepted: 02/15/2021] [Indexed: 12/17/2022] Open
Abstract
The review summarizes the results of experimental and clinical studies aimed at elucidating the causes and pathophysiological mechanisms of the development of endocrine pathology in children. The modern data on the role of epigenetic influences in the early ontogenesis of unfavorable factors that violate the patterns of the formation of regulatory mechanisms during periods of critical development of fetal organs and systems and contribute to the delayed development of pathological conditions are considered. The mechanisms of the participation of melatonin in the regulation of metabolic processes and the key role of maternal melatonin in the formation of the circadian system of regulation in the fetus and in the protection of the genetic program of its morphofunctional development during pregnancy complications are presented. Melatonin, by controlling DNA methylation and histone modification, prevents changes in gene expression that are directly related to the programming of endocrine pathology in offspring. Deficiency and absence of the circadian rhythm of maternal melatonin underlies violations of the genetic program for the development of hormonal and metabolic regulatory mechanisms of the functional systems of the child, which determines the programming and implementation of endocrine pathology in early ontogenesis, contributing to its development in later life. The significance of this factor in the pathophysiological mechanisms of endocrine disorders determines a new approach to risk assessment and timely prevention of offspring diseases even at the stage of family planning.
Collapse
|
8
|
Associations of early pregnancy BMI with adverse pregnancy outcomes and infant neurocognitive development. Sci Rep 2021; 11:3793. [PMID: 33589705 PMCID: PMC7884778 DOI: 10.1038/s41598-021-83430-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 02/02/2021] [Indexed: 11/08/2022] Open
Abstract
The prevalence of overweight and obesity amongst reproductive women has been increasing worldwide. Our aim was to compare pregnancy outcomes and infant neurocognitive development by different BMI classifications and investigate whether early pregnancy BMI was associated with risks of adverse outcomes in a Southwest Chinese population. We analysed data from 1273 women enrolled in the Complex Lipids in Mothers and Babies (CLIMB) randomized controlled trial in Chongqing, China. Maternal BMI was classified as underweight, normal weight and overweight/obese according to the Chinese, WHO Asian, and WHO European standards. For the adverse pregnancy outcomes, after adjustment for potential confounders, an underweight BMI was associated with increased risk of small for gestational age (SGA) babies, and an overweight/obese BMI was associated with increased risk of maternal gestational diabetes mellitus (GDM), caesarean section (C-section), macrosomia and large for gestational age (LGA) babies. For infant neurocognitive development, 1017 mothers and their children participated; no significant differences were seen in the Mental Development Index (MDI) or the Psychomotor Development Index (PDI) between the three BMI groups. Our findings demonstrate that abnormal early pregnancy BMI were associated with increased risks of adverse pregnancy outcomes in Chinese women, while early pregnancy BMI had no significant influence on the infant neurocognitive development at 12 months of age.
Collapse
|
9
|
Turturice BA, Theorell J, Koenig MD, Tussing-Humphreys L, Gold DR, Litonjua AA, Oken E, Rifas-Shiman SL, Perkins DL, Finn PW. Perinatal granulopoiesis and risk of pediatric asthma. eLife 2021; 10:e63745. [PMID: 33565964 PMCID: PMC7889076 DOI: 10.7554/elife.63745] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 02/05/2021] [Indexed: 11/13/2022] Open
Abstract
There are perinatal characteristics, such as gestational age, reproducibly associated with the risk for pediatric asthma. Identification of biologic processes influenced by these characteristics could facilitate risk stratification or new therapeutic targets. We hypothesized that transcriptional changes associated with multiple epidemiologic risk factors would be mediators of pediatric asthma risk. Using publicly available transcriptomic data from cord blood mononuclear cells, transcription of genes involved in myeloid differentiation was observed to be inversely associated with a pediatric asthma risk stratification based on multiple perinatal risk factors. This gene signature was validated in an independent prospective cohort and was specifically associated with genes localizing to neutrophil-specific granules. Further validation demonstrated that umbilical cord blood serum concentration of PGLYRP-1, a specific granule protein, was inversely associated with mid-childhood current asthma and early-teen FEV1/FVCx100. Thus, neutrophil-specific granule abundance at birth predicts risk for pediatric asthma and pulmonary function in adolescence.
Collapse
Affiliation(s)
- Benjamin A Turturice
- Department of Microbiology and Immunology, University of IllinoisChicagoUnited States
- Department of Medicine, Division of Pulmonary, Critical Care, Sleep, and Allergy, University of IllinoisChicagoUnited States
| | - Juliana Theorell
- Department of Medicine, Division of Pulmonary, Critical Care, Sleep, and Allergy, University of IllinoisChicagoUnited States
| | - Mary Dawn Koenig
- Department of Women, Children and Family Health Science, College of Nursing, University of IllinoisChicagoUnited States
| | | | - Diane R Gold
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical SchoolBostonUnited States
- Department of Environmental Health, Harvard T.H. Chan School of Public HealthBostonUnited States
| | - Augusto A Litonjua
- Division of Pulmonary Medicine, Department of Pediatrics, University of RochesterRochesterUnited States
| | - Emily Oken
- Division of Chronic Disease Research Across the Life Course, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care InstituteBostonUnited States
| | - Sheryl L Rifas-Shiman
- Division of Chronic Disease Research Across the Life Course, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care InstituteBostonUnited States
| | - David L Perkins
- Department of Medicine, Division of Nephrology, University of IllinoisChicagoUnited States
- Department of Bioengineering, University of IllinoisChicagoUnited States
| | - Patricia W Finn
- Department of Microbiology and Immunology, University of IllinoisChicagoUnited States
- Department of Medicine, Division of Pulmonary, Critical Care, Sleep, and Allergy, University of IllinoisChicagoUnited States
- Department of Bioengineering, University of IllinoisChicagoUnited States
| |
Collapse
|
10
|
Wang S, Maxwell CA, Akella NM. Diet as a Potential Moderator for Genome Stability and Immune Response in Pediatric Leukemia. Cancers (Basel) 2021; 13:cancers13030413. [PMID: 33499176 PMCID: PMC7865408 DOI: 10.3390/cancers13030413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 01/15/2021] [Accepted: 01/18/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Pediatric acute lymphoblastic leukemia (ALL) is the most prevalent cancer affecting children in developed societies. Here, we review the role of diet in control of the incidence and progression of childhood ALL. Prenatally, ALL risk is associated with higher birthweights of newborns, suggesting that ALL begins to evolve in-utero. Indeed, maternal diet influences the fetal genome and immune development. Postnatally, breastfeeding associates with decreased risk of ALL development. Finally, for the ALL-affected child, certain dietary regimens that impact the hormonal environment may impede disease progression. Improved understanding of the dietary regulation of hormones and immunity may inform better approaches to predict, protect, and ultimately save children afflicted with pediatric leukemia. Abstract Pediatric leukemias are the most prevalent cancers affecting children in developed societies, with childhood acute lymphoblastic leukemia (ALL) being the most common subtype. As diet is a likely modulator of many diseases, this review focuses on the potential for diet to influence the incidence and progression of childhood ALL. In particular, the potential effect of diets on genome stability and immunity during the prenatal and postnatal stages of early childhood development are discussed. Maternal diet plays an integral role in shaping the bodily composition of the newborn, and thus may influence fetal genome stability and immune system development. Indeed, higher birth weights of newborns are associated with increased risk of ALL, which suggests in-utero biology may shape the evolution of preleukemic clones. Postnatally, the ingestion of maternal breastmilk both nourishes the infant, and provides essential components that strengthen and educate the developing immune system. Consistently, breast-feeding associates with decreased risk of ALL development. For children already suffering from ALL, certain dietary regimens have been proposed. These regimens, which have been validated in both animals and humans, alter the internal hormonal environment. Thus, hormonal regulation by diet may shape childhood metabolism and immunity in a manner that is detrimental to the evolution or expansion of preleukemic and leukemic ALL clones.
Collapse
Affiliation(s)
- Shanshan Wang
- Department of Pediatrics, Faculty of Medicine, University of British Columbia, Vancouver, BC V6H 3V4, Canada;
| | - Christopher A. Maxwell
- Department of Pediatrics, Faculty of Medicine, University of British Columbia, Vancouver, BC V6H 3V4, Canada;
- Michael Cuccione Childhood Cancer Research Program, BC Children’s Hospital, Vancouver, BC V5Z 4H4, Canada
- Correspondence: (C.A.M.); (N.M.A.)
| | - Neha M. Akella
- Department of Pediatrics, Faculty of Medicine, University of British Columbia, Vancouver, BC V6H 3V4, Canada;
- Correspondence: (C.A.M.); (N.M.A.)
| |
Collapse
|
11
|
Koh IU, Choi NH, Lee K, Yu HY, Yun JH, Kong JH, Kim HJ, Lee S, Kim SC, Kim BJ, Moon S. Obesity susceptible novel DNA methylation marker on regulatory region of inflammation gene: results from the Korea Epigenome Study (KES). BMJ Open Diabetes Res Care 2020; 8:8/1/e001338. [PMID: 32788176 PMCID: PMC7422660 DOI: 10.1136/bmjdrc-2020-001338] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 06/03/2020] [Accepted: 07/02/2020] [Indexed: 12/15/2022] Open
Abstract
INTRODUCTION Obesity is growing global health concern and highly associated with increased risk of metabolic diseases including type 2 diabetes. We aimed to discover new differential DNA methylation patterns predisposing obesity and prioritize surrogate epigenetic markers in Koreans. RESEARCH DESIGN AND METHODS We performed multistage epigenome-wide analyses to identify differentially expressed CpGs in obesity using the Illumina HumanMethylationEPIC array (EPIC). Forty-eight CpGs showed significant differences across three phases: 902 whole blood DNAs from two cohorts (phase 1: n=450, phase 2: n=377) and a hospital-based sample (phase 3: n=75). Samples from phase III participants were used to examine whether the 48 CpGs are significant in the fat tissue and influenced gene expression. Furthermore, we investigated the epigenetic effect of CpG loci in childhood obesity (n=94). RESULTS Seven of the 48 CpGs exhibited similar changes in the fat tissue along with gene expression changes. In particular, hypomethylated CpG (cg13424229) on the GATA1 transcription factor cluster of CPA3 promoter was related to its increased gene expression and showed consistent effect in childhood obesity. Interestingly, subsequent analysis using RNA sequencing data from 21 preadipocytes and 26 adipocytes suggested CPA3 as a potential obesity-related gene. Moreover, expression patterns from RNA sequencing and public Gene Expression Omnibus showed the correlation between CPA3 and type 2 diabetes (T2D) and asthma. CONCLUSIONS Our finding prioritizes influential genes in obesity and provides new evidence for the role of CPA3 linking obesity, T2D, and asthma.
Collapse
Affiliation(s)
- In-Uk Koh
- Division of Genome Research, Center for Genome Science, Korea National Institute of Health, Cheongju-si, Chungcheongbuk-do, South Korea
| | - Nak-Hyeon Choi
- Division of Genome Research, Center for Genome Science, Korea National Institute of Health, Cheongju-si, Chungcheongbuk-do, South Korea
| | - Kibaick Lee
- Division of Genome Research, Center for Genome Science, Korea National Institute of Health, Cheongju-si, Chungcheongbuk-do, South Korea
| | - Ho-Yeong Yu
- Division of Genome Research, Center for Genome Science, Korea National Institute of Health, Cheongju-si, Chungcheongbuk-do, South Korea
| | - Jun Ho Yun
- Division of Genome Research, Center for Genome Science, Korea National Institute of Health, Cheongju-si, Chungcheongbuk-do, South Korea
| | - Jin-Hwa Kong
- Division of Genome Research, Center for Genome Science, Korea National Institute of Health, Cheongju-si, Chungcheongbuk-do, South Korea
| | - Hyo Jin Kim
- Division of Endocrine and Metabolic Diseases, Center for Biomedical Sciences, Korea National Institute of Health, Cheongju-si, Chungcheongbuk-do, South Korea
| | - Song Lee
- Division of Hepato-Biliary and Pancreatic Surgery, Department of Surgery, Asan Medical Center, AMIST, University of Ulsan College of Medicine, Asan Medical Center, Songpa-gu, Seoul, South Korea
| | - Song Cheol Kim
- Division of Hepato-Biliary and Pancreatic Surgery, Department of Surgery, Asan Medical Center, AMIST, University of Ulsan College of Medicine, Asan Medical Center, Songpa-gu, Seoul, South Korea
| | - Bong-Jo Kim
- Division of Genome Research, Center for Genome Science, Korea National Institute of Health, Cheongju-si, Chungcheongbuk-do, South Korea
| | - Sanghoon Moon
- Division of Genome Research, Center for Genome Science, Korea National Institute of Health, Cheongju-si, Chungcheongbuk-do, South Korea
| |
Collapse
|
12
|
Jing J, Wang Y, Quan Y, Wang Z, Liu Y, Ding Z. Maternal obesity alters C19MC microRNAs expression profile in fetal umbilical cord blood. Nutr Metab (Lond) 2020; 17:52. [PMID: 32655673 PMCID: PMC7339545 DOI: 10.1186/s12986-020-00475-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 07/01/2020] [Indexed: 12/16/2022] Open
Abstract
Background To determine if overweight/obese pregnant women have altered microRNA expression patterns in fetal umbilical cord blood that may affect the development of offspring. Methods Umbilical cord blood samples were obtained from the fetuses of 34 overweight/obese and 32 normal-weight women after delivery. Next generation sequencing (NGS) analyzed their miRNA expression patterns. miRanda and TargetScan databases were used to predict the miRNAs’ target genes followed by analyses of Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) to perform function grouping and pathway analyses. qRT-PCR verified the identity of differentially expressed miRNAs that were revealed in the NGS results. Results There was a positive correlation between newborn body weight and pregestational BMI of pregnant individuals (r = 0.48, P < 0.001). One hundred and eight miRNAs were differentially expressed between the normal and overweight/obese groups, which target genes were enriched in the metabolic pathway. Five C19MC miRNAs (miR-516a-5p, miR-516b-5p, miR-520a-3p, miR-1323, miR-523-5p) were upregulated in the overweight/obese group. Target enrichment analysis suggests their involvement in post-embryonic development, lipid and glucose homeostasis, T cell differentiation and nervous system development. Conclusions C19MC miRNA expression upregulation in the fetal circulation during the gestation of overweight/obese pregnant women may contribute to altered multisystem metabolic pathway development in their offspring.
Collapse
Affiliation(s)
- Jia Jing
- Department of Histology, Embryology, Genetics and Developmental Biology, Shanghai Key Laboratory for Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Yingjin Wang
- Department of Obstetrics and Gynecology, Shanghai Eighth People's Hospital, Shanghai, 200235 China
| | - Yanmei Quan
- Department of Histology, Embryology, Genetics and Developmental Biology, Shanghai Key Laboratory for Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Zhijie Wang
- Department of Obstetrics and Gynecology, Shanghai Eighth People's Hospital, Shanghai, 200235 China
| | - Yue Liu
- Department of Histology, Embryology, Genetics and Developmental Biology, Shanghai Key Laboratory for Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Zhide Ding
- Department of Histology, Embryology, Genetics and Developmental Biology, Shanghai Key Laboratory for Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| |
Collapse
|
13
|
Shook LL, Kislal S, Edlow AG. Fetal brain and placental programming in maternal obesity: A review of human and animal model studies. Prenat Diagn 2020; 40:1126-1137. [PMID: 32362000 DOI: 10.1002/pd.5724] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 03/26/2020] [Accepted: 04/21/2020] [Indexed: 12/13/2022]
Abstract
Both human epidemiologic and animal model studies demonstrate that prenatal and lactational exposure to maternal obesity and high-fat diet are associated with adverse neurodevelopmental outcomes in offspring. Neurodevelopmental outcomes described in offspring of obese women include cognitive impairment, autism spectrum disorder (ASD), attention deficit hyperactivity disorder, anxiety and depression, disordered eating, and propensity for reward-driven behavior, among others. This review synthesizes human and animal data linking maternal obesity and high-fat diet consumption to abnormal fetal brain development, and neurodevelopmental and psychiatric morbidity in offspring. It highlights key mechanisms by which maternal obesity and maternal diet impact fetal and offspring development, and sex differences in offspring programming. In addition, we review placental effects of maternal obesity, and the role the placenta might play as an indicator vs mediator of fetal programming.
Collapse
Affiliation(s)
- Lydia L Shook
- Division of Maternal-Fetal Medicine, Department of Obstetrics & Gynecology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Sezen Kislal
- Massachusetts General Hospital Research Institute, Vincent Center for Reproductive Biology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Andrea G Edlow
- Division of Maternal-Fetal Medicine, Department of Obstetrics & Gynecology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Massachusetts General Hospital Research Institute, Vincent Center for Reproductive Biology, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
14
|
Effects of Maternal Resveratrol on Maternal High-Fat Diet/Obesity with or without Postnatal High-Fat Diet. Int J Mol Sci 2020; 21:ijms21103428. [PMID: 32408716 PMCID: PMC7279178 DOI: 10.3390/ijms21103428] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 04/30/2020] [Accepted: 05/11/2020] [Indexed: 01/01/2023] Open
Abstract
To examine the effects of maternal resveratrol in rats borne to dams with gestational high-fat diet (HFD)/obesity with or without postnatal high-fat diet. We first tested the effects of maternal resveratrol intake on placenta and male fetus brain in rats borne to dams with gestational HFD/obesity. Then, we assessed the possible priming effect of a subsequent insult, male offspring were weaned onto either a rat chow or a HFD. Spatial learning and memory were assessed by Morris water maze test. Blood pressure and peripheral insulin resistance were examined. Maternal HFD/obesity decreased adiponectin, phosphorylation alpha serine/threonine-protein kinase (pAKT), sirtuin 1 (SIRT1), and brain-derived neurotrophic factor (BDNF) in rat placenta, male fetal brain, and adult male offspring dorsal hippocampus. Maternal resveratrol treatment restored adiponectin, pAKT, and BDNF in fetal brain. It also reduced body weight, peripheral insulin resistance, increased blood pressure, and alleviated cognitive impairment in adult male offspring with combined maternal HFD and postnatal HFD. Maternal resveratrol treatment restored hippocampal pAKT and BDNF in rats with combined maternal HFD and postnatal HFD in adult male offspring dorsal hippocampus. Maternal resveratrol intake protects the fetal brain in the context of maternal HFD/obesity. It effectively reduced the synergistic effects of maternal HFD/obesity and postnatal HFD on metabolic disturbances and cognitive impairment in adult male offspring. Our data suggest that maternal resveratrol intake may serve as an effective therapeutic strategy in the context of maternal HFD/obesity.
Collapse
|
15
|
Cirulli F, Musillo C, Berry A. Maternal Obesity as a Risk Factor for Brain Development and Mental Health in the Offspring. Neuroscience 2020; 447:122-135. [PMID: 32032668 DOI: 10.1016/j.neuroscience.2020.01.023] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 01/10/2020] [Accepted: 01/14/2020] [Indexed: 12/30/2022]
Abstract
Maternal obesity plays a key role in the health trajectory of the offspring. Although research on this topic has largely focused on the potential of this condition to increase the risk for child obesity, it is becoming more and more evident that it can also significantly impact cognitive function and mental health. The mechanisms underlying these effects are starting to be elucidated and point to the placenta as a critical organ that may mediate changes in the response to stress, immune function and oxidative stress. Long-term effects of maternal obesity may rely upon epigenetic changes in selected genes that are involved in metabolic and trophic regulations of the brain. More recent evidence also indicates the gut microbiota as a potential mediator of these effects. Overall, understanding cause-effect relationships can allow the development of preventive measures that could rely upon dietary changes in the mother and the offspring. Addressing diets appears more feasible than developing new pharmacological targets and has the potential to affect the multiple interconnected physiological pathways engaged by these complex regulations, allowing prevention of both metabolic and mental disorders.
Collapse
Affiliation(s)
- Francesca Cirulli
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy.
| | - Chiara Musillo
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| | - Alessandra Berry
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
16
|
Cárdenas-Tueme M, Montalvo-Martínez L, Maldonado-Ruiz R, Camacho-Morales A, Reséndez-Pérez D. Neurodegenerative Susceptibility During Maternal Nutritional Programing: Are Central and Peripheral Innate Immune Training Relevant? Front Neurosci 2020; 14:13. [PMID: 32116490 PMCID: PMC7010854 DOI: 10.3389/fnins.2020.00013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 01/08/2020] [Indexed: 12/24/2022] Open
Abstract
Maternal overnutrition modulates body weight, development of metabolic failure and, potentially, neurodegenerative susceptibility in the offspring. Overnutrition sets a chronic pro-inflammatory profile that integrates peripheral and central immune activation nodes, damaging neuronal physiology and survival. Innate immune cells exposed to hypercaloric diets might experience trained immunity. Here, we address the role of maternal overnutrition as a trigger for central and peripheral immune training and its contribution to neurodegeneration and the molecular nodes implicated in the Nod-like receptor protein 3 (NLRP3) inflammasome pathway leading to immune training. We propose that maternal overnutrition leads to peripheral or central immune training that favor neurodegenerative susceptibility in the offspring.
Collapse
Affiliation(s)
- Marcela Cárdenas-Tueme
- Departamento de Biología Celular y Genética, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico
| | - Larisa Montalvo-Martínez
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico
| | - Roger Maldonado-Ruiz
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico
| | - Alberto Camacho-Morales
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico
- Centro de Investigación y Desarrollo en Ciencias de la Salud, Unidad de Neurometabolismo, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico
| | - Diana Reséndez-Pérez
- Departamento de Biología Celular y Genética, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico
| |
Collapse
|
17
|
Tobiasz AM, Duncan JR, Detti L, Mari G. Lack of Fetal Insulin Resistance in Maternal Polycystic Ovary Syndrome. Reprod Sci 2020; 27:1253-1258. [PMID: 31994004 DOI: 10.1007/s43032-019-00125-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 11/01/2019] [Indexed: 10/25/2022]
Abstract
Polycystic ovary syndrome (PCOS) affects 8-10% of women. NIH criteria for diagnosis include chronic anovulation and evidence of clinical or biochemical hyperandrogenism. PCOS is associated with adverse neonatal outcomes. Our hypothesis is that insulin resistance is increased in fetuses born to women with PCOS. This is a prospective cohort of women who delivered at our institution. Subjects with a body mass index < 20 or ≥ 50 kg/m2, multiple gestation, and major fetal malformations were excluded. Maternal blood was collected at admission, and umbilical cord blood was collected after delivery. Serum concentrations of insulin and glucose were measured from each sample. The homeostasis model assessment index of insulin resistance (HOMA-IR) was calculated (plasma glucose (mmol/L) × insulin (μU/mL)/22.5). The HOMA-IR from mothers and fetuses with PCOS was compared with mothers and fetuses without PCOS (controls). Mann-Whitney U test was utilized for statistical analysis. Forty-six women and fetal pairs were included; 28 with PCOS and 18 controls. Maternal insulin (20 [7.7-26.5] vs. 6.6 μU/ml [5.1-7.2]; p = 0.005) and HOMA-IR (3.9 [1.6-4.5] vs. 1.1 [0.9-1.3]; p = 0.01) were increased in the PCOS group. There was no statistical difference in fetal insulin, glucose, or HOMA-IR (p = 0.31) in the umbilical artery (p = 0.10; p = 0.34; p = 0.45, respectively) or the umbilical vein (p = 0.13; p = > 0.99; p = 0.31, respectively). Insulin resistance is present in non-diabetic pregnant women with PCOS, however not in their fetuses. This might explain variations in the occurrence of the adverse neonatal and maternal outcomes reported in PCOS.
Collapse
Affiliation(s)
- Ana M Tobiasz
- Department of Obstetrics and Gynecology, University of Tennessee Health Science Center, Memphis, TN, USA. .,Department of Obstetrics and Gynecology, Sanford Obstetrics & Gynecology, University of North Dakota, 414 N Seventh Street, Bismarck, ND, 58501, USA.
| | - Jose R Duncan
- Department of Obstetrics and Gynecology, University of Tennessee Health Science Center, Memphis, TN, USA.,Department of Obstetrics and Gynecology, University of South Florida, FL, Tampa, USA
| | - Laura Detti
- Department of Obstetrics and Gynecology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Giancarlo Mari
- Department of Obstetrics and Gynecology, University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
18
|
Edlow AG, Guedj F, Sverdlov D, Pennings JLA, Bianchi DW. Significant Effects of Maternal Diet During Pregnancy on the Murine Fetal Brain Transcriptome and Offspring Behavior. Front Neurosci 2019; 13:1335. [PMID: 31920502 PMCID: PMC6928003 DOI: 10.3389/fnins.2019.01335] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 11/27/2019] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Maternal over- and undernutrition in pregnancy plays a critical role in fetal brain development and function. The effects of different maternal diet compositions on intrauterine programing of the fetal brain is a lesser-explored area. The goal of this study was to investigate the impact of two chowmaternal diets on fetal brain gene expression signatures, fetal/neonatal growth, and neonatal and adult behavior in a mouse model. METHODS Throughout pregnancy and lactation, female C57Bl/6J mice were fed one of two standard, commercially available chow diets (pellet versus powder). The powdered chow diet was relatively deficient in micronutrients and enriched for carbohydrates and n-3 long-chain polyunsaturated fatty acids compared to the pelleted chow. RNA was extracted from embryonic day 15.5 forebrains and hybridized to whole genome expression microarrays (N = 5/maternal diet group). Functional analyses of significantly differentially expressed fetal brain genes were performed using Ingenuity Pathways Analysis and Gene Set Enrichment Analysis. Neonatal behavior was assessed using a validated scale (N = 62 pellet-exposed and 31 powder-exposed). Hippocampal learning, locomotor behavior, and motor coordination were assessed in a subset of adults using fear conditioning, open field testing, and Rotarod tests (N = 16 pellet-exposed, 14 powder-exposed). RESULTS Comparing powdered to pelleted chow diets, neither maternal weight trajectory in pregnancy nor embryo size differed. Maternal powdered chow diet was associated with 1647 differentially expressed fetal brain genes. Functional analyses identified significant upregulation of canonical pathways and upstream regulators involved in cell cycle regulation, synaptic plasticity, and sensory nervous system development in the fetal brain, and significant downregulation of pathways related to cell and embryo death. Pathways related to DNA damage response, brain immune response, amino acid and fatty acid transport, and dopaminergic signaling were significantly dysregulated. Powdered chow-exposed neonates were significantly longer but not heavier than pelleted chow-exposed counterparts. On neonatal behavioral testing, powdered chow-exposed neonates achieved coordination- and strength-related milestones significantly earlier, but sensory maturation reflexes significantly later. On adult behavioral testing, powdered chow-exposed offspring exhibited hyperactivity and hippocampal learning deficits. CONCLUSION In wild-type offspring, two diets that differed primarily with respect to micronutrient composition had significant effects on the fetal brain transcriptome, neonatal and adult behavior. These effects did not appear to be mediated by alterations in gross maternal nutritional status nor fetal/neonatal weight. Maternal dietary content is an important variable to consider for investigators evaluating fetal brain development and offspring behavior.
Collapse
Affiliation(s)
- Andrea G. Edlow
- Mother Infant Research Institute, Tufts Medical Center, Boston, MA, United States
| | - Faycal Guedj
- Mother Infant Research Institute, Tufts Medical Center, Boston, MA, United States
| | - Deanna Sverdlov
- Mother Infant Research Institute, Tufts Medical Center, Boston, MA, United States
- Department of Obstetrics and Gynecology, Tufts Medical Center, Boston, MA, United States
| | | | - Diana W. Bianchi
- Mother Infant Research Institute, Tufts Medical Center, Boston, MA, United States
| |
Collapse
|
19
|
Sureshchandra S, Marshall NE, Messaoudi I. Impact of pregravid obesity on maternal and fetal immunity: Fertile grounds for reprogramming. J Leukoc Biol 2019; 106:1035-1050. [PMID: 31483523 DOI: 10.1002/jlb.3ri0619-181r] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 07/31/2019] [Accepted: 08/01/2019] [Indexed: 12/12/2022] Open
Abstract
Maternal pregravid obesity results in several adverse health outcomes during pregnancy, including increased risk of gestational diabetes, preeclampsia, placental abruption, and complications at delivery. Additionally, pregravid obesity and in utero exposure to high fat diet have been shown to have detrimental effects on fetal programming, predisposing the offspring to adverse cardiometabolic, endocrine, and neurodevelopmental outcomes. More recently, a deeper appreciation for the modulation of offspring immunity and infectious disease-related outcomes by maternal pregravid obesity has emerged. This review will describe currently available animal models for studying the impact of maternal pregravid obesity on fetal immunity and review the data from clinical and animal model studies. We also examine the burden of pregravid obesity on the maternal-fetal interface and the link between placental and systemic inflammation. Finally, we discuss future studies needed to identify key mechanistic underpinnings that link maternal inflammatory changes and fetal cellular reprogramming events.
Collapse
Affiliation(s)
- Suhas Sureshchandra
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA, USA
| | - Nicole E Marshall
- Maternal-Fetal Medicine, Oregon Health and Science University, Portland, Oregon, USA
| | - Ilhem Messaoudi
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA, USA
| |
Collapse
|
20
|
Gázquez A, Prieto-Sánchez MT, Blanco-Carnero JE, Ruíz-Palacios M, Nieto A, van Harskamp D, Oosterink JE, Schierbeek H, van Goudoever JB, Demmelmair H, Koletzko B, Larqué E. Altered materno-fetal transfer of 13C-polyunsaturated fatty acids in obese pregnant women. Clin Nutr 2019; 39:1101-1107. [PMID: 31029479 DOI: 10.1016/j.clnu.2019.04.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 04/08/2019] [Accepted: 04/11/2019] [Indexed: 10/27/2022]
Abstract
BACKGROUND & AIMS Maternal obesity at conception is considered a major predictor of offspring obesity. This could by driven at least in part by an altered placental fat transfer. However, the pathophysiological mechanisms involved are not fully understood. We investigated the in vivo materno-fetal transfer of fatty acids (FAs) in obese pregnant women using stable isotopes. METHODS Ten obese and ten normo-weight pregnant women (control) received orally a bolus of 13C-labeled FAs 12 h before elective caesarean section: oleic acid (13C-OA), linoleic acid (13C-LA) and docosahexaenoic acid (13C-DHA). Maternal blood samples were collected at -12 (basal), -8, -4, -2, 0 h relative to the time of cesarean section. At the time of birth, arterial and venous cord bloods as well as placental tissue were collected. FAs composition was determined by gas-liquid chromatography and isotopic enrichment by gas chromatography-combustion-isotope ratio mass spectrometry. RESULTS Maternal plasma insulin and placental weight tended to higher values in obese pregnant women although they did not present serum hyperlipidemia. Higher concentrations of 13C-LA and 13C-DHA were found in non-esterified FAs fraction in maternal plasma of obese mothers. The ratio of placental uptake for 13C-LA and 13C-DHA was lower in obese women compared to normal weight pointing toward a limited capacity of FA placental transfer, especially of essential FAs. Maternal insulin was associated to this lower placenta/maternal plasma ratio for both 13C-LA (R = -0.563, P = 0.012) and 13C-DHA (R = -0.478, P = 0.033). In addition, the ratio cord/maternal plasma of 13C-LA was significantly lower in obese women compared to controls. CONCLUSIONS In conclusion, obese mothers without hyperlipidemia showed a reduced materno-fetal transfer of polyunsaturated FAs which could affect fetal development. This affect dietary recommendation for obese pregnant women. TRIAL REGISTRY NUMBER ISRCTN69794527.
Collapse
Affiliation(s)
- A Gázquez
- LMU - Ludwig-Maximilians-Universität Munich, Division of Metabolic and Nutritional Medicine, Dr. von Hauner Children's Hospital, Munich, Germany; Department of Physiology, School of Biology, Biomedical Research Institute of Murcia (IMIB-Arrixaca-UMU), University Clinical Hospital "Virgen de la Arrixaca", University of Murcia, Murcia, Spain
| | - M T Prieto-Sánchez
- Obstetrics and Gynecology Service, Biomedical Research Institute of Murcia (IMIB-Arrixaca-UMU), University Clinical Hospital "Virgen de la Arrixaca", University of Murcia, Murcia, Spain
| | - J E Blanco-Carnero
- Obstetrics and Gynecology Service, Biomedical Research Institute of Murcia (IMIB-Arrixaca-UMU), University Clinical Hospital "Virgen de la Arrixaca", University of Murcia, Murcia, Spain
| | - M Ruíz-Palacios
- Department of Physiology, School of Biology, Biomedical Research Institute of Murcia (IMIB-Arrixaca-UMU), University Clinical Hospital "Virgen de la Arrixaca", University of Murcia, Murcia, Spain
| | - A Nieto
- Obstetrics and Gynecology Service, Biomedical Research Institute of Murcia (IMIB-Arrixaca-UMU), University Clinical Hospital "Virgen de la Arrixaca", University of Murcia, Murcia, Spain
| | - D van Harskamp
- Department of Paediatrics, Emma Children's Hospital, Academic Medical Center, Amsterdam, the Netherlands
| | - J E Oosterink
- Department of Paediatrics, Emma Children's Hospital, Academic Medical Center, Amsterdam, the Netherlands
| | - H Schierbeek
- Department of Paediatrics, Emma Children's Hospital, Academic Medical Center, Amsterdam, the Netherlands
| | - J B van Goudoever
- Department of Paediatrics, Emma Children's Hospital, Academic Medical Center, Amsterdam, the Netherlands; Department of Paediatrics, Free University of Amsterdam, Amsterdam, the Netherlands
| | - H Demmelmair
- LMU - Ludwig-Maximilians-Universität Munich, Division of Metabolic and Nutritional Medicine, Dr. von Hauner Children's Hospital, Munich, Germany
| | - B Koletzko
- LMU - Ludwig-Maximilians-Universität Munich, Division of Metabolic and Nutritional Medicine, Dr. von Hauner Children's Hospital, Munich, Germany
| | - E Larqué
- Department of Physiology, School of Biology, Biomedical Research Institute of Murcia (IMIB-Arrixaca-UMU), University Clinical Hospital "Virgen de la Arrixaca", University of Murcia, Murcia, Spain.
| |
Collapse
|
21
|
Carrasco-Wong I, Hernández C, Jara-Gutiérrez C, Porras O, Casanello P. Human umbilical artery endothelial cells from Large-for-Gestational-Age newborn have increased antioxidant efficiency and gene expression. J Cell Physiol 2019; 234:18571-18586. [PMID: 30937903 DOI: 10.1002/jcp.28494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 02/15/2019] [Accepted: 02/20/2019] [Indexed: 11/06/2022]
Abstract
Obesity is a public health problem worldwide, and especially in women in reproductive age where more than one in three have obesity. Maternal obesity is associated with an increased maternal, placental, and newborn oxidative stress, which has been proposed as a central factor in vascular dysfunction in large-for-gestational-age (LGA) newborn. However, cellular and molecular mechanisms behind this effect have not been elucidated. Untreated human umbilical artery endothelial cells (HUAEC) from LGA (LGA-HUAEC) presented higher O2 - levels, superoxide dismutase activity and heme oxygenase 1 messenger RNA (mRNA) levels, paralleled by reduced GSH:GSSG ratio and NRF2 mRNA levels. In response to an oxidative challenge (hydrogen peroxide), only HUAEC from LGA exhibited an enhanced Glutathione Peroxidase 1 (GPX1) expression, as well as a more efficient antioxidant machinery measured by the biosensor probe, HyPer. An open state of chromatin in the TSS region of GPX1 in LGA-HUAEC was evidenced by the DNase-HS assay. Altogether, our data indicate that LGA-HUAEC have an altered cellular and molecular antioxidant system. We propose that a chronic pro-oxidant intrauterine milieu, as evidenced in pregestational obesity, could induce a more efficient antioxidant system in fetal vascular cells, which could be maintained by epigenetic mechanism during postnatal life.
Collapse
Affiliation(s)
- Ivo Carrasco-Wong
- Department of Cellular and Molecular Biology, Cell & Molecular Biology PhD Program, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Cherie Hernández
- Department of Obstetrics, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Carlos Jara-Gutiérrez
- Centro de Investigaciones Biomédicas (CIB), Laboratorio de Estrés Oxidativo, Facultad de Medicina, Universidad de Valparaíso, Valparaíso, Chile
| | - Omar Porras
- Unidad de Nutrición Básica, Instituto de Nutrición y Tecnologí, Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
| | - Paola Casanello
- Department of Obstetrics, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile.,Department of Neonatology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
22
|
Mertens L, Braeken MAKA, Bogaerts A. Effect of Lifestyle Coaching Including Telemonitoring and Telecoaching on Gestational Weight Gain and Postnatal Weight Loss: A Systematic Review. Telemed J E Health 2018; 25:889-901. [PMID: 30523742 DOI: 10.1089/tmj.2018.0139] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Background: Obesity during pregnancy, excessive gestational weight gain (GWG), and postpartum weight retention (PPWR) are associated with health risks for mothers and their offspring. Face-to-face lifestyle interventions can reduce GWG and PPWR, but they are resource-demanding and effects on long-term maternal and fetal outcomes are scarce. Objectives: To explore the existing literature about the effect of technology-supported lifestyle interventions including telemonitoring and-coaching on GWG and PPWR. Methods: PudMed, MEDLINE, CINAHL, EMBASE (incl. The Cochrane databases), and Web of Science databases were searched for relevant studies published since 2000. Inclusion criteria were: lifestyle interventions to optimize GWG or PPWR with at least mobile applications or websites, focusing on physical activity (PA), healthy eating (HE), and/or psychological well-being, including self-monitoring with telemonitoring and telecoaching. Results: The technology-supported interventions in seven study protocols and four pilot studies differed in terms of the used behavior change models, their focus on different lifestyle issues, and their intervention components for telemonitoring and telecoaching. Technology-supported interventions including telemonitoring and coaching can optimize GWG and PPWR, although not all results are significant. Effects on PA and HE are inconsistent. Conclusions: Technology-supported lifestyle interventions might affect GWG and PPWR, but more research is needed to examine the effectiveness, the usability, and the critical features of these interventions.
Collapse
Affiliation(s)
- Lotte Mertens
- Faculty of Health and Social Work, Research Unit Healthy Living, University Colleges Leuven-Limburg, Genk, Belgium
| | - Marijke A K A Braeken
- Faculty of Health and Social Work, Research Unit Healthy Living, University Colleges Leuven-Limburg, Genk, Belgium.,Faculty of Medicine and Life Sciences, Biomedical Research Institute, Rehabilitation Research Center, Hasselt University, Hasselt, Belgium
| | - Annick Bogaerts
- Faculty of Health and Social Work, Research Unit Healthy Living, University Colleges Leuven-Limburg, Genk, Belgium.,Department of Development and Regeneration, Leuven, Belgium.,Faculty of Medicine and Health Sciences, Centre for Research and Innovation in Care, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
23
|
Verdejo-Román J, Björnholm L, Muetzel RL, Torres-Espínola FJ, Lieslehto J, Jaddoe V, Campos D, Veijola J, White T, Catena A, Nikkinen J, Kiviniemi V, Järvelin MR, Tiemeier H, Campoy C, Sebert S, El Marroun H. Maternal prepregnancy body mass index and offspring white matter microstructure: results from three birth cohorts. Int J Obes (Lond) 2018; 43:1995-2006. [PMID: 30518826 DOI: 10.1038/s41366-018-0268-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 09/19/2018] [Accepted: 11/04/2018] [Indexed: 11/09/2022]
Abstract
BACKGROUND AND AIMS Prepregnancy maternal obesity is a global health problem and has been associated with offspring metabolic and mental ill-health. However, there is a knowledge gap in understanding potential neurobiological factors related to these associations. This study explored the relation between maternal prepregnancy body mass index (BMI) and offspring brain white matter microstructure at the age of 6, 10, and 26 years in three independent cohorts. SUBJECTS AND METHODS The study used data from three European birth cohorts (n = 116 children aged 6 years, n = 2466 children aged 10 years, and n = 437 young adults aged 26 years). Information on maternal prepregnancy BMI was obtained before or during pregnancy and offspring brain white matter microstructure was measured at age 6, 10, or 26 years. We used magnetic resonance imaging-derived fractional anisotropy (FA) and mean diffusivity (MD) as measures of white matter microstructure in the brainstem, callosal, limbic, association, and projection tracts. Linear regressions were fitted to examine the association of maternal BMI and offspring white matter microstructure, adjusting for several socioeconomic and lifestyle-related confounders, including education, smoking, and alcohol use. RESULTS Maternal BMI was associated with higher FA and lower MD in multiple brain tracts, for example, association and projection fibers, in offspring aged 10 and 26 years, but not at 6 years. In each cohort maternal BMI was related to different white matter tract and thus no common associations across the cohorts were found. CONCLUSIONS Maternal BMI was associated with higher FA and lower MD in multiple brain tracts in offspring aged 10 and 26 years, but not at 6 years of age. Future studies should examine whether our observations can be replicated and explore the potential causal nature of the findings.
Collapse
Affiliation(s)
- Juan Verdejo-Román
- Mind, Brain and Behavior Research Center (CIMCYC), University of Granada, Granada, Spain
| | - Lassi Björnholm
- The Department of Psychiatry, Research Unit of Clinical Neuroscience, University of Oulu, Oulu, Finland.,Department of Psychiatry, Oulu University Hospital, Oulu, Finland.,Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Ryan L Muetzel
- The Department of Child and Adolescent Psychiatry, Erasmus MC, Sophia Children's Hospital, Rotterdam, 3000 CB, The Netherlands.,The Generation R Study Group, Erasmus MC, Rotterdam, 3000 CA, The Netherlands.,The Department of Epidemiology, Erasmus MC, Rotterdam, 3000 CA, The Netherlands
| | - Francisco José Torres-Espínola
- EURISTIKOS, Excellence Center for Pediatric Research, University of Granada, Granada, Spain.,The Department of Pediatrics, School of Medicine, University of Granada, Granada, Spain
| | - Johannes Lieslehto
- The Department of Psychiatry, Research Unit of Clinical Neuroscience, University of Oulu, Oulu, Finland.,Department of Psychiatry, Oulu University Hospital, Oulu, Finland.,Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Vincent Jaddoe
- The Generation R Study Group, Erasmus MC, Rotterdam, 3000 CA, The Netherlands.,The Department of Pediatrics, Erasmus MC, Sophia Children's Hospital, Rotterdam, 3000 CB, The Netherlands
| | - Daniel Campos
- EURISTIKOS, Excellence Center for Pediatric Research, University of Granada, Granada, Spain.,The Department of Pediatrics, School of Medicine, University of Granada, Granada, Spain
| | - Juha Veijola
- The Department of Psychiatry, Research Unit of Clinical Neuroscience, University of Oulu, Oulu, Finland.,Department of Psychiatry, Oulu University Hospital, Oulu, Finland.,Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Tonya White
- The Department of Child and Adolescent Psychiatry, Erasmus MC, Sophia Children's Hospital, Rotterdam, 3000 CB, The Netherlands
| | - Andrés Catena
- Mind, Brain and Behavior Research Center (CIMCYC), University of Granada, Granada, Spain
| | - Juha Nikkinen
- Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland.,Department of Oncology and Radiotherapy, Oulu University Hospital, Oulu, Finland
| | - Vesa Kiviniemi
- Institute of Diagnostics, Department of Diagnostic Radiology, Oulu University Hospital, Oulu, Finland
| | - Marjo-Riitta Järvelin
- Center for Life Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland.,Biocenter Oulu, University of Oulu, Oulu, Finland.,Unit of Primary Health Care, Oulu University Hospital, Oulu, Finland.,Department of Epidemiology and Biostatistics, MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, London, UK.,Department of Life Sciences, College of Health and Life Sciences, Brunel University London, London, UK
| | - Henning Tiemeier
- The Department of Child and Adolescent Psychiatry, Erasmus MC, Sophia Children's Hospital, Rotterdam, 3000 CB, The Netherlands.,The Department of Social and Behavioral Science, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Cristina Campoy
- EURISTIKOS, Excellence Center for Pediatric Research, University of Granada, Granada, Spain.,The Department of Pediatrics, School of Medicine, University of Granada, Granada, Spain
| | - Sylvain Sebert
- Center for Life Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Hanan El Marroun
- The Department of Child and Adolescent Psychiatry, Erasmus MC, Sophia Children's Hospital, Rotterdam, 3000 CB, The Netherlands. .,The Generation R Study Group, Erasmus MC, Rotterdam, 3000 CA, The Netherlands. .,The Department of Pediatrics, Erasmus MC, Sophia Children's Hospital, Rotterdam, 3000 CB, The Netherlands. .,Department of Psychology, Education & Child Studies, Erasmus University Rotterdam, Rotterdam, The Netherlands.
| |
Collapse
|
24
|
Meoli L, Gupta NK, Saeidi N, Panciotti CA, Biddinger SB, Corey KE, Stylopoulos N. Nonalcoholic fatty liver disease and gastric bypass surgery regulate serum and hepatic levels of pyruvate kinase isoenzyme M2. Am J Physiol Endocrinol Metab 2018; 315:E613-E621. [PMID: 29462566 PMCID: PMC6230703 DOI: 10.1152/ajpendo.00296.2017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 02/08/2018] [Accepted: 02/12/2018] [Indexed: 12/18/2022]
Abstract
Treatment of nonalcoholic fatty liver disease (NAFLD) focuses on the underlying metabolic syndrome, and Roux-en-Y gastric bypass surgery (RYGB) remains one of the most effective options. In rodents and human patients, RYGB induces an increase in the gene and protein expression levels of the M2 isoenzyme of pyruvate kinase (PKM2) in the jejunum. Since PKM2 can be secreted in the circulation, our hypothesis was that the circulating levels of PKM2 increase after RYGB. Our data, however, revealed an unexpected finding and a potential new role of PKM2 for the natural history of metabolic syndrome and NAFLD. Contrary to our initial hypothesis, RYGB-treated patients had decreased PKM2 blood levels compared with a well-matched group of patients with severe obesity before RYGB. Interestingly, PKM2 serum concentration correlated with body mass index before but not after the surgery. This prompted us to evaluate other potential mechanisms and sites of PKM2 regulation by the metabolic syndrome and RYGB. We found that in patients with NAFLD and nonalcoholic steatohepatitis (NASH), the liver had increased PKM2 expression levels, and the enzyme appears to be specifically localized in Kupffer cells. The study of murine models of metabolic syndrome and NASH replicated this pattern of expression, further suggesting a metabolic link between hepatic PKM2 and NAFLD. Therefore, we conclude that PKM2 serum and hepatic levels increase in both metabolic syndrome and NAFLD and decrease after RYGB. Thus, PKM2 may represent a new target for monitoring and treatment of NAFLD.
Collapse
Affiliation(s)
- Luca Meoli
- Center for Basic and Translational Obesity Research, Division of Endocrinology, Boston Children's Hospital, Harvard Medical School , Boston, Massachusetts
| | - Nitin K Gupta
- Center for Basic and Translational Obesity Research, Division of Endocrinology, Boston Children's Hospital, Harvard Medical School , Boston, Massachusetts
| | - Nima Saeidi
- Massachusetts General Hospital and Shriners Hospital for Children , Boston, Massachusetts
| | - Courtney A Panciotti
- Center for Basic and Translational Obesity Research, Division of Endocrinology, Boston Children's Hospital, Harvard Medical School , Boston, Massachusetts
| | - Sudha B Biddinger
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School , Boston, Massachusetts
| | - Kathleen E Corey
- MGH Fatty Liver Clinic, MGH Gastrointestinal Unit, Massachusetts General Hospital , Boston, Massachusetts
| | - Nicholas Stylopoulos
- Center for Basic and Translational Obesity Research, Division of Endocrinology, Boston Children's Hospital, Harvard Medical School , Boston, Massachusetts
| |
Collapse
|
25
|
Vora NL, Hui L. Next-generation sequencing and prenatal 'omics: advanced diagnostics and new insights into human development. Genet Med 2018; 20:791-799. [PMID: 30032162 PMCID: PMC6123255 DOI: 10.1038/s41436-018-0087-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 06/01/2018] [Indexed: 12/16/2022] Open
Abstract
Prenatal genetics has evolved over the last decade to include application of new 'omics technologies to improve perinatal care. The clinical utility of these technologies when applied to direct fetal specimens from amniocentesis or chorionic villus sampling is being explored. In this review, we provide an overview of use of prenatal exome sequencing and role in evaluation of the structurally abnormal fetus, potential applications of genome sequencing, and finally, use of transcriptomics to assess placental and fetal well-being.
Collapse
Affiliation(s)
- Neeta L Vora
- Department of Obstetrics & Gynecology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.
| | - Lisa Hui
- Department of Obstetrics & Gynaecology, University of Melbourne, Heidelberg, Victoria, Australia
- Department of Perinatal Medicine, Mercy Hospital for Women, Heidelberg, Victoria, Australia
- Murdoch Children's Research Institute, Public Health Genetics Group, Parkville, Victoria, Australia
- Department of Obstetrics and Gynaecology, The Northern Hospital, Epping, Victoria, Australia
| |
Collapse
|
26
|
Chaemsaithong P, Leung TY, Sahota D, Cheng YKY, Leung WC, Lo TK, Poon LCY. Body mass index at 11–13 weeks’ gestation and pregnancy complications in a Southern Chinese population: a retrospective cohort study. J Matern Fetal Neonatal Med 2018; 32:2056-2068. [PMID: 29301455 DOI: 10.1080/14767058.2018.1424824] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Piya Chaemsaithong
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong, China
| | - Tak Yeung Leung
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong, China
| | - Daljit Sahota
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong, China
| | - Yvonne Kwun Yue Cheng
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong, China
| | - Wing Cheong Leung
- Department of Obstetrics and Gynaecology, Kwong Wah Hospital, Hong Kong, China
| | - Tsz Kin Lo
- Department of Obstetrics and Gynaecology, Princess Margaret Hospital, Hong Kong, China
| | - Liona Chiu Yee Poon
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
27
|
Boama V, Guinto VT, Sosa CG. Contemporary Issues in Women's Health. Int J Gynaecol Obstet 2017. [PMID: 28639272 DOI: 10.1002/ijgo.12221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Vincent Boama
- Department of Obstetrics and Gynecology, Sidra Medical and Research Center, Doha, Qatar
| | - Valerie T Guinto
- Department of Obstetrics and Gynaecology, St. Luke's Medical Center Global City, University of the Philippines-Philippine General Hospital, Manila, Philippines
| | - Claudio G Sosa
- Department of Obstetrics and Gynecology, School of Medicine, University of Uruguay, Montevideo, Uruguay
| |
Collapse
|
28
|
Edlow AG. Maternal obesity and neurodevelopmental and psychiatric disorders in offspring. Prenat Diagn 2016; 37:95-110. [PMID: 27684946 DOI: 10.1002/pd.4932] [Citation(s) in RCA: 186] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 09/21/2016] [Accepted: 09/22/2016] [Indexed: 12/19/2022]
Abstract
There is a growing body of evidence from both human epidemiologic and animal studies that prenatal and lactational exposure to maternal obesity and high-fat diet are associated with neurodevelopmental and psychiatric disorders in offspring. These disorders include cognitive impairment, autism spectrum disorders, attention deficit hyperactivity disorder, cerebral palsy, anxiety and depression, schizophrenia, and eating disorders. This review synthesizes human and animal data linking maternal obesity and high-fat diet consumption to abnormal fetal brain development and neurodevelopmental and psychiatric morbidity in offspring. In addition, it highlights key mechanisms by which maternal obesity and maternal diet might impact fetal and offspring neurodevelopment, including neuroinflammation; increased oxidative stress, dysregulated insulin, glucose, and leptin signaling; dysregulated serotonergic and dopaminergic signaling; and perturbations in synaptic plasticity. Finally, the review summarizes available evidence regarding investigational therapeutic approaches to mitigate the harmful effects of maternal obesity on fetal and offspring neurodevelopment. © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Andrea G Edlow
- Division of Maternal-Fetal Medicine, Department of Ob/Gyn, Tufts Medical Center, Boston, MA, USA.,Mother Infant Research Institute, Tufts Medical Center, Boston, MA, USA
| |
Collapse
|
29
|
Edlow AG, Guedj F, Pennings JL, Sverdlov D, Neri C, Bianchi DW. Males are from Mars, and females are from Venus: sex-specific fetal brain gene expression signatures in a mouse model of maternal diet-induced obesity. Am J Obstet Gynecol 2016; 214:623.e1-623.e10. [PMID: 26945603 DOI: 10.1016/j.ajog.2016.02.054] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 01/05/2016] [Accepted: 02/04/2016] [Indexed: 12/31/2022]
Abstract
BACKGROUND Maternal obesity is associated with adverse neurodevelopmental outcomes in children, including autism spectrum disorders, developmental delay, and attention-deficit hyperactivity disorder. The underlying mechanisms remain unclear. We previously identified second-trimester amniotic fluid and term cord blood gene expression patterns suggesting dysregulated brain development in fetuses of obese compared with lean women. OBJECTIVE We sought to investigate the biological significance of these findings in a mouse model of maternal diet-induced obesity. We evaluated sex-specific differences in fetal growth, brain gene expression signatures, and associated pathways. STUDY DESIGN Female C57BL/6J mice were fed a 60% high-fat diet or 10% fat control diet for 12-14 weeks prior to mating. During pregnancy, obese dams continued on the high-fat diet or transitioned to the control diet. Lean dams stayed on the control diet. On embryonic day 17.5, embryos were weighed and fetal brains were snap frozen. RNA was extracted from male and female forebrains (10 per diet group per sex) and hybridized to whole-genome expression arrays. Significantly differentially expressed genes were identified using a Welch's t test with the Benjamini-Hochberg correction. Functional analyses were performed using ingenuity pathways analysis and gene set enrichment analysis. RESULTS Embryos of dams on the high-fat diet were significantly smaller than controls, with males more severely affected than females (P = .01). Maternal obesity and maternal obesity with dietary change in pregnancy resulted in significantly more dysregulated genes in male vs female fetal brains (386 vs 66, P < .001). Maternal obesity with and without dietary change in pregnancy was associated with unique brain gene expression signatures for each sex, with an overlap of only 1 gene. Changing obese dams to a control diet in pregnancy resulted in more differentially expressed genes in the fetal brain than maternal obesity alone. Functional analyses identified common dysregulated pathways in both sexes, but maternal obesity and maternal dietary change affected different aspects of brain development in males compared with females. CONCLUSION Maternal obesity is associated with sex-specific differences in fetal size and fetal brain gene expression signatures. Male fetal growth and brain gene expression may be more sensitive to environmental influences during pregnancy. Maternal diet during pregnancy has a significant impact on the embryonic brain transcriptome. It is important to consider both fetal sex and maternal diet when evaluating the effects of maternal obesity on fetal neurodevelopment.
Collapse
|