1
|
Molina-Valero G, Buendía-Moreno L, Bande-De León C, Bueno-Gavilá E, Tejada L. Production of Protein Hydrolysates Teff ( Eragrostis tef) Flour with Antioxidant and Angiotensin-I-Converting Enzyme (ACE-I) Inhibitory Activity Using Pepsin and Cynara cardunculus L. Extract. Curr Issues Mol Biol 2024; 46:11303-11313. [PMID: 39451552 PMCID: PMC11506589 DOI: 10.3390/cimb46100672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/06/2024] [Accepted: 10/10/2024] [Indexed: 10/26/2024] Open
Abstract
In recent years, several studies have shown the antioxidant and antihypertensive potential of bioactive peptides. Thus, bioactive peptides are likely to be a valuable substance for the development of functional foods. There are a wide variety of sources of these peptides, including several cereals. Teff is an Ethiopian-rooted cereal with an interesting nutritional profile, mainly due to its high amount of protein. In this study, teff flour was subjected to a defatting process for optimizing the protein extraction. Such extraction was performed by precipitation from its isoelectric point, a crucial step that separates the protein from other components based on their charge. The protein obtained was subjected to enzymatic hydrolysis by pepsin and Cynara cardunculus L. The antihypertensive (angiotensin-I-converting enzyme -ACE-I- inhibitory activity) and antioxidant activity (2,2-diphenyl-1-picrylhydrazyl -DPPH- radical scavenging activity) of the peptides were determined. According to the IC50 values, the results obtained showed that the peptides from teff flour show promising bioactivity compared to other cereals. Furthermore, the peptides from teff flour obtained from C. cardunculus L. showed higher antioxidant activity (defatted teff flour -DTF-: 0.59 ± 0.05; protein extract -EP- : 1.04 ± 0.11) than those obtained with pepsin (DTF: 0.87 ± 0.09; EP: 1.73 ± 0.11). However, C. cardunculus L. hydrolyzate peptides showed lower inhibitory activity of ACE-I (DTF: 0.59 ± 0.07; EP: 0.61 ± 0.05) than the pepsin hydrolyzate (DTF: 0.15 ± 0.02; EP: 0.33 ± 0.05).
Collapse
Affiliation(s)
| | | | - Cindy Bande-De León
- Faculty of Pharmacy and Nutrition, Universidad Católica de Murcia-UCAM, Campus de los Jerónimos, 30107 Murcia, Spain; (G.M.-V.); (L.B.-M.); (E.B.-G.); (L.T.)
| | | | | |
Collapse
|
2
|
Cao WJ, Liu R, Zhao WX, Li J, Wang Y, Yuan XJ, Wang HL, Zhang YZ, Chen XL, Zhang YQ. Potential of Marine Bacterial Metalloprotease A69 in the Preparation of Peanut Peptides with Angiotensin-Converting Enzyme (ACE)-Inhibitory and Antioxidant Properties. Mar Drugs 2024; 22:305. [PMID: 39057414 PMCID: PMC11277839 DOI: 10.3390/md22070305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
Marine bacterial proteases have rarely been used to produce bioactive peptides, although many have been reported. This study aims to evaluate the potential of the marine bacterial metalloprotease A69 from recombinant Bacillus subtilis in the preparation of peanut peptides (PPs) with antioxidant activity and angiotensin-converting enzyme (ACE)-inhibitory activity. Based on the optimization of the hydrolysis parameters of protease A69, a process for PPs preparation was set up in which the peanut protein was hydrolyzed by A69 at 3000 U g-1 and 60 °C, pH 7.0 for 4 h. The prepared PPs exhibited a high content of peptides with molecular weights lower than 1000 Da (>80%) and 3000 Da (>95%) and contained 17 kinds of amino acids. Moreover, the PPs displayed elevated scavenging of hydroxyl radical and 1,1-diphenyl-2-picryl-hydrazyl radical, with IC50 values of 1.50 mg mL-1 and 1.66 mg mL-1, respectively, indicating the good antioxidant activity of the PPs. The PPs also showed remarkable ACE-inhibitory activity, with an IC50 value of 0.71 mg mL-1. By liquid chromatography mass spectrometry analysis, the sequences of 19 ACE inhibitory peptides and 15 antioxidant peptides were identified from the PPs. These results indicate that the prepared PPs have a good nutritional value, as well as good antioxidant and antihypertensive effects, and that the marine bacterial metalloprotease A69 has promising potential in relation to the preparation of bioactive peptides from peanut protein.
Collapse
Affiliation(s)
- Wen-Jie Cao
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao 266237, China; (W.-J.C.); (R.L.); (W.-X.Z.); (J.L.); (Y.W.); (X.-J.Y.); (H.-L.W.); (Y.-Z.Z.)
| | - Rui Liu
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao 266237, China; (W.-J.C.); (R.L.); (W.-X.Z.); (J.L.); (Y.W.); (X.-J.Y.); (H.-L.W.); (Y.-Z.Z.)
| | - Wen-Xiao Zhao
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao 266237, China; (W.-J.C.); (R.L.); (W.-X.Z.); (J.L.); (Y.W.); (X.-J.Y.); (H.-L.W.); (Y.-Z.Z.)
| | - Jian Li
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao 266237, China; (W.-J.C.); (R.L.); (W.-X.Z.); (J.L.); (Y.W.); (X.-J.Y.); (H.-L.W.); (Y.-Z.Z.)
| | - Yan Wang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao 266237, China; (W.-J.C.); (R.L.); (W.-X.Z.); (J.L.); (Y.W.); (X.-J.Y.); (H.-L.W.); (Y.-Z.Z.)
| | - Xiao-Jie Yuan
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao 266237, China; (W.-J.C.); (R.L.); (W.-X.Z.); (J.L.); (Y.W.); (X.-J.Y.); (H.-L.W.); (Y.-Z.Z.)
| | - Hui-Lin Wang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao 266237, China; (W.-J.C.); (R.L.); (W.-X.Z.); (J.L.); (Y.W.); (X.-J.Y.); (H.-L.W.); (Y.-Z.Z.)
| | - Yu-Zhong Zhang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao 266237, China; (W.-J.C.); (R.L.); (W.-X.Z.); (J.L.); (Y.W.); (X.-J.Y.); (H.-L.W.); (Y.-Z.Z.)
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
- Joint Research Center for Marine Microbial Science and Technology of Shandong University and Ocean University of China, Qingdao 266237, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Xiu-Lan Chen
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao 266237, China; (W.-J.C.); (R.L.); (W.-X.Z.); (J.L.); (Y.W.); (X.-J.Y.); (H.-L.W.); (Y.-Z.Z.)
- Joint Research Center for Marine Microbial Science and Technology of Shandong University and Ocean University of China, Qingdao 266237, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Yu-Qiang Zhang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao 266237, China; (W.-J.C.); (R.L.); (W.-X.Z.); (J.L.); (Y.W.); (X.-J.Y.); (H.-L.W.); (Y.-Z.Z.)
- Joint Research Center for Marine Microbial Science and Technology of Shandong University and Ocean University of China, Qingdao 266237, China
| |
Collapse
|
3
|
Santacroce L, Bottalico L, Charitos IA, Haxhirexha K, Topi S, Jirillo E. Healthy Diets and Lifestyles in the World: Mediterranean and Blue Zone People Live Longer. Special Focus on Gut Microbiota and Some Food Components. Endocr Metab Immune Disord Drug Targets 2024; 24:1774-1784. [PMID: 38566378 DOI: 10.2174/0118715303271634240319054728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/05/2023] [Accepted: 01/22/2024] [Indexed: 04/04/2024]
Abstract
Longevity has been associated with healthy lifestyles, including some dietary regimens, such as the Mediterranean diet (MedDiet) and the Blue Zone (BZ) diets. MedDiet relies on a large consumption of fruit, vegetables, cereals, and extra-virgin olive oil, with less red meat and fat intake. Four major BZ have been recognized in the world, namely, Ogliastra in Sardinia (Italy), Ikaria (Greece), the Peninsula of Nicoya (Costa Rica), and Okinawa (Japan). Extreme longevity in these areas has been associated with correct lifestyles and dietary regimens. Fibers, polyphenols, beta-glucans, and unsaturated fatty acids represent the major constituents of both MedDiet and BZ diets, given their anti-inflammatory and antioxidant activities. Particularly, inhibition of the NF-kB pathway, with a reduced release of pro-inflammatory cytokines, and induction of T regulatory cells, with the production of the anti-inflammatory cytokine, interleukin- 10, are the main mechanisms that prevent or attenuate the "inflammaging." Notably, consistent physical activity, intense social interactions, and an optimistic attitude contribute to longevity in BZD areas. Commonalities and differences between MedDIet and BZ diets will be outlined, with special reference to microbiota and food components, which may contribute to longevity.
Collapse
Affiliation(s)
- Luigi Santacroce
- Interdisciplinary Department of Medicine, Microbiology and Virology Unit, University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Lucrezia Bottalico
- Department of Clinical Disciplines, School of Technical Medical Sciences, "Alexander Xhuvani" University of Elbasan, 3001-3006 Elbasan, Albania
| | - Ioannis Alexandros Charitos
- Istituti Clinici Scientifici Maugeri IRCCS, Pneumology and Respiratory Rehabilitation Unit, Institute of Bari, 70124 Bari, Italy
| | - Kastriot Haxhirexha
- General Surgery, Medical Faculty, Clinical Hospital of Tetovo, University of Tetovo, 1230 Tetovo, North Macedonia
| | - Skender Topi
- Department of Clinical Disciplines, School of Technical Medical Sciences, "Alexander Xhuvani" University of Elbasan, 3001-3006 Elbasan, Albania
| | - Emilio Jirillo
- Interdisciplinary Department of Medicine, Microbiology and Virology Unit, University of Bari "Aldo Moro", 70124 Bari, Italy
| |
Collapse
|
4
|
Mao X, Yue SJ, Xu DQ, Fu RJ, Han JZ, Zhou HM, Tang YP. Research Progress on Flavor and Quality of Chinese Rice Wine in the Brewing Process. ACS OMEGA 2023; 8:32311-32330. [PMID: 37720734 PMCID: PMC10500577 DOI: 10.1021/acsomega.3c04732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 08/18/2023] [Indexed: 09/19/2023]
Abstract
Chinese rice wine (CRW) is a traditional and unique alcoholic beverage in China, favored by many consumers for its rich aroma, unique taste, and complex ingredients. Its flavor is primarily composed of volatile and nonvolatile compounds. These flavor compounds are partly derived from grains and starters (Qu), while the other part is produced by microbial metabolism and chemical reactions during the brewing process. Additionally, ethyl carbamate (EC) in CRW, a hazardous chemical, necessitates controlling its concentration during brewing. In recent years, numerous new brewing techniques for CRW have emerged. Therefore, this paper aims to collect aroma descriptions and thresholds of flavor compounds in CRW, summarize the relationship between the brewing process of CRW and flavor formation, outline methods for reducing the concentration of EC in the brewing process of CRW, and summarize the four stages (pretreatment of grains, fermentation, sterilization, and aging process) of new techniques. Furthermore, we will compare the advantages and disadvantages of different approaches, with the expectation of providing a valuable reference for improving the quality of CRW.
Collapse
Affiliation(s)
- Xi Mao
- Key
Laboratory of Shaanxi Administration of Traditional Chinese Medicine
for TCM Compatibility, and State Key Laboratory of Research &
Development of Characteristic Qin Medicine Resources (Cultivation),
and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New
Drugs Research, Shaanxi University of Chinese
Medicine, Xi’an 712046, Shaanxi Province, China
| | - Shi-Jun Yue
- Key
Laboratory of Shaanxi Administration of Traditional Chinese Medicine
for TCM Compatibility, and State Key Laboratory of Research &
Development of Characteristic Qin Medicine Resources (Cultivation),
and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New
Drugs Research, Shaanxi University of Chinese
Medicine, Xi’an 712046, Shaanxi Province, China
| | - Ding-Qiao Xu
- Key
Laboratory of Shaanxi Administration of Traditional Chinese Medicine
for TCM Compatibility, and State Key Laboratory of Research &
Development of Characteristic Qin Medicine Resources (Cultivation),
and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New
Drugs Research, Shaanxi University of Chinese
Medicine, Xi’an 712046, Shaanxi Province, China
| | - Rui-Jia Fu
- Key
Laboratory of Shaanxi Administration of Traditional Chinese Medicine
for TCM Compatibility, and State Key Laboratory of Research &
Development of Characteristic Qin Medicine Resources (Cultivation),
and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New
Drugs Research, Shaanxi University of Chinese
Medicine, Xi’an 712046, Shaanxi Province, China
| | - Jian-Zhang Han
- Xi’an
DaKou Wine Company Ltd., Xi’an 710300, Shaanxi Province, China
| | - Hao-Ming Zhou
- Key
Laboratory of Shaanxi Administration of Traditional Chinese Medicine
for TCM Compatibility, and State Key Laboratory of Research &
Development of Characteristic Qin Medicine Resources (Cultivation),
and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New
Drugs Research, Shaanxi University of Chinese
Medicine, Xi’an 712046, Shaanxi Province, China
| | - Yu-Ping Tang
- Key
Laboratory of Shaanxi Administration of Traditional Chinese Medicine
for TCM Compatibility, and State Key Laboratory of Research &
Development of Characteristic Qin Medicine Resources (Cultivation),
and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New
Drugs Research, Shaanxi University of Chinese
Medicine, Xi’an 712046, Shaanxi Province, China
| |
Collapse
|
5
|
Gammoh S, Alu’datt MH, Alhamad MN, Tranchant CC, Rababah T, Al-U’datt D, Hussein N, Alrosan M, Tan TC, Kubow S, Alzoubi H, Almajwal A. Functional and Bioactive Properties of Wheat Protein Fractions: Impact of Digestive Enzymes on Antioxidant, α-Amylase, and Angiotensin-Converting Enzyme Inhibition Potential. Molecules 2023; 28:6012. [PMID: 37630264 PMCID: PMC10459969 DOI: 10.3390/molecules28166012] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/25/2023] [Accepted: 07/31/2023] [Indexed: 08/27/2023] Open
Abstract
This research aimed to determine the biofunctional properties of wheat flour (WF) protein fractions and modifications to the antioxidant, anti-α-amylase and anti-angiotensin-I converting enzyme (ACE) activities induced by the action of digestive endopeptidases in vitro. A molecular characterization of the most abundant protein fractions, i.e., albumins, glutelins-1, glutelins-2 and prolamins, showed that low- and high-MW polypeptides rich in cysteine, glutamic acid and leucine were present in albumins and glutelins, whereas low-MW subunits with a high proportion of polar amino acids prevailed in prolamins. Prolamins exhibited the second-highest water holding capacity (54%) after WF (84%), while albumins provided superior foam stability (76%). Prolamins, glutenins-1 and globulins demonstrated the highest antioxidant activity (up to 95%, 68% and 59%, respectively) both before and after hydrolysis with pepsin (P-H) or trypsin-chymotrypsin (TC-H). Prolamins, globulins and WF strongly inhibited α-amylase (>90%) before and after TC-H, and before P-H (55-71%). Moreover, P-H significantly increased α-amylase inhibition by albumins from 53 to 74%. The fractions with strong ACE inhibitory activity (70-89%) included prolamins and globulins after TC-H or P-H, as well as globulins before TC-H and WF before P-H. This novel evidence indicates that WF protein fractions and their peptide-enriched P and TC hydrolysates are excellent sources of multifunctional bioactives with antioxidant, antihyperglycemic and antihypertensive potential.
Collapse
Affiliation(s)
- Sana Gammoh
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, Irbid 22110, Jordan; (T.R.); (N.H.); (H.A.)
| | - Muhammad H. Alu’datt
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, Irbid 22110, Jordan; (T.R.); (N.H.); (H.A.)
| | - Mohammad N. Alhamad
- Department of Natural Resources and Environment, Faculty of Agriculture, Jordan University of Science and Technology, Irbid 22110, Jordan;
| | - Carole C. Tranchant
- School of Food Science, Nutrition and Family Studies, Faculty of Health Sciences and Community Services, Université de Moncton, Moncton, NB E1A 3E9, Canada
| | - Taha Rababah
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, Irbid 22110, Jordan; (T.R.); (N.H.); (H.A.)
| | - Doa’a Al-U’datt
- Department of Physiology and Biochemistry, Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan;
| | - Neveen Hussein
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, Irbid 22110, Jordan; (T.R.); (N.H.); (H.A.)
| | - Mohammad Alrosan
- Applied Science Research Center, Applied Science Private University, Amman 11937, Jordan;
| | - Thuan-Chew Tan
- Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia;
| | - Stan Kubow
- School of Dietetics and Human Nutrition, McGill University, Montreal, QC H9X 3V9, Canada;
| | - Haya Alzoubi
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, Irbid 22110, Jordan; (T.R.); (N.H.); (H.A.)
| | - Ali Almajwal
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 12372, Saudi Arabia;
| |
Collapse
|
6
|
Assessment of Protein Nutritional Quality of Novel Hairless Canary Seed in Comparison to Wheat and Oat Using In Vitro Static Digestion Models. Nutrients 2023; 15:nu15061347. [PMID: 36986077 PMCID: PMC10056580 DOI: 10.3390/nu15061347] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 03/12/2023] Open
Abstract
Hairless canary seed (Phalaris canariensis L.) is a novel true cereal that is now approved for human consumption in Canada and the United States. This true cereal grain has higher protein content (22%) than oat (13%) and wheat (16%) and represents a valuable source of plant proteins. Assessment of canary seed protein quality is therefore essential to evaluate its digestibility and ability to provide sufficient amounts of essential amino acids for human requirements. In this study, the protein nutritional quality of four hairless canary seed varieties (two brown and two yellow) were evaluated in comparison to oat and wheat. The assessment of anti-nutrients contents (phytate, trypsin inhibitor activity, and polyphenols) showed that brown canary seed varieties had the highest content in phytate and oat the highest in polyphenols. Trypsin inhibitor level was comparable among studied cereals, but slightly higher in the brown canary seed Calvi variety. In regard to protein quality, canary seed had a well-balanced amino acid profile and was particularly high in tryptophan, an essential amino acid normally lacking in cereals. The in vitro protein digestibility of canary seeds as determined by both the pH-drop and INFOGEST (international network of excellence on the fate of food in the gastrointestinal tract) protocols appears slightly lower than wheat and higher than oat. The yellow canary seed varieties showed better overall digestibility than the brown ones. For all studied cereal flours, the limiting amino acid was lysine. The calculated in vitro PDCAAS (protein digestibility corrected amino acid score) and DIAAS (digestible indispensable amino acid score) were higher for the yellow C05041 cultivar than the brown Bastia, similar to those of wheat, but lower than those of oat proteins. This study demonstrates the feasibility and utility of in vitro human digestion models for the assessment of protein quality for comparison purpose.
Collapse
|
7
|
Taraszkiewicz A, Sinkiewicz I, Sommer A, Staroszczyk H. The biological role of prolyl oligopeptidase and the procognitive potential of its peptidic inhibitors from food proteins. Crit Rev Food Sci Nutr 2023; 64:6567-6580. [PMID: 36798052 DOI: 10.1080/10408398.2023.2170973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Prolyl oligopeptidase (POP) is a conserved serine protease belonging to proline-specific peptidases. It has both enzymatic and non-enzymatic activity and is involved in numerous biological processes in the human body, playing a role in e.g., cellular growth and differentiation, inflammation, as well as the development of some neurodegenerative and neuropsychiatric disorders. This article describes the physiological and pathological aspects of POP activity and the state-of-art of its peptidic inhibitors originating from food proteins, with a particular focus on their potential as cognition-enhancing agents. Although some milk, meat, fish, and plant protein-derived peptides have the potential to be applied as natural, procognitive nutraceuticals, their effectiveness requires further evaluation, especially in clinical trials. We demonstrated that the important features of the most promising POP-inhibiting peptides are very short sequence, high content of hydrophobic amino acids, and usually the presence of proline residue.
Collapse
Affiliation(s)
- Antoni Taraszkiewicz
- Department of Food Chemistry, Technology and Biotechnology, Faculty of Chemistry, Gdańsk University of Technology, Gdańsk, Poland
| | - Izabela Sinkiewicz
- Department of Food Chemistry, Technology and Biotechnology, Faculty of Chemistry, Gdańsk University of Technology, Gdańsk, Poland
| | - Agata Sommer
- Department of Food Chemistry, Technology and Biotechnology, Faculty of Chemistry, Gdańsk University of Technology, Gdańsk, Poland
| | - Hanna Staroszczyk
- Department of Food Chemistry, Technology and Biotechnology, Faculty of Chemistry, Gdańsk University of Technology, Gdańsk, Poland
| |
Collapse
|
8
|
A comparative study of fermented buffalo and camel milk with anti-inflammatory, ACE-inhibitory and anti-diabetic properties and release of bio active peptides with molecular interactions: In vitro, in silico and molecular study. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
9
|
Benítez-Arvizu G, Castro-Jácome TP, Tovar-Pérez E, Alcántara-Quintana LE. [Antiproliferative, apoptotic, and antimigratory activities of kafirins on cervical cancer-derived cell lines]. REVISTA MEDICA DEL INSTITUTO MEXICANO DEL SEGURO SOCIAL 2023; 61:S4-S11. [PMID: 36378016 PMCID: PMC10395951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 06/27/2022] [Indexed: 06/16/2023]
Abstract
Background Cervical cancer is one of the leading causes of death in women worldwide, both in developed and developing countries. Therefore, effective treatment of cervical cancer with potential anti-tumor drugs is important. However, new treatments inspired by nutritional medicine are needed. Objective To use the human cervical cancer cell lines HeLa and SiHa to evaluate the antiproliferative, apoptotic, and migratory activity of sorghum (kafirins). Materials and methods The anticancer effects of the kafirins were examined by counting cells, MTT assays, apoptosis, and migration assays. Results This investigation showed that sorghum induced growth inhibition of HeLa and SiHa cells at a significant level. The growth inhibition is dose-dependent and irreversible. When HeLa and SiHa cells were treated with sorghum due to the activity of kafirins, morphological changes were observed, which were identified through the formation of apoptopic bodies. And the kafirins at concentrations of 37.5, 75, 150, and 300 μg/mL decreased the migration of HeLa cells and SiHa cells. Conclusion This paper demonstrates the induction of antiproliferative, apoptotic, and anti-migratory activity in HeLa and SiHa cells by kafirins. Sorghum may be used as a nutraceutical with potential cancer-prevention benefits.
Collapse
Affiliation(s)
- Gamaliel Benítez-Arvizu
- Instituto Mexicano del Seguro Social, Centro Médico Nacional Siglo XXI, Hospital de Especialidades “Dr. Bernardo Sepúlveda Gutiérrez”, Unidad Complementaria Banco de Sangre. Ciudad de México, MéxicoInstituto Mexicano del Seguro SocialMéxico
| | - Tania Patricia Castro-Jácome
- Instituto Tecnológico de Tepic, Laboratorio Integral de Investigación en Alimentos. Tepic, Nayarit, MéxicoInstituto Tecnológico de TepicMéxico
| | - Erik Tovar-Pérez
- Universidad Autónoma de Querétaro, Campus Amazcala, Facultad de Ingeniería. El Marqués, Querétaro, MéxicoUniversidad Autónoma de QuerétaroMéxico
| | - Luz Eugenia Alcántara-Quintana
- Universidad Autónoma de San Luis Potosí, Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología. San Luis Potosí, San Luis Potosí, México Universidad Autónoma de San Luis PotosíMéxico
| |
Collapse
|
10
|
Pourali G, Kazemi D, Pourali R, Rahmani N, Razzaghi E, Maftooh M, Fiuji H, Ghorbani E, Khazaei M, Ferns GA, Hassanian SM, Avan A. Bioactive Peptides: Potential Impact on the Treatment of Gastrointestinal Cancers. Curr Pharm Des 2023; 29:2450-2460. [PMID: 37877510 DOI: 10.2174/0113816128261378231019201709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 09/05/2023] [Accepted: 09/14/2023] [Indexed: 10/26/2023]
Abstract
We have reviewed the potential use of bioactive peptides in the treatment of gastrointestinal (GI) malignancies, which are a significant cause of morbidity and mortality globally. Conventional therapies, such as surgery, chemotherapy, and radiotherapy, are associated with numerous side effects that may lead to longterm complications. Bioactive peptides are short-chain amino acids that can be extracted from natural sources or synthesized, and they have various potential health benefits, including anti-inflammatory, anti-hypertensive, antioxidant, antimicrobial, and anti-cancer properties. Bioactive peptides can be acquired from animal or plant sources, and can be classified based on their function, such as ACE-inhibiting, antimicrobial, and electrolyte- regulating peptides. Recent studies have demonstrated the promising role of bioactive peptides in tumor suppression, especially when combined with conventional therapies. In this study, we have reviewed the beneficial properties of bioactive peptides and their role in suppressing tumor activity. The mechanisms of bioactive peptides in tumor suppression are discussed. We have further reviewed the findings of preclinical and clinical studies that have investigated the application of bioactive peptides in the treatment of GI cancers. This review highlights the potential use of bioactive peptides as a promising treatment method for GI malignancies to increase the quality of life of GI cancer patients.
Collapse
Affiliation(s)
- Ghazaleh Pourali
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Danial Kazemi
- School of Medicine, Isfahan University of Medical Sciences, Hezar Jerib Street, Isfahan, Iran
| | - Roozbeh Pourali
- Student Research Committee, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Nafise Rahmani
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Erfan Razzaghi
- School of Medicine, Isfahan University of Medical Sciences, Hezar Jerib Street, Isfahan, Iran
| | - Mina Maftooh
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Fiuji
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elnaz Ghorbani
- Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Khazaei
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Division of Medical Education, Brighton & Sussex Medical School, Falmer, Brighton, Sussex BN1 9PH, UK
| | - Seyed Mahdi Hassanian
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
11
|
NAUREEN ZAKIRA, DHULI KRISTJANA, DONATO KEVIN, AQUILANTI BARBARA, VELLUTI VALERIA, MATERA GIUSEPPINA, IACONELLI AMERIGO, BERTELLI MATTEO. Foods of the Mediterranean diet: tomato, olives, chili pepper, wheat flour and wheat germ. JOURNAL OF PREVENTIVE MEDICINE AND HYGIENE 2022; 63:E4-E11. [PMID: 36479499 PMCID: PMC9710402 DOI: 10.15167/2421-4248/jpmh2022.63.2s3.2740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Mediterranean people, which follows a diet rich in minimally-processed plant-based foods, are believed to live longer and healthier lives than many other populations in the Western world. Epidemiological and clinical data suggest that the Mediterranean diet has beneficial effects for several chronic diseases, such as cardiovascular diseases, obesity, cancer and diabetes. Although the mechanisms of action of the Mediterranean diet are not completely clear, the synergistic effects of a number of its components and their bioactive phytochemicals exert antioxidant, anti-inflammatory, anti-microbial and anti-cancer effects. The Mediterranean diet includes daily consumption of whole cereals, fruit, vegetables and legumes in moderate proportions, weekly consumption of white meat in low to moderate proportions and occasionally sweets and chocolates in small amounts. Since olive oil is the main lipids source, it has special significance for health. Healthy fruit and vegetables, rich in phytochemicals, are a major proportion of this diet and contribute to the overall nutritional value and bioactivity of its components. Here we review the nutritional and health benefits of wheat germ, tomatoes, olives and chili pepper, items at the base of Mediterranean diet food pyramid that provides beneficial molecules, such as polyphenols, vitamins and flavonoids, and exert anti-inflammatory, anti-microbial and anti-oxidative actions.
Collapse
Affiliation(s)
| | - KRISTJANA DHULI
- MAGI’s Lab, Rovereto (TN), Italy
- Correspondence: Kristjana Dhuli, MAGI’s Lab, Rovereto (TN), 38068, Italy. E-mail:
| | | | - BARBARA AQUILANTI
- UOSD Medicina Bariatrica, Fondazione Policlinico Agostino Gemelli IRCCS, Rome, Italy
| | - VALERIA VELLUTI
- UOSD Medicina Bariatrica, Fondazione Policlinico Agostino Gemelli IRCCS, Rome, Italy
| | - GIUSEPPINA MATERA
- UOSD Medicina Bariatrica, Fondazione Policlinico Agostino Gemelli IRCCS, Rome, Italy
| | - AMERIGO IACONELLI
- UOSD Medicina Bariatrica, Fondazione Policlinico Agostino Gemelli IRCCS, Rome, Italy
| | - MATTEO BERTELLI
- MAGI Euregio, Bolzano, Italy
- MAGI’s Lab, Rovereto (TN), Italy
- MAGISNAT, Peachtree Corners (GA), USA
| |
Collapse
|
12
|
García-Castro A, Román-Gutiérrez AD, Castañeda-Ovando A, Cariño-Cortés R, Acevedo-Sandoval OA, López-Perea P, Guzmán-Ortiz FA. Cereals as a Source of Bioactive Compounds with Anti-Hypertensive Activity and Their Intake in Times of COVID-19. Foods 2022; 11:3231. [PMID: 37430980 PMCID: PMC9601750 DOI: 10.3390/foods11203231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/08/2022] [Accepted: 10/11/2022] [Indexed: 11/16/2022] Open
Abstract
Cereals have phytochemical compounds that can diminish the incidence of chronic diseases such as hypertension. The angiotensin-converting enzyme 2 (ACE2) participates in the modulation of blood pressure and is the principal receptor of the virus SARS-CoV-2. The inhibitors of the angiotensin-converting enzyme (ACE) and the block receptors of angiotensin II regulate the expression of ACE2; thus, they could be useful in the treatment of patients infected with SARS-CoV-2. The inferior peptides from 1 to 3 kDa and the hydrophobic amino acids are the best candidates to inhibit ACE, and these compounds are present in rice, corn, wheat, oats, sorghum, and barley. In addition, the vitamins C and E, phenolic acids, and flavonoids present in cereals show a reduction in the oxidative stress involved in the pathogenesis of hypertension. The influence of ACE on hypertension and COVID-19 has turned into a primary point of control and treatment from the nutritional perspective. The objective of this work was to describe the inhibitory effect of the angiotensin-converting enzyme that the bioactive compounds present in cereals possess in order to lower blood pressure and how their consumption could be associated with reducing the virulence of COVID-19.
Collapse
Affiliation(s)
- Abigail García-Castro
- Área Académica de Química, Universidad Autónoma del Estado de Hidalgo, Carretera Pachuca–Tulancingo, Km 4.5 s/n, Mineral de la Reforma, Hidalgo 42184, Mexico
| | - Alma Delia Román-Gutiérrez
- Área Académica de Química, Universidad Autónoma del Estado de Hidalgo, Carretera Pachuca–Tulancingo, Km 4.5 s/n, Mineral de la Reforma, Hidalgo 42184, Mexico
| | - Araceli Castañeda-Ovando
- Área Académica de Química, Universidad Autónoma del Estado de Hidalgo, Carretera Pachuca–Tulancingo, Km 4.5 s/n, Mineral de la Reforma, Hidalgo 42184, Mexico
| | - Raquel Cariño-Cortés
- Área Académica de Medicina, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Elíseo Ramírez Ulloa, 400, Doctores, Pachuca de Soto 42090, Mexico
| | - Otilio Arturo Acevedo-Sandoval
- Área Académica de Química, Universidad Autónoma del Estado de Hidalgo, Carretera Pachuca–Tulancingo, Km 4.5 s/n, Mineral de la Reforma, Hidalgo 42184, Mexico
| | - Patricia López-Perea
- Área de Ingeniería Agroindustrial, Universidad Politécnica Francisco I. Madero, Francisco I. Madero, Hidalgo 42660, Mexico
| | - Fabiola Araceli Guzmán-Ortiz
- CONACYT, Universidad Autónoma del Estado de Hidalgo, Carretera Pachuca-Tulancingo Km 4.5 s/n, Mineral de la Reforma, Hidalgo 42184, Mexico
| |
Collapse
|
13
|
Díaz-Gómez JL, López-Castillo LM, Garcia-Lara S, Castorena-Torres F, Winkler R, Wielsch N, Aguilar O. Novel α-zein peptide fractions with in vitro cytotoxic activity against hepatocarcinoma. FOOD AND BIOPRODUCTS PROCESSING 2022. [DOI: 10.1016/j.fbp.2022.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
14
|
Molfetta M, Morais EG, Barreira L, Bruno GL, Porcelli F, Dugat-Bony E, Bonnarme P, Minervini F. Protein Sources Alternative to Meat: State of the Art and Involvement of Fermentation. Foods 2022; 11:2065. [PMID: 35885308 PMCID: PMC9319875 DOI: 10.3390/foods11142065] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/29/2022] [Accepted: 07/08/2022] [Indexed: 12/29/2022] Open
Abstract
Meat represents an important protein source, even in developing countries, but its production is scarcely sustainable, and its excessive consumption poses health issues. An increasing number of Western consumers would replace, at least partially, meat with alternative protein sources. This review aims at: (i) depicting nutritional, functional, sensory traits, and critical issues of single-cell proteins (SCP), filamentous fungi, microalgae, vegetables (alone or mixed with milk), and insects and (ii) displaying how fermentation could improve their quality, to facilitate their use as food items/ingredients/supplements. Production of SCP (yeasts, filamentous fungi, microalgae) does not need arable land and potable water and can run continuously, also using wastes and byproducts. Some filamentous fungi are also consumed as edible mushrooms, and others are involved in the fermentation of traditional vegetable-based foods. Cereals, pseudocereals, and legumes may be combined to offer an almost complete amino acid profile. Fermentation of such vegetables, even in combination with milk-based products (e.g., tarhana), could increase nutrient concentrations, including essential amino acids, and improve sensory traits. Different insects could be used, as such or, to increase their acceptability, as ingredient of foods (e.g., pasta). However, insects as a protein source face with safety concerns, cultural constraints, and a lack of international regulatory framework.
Collapse
Affiliation(s)
- Mariagrazia Molfetta
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, Università degli Studi di Bari Aldo Moro, Via Amendola 165/a, 70126 Bari, Italy; (M.M.); (G.L.B.); (F.P.)
| | - Etiele G. Morais
- Centro de Ciências do Mar (CCMAR), Universidade do Algarve, 8005-139 Faro, Portugal; (E.G.M.); (L.B.)
| | - Luisa Barreira
- Centro de Ciências do Mar (CCMAR), Universidade do Algarve, 8005-139 Faro, Portugal; (E.G.M.); (L.B.)
| | - Giovanni Luigi Bruno
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, Università degli Studi di Bari Aldo Moro, Via Amendola 165/a, 70126 Bari, Italy; (M.M.); (G.L.B.); (F.P.)
| | - Francesco Porcelli
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, Università degli Studi di Bari Aldo Moro, Via Amendola 165/a, 70126 Bari, Italy; (M.M.); (G.L.B.); (F.P.)
| | - Eric Dugat-Bony
- UMR SayFood, INRAE, AgroParisTech, Université Paris-Saclay, Avenue Lucien Brétignières, 78850 Thiverval-Grignon, France; (E.D.-B.); (P.B.)
| | - Pascal Bonnarme
- UMR SayFood, INRAE, AgroParisTech, Université Paris-Saclay, Avenue Lucien Brétignières, 78850 Thiverval-Grignon, France; (E.D.-B.); (P.B.)
| | - Fabio Minervini
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, Università degli Studi di Bari Aldo Moro, Via Amendola 165/a, 70126 Bari, Italy; (M.M.); (G.L.B.); (F.P.)
| |
Collapse
|
15
|
Quantitative In Silico Evaluation of Allergenic Proteins from Anacardium occidentale, Carya illinoinensis, Juglans regia and Pistacia vera and Their Epitopes as Precursors of Bioactive Peptides. Curr Issues Mol Biol 2022; 44:3100-3117. [PMID: 35877438 PMCID: PMC9317212 DOI: 10.3390/cimb44070214] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/28/2022] [Accepted: 07/01/2022] [Indexed: 11/16/2022] Open
Abstract
The aim of the study presented here was to determine if there is a correlation between the presence of specific protein domains within tree nut allergens or tree nut allergen epitopes and the frequency of bioactive fragments and the predicted susceptibility to enzymatic digestion in allergenic proteins from tree nuts of cashew (Anacardium occidentale), pecan (Carya illinoinensis), English walnut (Juglans regia) and pistachio (Pistacia vera) plants. These bioactive peptides are distributed along the length of the protein and are not enriched in IgE epitope sequences. Classification of proteins as bioactive peptide precursors based on the presence of specific protein domains may be a promising approach. Proteins possessing a vicilin, N-terminal family domain, or napin domain contain a relatively low occurrence of bioactive fragments. In contrast, proteins possessing the cupin 1 domain without the vicilin N-terminal family domain contain a relatively high total frequency of bioactive fragments and predicted release of bioactive fragments by the joint action of pepsin, trypsin, and chymotrypsin. This approach could be utilized in food science to simplify the selection of protein domains enriched for bioactive peptides.
Collapse
|
16
|
Health Benefits of Cereal Grain- and Pulse-Derived Proteins. Molecules 2022; 27:molecules27123746. [PMID: 35744874 PMCID: PMC9229611 DOI: 10.3390/molecules27123746] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 12/19/2022] Open
Abstract
Pulses and whole grains are considered staple foods that provide a significant amount of calories, fibre and protein, making them key food sources in a nutritionally balanced diet. Additionally, pulses and whole grains contain many bioactive compounds such as dietary fibre, resistant starch, phenolic compounds and mono- and polyunsaturated fatty acids that are known to combat chronic disease. Notably, recent research has demonstrated that protein derived from pulse and whole grain sources contains bioactive peptides that also possess disease-fighting properties. Mechanisms of action include inhibition or alteration of enzyme activities, vasodilatation, modulation of lipid metabolism and gut microbiome and oxidative stress reduction. Consumer demand for plant-based proteins has skyrocketed primarily based on the perceived health benefits and lower carbon footprint of consuming foods from plant sources versus animal. Therefore, more research should be invested in discovering the health-promoting effects that pulse and whole grain proteins have to offer.
Collapse
|
17
|
Maleki S, Razavi SH, Yadav H. Diabetes and seeds: New horizon to promote human nutrition and anti-diabetics compounds in grains by germination. Crit Rev Food Sci Nutr 2022; 63:8457-8477. [PMID: 35442121 DOI: 10.1080/10408398.2022.2063793] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Type 2 diabetes (T2D) is a complex and heterogeneous chronic metabolic disorder disease that is associated with high blood sugar. Because of the side effects of synthetic drugs on T2D patients and their economic burden, interest in plant-derived functional foods like grains with biological activities has developed. Based on scientific reports, whole grains are rich sources of energy, nutrients, and bioactive compounds and are assumed to have beneficial health effects on glucose enzymes regulation or hyperglycemia. Nowadays, different methods have been applied to enhance whole seed healthful properties and anti-diabetic compounds, and germination is one of them. Germination (sprouting) is a cost-effective method for boosting the activity of endogenous seed enzymes and modifying the structure of macromolecules. Some of these macromolecules like bioactive peptides, polyphenols, dietary fiber, and vitamins are related to diabetes management. Determining the best germination condition can help to promote these anti-diabetics properties of compounds. This study presents relevant information about diabetes, the effect of seed germination on releasing bioactive compounds, and optimizing environmental germination conditions to improve the anti-diabetic compounds in seeds for reaching functional food.
Collapse
Affiliation(s)
- Sima Maleki
- Department of Food Science, Engineering and Technology, Faculty of Agriculture Engineering and Natural Resources, University of Tehran, Karaj, Iran
| | - Seyed Hadi Razavi
- Department of Food Science, Engineering and Technology, Faculty of Agriculture Engineering and Natural Resources, University of Tehran, Karaj, Iran
| | - Hariom Yadav
- Center for Diabetes, Obesity, and Metabolism, Department of Internal Medicine-Molecular Medicine and Department of Microbiology and Immunology, Wake Forest School of Medicine, NC, USA
| |
Collapse
|
18
|
Zhao W, Qian M, Dong H, Liu X, Bai W, Liu G, Lv XC. Effect of Hong Qu on the flavor and quality of Hakka yellow rice wine (Huangjiu) produced in Southern China. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113264] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
19
|
Pavlicevic M, Marmiroli N, Maestri E. Immunomodulatory peptides-A promising source for novel functional food production and drug discovery. Peptides 2022; 148:170696. [PMID: 34856531 DOI: 10.1016/j.peptides.2021.170696] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 11/03/2021] [Accepted: 11/14/2021] [Indexed: 12/12/2022]
Abstract
Immunomodulatory peptides are a complex class of bioactive peptides that encompasses substances with different mechanisms of action. Immunomodulatory peptides could also be used in vaccines as adjuvants which would be extremely desirable, especially in response to pandemics. Thus, immunomodulatory peptides in food of plant origin could be regarded both as valuable suplements of novel functional food preparation and/or as precursors or possible active ingredients for drugs design for treatment variety of conditions arising from impaired function of immune system. Given variety of mechanisms, different tests are required to assess effects of immunomodulatory peptides. Some of those effects show good correlation with in vivo results but others, less so. Certain plant peptides, such as defensins, show both immunomodulatory and antimicrobial effect, which makes them interesting candidates for preparation of functional food and feed, as well as templates for design of synthetic peptides.
Collapse
Affiliation(s)
- Milica Pavlicevic
- Institute for Food Technology and Biochemistry, Faculty of Agriculture, University of Belgrade, Serbia
| | - Nelson Marmiroli
- University of Parma, Department of Chemistry, Life Sciences and Environmental Sustainability, and Interdepartmental Center SITEIA.PARMA, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| | - Elena Maestri
- University of Parma, Department of Chemistry, Life Sciences and Environmental Sustainability, and Interdepartmental Center SITEIA.PARMA, Parco Area delle Scienze 11/A, 43124 Parma, Italy.
| |
Collapse
|
20
|
Dall'Asta M, Dodi R, Pede GD, Marchini M, Spaggiari M, Gallo A, Righetti L, Brighenti F, Galaverna G, Dall'Asta C, Ranieri R, Folloni S, Scazzina F. Postprandial blood glucose and insulin responses to breads formulated with different wheat evolutionary populations (Triticum aestivum L.): A randomized controlled trial on healthy subjects. Nutrition 2021; 94:111533. [PMID: 34936948 DOI: 10.1016/j.nut.2021.111533] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 09/03/2021] [Accepted: 10/26/2021] [Indexed: 12/13/2022]
Abstract
This study aimed to evaluate the effect of breads made with two different wheat evolutionary populations (EPs), compared with a modern variety, on postprandial blood glucose and insulin responses. A randomized controlled crossover postprandial study involving 12 healthy subjects was conducted. Seven non-commercial breads produced with flours from two different bread wheat (T. aestivum L.) EPs (Bio2, ICARDA) and a modern bread wheat variety (Bologna) were considered controls, with two different bread-making processes (Saccharomyces cerevisiae and sourdough), and were specifically formulated for the study. Postprandial incremental curves, incremental area under the curve (IAUC), maximum postprandial peaks for blood glucose and plasma insulin over 2 h after administration of isoglucidic portions of breads (50 g of available carbohydrates) were evaluated. The comparison of incremental curves, IAUC, and maximum postprandial peaks after consumption of breads formulated with EPs and control breads showed no differences among samples. Neither the flour nor the leavening technic used for the baking were effective in inducing a different postprandial response compared with the Bologna variety. EPs, being characterized by higher degree of crop genetic diversity, may have a relevant agronomic role to guarantee good and stable yields and quality under low input management in a changing climate; however, future studies are needed to better investigate their potential positive effect on human health.
Collapse
Affiliation(s)
- Margherita Dall'Asta
- Department of Food and Drug, University of Parma, Parma, Italy; Department of Animal Science, Food and Nutrition, Università Cattolica del Sacro Cuore, Piacenza, Italy.
| | - Rossella Dodi
- Department of Veterinary Science, University of Parma, Parma, Italy
| | | | | | - Marco Spaggiari
- Department of Food and Drug, University of Parma, Parma, Italy
| | - Antonio Gallo
- Department of Animal Science, Food and Nutrition, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Laura Righetti
- Department of Food and Drug, University of Parma, Parma, Italy
| | - Furio Brighenti
- Department of Food and Drug, University of Parma, Parma, Italy
| | | | | | | | | | | |
Collapse
|
21
|
In silico proteolysis and analysis of bioactive peptides from sequences of fatty acid desaturase 3 (FAD3) of flaxseed protein. Saudi J Biol Sci 2021; 28:5480-5489. [PMID: 34588858 PMCID: PMC8459155 DOI: 10.1016/j.sjbs.2021.08.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/02/2021] [Accepted: 08/08/2021] [Indexed: 12/22/2022] Open
Abstract
Flaxseed (Linum usitatissimum), commonly known as linseed is an oilseed crop, emerging as an important and functional ingredient of food and has been paid more attention due to its nutritional value as well as beneficial effects. It is mainly rich in is α-linolenic acid (ALA, omega-3 fatty acid), fibres and lignans that have potential health benefits in reducing cardiovascular diseases, diabetes, osteoporosis, atherosclerosis, cancer, arthritis, neurological and autoimmune disorders. Due to its richness in omega-3 fatty acid, a group of enzymes known as fatty acid desaturases (FADs) mainly introduce double bonds into fatty acids’ (FAs) hydrocarbon chains that produce unsaturated fatty acids. Fatty acid desaturase 3 (FAD3), the commonest microsomal enzyme of omega-3 fatty acid, synthesizes linolenic acid (C18:3) from linoleic acid located in endoplasmic reticulum (ER) facing towards the cytosol. The emerging field of bioinformatics and large number of databases of bioactive peptides, helps in providing time-saving and efficient method for identification of potential bioactivities of any protein. In this study, 10 unique sequences of FAD3 from flaxseed protein have been used for in silico proteolysis and releasing of various bioactive peptides using three plant proteases, namely ficin, papain and stem bromelain, that are evaluated with the help of BIOPEP database. Overall, 20 biological activities were identified from these proteins. The results showed that FAD3 protein is a potential source of peptides with angiotensin-I-converting enzyme (ACE) inhibitory and dipeptidyl peptidase-IV (DPP-IV) activities, and also various parameters such as ∑A, ∑B, AE, W, BE, V and DHt were also calculated. Furthermore, PeptideRanker have been used for screening of novel promising bioactive peptides. Various bioinformatics tools also used to study protein’s physicochemical properties, peptide’s score, toxicity, allergenicity aggregation, water solubility, and drug likeliness. The present work suggests that flaxseed protein can be a good source of bioactive peptides for the synthesis of good quality and quantity of oil, and in silico method helps in investigating and production of functional peptides.
Collapse
|
22
|
Antony P, Vijayan R. Bioactive Peptides as Potential Nutraceuticals for Diabetes Therapy: A Comprehensive Review. Int J Mol Sci 2021; 22:9059. [PMID: 34445765 PMCID: PMC8396489 DOI: 10.3390/ijms22169059] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 12/26/2022] Open
Abstract
Diabetes mellitus is a major public health concern associated with high mortality and reduced life expectancy. The alarming rise in the prevalence of diabetes is linked to several factors including sedentary lifestyle and unhealthy diet. Nutritional intervention and increased physical activity could significantly contribute to bringing this under control. Food-derived bioactive peptides and protein hydrolysates have been associated with a number health benefits. Several peptides with antidiabetic potential have been identified that could decrease blood glucose level, improve insulin uptake and inhibit key enzymes involved in the development and progression of diabetes. Dietary proteins, from a wide range of food, are rich sources of antidiabetic peptides. Thus, there are a number of benefits in studying peptides obtained from food sources to develop nutraceuticals. A deeper understanding of the underlying molecular mechanisms of these peptides will assist in the development of new peptide-based therapeutics. Despite this, a comprehensive analysis of the antidiabetic properties of bioactive peptides derived from various food sources is still lacking. Here, we review the recent literature on food-derived bioactive peptides possessing antidiabetic activity. The focus is on the effectiveness of these peptides as evidenced by in vitro and in vivo studies. Finally, we discuss future prospects of peptide-based drugs for the treatment of diabetes.
Collapse
Affiliation(s)
| | - Ranjit Vijayan
- Department of Biology, College of Science, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates;
| |
Collapse
|
23
|
Tan M, Nawaz MA, Buckow R. Functional and food application of plant proteins – a review. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1955918] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Melvin Tan
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Werribee, Victoria, Australia
| | - Malik Adil Nawaz
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Werribee, Victoria, Australia
| | - Roman Buckow
- School of Chemical and Biomolecular Engineering, The University of Sydney, Centre for Advanced Food Engineering, Darlington, NSW, Australia
| |
Collapse
|
24
|
Proteomic Advances in Cereal and Vegetable Crops. Molecules 2021; 26:molecules26164924. [PMID: 34443513 PMCID: PMC8401599 DOI: 10.3390/molecules26164924] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/06/2021] [Accepted: 08/10/2021] [Indexed: 01/06/2023] Open
Abstract
The importance of vegetables in human nutrition, such as cereals, which in many cases represent the main source of daily energy for humans, added to the impact that the incessant increase in demographic pressure has on the demand for these plant foods, entails the search for new technologies that can alleviate this pressure on markets while reducing the carbon footprint of related activities. Plant proteomics arises as a response to these problems, and through research and the application of new technologies, it attempts to enhance areas of food science that are fundamental for the optimization of processes. This review aims to present the different approaches and tools of proteomics in the investigation of new methods for the development of vegetable crops. In the last two decades, different studies in the control of the quality of crops have reported very interesting results that can help us to verify parameters as important as food safety, the authenticity of the products, or the increase in the yield by early detection of diseases. A strategic plan that encourages the incorporation of these new methods into the industry will be essential to promote the use of proteomics and all the advantages it offers in the optimization of processes and the solution of problems.
Collapse
|
25
|
Capurso C. Whole-Grain Intake in the Mediterranean Diet and a Low Protein to Carbohydrates Ratio Can Help to Reduce Mortality from Cardiovascular Disease, Slow Down the Progression of Aging, and to Improve Lifespan: A Review. Nutrients 2021; 13:2540. [PMID: 34444699 PMCID: PMC8401068 DOI: 10.3390/nu13082540] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/08/2021] [Accepted: 07/23/2021] [Indexed: 12/24/2022] Open
Abstract
Increase in the aging population is a phenomenon all over the world. Maintaining good functional ability, good mental health, and cognitive function in the absence of severe disease and physical disability define successful aging. A healthy lifestyle in middle age predisposes successful aging. Longevity is the result of a multifactorial phenomenon, which involves feeding. Diets that emphasize fruit and vegetables, whole grains rather than refined grains, low-fat dairy, lean meats, fish, legumes, and nuts are inversely associated with mortality or to a lower risk of becoming frail among elderly subjects. A regular physical activity and a regular intake of whole grain derivatives together with the optimization of the protein/carbohydrate ratio in the diet, where the ratio is significantly less than 1 such as in the Mediterranean diet and the Okinawan diet, reduces the risk of developing aging-related diseases and increases healthy life expectancy. The purpose of our review was to analyze cohort and case-control studies that investigated the effects of cereals in the diet, especially whole grains and derivatives as well as the effects of a diet with a low protein-carbohydrate ratio on the progression of aging, mortality, and lifespan.
Collapse
Affiliation(s)
- Cristiano Capurso
- Department of Medical and Surgical Sciences, University of Foggia, Viale Pinto 1, 71122 Foggia, Italy
| |
Collapse
|
26
|
Yuanqing H, Pengyao Y, Yangyang D, Min C, Rui G, Yuqing D, Haihui Z, Haile M. The Preparation, Antioxidant Activity Evaluation, and Iron-Deficient Anemic Improvement of Oat ( Avena sativa L.) Peptides-Ferrous Chelate. Front Nutr 2021; 8:687133. [PMID: 34235170 PMCID: PMC8256796 DOI: 10.3389/fnut.2021.687133] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/27/2021] [Indexed: 12/19/2022] Open
Abstract
Iron-chelating peptides have been widely considered as one of the best iron supplements to alleviate the iron deficiency. In this study, a novel oat peptides-ferrous (OP-Fe2+) chelate was prepared from antioxidant oat peptides obtained in the laboratory of the authors. The optimal preparation condition was obtained through the single-factor and response surface methodology, and the chelating rate could reach up to 62.6%. After chelation, the OP-Fe2+ chelate exhibited a significantly higher 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity than oat peptides. It was discovered that the hemoglobin concentration and the number of red blood cell levels in OP-Fe2+-treated iron-deficient anemic (IDA) rats were significantly higher than untreated IDA rats. The OP-Fe2+ chelate could also improve the hypertrophy of the spleen, serum iron (SI), total iron and binding capacity, and serum ferritin levels in the IDA rats. In addition, the OP-Fe2+ treatment significantly increased the antioxidant activities of super oxidase and glutathione in the liver homogenate of the IDA rats. Therefore, the OP-Fe2+ chelate is an effective type of iron supplement for IDA rats, which could be a promising source with anti-anemia and antioxidant activity.
Collapse
Affiliation(s)
- He Yuanqing
- College of Food Science and Biological Engineering, Jiangsu University, Zhenjiang, China
- The Laboratory Animal Research Center, Jiangsu University, Zhenjiang, China
| | - Yang Pengyao
- College of Food Science and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Ding Yangyang
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Chen Min
- College of Food Science and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Guo Rui
- College of Food Science and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Duan Yuqing
- College of Food Science and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Zhang Haihui
- College of Food Science and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Ma Haile
- College of Food Science and Biological Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
27
|
Hu J, Liu R, Yu X, Li Z, Liu X, Hao Y, Zhu N, Kang J, Li Y. Protective Effects of Small-Molecule Oligopeptides Isolated from Tilapia Fish Scale on Ethanol-Induced Gastroduodenal Injury in Rats. Nutrients 2021; 13:nu13062078. [PMID: 34204516 PMCID: PMC8234601 DOI: 10.3390/nu13062078] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/12/2021] [Accepted: 06/14/2021] [Indexed: 12/29/2022] Open
Abstract
Peptic ulcer has a serious impact on people’s health around the world, and traditional medicines can cause adverse reactions. This study investigated the protective effects of tilapia collagen oligopeptides (TCOPs) on gastroduodenal injury. Seventy-two specific pathogen-free (SPF) male Sprague Dawley (SD) rats were randomly divided into six groups according to body weight: normal control group, ethanol group, whey protein group (500 mg/kg BW), and three TCOPs dose groups (250, 500, 1000 mg/kg BW). After intragastric administration for 30 days, the acute gastroduodenal injury was induced by anhydrous ethanol (5 mL/kg, intragastrically) in all groups except the normal control group. Biomarkers in gastric and duodenal tissue and serum were measured. Furthermore, western blot was used to detect the expression of apoptosis-related proteins. The results showed that the administration with TCOPs significantly reduced gastric and duodenal ulcer index, increased gastric juice pH, superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) activities, along with the reduction of malondialdehyde (MDA) contents. TCOPs decreased tumor Necrosis Factor-α (TNF-α), interleukin-1β (IL-1β), and myeloperoxidase (MPO) levels, while interleukin– 10 (IL-10) levels were increased. Furthermore, pepsinogens 1 (PG1), pepsinogens 2 (PG2), gastrin (GAS), and the pepsinogen ratio (PGR) were decreased, the prostaglandin E2 (PGE2) and NO contents were increased after TCOPs intervention. Moreover, TCOPs up-regulated the expression of Bcl-2 and inhibited the expression of Bax and Caspase-3. In conclusion, TCOPs have protective effects on ethanol-induced gastroduodenal injury through gastrointestinal mucosal microcirculation promotion, antioxidation, anti-inflammation, and anti-apoptosis mechanisms.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Yong Li
- Correspondence: ; Tel.: +86-10-8280-1177
| |
Collapse
|
28
|
Replacing Maize Grain with Ancient Wheat Lines By-Products in Organic Laying Hens’ Diet Affects Intestinal Morphology and Enzymatic Activity. SUSTAINABILITY 2021. [DOI: 10.3390/su13126554] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The effects of replacement of maize grain with ancient wheat by-products on intestinal morphometry and enzymatic activity in laying hens was studied. Eighty hens were divided into two groups (40 each, 8 replicates, 5 hens/replicate) fed two isoproteic and isoenergetic diets. In the treated group, part of the maize was replaced by a mix of ancient grains (AGs) middling, in a 50:50 ratio of Triticum aestivum L. var. spelta (spelt) and Triticum durum dicoccum L. (emmer wheat). The AG diet affected the weight of all the large intestine tracts, decreasing the weight of caeca (p < 0.01) and increasing those of colon (p < 0.01), rectum and cloaca (p < 0.05). Villus height in the AG group was higher (p < 0.01) than the control for the duodenum and jejunum, while for the ileum, the control group showed the highest values (p < 0.01). The submucosa thickness was higher (p < 0.01) in the control group for the duodenum and ileum, while the jejunum for the AG group showed the highest (p < 0.05) submucosa thickness. The crypts depth was higher (p < 0.01) in the control group for the duodenum and ileum. Enzyme activity was enhanced by AGs (p < 0.01) in the duodenum. Regarding the jejunum, sucrase-isomaltase and alkaline phosphatase had higher activity (p < 0.05 and p < 0.01, respectively) in the AG group. In the ileum, sucrase-isomaltase showed higher activity (p < 0.01) in the control group, while alkaline phosphatase showed the highest values (p < 0.05) in the AG group. Overall, results suggested that the dietary inclusion of AGs exerted positive effects in hens, showing an improved intestinal function.
Collapse
|
29
|
Daroit DJ, Brandelli A. In vivo bioactivities of food protein-derived peptides – a current review. Curr Opin Food Sci 2021. [DOI: 10.1016/j.cofs.2021.01.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
30
|
Esfandi R, Seidu I, Willmore W, Tsopmo A. Antioxidant, pancreatic lipase, and α-amylase inhibitory properties of oat bran hydrolyzed proteins and peptides. J Food Biochem 2021; 46:e13762. [PMID: 33997997 DOI: 10.1111/jfbc.13762] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/28/2021] [Accepted: 04/29/2021] [Indexed: 11/28/2022]
Abstract
This work aimed to determine the antioxidant properties of identified hydrolyzed oat proteins and peptides, and their capacity to inhibit lipase and α-amylase. The protein hydrolysates retarded the oxidation of peanut oil by reducing peroxide values (up to 2.5-fold), relative to the control oil. Of the five tested peptides, P1 (YFDEQNEQFR), P3 (SPFWNINAH), and P4 (NINAHSVVY) significantly reduced the oxidation of linoleic acid. In the enzyme assays, P3 was the best lipase inhibitor (IC50 85.4 ± 3 µM) while P1 was the most potent inhibitor of α-amylase (IC50 37.5 ± 1.1 µM). The structure-activity relationship assessed using the CABS-dock computational model predicted that interactions between peptides and pancreatic lipase residues of Ser153 , His264 , and Asp177 were important for the inhibition. In the case of α-amylase, interactions with residues of the active sites (Asp197 , Glu233 , and Asp300 ), but not those of calcium- or chloride-binding domains, were important for the inhibition. PRACTICAL APPLICATIONS: In recent years, there have been many studies focussing on isolating multifunctional peptides from food and food waste with antioxidant and bioactivity potential to promote human health. Some of these antioxidant peptides have been found to be effective to prevent diseases and complications such as hypertension, cardiovascular disease, cancer, diabetes, and obesity. The peptides studied in this work showed a great potential to prevent oxidation in a lipid system and demonstrated a significant ability to reduce the enzymatic activity of lipase and α-amylase. These enzymes contribute to the digestion of fat and carbohydrate, and their inhibition can reduce the absorption of these macronutrients and make them a great target for designing antioxidant and anti-obesity compounds. With the multifunctional activity of oat bran-derived peptides, it is proposed that these peptides can be used in food formulations due to their antioxidant and potential anti-obesity properties.
Collapse
Affiliation(s)
- Ramak Esfandi
- Food Science and Nutrition Program, Department of Chemistry, Carleton University, Ottawa, ON, Canada
| | - Issaka Seidu
- National Research Council of Canada, Ottawa, ON, Canada
| | - William Willmore
- Department of Biology, Carleton University, Ottawa, ON, Canada.,Institute of Biochemistry, Carleton University, Ottawa, ON, Canada
| | - Apollinaire Tsopmo
- Food Science and Nutrition Program, Department of Chemistry, Carleton University, Ottawa, ON, Canada.,Institute of Biochemistry, Carleton University, Ottawa, ON, Canada
| |
Collapse
|
31
|
Abdel-Aal ESM. Nutritional and functional attributes of hairless canary seed groats and components and their potential as functional ingredients. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.03.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
32
|
Samtiya M, Aluko RE, Dhewa T, Moreno-Rojas JM. Potential Health Benefits of Plant Food-Derived Bioactive Components: An Overview. Foods 2021; 10:foods10040839. [PMID: 33921351 PMCID: PMC8068854 DOI: 10.3390/foods10040839] [Citation(s) in RCA: 182] [Impact Index Per Article: 60.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/28/2021] [Accepted: 04/06/2021] [Indexed: 12/22/2022] Open
Abstract
Plant foods are consumed worldwide due to their immense energy density and nutritive value. Their consumption has been following an increasing trend due to several metabolic disorders linked to non-vegetarian diets. In addition to their nutritive value, plant foods contain several bioactive constituents that have been shown to possess health-promoting properties. Plant-derived bioactive compounds, such as biologically active proteins, polyphenols, phytosterols, biogenic amines, carotenoids, etc., have been reported to be beneficial for human health, for instance in cases of cancer, cardiovascular diseases, and diabetes, as well as for people with gut, immune function, and neurodegenerative disorders. Previous studies have reported that bioactive components possess antioxidative, anti-inflammatory, and immunomodulatory properties, in addition to improving intestinal barrier functioning etc., which contribute to their ability to mitigate the pathological impact of various human diseases. This review describes the bioactive components derived from fruit, vegetables, cereals, and other plant sources with health promoting attributes, and the mechanisms responsible for the bioactive properties of some of these plant components. This review mainly compiles the potential of food derived bioactive compounds, providing information for researchers that may be valuable for devising future strategies such as choosing promising bioactive ingredients to make functional foods for various non-communicable disorders.
Collapse
Affiliation(s)
- Mrinal Samtiya
- Department of Nutrition Biology, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendergarh, Haryana 123031, India;
| | - Rotimi E. Aluko
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada;
| | - Tejpal Dhewa
- Department of Nutrition Biology, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendergarh, Haryana 123031, India;
- Correspondence: (T.D.); (J.M.M.-R.)
| | - José Manuel Moreno-Rojas
- Department of Food Science and Health, Andalusian Institute of Agricultural and Fisheries Research and Training (IFAPA), Alameda del Obispo, Avda. Menéndez Pidal, SN, 14004 Córdoba, Spain
- Correspondence: (T.D.); (J.M.M.-R.)
| |
Collapse
|
33
|
[Lactic starter cultures to improve the oat bioactive compounds]. Rev Argent Microbiol 2021; 53:333-342. [PMID: 33593664 DOI: 10.1016/j.ram.2020.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 09/17/2020] [Accepted: 12/10/2020] [Indexed: 11/21/2022] Open
Abstract
The objective of this work was to study lactic fermentation as a biostrategy to enhance the antioxidant activity of oats. The adaptability of 31 strains of lactic bacteria (LB) in an oats/water system (OWS/SAA) was evaluated, measuring growth, acidification and fermentation activity (impedimetric method; detection time [DT], maximum rate of conductance change [MRCC/VMCC] and percentage of conductance change [PCC]). Moreover, the content of phenolic compounds (PC) was determined using the Folin-Ciocalteu method (gallic acid equivalents [GAE]), free peptides and amino acids and free radical scavenging activity (DPPH• and ABTS•+ methods) of methanolic and aqueous extracts obtained from fermented OWS/SAAs (fOWS/SAAf) were determined. Six strains have shown the best adaptability to SAA, with high values of VMCC (0.34-0.47 μS/min) and PCC (53.6-66.6%), and low values of DT (≤ 3 h). In these f/OWS/SAAf the chemical composition was also modified (PC concentration, peptides and free amino acids) with strain-dependent behavior. The PC content in f/OWS/SAAf using these six strains (29.1-36.9 μg GAE/ml) was higher than the control content in OWS/SAA control (17.1 ± 1.9 μg GAE/ml). An increase (9-25.5%) in antioxidant activity in f/OWS/SAAf methanolic extracts was detected using both methods. Minor modifications were observed in the peptide and free amino acid content of SAA and their antioxidant activity. Our results show LB ability to adapt to oat as fermentation substrate and increase the content of its antioxidant compounds.
Collapse
|
34
|
Sachdev N, Goomer S, Singh LR. Foxtail millet: a potential crop to meet future demand scenario for alternative sustainable protein. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:831-842. [PMID: 32767555 DOI: 10.1002/jsfa.10716] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 07/27/2020] [Accepted: 08/07/2020] [Indexed: 06/11/2023]
Abstract
Foxtail millet (Setaria italica), an annual grass plant, produces seeds that possess health-promoting properties owing to its unique protein composition containing a high content of essential amino acids. The mature foxtail seeds mainly consist of proline-rich, alcohol-soluble proteins (prolamin) called setarins, comprising about 60% of the total protein, with less content of disulfide cross-linked proteins than with other cereal and millets. Protein fractionation schemes are an important tool and provide preliminary information on the nature of foxtail proteins for their applications in the field of agriculture, food pharma, and bio-based materials. Variation in the methods of preparation can influence the composition, structure, and nutritional quality of the protein concentrate. Moreover, foxtail protein or its hydrolysate has shown several bioactive effects that can be explored further for the management of chronic diseases in humans. Additionally, owing to its low cost and excellent functional properties of flour and protein concentrate, foxtail millet can be considered as good candidate for replacing animal protein foods. Furthermore, there is huge potential for successfully developing low-cost, protein-rich functional food products helpful in the prevention and management of lifestyle-related chronic diseases. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Niharika Sachdev
- Department of Food & Nutrition, Lady Irwin College, University of Delhi, New Delhi, India
| | - Sangeeta Goomer
- Department of Food & Nutrition, Lady Irwin College, University of Delhi, New Delhi, India
| | - Laishram R Singh
- Dr. B. R. Ambedkar Centre for Biomedical Research, University of Delhi, New Delhi, India
| |
Collapse
|
35
|
Gupta N, Bhagyawant SS. Bioactive peptide of Cicer arietinum L. induces apoptosis in human endometrial cancer via DNA fragmentation and cell cycle arrest. 3 Biotech 2021; 11:63. [PMID: 33489681 PMCID: PMC7803852 DOI: 10.1007/s13205-020-02614-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 12/24/2020] [Indexed: 01/25/2023] Open
Abstract
Chickpea seed proteins are alleged source of nutraceuticals. These seed proteins were subjected to different proteases to produce peptides. The efficacy of these peptides was confirmed using six diverse human cancer cell lines (PA-1, Ishikawa cells, A549, MCF-7, HepG2, MDA-MB-231). Alcalase generated peptides exhibited the highest antagonistic inhibition of Ishikawa cells. Flow cytometric analysis revealed that chickpea peptide induced S and G2 phase arrest of cell cycle in a dose dependent manner. DNA fragmentation and apoptosis occurred by down regulation of Bcl-2 expression, upregulation of Bax expression and promotion of caspase-3 initiation. Chickpea peptides ascertain potential antiproliferative molecule that can be deployed in cancer treatment regimes.
Collapse
Affiliation(s)
- Neha Gupta
- School of Studies in Biotechnology, Jiwaji University, Gwalior, 474011 Madhya Pradesh India
| | | |
Collapse
|
36
|
Ribeiro E, Rocha TDS, Prudencio SH. Potential of green and roasted coffee beans and spent coffee grounds to provide bioactive peptides. Food Chem 2021; 348:129061. [PMID: 33550122 DOI: 10.1016/j.foodchem.2021.129061] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 11/19/2020] [Accepted: 01/06/2021] [Indexed: 12/11/2022]
Abstract
Protein extracts from green and roasted coffee beans and from spent coffee grounds (SCG) were evaluated as bioactive peptides sources. The in silico approach revealed a high frequency of the occurrence (A) of dipeptidyl peptidase-IV (DPP-IV) (0.62) and angiotensin I-converting enzyme (ACE) inhibitor peptides (0.44) in the 11S coffee globulin, which could be released after digestion. After in vitro digestion of the protein, the green bean and SCG proteins were more susceptible to proteolysis, releasing smaller polypeptides (3.4 kDa), which showed higher anti-hypertensive potentials (IC50 = 0.30 and 0.27 mg soluble protein/mL). However, the antioxidant capacity only increased for the roasted coffee and SCG extracts due to antioxidant groups formed during roasting. The heat treatment applied during coffee brewing increased the sensitivity of the SCG extract to proteolysis, leading to their high anti-hypertensive and antioxidant potentials. Therefore, the 11S coffee globulin is a precursor of a series of bioactive peptides.
Collapse
Affiliation(s)
- Everton Ribeiro
- Department of Food Science and Technology, State University of Londrina, 86057-970 Londrina, PR, Brazil
| | - Thais de Souza Rocha
- Department of Food Science and Technology, State University of Londrina, 86057-970 Londrina, PR, Brazil.
| | - Sandra Helena Prudencio
- Department of Food Science and Technology, State University of Londrina, 86057-970 Londrina, PR, Brazil.
| |
Collapse
|
37
|
Gong X, An Q, Le L, Geng F, Jiang L, Yan J, Xiang D, Peng L, Zou L, Zhao G, Wan Y. Prospects of cereal protein-derived bioactive peptides: Sources, bioactivities diversity, and production. Crit Rev Food Sci Nutr 2020; 62:2855-2871. [PMID: 33325758 DOI: 10.1080/10408398.2020.1860897] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Cereals account for a large proportion of the human diet and are an important source of protein. The preparation of cereal protein peptides is a good way to utilize these proteins. Cereal protein peptides have good application potential as antioxidant, antibacterial, anti-inflammatory and anticancer compounds, in lowering blood pressure, controlling blood sugar, and inhibiting thrombosis. This article reviews the literature on the functional properties, mechanisms of action, and applications of cereal protein peptides in the food industry with two perspectives, and summarizes the methods for their preparation and identification. The biologically active peptides derived from different grain proteins have varied main functional properties, which may be related to the differences in the amino acid composition and protein types of different grains. On this basis, the structure-activity relationship of cereal protein peptides was discussed. The advancement of identification technology makes the integration of bioinformatics and bioactive peptide research closer. Bioinformatics by combination of online database, computer simulation and experimental verification is helpful to in-deep study the structure-activity relationship of biologically active peptides, and improve efficiency in the process of obtaining target peptides with less cost. In addition, the application of cereal protein peptides in the food industry is also discussed.
Collapse
Affiliation(s)
- Xuxiao Gong
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu, Peoples R China.,School of Food and Biological Engineering, Chengdu University, Chengdu, Peoples R China
| | - Qi An
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu, Peoples R China.,School of Food and Biological Engineering, Chengdu University, Chengdu, Peoples R China
| | - Liqing Le
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu, Peoples R China.,School of Food and Biological Engineering, Chengdu University, Chengdu, Peoples R China
| | - Fang Geng
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu, Peoples R China.,School of Food and Biological Engineering, Chengdu University, Chengdu, Peoples R China
| | - Liangzhen Jiang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu, Peoples R China.,School of Food and Biological Engineering, Chengdu University, Chengdu, Peoples R China
| | - Jun Yan
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu, Peoples R China.,School of Food and Biological Engineering, Chengdu University, Chengdu, Peoples R China
| | - Dabing Xiang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu, Peoples R China.,School of Food and Biological Engineering, Chengdu University, Chengdu, Peoples R China
| | - Lianxin Peng
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu, Peoples R China.,School of Food and Biological Engineering, Chengdu University, Chengdu, Peoples R China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu, Peoples R China.,School of Food and Biological Engineering, Chengdu University, Chengdu, Peoples R China
| | - Gang Zhao
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu, Peoples R China.,School of Food and Biological Engineering, Chengdu University, Chengdu, Peoples R China
| | - Yan Wan
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu, Peoples R China.,School of Food and Biological Engineering, Chengdu University, Chengdu, Peoples R China
| |
Collapse
|
38
|
Tyagi A, Daliri EBM, Kwami Ofosu F, Yeon SJ, Oh DH. Food-Derived Opioid Peptides in Human Health: A Review. Int J Mol Sci 2020; 21:E8825. [PMID: 33233481 PMCID: PMC7700510 DOI: 10.3390/ijms21228825] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/19/2020] [Accepted: 11/19/2020] [Indexed: 12/12/2022] Open
Abstract
World Health Organization data suggest that stress, depression, and anxiety have a noticeable prevalence and are becoming some of the most common causes of disability in the Western world. Stress-related disorders are considered to be a challenge for the healthcare system with their great economic and social impact. The knowledge on these conditions is not very clear among many people, as a high proportion of patients do not respond to the currently available medications for targeting the monoaminergic system. In addition, the use of clinical drugs is also associated with various side effects such as vomiting, dizziness, sedation, nausea, constipation, and many more, which prevents their effective use. Therefore, opioid peptides derived from food sources are becoming one of the safe and natural alternatives because of their production from natural sources such as animals and plant proteins. The requirement for screening and considering dietary proteins as a source of bioactive peptides is highlighted to understand their potential roles in stress-related disorders as a part of a diet or as a drug complementing therapeutic prescription. In this review, we discussed current knowledge on opioid endogenous and exogenous peptides concentrating on their production, purification, and related studies. To fully understand their potential in stress-related conditions, either as a drug or as a therapeutic part of a diet prescription, the need to screen more dietary proteins as a source of novel opioid peptides is emphasized.
Collapse
Affiliation(s)
| | | | | | | | - Deog-Hwan Oh
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 200-701, Korea; (A.T.); (E.B.-M.D.); (F.K.O.); (S.-J.Y.)
| |
Collapse
|
39
|
Zaky AA, Abd El-Aty AM, Ma A, Jia Y. An overview on antioxidant peptides from rice bran proteins: extraction, identification, and applications. Crit Rev Food Sci Nutr 2020; 62:1350-1362. [PMID: 33146021 DOI: 10.1080/10408398.2020.1842324] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Rice by-products, generated through the milling processes, have recently been recognized as a potential source of bioactive compounds, such as proteins, essential amino acids, and phenolics. Owing to their antioxidant capacity (which improve the storage stability of foods), these compounds have gained much attention because of their beneficial impacts on human health. It has to be noted that large quantities of rice by-products are not efficiently utilized, which may result in industrial wastes and environmental consequences. Thence, the aim of this review is to provide a comprehensive insight on the antioxidant capabilities, extraction, identification, functional attributes, and applications of bioactive hydrolysates and peptides derived from rice bran protein. This overview would provide an insight on rice bran proteins, which are abundant in bioactive peptides, and could be used as value-added products in food and pharmaceutical applications. Inclusion of bioactive peptides to prevent food spoilage while maintaining food safety has also been highlighted.
Collapse
Affiliation(s)
- Ahmed A Zaky
- Lab of Enzyme Engineering, School of Food and Health, Beijing Technology and Business University, Beijing, China.,Department of Food Technology, National Research Centre, Dokki, Cairo, Egypt
| | - A M Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt.,State Key Laboratory of Biobased Material and Green Papermaking, College of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Science, Jinan, China.,Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum, Turkey
| | - Aijin Ma
- Lab of Enzyme Engineering, School of Food and Health, Beijing Technology and Business University, Beijing, China
| | - Yingmin Jia
- Lab of Enzyme Engineering, School of Food and Health, Beijing Technology and Business University, Beijing, China
| |
Collapse
|
40
|
Castro-Jácome TP, Alcántara-Quintana LE, Tovar-Pérez EG. Optimization of Sorghum Kafirin Extraction Conditions and Identification of Potential Bioactive Peptides. Biores Open Access 2020; 9:198-208. [PMID: 32923174 PMCID: PMC7484892 DOI: 10.1089/biores.2020.0013] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/11/2020] [Indexed: 12/12/2022] Open
Abstract
The interest in extracting kafirins (KAF), the main storage protein from sorghum grain has recently increased due to its gluten-free content and the significant scientific evidence showing the health benefits of the bioactive peptides from cereal grains in human diets. The objectives were to obtain the highest percentage of KAF extraction using amyloglucosidase as pretreatment to increase the extraction yield and predict the bioactive peptides in the KAF. In this study, pretreatments with amyloglucosidase increased the extraction yield of KAF compared with extraction methods using only ethanol and sodium metabisulfite. Two protein fragment sequences were identified from KAF extract and were evaluated for potential bioactive peptide using the BIOPEP-UWM database, which suggest that KAF proteins from white sorghum may be considered as good precursors of dipeptidyl peptidase-inhibitor, angiotensin-converting enzyme inhibitor, antioxidant and hypotensive peptides following chymotrypsin, thermolysin, and subtilisin and their combination. Average scores aligned using PeptideRanker confirmed KAF proteins' potential sources of bioactive peptides with over 5 peptides scored over 0.8. In addition, 31 unexplored peptide sequences that could have biological activity were identified. Our results suggest that KAF can be used in the peptide productions with potential biological activity and beyond.
Collapse
Affiliation(s)
- Tania P. Castro-Jácome
- Instituto Tecnológico de Tepic. Av. Tecnológico No. 2595, Col. Lagos del Country, Tepic, Nayarit, México
| | - Luz E. Alcántara-Quintana
- Catedra CONACyT, Facultad de Enfermería y Nutrición, Universidad Autónoma de San Luis Potosí, Av. Niño Artillero No. 130, Zona Universitaria, S.L.P., México
| | - Erik G. Tovar-Pérez
- Catedra CONACyT, Facultad de Ingeniería, Universidad Autónoma de Querétaro, Carretera Chichimequillas s/n, El Marqués, Querétaro, México
| |
Collapse
|
41
|
Luti S, Mazzoli L, Ramazzotti M, Galli V, Venturi M, Marino G, Lehmann M, Guerrini S, Granchi L, Paoli P, Pazzagli L. Antioxidant and anti-inflammatory properties of sourdoughs containing selected Lactobacilli strains are retained in breads. Food Chem 2020; 322:126710. [DOI: 10.1016/j.foodchem.2020.126710] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 02/06/2020] [Accepted: 03/29/2020] [Indexed: 12/20/2022]
|
42
|
Mason E, L’Hocine L, Achouri A, Pitre M, Karboune S. Health Promoting Bioactive Properties of Novel Hairless Canary Seed Flour after In Vitro Gastrointestinal Digestion. Foods 2020; 9:E932. [PMID: 32674503 PMCID: PMC7404810 DOI: 10.3390/foods9070932] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/27/2020] [Accepted: 07/09/2020] [Indexed: 02/06/2023] Open
Abstract
The bioactive properties and health-promoting effects of two novel yellow (C09052, C05041) and two brown (Calvi, Bastia) hairless canary seed (Phalaris canariensis L.) cultivars were investigated in comparison to two common cereal grains (wheat and oat). The cereal flours were digested using the standardized INFOGEST in vitro human gastrointestinal digestion model. The three-kilo dalton molecular weight cutoff (3 kDa MWCO) permeate of the generated digestates was assessed in vitro for their antioxidant, chelating, antihypertensive and antidiabetic activities. The results showed no significant differences in studied bioactivities between yellow and brown canary seed cultivars, except for antioxidant activity by the DPPH and chelating Fe2+ assays, where brown cultivars had higher activities. Canary seeds had superior or equivalent antioxidant activity than those from oat and wheat. The anti-hypertensive activity (Angiotensin-converting enzyme (ACE) inhibition) in yellow canary seed cultivars was significantly higher than that of oat and wheat, particularly for C09052 and Calvi varieties. Peptides exhibiting the highest antihypertensive activity from the permeate of the C09052 canary seed variety were further fractionated and identified by mass spectrometry. Forty-six peptides were identified belonging to 18 proteins from the Pooideae subfamily. Fourteen of the parent proteins were homologous to barley proteins. Peptides were analyzed in silico to determine potential bioactivity based on their amino acid composition. All 46 peptides had potential anti-hypertensive and anti-diabetic activities and 20 had potential antioxidant activity, thereby validating the in vitro assay data. Canary seed peptides also exhibited potential antiamnestic, antithrombotic, immunostimulating, opioid and neuro-activity, demonstrating important potential for health promoting effects, particularly against cardiovascular disease.
Collapse
Affiliation(s)
- Emily Mason
- Saint-Hyacinthe Research and Development Centre, Agriculture and Agri-Food Canada, 3600 Casavant Boulevard West, Saint-Hyacinthe, QC J2S 8E3, Canada; (E.M.); (A.A.); (M.P.)
- Department of Food Science and Agricultural Chemistry, Macdonald Campus, McGill University 21, 111 Lakeshore, Ste-Anne-de-Bellevue, QC H9X 3V9, Canada;
| | - Lamia L’Hocine
- Saint-Hyacinthe Research and Development Centre, Agriculture and Agri-Food Canada, 3600 Casavant Boulevard West, Saint-Hyacinthe, QC J2S 8E3, Canada; (E.M.); (A.A.); (M.P.)
| | - Allaoua Achouri
- Saint-Hyacinthe Research and Development Centre, Agriculture and Agri-Food Canada, 3600 Casavant Boulevard West, Saint-Hyacinthe, QC J2S 8E3, Canada; (E.M.); (A.A.); (M.P.)
| | - Mélanie Pitre
- Saint-Hyacinthe Research and Development Centre, Agriculture and Agri-Food Canada, 3600 Casavant Boulevard West, Saint-Hyacinthe, QC J2S 8E3, Canada; (E.M.); (A.A.); (M.P.)
| | - Salwa Karboune
- Department of Food Science and Agricultural Chemistry, Macdonald Campus, McGill University 21, 111 Lakeshore, Ste-Anne-de-Bellevue, QC H9X 3V9, Canada;
| |
Collapse
|
43
|
Babini E, Taneyo-Saa DL, Tassoni A, Ferri M, Kraft A, Grän-Heedfeld J, Bretz K, Roda A, Michelini E, Calabretta MM, Guillon F, Tagliazucchi D, Martini S, Nissen L, Gianotti A. Microbial Fermentation of Industrial Rice-Starch Byproduct as Valuable Source of Peptide Fractions with Health-Related Activity. Microorganisms 2020; 8:E986. [PMID: 32630107 PMCID: PMC7409224 DOI: 10.3390/microorganisms8070986] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 06/02/2020] [Accepted: 06/30/2020] [Indexed: 12/17/2022] Open
Abstract
The rice-starch processing industry produces large amounts of a protein-rich byproducts during the conversion of broken rice to powder and crystal starch. Given the poor protein solubility, this material is currently discarded or used as animal feed. To fully exploit rice's nutritional properties and reduce this waste, a biotechnological approach was adopted, inducing fermentation with selected microorganisms capable of converting the substrate into peptide fractions with health-related bioactivity. Lactic acid bacteria were preferred to other microorganisms for their safety, efficient proteolytic system, and adaptability to different environments. Peptide fractions with different molecular weight ranges were recovered from the fermented substrate by means of cross-flow membrane filtration. The fractions displayed in vitro antioxidant, antihypertensive, and anti-tyrosinase activities as well as cell-based anti-inflammatory and anti-aging effects. In the future, the peptide fractions isolated from this rice byproduct could be directly exploited as health-promoting functional foods, dietary supplements, and pharmaceutical preparations. The suggested biotechnological process harnessing microbial bioconversion may represent a potential solution for many different protein-containing substrates currently treated as byproducts (or worse, waste) by the food industry.
Collapse
Affiliation(s)
- Elena Babini
- Department of Agricultural and Food Sciences (DiSTAL), Alma Mater Studiorum—University of Bologna, V.le Fanin 44, 40127 Bologna, Italy; (E.B.); (D.L.T.-S.); (L.N.)
| | - Danielle Laure Taneyo-Saa
- Department of Agricultural and Food Sciences (DiSTAL), Alma Mater Studiorum—University of Bologna, V.le Fanin 44, 40127 Bologna, Italy; (E.B.); (D.L.T.-S.); (L.N.)
| | - Annalisa Tassoni
- Department of Biological Geological and Environmental Sciences (BIGeA), Alma Mater Studiorum—University of Bologna, Via Irnerio 42, 40126 Bologna, Italy; (A.T.); (M.F.)
| | - Maura Ferri
- Department of Biological Geological and Environmental Sciences (BIGeA), Alma Mater Studiorum—University of Bologna, Via Irnerio 42, 40126 Bologna, Italy; (A.T.); (M.F.)
- Department of Civil, Chemical, Environmental and Materials Engineering (DICAM), Alma Mater Studiorum-University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Axel Kraft
- Fraunhofer Institute for Environmental, Safety and Energy Technology (UMSICHT), Osterfelder Str. 3, 46047 Oberhausen, Germany; (A.K.); (J.G.-H.); (K.B.)
| | - Jürgen Grän-Heedfeld
- Fraunhofer Institute for Environmental, Safety and Energy Technology (UMSICHT), Osterfelder Str. 3, 46047 Oberhausen, Germany; (A.K.); (J.G.-H.); (K.B.)
| | - Karlheinz Bretz
- Fraunhofer Institute for Environmental, Safety and Energy Technology (UMSICHT), Osterfelder Str. 3, 46047 Oberhausen, Germany; (A.K.); (J.G.-H.); (K.B.)
| | - Aldo Roda
- Department of Chemistry “Giacomo Ciamician” (CHIM), Alma Mater Studiorum—University of Bologna, Via Selmi 2, 40126 Bologna, Italy; (A.R.); (E.M.); (M.M.C.)
| | - Elisa Michelini
- Department of Chemistry “Giacomo Ciamician” (CHIM), Alma Mater Studiorum—University of Bologna, Via Selmi 2, 40126 Bologna, Italy; (A.R.); (E.M.); (M.M.C.)
| | - Maria Maddalena Calabretta
- Department of Chemistry “Giacomo Ciamician” (CHIM), Alma Mater Studiorum—University of Bologna, Via Selmi 2, 40126 Bologna, Italy; (A.R.); (E.M.); (M.M.C.)
| | - Fabien Guillon
- Sterlab, Cell Culture Laboratory, Ch. St-Bernard 2720, 06224 Vallauris Cedex, France;
| | - Davide Tagliazucchi
- Department of Life Sciences (DSV), University of Modena and Reggio Emilia, Via Amendola 2, 42122 Reggio Emilia, Italy; (D.T.); (S.M.)
| | - Serena Martini
- Department of Life Sciences (DSV), University of Modena and Reggio Emilia, Via Amendola 2, 42122 Reggio Emilia, Italy; (D.T.); (S.M.)
| | - Lorenzo Nissen
- Department of Agricultural and Food Sciences (DiSTAL), Alma Mater Studiorum—University of Bologna, V.le Fanin 44, 40127 Bologna, Italy; (E.B.); (D.L.T.-S.); (L.N.)
| | - Andrea Gianotti
- Department of Agricultural and Food Sciences (DiSTAL), Alma Mater Studiorum—University of Bologna, V.le Fanin 44, 40127 Bologna, Italy; (E.B.); (D.L.T.-S.); (L.N.)
| |
Collapse
|
44
|
Xia Y, Yu J, Xu W, Shuang Q. Purification and characterization of angiotensin-I-converting enzyme inhibitory peptides isolated from whey proteins of milk fermented with Lactobacillus plantarum QS670. J Dairy Sci 2020; 103:4919-4928. [DOI: 10.3168/jds.2019-17594] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 01/27/2020] [Indexed: 12/16/2022]
|
45
|
Jahandideh F, Wu J. Perspectives on the Potential Benefits of Antihypertensive Peptides towards Metabolic Syndrome. Int J Mol Sci 2020; 21:E2192. [PMID: 32235782 PMCID: PMC7139547 DOI: 10.3390/ijms21062192] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/18/2020] [Accepted: 03/20/2020] [Indexed: 12/12/2022] Open
Abstract
In addition to the regulation of blood pressure, the renin-angiotensin system (RAS) also plays a key role in the onset and development of insulin resistance, which is central to metabolic syndrome (MetS). Due to the interplay between RAS and insulin resistance, antihypertensive compounds may exert beneficial effects in the management of MetS. Food-derived bioactive peptides with RAS blocking properties can potentially improve adipose tissue dysfunction, glucose intolerance, and insulin resistance involved in the pathogenesis of MetS. This review discusses the pathophysiology of hypertension and the association between RAS and pathogenesis of the MetS. The effects of bioactive peptides with RAS modulating effects on other components of the MetS are discussed. While the in vivo reports on the effectiveness of antihypertensive peptides against MetS are encouraging, the exact mechanism by which these peptides infer their effects on glucose and lipid handling is mostly unknown. Therefore, careful design of experiments along with standardized physiological models to study the effect of antihypertensive peptides on insulin resistance and obesity could help to clarify this relationship.
Collapse
Affiliation(s)
- Forough Jahandideh
- Department of Agricultural, Food and Nutritional Science, Faculty of Agricultural, Life and Environmental Sciences, University of Alberta, Edmonton, AB T6G 2P5, Canada
- Cardiovascular Research Centre, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB T6G 2S2, Canada
| | - Jianping Wu
- Department of Agricultural, Food and Nutritional Science, Faculty of Agricultural, Life and Environmental Sciences, University of Alberta, Edmonton, AB T6G 2P5, Canada
- Cardiovascular Research Centre, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB T6G 2S2, Canada
| |
Collapse
|
46
|
Guo H, Richel A, Hao Y, Fan X, Everaert N, Yang X, Ren G. Novel dipeptidyl peptidase-IV and angiotensin-I-converting enzyme inhibitory peptides released from quinoa protein by in silico proteolysis. Food Sci Nutr 2020; 8:1415-1422. [PMID: 32180951 PMCID: PMC7063354 DOI: 10.1002/fsn3.1423] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/21/2019] [Accepted: 12/31/2019] [Indexed: 01/08/2023] Open
Abstract
Quinoa protein has been paid more and more attention because of its nutritional properties and beneficial effects. With the development of bioinformatics, bioactive peptide database and computer-assisted simulation provide an efficient and time-saving method for the theoretical estimation of potential bioactivities of protein. Therefore, the potential of quinoa protein sequences for releasing bioactive peptides was evaluated using the BIOPEP database, which revealed that quinoa protein, especially globulin, is a potential source of peptides with dipeptidyl peptidase-IV (DPP-IV) and angiotensin-I-converting enzyme (ACE) inhibitory activities. Three plant proteases, namely papain, ficin, and stem bromelain, were employed for the in silico proteolysis of quinoa protein. Furthermore, four tripeptides (MAF, NMF, HPF, and MCG) were screened as novel promising bioactive peptides by PeptideRanker. The bioactivities of selected peptides were confirmed using chemical synthesis and in vitro assay. The present work suggests that quinoa protein can serve as a good source of bioactive peptides, and in silico approach can provide theoretical assistance for investigation and production of functional peptides.
Collapse
Affiliation(s)
- Huimin Guo
- Institute of Crop ScienceChinese Academy of Agricultural SciencesBeijingChina
- Gembloux Agro‐Bio TechUniversity of LiègeGemblouxBelgium
| | - Aurore Richel
- Gembloux Agro‐Bio TechUniversity of LiègeGemblouxBelgium
| | - Yuqiong Hao
- Institute of Crop ScienceChinese Academy of Agricultural SciencesBeijingChina
| | - Xin Fan
- Institute of Crop ScienceChinese Academy of Agricultural SciencesBeijingChina
- Gembloux Agro‐Bio TechUniversity of LiègeGemblouxBelgium
| | - Nadia Everaert
- Gembloux Agro‐Bio TechUniversity of LiègeGemblouxBelgium
| | - Xiushi Yang
- Institute of Crop ScienceChinese Academy of Agricultural SciencesBeijingChina
| | - Guixing Ren
- Institute of Crop ScienceChinese Academy of Agricultural SciencesBeijingChina
| |
Collapse
|
47
|
Liu L, Li S, Zheng J, Bu T, He G, Wu J. Safety considerations on food protein-derived bioactive peptides. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2019.12.022] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
48
|
Zhang P, Chang C, Liu H, Li B, Yan Q, Jiang Z. Identification of novel angiotensin I-converting enzyme (ACE) inhibitory peptides from wheat gluten hydrolysate by the protease of Pseudomonas aeruginosa. J Funct Foods 2020. [DOI: 10.1016/j.jff.2019.103751] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
49
|
Jia CL, Hussain N, Joy Ujiroghene O, Pang XY, Zhang SW, Lu J, Liu L, Lv JP. Generation and characterization of dipeptidyl peptidase-IV inhibitory peptides from trypsin-hydrolyzed α-lactalbumin-rich whey proteins. Food Chem 2020; 318:126333. [PMID: 32151919 DOI: 10.1016/j.foodchem.2020.126333] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 01/27/2020] [Accepted: 01/29/2020] [Indexed: 01/12/2023]
Abstract
Dipeptidyl peptidase-IV (DPP-IV) is an enzyme that break down the antidiabetic hormone glucagon-like peptide-1. Therefore, inhibition of DPP-IV could be an effective strategy to treat Type 2 diabetes (T2D). The α-lactalbumin-rich whey protein concentrate was hydrolyzed by trypsin, and the hydrolysates were then fractionated at a semi-preparative scale using a Superdex Gel filtration Chromatography. The peptides were analyzed by using HPLC coupled with tandem mass spectrometry (RP-HPLC-MS/MS), and their Dipeptidyl peptidase-IV inhibitory activity was determined by the enzymatic assay. Among tested fragments, a potent fragment (LDQWLCEKL), with the half-maximal inhibitory concentration (IC50) of 131 μM was obtained. Further analysis shows that the LDQWLCEKL peptide corresponds to the amino acid sequence of f(115-123) in α-lactalbumin. Furthermore, LDQWLCEKL exhibited a typical non-competitive mode of inhibition. The results indicate that α-lactalbumin contains active peptides with DPP-IV inhibitory activity that may be used to prevent and treat T2D.
Collapse
Affiliation(s)
- Cheng-Li Jia
- Institute of Food Science and Technology, Chinese Academy of Agricultural Science, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, No. 2 Yuan Ming Yuan West Road, Haidian District, P.O. Box 5109, Beijing 100193, PR China
| | - Naveed Hussain
- Institute of Food Science and Technology, Chinese Academy of Agricultural Science, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, No. 2 Yuan Ming Yuan West Road, Haidian District, P.O. Box 5109, Beijing 100193, PR China
| | - Obaroakpo Joy Ujiroghene
- Institute of Food Science and Technology, Chinese Academy of Agricultural Science, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, No. 2 Yuan Ming Yuan West Road, Haidian District, P.O. Box 5109, Beijing 100193, PR China
| | - Xiao-Yang Pang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Science, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, No. 2 Yuan Ming Yuan West Road, Haidian District, P.O. Box 5109, Beijing 100193, PR China
| | - Shu-Wen Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Science, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, No. 2 Yuan Ming Yuan West Road, Haidian District, P.O. Box 5109, Beijing 100193, PR China
| | - Jing Lu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Science, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, No. 2 Yuan Ming Yuan West Road, Haidian District, P.O. Box 5109, Beijing 100193, PR China.
| | - Lu Liu
- Beijing Institute of Nutrition Sources, Research Center of System Nutrition Engineering, Beijing 100069, PR China.
| | - Jia-Ping Lv
- Institute of Food Science and Technology, Chinese Academy of Agricultural Science, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, No. 2 Yuan Ming Yuan West Road, Haidian District, P.O. Box 5109, Beijing 100193, PR China.
| |
Collapse
|
50
|
Xu Y, Dai T, Li T, Huang K, Li Y, Liu C, Chen J. Investigation on the binding interaction between rice glutelin and epigallocatechin-3-gallate using spectroscopic and molecular docking simulation. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 217:215-222. [PMID: 30939368 DOI: 10.1016/j.saa.2019.03.091] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 02/24/2019] [Accepted: 03/25/2019] [Indexed: 06/09/2023]
Abstract
The interaction between plant protein and polyphenol is a topic of considerable interest. However, there is relatively little understanding about the interaction between rice protein and epigallocatechin-3-gallate (EGCG). The spectroscopy and computational docking program were used to investigate the potential interaction between rice glutelin (RG) and EGCG. It was found that the intrinsic fluorescence of RG could be quenched by EGCG, which indicated interaction occurred between them. Thermodynamic analysis elucidated that the interaction process between RG and EGCG happened spontaneously with hydrogen bond as the primary driving force. The ANS-fluorescence indicated that the surface hydrophobicity of RG reduced with the increasing of EGCG. Circular dichroism spectra and synchronous fluorescence gave further information for the conformational and microenvironmental changes of RG. Particularly, the α-helix structure reduced and random coil structure increased after the binding interaction. Furthermore, the computational docking program exhibited target sites in which the amino acid residues of RG and EGCG might be bound together.
Collapse
Affiliation(s)
- Yujia Xu
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Taotao Dai
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Ti Li
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Kechou Huang
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Yuting Li
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Chengmei Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Jun Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China.
| |
Collapse
|