1
|
Khanashyam AC, Mundanat AS, Sajith Babu K, Thorakkattu P, Krishnan R, Abdullah S, Bekhit AEDA, McClements DJ, Santivarangkna C, Nirmal NP. Emerging alternative food protein sources: production process, quality parameters, and safety point of view. Crit Rev Biotechnol 2025; 45:1-22. [PMID: 39676293 DOI: 10.1080/07388551.2024.2341902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/25/2023] [Accepted: 01/17/2024] [Indexed: 12/17/2024]
Abstract
The rise in the global population has increased the demand for dietary food protein. Strategies to maximize agricultural and livestock outputs could strain land and freshwater supply and contribute to substantial negative environmental impacts. Consequently, there has been an emphasis on identifying alternative sources of edible proteins that are more sustainable, sustainable, ethical, and healthy. This review provides a critical report on future food protein sources including: plant, cultured meat, insect, and microbial, as alternative sources to traditional animal-based sources. The technical challenges associated with the production process of alternative protein sources are discussed. The most important quality parameters of alternative proteins, such as: protein composition and digestibility, allergenicity, functional and sensory attributes, and safety regulations have been documented. Lastly, future direction and conclusion have been made on future protein trends. However, further regulatory norms need to develop for safe consumption and distribution around the world.
Collapse
Affiliation(s)
| | - Anjaly Shanker Mundanat
- Department of Agriculture and Environmental Sciences, National Institute of Food Technology Entrepreneurship and Management (NIFTEM), Sonepat, Haryana, India
| | - Karthik Sajith Babu
- Department of Animal Sciences and Industry/Food Science Institute, KS State University, Manhattan, KS, USA
| | - Priyamvada Thorakkattu
- Department of Animal Sciences and Industry/Food Science Institute, KS State University, Manhattan, KS, USA
| | - Reshma Krishnan
- Agro Processing and Technology Division, CSIR - National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, Kerala, India
| | - Sajeeb Abdullah
- Department of Food Technology, Saintgits College of Engineering, Kottukulam Hills, Kerala, India
| | | | | | - Chalat Santivarangkna
- Department of Food Science, Institute of Nutrition, Mahidol University, Salaya, Nakhon Pathom, Thailand
| | - Nilesh Prakash Nirmal
- Department of Food Science, Institute of Nutrition, Mahidol University, Salaya, Nakhon Pathom, Thailand
| |
Collapse
|
2
|
Tan L, Chen J, Li Z, Liao E, Xiong Y, Lu H. Investigation of protein structure and quality of Acipenser sinensis frozen by liquid nitrogen. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025. [PMID: 39829437 DOI: 10.1002/jsfa.14115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/07/2024] [Accepted: 11/15/2024] [Indexed: 01/22/2025]
Abstract
BACKGROUND The quality of Acipenser sinensis deteriorates significantly during frozen storage due to its high water, protein, and unsaturated fatty acid content. Conventional freezing methods are insufficient to preserve it effectively. This study investigated the effects of liquid nitrogen freezing (LNF) on the quality and myofibrillar protein (MP) characteristics of A. sinensis during frozen storage. RESULTS Freezing A. sinensis with LNF resulted in faster freezing, lower free water content, smaller ice crystals, and less structural damage to MPs than refrigerator freezing (RF). It also resulted in higher shear force, Ca2+-ATPase activity, and total sulfhydryl content, as well as lower total volatile basic nitrogen (TVBN) values, thawing loss rate, and disulfide bond content, demonstrating that LNF can inhibit protein denaturation and delay the deterioration in the quality of A. sinensis during frozen storage. There were no significant differences between LNF-80 and LNF-110 in quality and myofibrillar protein characteristics of A. sinensis. CONCLUSIONS Liquid nitrogen freezing can maintain the quality of A. sinensis and reduce the degree of MP denaturation and oxidation during frozen storage. Freezing with LNF at -80 °C might be more appropriate for A. sinensis. The study has important implications for the application of cryogenic storage technology to aquatic products. © 2025 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ling Tan
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Jiwang Chen
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan, China
| | - Zihan Li
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China
| | - E Liao
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan, China
| | - Youling Xiong
- Department of Animal and Food Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Hongyan Lu
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan, China
| |
Collapse
|
3
|
Wu X, Feng X, Jiang J, Jiang Q, Ma J, Sun W. Magnetic field-mediated oxidative modification of myoglobin: One effective method for improving the gel properties of myofibrillar protein. Food Chem 2025; 472:142899. [PMID: 39826526 DOI: 10.1016/j.foodchem.2025.142899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 01/04/2025] [Accepted: 01/11/2025] [Indexed: 01/22/2025]
Abstract
This study employed a magnetic field to investigate the impact of myoglobin (Mb) oxidation (0-20 mmol/L H2O2) on the gel properties of myofibrillar protein (MP). The results indicated that magnetic field could further facilitate the rearrangement of the Mb structure, resulting in the transfer of its internal reactive groups to the external environment. This contributed to hydration and cross-linking between MP. The Raman spectroscopy results demonstrated that the oxidised Mb altered the secondary structure of MP (increased α-helix content and reduced random coil), making its environment more hydrophobic. This significantly diminished gel water mobility (confirmed by low-field Nuclear Magnetic Resonance). While under the magnetic field treatment, the MP gel network was more relatively porous and uniformly flat, and the gel strength was significantly enhanced (P < 0.05). Ultimately, the water holding capacity increased from 62.47 % to 76.42 %. In conclusion, the magnetic field combined with moderately oxidised Mb had a ripple effect, resulting in an improvement in the gel quality of MP.
Collapse
Affiliation(s)
- Xiaoyu Wu
- College of Life Science, Yangtze University, Jingzhou, Hubei 434023, PR China
| | - Xiaolong Feng
- College of Life Science, Yangtze University, Jingzhou, Hubei 434023, PR China
| | - Jingjiao Jiang
- College of Life Science, Yangtze University, Jingzhou, Hubei 434023, PR China
| | - Qianwen Jiang
- College of Life Science, Yangtze University, Jingzhou, Hubei 434023, PR China
| | - Jing Ma
- College of Life Science, Yangtze University, Jingzhou, Hubei 434023, PR China
| | - Weiqing Sun
- College of Life Science, Yangtze University, Jingzhou, Hubei 434023, PR China.
| |
Collapse
|
4
|
Ma W, Yuan W, Yao X, Chen M, Wang W, Jin W, Huang J, Cao Y. Role of sodium pyrophosphate and catechin in the enzymatic hydrolysis of oxidatively damaged myofibrillar protein gels in vitro: Mechanistic insights. Food Chem 2024; 461:140884. [PMID: 39167951 DOI: 10.1016/j.foodchem.2024.140884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/19/2024] [Accepted: 08/13/2024] [Indexed: 08/23/2024]
Abstract
This study investigated the effects of sodium pyrophosphate (SPP) and catechin (C) on the in vitro enzymatic digestion of oxidatively damaged myofibrillar protein (MP) gel. The results indicated that SPP increased the β-sheet content and the gastric digestibility of the MP gel, while C hindered the transition from α-helix to β-sheet structure, leading to decreased digestibility. Notably, neither compound significantly affected intestinal digestibility. Furthermore, SPP and C significantly enhanced the antioxidant activity of MP gel digestion products. Notably, their synergistic hydrolysis products, simulating both gastric and gastrointestinal stages, chelated 91.4 % and 89.1 % of Fe2+ and scavenged 59.4 % and 77.6 % of hydroxyl radicals, respectively. Moreover, the final digestion products of the MP gel treated with SPP and C exhibited the highest content of negatively charged amino acids and absolute Zeta potential values. Overall, this study demonstrated that incorporating SPP and C could positively impact the digestion of oxidatively damaged MP gels.
Collapse
Affiliation(s)
- Wenhui Ma
- Department of Biochemistry, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, China; School of Food Science and Engineering, and Natural Food Macromolecule Research Center, Shaanxi University of Science and Technology, Xi' an 710021, China
| | - Wei Yuan
- Department of Biochemistry, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, China
| | - Xianqi Yao
- Linyi Jinluo Win Ray Food Co., Ltd., Linyi 276036, China
| | - Miao Chen
- Department of Biochemistry, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, China
| | - Wei Wang
- Linyi Jinluo Win Ray Food Co., Ltd., Linyi 276036, China
| | - Weizhong Jin
- Linyi Jinluo Win Ray Food Co., Ltd., Linyi 276036, China
| | - Junrong Huang
- School of Food Science and Engineering, and Natural Food Macromolecule Research Center, Shaanxi University of Science and Technology, Xi' an 710021, China.
| | - Yungang Cao
- School of Food Science and Engineering, and Natural Food Macromolecule Research Center, Shaanxi University of Science and Technology, Xi' an 710021, China.
| |
Collapse
|
5
|
Li J, Rao W, Sun Y, Zhou C, Xia Q, He J, Pan D, Du L. Structural and gel property changes in chicken myofibrillar protein induced by argon cold plasma-activated water: With a molecular docking perspective. Food Res Int 2024; 197:115271. [PMID: 39593348 DOI: 10.1016/j.foodres.2024.115271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/20/2024] [Accepted: 10/22/2024] [Indexed: 11/28/2024]
Abstract
This study investigated the effects of plasma-activated water (PAW) generated with argon at discharge times of 0, 4, 8, 12, and 16 min on the gel properties and structures of chicken myofibrillar protein (MP). Under treatments of 8, 12, and 16 min, both the gel strength and water retention capacity of MP significantly improved, with the gel strength (0.53 N) peaking at 16 min and the lowest cooking loss(30.38 %). As the treatment time increased from 0 to 16 min, the storage modulus also gradually increased. Results from low-field nuclear magnetic resonance indicated a slowing of water proton mobility, with the proportion of bound water rising from 0.26 % (0 min) to 0.52 % at 16 min. Fourier transform infrared spectroscopy, endogenous fluorescence spectroscopy and scanning electron microscopy confirmed PAW's alteration of MP's secondary and tertiary structures and gel microstructure. Additionally, this study explored the influence of argon PAW's primary active species on MP from a molecular docking perspective·H2O2 could form hydrogen bonds with MP, while O3 and NO2‾could interact via both hydrogen bonds and electrostatic interactions. Thus, PAW can alter protein structure and enhance MP's functional properties, providing insights for applying cold plasma in processing chicken gel products.
Collapse
Affiliation(s)
- Junqi Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo 315211, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo 315800, China
| | - Wei Rao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo 315211, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo 315800, China
| | - Yangying Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo 315211, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo 315800, China
| | - Changyu Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo 315211, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo 315800, China
| | - Qiang Xia
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo 315211, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo 315800, China
| | - Jun He
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo 315211, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo 315800, China
| | - Daodong Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo 315211, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo 315800, China
| | - Lihui Du
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo 315211, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo 315800, China.
| |
Collapse
|
6
|
Kim YJ, Shin DM, Oh EJ, Chun YG, Shin JK, Choi YS, Kim BK. Mechanisms underlying the changes in the structural, physicochemical, and emulsification properties of porcine myofibrillar proteins induced by prolonged pulsed electric field treatment. Food Chem 2024; 456:140024. [PMID: 38870818 DOI: 10.1016/j.foodchem.2024.140024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/19/2024] [Accepted: 06/06/2024] [Indexed: 06/15/2024]
Abstract
This study aimed to explore how pulsed electric field (PEF) treatment affects the structural, physicochemical, and emulsification properties of porcine-derived myofibrillar proteins (MPs). Increasing PEF treatment induced partial polarization and protein unfolding, resulting in notable denaturation that affected both the secondary and tertiary structures. PEF treatment also improved the solubility and emulsification ability of MPs by reducing their pH and surface hydrophobicity. Confocal laser scanning microscopy confirmed the effective adsorption of MPs and PEF-treated MPs at the oil/water interface, resulting in well-fabricated Pickering emulsions. A weak particle network increased the apparent viscosity in short-term PEF-treated Pickering emulsions. Conversely, in emulsions with long-term PEF-treated MP, rheological variables decreased, and dispersion stability increased. These results endorse the potential application of PEF-treated porcine-derived MPs as efficient Pickering stabilizers, offering valuable insights into the creative use of PEF for enhancing high-quality meat products, meeting the increasing demand for clean-label choices.
Collapse
Affiliation(s)
- Yun Jeong Kim
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Republic of Korea.; Department of Food Biotechnology, Korea National University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Dong-Min Shin
- Food Science and Technology, Keimyung University, Daegu 42601, Republic of Korea
| | - Eun-Jae Oh
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Republic of Korea
| | - Yong Gi Chun
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Republic of Korea
| | - Jung-Kue Shin
- Department of Korean Cuisine, Jeonju University, Jeonju 55069, Republic of Korea
| | - Yun-Sang Choi
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Republic of Korea..
| | - Bum-Keun Kim
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Republic of Korea.; Department of Food Biotechnology, Korea National University of Science and Technology, Daejeon 34113, Republic of Korea..
| |
Collapse
|
7
|
Feng X, Li S, Tang S, Wu W. Insight into the effect of sesamol on the structural and gel properties of yak myofibrillar proteins. Int J Biol Macromol 2024; 282:137039. [PMID: 39476902 DOI: 10.1016/j.ijbiomac.2024.137039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/11/2024] [Accepted: 10/27/2024] [Indexed: 11/04/2024]
Abstract
Different concentrations of sesamol (0, 20, 40, 80 and 160 mg/g protein) were incorporated for evaluating the effects of sesamol on the structural and gel properties of yak myofibrillar proteins (MPs). The results manifested that the contents of active thiol and free amine diminished and the carbonyl contents elevated when the MPs modified with sesamol. The intrinsic fluorescence intensity progressively decreased and surface hydrophobic value displayed a down-up trend after binding with the increasement of sesamol. Moreover, the presence of sesamol reduced protein solubility and increased particle size of MPs. For the protein gels, inclusion of sesamol effectively improved water-holding capacity and gel strength but decremented gel whiteness and the proportion of free water, and significantly enhanced the hydrogen bonds, hydrophobic interactions and disulfide bonds in the gel matrix. Microstructure analysis revealed that a more compact microstructure was formed for the MP-sesamol gels. This study suggests that sesamol is capable of improving the functional properties of MPs, and the complexes of MP-sesamol have potential applications in the food industry.
Collapse
Affiliation(s)
- Xiandan Feng
- College of Food Science and Technology, Southwest Minzu University, Chengdu 610041, China
| | - Sining Li
- College of Food Science and Technology, Southwest Minzu University, Chengdu 610041, China.
| | - Shanhu Tang
- College of Food Science and Technology, Southwest Minzu University, Chengdu 610041, China.
| | - Wenjing Wu
- College of Food Science and Technology, Southwest Minzu University, Chengdu 610041, China
| |
Collapse
|
8
|
Kim SY, Song DH, Chung W, Choi HS, Han SG, Kim HW. Evaluation of the Physicochemical Attributes of Beef, Chicken, and Pork Muscles Injected with Microbial Proteases for Designing Senior-Friendly Processed Meat Products. Foods 2024; 13:3430. [PMID: 39517214 PMCID: PMC11545073 DOI: 10.3390/foods13213430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/21/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
In developed countries, the growing elderly population has increased the demand for senior-friendly processed meat products. This study investigated the effects of four commercial microbial proteases (Alcalase, Flavourzyme, Neutrase, and Protamex) on the general physicochemical attributes of beef top round, chicken breast, and pork loin, which are lean muscle cuts suitable for developing senior-friendly meat products. Muscle samples were injected with microbial protease solutions (0.7% and 1.2% (w/w)), cooked, and used for analysis. The microbial protease injection significantly reduced the hardness of cooked muscles. Despite the evident degradation of the myosin heavy chain in Alcalase treatment, the lowest hardness values were observed in Protamex-treated samples, suggesting that myosin degradation alone does not fully account for tenderness improvement. Unfortunately, microbial protease treatments increased cooking loss in beef and chicken muscles (p < 0.05). The surface color characteristics, including redness and yellowness, remained unaffected by the enzymatic treatments, supporting the practical use of these proteases for meat tenderization without inducing color defects. While microbial proteases demonstrate potential for improving meat tenderness, future research should focus on mitigating cooking loss and ensuring desirable taste and flavor for the commercial production of senior-friendly processed meat products using the microbial proteases.
Collapse
Affiliation(s)
- Si-Young Kim
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea
- Food R&D, Samyang Corp., Seongnam 13488, Republic of Korea; (W.C.); (H.-S.C.)
| | - Dong-Heon Song
- Animal Products Utilization Division, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Republic of Korea;
| | - Wookyung Chung
- Food R&D, Samyang Corp., Seongnam 13488, Republic of Korea; (W.C.); (H.-S.C.)
| | - Hyun-Shik Choi
- Food R&D, Samyang Corp., Seongnam 13488, Republic of Korea; (W.C.); (H.-S.C.)
| | - Sung Gu Han
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea
| | - Hyun-Wook Kim
- Division of Animal Bioscience & Integrated Biotechnology, Gyeongsang National University, Jinju 52828, Republic of Korea
- Department of GreenBio Science, Gyeongsang National University, Jinju 52725, Republic of Korea
| |
Collapse
|
9
|
Chai J, Zhao X, Zhang W, Wang Y, Xu X. Cyclic Continuous Glycation Enhanced Dispersibility of Myofibrillar Protein: Reaction Efficiency and Sites Modification. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:22290-22302. [PMID: 39316410 DOI: 10.1021/acs.jafc.4c05352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Reaction efficiency in glycation lacks sufficient attention, leading to the waste of process costs. Cyclic continuous glycation (CCG) is an effective approach to accelerate covalent binding between myofibrillar protein (MP) and glucose. This study elucidated that CCG promoted the exposure of reactive glycated sites in MP with full unfolding of secondary and tertiary structures. Notably, the glycation rate was significantly increased by 65.43%. Physicochemical properties indicated that MP-glucose conjugates with high graft degree exhibited favorable solubility, dispersibility, and thermal stability. Furthermore, proteomics was applied to reveal the glycated sites and products in glycoconjugates of MP. Glycation preferentially acted on the tails of the myosin heavy chain. The glucosylation modification on the head region was enhanced by CCG contributing to the inhibition of the head-head interaction. Overall, this study systematically clarifies the mechanism of CCG, providing a theoretical basis for the application of glycation in innovative meat products.
Collapse
Affiliation(s)
- Jiale Chai
- State Key Lab of Meat Quality Control and Cultured Meat Development, Ministry of Science and Technology, Key Laboratory of Meat Processing, Ministry of Agriculture, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Xue Zhao
- State Key Lab of Meat Quality Control and Cultured Meat Development, Ministry of Science and Technology, Key Laboratory of Meat Processing, Ministry of Agriculture, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Weiyi Zhang
- State Key Lab of Meat Quality Control and Cultured Meat Development, Ministry of Science and Technology, Key Laboratory of Meat Processing, Ministry of Agriculture, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Yue Wang
- State Key Lab of Meat Quality Control and Cultured Meat Development, Ministry of Science and Technology, Key Laboratory of Meat Processing, Ministry of Agriculture, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Xinglian Xu
- State Key Lab of Meat Quality Control and Cultured Meat Development, Ministry of Science and Technology, Key Laboratory of Meat Processing, Ministry of Agriculture, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| |
Collapse
|
10
|
Liu JC, Zhang LD, Liu Y, Zhou TQ, Lai B, Wang C, Yan JN, Wu HT. Modification of gel properties of Meretrix meretrix (clam) with polysaccharides: physical characterization and interaction mechanism. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024. [PMID: 39364803 DOI: 10.1002/jsfa.13937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/27/2024] [Accepted: 09/17/2024] [Indexed: 10/05/2024]
Abstract
BACKGROUND This study investigated the contribution of 11 polysaccharides (2%, w/w), including pectin (PC), κ-carrageenan (KC), ι-carrageenan (IC), gellan gum (GG), guar gum (GM), sodium alginate (SA), konjac gum (KG), gum arabic (GA), fucoidan (FC), locust bean gum (LBG), and curdlan (CD), to the gel and microstructural properties of Meretrix meretrix clam gel (MMG). RESULTS The hardness, springiness and chewiness of MMG with KC, IC, GG, SA and FC addition increased by ~10%-250%, while PC, GM, KG and LBG groups decreased by ~0.6% to 69%. KC, IC, SA, GG and FC decreased the cooking loss rate (CLR) by 69.4% to 88.7% and correspondingly enhanced the water holding capacity (WHC) by 10.2% to 21.4%, which was accompanied by an increased bound water and immobilized water area and high hydrogen proton density. The addition of KC transformed the MMG microstructure from a loose network with large pores to a compact, dense network, reducing lacunarity by 57.9%. The primary intermolecular forces in MMG with the incorporation of KC, IC, GG, SA and FC were hydrophobic interactions and disulfide bonds, which increased by 32.8%-105.3% and 45.6%-114.5% than MMG alone, respectively. CONCLUSION Collectively, KC, IC, GG, SA and FC could improve the gel properties of MMG and the strongest synergistic combination was found in the MMG/KC system. This study suggests that the incorporation of polysaccharides is a strategy with potential for modifying the gel properties of shellfish surimi products. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jia-Cheng Liu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Key Laboratory of Aquatic Product Processing and Quality Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Lin-Da Zhang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Key Laboratory of Aquatic Product Processing and Quality Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Yue Liu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Key Laboratory of Aquatic Product Processing and Quality Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Tian-Qi Zhou
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Key Laboratory of Aquatic Product Processing and Quality Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Bin Lai
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Key Laboratory of Aquatic Product Processing and Quality Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Ce Wang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Key Laboratory of Aquatic Product Processing and Quality Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Jia-Nan Yan
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Key Laboratory of Aquatic Product Processing and Quality Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Hai-Tao Wu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Key Laboratory of Aquatic Product Processing and Quality Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| |
Collapse
|
11
|
Jiang SS, Li Q, Wang T, Huang YT, Guo YL, Meng XR. Utilizing ultrasound combined with quinoa protein to improve the texture and rheological properties of Chinese style reduced-salt pork meatballs (lion's head). ULTRASONICS SONOCHEMISTRY 2024; 109:106997. [PMID: 39032370 PMCID: PMC11325070 DOI: 10.1016/j.ultsonch.2024.106997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/08/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
This study aimed to investigate the effect of ultrasound treatment times (30 min and 60 min) and levels of quinoa protein (QPE) addition (1 % and 2 %) on the quality of Chinese style reduced-salt pork meatballs, commonly known as lion's head. The water-holding capacity (WHC), gel and rheology characteristics, and protein conformation were assessed. The results indicated that extending the ultrasound treatment time and elevating the quinoa protein content caused conspicuous improvements (P<0.05) in the cooking yield, WHC, textural characteristics, color difference, and salt-soluble protein (SSP) solubility of the meatballs. Furthermore, the structural alterations induced by the ultrasound treatment combined with quinoa protein addition included enhancement in β-sheet, β-turn, and random coil structure contents, along with a red-shift in the intrinsic fluorescence peak. Additionally, the storage (G') and loss modulus (G'') of the raw meatballs significantly enhanced (P<0.05), indicating a denser gel structure in parallel with the microstructure. In conclusion, the findings demonstrated that ultrasound combined with quinoa protein enhanced the WHC and texture properties of Chinese style reduced-salt pork meatballs by improving SSP solubility.
Collapse
Affiliation(s)
- Song-Song Jiang
- College of Tourism and Culinary Science, Yangzhou University, Yangzhou, Jiangsu 225127, PR China; Key Laboratory of Chinese Cuisine Intangible Cultural Heritage Technology Inheritance, Ministry of Culture and Tourism, Yangzhou, Jiangsu 225127, PR China.
| | - Qian Li
- College of Tourism and Culinary Science, Yangzhou University, Yangzhou, Jiangsu 225127, PR China
| | - Tao Wang
- College of Tourism and Culinary Science, Yangzhou University, Yangzhou, Jiangsu 225127, PR China
| | - Yu-Tong Huang
- College of Tourism and Culinary Science, Yangzhou University, Yangzhou, Jiangsu 225127, PR China
| | - Yun-Long Guo
- College of Tourism and Culinary Science, Yangzhou University, Yangzhou, Jiangsu 225127, PR China
| | - Xiang-Ren Meng
- College of Tourism and Culinary Science, Yangzhou University, Yangzhou, Jiangsu 225127, PR China; Key Laboratory of Chinese Cuisine Intangible Cultural Heritage Technology Inheritance, Ministry of Culture and Tourism, Yangzhou, Jiangsu 225127, PR China.
| |
Collapse
|
12
|
Qin Zhang Q, Tang J, Feng Wu Y, Yu Qian C, Qin S, Hang Cai Z, Wang H, Mei Xiao H. Gelation of crocodile myofibrillar protein - κ-carrageenan mixtures in two low-NaCl solution. Food Chem 2024; 445:138753. [PMID: 38394905 DOI: 10.1016/j.foodchem.2024.138753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/31/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024]
Abstract
Crocodile meat is a novel reptile meat source, but its processing method is rare. This study investigated the effect of κ-carrageenan addition and partial substitution of NaCl on the gel properties of crocodile myofibrillar protein (CMP). Result showed that CMP formed gel when temperature above 60 ℃. The water-holding capacity, gel strength, denaturation degree, sulfhydryl content covalent bond and hydrophobic bond of gel in KCl solution were significantly higher than those in CaCl2 solution (P < 0.05). K+ induced CMP to form a tight network structure with uniform small pores though covalent and hydrophobic bonds, but the gel properties were reduced by κ-carrageenan. In CaCl2 solution, κ-carrageenan improved the gel structure by filling the protein network through hydrogen bonding. Therefore, it can be concluded that KCl is better than CaCl2 in the manufacturing of low-sodium crocodile foods. Moreover, κ-carrageenan was only beneficial to gel quality in CaCl2 solution.
Collapse
Affiliation(s)
- Qiu Qin Zhang
- Sanya Institute of Nanjing Agricultural University, Sanya, Hainan 572024, China; College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jing Tang
- Sanya Institute of Nanjing Agricultural University, Sanya, Hainan 572024, China; College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Ying Feng Wu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Cheng Yu Qian
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Shan Qin
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zi Hang Cai
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Hui Wang
- Sanya Institute of Nanjing Agricultural University, Sanya, Hainan 572024, China; College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Hong Mei Xiao
- Sanya Institute of Nanjing Agricultural University, Sanya, Hainan 572024, China; College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
13
|
Wu Z, Zhang W, Zhao X, Xu X. Gastrointestinal digestion behavior and bioavailability of greenly prepared highly loaded myofibrillar-luteolin vehicle. Food Res Int 2024; 187:114413. [PMID: 38763665 DOI: 10.1016/j.foodres.2024.114413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 04/18/2024] [Accepted: 04/20/2024] [Indexed: 05/21/2024]
Abstract
In this study, the highly loaded myofibrillar protein (MP)-luteolin (Lut) complexes were noncovalently constructed by using green high-pressure homogenization technology (HPH) and high-pressure micro-fluidization technology (HPM), aiming to optimize the encapsulation efficiency of flavonoids in the protein-based vehicle without relying on the organic solvent (i.e. DMSO, ethanol, etc.). The loading efficiency of Lut into MPs could reach 100 % with a concentration of 120 μmol/g protein by using HPH (103 MPa, 2 passes) without ethanol adoption. The in vitro gastrointestinal digestion behavior and antioxidant activity of the complexes were then compared with those of ethanol-assisted groups. During gastrointestinal digestion, the MP digestibility of complexes, reaching more than 70.56 % after thermal treatment, was higher than that of sole protein. The release profile of Lut encapsulated in ethanol-containing and ethanol-free samples both well fitted with the Hixson-Crowell release kinetic model (R2 = 0.92 and 0.94, respectively), and the total phenol content decreased by ≥ 40.02 % and ≥ 62.62 %, respectively. The in vitro antioxidant activity (DPPH, ABTS, and Fe2+) of the digestive products was significantly improved by 23.89 %, 159.69 %, 351.12 % (ethanol groups) and 13.43 %, 125.48 %, 213.95 % (non-ethanol groups). The 3 mg/mL freeze-dried digesta significantly alleviated lipid accumulation and oxidative stress in HepG2 cells. The triglycerides and malondialdehyde contents decreased by at least 57.62 % and 67.74 % after digesta treatment. This study provides an easily approached and environment-friendly strategy to construct a highly loaded protein-flavonoid conjugate, which showed great potential in the formulation of healthier meat products.
Collapse
Affiliation(s)
- Zhenyang Wu
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, NO.1 Weigang, Nanjing, Jiangsu 210095, PR China
| | - Weiyi Zhang
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, NO.1 Weigang, Nanjing, Jiangsu 210095, PR China
| | - Xue Zhao
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, NO.1 Weigang, Nanjing, Jiangsu 210095, PR China.
| | - Xinglian Xu
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, NO.1 Weigang, Nanjing, Jiangsu 210095, PR China
| |
Collapse
|
14
|
Tarahi M, Gharagozlou M, Niakousari M, Hedayati S. Protein-Chlorogenic Acid Interactions: Mechanisms, Characteristics, and Potential Food Applications. Antioxidants (Basel) 2024; 13:777. [PMID: 39061846 PMCID: PMC11273606 DOI: 10.3390/antiox13070777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 06/23/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024] Open
Abstract
The interactions between proteins and chlorogenic acid (CGA) have gained significant attention in recent years, not only as a promising approach to modify the structural and techno-functional properties of proteins but also to enhance their bioactive potential in food systems. These interactions can be divided into covalent (chemical or irreversible) and non-covalent (physical or reversible) linkages. Mechanistically, CGA forms covalent bonds with nucleophilic amino acid residues of proteins by alkaline, free radical, and enzymatic approaches, leading to changes in protein structure and functionality, such as solubility, emulsification properties, and antioxidant activity. In addition, the protein-CGA complexes can be obtained by hydrogen bonds, hydrophobic and electrostatic interactions, and van der Waals forces, each offering unique advantages and outcomes. This review highlights the mechanism of these interactions and their importance in modifying the structural, functional, nutritional, and physiological attributes of animal- and plant-based proteins. Moreover, the potential applications of these protein-CGA conjugates/complexes are explored in various food systems, such as beverages, films and coatings, emulsion-based delivery systems, and so on. Overall, this literature review provides an in-depth overview of protein-CGA interactions, offering valuable insights for future research to develop novel protein-based food and non-food products with improved nutritional and functional characteristics.
Collapse
Affiliation(s)
- Mohammad Tarahi
- Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz 7144165186, Iran; (M.T.); (M.N.)
| | - Maryam Gharagozlou
- Center for Organic Farming, University of Hohenheim, 70599 Stuttgart, Germany;
| | - Mehrdad Niakousari
- Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz 7144165186, Iran; (M.T.); (M.N.)
| | - Sara Hedayati
- Nutrition Research Center, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz 7193635899, Iran
| |
Collapse
|
15
|
Zhang D, Ge X, Jiao Y, Liu Y. Quality analysis of steamed beef with black tea and the mechanism of action of main active ingredients of black tea on myofibrillar protein. Food Chem 2024; 441:137997. [PMID: 38183715 DOI: 10.1016/j.foodchem.2023.137997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/06/2023] [Accepted: 11/12/2023] [Indexed: 01/08/2024]
Abstract
In this study, we analyzed the tea polyphenol composition, volatile flavor composition and storage stability of steamed beef with black tea. The molecular docking and dynamics were used to elucidate the interaction mechanism between the active components of black tea and myofibrillar proteins. The highest content of caffeine (CAF) was found in black tea steamed beef products, followed by catechin (C), epicatechin gallate (ECG), epicatechin gallate (EGCG) and theaflavins (TF). Steamed beef with black tea showed low ΔE* value, low TBARS value, low carbonyl content as well as high sulfhydryl content during storage. The addition of C, CAF, ECG, EGCG and TF enhanced the oxidative stability of myofibrillar protein. In this study, the effects of active components of black tea on the oxidative stability of myofibrillar protein and their interactions were determined, which could provide a reference for the application of black tea and its active components in meat products. At the same time, it can provide new ideas for the development of new meat products.
Collapse
Affiliation(s)
- Duoduo Zhang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, Shaanxi, China
| | - Xinyu Ge
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, Shaanxi, China
| | - Yang Jiao
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, Shaanxi, China
| | - Yongfeng Liu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, Shaanxi, China.
| |
Collapse
|
16
|
Gao Y, Liu R, Liang H. Food Hydrocolloids: Structure, Properties, and Applications. Foods 2024; 13:1077. [PMID: 38611381 PMCID: PMC11011930 DOI: 10.3390/foods13071077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Hydrocolloids are extensively used in the food industry for various functions, including gelling, thickening, stabilizing foams, emulsions, and dispersions, as well as facilitating the controlled release of flavor [...].
Collapse
Affiliation(s)
- Yanlei Gao
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.G.); (H.L.)
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, National R&D Branch Center for Conventional Freshwater Fish Processing (Wuhan), Wuhan 430070, China
| | - Ru Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.G.); (H.L.)
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, National R&D Branch Center for Conventional Freshwater Fish Processing (Wuhan), Wuhan 430070, China
| | - Hongshan Liang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.G.); (H.L.)
| |
Collapse
|
17
|
Samad A, Alam AMMN, Kumari S, Hossain MJ, Lee EY, Hwang YH, Joo ST. Modern Concepts of Restructured Meat Production and Market Opportunities. Food Sci Anim Resour 2024; 44:284-298. [PMID: 38764516 PMCID: PMC11097039 DOI: 10.5851/kosfa.2024.e18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 05/21/2024] Open
Abstract
Restructured meat (RM) products are gaining importance as an essential component of the meat industry due to consumers' interest in health benefits. RM products imply the binding or holding of meat, meat by-products, and vegetable proteins together to form a meat product with meat's sensory and textural properties. RM products provide consumers with diversified preferences like the intake of low salt, low fat, antioxidants, and high dietary fiber in meat products. From the point of environmental sustainability, RM may aid in combining underutilized products and low-valued meat by adequately utilizing them instead of dumping them as waste material. RM processing technique might also help develop diversified and new hybrid meat products. It is crucial to have more knowledge on the quality issues, selection of binding agents, their optimum proportion, and finally, the ideal processing techniques. It is observed in this study that the most crucial feature of RM could be its healthy products with reduced fat content, which aligns with the preferences of health-conscious consumers who seek low-fat, low-salt, high-fiber options with minimal synthetic additives. This review briefly overviews RM and the factors affecting the quality and shelf life. Moreover, it discusses the recent studies on binding agents in processing RM products. Nonetheless, the recent advancements in processing and market scenarios have been summarized to better understand future research needs. The purpose of this review was to bring light to the ways of sustainable and economical food production.
Collapse
Affiliation(s)
- Abdul Samad
- Division of Applied Life Science (BK21
Four), Gyeongsang National University, Jinju 52828,
Korea
| | - AMM Nurul Alam
- Division of Applied Life Science (BK21
Four), Gyeongsang National University, Jinju 52828,
Korea
| | - Swati Kumari
- Division of Applied Life Science (BK21
Four), Gyeongsang National University, Jinju 52828,
Korea
| | - Md. Jakir Hossain
- Division of Applied Life Science (BK21
Four), Gyeongsang National University, Jinju 52828,
Korea
| | - Eun-Yeong Lee
- Division of Applied Life Science (BK21
Four), Gyeongsang National University, Jinju 52828,
Korea
| | - Young-Hwa Hwang
- Institute of Agriculture & Life
Science, Gyeongsang National University, Jinju 52828,
Korea
| | - Seon-Tea Joo
- Division of Applied Life Science (BK21
Four), Gyeongsang National University, Jinju 52828,
Korea
- Institute of Agriculture & Life
Science, Gyeongsang National University, Jinju 52828,
Korea
| |
Collapse
|
18
|
Lang Y, Wang M, Zhou S, Han D, Xie P, Li C, Yang X. Fabrication, characterization and emulsifying properties of myofibrillar protein-chitosan complexes in acidic conditions. Int J Biol Macromol 2024; 262:130000. [PMID: 38331058 DOI: 10.1016/j.ijbiomac.2024.130000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 01/30/2024] [Accepted: 02/04/2024] [Indexed: 02/10/2024]
Abstract
Polysaccharides are employed to modify proteins, forming complexes that enhance the functional properties of proteins, such as emulsification and stability. In this study, myofibrillar protein (MP)-chitosan (CS) complexes were formed between CS and MP under acidic conditions (pH 3.0-6.0). Results showed that CS can improve the solubility and emulsifying properties of MP, and the MP-CS complexes at pH 3.0 and 6.0 had better emulsifying properties. Concurrently, the particle size results indicated that better the emulsifying properties of the complex, the smaller the particle size. Consequently, the characteristics of the MP-CS complexes (at pH 3.0 and 6.0) were investigated. Our analysis using Fourier transform infrared spectroscopy revealed that the amide I band of MP was blue-shifted with the addition of CS, signifying a decrease in hydrogen bonding within MP. The endogenous fluorescence spectra showcased that the hydrophobicity surrounding the tryptophan residues in the protein changed, leading to enhanced polarity. Thermogravimetric analysis and differential scanning calorimetry further confirmed that the addition of CS improved the thermal stability of MP. These findings provide valuable insights into the interactions between MP and CS. Furthermore, the MP-CS complex can be leveraged to create a Pickering emulsion system for the efficient delivery of bioactive substances.
Collapse
Affiliation(s)
- Yumiao Lang
- Hebei Key Laboratory of Public Health Safety, College of Public Health, Hebei University, No. 180 Wusidong Road, Baoding 071002, China.
| | - Mingru Wang
- Hebei Key Laboratory of Public Health Safety, College of Public Health, Hebei University, No. 180 Wusidong Road, Baoding 071002, China
| | - Shasha Zhou
- Hebei Key Laboratory of Public Health Safety, College of Public Health, Hebei University, No. 180 Wusidong Road, Baoding 071002, China
| | - Dandan Han
- Hebei Key Laboratory of Public Health Safety, College of Public Health, Hebei University, No. 180 Wusidong Road, Baoding 071002, China
| | - Peng Xie
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Beijing 100080, China
| | - Cuiping Li
- Hebei Key Laboratory of Public Health Safety, College of Public Health, Hebei University, No. 180 Wusidong Road, Baoding 071002, China
| | - Xiaoxi Yang
- Hebei Key Laboratory of Public Health Safety, College of Public Health, Hebei University, No. 180 Wusidong Road, Baoding 071002, China.
| |
Collapse
|
19
|
Hu G, Zhao B, Ma L, Yao X, Li S, Harlina PW, Wang J, Geng F. Inhibition of water-diluted precipitate formation from egg whites by ultrasonic pretreatment: Insights from quantitative proteomics analysis. Int J Biol Macromol 2024; 262:129973. [PMID: 38325697 DOI: 10.1016/j.ijbiomac.2024.129973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 01/25/2024] [Accepted: 02/02/2024] [Indexed: 02/09/2024]
Abstract
The formation of the egg white precipitate (EWP) during dilution poses challenges in food processing. In this paper, the effects of 90 W and 360 W ultrasonic intensities on the inhibition of EWP formation were investigated. The findings revealed that 360 W sonication effectively disrupted protein aggregates, decreasing the dry matter of EWP by 5.24 %, particle size by 57.86 %, and viscosity by 82.28 %. Furthermore, the ultrasonic pretreatment unfolded protein structures and increased the content of β-sheet structures. Combined with quantitative proteomics and intermolecular forces analysis, the mechanism by which ultrasonic pretreatment inhibited water-diluted EWP formation by altering protein interactions was proposed: ultrasonic pretreatment disrupted electrostatic interactions centered on lysozyme, as well as hydrogen-bonding interactions between ovomucin and water. In conclusion, our research provides valuable insights into the application of ultrasonic pretreatment as a means to control and improve the quality of egg white-based products.
Collapse
Affiliation(s)
- Gan Hu
- Institute for Egg Science and Technology, School of Food and Biological Engineering, Chengdu University, No. 2025 Chengluo Avenue, Chengdu 610106, China; Institute for Advanced Study, Chengdu University, No. 2025 Chengluo Avenue, Chengdu 610106, China
| | - Bingye Zhao
- Institute for Egg Science and Technology, School of Food and Biological Engineering, Chengdu University, No. 2025 Chengluo Avenue, Chengdu 610106, China
| | - Lulu Ma
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Xuan Yao
- College of food science and technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Shugang Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Putri Widyanti Harlina
- Department of Food Industrial Technology, Faculty of Agro-Industrial Technology, Universitas Padjadjaran, 45363 Bandung, Indonesia
| | - Jinqiu Wang
- Institute for Egg Science and Technology, School of Food and Biological Engineering, Chengdu University, No. 2025 Chengluo Avenue, Chengdu 610106, China
| | - Fang Geng
- Institute for Egg Science and Technology, School of Food and Biological Engineering, Chengdu University, No. 2025 Chengluo Avenue, Chengdu 610106, China.
| |
Collapse
|
20
|
Zhang F, Wang P, Huang M, Xu X. Modulating the properties of myofibrillar proteins-stabilized high internal phase emulsions using chitosan for enhanced 3D-printed foods. Carbohydr Polym 2024; 324:121540. [PMID: 37985113 DOI: 10.1016/j.carbpol.2023.121540] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/25/2023] [Accepted: 10/29/2023] [Indexed: 11/22/2023]
Abstract
The 3D printability of myofibrillar proteins (MP)-based high internal phase emulsions (HIPEs) is a concern. This study investigated the influence of chitosan (CS) concentrations (0-1.5 wt%) on the physicochemical properties, microstructure, rheological properties, and stability of MP-based HIPEs. Results showed that the interaction between MP and CS efficiently modulated the formation of HIPEs by modifying interfacial tension and network structure. The addition of CS (≤ 0.9 wt%, especially at 0.6 wt%) acted as a spatial barrier, filling the network between droplets, which triggered electrostatic repulsion between CS and MP particles, enhancing MP's interfacial adsorption capacity. Consequently, droplet sizes decreased, emulsion stability increased, and HIPEs became more stable during freeze-thaw cycles, centrifugation, and heat treatment. The rheological analysis further demonstrated that the low energy storage modulus (G', 330.7 Pa) of MP-based HIPEs exhibited sagging and deformation during the self-supporting phase. However, adding CS (0.6 wt%) significantly increased the G' (1034 Pa) of MP-based HIPEs. Conversely, increasing viscosity and spatial resistance attributed to CS (> 0.9 wt%) noticeably caused larger droplet sizes, thereby diminishing the printability of MP-based HIPEs. These findings provide a promising strategy for developing high-performance and consumer-satisfaction 3D printing inks using MP-stabilized HIPEs.
Collapse
Affiliation(s)
- Feiyu Zhang
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, National Center of Meat Quality and Safety Control, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Peng Wang
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, National Center of Meat Quality and Safety Control, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Mingyuan Huang
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, National Center of Meat Quality and Safety Control, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xinglian Xu
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, National Center of Meat Quality and Safety Control, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
21
|
Zhang M, He L, Wang Y, Li C, Jin Y, Jin G, Tang X. Excessive free radical grafting interferes with the macromolecular association and crystallization of brined porcine myofibrils during heat-set gelatinization. Food Res Int 2024; 175:113709. [PMID: 38129033 DOI: 10.1016/j.foodres.2023.113709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/30/2023] [Accepted: 11/17/2023] [Indexed: 12/23/2023]
Abstract
Free radical grafting and oxidative modification show superiority in myofibrillar protein (MP) aggregation patterns during salting process, but their consequent formation mechanisms of protein hydration network require further evaluation. Herein, we explored the effect of salt-curing (0, 1, 3 and 5 %) on MP protein polymer substrate, water-protein interaction, crystallization events and thermal stability under H2O2/ascorbate-based hydroxyl radical (•OH)-generating system (HRGS) (1, 10, 20 mM H2O2). Results showed that moderate salting (≤3%) favored the water binding of MP gels during the oxidation course. Accordingly, the maximum thermal stability (Tm) of MP gels was obtained at 3 % salting could be greatly attributed to the protein chain solubilization and refolding process. However, 5 % salt synergized with •OH oxidation intensified diffraction peak 2 (the most striking diffraction feature). Microstructural analysis validated a maximum compactness of MP gel following brining with 5 % salt at potent oxidation strength (20 mM H2O2). This study maybe promises efficient strategy to the myogenetic fibril products and biomaterials.
Collapse
Affiliation(s)
- Min Zhang
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Lichao He
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Yanbo Wang
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Chengliang Li
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yongguo Jin
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Guofeng Jin
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China.
| | - Xiaoyan Tang
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standard & Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
22
|
Wang J, Lu Q, Gong J, Gao F, Xu X, Wang H. Magnetic field-assisted cascade effects of improving the quality of gels-based meat products: A mechanism from myofibrillar protein gelation. Food Res Int 2023; 169:112907. [PMID: 37254342 DOI: 10.1016/j.foodres.2023.112907] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/22/2023] [Accepted: 04/25/2023] [Indexed: 06/01/2023]
Abstract
Physics-assisted processing technologies have huge potential in the meat processing industry. By modeling two essential procedures (pickling and preheating) of gels-based meat products, this work investigated the cascade effects of a new physical technology (magnetic field) on the conformational structures and gel properties of myofibrillar proteins (MPs). Samples were subjected with four magnetic field (MF)-assisted treatments (group A, both processes without MF; group B, pickling without MF combining with preheating with 4.5 mT MF; group C, pickling with 3.0 mT MF combining with preheating without MF; group D, pickling with 3.0 mT MF combining with preheating with 4.5 mT MF). The result showed that MF-assisted treatments significantly improved water holding capacity (WHC) of MP gels compared with group A (46.9%), reaching the maximum value of 52.1% in group D.According to the low-field nuclear magnetic results, group D decreased the percentages of P22 (6.97%) and increased the percentages of P21 (93%), which showed that water molecules were more tightly bound to each other. Meanwhile, the unfolding of α-helix and the formation of random coil of MF-assisted treatments resulted in more exposure of internal groups, leading to the formation of a dense network. These findings would provide new insights to improve the quality of gels-based meat products via the MF.
Collapse
Affiliation(s)
- Jingwen Wang
- Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Qiyuan Lu
- Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Junming Gong
- Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Fei Gao
- Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xinglian Xu
- Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Huhu Wang
- Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
23
|
Deng XH, Ni XX, Han JH, Yao WH, Fang YJ, Zhu Q, Xu MF. High-intensity ultrasound modified the functional properties of Neosalanx taihuensis myofibrillar protein and improved its emulsion stability. ULTRASONICS SONOCHEMISTRY 2023; 97:106458. [PMID: 37257209 DOI: 10.1016/j.ultsonch.2023.106458] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/15/2023] [Accepted: 05/24/2023] [Indexed: 06/02/2023]
Abstract
This study aimed to investigate the effects of high-intensity ultrasound treatment on the functional properties and emulsion stability of Neosalanx taihuensis myofibrillar protein (MP). The results showed that the carbonyl groups, emulsification properties, intrinsic fluorescence intensity, and surface hydrophobicity of the ultrasound treated MP solution were increased compared to the MP without ultrasound treatment. The results of secondary structure showed that the ultrasound treatment could cause a huge increase of β-sheet and a decline of α-helix of MP, indicating that ultrasound induced molecular unfolding and stretching. Moreover, ultrasound reduced the content of total sulfhydryl and led to a certain degree of MP cross-linking. The microscopic morphology of MP emulsion indicated that the emulsion droplet decreased with the increase of ultrasound power. In addition, ultrasound could also increase the storage modulus of the MP emulsion. The results for the lipid oxidation products indicated that ultrasound significantly improved the oxidative stability of N. taihuensis MP emulsions. This study offers an important reference theoretically for the ultrasound modification of aquatic proteins and the future development of N. taihuensis deep-processed products represented by surimi.
Collapse
Affiliation(s)
- Xiao-Hong Deng
- Key Laboratory for Quality and Safety of Agricultural Products of Hangzhou City, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Xiang-Xiang Ni
- Key Laboratory for Quality and Safety of Agricultural Products of Hangzhou City, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Jia-Hui Han
- Key Laboratory for Quality and Safety of Agricultural Products of Hangzhou City, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Wen-Hua Yao
- Key Laboratory for Quality and Safety of Agricultural Products of Hangzhou City, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Ya-Jie Fang
- Key Laboratory for Quality and Safety of Agricultural Products of Hangzhou City, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Qin Zhu
- Key Laboratory for Quality and Safety of Agricultural Products of Hangzhou City, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Ming-Feng Xu
- Key Laboratory for Quality and Safety of Agricultural Products of Hangzhou City, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| |
Collapse
|
24
|
Zheng L, Regenstein JM, Zhou L, Mokhtar SM, Wang Z. Gel Properties and Structural Characteristics of Composite Gels of Soy Protein Isolate and Silver Carp Protein. Gels 2023; 9:gels9050420. [PMID: 37233011 DOI: 10.3390/gels9050420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 05/27/2023] Open
Abstract
Problems with silver carp protein (SCP) include a strong fishy odor, low gel strength of SCP surimi, and susceptibility to gel degradation. The objective of this study was to improve the gel quality of SCP. The effects of the addition of native soy protein isolate (SPI) and SPI subjected to papain-restricted hydrolysis on the gel characteristics and structural features of SCP were studied. The β-sheet structures in SPI increased after papain treatment. SPI treated with papain was crosslinked with SCP using glutamine transaminase (TG) to form a composite gel. Compared with the control, the addition of modified SPI increased the hardness, springiness, chewiness, cohesiveness, and water-holding capacity (WHC) of the protein gel (p < 0.05). In particular, the effects were most significant when the degree of SPI hydrolysis (DH) was 0.5% (i.e., gel sample M-2). The molecular force results demonstrated that hydrogen bonding, disulfide bonding, and hydrophobic association are important molecular forces in gel formation. The addition of the modified SPI increases the number of hydrogen bonds and the disulfide bonds. Scanning electron microscopy (SEM) analysis showed that the papain modifications allowed the formation of a composite gel with a complex, continuous, and uniform gel structure. However, the control of the DH is important as additional enzymatic hydrolysis of SPI decreased TG crosslinking. Overall, modified SPI has the potential to improve SCP gel texture and WHC.
Collapse
Affiliation(s)
- Li Zheng
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
- Heilongjiang Beidahuang Green Health Food Co., Ltd., Kiamusze 154007, China
| | - Joe M Regenstein
- Department of Food Science, Cornell University, Ithaca, NY 14853, USA
| | - Linyi Zhou
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Sayed Mohamed Mokhtar
- Department of Food Technology, Faculty of Agriculture, Suez Canal University, Ismailia 41522, Egypt
| | - Zhongjiang Wang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
25
|
Xu Y, Xu X, Xu B. Glycosylation modification: A promising strategy for regulating the functionalities of myofibrillar proteins. Crit Rev Food Sci Nutr 2023; 64:8933-8947. [PMID: 37183695 DOI: 10.1080/10408398.2023.2204945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Myofibrillar proteins (MPs), the most important proteins in muscle, play a vital role in the texture, flavor, sensory and consumer acceptance of final muscle-based food products. Over the past several decades, conjugation of carbohydrates to MPs via glycosylation is of particular interest due to the substantial enhancement in MPs characteristics. Studying the covalent interactions between carbohydrates and MPs under various processing conditions and molecular mechanisms by which carbohydrates affect the functionalities of MPs can introduce new perspectives for design and production of muscle-based foods. However, there is no insightful and comprehensive summary of the structural, physicochemical and functional characteristics changes of MPs induced by glycosylation modification and how these changes can be adopted to potentially promote the science-based development of tailor-made muscle foods. Based on this, the functionalities of MPs as well as their practical limiting issues are initially highlighted. A comprehensive overview of fabrication strategies is then introduced. Additionally, changes in the structural and functional properties of MPs regulated by glycosylation have also been carefully summarized. On this basis, the research limitations to be solved and our perspectives for the future development of muscle-based foods are put forward.
Collapse
Affiliation(s)
- Yujuan Xu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, China
| | - Xinglian Xu
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education and College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Baocai Xu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, China
| |
Collapse
|
26
|
Kim YJ, Kim TK, Yun HJ, Kim J, Cha JY, Lee JH, Choi YS. Effects of grafted myofibrillar protein as a phosphate replacer in brined pork loin. Meat Sci 2023; 199:109142. [PMID: 36822054 DOI: 10.1016/j.meatsci.2023.109142] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 02/12/2023] [Accepted: 02/14/2023] [Indexed: 02/21/2023]
Abstract
For the development of healthier meat products, the grafted myofibrillar protein was evaluated as an ingredient that can substitute phosphate in brined loin. Individual brine solutions, consisting of salt (negative control, NP), salt + sodium tripolyphosphate (positive control, PC), salt + myofibrillar protein without grafting (MP), salt + myofibrillar protein grafted at high concentration (GMP-H), and salt + myofibrillar protein grafted at low concentration (GMP-L), were added to the pork loin by 40% of their weight. Differential scanning calorimetry demonstrated that MP and GMP-H lowered the thermal energy for the transition of myosin and actin, thereby improving the thermal stability of pork loin and increasing protein solubility. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis showed that thicker protein bands appeared in MP and GMP-H samples while exhibiting increased pH values, moisture content, water holding capacity, and processing yield. Accordingly, the shear force of MP and GMP-H decreased. Lipid oxidation of pork loin was increased in MP, whereas it decreased in GMP-H. Thus, GMP-L is a potential substitute for phosphate since it improves physicochemical properties and prevents the lipid oxidation of pork loin.
Collapse
Affiliation(s)
- Yea-Ji Kim
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Republic of Korea
| | - Tae-Kyung Kim
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Republic of Korea
| | - Hyun-Jung Yun
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Republic of Korea
| | - Jake Kim
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Republic of Korea
| | - Ji Yoon Cha
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Republic of Korea
| | - Jae Hoon Lee
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Republic of Korea
| | - Yun-Sang Choi
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Republic of Korea.
| |
Collapse
|
27
|
Jin DL, Wei JL, He FY, Chai TT, Ren ST, Fu JJ, Chen YW. Effect of tea polyphenols on sturgeon myofibrillar protein structure in the in vitro anti-glycation model mediated by low temperature vacuum heating. Food Chem 2023; 407:135133. [PMID: 36493492 DOI: 10.1016/j.foodchem.2022.135133] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 11/19/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
The binding mechanism between tea polyphenols and sturgeon myofibrillar protein (SMP) in the early stage (0, 2, 4 min), middle stage (6, 10 min) and late stage (15 min) of low temperature vacuum heating (LTVH) in an in vitro anti-glycation model was investigated. The result indicated that the protein cross-linking during LTVH treatment were mainly induced by tea polyphenols. The loss rate of free arginine (Arg) and free lysine (Lys) of SMP at the late stage of LTVH treatment (15 min) was 73.95 % and 83.16 %, respectively. The hydrophobic force and disulfide bond were the main force between tea polyphenols and SMP in the middle and late stage of LTVH treatment. The benzene ring and phenolic hydroxyl group of tea polyphenols can interact with the amino acid residues of SMP, which was exothermic and entropy-increasing. This study provides new insights in the interaction mechanisms between tea polyphenols-protein during heat treatment process.
Collapse
Affiliation(s)
- Dan-Li Jin
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China; Zhejiang Provincial Collaborative Innovation Center of Food Safety and Nutrition, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China
| | - Jian-Ling Wei
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China; Zhejiang Provincial Collaborative Innovation Center of Food Safety and Nutrition, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China
| | - Fan-Yu He
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China; Zhejiang Provincial Collaborative Innovation Center of Food Safety and Nutrition, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China
| | - Ting-Ting Chai
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China; Zhejiang Provincial Collaborative Innovation Center of Food Safety and Nutrition, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China
| | - Shao-Tian Ren
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China; Zhejiang Provincial Collaborative Innovation Center of Food Safety and Nutrition, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China
| | - Jing-Jing Fu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China; Zhejiang Provincial Collaborative Innovation Center of Food Safety and Nutrition, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China
| | - Yue-Wen Chen
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China; Zhejiang Provincial Collaborative Innovation Center of Food Safety and Nutrition, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China.
| |
Collapse
|
28
|
Zhou L, Zhang R, Zhang J, Yin Y, Wei L, Xing L, Zhang W. Effects of ultrasound on the oxidation and structures of the myofibrillar protein in the presence or absence of soybean oil. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023. [PMID: 37186089 DOI: 10.1002/jsfa.12661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/10/2023] [Accepted: 04/22/2023] [Indexed: 05/17/2023]
Abstract
BACKGROUND Ultrasound is widely used as a novel non-thermal processing technique to improve protein properties. In recent decades, applying ultrasound-assisted emulsification (UAE) to produce protein-stabilized emulsion has attracted people's attention. Instead of applying ultrasound to treat a single protein solution, UAE treatment refers to the use of sonication to a mixture of protein and oil. The purpose of this study was to compare the different effects of ultrasound treatment on the properties of the myofibrillar protein (MP) in the presence or absence of soybean oil. A suitable sonication power was selected based on the change in emulsion properties. RESULTS The 300W sonication power was selected due to its most effectively decreased emulsion droplet size and increased absolute zeta potential. Sonication more significantly increased the protein carbonyl content and disulfide bonds of the MP-soybean oil sample than MP sample. Due to the existence of oil, ultrasound could unfold more protein molecules illustrated by a lower α-helix content and intrinsic fluorescence intensity, and a higher surface hydrophobicity. LC-MS/MS results illustrated that sonication enhanced the myosin heavy chain and actin content at the soybean oil interface as well as accelerated the myosin light chain to separate from myosin in the MP-soybean oil system. CONCLUSION In summary, ultrasound treatment could lead to a higher level of protein oxidation and more protein molecule exposure in the MP with the presence of oil system than in the oil-free MP system. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Lei Zhou
- Key Laboratory of Meat Products Processing, Ministry of Agriculture, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ruyu Zhang
- Key Laboratory of Meat Products Processing, Ministry of Agriculture, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jian Zhang
- Key Laboratory of Meat Products Processing, Ministry of Agriculture, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yantao Yin
- Key Laboratory of Meat Products Processing, Ministry of Agriculture, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lanlan Wei
- Key Laboratory of Meat Products Processing, Ministry of Agriculture, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lujuan Xing
- Key Laboratory of Meat Products Processing, Ministry of Agriculture, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wangang Zhang
- Key Laboratory of Meat Products Processing, Ministry of Agriculture, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
29
|
Han Z, Liu S, Cao J, Yue X, Shao JH. A review of oil and water retention in emulsified meat products: The mechanisms of gelation and emulsification, the application of multi-layer hydrogels. Crit Rev Food Sci Nutr 2023; 64:8308-8324. [PMID: 37039082 DOI: 10.1080/10408398.2023.2199069] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
Emulsified meat products are key deep-processing products due to unique flavor and high nutritional value. Myosin dissolves, and protein aggregation and heat-induced gelation occur after myosin unfolds and hydrophobic groups are exposed. Myosin could form interfacial protein membranes and wrap fat globules. Emulsified fat globules may be filled in heat-induced gel networks. Therefore, this review intends to discuss the influences of heat-induced gelation and interfacial adsorption behavior on oil and water retention. Firstly, the mechanism of heat-induced gelation was clarified from the perspective of protein conformation and micro-structure. Secondly, the mechanism of emulsification stability and its factors affecting interfacial adsorption were demonstrated as well as limitations and challenges. Finally, the structure characteristics and application of multi-layer hydrogels in the gelation and emulsification were clarified. It could conclude that the characteristic morphology, spatial conformation and structure adjustment affected heat-induced gelation and interfacial adsorption behavior. Spatial conformation and microstructure were adjusted to improve the oil and water retention by pH, ionic strength, amino acid, oil phase characteristic and protein interaction. Multi-layer hydrogels facilitated oil and water retention. The comprehensive review of gelation and emulsification mechanisms could promote the development of meat products and improvement of meat processing technology.
Collapse
Affiliation(s)
- Zongyuan Han
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, PR China
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
| | - Shucheng Liu
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
| | - Jinxuan Cao
- College of Food and Health, Beijing Technology and Business University, Beijing, PR China
| | - Xiqing Yue
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, PR China
| | - Jun-Hua Shao
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, PR China
| |
Collapse
|
30
|
Wang Q, Gu C, Wei R, Luan Y, Liu R, Ge Q, Yu H, Wu M. Enhanced gelling properties of myofibrillar protein by ultrasound-assisted thermal-induced gelation process: Give an insight into the mechanism. ULTRASONICS SONOCHEMISTRY 2023; 94:106349. [PMID: 36870098 PMCID: PMC9996090 DOI: 10.1016/j.ultsonch.2023.106349] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
Effects of the incorporation of ultrasound with varied intensities (0-800 W) into the thermal-induced gelation process on the gelling properties of myofibrillar protein (MP) were explored. In comparison with single heating, ultrasound-assisted heating (<600 W) led to significant increases in gel strength (up to 17.9%) and water holding capacity (up to 32.7%). Moreover, moderate ultrasound treatment was conducive to the fabrication of compact and homogenous gel networks with small pores, which could effectively impair the fluidity of water and allow redundant water to be entrapped within the gel network. Electrophoresis revealed that the incorporation of ultrasound into the gelation process facilitated more proteins to get involved in the development of gel network. With the intensified ultrasound power, α-helix in the gels lowered pronouncedly with a simultaneous increment of β-sheet, β-turn, and random coil. Furthermore, hydrophobic interactions and disulfide bonds were reinforced by the ultrasound treatment, which was in support of the construction of preeminent MP gels.
Collapse
Affiliation(s)
- Qingling Wang
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Chen Gu
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Ranran Wei
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Yi Luan
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Rui Liu
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Qingfeng Ge
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Hai Yu
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Mangang Wu
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China.
| |
Collapse
|
31
|
Feng F, Yin Y, Zhou L, Ma C, Zhang W. Effect of Nitric Oxide and Its Induced Protein S-Nitrosylation on the Structures and In Vitro Digestion Properties of Beef Myofibrillar Protein. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:2532-2540. [PMID: 36700649 DOI: 10.1021/acs.jafc.2c07804] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
This study aimed to investigate the effects of nitric oxide (NO) and its induced protein S-nitrosylation on the structures and digestion properties of beef myofibrillar protein (MP). The MP was treated with 0, 50, 250, 500, and 1000 μM concentrations of NO-donor S-nitrosoglutathione (GSNO) for 30 min at 37 °C. The results indicated that GSNO treatment significantly decreased the sulfhydryl contents whereas the carbonyl contents increased. Meanwhile, compared with the control group, the surface hydrophobicity, the intrinsic fluorescence intensity, and the α-helix content of proteins were decreased significantly with the enhancement of GSNO concentrations. In addition, 250 μM GSNO treatment increased the gastric digestibility of MP, while the gastrointestinal digestibility and the release of peptides were both inhibited by 500 and 1000 μM GSNO treatments. These data demonstrate that protein S-nitrosylation can affect the in vitro digestion properties of proteins by altering the physicochemical properties and structure of MP.
Collapse
Affiliation(s)
- Fan Feng
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education China, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing210095, China
| | - Yantao Yin
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education China, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing210095, China
| | - Lei Zhou
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education China, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing210095, China
| | - Chao Ma
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education China, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing210095, China
| | - Wangang Zhang
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education China, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing210095, China
| |
Collapse
|
32
|
Wang Q, Luan Y, Tang Z, Li Z, Gu C, Liu R, Ge Q, Yu H, Wu M. Consolidating the gelling performance of myofibrillar protein using a novel OSA-modified-starch-stabilized Pickering emulsion filler: Effect of starches with distinct crystalline types. Food Res Int 2023; 164:112443. [PMID: 36738008 DOI: 10.1016/j.foodres.2022.112443] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 01/04/2023]
Abstract
Starch-stabilized Pickering emulsions were employed as a novel particulate filler in myofibrillar protein (MP)-based gels for improving the gelling characteristics. The role of emulsions prepared by native starches (NS) with distinctive crystalline types (i.e., A-type waxy corn starch, B-type potato starch, and C-type pea starch) and their OSA-modified counterparts (A-OS, B-OS, C-OS) in the gelling performance was evaluated and compared with MP-stabilized-emulsion. Compared with MP-emulsion, starch-emulsion caused substantial increases in the gelling properties, notably for OSA-starch emulsions. Herein, A-OS exhibited up to 1.26-, 5.3-, and 2.9-fold increments in storage modulus, gel strength, and water holding capacity relative to pure MP gel, respectively, higher than B-OS and C-OS. Moreover, light microscopy evinced a more compact gel network filled with smaller and uniform oil droplets when A-OS emulsions were incorporated into the gels. The addition of OSA-starch emulsions, especially A-OS emulsion, facilitated the protein conformational conversion from α-helix to β-sheet and caused a marked reduction of free sulfhydryls in the gels; yet, the chemical forces that stabilized the gels altered, where remarkable reinforcements in hydrogen bond and hydrophobic interaction were detected, in support of the construction of splendid MP gels. Hence, OSA-starch emulsions show promise as functional components in meat products.
Collapse
Affiliation(s)
- Qingling Wang
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Yi Luan
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Ziwei Tang
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Zhikun Li
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Chen Gu
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Rui Liu
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Qingfeng Ge
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Hai Yu
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Mangang Wu
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China.
| |
Collapse
|
33
|
Zhang SS, Duan JY, Zhang TT, Lv M, Gao XG. Effect of compound dietary fiber of soybean hulls on the gel properties of myofibrillar protein and its mechanism in recombinant meat products. Front Nutr 2023; 10:1129514. [PMID: 36908900 PMCID: PMC9996004 DOI: 10.3389/fnut.2023.1129514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/06/2023] [Indexed: 02/25/2023] Open
Abstract
Response surface methodology was used to determine the optimum ratio of rice husk dietary fiber, soybean hull dietary fiber, and inulin as 1.40, 1.42, and 3.24%. The effects of compound and single dietary fiber on water holding capacity, gel strength, secondary structure, rheological properties, chemical action force, and microstructure of myofibrillar proteins (MP) gel were investigated. The application of composite dietary fiber significantly (P < 0.05) improved the gel strength, water holding capacity and storage modulus (G') of MP gel. Fourier transform infrared spectrum analysis shows that the addition of compound dietary fiber can make the gel structure more stable. The effect of dietary fiber complex on the chemical action of MP gel was further studied, and it was found that hydrophobic interaction and disulfide bond could promote the formation of compound gel. By comparing the microstructure of the MP gel with and without dietary fiber, the results showed that the MP gel with compound dietary fiber had smaller pores and stronger structure. Therefore, the rice hull dietary fiber, the soybean hull dietary fiber and the inulin are compounded and added into the low-fat recombinant meat product in a proper proportion, so that the quality characteristics and the nutritional value of the low-fat recombinant meat product can be effectively improved, the rice hull dietary fiber has the potential of being used as a fat substitute, and a theoretical basis is provided for the development of the functional meat product.
Collapse
Affiliation(s)
- Song-Shan Zhang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jun-Ya Duan
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang, Hebei, China
| | - Teng-Teng Zhang
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang, Hebei, China
| | - Meng Lv
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang, Hebei, China
| | - Xiao-Guang Gao
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang, Hebei, China
| |
Collapse
|
34
|
Li Y, Xu Y, Xu X, Zeng X, Zhou G. Explore the mechanism of continuous cyclic glycation in affecting the stability of myofibrillar protein emulsion: The influence of pH. Food Res Int 2022; 161:111834. [DOI: 10.1016/j.foodres.2022.111834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 11/04/2022]
|
35
|
Gong H, Liu J, Wang L, You L, Yang K, Ma J, Sun W. Strategies to optimize the structural and functional properties of myofibrillar proteins: Physical and biochemical perspectives. Crit Rev Food Sci Nutr 2022; 64:4202-4218. [PMID: 36305316 DOI: 10.1080/10408398.2022.2139660] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Myofibrillar protein (MP), as the main meat protein, have high nutritional value. However, the relatively poor solubility of MP at low ionic strength sometimes limits the utilization of MP to produce products rich in meat protein. Accordingly, appropriate modification of MP is needed to improve their functional properties. In general, MP modification strategies are categorized into biochemical and physical approaches. Different from other available reviews, the review focuses on summarizing the principles and applications of several techniques of physical modification, briefly depicting biochemical modification as a comparison. Modification of MP with a certain intensity of direct current magnetic field, ultrasound, high pressure, microwave, or radio frequency can improve solubility, emulsification, stability, and gel formation. Of these, magnetic field and microwave-modified MP have shown some potential in reducing salt in meat. These physical techniques can also have synergistic effects with other conditions (temperature, pH, physical or chemical techniques) to compensate for the deficiencies of individual treatment techniques. However, these strategies still need further research for practical applications.HIGHLIGHTSThe current status and findings of research on direct current magnetic field in meat processing are presented.Several physical strategies to modify the microstructure and functional properties of MPs.The synergistic effects of these techniques in combination with other methods to modify MPs are discussed.
Collapse
Affiliation(s)
- Honghong Gong
- College of Life Science, Yangtze University, Jingzhou, Hubei, P. R. China
| | - Jiao Liu
- College of Life Science, South-Central MinZu University, Wuhan, P. R. China
| | - Limei Wang
- College of Life Science, Yangtze University, Jingzhou, Hubei, P. R. China
| | - Li You
- College of Life Science, Yangtze University, Jingzhou, Hubei, P. R. China
| | - Kun Yang
- College of Life Science, Yangtze University, Jingzhou, Hubei, P. R. China
| | - Jing Ma
- College of Life Science, Yangtze University, Jingzhou, Hubei, P. R. China
| | - Weiqing Sun
- College of Life Science, Yangtze University, Jingzhou, Hubei, P. R. China
| |
Collapse
|
36
|
Wu G, Lv Y, Chu Y, Zhang X, Ding Z, Xie J. Evaluation of Preservation (−23 to 4 °C) for Cuttlefish Through Functional Ice Glazing During Storage and Cold Chain Logistics. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02921-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
37
|
Xiong Z, Shi T, Jin W, Bao Y, Monto AR, Yuan L, Gao R. Gel performance of surimi induced by various thermal technologies: A review. Crit Rev Food Sci Nutr 2022; 64:3075-3090. [PMID: 36193875 DOI: 10.1080/10408398.2022.2130154] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Heating is a vital step in the gelation of surimi. Conventional water bath heating (WB) has the advantages of easy operation and low equipment requirements. However, the slow heat penetration during WB may lead to poor gel formation or gels prone to deterioration, especially with one-step heating. The two-step WB is time-consuming, and a large amount of water used tends to cause environmental problems. This review focuses on key factors affecting the quality of surimi gels in various heating technologies, such as surimi protein structure, chemical forces, or the activity of endogenous enzymes. In addition, the relationships between these factors and the gel performance of surimi under various heating modes are discussed by analyzing the heating temperature and heating rate. Compared with WB, the gel performance can be improved by controlling the heating conditions of microwave heating and ohmic heating, which are mainly achieved by changing the molecular structure of myofibrillar proteins or the activity of endogenous enzymes in surimi. Nevertheless, the novel thermal technologies still face several limitations and further research is needed to realize large-scale industrial production. This review provides ideas and directions for developing heat-induced surimi products with excellent gel properties.
Collapse
Affiliation(s)
- Zhiyu Xiong
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Tong Shi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Wengang Jin
- Bio-resources Key Laboratory of Shaanxi Province, School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, China
| | - Yulong Bao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Abdul Razak Monto
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Li Yuan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Ruichang Gao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province, China
- Bio-resources Key Laboratory of Shaanxi Province, School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, China
| |
Collapse
|
38
|
Food protein aggregation and its application. Food Res Int 2022; 160:111725. [DOI: 10.1016/j.foodres.2022.111725] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/29/2022] [Accepted: 07/19/2022] [Indexed: 01/31/2023]
|
39
|
Zhang L, Li Q, Bao Y, Tan Y, Lametsch R, Hong H, Luo Y. Recent advances on characterization of protein oxidation in aquatic products: A comprehensive review. Crit Rev Food Sci Nutr 2022; 64:1572-1591. [PMID: 36122384 DOI: 10.1080/10408398.2022.2117788] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
In addition to microbial spoilage and lipid peroxidation, protein oxidation is increasingly recognized as a major cause for quality deterioration of muscle-based foods. Although protein oxidation in muscle-based foods has attracted tremendous interest in the past decade, specific oxidative pathways and underlying mechanisms of protein oxidation in aquatic products remain largely unexplored. The present review covers the aspects of the origin and site-specific nature of protein oxidation, progress on the characterization of protein oxidation, oxidized proteins in aquatic products, and impact of protein oxidation on protein functionalities. Compared to meat protein oxidation, aquatic proteins demonstrate a less extent of oxidation on aromatic amino acids and are more susceptible to be indirectly oxidized by lipid peroxidation products. Different from traditional measurement of protein carbonyls and thiols, proteomics-based strategy better characterizes the targeted oxidation sites within proteins. The future trends using more robust and accurate targeted proteomics, such as parallel reaction monitoring strategy, to characterize protein oxidation in aquatic products are also given.
Collapse
Affiliation(s)
- Longteng Zhang
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Qian Li
- Department of Food Science, University of Copenhagen, Frederiksberg C, Denmark
| | - Yulong Bao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Yuqing Tan
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - René Lametsch
- Department of Food Science, University of Copenhagen, Frederiksberg C, Denmark
| | - Hui Hong
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Yongkang Luo
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
40
|
Continuous cyclic wet heating glycation to prepare myofibrillar protein-glucose conjugates: A study on the structures, solubility and emulsifying properties. Food Chem 2022; 388:133035. [PMID: 35483289 DOI: 10.1016/j.foodchem.2022.133035] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 04/11/2022] [Accepted: 04/19/2022] [Indexed: 11/22/2022]
Abstract
Myofibrillar protein (MP) is often modified by various strategies to obtain better functional properties, which are crucial to the quality of meat products. This study prepared MP-glucose conjugates with high degrees of grafting (DG) by continuous cyclic wet heating glycation, and explored the changes in the structural and functional properties. The determination of DG, amino acid contents and Fourier transform infrared spectroscopy (FT-IR) confirmed the occurrence of glycation. The conjugates lost α-helix structures, and their intrinsic fluorescence intensity decreased while their surface hydrophobicity increased, which reflected the conformational unfolding and stretching behaviour of the molecules. Glycation resulted in a smaller particle size and lower ζ-potential, delaying molecular cross-linking during heating, thereby significantly reducing the apparent viscosity of the solutions and improving the solubility and emulsifying properties of MP. The results can provide new ideas and approaches for understanding glycation, and enrich the theoretical basis of the structure-function relationship of MP.
Collapse
|
41
|
Microfluidization treatment improve the functional and physicochemical properties of transglutaminase cross-linked groundnut arachin and conarachin. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
42
|
Ma W, Yuan F, Feng L, Wang J, Sun Y, Cao Y, Huang J. ε-Polylysine-mediated enhancement of the structural stability and gelling properties of myofibrillar protein under oxidative stress. Int J Biol Macromol 2022; 220:1114-1123. [PMID: 36030980 DOI: 10.1016/j.ijbiomac.2022.08.143] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 08/11/2022] [Accepted: 08/22/2022] [Indexed: 11/05/2022]
Abstract
The effects of ε-polylysine (ε-PL) at different concentrations (0.005 %, 0.010 %, 0.020 %, and 0.030 %) on the structure and gelling behavior of pork myofibrillar protein (MP) under oxidative stress were explored. The incorporation of ε-PL significantly restrained oxidation-induced sulfhydryl and solubility losses (up to 9.72 % and 41.9 %, respectively) as well as protein crosslinking and aggregation. Compared with the oxidized control, ε-PL at low concentrations (0.005 % - 0.020 %) promoted further unfolding and destabilization of MP, while 0.030 % ε-PL led to refolding of MP and enhanced its thermal stability. The ε-PL-induced physicochemical changes favored the formation of a finer and more homogeneous three-dimensional network structure, therefore obviously enhancing the strength and water-holding capacity (WHC) of thermally induced oxidized MP gels, with the ε-PL at 0.020 % showed the greatest enhancement. This work revealed for the first time that ε-PL can significantly ameliorate the oxidation stability and gel-forming ability of meat proteins.
Collapse
Affiliation(s)
- Wenhui Ma
- School of Food and Biological Engineering, Natural Food Macromolecule Research Center, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Fang Yuan
- School of Biotechnology, Jiangnan University, Wuxi 214122, China; Jiangsu Yiming Biological Technology Co., Ltd., Taixing 225400, China
| | - Li Feng
- School of Food and Biological Engineering, Natural Food Macromolecule Research Center, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Jiankang Wang
- School of Food and Biological Engineering, Natural Food Macromolecule Research Center, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Yujiao Sun
- School of Food and Biological Engineering, Natural Food Macromolecule Research Center, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Yungang Cao
- School of Food and Biological Engineering, Natural Food Macromolecule Research Center, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Junrong Huang
- School of Food and Biological Engineering, Natural Food Macromolecule Research Center, Shaanxi University of Science and Technology, Xi'an 710021, China.
| |
Collapse
|
43
|
Wang Z, Yang C, Tang D, Yang X, Zhang L, Yu Q. Effects of selenium yeast and jujube powder dietary supplements on conformational and functional properties of post-mortem chicken myofibrillar protein. Front Nutr 2022; 9:954397. [PMID: 35990324 PMCID: PMC9389338 DOI: 10.3389/fnut.2022.954397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/14/2022] [Indexed: 11/17/2022] Open
Abstract
The aim of the study was to evaluate the effects of selenium yeast and jujube powder on the structure and functional properties of post-mortem myofibrillar protein (MP) in white feather broilers. Changes in the structure (surface hydrophobicity, secondary structure, and tertiary structure), functional properties (solubility, turbidity, emulsifying, and foaming characteristics), and gel properties (gel strength, springiness, and water-holding capacity) of the MPs of white feather broiler, which were fed with different concentrations of selenium yeast or/and jujube powder (selenium yeast: 0,0.3, and 0.6 mg/kg; jujube powder: 8% to replace corn) for 42 days, were determined at 0, 24, and 72 h post-mortem. The results showed that with increasing concentrations of selenium yeast and jujube powder in the diet, the α-helix content, solubility, emulsification, and foaming of post-mortem chicken MP increased significantly (P < 0.05). The gel strength, springiness, and water-holding capacity of MP also increased, but the differences between the treatment groups were not significant (P > 0.05). In addition, the β-folding content and turbidity of MP decreased significantly (P < 0.05). Both the increase in selenium yeast levels and the addition of jujube powder improved the structural integrity and functional properties of MP. The best improvement effect was found in the combination group of high-dose selenium yeast and jujube powder, and there were significant interactions between them in the indices of α-helix, β-folding, turbidity, emulsification, and foam stability of MP. In conclusion, supplementing diets with seleniumyeast and jujube powder could maintain the structural stability of MPs in post-mortem chicken breast, leading to good functional properties. The results of this study may provide new insights into the effects of pre-slaughter feeding on post-mortem muscle MP conformation control and quality improvement.
Collapse
Affiliation(s)
- Zhuo Wang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Chao Yang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Defu Tang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Xue Yang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Li Zhang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Qunli Yu
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
44
|
Ren Z, Cui Y, Wang Y, Shi L, Yang S, Hao G, Qiu X, Wu Y, Zhao Y, Weng W. Effect of ionic strength on the structural properties and emulsion characteristics of myofibrillar proteins from hairtail (Trichiurus haumela). Food Res Int 2022; 157:111248. [DOI: 10.1016/j.foodres.2022.111248] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/08/2022] [Accepted: 04/09/2022] [Indexed: 01/20/2023]
|
45
|
Nawaz A, Irshad S, Ali Khan I, Khalifa I, Walayat N, Muhammad Aadil R, Kumar M, Wang M, Chen F, Cheng KW, Lorenzo JM. Protein oxidation in muscle-based products: Effects on physicochemical properties, quality concerns, and challenges to food industry. Food Res Int 2022; 157:111322. [DOI: 10.1016/j.foodres.2022.111322] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/16/2022] [Accepted: 04/28/2022] [Indexed: 12/29/2022]
|
46
|
Huang M, Xu Y, Xu L, Bai Y, Xu X. Interactions of water-soluble myofibrillar protein with chitosan: Phase behavior, microstructure and rheological properties. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
47
|
Plasma-activated water: A cutting-edge technology driving innovation in the food industry. Food Res Int 2022; 156:111368. [DOI: 10.1016/j.foodres.2022.111368] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 05/03/2022] [Accepted: 05/10/2022] [Indexed: 11/20/2022]
|
48
|
Yingchutrakul M, Wasinnitiwong N, Benjakul S, Singh A, Zheng Y, Mubango E, Luo Y, Tan Y, Hong H. Asian Carp, an Alternative Material for Surimi Production: Progress and Future. Foods 2022; 11:1318. [PMID: 35564045 PMCID: PMC9101759 DOI: 10.3390/foods11091318] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 12/19/2022] Open
Abstract
Asian carp is a general designation for grass carp, silver carp, bighead carp, and black carp. These fish species belong to the family Cyprinidae. In 2018, more than 18.5 million tons of Asian carp were produced globally. Asian carp can be used for producing surimi, a stabilized myofibrillar protein concentrate that can be made into a wide variety of products such as imitation crab sticks, fish balls, fish cakes, fish tofu, and fish sausage. Surimi is usually made from marine fish, but Asian carp have been widely used for surimi production in China. The quality of surimi is affected by various factors, including the processing methods and food additives, such as polysaccharides, protein, salt, and cryoprotectant. With an impending shortage of marine fish due to overfishing and depletion of fish stocks, Asian carp have a potential to serve as an alternative raw material for surimi products thanks to their high abundancy, less emissions of greenhouse gases from farming, desirable flesh color, and sufficient gel forming ability. The utilization of Asian carp in surimi production could also contribute to relieving the overflow of Asian carp in the United States.
Collapse
Affiliation(s)
- Manatsada Yingchutrakul
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (M.Y.); (N.W.); (E.M.); (Y.L.); (Y.T.)
| | - Naphat Wasinnitiwong
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (M.Y.); (N.W.); (E.M.); (Y.L.); (Y.T.)
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Songkhla 90112, Thailand; (S.B.); (A.S.)
| | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Songkhla 90112, Thailand; (S.B.); (A.S.)
| | - Avtar Singh
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Songkhla 90112, Thailand; (S.B.); (A.S.)
| | - Yanyan Zheng
- Institute of Agri-Food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China;
| | - Elliot Mubango
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (M.Y.); (N.W.); (E.M.); (Y.L.); (Y.T.)
| | - Yongkang Luo
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (M.Y.); (N.W.); (E.M.); (Y.L.); (Y.T.)
| | - Yuqing Tan
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (M.Y.); (N.W.); (E.M.); (Y.L.); (Y.T.)
| | - Hui Hong
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (M.Y.); (N.W.); (E.M.); (Y.L.); (Y.T.)
- Center of Food Colloids and Delivery for Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| |
Collapse
|
49
|
Cong H, Lyu H, Liang W, Zhang Z, Chen X. Changes in Myosin from Silver Carp (Hypophthalmichthys molitrix) under Microwave-Assisted Water Bath Heating on a Multiscale. Foods 2022; 11:foods11081071. [PMID: 35454658 PMCID: PMC9030768 DOI: 10.3390/foods11081071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/27/2022] [Accepted: 03/30/2022] [Indexed: 01/23/2023] Open
Abstract
To further prove the advantages of microwave-assisted water bath heating (MWH) in low-value fish processing, the effects of different heating methods (two heating stage method, high temperature section respectively using MWH1, MWH2, MWH3, WH—water heating, MH—microwave heating) on secondary and tertiary myosin structures, SDS-PAGE, surface morphology, scanning electron microscopy (SEM), and particle size distribution were compared and analyzed. The findings revealed that MH and MWH aided in the production of gel formations by promoting myosin aggregation. Myosin from silver carps demonstrated enhanced sulfhydryl group and surface hydrophobicity after MWH treatment, as well as a dense network structure. The distribution of micropores becomes more uniform when the microwave time is increased. Actually, the total effect of microwave time on myosin is not substantially different. The correlation between particle size distribution and protein aggregation was also studied, in terms of time savings, the MWH of short microwave action is preferable since it not only promotes myosin aggregation but also avoids the drawbacks of a rapid warming rate. These discoveries give a theoretical foundation for understanding silver carp myosin under microwave modification, which is critical in the food industry.
Collapse
Affiliation(s)
- Haihua Cong
- Key Laboratory of Aquatic Product Processing and Utilization of Liaoning Province, College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China; (W.L.); (Z.Z.)
- Collaborative Innovation Center of Provincial and Ministerial Co-Construction for Marine Food Deep Processing, Dalian Polytechnic University, Dalian 116034, China
- Correspondence: (H.C.); (X.C.); Tel.: +86-(0)411-8476-2528 (H.C.); +86-(0)512-6588-2767 (X.C.)
| | - He Lyu
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand;
| | - Wenwen Liang
- Key Laboratory of Aquatic Product Processing and Utilization of Liaoning Province, College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China; (W.L.); (Z.Z.)
- Huilly Pharmaceuticals Ltd., Suzhou 215000, China
| | - Ziwei Zhang
- Key Laboratory of Aquatic Product Processing and Utilization of Liaoning Province, College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China; (W.L.); (Z.Z.)
- Collaborative Innovation Center of Provincial and Ministerial Co-Construction for Marine Food Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Xiaodong Chen
- School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Material Science, Soochow University, Suzhou 215123, China
- Correspondence: (H.C.); (X.C.); Tel.: +86-(0)411-8476-2528 (H.C.); +86-(0)512-6588-2767 (X.C.)
| |
Collapse
|
50
|
Chen Q, Xie Y, Yu H, Guo Y, Cheng Y, Yao W. Application of Raman spectroscopy in a correlation study between protein oxidation/denaturation and conformational changes in beef after repeated freeze–thaw. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Qingmin Chen
- School of Food Science and Technology Jiangnan University No. 1800 Lihu Avenue Wuxi 214122 China
- College of Ocean Food and Biological Engineering Jimei University Xiamen 361021 China
| | - Yunfei Xie
- School of Food Science and Technology Jiangnan University No. 1800 Lihu Avenue Wuxi 214122 China
| | - Hang Yu
- School of Food Science and Technology Jiangnan University No. 1800 Lihu Avenue Wuxi 214122 China
| | - Yahui Guo
- School of Food Science and Technology Jiangnan University No. 1800 Lihu Avenue Wuxi 214122 China
| | - Yuliang Cheng
- School of Food Science and Technology Jiangnan University No. 1800 Lihu Avenue Wuxi 214122 China
| | - Weirong Yao
- School of Food Science and Technology Jiangnan University No. 1800 Lihu Avenue Wuxi 214122 China
| |
Collapse
|