1
|
Guo J, Khan MR, Ahmad N, Zhang W. Enhancing fruit preservation with sodium alginate films incorporating propolis extract and graphene oxide. Int J Biol Macromol 2024; 288:138778. [PMID: 39675617 DOI: 10.1016/j.ijbiomac.2024.138778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 11/13/2024] [Accepted: 12/12/2024] [Indexed: 12/17/2024]
Abstract
In this work, sodium alginate (SA) composite films containing propolis extract (PRO) and graphene oxide (GO) were developed. Subsequently, the effects of PRO and GO on different properties of SA composite films were studied, and the films were characterized by scanning electron microscopy, fourier transform infrared spectroscopy, X-ray diffraction, and thermogravimetric analysis. The PRO release properties and fruit preservation performance of the developed composite films were also investigated. The results showed that the incorporation of PRO resulted in a 51.16% increase in tensile strength. The simultaneous incorporation of PRO and GO reduced water vapor permeability (WVP) by 22.56% compared to the SA film. The temperatures at which the SA/GO/PRO film lost 5% of its weight were 8.0°C higher than those of the SA film. The incorporation of GO into the SA/PRO composite film also modulates the release of PRO. Furthermore, the incorporation of PRO and GO improved the tensile strength of the SA film, as reflected in the microstructure of the films. The reduced WVP of the SA composite film allowed the packaged blueberries to exhibit less weight loss and shrinkage, thereby prolonging their shelf life.
Collapse
Affiliation(s)
- Junyan Guo
- School of Food Science and Engineering, Hainan University, Haikou 570228, China; Institute of Tropical Fruit Trees, Hainan Academy of Agricultural Sciences/Key Laboratory of Genetic Resources and Utilization of Tropical Fruits and Vegetables (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs/Key Laboratory of Tropical Fruit Tree Biology of Hainan Province, Haikou 571100, China
| | - Mohammad Rizwan Khan
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Naushad Ahmad
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Wanli Zhang
- School of Food Science and Engineering, Hainan University, Haikou 570228, China; Institute of Tropical Fruit Trees, Hainan Academy of Agricultural Sciences/Key Laboratory of Genetic Resources and Utilization of Tropical Fruits and Vegetables (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs/Key Laboratory of Tropical Fruit Tree Biology of Hainan Province, Haikou 571100, China.
| |
Collapse
|
2
|
Deng L, Xu R, Zhang S, Lu J, Wang H, Zhou J, Zhang C, Golding J, Jiang W, Wang B. Calcium alginate-encapsulated propolis microcapsules: Optimization, characterization, and preservation effects on postharvest sweet cherry. Int J Biol Macromol 2024; 282:137473. [PMID: 39522900 DOI: 10.1016/j.ijbiomac.2024.137473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 10/24/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
The increasing consumption of fresh fruits and vegetables has led to the development of eco-friendly and active preservation materials which have slow-release effect of antioxidant/antifungal agents. The propolis microcapsules (PM), utilizing calcium alginate as the wall material, incorporating ethanolic extract of propolis (EEP) as the core material, were prepared by ionic gelation method and conducted a investigation of its characteristics After optimization by single factor experiment and theoretical response models, PM which was prepared by dropping 9.3 g L-1 100 mL sodium alginate solution containing 9.8 mL EEP into 0.22 mol L-1 calcium chloride solution showed an encapsulation efficiency of 69.29±1.12 %. Prepared microcapsules were spherical with a dense surface which protected propolis well from the environment, retained a large number of bio-active compounds and improve thermal stability of propolis. Moreover, the microcapsules exhibited good slow-release effect and good inhibitory influence on the development of Alternaria Alternata growth which the colony diameter of the control was 41.38 % higher than the treatment at day six. With 5.0 g PM placed in the small non-woven bag in the application on sweet cherries with non-direct contact method, the decay rate and weight loss of fruits were reduced by 47.5 % and 17.6 %, concurrently the PM also effectively maintain the good appearance, hardness, antioxidant capacity by slowing the reduction in the content of total phenols, flavonoids and enzymatic activities. Therefore, the PM with superior antioxidant and antifungal capacity have the great potential to design as a practical active materials for fruits preservation.
Collapse
Affiliation(s)
- Lizhi Deng
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, PR China; College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Ranran Xu
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, PR China
| | - Shuaiqi Zhang
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, PR China
| | - Jingxuan Lu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Han Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Jiahua Zhou
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, PR China
| | - Chao Zhang
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, PR China
| | - John Golding
- NSW Department of Primary Industries, Ourimbah, NSW, Australia
| | - Weibo Jiang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China.
| | - Baogang Wang
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, PR China.
| |
Collapse
|
3
|
Liu M, Chen H, Pan F, Wu X, Zhang Y, Fang X, Li X, Tian W, Peng W. Propolis ethanol extract functionalized chitosan/Tenebrio molitor larvae protein film for sustainable active food packaging. Carbohydr Polym 2024; 343:122445. [PMID: 39174125 DOI: 10.1016/j.carbpol.2024.122445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/09/2024] [Accepted: 06/27/2024] [Indexed: 08/24/2024]
Abstract
The application of novel insect proteins as future food resources in the food field has attracted more and more attention. In this study, a biodegradable antibacterial food packaging material with beneficial mechanical properties was developed using Tenebrio molitor larvae protein (TMP), chitosan (CS) and propolis ethanol extract (PEE) as raw materials. PEE was uniformly dispersed in the film matrix and the composite films showed excellent homogeneity and compatibility. There are strong intermolecular hydrogen bond interactions between CS, TMP, and PEE in the films, which exhibit the structure characteristics of amorphous materials. Compared with CS/TMP film, the addition of 3 % PEE significantly enhanced the elongation at break (34.23 %), water vapor barrier property (22.94 %), thermal stability (45.84 %), surface hydrophobicity (20.25 %), and biodegradability of the composite film. The composite film has strong antioxidant and antimicrobial properties, which were enhanced with the increase of PEE content. These biodegradable films offer an eco-friendly end-of-life option when buried in soil. Composite films can effectively delay the spoilage of strawberries and extend the shelf life of strawberries. Biodegradable active packaging film developed with insect protein and chitosan can be used as a substitute for petroleum-based packaging materials, and has broad application prospects in the field of fruits preservation.
Collapse
Affiliation(s)
- Mengyao Liu
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Hualei Chen
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Fei Pan
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Xinning Wu
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Yuan Zhang
- School of plant protection, Anhui agricultural university, Hefei 230036, China
| | - Xiaoming Fang
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Xiangxin Li
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China.
| | - Wenli Tian
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China.
| | - Wenjun Peng
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China.
| |
Collapse
|
4
|
Yun D, Wu Y, Yong H, Tang C, Chen D, Kan J, Liu J. Recent Advances in Purple Sweet Potato Anthocyanins: Extraction, Isolation, Functional Properties and Applications in Biopolymer-Based Smart Packaging. Foods 2024; 13:3485. [PMID: 39517269 PMCID: PMC11545044 DOI: 10.3390/foods13213485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 10/27/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
Petroleum-based plastic packaging materials have negative impacts on the environment and food safety. Natural biopolymer-based food packaging materials are the proper substitutes for plastic-based ones, which is because biopolymers are nontoxic, biodegradable and even edible. The incorporation of bioactive and functional substances into a biopolymer-based film matrix can produce novel smart packaging materials. Anthocyanins, one class of natural colorants with potent antioxidant activity and pH-response color-changing ability, are suitable for producing biopolymer-based smart packaging films. The purple sweet potato is a functional food rich in anthocyanins. In the past decade, numerous studies have reported the extraction of anthocyanins from purple sweet potato and the utilization of purple sweet potato anthocyanins (PSPAs) in biopolymer-based smart packaging film production. However, no specific review has summarized the recent advances on biopolymer-based smart packaging films containing PSPAs. Therefore, in this review, we aim to systematically summarize the progress on the extraction, isolation, characterization, purification and functional properties of PSPAs. Moreover, we thoroughly introduce the preparation methods, physical properties, antioxidant and antimicrobial activity, pH sensitivity, stability and applications of biopolymer-based smart packaging films containing PSPAs. Factors affecting the extraction and functional properties of PSPAs as well as the properties of biopolymer-based films containing PSPAs are discussed.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jun Liu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (D.Y.); (Y.W.); (H.Y.); (C.T.); (D.C.); (J.K.)
| |
Collapse
|
5
|
Majdi F, Alizadeh Behbahani B, Barzegar H, Mehrnia MA, Taki M. Active packaging coating based on Lepidium sativum seed mucilage and propolis extract: Preparation, characterization, application and modeling the preservation of buffalo meat. PLoS One 2024; 19:e0311802. [PMID: 39383129 PMCID: PMC11463836 DOI: 10.1371/journal.pone.0311802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 09/18/2024] [Indexed: 10/11/2024] Open
Abstract
Buffalo meat is naturally perishable, making it susceptible to spoilage due to its high moisture content and vulnerability to microbial contamination. Edible coatings have attracted attention as a packaging method that can prolong the shelf life of meat. The study aimed to examine the impact of a combination of Lepidium sativum mucilage (LS) coating and propolis extract (PE) on prolonging the shelf life of buffalo meat. The chemical characteristics (chemical compounds, total phenol content (TPC), total flavonoid content (TFC), antioxidant activity, and cytotoxicity) and antimicrobial activity of the PE (disk diffusion agar, well diffusion agar, minimum inhibitory concentration, and minimum bactericidal concentration) were investigated. The effect of the PE on the cell wall of pathogenic bacteria was examined using a scanning electron microscope. Biological properties of LS (TPC, TFC, antioxidant activity and antimicrobial effect (pour plate method)) was investigated. Different concentrations of PE (0, 0.5, 1.5, and 2.5%) were added to the coating mixture containing LS, and their effects on extending the shelf life of buffalo meat samples stored at 4°C for 9 days were assessed. The PE included gallic acid, benzoic acid, syringic acid, 4-3 dimethoxy cinnamic acid, p-coumaric acid, myricetin, caffeic acid, luteolin, chlorogenic acid, and apigenin. The PE was determined to have a TPC of 36.67 ± 0.57 mg GAE/g and a TFC of 48.02 ± 0.65 mg QE/g. The extract's radical scavenging activity ranged from 0 to 76.22% for DPPH radicals and from 0 to 50.31% for ABTS radicals. The viability of C115 HeLa cell was observed to be 94.14 μg/mL. The PE and LS, exhibited strong antimicrobial properties against pathogenic bacteria. The LS was determined to have a TPC of 15.23 ± 0.43 mg GAE/g and a TFC of 11.51± 0.61 mg QE/g. The LS was determined to have a DPPH of 429.65 ± 1.28 μg/mL and a ABTS of 403.59 ± 1.46 μg/mL. The microbiological analysis revealed that the LS+2.5%PE treatment was the most effective in inhibiting the growth of total viable count (6.23 vs. 8.00 log CFU/g), psychrotrophic bacteria count (3.71 vs. 4.73 log CFU/g), coliforms count (2.78 vs. 3.70 log CFU/g), and fungi count (2.39 vs. 3.93 log CFU/g) compared to the control sample. The addition of PE to the edible coating also demonstrated a concentration-dependent effect on preserving the moisture, pH, color, and hardness of the buffalo meat. Sensory evaluation results suggested that incorporating PE into the edible coating extended the shelf life of buffalo meat by three days. In the second stage of this paper, this investigation employed two distinct forecasting methodologies: the Radial Basis Function (RBF) and the Support Vector Machine (SVM), to predict a range of quality indicators for coated meat products. Upon comparison, the RBF model exhibited a higher level of accuracy, showcasing its exceptional capacity to closely match the experimental outcomes. Therefore, this type of food coating, renowned for its strong antimicrobial properties, has the potential to effectively package and preserve perishable and delicate food items, such as meat.
Collapse
Affiliation(s)
- Fatemehe Majdi
- Faculty of Animal Science and Food Technology, Department of Food Science and Technology, Agricultural Sciences and Natural Resources University of Khuzestan, Mollasani, Iran
| | - Behrooz Alizadeh Behbahani
- Faculty of Animal Science and Food Technology, Department of Food Science and Technology, Agricultural Sciences and Natural Resources University of Khuzestan, Mollasani, Iran
| | - Hassan Barzegar
- Faculty of Animal Science and Food Technology, Department of Food Science and Technology, Agricultural Sciences and Natural Resources University of Khuzestan, Mollasani, Iran
| | - Mohammad Amin Mehrnia
- Faculty of Animal Science and Food Technology, Department of Food Science and Technology, Agricultural Sciences and Natural Resources University of Khuzestan, Mollasani, Iran
| | - Morteza Taki
- Faculty of Agricultural Engineering and Rural Development, Department of Agricultural Machinery and Mechanization Engineering, Agricultural Sciences and Natural Resources University of Khuzestan, Mollasani, Iran
| |
Collapse
|
6
|
Dong F, Dong Z, Mao L, Yao J, Wang C. Development of crosslinked gelatin films through Maillard reaction and reinforced with poly(vinyl alcohol) for active food packaging. Int J Biol Macromol 2024; 277:134095. [PMID: 39059526 DOI: 10.1016/j.ijbiomac.2024.134095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 06/18/2024] [Accepted: 07/20/2024] [Indexed: 07/28/2024]
Abstract
In order to improve the functionality of natural gelatin films for active food packaging applications, a combined strategy of crosslinking via Maillard reaction and blending enhancement incorporated with poly(vinyl alcohol) (PVA) was explored. In this study, when the mass ratio of gelatin to glucose was 10:1, Maillard reaction of crosslinked gelatin films was the highest, UV absorption and browning index reached the maximum. Infrared analysis showed that PVA could form strong interfacial interactions with gelatin matrix. The presence of PVA could significantly improve the toughness, water absorption, transparency, and oxygen barrier properties of crosslinked gelatin films. When the amount of PVA reached 5 %, elongation at break and oxygen barrier properties of crosslinked gelatin films were improved by 76.7 % and 47.9 % compared with pure crosslinked gelatin film. Even when the amount of PVA reached 10 %, UV absorption (at 315 nm) of crosslinked gelatin films still exceeded 98.7 %. The addition of PVA could accelerate the dissolution and swelling of crosslinked gelatin films, promoting the migration and release of active substances (Maillard reaction products (MRPs)). The two antioxidant activities tests (DPPH and ABTS method) achieved the highest radical scavenging rates of 71.6 % and 91.2 %, respectively, with corresponding PVA addition of 5 % and 7.5 %. After continuing to add PVA, antioxidant activities began to significantly decrease, which was directly related to the decrease in the generation of MRPs. Therefore, crosslinked gelatin films reinforced with appropriate amount of PVA can be considerable potential as active films for renewable food packaging applications.
Collapse
Affiliation(s)
- Fang Dong
- Fujian Provincial Key Laboratory of Functional Materials and Applications, Xiamen University of Technology, Xiamen 361024, PR China
| | - Zhiye Dong
- Fujian Provincial Key Laboratory of Functional Materials and Applications, Xiamen University of Technology, Xiamen 361024, PR China
| | - Long Mao
- Fujian Provincial Key Laboratory of Functional Materials and Applications, Xiamen University of Technology, Xiamen 361024, PR China.
| | - Jin Yao
- Key Laboratory of Advanced Packaging Materials and Technology of Hunan Province, Hunan University of Technology, Zhuzhou 412007, PR China
| | - Chengyu Wang
- Key Laboratory of Advanced Packaging Materials and Technology of Hunan Province, Hunan University of Technology, Zhuzhou 412007, PR China
| |
Collapse
|
7
|
Wen L, He H, Liu Y, Wang W, Du P, Hu P, Cao J, Ma Y. Research progress on natural preservatives of meat and meat products: classifications, mechanisms and applications. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:7085-7095. [PMID: 38546416 DOI: 10.1002/jsfa.13495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/21/2024] [Accepted: 03/28/2024] [Indexed: 04/09/2024]
Abstract
Meat and meat products are highly susceptible to contamination by microorganisms and foodborne pathogens, which cause serious economic losses and health hazards. The large consumption and waste of meat and meat products means that there is a need for safe and effective preservation methods. Furthermore, toxicological aspects of chemical preservation techniques related to major health problems have sparked controversies and have prompted consumers and producers to turn to natural preservatives. Consequently, natural preservatives are being increasingly used to ensure the safety and quality of meat products as a result of customer preferences and biological efficacy. However, information on the current status of these preservatives is scattered and a comprehensive review is lacking. Here, we review current knowledge on the classification, mechanisms of natural preservatives and their applications in the preservation of meat and meat products, and also discuss the potential of natural preservatives to improve the safety of meat and meat products. The current status and the current research gaps in the extraction, application and controlled-release of natural antibacterial agents for meat preservation are also discussed in detail. This review may be useful to the development of efficient food preservation techniques in the meat industry. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Lei Wen
- Shandong Provincial Key Laboratory of Agro-Products Processing Technology, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture, Institute of Food & Nutrition Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, China
- College of Life Sciences, Yantai University, Yantai, China
| | - Hongjun He
- College of Life Sciences, Yantai University, Yantai, China
| | - Yaobo Liu
- Shandong Provincial Key Laboratory of Agro-Products Processing Technology, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture, Institute of Food & Nutrition Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Weiting Wang
- Shandong Provincial Key Laboratory of Agro-Products Processing Technology, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture, Institute of Food & Nutrition Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Pengfei Du
- Shandong Provincial Key Laboratory of Agro-Products Processing Technology, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture, Institute of Food & Nutrition Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Peng Hu
- Shandong Provincial Key Laboratory of Agro-Products Processing Technology, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture, Institute of Food & Nutrition Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Jianfang Cao
- Shandong Provincial Key Laboratory of Agro-Products Processing Technology, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture, Institute of Food & Nutrition Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Yanli Ma
- Shandong Provincial Key Laboratory of Agro-Products Processing Technology, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture, Institute of Food & Nutrition Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, China
| |
Collapse
|
8
|
Sarangi PK, Srivastava RK, Vivekanand V, Goksen G, Sahoo UK, Thakur TK, Debeaufort F, Uysal-Unalan I, Pugazhendhi A. Recovery of green phenolic compounds from lignin-based source: Role of ferulic acid esterase towards waste valorization and bioeconomic perspectives. ENVIRONMENTAL RESEARCH 2024; 256:119218. [PMID: 38782335 DOI: 10.1016/j.envres.2024.119218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/08/2024] [Accepted: 05/21/2024] [Indexed: 05/25/2024]
Abstract
The production of chemicals/products so far relies on fossil-based resources with the creation of several environmental problems at the global level. In this situation, a sustainable and circular economy model is necessitated to mitigate global environmental issues. Production of biowaste from various processing industries also creates environmental issues which would be valorized for the production of industrially important reactive and bioactive compounds. Lignin acts as a vital part in biowaste composition which can be converted into a wide range of phenolic compounds. The phenolic compounds have attracted much attention, owing to their influence on diverse not only organoleptic parameters, such as taste or color, but also active agents for active packaging systems. Crop residues of varied groups, which are an affluent source of lignocellulosic biomass could serve as a renewable resource for the biosynthesis of ferulic acid (FA). FA is obtained by the FA esterase enzyme action, and it can be further converted into various tail end phenolic flavor green compounds like vanillin, vanillic acid and hydroxycinnamic acid. Lignin being renewable in nature, processing and management of biowastes towards sustainability is the need as far as the global industrial point is concerned. This review explores all the approaches for conversion of lignin into value-added phenolic compounds that could be included to packaging applications. These valorized products can exhibit the antioxidant, antimicrobial, cardioprotective, anti-inflammatory and anticancer properties, and due to these features can emerge to incorporate them into production of functional foods and be utilization of them at active food packaging application. These approaches would be an important step for utilization of the recovered bioactive compounds at the nutraceutical and food industrial sectors.
Collapse
Affiliation(s)
| | - Rajesh Kumar Srivastava
- Department of Biotechnology, GST, Gandhi Institute of Technology and Management (GITAM), Visakhapatnam, 530045, A.P., India
| | - Vivekanand Vivekanand
- Center for Energy and Environment, Malaviya National Institute of Technology Jaipur, 302 017, Rajasthan, India
| | - Gulden Goksen
- Department of Food Technology, Vocational School of Technical Sciences, Mersin Tarsus Organized Industrial Zone, Tarsus University, 33100, Mersin, Turkey
| | | | | | - Frederic Debeaufort
- Department of BioEngineering, Institute of Technology Dijon Auxerre, University of Burgundy, 7 Blvd Docteur Petitjean, 20178 Dijon Cedex, France
| | - Ilke Uysal-Unalan
- Department of Food Science, Aarhus University, Agro Food Park 48, 8200, Aarhus N, Denmark; CiFOOD - Center for Innovative Food Research, Aarhus University, Agro Food Park 48, 8200, Aarhus N, Denmark
| | - Arivalagan Pugazhendhi
- School of Engineering, Lebanese American University, Byblos, Lebanon; Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam 603103, Tamil Nadu, India.
| |
Collapse
|
9
|
Tavassoli M, Bahramian B, Abedi-Firoozjah R, Ehsani A, Phimolsiripol Y, Bangar SP. Application of lactoferrin in food packaging: A comprehensive review on opportunities, advances, and horizons. Int J Biol Macromol 2024; 273:132969. [PMID: 38857733 DOI: 10.1016/j.ijbiomac.2024.132969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/16/2024] [Accepted: 06/05/2024] [Indexed: 06/12/2024]
Abstract
Lactoferrin (LAC) is an iron-binding glycoprotein found in mammalian secretion, such as milk and colostrum, which has several advantageous biological characteristics, such as antioxidant and antimicrobial activity, intestinal iron absorption and regulation, growth factor activity, and immune response. LAC is an active GRAS food ingredient and can be included in the food packaging/film matrix in both free and encapsulated forms to increase the microbial, mechanical, barrier, and thermal properties of biopolymer films. Additionally, LAC-containing films maintain the quality of fresh food and extend the shelf life of food products. This paper primarily focuses on examining how LAC affects the antimicrobial, antioxidant, physical, mechanical, thermal, and optical properties of packaging films. Moreover, the paper explains the attributes of films incorporating LAC within different matrices, exploring the interaction between LAC and polymers. The potential of LAC-enhanced food packaging technologies is highlighted, showcasing their promising applications in sustainable food packaging.
Collapse
Affiliation(s)
- Milad Tavassoli
- Department of Nutrition, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Behnam Bahramian
- Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Ali Ehsani
- Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | | | - Sneh Punia Bangar
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; Department of Food, Nutrition and Packaging Sciences, Clemson University, SC, 29634, USA.
| |
Collapse
|
10
|
Akkuzu N, Karakas CY, Devecioglu D, Karbancıoglu Guler F, Sagdic O, Karadag A. Emulsion-based edible chitosan film containing propolis extract to extend the shelf life of strawberries. Int J Biol Macromol 2024; 273:133108. [PMID: 38876246 DOI: 10.1016/j.ijbiomac.2024.133108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/26/2024] [Accepted: 06/10/2024] [Indexed: 06/16/2024]
Abstract
In this study, propolis was first loaded into a conventional oil-in-water emulsion, which was combined with a chitosan film-forming solution to produce propolis emulsion-loaded film (PEF). Strawberries inoculated with Botrytis cinerea coated with PEF and blank emulsion-loaded films (BEF) were stored for 14 days at 4 °C. Compared to BEF, PEF showed superior mechanical and oxygen barrier properties, as well as antioxidant activities, but higher moisture permeability. PEF showed less oil agglomeration on the film surface after drying, as demonstrated by scanning electron microscopy (SEM) analysis. Compared to uncoated strawberries, coatings did not have a significant effect on weight loss or firmness during storage. In contrast, coated strawberries showed elevated total phenolics, anthocyanins, and ascorbic acid retention; however, PEF-coating yielded higher values. Moreover, the PEF coating resulted in a significantly lower reduction of organic acid and total soluble solids. Mold growth was visible in both uncoated and BEF-coated strawberries after 7 days of storage, while PEF-coated fruits showed no visible mold until the end of storage. Starting from day 4, PEF-coated fruits showed lower mold counts (~2 log CFU/g) than other samples. Therefore, the PEF prepared in this study has application potential for the preservation of fresh fruits.
Collapse
Affiliation(s)
- Nisa Akkuzu
- Faculty of Chemical and Metallurgical Engineering, Food Engineering, Yildiz Technical University, Istanbul, Turkiye; Faculty of Chemical and Metallurgical Engineering, Food Engineering, Istanbul Technical University, Istanbul, Turkiye
| | - Canan Yagmur Karakas
- Faculty of Chemical and Metallurgical Engineering, Food Engineering, Yildiz Technical University, Istanbul, Turkiye
| | - Dilara Devecioglu
- Faculty of Chemical and Metallurgical Engineering, Food Engineering, Istanbul Technical University, Istanbul, Turkiye
| | - Funda Karbancıoglu Guler
- Faculty of Chemical and Metallurgical Engineering, Food Engineering, Istanbul Technical University, Istanbul, Turkiye
| | - Osman Sagdic
- Faculty of Chemical and Metallurgical Engineering, Food Engineering, Yildiz Technical University, Istanbul, Turkiye
| | - Ayse Karadag
- Faculty of Chemical and Metallurgical Engineering, Food Engineering, Yildiz Technical University, Istanbul, Turkiye.
| |
Collapse
|
11
|
Dai H, Lv T, Liu S, Luo Y, Wang Y, Wang H, Ma L, Wu J, Zhang Y. Preparation of nanocellulose light porous material adsorbed with tannic acid and its application in fresh-keeping pad. Food Chem 2024; 444:138676. [PMID: 38335683 DOI: 10.1016/j.foodchem.2024.138676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 01/25/2024] [Accepted: 02/02/2024] [Indexed: 02/12/2024]
Abstract
This study fabricated nanocellulose lightweight porous material (TOCNF-G-LPM-TA) as absorbent fresh-keeping pad for meat products, using TEMPO-oxidized cellulose nanofibril (TOCNF) and gelatin as structural skeleton and tannic acid (TA) as antibacterial component of TOCNF lightweight porous material (TOCNF-G-LPM). The adsorption kinetics, capacity and mechanism of TOCNF-G-LPM in different initial concentrations of TA solutions were investigated, the antioxidant and antibacterial properties of TOCNF-G-LPM-TA and its fresh-keeping effect on refrigerated pork at 4 ℃ were studied. Due to strong hydrogen bonding and porous structure, TOCNF-G-LPM exhibited excellent TA adsorption ability (230 mg/g) conforming with pseudo-second-order kinetic and Langmuir isotherm models. TA endowed TOCNF-G-LPM with good antioxidant and antibacterial activities. According to changes in appearance, pH and TVB-N values of pork during storage at 4 ℃, TOCNF-G-LPM-TA effectively extended the shelf life of refrigerated pork. This work provides a facile method for preparing nanocellulose based absorbent fresh-keeping pads.
Collapse
Affiliation(s)
- Hongjie Dai
- College of Food Science, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China
| | - Tianyi Lv
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Siyi Liu
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Yuyuan Luo
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Yuxi Wang
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Hongxia Wang
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Liang Ma
- College of Food Science, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China
| | - Jihong Wu
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China
| | - Yuhao Zhang
- College of Food Science, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China.
| |
Collapse
|
12
|
Yiblet Y, Abdu I, Belew B. Comprehensive Literature Review on Metal Nanoparticle for Enhanced Shelf Life of Mango Fruit. ScientificWorldJournal 2024; 2024:4782328. [PMID: 38957455 PMCID: PMC11217571 DOI: 10.1155/2024/4782328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/29/2024] [Accepted: 06/15/2024] [Indexed: 07/04/2024] Open
Abstract
The purpose of this review was to investigate the application of metal nanoparticles in fruit shelf life extension. Despite growing interest in nanoparticles and their potential applications, there are currently few effective methods for prolonging the shelf life of fruits. The study concentrated on the principles underlying the shelf life extension of metallic nanoparticles, including copper oxide, zinc oxide, silver, and titanium oxide. The biological properties of nanoparticles, especially those with antibacterial qualities, have drawn interest as possible fruit preservation solutions. Many conventional preservation methods have drawbacks, including expensive production costs, short shelf lives, undesirable residues, and the incapacity to properly keep perishable fruits in their natural environments. Techniques for extending shelf life based on nanotechnology have the potential to get around these problems. The review focused on the effective use of environmentally benign, green synthesis-produced nanoparticles to extend the fruit shelf life. The ability of these nanoparticles to successfully preserve fresh fruits was established. The results imply that fruit preservation by the use of nanoparticle synthesis techniques may be a viable strategy, offering a more effective and sustainable substitute for traditional procedures.
Collapse
Affiliation(s)
- Yalew Yiblet
- Department of BiologyMekdela Amba University, P.O. Box 32, Tulu Awlia, Ethiopia
| | - Indiris Abdu
- Department of BiologyMekdela Amba University, P.O. Box 32, Tulu Awlia, Ethiopia
| | - Basaznew Belew
- Department of MathematicsMekdela Amba University, P.O. Box 32, Tulu Awlia, Ethiopia
| |
Collapse
|
13
|
Yan R, Liu M, Zeng X, Du Q, Wu Z, Guo Y, Tu M, Pan D. Preparation of modified chitosan-based nano-TiO 2-nisin composite packaging film and preservation mechanism applied to chilled pork. Int J Biol Macromol 2024; 269:131873. [PMID: 38677699 DOI: 10.1016/j.ijbiomac.2024.131873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 04/09/2024] [Accepted: 04/24/2024] [Indexed: 04/29/2024]
Abstract
Here, we developed a nano-TiO2-nisin-modified chitosan composite packaging film and investigated its properties and antibacterial activity, as well as its effect on chilled pork preservation time. The results indicated that the preservation time of chilled pork coated with a nano-TiO2-nisin-modified chitosan film (including 0.7 g/L nano-TiO2, irradiated with ultraviolet light for 40 min, and dried for 6 h) followed by modified atmosphere packaging (50% CO2 + 50% N2) increased from 7 to 20 days at 4 °C. Both nano-TiO2 and nisin enhanced the mechanical strength of the chitosan film, and nisin promoted nano-TiO2 dispersion and compatibility in chitosan. Treatment with 0.4 g/L nano-TiO2 for 60 min considerably inhibited spoilage bacteria, particularly Acinetobacter johnnii XBB1 (A. johnnii XBB1). As nano-TiO2 concentration and photocatalytic time increased, K+, Ca2+, and Mg2+ leakage in A. johnnii XBB1 increased but Na+/K+-ATPase and Ca2+/Mg2+-ATPase activities decreased. In A. johnnii XBB1, TiO2 significantly downregulated the expression of putrefaction-related genes such as cysM and inhibited cell self-regulation and membrane wall system repair. Therefore, our nano-TiO2-nisin-modified chitosan film could extend the shelf life without the addition of any chemical preservatives, demonstrating great potential for application in food preservation.
Collapse
Affiliation(s)
- Ruonan Yan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, China
| | - Mingxue Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, China
| | - Xiaoqun Zeng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, China.
| | - Qiwei Du
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, China
| | - Zhen Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, China
| | - Yuxing Guo
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Maolin Tu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, China
| | - Daodong Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, China
| |
Collapse
|
14
|
Akafian F, Shekarchizadeh H. Natural resin as a biosource and bio-based plasticizer for edible resin/ethylcellulose composite film preparation. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2024; 61:1105-1116. [PMID: 38562603 PMCID: PMC10981645 DOI: 10.1007/s13197-023-05922-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 12/05/2023] [Accepted: 12/21/2023] [Indexed: 04/04/2024]
Abstract
Nowadays, finding natural and inexpensive resources that can be easily used to make food films has been considered. Despite the widespread use of synthetic resins, natural resins are rarely used. Opopanax resin (OR) was used in this study as a new biosource to prepare the hydrophobic edible film. Ethylcellulose (EC) was blended well with the resin, allowing the formation of a composite film. Film preparation was possible using different amounts of OR and EC. It was interesting that OR had a plasticizing effect on EC film. While using up to 33% w/w glycerol could not produce an elastic EC film, using only 8.5% w/w OR produced a stiff and flexible EC film with lower water sensitivity. Fourier transform infrared (FTIR) spectroscopy analysis showed that the strength of C-O-C and CH bonds in OR + EC film was higher than in EC film. Despite the higher water sensitivity of OR-based composite films than EC-based composite films, they had lower water vapor permeability (WVP) and higher contact angle due to their smoother and more homogeneous film structures with lower porosity, confirmed by scanning electron microscopy (SEM) images. The mechanical properties showed that the film with the highest resin content had the lowest tensile strength (~ 0.4 MPa) and the higher elongation at break (~ 67%) and, therefore, the highest flexibility. The use of natural resins as a biosource is a promising approach in food packaging to prepare hydrophobic films with desirable mechanical properties.
Collapse
Affiliation(s)
- Faezeh Akafian
- Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, Isfahan, 84156–83111 Iran
| | - Hajar Shekarchizadeh
- Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, Isfahan, 84156–83111 Iran
| |
Collapse
|
15
|
Xiao H, Zhou S. Synergistic antibacterial effect and mechanism between Cu 2O nanoparticles and quaternary ammonium salt in moisture-curable acrylic coatings. Colloids Surf B Biointerfaces 2024; 238:113914. [PMID: 38663310 DOI: 10.1016/j.colsurfb.2024.113914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/05/2024] [Accepted: 04/11/2024] [Indexed: 05/12/2024]
Abstract
Combining with various antibacterial mechanisms is the preferred strategy to fabricate coatings with effective antibacterial performance. Herein, Cu2O nanoparticles and dimethyloctadecyl [3-(trimethoxysilyl) propyl] ammonium chloride, a kind of quaternary ammonium salt (QAS), were simultaneously incorporated into a moisture-curable acrylic resin in order to achieve both contact-killing and release-killing abilities for antibacterial coatings. The surface morphology, surface composition and basic properties of the coatings were thoroughly characterized. The antibacterial performance of the coatings was determined by in-vitro bacteriostatic test. Under the constant total mass fraction of antibacterial agents, both Cu2O and QAS content possessed the highest value on the coating surface at Cu2O/QAS mass ratio of 1:1, and correspondingly, the coatings reached sterilizing rate above 99 % against both E. coli and S. loihica, indicating the existence of synergistic effect between Cu2O and QAS. The synergistic antibacterial mechanism of the coatings involved two aspects. Firstly, the combination of contact-killing and release-killing biocides resulted in high bactericidal and antibiofilm activity against different bacteria. Further, the grafting of QAS molecules on the surface of Cu2O particles brought about the spontaneous migration of nanoparticles to the coating surface. The interaction between Cu2O and QAS also inhibited the phase separation of QAS and prolonged the release of Cu2+ at the same time. The coatings, therefore, exhibited stable antibacterial performance at varied service conditions.
Collapse
Affiliation(s)
- Haofeng Xiao
- Department of Materials Science, State Key Laboratory of Molecular Engineering of Polymers, Advanced Coatings Research Center of Ministry of Education of China, Fudan University, Shanghai 200433, China
| | - Shuxue Zhou
- Department of Materials Science, State Key Laboratory of Molecular Engineering of Polymers, Advanced Coatings Research Center of Ministry of Education of China, Fudan University, Shanghai 200433, China.
| |
Collapse
|
16
|
Aldalbahi A, Thamer BM, Abdulhameed MM, El-Newehy MH. Fabrication of biodegradable and antibacterial films of chitosan/polyvinylpyrrolidone containing Eucalyptus citriodora extracts. Int J Biol Macromol 2024; 266:131001. [PMID: 38547951 DOI: 10.1016/j.ijbiomac.2024.131001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/08/2024] [Accepted: 03/17/2024] [Indexed: 04/06/2024]
Abstract
The main objective of this work is to develop biodegradable active films through the combination of the extracts with different solvents sourced from Eucalyptus citriodora leaves, with films made of chitosan (Cs) and polyvinylpyrrolidone (PVP). Chromatographic profiling investigations were carried out to examine the antibacterial characteristics of E. citriodora extracts before their direct incorporation into the polymer films. At this point, the potent antimicrobial properties of the phenol compounds and bioactive components demonstrated an antibacterial activity that was particularly noticeable at a hexane resolution. Different morphological characteristics were seen on films made from these solvent extracts, such as Cs/PVP-AE, Cs/PVP-EAE, and Cs/PVP-HE, when scanning electron microscopy was used. Numerous other outcomes of all the interactions between the extract particles and the film were shown by the pores defined by the Cs/PVP film's porous nature. The addition of the extracts, either alone or in combination, greatly enhanced the Cs/NC/PVP films' mechanical characteristics. It has also been shown that adding plant extracts greatly increased the antibacterial activity of these films. These findings reveal that Cs/PVP films loaded with extract may be utilized as more environmentally acceptable substitutes for possible food packaging application by increasing shelf life of food products.
Collapse
Affiliation(s)
- Ali Aldalbahi
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Badr M Thamer
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Meera Moydeen Abdulhameed
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Mohamed H El-Newehy
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia.
| |
Collapse
|
17
|
Li H, Liu M, Ju X, Zhang H, Xia N, Wang J, Wang Z, Rayan AM. Physico-Chemical Characteristics of pH-Driven Active Film Loading with Curcumin Based on the Egg White Protein and Sodium Alginate Matrices. Foods 2024; 13:1340. [PMID: 38731711 PMCID: PMC11083475 DOI: 10.3390/foods13091340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/24/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
The low solubility and stability of fat-soluble curcumin in water limit its application in active packaging. This study explored the use of a pH-driven method to investigate the preparation and enhancement of the performance of films loaded with curcumin in a matrix of sodium alginate (Alg) and egg white protein (EWP). In this study, the EWP, Alg, and curcumin primarily bind through hydrogen bonding, electrostatic interactions, and hydrophobic interactions. Compared to EWP films, the films loaded with curcumin through the pH-driven method exhibited enhanced extensibility and water resistance, with an elongation at break (EB) of 103.56 ± 3.13% and a water vapor permeability (WVP) of 1.67 ± 0.03 × 10-10 g·m/m2·Pa·s. The addition of Alg improved the encapsulation efficiency and thermal stability of curcumin, thereby enhancing the antioxidant activity of the film through the addition of 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azinobis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radicals, which resulted in 106.95 ± 2.61 μg TE/g and 144.44 ± 8.89 μg TE/g, respectively. It is noteworthy that the detrimental effect of Alg on the color responsiveness of films containing curcumin has also been observed. This study provides a potential strategy and consideration for the loading of low water-soluble active substances and the preparation of active packaging.
Collapse
Affiliation(s)
- Hanyu Li
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; (H.L.); (N.X.)
| | - Mengzhuo Liu
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; (H.L.); (N.X.)
| | - Xinyi Ju
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; (H.L.); (N.X.)
| | - Huajiang Zhang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; (H.L.); (N.X.)
| | - Ning Xia
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; (H.L.); (N.X.)
| | - Jing Wang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; (H.L.); (N.X.)
| | - Zhongjiang Wang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; (H.L.); (N.X.)
| | - Ahmed M. Rayan
- Agricultural College, Suez Canal University, Ismailia 41522, Egypt;
| |
Collapse
|
18
|
Zhu J, Fang Y, Wakisaka M, Saadiah Hafid H, Yang Z, Yin Y, Omura T, Fang W. Fabrication of flexible chitosan film reinforced with pulping by-product lignosulfonates for cherry-tomato preservation. Food Chem X 2024; 21:101181. [PMID: 38357373 PMCID: PMC10865233 DOI: 10.1016/j.fochx.2024.101181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/22/2024] [Accepted: 02/02/2024] [Indexed: 02/16/2024] Open
Abstract
The massive production of food waste and plastic pollution necessitates innovative solutions. This study reports the first fabrication of a flexible chitosan (CH) film reinforced with lignosulfonate (LS) derived from pulping byproduct as a sustainable alternative to synthetic food packaging. The CH/LS composite film was prepared by a simple casting method with varying LS contents of 1 % and 2 %. Compared to CH film, the addition of 2 % LS increased the tensile strength by over 4 times and decreased water vapor permeability by 11 %. Moreover, the CH/LS film exhibited excellent UV-shielding properties. This novel use of LS to reinforce CH film presents an eco-friendly active packaging material. When used to package cherry tomatoes for 2 weeks, the CH/LS film effectively maintained fruit freshness and hardness while minimizing weight loss. This work provides new scientific evidence on the optimized preparation and application of CH/LS composite films from renewable resources for food preservation.
Collapse
Affiliation(s)
- Jiangyu Zhu
- School of Food Science and Engineering, Yangzhou University, No. 196 Huayang West Road, Hanjiang District, Yangzhou 225127, China
| | - Yujie Fang
- School of Food Science and Engineering, Yangzhou University, No. 196 Huayang West Road, Hanjiang District, Yangzhou 225127, China
| | - Minato Wakisaka
- Food Study Centre, Fukuoka Women’s University, 1-1-1 Kasumigaoka, Fukuoka 813-8529, Japan
| | - Halimatun Saadiah Hafid
- Institute of Plantation Studies, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Zhengfei Yang
- School of Food Science and Engineering, Yangzhou University, No. 196 Huayang West Road, Hanjiang District, Yangzhou 225127, China
| | - Yongqi Yin
- School of Food Science and Engineering, Yangzhou University, No. 196 Huayang West Road, Hanjiang District, Yangzhou 225127, China
| | - Taku Omura
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Weiming Fang
- School of Food Science and Engineering, Yangzhou University, No. 196 Huayang West Road, Hanjiang District, Yangzhou 225127, China
| |
Collapse
|
19
|
Pu Y, Wang H, Jiang H, Cao J, Qu G, Jiang W. Techno-functional properties of active film based on guar gum-propolis and its application for "Nanguo" pears preservation. Int J Biol Macromol 2024; 261:129578. [PMID: 38246454 DOI: 10.1016/j.ijbiomac.2024.129578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 12/28/2023] [Accepted: 01/16/2024] [Indexed: 01/23/2024]
Abstract
Guar gum (GG) composite films, incorporating the ethanolic extract of propolis (EEP), were prepared and subjected to a comprehensive investigation of their functional characteristics. The addition of EEP resulted in a discernible enhancement in the opacity, moisture barrier capacity, and elongation at break. Incorporating EEP led to a noteworthy increase in the total phenolic and total flavonoid content of the films, resulting in superior antioxidant capacity upon GG-EEP films. Remarkably, the addition of 5 % EEP yielded noteworthy outcomes, manifesting in a DPPH radical scavenging rate of 47.60 % and the ABTS radical scavenging rate of 94.87 %, as well as FRAP and cupric reducing power of 331.98 mmol FeSO4-7H2O kg-1 and 56.95 μg TE mg-1, respectively. In addition, GG-EEP films demonstrated antifungal effect against Penicillium expansum and Aspergillus niger, along with a sustained antibacterial effect against Escherichia coli and Staphylococcus aureus. GG-EEP films had superior inhibitory ability against Gram-positive bacteria than Gram-negative bacteria. Crucially, GG-EEP composite films played a pivotal role in reducing both lesion diameter and depth, concurrently mitigating weight loss and firmness decline during the storage period of "Nanguo" pears. Therefore, GG-EEP composite films have the considerable potential to serve as advanced and effective active packaging materials for food preservation.
Collapse
Affiliation(s)
- Yijing Pu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Hongxuan Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Haitao Jiang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Jiankang Cao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Guiqin Qu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China.
| | - Weibo Jiang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China.
| |
Collapse
|
20
|
Jafarzadeh S, Yildiz Z, Yildiz P, Strachowski P, Forough M, Esmaeili Y, Naebe M, Abdollahi M. Advanced technologies in biodegradable packaging using intelligent sensing to fight food waste. Int J Biol Macromol 2024; 261:129647. [PMID: 38281527 DOI: 10.1016/j.ijbiomac.2024.129647] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/07/2024] [Accepted: 01/18/2024] [Indexed: 01/30/2024]
Abstract
The limitation of conventional packaging in demonstrating accurate and real-time food expiration dates leads to food waste and foodborne diseases. Real-time food quality monitoring via intelligent packaging could be an effective solution to reduce food waste and foodborne illnesses. This review focuses on recent technological advances incorporated into food packaging for monitoring food spoilage, with a major focus on paper-based sensors and their combination with smartphone. This review paper offers a comprehensive exploration of advanced macromolecular technologies in biodegradable packaging, a general overview of paper-based probes and their incorporation into food packaging coupled with intelligent sensing mechanisms for monitoring food freshness. Given the escalating global concerns surrounding food waste, our manuscript serves as a pivotal resource, consolidating current research findings and highlighting the transformative potential of these innovative packaging solutions. We also highlight the current intelligent paper-based food freshness sensors and their various advantages and limitations. Examples of implementation of paper-based sensors/probes for food storage and their accuracy are presented. Finally, we examined how intelligent packaging can be an alternative to reduce food waste. Several technologies discussed here have good potential to be used in food packaging for real-time food monitoring, especially when combined with smartphone diagnosis.
Collapse
Affiliation(s)
- Shima Jafarzadeh
- Centre for Sustainable Bioproducts, Deakin University, Waurn Ponds Campus, Geelong, Victoria 3217, Australia.
| | - Zeynep Yildiz
- Department of Chemistry, Middle East Technical University, 06800 Çankaya, Ankara, Turkey
| | - Pelin Yildiz
- Department of Chemistry, Middle East Technical University, 06800 Çankaya, Ankara, Turkey
| | - Przemyslaw Strachowski
- Department of Biology and Biological Engineering-Food and Nutrition Science, Chalmers University of Technology, SE 412 96 Gothenburg, Sweden
| | - Mehrdad Forough
- Department of Chemistry, Middle East Technical University, 06800 Çankaya, Ankara, Turkey
| | - Yasaman Esmaeili
- Department of Food Science and Technology, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
| | - Minoo Naebe
- Institute for Frontier Materials, Deakin University, Waurn Ponds Campus, Geelong, Victoria 3216, Australia.
| | - Mehdi Abdollahi
- Department of Biology and Biological Engineering-Food and Nutrition Science, Chalmers University of Technology, SE 412 96 Gothenburg, Sweden.
| |
Collapse
|
21
|
Ni Y, Zhao J, Zhang W, Tan L, Li Y, Li H, Xu B. Efficient Fresh Lamp Light-Harvesting Films with the Self-Activating Continuous and Recyclable Bactericidal Ability for Ultrapersistent Freshness of Perishable Muscle Food. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:2756-2764. [PMID: 38048174 DOI: 10.1021/acs.jafc.3c07299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
A large quantity of perishable muscle food is being wasted due to harmful bacteria infestation during the sales and circulation each year and facing challenges. In this study, a self-activated bactericidal active film (PLA/g-C3N4@PCN-224) responsive to fresh lamp light was prepared, which showed excellent hydrophobicity, water vapor resistance, and thermal stability. Due to the synergistic effect between light-induced reactive oxygen species and the high specific surface area of g-C3N4@PCN-224, this film still maintains 99.99% bactericidal efficacy against Escherichia coli and Staphylococcus aureus after 10 days of continuous bactericidal activity test. The results of cell and hemolysis experiments indicated that the film was safe and nontoxic and can effectively preserve fresh pork for 7 days. Moreover, the film also exhibited a recyclable and efficient killing activity. A strategy for achieving ultrapersistent freshness of perishable muscle food was provided.
Collapse
Affiliation(s)
- Yongsheng Ni
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, Anhui Province China
| | - Jinsong Zhao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, Anhui Province China
| | - Wendi Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, Anhui Province China
| | - Lijun Tan
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, Anhui Province China
| | - Yumeng Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, Anhui Province China
| | - Haoran Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, Anhui Province China
| | - Baocai Xu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, Anhui Province China
- Engineering Research Center of Bio-Process of Ministry of Education, School of Food & Biological Engineering, Hefei University of Technology, Hefei 230601, Anhui Province, China
| |
Collapse
|
22
|
Giotopoulou I, Fotiadou R, Stamatis H, Barkoula NM. Development of Low-Density Polyethylene Films Coated with Phenolic Substances for Prolonged Bioactivity. Polymers (Basel) 2023; 15:4580. [PMID: 38232018 PMCID: PMC10707956 DOI: 10.3390/polym15234580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/23/2023] [Accepted: 11/28/2023] [Indexed: 01/19/2024] Open
Abstract
The current study proposes an efficient coating methodology for the development of low-density polyethylene (LDPE) films with prolonged bioactivity for food packaging applications. Three natural phenolic-based substances were incorporated at optimized concentrations in methyl-cellulose-based solutions and used as coatings on LDPE films. The amount of surfactant/emulsifier was optimized to control the entrapment of the bioactive substances, minimizing the loss of the substances during processing, and offering prolonged bioactivity. As a result, the growth of Escherichia coli was substantially inhibited after interaction with the coated films, while coated films presented excellent antioxidant activities and maintained their mechanical performance after coating. Considerable bioactivity was observed after up to 7 days of storage in sealed bags in the case of carvacrol- and thymol-coated films. Interestingly, films coated with olive-leaf extract maintained a high level of antimicrobial and antioxidant properties, at least for 40 days of storage.
Collapse
Affiliation(s)
- Iro Giotopoulou
- Department of Materials Science and Engineering, University of Ioannina, 45110 Ioannina, Greece;
| | - Renia Fotiadou
- Department of Biological Applications and Technology, University of Ioannina, 45110 Ioannina, Greece; (R.F.); (H.S.)
| | - Haralambos Stamatis
- Department of Biological Applications and Technology, University of Ioannina, 45110 Ioannina, Greece; (R.F.); (H.S.)
| | | |
Collapse
|
23
|
Giannakas AE, Zaharioudakis K, Kollia E, Kopsacheili A, Avdylaj L, Georgopoulos S, Leontiou A, Karabagias VK, Kehayias G, Ragkava E, Proestos C, Salmas CE. The Development of a Novel Sodium Alginate-Based Edible Active Hydrogel Coating and Its Application on Traditional Greek Spreadable Cheese. Gels 2023; 9:807. [PMID: 37888380 PMCID: PMC10606390 DOI: 10.3390/gels9100807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/02/2023] [Accepted: 10/05/2023] [Indexed: 10/28/2023] Open
Abstract
The necessity of reducing the greenhouse effect by decreasing the carbon dioxide fingerprint directed the food packaging technology to use biobased raw materials. Alginates, which are derived from brown algae species, are one of the most promising biobased biopolymers for the development of edible active coatings capable of protecting food from oxidation/bacterial spoilage. In this study, sodium alginate, which was plasticized with glycerol and mixed with a biobased thymol/natural halloysite nanohybrid, was used to develop novel edible active coatings. Nanocomposite coatings were also developed in this project by mixing pure halloysite with sodium alginate/glycerol matrix and were used as reference material for comparison reasons. Instrumental analysis indicated a higher compatibility of a thymol/halloysite nanohybrid with a sodium alginate/glycerol matrix compared to pure halloysite with a sodium alginate/glycerol matrix. Increased compatibility resulted in improved tensile properties, water/oxygen barrier properties, and total antioxidant activity. These edible active coatings were applied to traditional Greek spread cheese and showed a reduction in the mesophilic microbial population over one log10 unit (cfu/g) compared to uncoated cheese. Moreover, the reduction in the mesophilic microbial population increased with the increase in halloysite and thymol content, indicating such sodium alginate/glycerol/thymol/halloysite hydrogels as promising edible active coatings for dairy products.
Collapse
Affiliation(s)
- Aris E. Giannakas
- Department of Food Science and Technology, University of Patras, 30100 Agrinio, Greece; (K.Z.); (S.G.); (A.L.); (V.K.K.); (G.K.); (E.R.)
| | - Konstantinos Zaharioudakis
- Department of Food Science and Technology, University of Patras, 30100 Agrinio, Greece; (K.Z.); (S.G.); (A.L.); (V.K.K.); (G.K.); (E.R.)
| | - Eleni Kollia
- Laboratory of Food Chemistry, Department of Chemistry, National and Kapodistrian University of Athens Zografou, 15771 Athens, Greece; (E.K.); (A.K.); (L.A.)
| | - Anna Kopsacheili
- Laboratory of Food Chemistry, Department of Chemistry, National and Kapodistrian University of Athens Zografou, 15771 Athens, Greece; (E.K.); (A.K.); (L.A.)
| | - Learda Avdylaj
- Laboratory of Food Chemistry, Department of Chemistry, National and Kapodistrian University of Athens Zografou, 15771 Athens, Greece; (E.K.); (A.K.); (L.A.)
| | - Stavros Georgopoulos
- Department of Food Science and Technology, University of Patras, 30100 Agrinio, Greece; (K.Z.); (S.G.); (A.L.); (V.K.K.); (G.K.); (E.R.)
| | - Areti Leontiou
- Department of Food Science and Technology, University of Patras, 30100 Agrinio, Greece; (K.Z.); (S.G.); (A.L.); (V.K.K.); (G.K.); (E.R.)
| | - Vassilios K. Karabagias
- Department of Food Science and Technology, University of Patras, 30100 Agrinio, Greece; (K.Z.); (S.G.); (A.L.); (V.K.K.); (G.K.); (E.R.)
| | - George Kehayias
- Department of Food Science and Technology, University of Patras, 30100 Agrinio, Greece; (K.Z.); (S.G.); (A.L.); (V.K.K.); (G.K.); (E.R.)
| | - Efthymia Ragkava
- Department of Food Science and Technology, University of Patras, 30100 Agrinio, Greece; (K.Z.); (S.G.); (A.L.); (V.K.K.); (G.K.); (E.R.)
| | - Charalampos Proestos
- Laboratory of Food Chemistry, Department of Chemistry, National and Kapodistrian University of Athens Zografou, 15771 Athens, Greece; (E.K.); (A.K.); (L.A.)
| | - Constantinos E. Salmas
- Department of Material Science and Engineering, University of Ioannina, 45110 Ioannina, Greece
| |
Collapse
|
24
|
Pobiega K, Kot AM, Przybył JL, Synowiec A, Gniewosz M. Comparison of the Chemical Composition and Antioxidant Properties of Propolis from Urban Apiaries. Molecules 2023; 28:6744. [PMID: 37764522 PMCID: PMC10537721 DOI: 10.3390/molecules28186744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/17/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
Bee products from urban apiaries are increasingly used. They are mainly used to promote local apiaries and cities in which they are located. The aim of the study was to compare the chemical composition and antioxidant activity of propolis from 6 Polish apiaries located in cities (Legionowo, Torun, Cracow, Warsaw, Katowice, Lodz). The chemical composition was analyzed using liquid chromatography (HPLC-DAD) and the analysis of antioxidant activity by scavenging free radicals (ABTS and DPPH) and FRAP. The obtained results showed the presence of 24 phenolic compounds in propolis extracts. The tested samples showed differentiation in terms of the content of individual chemical components, however, cinnamic acid and its derivatives were dominant. High antioxidant activity of the tested extracts was demonstrated (ABTS was in the range of 16.80-51.53 mg Te/mL, DPPH was in the range of 7.54-22.13 mg Te/mL, while FRAP reduction was in the range of 10.93-29.55 mg Te/mL). The obtained results compared with literature data on propolis from agricultural areas allow to conclude that propolis samples from both Poland types of areas are similar and can be classified as poplar propolis.
Collapse
Affiliation(s)
- Katarzyna Pobiega
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences WULS-SGGW, 159C Nowoursynowska Street, 02-776 Warsaw, Poland; (A.M.K.); (A.S.); (M.G.)
| | - Anna M. Kot
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences WULS-SGGW, 159C Nowoursynowska Street, 02-776 Warsaw, Poland; (A.M.K.); (A.S.); (M.G.)
| | - Jarosław L. Przybył
- Department of Vegetable and Medicinal Plants, Institute of Horticultural Sciences, Warsaw University of Life Sciences WULS-SGGW, 159 Nowoursynowska Street, 02-776 Warsaw, Poland;
| | - Alicja Synowiec
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences WULS-SGGW, 159C Nowoursynowska Street, 02-776 Warsaw, Poland; (A.M.K.); (A.S.); (M.G.)
| | - Małgorzata Gniewosz
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences WULS-SGGW, 159C Nowoursynowska Street, 02-776 Warsaw, Poland; (A.M.K.); (A.S.); (M.G.)
| |
Collapse
|
25
|
Xu QD, Jing Z, He Q, Zeng WC. A novel film based on gluten, pectin, and polyphenols and its potential application in high-fat food. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:6119-6127. [PMID: 37139632 DOI: 10.1002/jsfa.12682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/25/2023] [Accepted: 05/04/2023] [Indexed: 05/05/2023]
Abstract
BACKGROUND A novel film based on some natural ingredients (wheat gluten, pectin, and polyphenols) was used to improve the quality and storage stability of high-fat food due to their good sustainable, mechanical, and edible properties. RESULTS With the addition of polyphenols from Cedrus deodara (in the form of pine-needle extract (PNE)), the physicochemical properties (thickness, moisture content, and color), mechanical properties (tensile strength and elongation), barrier properties (water vapor, oil, and oxygen permeability, transmittance), and thermal stability of the composite film were improved. According to the analysis of infrared spectroscopy and molecular docking, the main compounds of PNE interacted with wheat gluten by hydrogen bonds and hydrophobic forces to form a compact and stable structure. In addition, the composite film showed a remarkable antioxidant capability to scavenge free radicals, and the film matrix could effectively protect the antioxidant activity of PNE. Furthermore, using cured meat as a model, the composite film exhibited a fine packaging performance in high-fat food during storage, which could obviously inhibit the excessive oxidation of fat and protein of cured meat and was beneficial in forming its special flavor. CONCLUSION Our results suggest that the composite film possessed good properties and had potential for packing of high-fat foods, which could improve the quality and safety of food during processing and storage. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Qian-Da Xu
- Antioxidant Polyphenols Team, Department of Food Engineering, Sichuan University, Chengdu, PR China
| | - Zan Jing
- Leshan Food and Drug Inspection Center, Leshan, PR China
| | - Qiang He
- The Key Laboratory of Food Science and Technology of Sichuan Province of Education, Sichuan University, Chengdu, PR China
| | - Wei-Cai Zeng
- Antioxidant Polyphenols Team, Department of Food Engineering, Sichuan University, Chengdu, PR China
- The Key Laboratory of Food Science and Technology of Sichuan Province of Education, Sichuan University, Chengdu, PR China
| |
Collapse
|
26
|
Advances in propolis and propolis functionalized coatings and films for fruits and vegetables preservation. Food Chem 2023; 414:135662. [PMID: 36808021 DOI: 10.1016/j.foodchem.2023.135662] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023]
Abstract
Propolis, as a natural active substance, is rich in polyphenols, with low toxicity, antioxidant, antifungal and antibacterial properties, which can be applied to the post-harvest preservation of fruits and vegetables. Propolis extracts and propolis functionalized coatings and films have exhibited good freshness in various types of fruits and vegetables as well as fresh-cut vegetables. They are mainly used to prevent water loss after harvesting, to inhibit the infestation of bacteria and fungi after harvesting and to enhance the firmness and apparent quality of fruits and vegetables. Moreover, propolis and propolis functionalized composites have a small or even insignificant effect on the physicochemical parameters of fruits and vegetables. Furthermore, how to cover the special smell of propolis itself so that it does not affect the flavor of fruits and vegetables, and the application of propolis extract in wrapping paper and packaging bag of fruits and vegetables, are worthwhile to further investigate.
Collapse
|
27
|
Bagher Abiri A, Baghaei H, Mohammadi Nafchi A. Preparation and Application of Active Bionanocomposite Films Based on Sago Starch Reinforced with a Combination of TiO 2 Nanoparticles and Penganum harmala Extract for Preserving Chicken Fillets. Polymers (Basel) 2023; 15:2889. [PMID: 37447533 DOI: 10.3390/polym15132889] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 06/26/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
The aim of this study was to develop sago starch-based bionanocomposite films containing TiO2 nanoparticles and Penganum harmala extract (PE) to increase the shelf life of chicken fillets. First, sago starch films containing different levels of TiO2 nanoparticles (1, 3, and 5%) and PE (5, 10, and 15%) were prepared. The barrier properties and antibacterial activity of the films against different bacteria strains were investigated. Then, the produced films were used for the chicken fillets packaging, and the physicochemical and antimicrobial properties of fillets were estimated during 12-day storage at 4 °C. The results showed that the addition of nano TiO2 and PE in the films increased the antibacterial activity against gram-positive (S. aureus) higher than gram-negative (E. coli) bacteria. The water vapor permeability of the films decreased from 2.9 to 1.26 (×10-11 g/m·s·Pa) by incorporating both PE and nano TiO2. Synergistic effects of PE and nano TiO2 significantly decreased the oxygen permeability of the sago starch films from 8.17 to 4.44 (cc.mil/m2·day). Application results of bionanocomposite films for chicken fillet storage at 4 °C for 12 days demonstrated that the films have great potential to increase the shelf life of fillets. The total volatile basic nitrogen (TVB-N) of chicken fillets increased from 7.34 to 35.28 after 12 days, whereas samples coated with bionanocomposite films increased from 7.34 to 16.4. For other physicochemical and microbiological properties of chicken fillets, similar improvement was observed during cold storage. It means that the bionanocomposite films could successfully improve the shelf life of the chicken fillets by at least eight days compared to the control sample.
Collapse
Affiliation(s)
- Alireza Bagher Abiri
- Department of Food Science and Technology, Damghan Branch, Islamic Azad University, Damghan, Iran
| | - Homa Baghaei
- Department of Food Science and Technology, Damghan Branch, Islamic Azad University, Damghan, Iran
| | - Abdorreza Mohammadi Nafchi
- Department of Food Science and Technology, Damghan Branch, Islamic Azad University, Damghan, Iran
- Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
- Green Biopolymer, Coatings & Packaging Cluster, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
| |
Collapse
|
28
|
Ye H, He Y, Li H, You T, Xu F. 3D-Printed Polylactic Acid/Lignin Films with Great Mechanical Properties and Tunable Functionalities towards Superior UV-Shielding, Haze, and Antioxidant Properties. Polymers (Basel) 2023; 15:2806. [PMID: 37447452 DOI: 10.3390/polym15132806] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/15/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Three-dimensional (3D) printing is regarded as a novel technique to realize the customized production of films. However, the relative lack of printable materials with excellent mechanical properties and tailored functionalities seriously restricts its wide application. Herein, a promising multifunctional 3D printing filament was fabricated by incorporating lignin into the polylactic acid (PLA) matrix and firstly applied to film production. The results indicate that lignin was an excellent mechanical reinforcement of the PLA matrix, especially for toughening. Only 0.5% lignin doping improved the toughness by 81.8%. Additionally, 3D-printed films with 0.5-5% lignin exhibited excellent ultraviolet (UV)-blocking capability of 87.4-99.9% for UVB and 65.6-99.8% for UVA, as well as remarkable antioxidant properties, ranging from 24.0% to 79.0%, and high levels of haze, ranging from 63.5% to 92.5%. Moreover, the prepared PLA/lignin (P/L) films based on 3D printing achieved the customization of film production and have potential applications in the fields of packaging, electronic products, medical care, and so forth. Overall, this work not only enriches the 3D printing composites with tailored multifunctionality but also brings the promising potential for the production of customized films.
Collapse
Affiliation(s)
- Haichuan Ye
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
- Engineering Research Center of Forestry Biomass Materials and Energy, Ministry of Education, Beijing Forestry University, Beijing 100083, China
| | - Yuan He
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
- Engineering Research Center of Forestry Biomass Materials and Energy, Ministry of Education, Beijing Forestry University, Beijing 100083, China
| | - Haichao Li
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
- Engineering Research Center of Forestry Biomass Materials and Energy, Ministry of Education, Beijing Forestry University, Beijing 100083, China
| | - Tingting You
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
- Engineering Research Center of Forestry Biomass Materials and Energy, Ministry of Education, Beijing Forestry University, Beijing 100083, China
| | - Feng Xu
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
- Engineering Research Center of Forestry Biomass Materials and Energy, Ministry of Education, Beijing Forestry University, Beijing 100083, China
- Shandong Key Laboratory of Paper Science & Technology, Qilu University of Technology, Jinan 250353, China
| |
Collapse
|
29
|
Segueni N, Boutaghane N, Asma ST, Tas N, Acaroz U, Arslan-Acaroz D, Shah SRA, Abdellatieff HA, Akkal S, Peñalver R, Nieto G. Review on Propolis Applications in Food Preservation and Active Packaging. PLANTS (BASEL, SWITZERLAND) 2023; 12:1654. [PMID: 37111877 PMCID: PMC10142627 DOI: 10.3390/plants12081654] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 04/04/2023] [Accepted: 04/05/2023] [Indexed: 06/19/2023]
Abstract
Propolis is a natural hive product collected by honeybees from different plants and trees. The collected resins are then mixed with bee wax and secretions. Propolis has a long history of use in traditional and alternative medicine. Propolis possesses recognized antimicrobial and antioxidant properties. Both properties are characteristics of food preservatives. Moreover, most propolis components, in particular flavonoids and phenolic acids, are natural constituents of food. Several studies suggest that propolis could find use as a natural food preservative. This review is focused on the potential application of propolis in the antimicrobial and antioxidant preservation of food and its possible application as new, safe, natural, and multifunctional material in food packaging. In addition, the possible influence of propolis and its used extracts on the sensory properties of food is also discussed.
Collapse
Affiliation(s)
- Narimane Segueni
- Laboratory of Natural Product and Organic Synthesis, Department of Chemistry, Faculty of Science, Campus Chaabat Ersas, University Mentouri–Constantine 1, Constantine 25000, Algeria
- Faculty of Medicine, University Salah Boubnider Constantine 3, Constantine 25000, Algeria
| | - Naima Boutaghane
- Laboratoire d’Obtention des Subtances Thérapeutiques (LOST), Département de Chimie, Campus Chaabet-Ersas, Université des Frères Mentouri-Constantine 1, Constantine 25000, Algeria
| | - Syeda Tasmia Asma
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Afyon Kocatepe University, Afyonkarahisar 03200, Turkey
| | - Nuri Tas
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Afyon Kocatepe University, Afyonkarahisar 03200, Turkey
| | - Ulas Acaroz
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Afyon Kocatepe University, Afyonkarahisar 03200, Turkey
- ACR Bio Food and Biochemistry Research and Development, Afyonkarahisar 03200, Turkey
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Kyrgyz-Turkish Manas University, Bishkek KG-720038, Kyrgyzstan
| | - Damla Arslan-Acaroz
- ACR Bio Food and Biochemistry Research and Development, Afyonkarahisar 03200, Turkey
- Department of Biochemistry, Faculty of Veterinary Medicine, Afyon Kocatepe University, Afyonkarahisar 03200, Turkey
- Department of Biochemistry, Faculty of Veterinary Medicine, Kyrgyz-Turkish Manas University, Bishkek KG-720038, Kyrgyzstan
| | - Syed Rizwan Ali Shah
- Department of Animal Nutrition and Nutritional Diseases, Faculty of Veterinary Medicine, Afyon Kocatepe University, Afyonkarahisar 03200, Turkey
| | - Hoda A. Abdellatieff
- Department of Pathology, Faculty of Veterinary Medicine, Damanhour University, El-Beheira, Damanhour 22514, Egypt
| | - Salah Akkal
- Unit of Recherche Valorisation of Natural Resources, Bioactive Molecules and Analyses Physicochemical and Biological (VARENBIOMOL), Department of Chemistry, Faculty of Science, University Mentouri-Constantine 1, Constantine 25000, Algeria
| | - Rocío Peñalver
- Department of Food Technology, Food Science and Nutrition, Faculty of Veterinary Sciences, Regional Campus of International Excellence “Campus Mare Nostrum”, University of Murcia, Espinardo, 30071 Murcia, Spain
| | - Gema Nieto
- Department of Food Technology, Food Science and Nutrition, Faculty of Veterinary Sciences, Regional Campus of International Excellence “Campus Mare Nostrum”, University of Murcia, Espinardo, 30071 Murcia, Spain
| |
Collapse
|
30
|
Cruz-Monterrosa RG, Rayas-Amor AA, González-Reza RM, Zambrano-Zaragoza ML, Aguilar-Toalá JE, Liceaga AM. Application of Polysaccharide-Based Edible Coatings on Fruits and Vegetables: Improvement of Food Quality and Bioactivities. POLYSACCHARIDES 2023. [DOI: 10.3390/polysaccharides4020008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
Abstract
Most foods derived from plant origin are very nutritious but highly perishable products. Nowadays, the food industry is focusing on the development of efficient preservation strategies as viable alternatives to traditional packaging and chemical treatments. Hence, polysaccharide-based edible coatings have been proposed because of their properties of controlled release of food additives and the protection of sensitive compounds in coated foods. Thus, this technology has allowed for improving the quality parameters and extends the shelf life of fruits and vegetables through positive effects on enzyme activities, physicochemical characteristics (e.g., color, pH, firmness, weight, soluble solids), microbial load, and nutritional and sensory properties of coated foods. Additionally, some bioactive compounds have been incorporated into polysaccharide-based edible coatings, showing remarkable antioxidant and antimicrobial properties. Thus, polysaccharide-based edible coatings incorporated with bioactive compounds can be used not only as an efficient preservation strategy but also may play a vital role in human health when consumed with the food. The main objective of this review is to provide a comprehensive overview of materials commonly used in the preparation of polysaccharide-based edible coatings, including the main bioactive compounds that can be incorporated into edible coatings, which have shown specific bioactivities.
Collapse
|
31
|
Shahabi N, Soleimani S, Ghorbani M. Investigating functional properties of halloysite nanotubes and propolis used in reinforced composite film based on soy protein/basil seed gum for food packaging application. Int J Biol Macromol 2023; 231:123350. [PMID: 36681220 DOI: 10.1016/j.ijbiomac.2023.123350] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/01/2023] [Accepted: 01/16/2023] [Indexed: 01/19/2023]
Abstract
This study aimed to investigate the effect of halloysite nanotubes (HNTs) on the physicochemical characteristics of the soy protein isolated/basil seed gum (SPI/BSG) film activated with propolis (PP). The obtained results of scanning electron microscope (SEM), thermal gravimetric analysis (TGA), and tensile investigations illustrated that the addition of HNTs as nanofiller led to positive changes in the morphology, thermal stability, and mechanical characteristics of SPI/BSG films. The barrier properties of films considerably decreased with incorporation of HNTs. Furthermore, the encapsulation of PP as bioactive agent into the produced films significantly increased (P < 0.05) the antioxidant potential of the samples in DPPH radical-scavenging activity assays. The antibacterial effects of film also significantly increased (P < 0.05) after the encapsulation of PP. In conclusion, the produced films illustrated acceptable efficiency for usage in food packaging system.
Collapse
Affiliation(s)
- Nasim Shahabi
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Shahrekord University, Shahrekord, Iran
| | - Sajad Soleimani
- Department of Food Hygiene, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Marjan Ghorbani
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
32
|
Nano-Conjugated Food-Derived Antimicrobial Peptides As Natural Biopreservatives: A Review of Technology and Applications. Antibiotics (Basel) 2023; 12:antibiotics12020244. [PMID: 36830155 PMCID: PMC9952009 DOI: 10.3390/antibiotics12020244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/21/2023] [Accepted: 01/22/2023] [Indexed: 01/26/2023] Open
Abstract
In recent years, microbial food safety has garnered a lot of attention due to worldwide expansion of the food industry and processed food products. This has driven the development of novel preservation methods over traditional ones. Food-derived antimicrobial peptides (F-AMPs), produced by the proteolytic degradation of food proteins, are emerging as pragmatic alternatives for extension of the shelf-life of food products. The main benefits of F-AMPs are their wide spectrum antimicrobial efficacy and low propensity for the development of antibiotic resistance. However, direct application of F-AMPs in food limits its efficacy during storage. Therefore, the development of nanocarriers for the conjugation and distribution of potential AMPs may hold great potential to increase their bioactivity. This review highlights the significance of F-AMPs as a feasible and sustainable alternative to conventional food preservatives. The most recent developments in production, characterization, and mode of action of these AMPs against planktonic and biofilm forming pathogens are thoroughly discussed in this work. Moreover, nano-conjugation of F-AMPs with different nano-carriers and potential future application in food packaging are emphasized. This review may aid in comprehending the nano-conjugation of F-AMPs and offer insightful recommendations for further exploration and potential uses in the food processing industry.
Collapse
|
33
|
Roy S, Zhang W, Biswas D, Ramakrishnan R, Rhim JW. Grapefruit Seed Extract-Added Functional Films and Coating for Active Packaging Applications: A Review. Molecules 2023; 28:molecules28020730. [PMID: 36677788 PMCID: PMC9865371 DOI: 10.3390/molecules28020730] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/04/2023] [Accepted: 01/09/2023] [Indexed: 01/12/2023] Open
Abstract
Recently, consumers have been increasingly inclined towards natural antimicrobials and antioxidants in food processing and packaging. Several bioactive compounds have originated from natural sources, and among them, grapefruit seed extract (GSE) is widely accepted and generally safe to use in food. GSE is a very commonly used antimicrobial in food; lately, it has also been found very effective as a coating material or in edible packaging films. A lot of recent work reports the use of GSE in food packaging applications to ensure food quality and safety; therefore, this work intended to provide an up-to-date review of GSE-based packaging. This review discusses GSE, its extraction methods, and their use in manufacturing food packaging film/coatings. Various physical and functional properties of GSE-added film were also discussed. This review also provides the food preservation application of GSE-incorporated film and coating. Lastly, the opportunities, challenges, and perspectives in the GSE-added packaging film/coating are also debated.
Collapse
Affiliation(s)
- Swarup Roy
- School of Bioengineering and Food Technology, Shoolini University, Solan 173229, India
- Correspondence: (S.R.); (J.-W.R.)
| | - Wanli Zhang
- College of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Deblina Biswas
- School of Bioengineering and Food Technology, Shoolini University, Solan 173229, India
| | - Rejish Ramakrishnan
- Department of Printing Technology, College of Engineering Guindy, Anna University, Chennai 600025, India
| | - Jong-Whan Rhim
- Department of Food and Nutrition, BioNanocomposite Research Center, Kyung Hee University, 26 Kyungheedae-Ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
- Correspondence: (S.R.); (J.-W.R.)
| |
Collapse
|
34
|
Bahrami Z, Pedram‐Nia A, Saeidi‐Asl M, Armin M, Heydari‐Majd M. Bioactive gliadin electrospinning loaded with Zataria multiflora Boiss essential oil: Improves antimicrobial activity and release modeling behavior. Food Sci Nutr 2023; 11:307-319. [PMID: 36655099 PMCID: PMC9834846 DOI: 10.1002/fsn3.3062] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 08/02/2022] [Accepted: 08/31/2022] [Indexed: 11/11/2022] Open
Abstract
This study aimed to produce electrospun gliadin nanofibers containing Zataria multiflora Boiss essential oil (ZMEO) (5, 10, and 15% w/w), thereby developing active, sustained-release antimicrobial mats. By increasing the level of the ZMEO, the zeta potential and electrical conductivity increased, but the viscosity and consistency index decreased. All feed solutions demonstrated shear-thinning behavior, and the power law model was the best model. Field emission scanning electron microscopy (FESEM) images proved that the gliadin nanofibers showed a uniform, beaded-free structure at different levels of ZMEO, with an average diameter of between 403.87 ± 15.29 and 522.19 ± 11.23 nm. Increments in the level of ZMEO decreased the mats' tensile strength and Young's modulus but increased their elongation at break. Fourier transform infrared (FTIR) and differential scanning calorimetry (DSC) analysis confirmed that the ZMEO was well loaded within these structures, augmenting its thermal stability. The studied Gram-negative bacteria (Escherichia coli and Pseudomonas aeruginosa) were more resistant to the ZMEO than the Gram-positive bacteria (Bacillus cereus and Staphylococcus aureus). The Peleg model was the most suitable model for describing the ZMEO release behavior, the mechanism of which was primarily Fickian diffusion.
Collapse
Affiliation(s)
- Zohreh Bahrami
- Department of Food Science and Technology, Sabzevar BranchIslamic Azad UniversitySabzevarIran
| | - Ahmad Pedram‐Nia
- Department of Food Science and Technology, Sabzevar BranchIslamic Azad UniversitySabzevarIran
| | - Mohammadreza Saeidi‐Asl
- Department of Food Science and Technology, Sabzevar BranchIslamic Azad UniversitySabzevarIran
| | - Mohammad Armin
- Department of Agronomy and Plant Breeding, Sabzevar BranchIslamic Azad UniversitySabzevarIran
| | - Mojtaba Heydari‐Majd
- Department of Nutrition, Research Center for Clinical ImmunologyZahedan University of Medical SciencesZahedanIran
| |
Collapse
|
35
|
Wang C, Cao J, Liu T, Jin L, Hang C, Zhang C, Qian X, Jiang D, Jiang C. Preparation and characterization of antioxidant and pH-sensitive films based on arrowhead (Sagittaria sagittifolia) starch, κ-carrageenan and black chokeberry (Aronia melanocarpa) extract for monitoring spoilage of chicken wings. Int J Biol Macromol 2023; 224:544-555. [PMID: 36273549 DOI: 10.1016/j.ijbiomac.2022.10.143] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 10/06/2022] [Accepted: 10/15/2022] [Indexed: 11/05/2022]
Abstract
In this study, we firstly developed an antioxidant and pH-sensitive film based on arrowhead starch (AS), κ-carrageenan (KC) and black chokeberry extract (BCE) and its physical and structural properties were investigated. We found BCE showed different colors in different pH solutions and incorporation with KC and BCE could significantly decrease light transmittance, increase thickness, elongation at break and pH-sensitive property of AS film. The results of structural property assay indicated that there were some intermolecular interactions between BCE and AS/KC in AS-KC-BCE films. Secondly, we investigated the rheological property of AS, AS-KC and AS-KC-BCE suspensions and found the suspensions showed an obvious shear-thinning behavior with high apparent viscosity. Finally, the functional properties of AS-KC-BCE films were investigated and AS-KC-BCE films showed strong scavenging activity on DPPH free radical and presented visible colour changes in response to the changes of the chicken wing qualities. The results suggest that AS-KC-BCE films can be used in active and intelligent packaging of food industry.
Collapse
Affiliation(s)
- Caixia Wang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, Jiangsu, PR China
| | - Junjie Cao
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, Jiangsu, PR China
| | - Tingting Liu
- The Affiliated Huai'an Hospital of Xuzhou Medical University and Huai'an Second People's Hospital, Huai'an 223002, Jiangsu, PR China
| | - Lanfei Jin
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, Jiangsu, PR China
| | - Chenzhu Hang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, Jiangsu, PR China
| | - Chenchen Zhang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, Jiangsu, PR China
| | - Xiaoyan Qian
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, Jiangsu, PR China
| | - Dingyun Jiang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, Jiangsu, PR China
| | - Changxing Jiang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, Jiangsu, PR China.
| |
Collapse
|
36
|
Nehra A, Biswas D, Siracusa V, Roy S. Natural Gum-Based Functional Bioactive Films and Coatings: A Review. Int J Mol Sci 2022; 24:485. [PMID: 36613928 PMCID: PMC9820387 DOI: 10.3390/ijms24010485] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/19/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022] Open
Abstract
Edible films and coatings are a current and future food packaging trend. In the food and envi-ronmental sectors, there is a growing need to understand the role of edible packaging and sus-tainability. Gums are polysaccharides of natural origin that are frequently utilized as thickeners, clarifying agents, gelling agents, emulsifiers, and stabilizers in the food sector. Gums come in a variety of forms, including seed gums, mucilage gums, exudate gums, and so on. As a biodegradable and sustainable alternative to petrochemical-based film and coatings, gums could be a promising option. Natural plant gum-based edible packaging helps to ensure extension of shelf-life of fresh and processed foods while also reducing microbiological alteration and/or oxidation processes. In this review, the possible applications of gum-based polymers and their functional properties in development of edible films and coatings, were comprehensively dis-cussed. In the future, technology for developing natural gum-based edible films and coatings might be applied commercially to improve shelf life and preserve the quality of foods.
Collapse
Affiliation(s)
- Arushri Nehra
- School of Bioengineering and Food Technology, Shoolini University, Solan 173229, India
| | - Deblina Biswas
- School of Bioengineering and Food Technology, Shoolini University, Solan 173229, India
| | - Valentina Siracusa
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| | - Swarup Roy
- School of Bioengineering and Food Technology, Shoolini University, Solan 173229, India
| |
Collapse
|
37
|
Recent Advances in Natural Polyphenol Research. Molecules 2022; 27:molecules27248777. [PMID: 36557912 PMCID: PMC9787743 DOI: 10.3390/molecules27248777] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
Polyphenols are secondary metabolites produced by plants, which contribute to the plant's defense against abiotic stress conditions (e.g., UV radiation and precipitation), the aggression of herbivores, and plant pathogens. Epidemiological studies suggest that long-term consumption of plant polyphenols protects against cardiovascular disease, cancer, osteoporosis, diabetes, and neurodegenerative diseases. Their structural diversity has fascinated and confronted analytical chemists on how to carry out unambiguous identification, exhaustive recovery from plants and organic waste, and define their nutritional and biological potential. The food, cosmetic, and pharmaceutical industries employ polyphenols from fruits and vegetables to produce additives, additional foods, and supplements. In some cases, nanocarriers have been used to protect polyphenols during food processing, to solve the issues related to low water solubility, to transport them to the site of action, and improve their bioavailability. This review summarizes the structure-bioactivity relationships, processing parameters that impact polyphenol stability and bioavailability, the research progress in nanocarrier delivery, and the most innovative methodologies for the exhaustive recovery of polyphenols from plant and agri-waste materials.
Collapse
|
38
|
Preparation of nano/microcapsules of ozonated olive oil in chitosan matrix and analysis of physicochemical and microbiological properties of the obtained films. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
39
|
Preparation and characterization of carvacrol essential oil-loaded halloysite nanotubes and their application in antibacterial packaging. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
40
|
Zhang J, Chen J, Zhang C, Yi H, Liu D, Liu D. Characterization and antibacterial properties of chitosan–polyvinyl alcohol-3-phenyllactic acid as a biodegradable active food packaging. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
41
|
Improving the active food packaging function of poly(lactic acid) film coated by poly(vinyl alcohol) based on proanthocyanidin functionalized layered clay. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
42
|
Shaik MI, Azhari MF, Sarbon NM. Gelatin-Based Film as a Color Indicator in Food-Spoilage Observation: A Review. Foods 2022; 11:foods11233797. [PMID: 36496605 PMCID: PMC9739830 DOI: 10.3390/foods11233797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/12/2022] [Accepted: 11/15/2022] [Indexed: 11/27/2022] Open
Abstract
The color indicator can monitor the quality and safety of food products due to its sensitive nature toward various pH levels. A color indicator helps consumers monitor the freshness of food products since it is difficult for them to depend solely on their appearance. Thus, this review could provide alternative suggestions to solve the food-spoilage determination, especially for perishable food. Usually, food spoilage happens due to protein and lipid oxidation, enzymatic reaction, and microbial activity that will cause an alteration of the pH level. Due to their broad-spectrum properties, natural sources such as anthocyanin, curcumin, and betacyanin are commonly used in developing color indicators. They can also improve the gelatin-based film's morphology and significant drawbacks. Incorporating natural colorants into the gelatin-based film can improve the film's strength, gas-barrier properties, and water-vapor permeability and provide antioxidant and antimicrobial properties. Hence, the color indicator can be utilized as an effective tool to monitor and control the shelf life of packaged foods. Nevertheless, future studies should consider the determination of food-spoilage observation using natural colorants from betacyanin, chlorophyll, and carotenoids, as well as the determination of gas levels in food spoilage, especially carbon dioxide gas.
Collapse
|
43
|
Singh AK, Kim JY, Lee YS. Phenolic Compounds in Active Packaging and Edible Films/Coatings: Natural Bioactive Molecules and Novel Packaging Ingredients. Molecules 2022; 27:7513. [PMID: 36364340 PMCID: PMC9655785 DOI: 10.3390/molecules27217513] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 08/01/2023] Open
Abstract
In recent years, changing lifestyles and food consumption patterns have driven demands for high-quality, ready-to-eat food products that are fresh, clean, minimally processed, and have extended shelf lives. This demand sparked research into the creation of novel tools and ingredients for modern packaging systems. The use of phenolic-compound-based active-packaging and edible films/coatings with antimicrobial and antioxidant activities is an innovative approach that has gained widespread attention worldwide. As phenolic compounds are natural bioactive molecules that are present in a wide range of foods, such as fruits, vegetables, herbs, oils, spices, tea, chocolate, and wine, as well as agricultural waste and industrial byproducts, their utilization in the development of packaging materials can lead to improvements in the oxidative status and antimicrobial properties of food products. This paper reviews recent trends in the use of phenolic compounds as potential ingredients in food packaging, particularly for the development of phenolic compounds-based active packaging and edible films. Moreover, the applications and modes-of-action of phenolic compounds as well as their advantages, limitations, and challenges are discussed to highlight their novelty and efficacy in enhancing the quality and shelf life of food products.
Collapse
|
44
|
Li C, Yun D, Wang Z, Xu F, Tang C, Liu J. Development of Shrimp Freshness Indicating Films by Embedding Anthocyanins-Rich Rhododendron simsii Flower Extract in Locust Bean Gum/Polyvinyl Alcohol Matrix. MATERIALS (BASEL, SWITZERLAND) 2022; 15:ma15217557. [PMID: 36363149 PMCID: PMC9656595 DOI: 10.3390/ma15217557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/09/2022] [Accepted: 10/25/2022] [Indexed: 06/01/2023]
Abstract
Freshness indicating films containing anthocyanins are one type of smart packaging technology. Anthocyanins in the films can show visual color changes when food spoilage occurs, thereby indicating the freshness degree of food in real-time. Rhododendron simsii is a landscape plant with attractive flowers that are abundant in anthocyanins. In this study, smart packaging films were prepared by embedding 2% and 4% R. simsii flower anthocyanins (RA) in locust bean gum- (LBG) and polyvinyl alcohol- (PVA) based matrices. The micro-structure, barrier, mechanical, thermal, antioxidant, and color-changeable properties of the films were determined. The potential application of the films in indicating the freshness of shrimp at 4 °C was also investigated. Results showed that the RA interacted with the LBG/PVA matrices through hydrogen bonds, which significantly improved the barrier, mechanical, thermal, antioxidant, pH-sensitive, and ammonia-sensitive properties of the films. Meanwhile, the performance of the films was remarkably influenced by the content of the RA. The film containing 4% RA had the highest light blocking ability, tensile strength (38.32 MPa), elongation at break (58.18%), and antioxidant activity, and also showed the lowest water vapor permeability (22.10 × 10-11 g m-1 s-1 Pa-1) and oxygen permeability (0.36 cm3 mm m-2 day-1 atm-1). The films containing 2% and 4% RA could effectively change their colors when the level of total volatile basic nitrogen in the shrimp exceeded the safe value, which demonstrated the suitability of the films for indicating the freshness degree of shrimp.
Collapse
|
45
|
|
46
|
Recent advances in the development of smart, active, and bioactive biodegradable biopolymer-based films containing betalains. Food Chem 2022; 390:133149. [DOI: 10.1016/j.foodchem.2022.133149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/06/2022] [Accepted: 05/02/2022] [Indexed: 12/18/2022]
|
47
|
Antioxidant packaging films developed by in-situ cross-linking chitosan with dialdehyde starch-catechin conjugates. Int J Biol Macromol 2022; 222:3203-3214. [PMID: 36243166 DOI: 10.1016/j.ijbiomac.2022.10.093] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 09/30/2022] [Accepted: 10/10/2022] [Indexed: 11/05/2022]
Abstract
In this study, four dialdehyde starch-catechin (DAS-catechin) conjugates were prepared by conjugating (-)-epicatechin (EC), (-)-epigallocatechin (EGC), (-)-epicatechin gallate (ECG) and (-)-epigallocatechin gallate (EGCG) with dialdehyde starch. Then, DAS-catechin conjugates were used as antioxidant and cross-linking agents to produce chitosan (CS) based antioxidant packaging films. The functionality of CS/DAS-catechin conjugate films was determined. Results showed four DAS-catechin conjugates formed Schiff-base linkages and hydrogen bond interactions with CS, resulting in improved film uniformity. Compared with plain CS film, CS/DAS-catechin conjugate films owned higher UV-vis light, water vapor and oxygen barrier ability, lower swelling degree, and stronger tensile strength, thermal stability and antioxidant activity. The cross-linking between CS and DAS-catechin conjugates delayed the biodegradable process of CS film. CS/DAS-catechin conjugate films showed good performance on inhibiting sunflower seed oil oxidation. Notably, CS/DAS-ECG conjugate film had the highest oxygen barrier, mechanical and antioxidant performances among four CS/DAS-catechin conjugate films. Therefore, CS/DAS-ECG conjugate film is an antioxidant packaging candidate for edible oil.
Collapse
|
48
|
Development of shrimp freshness-monitoring labels by immobilizing black eggplant and black goji berry anthocyanins in different polysaccharide/PVA matrices. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01641-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
49
|
Oliveira GDS, McManus C, Dos Santos VM. Essential oils and propolis as additives in egg coatings. WORLD POULTRY SCI J 2022. [DOI: 10.1080/00439339.2022.2119914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- G. D. S. Oliveira
- Faculty of Agronomy and Veterinary Medicine, University of Brasília, Brasília, Brazil
| | - C. McManus
- Faculty of Agronomy and Veterinary Medicine, University of Brasília, Brasília, Brazil
| | - V. M. Dos Santos
- Laboratory of Poultry Science, Federal Institute of Brasília, Brasília, Brazil
| |
Collapse
|
50
|
Yao X, Yun D, Xu F, Chen D, Liu J. Development of shrimp freshness indicating films by immobilizing red pitaya betacyanins and titanium dioxide nanoparticles in polysaccharide-based double-layer matrix. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|