1
|
Sun W, Chen X, Feng S, Han J, Li S, Long F, Guo J. Enhancing nutritional composition and aroma characteristics of kiwifruit wines through indigenous non-Saccharomyces yeast extracellular extract treatment. Food Microbiol 2025; 125:104651. [PMID: 39448161 DOI: 10.1016/j.fm.2024.104651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/04/2024] [Accepted: 10/02/2024] [Indexed: 10/26/2024]
Abstract
To unlock the potential of strains for further enhancing the aromatic complexity of kiwifruit wines while avoiding undesirable flavors, indigenous non-Saccharomyces yeast extracellular extract treatment for fermentation was established. The extracellular extract from Zygosaccharomyces rouxii, Pichia kudriavzevii, and Meyerozyma guilliermondii were prepared and supplemented individually or in pairs to the kiwifruit wine fermentation system. Subsequently, the changes in physicochemical properties, antioxidants, and volatile characteristics of kiwifruit wines produced by different protocols were comprehensively evaluated, and the major aroma descriptors affecting sensory acceptability were analyzed by sensory evaluation and partial least squares regression. The results showed that extracellular extract treatment significantly improved the organic acids and monomeric phenols content, antioxidant capacity, and volatiles of kiwifruit wines. Compared to Sc, the increase in esters and alcohols, along with the decrease in aldehydes and acids in Pk-Zr and Mg-Zr, enhanced the aromatic complexity while reduce grassy and fungal flavors, resulting in higher sensory acceptability.
Collapse
Affiliation(s)
- Wangsheng Sun
- College of Food Science and Engineering, Northwest A & F University, Yangling, Shaanxi, 712100, China.
| | - Xiaowen Chen
- College of Food Science and Engineering, Northwest A & F University, Yangling, Shaanxi, 712100, China.
| | - Sinuo Feng
- College of Food Science and Engineering, Northwest A & F University, Yangling, Shaanxi, 712100, China.
| | - Jia Han
- College of Food Science and Engineering, Northwest A & F University, Yangling, Shaanxi, 712100, China.
| | - Shiqi Li
- College of Food Science and Engineering, Northwest A & F University, Yangling, Shaanxi, 712100, China.
| | - Fangyu Long
- College of Food Science and Engineering, Northwest A & F University, Yangling, Shaanxi, 712100, China.
| | - Jing Guo
- College of Food Science and Engineering, Northwest A & F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
2
|
Sun W, Chen X, Feng S, Bi P, Han J, Li S, Liu X, Zhang Z, Long F, Guo J. Effect of sequential fermentation with indigenous non-Saccharomyces cerevisiae combinations and Saccharomyces cerevisiae on the chemical composition and aroma compounds evolution of kiwifruit wine. Food Chem 2024; 460:140758. [PMID: 39121775 DOI: 10.1016/j.foodchem.2024.140758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/20/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024]
Abstract
To unlock the potential of indigenous non-Saccharomyces cerevisiae and develop novel starters to enhance the aromatic complexity of kiwifruit wine, Zygosaccharomyces rouxii, Pichia kudriavzevii and Meyerozyma guilliermondii were pairwise combined and then used in sequential fermentation with Saccharomyces cerevisiae. The impact of different starter cultures on the chemical composition and flavor profile of the kiwifruit wines was comprehensively analyzed, and the aroma evolution during alcoholic fermentation was investigated by examining the changes in key volatiles and their loss rates. Compared with Saccharomyces cerevisiae, mixed starter cultures not only improve antioxidant capacity but also increase esters and alcohols yields, presenting intense floral and fruity aromas with high sensory acceptability. The results indicated that sequential inoculation of non-Saccharomyces cerevisiae combination and Saccharomyces cerevisiae promoted the development of volatiles while maintaining the stability of key aroma compounds in the winemaking environment and reducing the aroma loss rates during alcoholic fermentation.
Collapse
Affiliation(s)
- Wangsheng Sun
- College of Food Science and Engineering, Northwest A & F University, Yangling, Shaanxi, 712100, China.
| | - Xiaowen Chen
- College of Food Science and Engineering, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Sinuo Feng
- College of Food Science and Engineering, Northwest A & F University, Yangling, Shaanxi, 712100, China.
| | - Pengfei Bi
- College of Food Science and Engineering, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Jia Han
- College of Food Science and Engineering, Northwest A & F University, Yangling, Shaanxi, 712100, China.
| | - Shiqi Li
- College of Food Science and Engineering, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Xu Liu
- College of Food Science and Engineering, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Zhe Zhang
- College of Food Science and Engineering, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Fangyu Long
- College of Food Science and Engineering, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Jing Guo
- College of Food Science and Engineering, Northwest A & F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
3
|
Sun W, Feng S, Bi P, Han J, Li S, Liu X, Zhang Z, Long F, Guo J. Simultaneous inoculation of non-Saccharomyces yeast and lactic acid bacteria for aromatic kiwifruit wine production. Food Microbiol 2024; 123:104589. [PMID: 39038894 DOI: 10.1016/j.fm.2024.104589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/25/2024] [Accepted: 06/28/2024] [Indexed: 07/24/2024]
Abstract
To further explore strain potential and develop an aromatic kiwifruit wine fermentation technique, the feasibility of simultaneous inoculation by non-Saccharomyces yeast and lactic acid bacteria was investigated. Lacticaseibacillus paracasei, Lactiplantibacillus plantarum, and Limosilactobacillus fermentum, which have robust β-glucosidase activity as well as good acid and ethanol tolerance, were inoculated for simultaneous fermentation with Zygosaccharomyces rouxii and Meyerozyma guilliermondii, respectively. Subsequently, the chemical compositions and sensory characteristics of the wines were comprehensively evaluated. The results showed that the majority of the simultaneous protocols effectively improved the quality of kiwifruit wines, increasing the content of polyphenols and volatile compounds, thereby enhancing sensory acceptability compared to the fermentation protocols inoculated with non-Saccharomyces yeast individually. Particularly, the collaboration between Lacp. plantarum and Z. rouxii significantly increased the diversity and content of esters, alcohols, and ketones, intensifying floral and seeded fruit odors, and achieving the highest overall acceptability. This study highlights the potential significance of simultaneous inoculation in kiwifruit wine production.
Collapse
Affiliation(s)
- Wangsheng Sun
- College of Food Science and Engineering, Northwest A & F University, Yangling, Shaanxi, 712100, China.
| | - Sinuo Feng
- College of Food Science and Engineering, Northwest A & F University, Yangling, Shaanxi, 712100, China.
| | - Pengfei Bi
- College of Food Science and Engineering, Northwest A & F University, Yangling, Shaanxi, 712100, China.
| | - Jia Han
- College of Food Science and Engineering, Northwest A & F University, Yangling, Shaanxi, 712100, China.
| | - Shiqi Li
- College of Food Science and Engineering, Northwest A & F University, Yangling, Shaanxi, 712100, China.
| | - Xu Liu
- College of Food Science and Engineering, Northwest A & F University, Yangling, Shaanxi, 712100, China.
| | - Zhe Zhang
- College of Food Science and Engineering, Northwest A & F University, Yangling, Shaanxi, 712100, China.
| | - Fangyu Long
- College of Food Science and Engineering, Northwest A & F University, Yangling, Shaanxi, 712100, China.
| | - Jing Guo
- College of Food Science and Engineering, Northwest A & F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
4
|
Tan J, Ji M, Gong J, Chitrakar B. The formation of volatiles in fruit wine process and its impact on wine quality. Appl Microbiol Biotechnol 2024; 108:420. [PMID: 39017989 PMCID: PMC11254978 DOI: 10.1007/s00253-024-13084-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 02/16/2024] [Accepted: 02/21/2024] [Indexed: 07/18/2024]
Abstract
Fruit wine is one of the oldest fermented beverages made from non-grape fruits. Owing to the differences in fruit varieties, growing regions, climates, and harvesting seasons, the nutritional compositions of fruits (sugars, organic acids, etc.) are different. Therefore, the fermentation process and microorganisms involved are varied for a particular fruit selected for wine production, resulting in differences in volatile compound formation, which ultimately determine the quality of fruit wine. This article reviews the effects of various factors involved in fruit wine making, especially the particular modifications differing from the grape winemaking process and the selected strains suitable for the specific fruit wine fermentation, on the formation of volatile compounds, flavor and aroma profiles, and quality characteristics of the wine thus produced. KEY POINTS: • The volatile profile and fruit wine quality are affected by enological parameters. • The composition and content of nutrients in fruit must impact volatile profiles. • Yeast and LAB are the key determining factors of the volatile profiles of fruit wines.
Collapse
Affiliation(s)
- Jianxin Tan
- College of Food Science and Technology, Hebei Agricultural University, Baoding, 071001, People's Republic of China.
| | - Mingyue Ji
- College of Food Science and Technology, Hebei Agricultural University, Baoding, 071001, People's Republic of China
| | - Jiangang Gong
- College of Food Science and Technology, Hebei Agricultural University, Baoding, 071001, People's Republic of China
| | - Bimal Chitrakar
- College of Food Science and Technology, Hebei Agricultural University, Baoding, 071001, People's Republic of China.
| |
Collapse
|
5
|
Alkalbani NS, Alam MZ, Al-Nabulsi A, Osaili TM, Obaid RR, Liu SQ, Kamal-Eldin A, Ayyash M. Unraveling the potential nutritional benefits of fermented date syrup waste: Untargeted metabolomics and carbohydrate metabolites of in vitro digested fraction. Food Chem 2024; 442:138483. [PMID: 38241989 DOI: 10.1016/j.foodchem.2024.138483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 12/09/2023] [Accepted: 01/15/2024] [Indexed: 01/21/2024]
Abstract
Valorization of fruit by-products is a crucial area of research for the development of innovative bio-based products. This study investigated the physicochemical properties and health-promoting benefits of date syrup waste, both fermented by Pichia cecembensis or Pichia kudriavzevii (FDSW), and unfermented (CDSW). Metabolomics profiles of these samples were identified post in vitro digestion. FDSW exhibited 42 volatile compounds, including 9 new ones, and contained (-)-epicatechin, tyrosol, and gallic acid. Bioaccessible fractions of FDSW demonstrated substantial α-amylase inhibition, with percentages of 40.7 % and 53.9 %, respectively. FDSW displayed superior cytotoxicity against Caco2 and MCF-7 cancer cell lines, with an average of ∼75 % and 56 %, respectively. Untargeted metabolomics analysis revealed an increase in secondary metabolites, totaling 27 metabolites. LC-QTOF analysis of bioaccessible carbohydrate metabolites in FDSW identified two phytochemical groups, alkaloids, and terpenoids. This study underscores the potential of FDSW for producing value-added bio-based products with desirable characteristics and health benefits.
Collapse
Affiliation(s)
- Nadia S Alkalbani
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University (UAEU), Al Ain, P.O. Box 15551, United Arab Emirates
| | - Muneeba Zubair Alam
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University (UAEU), Al Ain, P.O. Box 15551, United Arab Emirates
| | - Anas Al-Nabulsi
- Department of Nutrition and Food Technology, Jordan University of Science and Technology, Irbid 21121, Jordan
| | - Tareq M Osaili
- Department of Nutrition and Food Technology, Jordan University of Science and Technology, Irbid 21121, Jordan; Department Clinical Nutrition and Dietetics, University of Sharjah, Sharjah, P.O. Box 27272, UAE
| | - Reyad R Obaid
- Department Clinical Nutrition and Dietetics, University of Sharjah, Sharjah, P.O. Box 27272, UAE
| | - Shao-Quan Liu
- Department of Food Science and Technology, Faculty of Science, National University of Singapore, Singapore 117542, Singapore
| | - Afaf Kamal-Eldin
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University (UAEU), Al Ain, P.O. Box 15551, United Arab Emirates
| | - Mutamed Ayyash
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University (UAEU), Al Ain, P.O. Box 15551, United Arab Emirates; Zayed Center for Health Sciences, United Arab Emirates University (UAEU), Al-Ain, P.O. Box 15551, United Arab Emirates.
| |
Collapse
|
6
|
Yang W, Zheng Z, Shi Y, Reynolds AG, Duan C, Lan Y. Volatile phenols in wine: overview of origin, formation, analysis, and sensory expression. Crit Rev Food Sci Nutr 2024:1-26. [PMID: 38766770 DOI: 10.1080/10408398.2024.2354526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Volatile phenols impart particular aromas to wine. Due to their distinctive aroma characteristics and low sensory thresholds, volatile phenols can easily influence and modify the aroma of wine. Since these compounds can be formed in wines in various ways, it is necessary to clarify the possible sources of each volatile phenol to achieve management during the winemaking process. The sources of volatile phenols in wine are divided into berry-derived, fermentation-derived, and oak-derived. The pathways and factors influencing the formation of volatile phenols from each source are then reviewed respectively. In addition, an overview of the sensory impact of volatile phenols is given, both in terms of the aroma these volatile phenols directly bring to the wine and their contribution through aroma interactions. Finally, as an essential basis for exploring the scientific problems of volatile phenols in wine, approaches to quantitation of volatile phenols and their precursors are discussed in detail. With the advancement of analytical techniques, more details on volatile phenols have been discovered. Further exploration is worthwhile to achieve more detailed monitoring and targeted management of volatile phenols in wine.
Collapse
Affiliation(s)
- Weixi Yang
- Center for Viticulture and Enology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, China
- Ministry of Agriculture and Rural Affairs, Key Laboratory of Viticulture and Enology, Beijing, China
| | - Ziang Zheng
- Center for Viticulture and Enology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, China
- Ministry of Agriculture and Rural Affairs, Key Laboratory of Viticulture and Enology, Beijing, China
| | - Ying Shi
- Center for Viticulture and Enology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, China
- Ministry of Agriculture and Rural Affairs, Key Laboratory of Viticulture and Enology, Beijing, China
| | | | - Changqing Duan
- Center for Viticulture and Enology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, China
- Ministry of Agriculture and Rural Affairs, Key Laboratory of Viticulture and Enology, Beijing, China
| | - Yibin Lan
- Center for Viticulture and Enology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, China
- Ministry of Agriculture and Rural Affairs, Key Laboratory of Viticulture and Enology, Beijing, China
| |
Collapse
|
7
|
Sun W, Chen X, Bi P, Han J, Li S, Liu X, Zhang Z, Long F, Guo J. Screening and characterization of indigenous non-Saccharomyces cerevisiae with high enzyme activity for kiwifruit wine production. Food Chem 2024; 440:138309. [PMID: 38159319 DOI: 10.1016/j.foodchem.2023.138309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/01/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
To explore the diversity and fermentation potential of non-Saccharomyces cerevisiae associated with kiwifruit, indigenous yeasts isolated from kiwifruit and natural fermentation were comprehensively analyzed. A total of 166 indigenous yeasts were isolated, of which 54 representative strains were used for subsequent enzyme activity characterization. Different colorimetric methods were used to verify the ability of these strains to secrete hydrolytic enzymes, and then six strains were selected for sequential fermentation by specific activity assay. The performance of indigenous yeasts in improving organic acids, polyphenols, volatile compounds and sensory characteristics of wines was evaluated holistically. Results indicated that most sequential fermentations exhibited significant improvements in vitamin C and polyphenols. Remarkably, the involvement of Zygosaccharomyces rouxii, Meyerozyma guilliermondii, and Pichia kudriavzevii increased the concentrations of ethyl esters, acetates and alcohols, enhancing floral and tropical fruit odors and ultimately achieving the highest overall sensory acceptability, thereby highlighting their potential in kiwifruit wine fermentation.
Collapse
Affiliation(s)
- Wangsheng Sun
- College of Food Science and Engineering, Northwest A & F University, Yangling, Shaanxi 712100, China.
| | - Xiaowen Chen
- College of Food Science and Engineering, Northwest A & F University, Yangling, Shaanxi 712100, China.
| | - Pengfei Bi
- College of Food Science and Engineering, Northwest A & F University, Yangling, Shaanxi 712100, China.
| | - Jia Han
- College of Food Science and Engineering, Northwest A & F University, Yangling, Shaanxi 712100, China.
| | - Shiqi Li
- College of Food Science and Engineering, Northwest A & F University, Yangling, Shaanxi 712100, China.
| | - Xu Liu
- College of Food Science and Engineering, Northwest A & F University, Yangling, Shaanxi 712100, China.
| | - Zhe Zhang
- College of Food Science and Engineering, Northwest A & F University, Yangling, Shaanxi 712100, China.
| | - Fangyu Long
- College of Food Science and Engineering, Northwest A & F University, Yangling, Shaanxi 712100, China.
| | - Jing Guo
- College of Food Science and Engineering, Northwest A & F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
8
|
Zhao Y, Zhang B, Gu H, Xu T, Chen Q, Li J, Zhou P, Guan X, He L, Liang Y, Zhang K, Liu S, Shi K. A mutant GH3 family β-glucosidase from Oenococcus oeni exhibits superior adaptation to wine stresses and potential for improving wine aroma and phenolic profiles. Food Microbiol 2024; 119:104458. [PMID: 38225057 DOI: 10.1016/j.fm.2023.104458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/22/2023] [Accepted: 12/22/2023] [Indexed: 01/17/2024]
Abstract
In this study, we conducted a comprehensive investigation into a GH3 family β-glucosidase (BGL) from the wild-type strain of Oenococcus oeni and its mutated counterpart from the acid-tolerant mutant strain. Our analysis revealed the mutant BGL's remarkable capacity to adapt to wine-related stress conditions, including heightened tolerance to low pH, elevated ethanol concentrations, and metal ions. Additionally, the mutant BGL exhibited superior hydrolytic activity towards various substrates. Through de novo modeling, we identified specific amino acid mutations responsible for its resilience to low pH and high ethanol environments. In simulated wine conditions, the mutant BGL outperformed both wild-type and commercial BGLs, efficiently releasing terpene and phenolic aglycones from glycosides in wine grapes. These findings not only expand our understanding of O. oeni BGLs but also highlight their potential in enhancing wine production. The mutant BGL's enhanced adaptation to wine stress conditions opens promising avenue for improving wine quality and flavor.
Collapse
Affiliation(s)
- Yuzhu Zhao
- College of Enology, College of Life Sciences, College of Horticulture, Shaanxi Engineering Research Center for Viti-Viniculture, Viti-viniculture Engineering Technology Center of State Forestry and Grassland Administration, Heyang Experimental and Demonstrational Stations for Grape, Ningxia Helan Mountain's East Foothill Wine Experiment and Demonstration Station, Life Science Research Core Services, Northwest A&F University, Yangling, Shaanxi, China
| | - Biying Zhang
- College of Enology, College of Life Sciences, College of Horticulture, Shaanxi Engineering Research Center for Viti-Viniculture, Viti-viniculture Engineering Technology Center of State Forestry and Grassland Administration, Heyang Experimental and Demonstrational Stations for Grape, Ningxia Helan Mountain's East Foothill Wine Experiment and Demonstration Station, Life Science Research Core Services, Northwest A&F University, Yangling, Shaanxi, China
| | - Huawei Gu
- College of Enology, College of Life Sciences, College of Horticulture, Shaanxi Engineering Research Center for Viti-Viniculture, Viti-viniculture Engineering Technology Center of State Forestry and Grassland Administration, Heyang Experimental and Demonstrational Stations for Grape, Ningxia Helan Mountain's East Foothill Wine Experiment and Demonstration Station, Life Science Research Core Services, Northwest A&F University, Yangling, Shaanxi, China
| | - Tongxin Xu
- College of Enology, College of Life Sciences, College of Horticulture, Shaanxi Engineering Research Center for Viti-Viniculture, Viti-viniculture Engineering Technology Center of State Forestry and Grassland Administration, Heyang Experimental and Demonstrational Stations for Grape, Ningxia Helan Mountain's East Foothill Wine Experiment and Demonstration Station, Life Science Research Core Services, Northwest A&F University, Yangling, Shaanxi, China
| | - Qiling Chen
- College of Food Science and Pharmacy, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Jin Li
- COFCO GreatWall Wine, Penglai, Shandong, China
| | | | - Xueqiang Guan
- Shandong Academy of Grape / Shandong Technology Innovation Center of Wine Grape and Wine, Jinan, Shandong, China
| | - Ling He
- College of Enology, College of Life Sciences, College of Horticulture, Shaanxi Engineering Research Center for Viti-Viniculture, Viti-viniculture Engineering Technology Center of State Forestry and Grassland Administration, Heyang Experimental and Demonstrational Stations for Grape, Ningxia Helan Mountain's East Foothill Wine Experiment and Demonstration Station, Life Science Research Core Services, Northwest A&F University, Yangling, Shaanxi, China
| | - Yanying Liang
- College of Enology, College of Life Sciences, College of Horticulture, Shaanxi Engineering Research Center for Viti-Viniculture, Viti-viniculture Engineering Technology Center of State Forestry and Grassland Administration, Heyang Experimental and Demonstrational Stations for Grape, Ningxia Helan Mountain's East Foothill Wine Experiment and Demonstration Station, Life Science Research Core Services, Northwest A&F University, Yangling, Shaanxi, China
| | - Kekun Zhang
- College of Enology, College of Life Sciences, College of Horticulture, Shaanxi Engineering Research Center for Viti-Viniculture, Viti-viniculture Engineering Technology Center of State Forestry and Grassland Administration, Heyang Experimental and Demonstrational Stations for Grape, Ningxia Helan Mountain's East Foothill Wine Experiment and Demonstration Station, Life Science Research Core Services, Northwest A&F University, Yangling, Shaanxi, China
| | - Shuwen Liu
- College of Enology, College of Life Sciences, College of Horticulture, Shaanxi Engineering Research Center for Viti-Viniculture, Viti-viniculture Engineering Technology Center of State Forestry and Grassland Administration, Heyang Experimental and Demonstrational Stations for Grape, Ningxia Helan Mountain's East Foothill Wine Experiment and Demonstration Station, Life Science Research Core Services, Northwest A&F University, Yangling, Shaanxi, China.
| | - Kan Shi
- College of Enology, College of Life Sciences, College of Horticulture, Shaanxi Engineering Research Center for Viti-Viniculture, Viti-viniculture Engineering Technology Center of State Forestry and Grassland Administration, Heyang Experimental and Demonstrational Stations for Grape, Ningxia Helan Mountain's East Foothill Wine Experiment and Demonstration Station, Life Science Research Core Services, Northwest A&F University, Yangling, Shaanxi, China.
| |
Collapse
|
9
|
Gao F, Guan L, Zeng G, Hao X, Li H, Wang H. Preliminary characterization of chemical and sensory attributes for grapes and wines of different cultivars from the Weibei Plateau region in China. Food Chem X 2024; 21:101091. [PMID: 38235346 PMCID: PMC10792196 DOI: 10.1016/j.fochx.2023.101091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/03/2023] [Accepted: 12/19/2023] [Indexed: 01/19/2024] Open
Abstract
Chemical and sensory attributes play a vital role in evaluating the quality of grapes and wines. This study compared basic physicochemical parameters, organic acids, phenolic compounds, and aroma profiles of grapes and wines of six cultivars using chemometrics. The results showed that the reducing sugar contents of Beibinghong, Gongniang, and Granoir grapes were significantly higher than those of others cultivars, whereas their juice yields were significantly lower. The phenolic compound contents in Moldova, Beibinghong, and Gongniang grape skins and wines were higher than those in others cultivars. The organic acid contents in Beibinghong grape and Dunkelfelder wine were highest. Beibinghong and Gongniang grapes and wines showed richer aldehyde and ester concentrations. Beibinghong wine obtained the highest sensory scores. Ethyl decanoate, coumaric acid, and methyl dodecanoate were characteristic variables distinguishing wine cultivars, exhibiting important contributions to their sensory characteristics. These findings were useful for viticulturists and winemakers to select grape varieties.
Collapse
Affiliation(s)
- Feifei Gao
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China
- College of Enology, Shaanxi Engineering Research Center for Viti-Viniculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lingxiao Guan
- College of Enology, Shaanxi Engineering Research Center for Viti-Viniculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Guihua Zeng
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China
- College of Enology, Shaanxi Engineering Research Center for Viti-Viniculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaoyun Hao
- College of Enology, Shaanxi Engineering Research Center for Viti-Viniculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hua Li
- College of Enology, Shaanxi Engineering Research Center for Viti-Viniculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hua Wang
- College of Enology, Shaanxi Engineering Research Center for Viti-Viniculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
10
|
Boban A, Milanović V, Veršić Bratinčević M, Botta C, Ferrocino I, Cardinali F, Ivić S, Rampanti G, Budić-Leto I. Spontaneous fermentation of Maraština wines: The correlation between autochthonous mycobiota and phenolic compounds. Food Res Int 2024; 180:114072. [PMID: 38395560 DOI: 10.1016/j.foodres.2024.114072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 01/18/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024]
Abstract
Understanding fungal community dynamics during fermentation is important for assessing their influence on wine's phenolic content. The present study represents the first effort to explore the correlation between the autochthonous mycobiota of Maraština grapes collected from Dalmatian winegrowing sub-regions in Croatia and the phenolic composition, as well as the physicochemical parameters of wines produced through spontaneous fermentation. The metataxonomic approach revealed Metschnikowia pulcherrima, Metschnikowia fructicola and Hanseniaspora uvarum as the core mycobiota detected at the initial phase of fermentation. By contrast, Saccharomyces cerevisiae took over the dominance starting from the middle stage of fermentation. The wine's phenolic compounds were revealed by high-performance liquid chromatography, with tyrosol being the most abundant. Rhodotorula babjevae and Botrytis cinerea showed a positive correlation with p-hydroxybenzoic acid, gentisic acid, caffeic acid and cinnamic acid, while demonstrating a negative correlation with protocatechuic acid and chlorogenic acid. Heterophoma novae-verbascicola exhibited the opposite behaviour regarding the same phenolic compounds. The concentration of lactic acid was positively correlated with B. cinerea and negatively correlated with Het. novae-verbascicola. These findings serve as a foundation for in-depth investigations into the role of autochthonous grape mycobiota in phenolic transformation during spontaneous fermentation, potentially leading to the production of high-quality wines with unique terroir characteristics. Future studies should aim to explore the specific role played by individual yeast isolates in the formation of phenolic compounds.
Collapse
Affiliation(s)
- Ana Boban
- Institute for Adriatic Crops and Karst Reclamation, Put Duilova 11, Split 21000, Croatia
| | - Vesna Milanović
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, Ancona 60131, Italy.
| | | | - Cristian Botta
- Department of Agricultural, Forest and Food Science, University of Turin, Largo Paolo Braccini 2, Grugliasco, Turin 10095, Italy
| | - Ilario Ferrocino
- Department of Agricultural, Forest and Food Science, University of Turin, Largo Paolo Braccini 2, Grugliasco, Turin 10095, Italy
| | - Federica Cardinali
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, Ancona 60131, Italy
| | - Stipe Ivić
- Institute for Adriatic Crops and Karst Reclamation, Put Duilova 11, Split 21000, Croatia
| | - Giorgia Rampanti
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, Ancona 60131, Italy
| | - Irena Budić-Leto
- Institute for Adriatic Crops and Karst Reclamation, Put Duilova 11, Split 21000, Croatia
| |
Collapse
|
11
|
Romano G, Taurino M, Gerardi C, Tufariello M, Lenucci M, Grieco F. Yeast Starter Culture Identification to Produce of Red Wines with Enhanced Antioxidant Content. Foods 2024; 13:312. [PMID: 38254613 PMCID: PMC10815507 DOI: 10.3390/foods13020312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
Grape variety, quality, geographic origins and phytopathology can influence the amount of polyphenols that accumulate in grape tissues. Polyphenols in wine not only shape their organoleptic characteristics but also significantly contribute to the positive impact that this beverage has on human health. However, during the winemaking process, the total polyphenol content is substantially reduced due to the adsorption onto yeast wall polymers and subsequent lees separation. Despite this, limited information is available regarding the influence of the yeast starter strain on the polyphenolic profile of wine. To address this issue, a population consisting of 136 Saccharomyces cerevisiae strains was analyzed to identify those with a diminished ability to adsorb polyphenols. Firstly, the reduction in concentration of polyphenolic compounds associated to each strain was studied by assaying Total Phenolic Content (TPC) and Trolox Equivalent Antioxidant Capacity (TEAC) in the wines produced by micro-scale must fermentation. A total of 29 strains exhibiting a TPC and TEAC reduction ≤ 50%, when compared to that detected in the utilized grape must were identified and the nine most-promising strains were further validated by larger-scale vinification. Physico-chemical analyses of the resulting wines led to the identification of four strains, namely ITEM6920, ITEM9500, ITEM9507 and ITEM9508 which showed, compared to the control wine, a TPC and TEAC reduction ≤ 20 in the produced wines. They were denoted by a significant (p < 0.05) increased amount of anthocyanin, quercetin and trans-coutaric acid, minimal volatile acidity (<0.2 g/L), absence of undesirable metabolites and a well-balanced volatile profile. As far as we know, this investigation represents the first clonal selection of yeast strains aimed at the identifying "functional" fermentation starters, thereby enabling the production of regional wines with enriched polyphenolic content.
Collapse
Affiliation(s)
- Giuseppe Romano
- National Research Council, Institute of Sciences of Food Production (ISPA), Via Prov. Lecce-Monteroni, 73100 Lecce, Italy; (G.R.); (M.T.); (C.G.); (M.T.)
| | - Marco Taurino
- National Research Council, Institute of Sciences of Food Production (ISPA), Via Prov. Lecce-Monteroni, 73100 Lecce, Italy; (G.R.); (M.T.); (C.G.); (M.T.)
| | - Carmela Gerardi
- National Research Council, Institute of Sciences of Food Production (ISPA), Via Prov. Lecce-Monteroni, 73100 Lecce, Italy; (G.R.); (M.T.); (C.G.); (M.T.)
| | - Maria Tufariello
- National Research Council, Institute of Sciences of Food Production (ISPA), Via Prov. Lecce-Monteroni, 73100 Lecce, Italy; (G.R.); (M.T.); (C.G.); (M.T.)
| | - Marcello Lenucci
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Prov. Lecce-Monteroni, 73100 Lecce, Italy;
| | - Francesco Grieco
- National Research Council, Institute of Sciences of Food Production (ISPA), Via Prov. Lecce-Monteroni, 73100 Lecce, Italy; (G.R.); (M.T.); (C.G.); (M.T.)
| |
Collapse
|
12
|
Ma Y, Yu K, Chen X, Wu H, Xiao X, Xie L, Wei Z, Xiong R, Zhou X. Effects of Plant-Derived Polyphenols on the Antioxidant Activity and Aroma of Sulfur-Dioxide-Free Red Wine. Molecules 2023; 28:5255. [PMID: 37446916 DOI: 10.3390/molecules28135255] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 06/27/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Significant efforts have been made in recent years to produce healthier wines, with the primary goal of reducing the use of sulfur dioxide (SO2), which poses health risks. This study aimed to assess the effectiveness of three plant-derived polyphenols (dihydromyricetin, resveratrol, and catechins) as alternatives to SO2 in wine. After a three-month aging process, the wines were evaluated using analytical techniques such as high-performance liquid chromatography, colorimetry, gas chromatography-olfactometry-mass spectrometry, as well as electronic nose and electronic tongue analyses, with the purpose to assess parameters including antioxidant activity, color, contents of volatile aroma compounds, and sensory characteristics. The results demonstrated various degrees of improvement in the antioxidant activity, aromatic intensity, and sensory characteristics of wines using polyphenols. Notably, dihydromyricetin (200 mg/L) exhibited the strongest antioxidant activity, with increases of 18.84%, 23.28%, and 20.87% in 2,2-diphenyl-1-picrylhydrazyl, 2,2'azino-bis(3-ethylbenzothiazoline-6-sulfonic acid), and ferric-ion-reducing antioxidant power assays, respectively. Resveratrol (200 mg/L) made the most significant contribution to volatile aroma compounds, with an 8.89% increase in the total content of alcohol esters. In E-nose analysis, catechins (200 mg/L) showed the highest response to aromatic compounds and the lowest response to volatile sulfur compounds, while also exhibiting the best sensory characteristics. Therefore, the three plant-derived polyphenols investigated here exhibited the potential to enhance wine quality as alternatives to SO2. However, it is important to consider the specific impact of different polyphenols on wine; hence, suitable antioxidants should be selected in wine production according to specific requirements.
Collapse
Affiliation(s)
- Yi Ma
- College of Bioengineering, Sichuan University of Science and Engineering, Yibin 644000, China
- Engineering Technology Research Center of Special Grain for Wine Making, Yibin 644000, China
| | - Kangjie Yu
- College of Bioengineering, Sichuan University of Science and Engineering, Yibin 644000, China
- Engineering Technology Research Center of Special Grain for Wine Making, Yibin 644000, China
| | - Xiaojiao Chen
- College of Bioengineering, Sichuan University of Science and Engineering, Yibin 644000, China
- Engineering Technology Research Center of Special Grain for Wine Making, Yibin 644000, China
| | - Huixiang Wu
- Department of Light Industry Textile Garment Testing, Guangdong Testing Institute of Product Quality Supervision, Guangzhou 510670, China
| | - Xiongjun Xiao
- College of Bioengineering, Sichuan University of Science and Engineering, Yibin 644000, China
- Engineering Technology Research Center of Special Grain for Wine Making, Yibin 644000, China
| | - Liming Xie
- College of Bioengineering, Sichuan University of Science and Engineering, Yibin 644000, China
- Engineering Technology Research Center of Special Grain for Wine Making, Yibin 644000, China
| | - Ziyun Wei
- College of Bioengineering, Sichuan University of Science and Engineering, Yibin 644000, China
- Engineering Technology Research Center of Special Grain for Wine Making, Yibin 644000, China
| | - Rong Xiong
- College of Bioengineering, Sichuan University of Science and Engineering, Yibin 644000, China
- Engineering Technology Research Center of Special Grain for Wine Making, Yibin 644000, China
| | - Xun Zhou
- Department of Light Industry Textile Garment Testing, Guangdong Testing Institute of Product Quality Supervision, Guangzhou 510670, China
| |
Collapse
|
13
|
Wang Y, Qi XY, Fu Y, Zhang Q, Wang XH, Cui MY, Ma YY, Gao XL. Effects of Torulaspora delbrueckii co-fermented with Saccharomyces cerevisiae on physicochemical and aromatic profiles of blueberry fermented beverage. Food Chem 2023; 409:135284. [PMID: 36586265 DOI: 10.1016/j.foodchem.2022.135284] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/06/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
To investigate the effects of mixed fermentation with T. delbrueckii on aroma profiles of blueberry fermented beverage, five fermentations were conducted: monoculture of T. delbrueckii and S. cerevisiae, respectively; co-inoculation of two strains; sequential inoculation of two strains at time intervals of 24 h and 48 h, respectively. Compared with pure S. cerevisiae fermentation, ethanol level was decreased by up to 1.1% vol., while total anthocyanins were increased by 27.7%-85.0% in mixed fermentations. Marker aroma compounds in different fermentations with relative odor activity values higher than 1were identified. T. delbrueckii significantly decreased volatile acid content (especially acetic acid) by 22.2%-83.3%. Ethyl 3-methylbutanoate, ethyl hexanoate and ethyl octanoate, in pure T. delbrueckii fermentation were significantly decreased, while their concentrations were increased by 1.6-4.4 folds in sequential fermentations. Besides, linalool, rose oxide, benzeneacetaldehyde were significantly increased by sequential fermentation, which was associated with the enhancement of fruity and sweet notes.
Collapse
Affiliation(s)
- Yu Wang
- Anhui Engineering Laboratory for Agro-products Processing, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Food Processing Research Institute, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Xiao-Yan Qi
- Anhui Engineering Laboratory for Agro-products Processing, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Food Processing Research Institute, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Yu Fu
- Anhui Engineering Laboratory for Agro-products Processing, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Food Processing Research Institute, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Qi Zhang
- Anhui Engineering Laboratory for Agro-products Processing, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Food Processing Research Institute, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Xiao-Han Wang
- Anhui Engineering Laboratory for Agro-products Processing, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Food Processing Research Institute, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Meng-Yao Cui
- Anhui Engineering Laboratory for Agro-products Processing, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Food Processing Research Institute, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Ying-Ying Ma
- Anhui Engineering Laboratory for Agro-products Processing, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Food Processing Research Institute, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Xue-Ling Gao
- Anhui Engineering Laboratory for Agro-products Processing, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Food Processing Research Institute, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
14
|
Marangon M, Seeley P, Barocci E, Milanowski T, Mayr Marangon C, Ricci A, Bellon J, Parpinello GP. Effect of Interspecific Yeast Hybrids for Secondary In-Bottle Alcoholic Fermentation of English Sparkling Wines. Foods 2023; 12:foods12101995. [PMID: 37238813 DOI: 10.3390/foods12101995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/01/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
In sparkling winemaking, only a few yeast strains are regularly used for the secondary in-bottle alcoholic fermentation (SiBAF). Recently, advances in yeast development programs have yielded new breeds of interspecific wine yeast hybrids that ferment efficiently while producing novel flavors and aromas. In this work, the chemical and sensorial impacts of the use of interspecific yeast hybrids for SiBAF were studied using three commercial English base wines prepared for SiBAF using two commercial and four novel interspecific hybrids. After 12 months of lees aging, the chemical and macromolecular composition, phenolic profile, foaming, viscosity and sensory properties of the resulting 13 wines were assessed. Chemically, the yeast strains did not result in significant differences in the main wine parameters, while some differences in their macromolecular contents and sensory characteristics were noticeable. The foamability was mostly unaffected by the strain used; however, some effect on the foam stability was noticeable, likely due to the differences in polysaccharides released into the wines by the yeast strains. The wines exhibited different sensory characteristics in terms of aroma and bouquet, balance, finish, overall liking and preference, but these were mostly attributable to the differences in the base wines rather than the strain used for SiBAF. Novel interspecific yeast hybrids can be used for the elaboration of sparkling wines, as they provided wines with chemical characteristics, flavor and aroma attributes similar to those of commonly used commercial Saccharomyces cerevisiae strains.
Collapse
Affiliation(s)
- Matteo Marangon
- Department of Agronomy, Food, Natural Resources Animals and Environment (DAFNAE), University of Padua, Viale dell'Università, 16, 35020 Legnaro, Italy
- Interdepartmental Centre for Research in Viticulture and Enology (CIRVE), University of Padova, via XXVIII Aprile 14, 31015 Conegliano, Italy
| | - Poppy Seeley
- Wine Division, Plumpton College, Ditchling Road, Lewes BN7 3AE, UK
| | - Erica Barocci
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Piazza Goidanich, 60, 47523 Cesena, Italy
| | - Tony Milanowski
- Wine Division, Plumpton College, Ditchling Road, Lewes BN7 3AE, UK
| | - Christine Mayr Marangon
- Department of Agronomy, Food, Natural Resources Animals and Environment (DAFNAE), University of Padua, Viale dell'Università, 16, 35020 Legnaro, Italy
| | - Arianna Ricci
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Piazza Goidanich, 60, 47523 Cesena, Italy
| | - Jennifer Bellon
- The Australian Wine Research Institute, Glen Osmond, P.O. Box 197, Adelaide, SA 5064, Australia
| | - Giuseppina P Parpinello
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Piazza Goidanich, 60, 47523 Cesena, Italy
| |
Collapse
|
15
|
Ouzakar S, Skali Senhaji N, Saidi MZ, El Hadri M, El Baaboua A, El Harsal A, Abrini J. Antibacterial and antifungal activity of zinc oxide nanoparticles produced by Phaeodactylum tricornutum culture supernatants and their potential application to extend the shelf life of sweet cherry (Prunus avium L.). BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2023. [DOI: 10.1016/j.bcab.2023.102666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2023]
|
16
|
Mehlomakulu NN, Moyo SM, Kayitesi E. Yeast derived metabolites and their impact on nutritional and bioactive properties of African fermented maize products. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
17
|
Enhancing antioxidant activity and fragrant profile of low-ethanol kiwi wine via sequential culture of indigenous Zygosaccharomyces rouxii and Saccharomyces cerevisiae. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
18
|
Huang R, Yu H, Dong C, Shen L, Qin Y, Liu Y, Jiang J, Song Y. Correlations between microbial diversity, monomeric phenols, and biological parameters during spontaneous fermentation of Cabernet Sauvignon grapes obtained from rain-shelter cultivation. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
19
|
Revitalizing Unfermented Cabernet Sauvignon Pomace Using an Eco-Friendly, Two-Stage Countercurrent Process: Role of pH on the Extractability of Bioactive Phenolics. Processes (Basel) 2022. [DOI: 10.3390/pr10102093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
As the major byproduct of the winemaking industry, grape pomace remains an untapped source of valuable bioactive phenolic compounds. This study elucidated the optimal aqueous extraction parameters for maximizing phenolic extractability, while avoiding the use of harsh conventional solvents and limiting water usage, from Cabernet Sauvignon grape pomace in which the red grape was processed for white wine. In the single-stage aqueous extraction process (AEP), the concurrent impact of pH (2.64–9.36), solids-to-liquid ratio (SLR, g pomace/mL water) (1:50–1:5), and temperature (41.6–58.4 °C) on the total phenolic content (TPC) of Cabernet Sauvignon pomace was evaluated alongside a kinetic study (15–90 min). Optimal single-stage extraction conditions (pH 9.36, 1:50 SLR, 50 °C, 75 min) guided the development of a two-stage countercurrent extraction process (pH 9.36, 1:10 SLR, 50 °C, 75 min) to further reduce water consumption without compromising overall extractability. The countercurrent process reduced fresh water usage by 80%, increased the TPC of the extracts by 18%, and improved the in vitro antioxidant activities (ABTS and ORAC) of the extracts. Untargeted metabolomics enabled the identification of a diverse pool of phenolics, especially flavonol glycosides, associated with grape pomace, while further phenolic quantitation detected improvements in the release of commonly bound phenolics such as ferulic acid, p-coumaric acid, syringic acid, and protocatechuic acid in alkaline extracts compared to the ethanolic extract. This investigation provides an efficient, eco-friendly extraction strategy suitable for applications in functional food, beverage, nutraceutical, and cosmetic industries.
Collapse
|
20
|
Gu X, Zhang X, Wang K, Lv X, Li R, Ma W. GC-MS Untargeted Analysis of Volatile Compounds in Four Red Grape Varieties ( Vitis vinifera L. cv) at Different Maturity Stages near Harvest. Foods 2022; 11:foods11182804. [PMID: 36140932 PMCID: PMC9497989 DOI: 10.3390/foods11182804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 11/26/2022] Open
Abstract
Grape volatile compounds directly determine the aroma quality of wines. Although the aroma profile of grapes evolved greatly at different maturity stages, there were less considerations for aroma status when determining grape harvest time. In the present study, several maturation indicators, namely, sugars/acids ratio, free volatile compounds, bound volatile compounds and IBMP (3-isobutyl-2-methoxypyrazine) content were monitored in four red wine grape varieties (Vitis vinifera L. cv Cabernet Sauvignon, Cabernet Gernischet, Cabernet Franc and Merlot) near harvest time (42 days) in Ningxia, China. The results showed that the highest sugars/acids ratio was reached on day 21 and day 28 for Merlot and the other three varieties, respectively. For both free and bound volatile compounds, the content of carbonyl compounds decreased continuously in the process of ripening. The contents of free alcohols, esters and terpenes increased in the ripening stage and decreased in the stage of over-ripening. The accumulation of favorable bound aroma compounds peaked at day 35. The content of IBMP presenting a green smell in all four varieties descended continuously and kept steady from day 28. Therefore, the present findings revealed that the best aroma maturity time of four studied grape varieties was later than the sugars/acids ratio in Ningxia region. Aroma maturity should be taken into account during harvest time determination.
Collapse
Affiliation(s)
- Xiaobo Gu
- School of Food & Wine, Ningxia University, Yinchuan 750021, China
- Wine Institution of Ningxia Region, Yinchuan 750021, China
| | - Xue Zhang
- School of Food & Wine, Ningxia University, Yinchuan 750021, China
- Wine Institution of Ningxia Region, Yinchuan 750021, China
| | - Keqing Wang
- School of Food & Wine, Ningxia University, Yinchuan 750021, China
- Wine Institution of Ningxia Region, Yinchuan 750021, China
| | - Xi Lv
- School of Food & Wine, Ningxia University, Yinchuan 750021, China
- Wine Institution of Ningxia Region, Yinchuan 750021, China
| | - Ruyi Li
- School of Food & Wine, Ningxia University, Yinchuan 750021, China
- Wine Institution of Ningxia Region, Yinchuan 750021, China
| | - Wen Ma
- School of Food & Wine, Ningxia University, Yinchuan 750021, China
- Wine Institution of Ningxia Region, Yinchuan 750021, China
- Correspondence:
| |
Collapse
|
21
|
Ling M, Qi M, Li S, Shi Y, Pan Q, Cheng C, Yang W, Duan C. The influence of polyphenol supplementation on ester formation during red wine alcoholic fermentation. Food Chem 2022; 377:131961. [PMID: 34990947 DOI: 10.1016/j.foodchem.2021.131961] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 12/03/2021] [Accepted: 12/24/2021] [Indexed: 12/28/2022]
Abstract
Pre-fermentative polyphenol supplementation in industrial scales (100-hL) and simulated fermentation (350 mL clarified juice) were conducted. Results showed that in practical winemaking, adding QCE (quercetin, caffeic acid and ellagic acid) increased acetate concentrations in wines and extra grape seed tannins (T) enhanced the effect of QCE supplementation. In simulated fermentation with clarified juice, the synergy effect of QCE and T was evidenced that ester formation was only promoted through mixed QCET supplementation. Besides, QCE supplementation benefited the formation of 4-vinylcatechol adducted malvidin-3-O-(acetyl/coumaroyl)-glucoside and decreased other anthocyanin derivatives derived from pyruvic acid and acetaldehyde, leading more pyruvic acid and acetaldehyde left in yeast to enhance the metabolic fluxes of esters. Findings manifested the connection between the formation of esters and anthocyanin derivatives during red wine alcoholic fermentation, which would be influenced by the phenolic matrix. This work could provide a perspective in winemaking industry for modulating aroma profile via polyphenol supplementation.
Collapse
Affiliation(s)
- Mengqi Ling
- Center for Viticulture & Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Mengyao Qi
- Center for Viticulture & Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Siyu Li
- Center for Viticulture & Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Ying Shi
- Center for Viticulture & Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Qiuhong Pan
- Center for Viticulture & Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Chifang Cheng
- Xinjiang CITIC Guoan Wine Co. Ltd, 832200 Manasi, Xinjiang, China
| | - Weiming Yang
- Chateau Zhihui Yuanshi Co. Ltd, 750026 Yinchuan, Ningxia, China
| | - Changqing Duan
- Center for Viticulture & Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China.
| |
Collapse
|
22
|
Qiu S, Chen K, Liu C, Wang Y, Chen T, Yan G, Li J. Non-Saccharomyces Yeasts Highly Contribute to Characterisation of Flavour Profiles in Greengage Fermentation. Food Res Int 2022; 157:111391. [DOI: 10.1016/j.foodres.2022.111391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/05/2022] [Accepted: 05/18/2022] [Indexed: 12/01/2022]
|
23
|
Bottle Aging Affected Aromatic and Phenolic Wine Composition More than Yeast Starter Strains. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12094478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Volatile and phenolic compounds play a key role in the sensory properties of wine, especially aroma and color. During fermentation, yeasts produce enzymes that affect the skin’s phenolic compounds extraction and synthesize some of the most important wine volatile compounds. Generally, selected yeasts of the Saccharomyces cerevisiae (Sc) strains are inoculated, which are responsible for carrying out the wine fermentation, enhancing and highlighting its sensory characteristics and contributing to help achieve the wine typicity, according to the winemaker’s criteria. After fermentation, all wines require aging in a bottle to modulate their composition and stability over time. Thus, four different Sc strains (Sc1–Sc4) were inoculated into tanks with Tempranillo grapes to carry out, in duplicate, their fermentation and subsequent aging in bottles (9 months), comparing the aromatic and phenolic composition between them. Results showed differences in the fermentation process (kinetic, ethanol yield), CI, TPI and content of alcohols, esters, anthocyanins, flavonols and flavanols in wines from the different Sc strains studied. Moreover, in the content in wines of most groups of aromas and phenols, except for total acetate esters and flavonols, aging in a bottle had more influence than the yeast strain used for fermentation.
Collapse
|
24
|
Flavor Chemical Profiles of Cabernet Sauvignon Wines: Six Vintages from 2013 to 2018 from the Eastern Foothills of the Ningxia Helan Mountains in China. Foods 2021; 11:foods11010022. [PMID: 35010148 PMCID: PMC8750599 DOI: 10.3390/foods11010022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/14/2021] [Accepted: 12/17/2021] [Indexed: 12/13/2022] Open
Abstract
The eastern foothills of the Helan Mountains in the Ningxia region (Ningxia), is a Chinese wine-producing region, where Cabernet Sauvignon is the main grape cultivar; however, little compositional or flavor information has been reported on Ningxia wines. Oenological parameters, volatile profiles, and phenolic profiles were determined for 98 Ningxia Cabernet Sauvignon wines from the 2013–2018 vintages, as well as 16 from Bordeaux and California, for comparison. Ningxia wines were characterized by high ethanol, low acidity, and high anthocyanin contents. Multivariate analysis revealed that citronellol and 12 characteristic phenolic compounds distinguish Ningxia wines from Bordeaux and California wines. The concentrations of most phenolic compounds were highest in the 2018 Ningxia vintage and decreased with the age of the vintage. To our knowledge, this is the first extensive regionality study on red wines from the Ningxia region.
Collapse
|
25
|
Tofalo R, Suzzi G, Perpetuini G. Discovering the Influence of Microorganisms on Wine Color. Front Microbiol 2021; 12:790935. [PMID: 34925298 PMCID: PMC8678073 DOI: 10.3389/fmicb.2021.790935] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/15/2021] [Indexed: 01/08/2023] Open
Abstract
Flavor, composition and quality of wine are influenced by microorganisms present on the grapevine surface which are transferred to the must during vinification. The microbiota is highly variable with a prevalence of non-Saccharomyces yeasts, whereas Saccharomyces cerevisiae is present at low number. For wine production an essential step is the fermentation carried out by different starter cultures of S. cerevisiae alone or in mixed fermentation with non-Saccharomyces species that produce wines with significant differences in chemical composition. During vinification wine color can be influenced by yeasts interacting with anthocyanin. Yeasts can influence wine phenolic composition in different manners: direct interactions—cell wall adsorption or enzyme activities—and/or indirectly—production of primary and secondary metabolites and fermentation products. Some of these characteristics are heritable trait in yeast and/or can be strain dependent. For this reason, the stability, aroma, and color of wines depend on strain/strains used during must fermentation. Saccharomyces cerevisiae or non-Saccharomyces can produce metabolites reacting with anthocyanins and favor the formation of vitisin A and B type pyranoanthocyanins, contributing to color stability. In addition, yeasts affect the intensity and tonality of wine color by the action of β-glycosidase on anthocyanins or anthocyanidase enzymes or by the pigments adsorption on the yeast cell wall. These activities are strain dependent and are characterized by a great inter-species variability. Therefore, they should be considered a target for yeast strain selection and considered during the development of tailored mixed fermentations to improve wine production. In addition, some lactic acid bacteria seem to influence the color of red wines affecting anthocyanins’ profile. In fact, the increase of the pH or the ability to degrade pyruvic acid and acetaldehyde, as well as anthocyanin adsorption by bacterial cells are responsible for color loss during malolactic fermentation. Lactic acid bacteria show different adsorption capacity probably because of the variable composition of the cell walls. The aim of this review is to offer a critical overview of the roles played by wine microorganisms in the definition of intensity and tonality of wines’ color.
Collapse
Affiliation(s)
- Rosanna Tofalo
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Giovanna Suzzi
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Giorgia Perpetuini
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| |
Collapse
|
26
|
Shafreen RMB, Lakshmi SA, Pandian SK, Kim YM, Deutsch J, Katrich E, Gorinstein S. In Vitro and In Silico Interaction Studies with Red Wine Polyphenols against Different Proteins from Human Serum. Molecules 2021; 26:molecules26216686. [PMID: 34771095 PMCID: PMC8587719 DOI: 10.3390/molecules26216686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/29/2021] [Accepted: 11/01/2021] [Indexed: 12/23/2022] Open
Abstract
Previous reports have shown that consumption of wine has several health benefits; however, there are different types of wine. In the present study, red wines were investigated for their compositions of active ingredients. The interaction of each component in terms of its binding mode with different serum proteins was unraveled, and the components were implicated as drug candidates in clinical settings. Overall, the study indicates that red wines have a composition of flavonoids, non-flavonoids, and phenolic acids that can interact with the key regions of proteins to enhance their biological activity. Among them, rutin, resveratrol, and tannic acid have shown good binding affinity and possess beneficial properties that can enhance their role in clinical applications.
Collapse
Affiliation(s)
- Raja Mohamed Beema Shafreen
- Department of Biotechnology, Dr. Umayal Ramanathan College for Women, Algappapuram, Karaikudi 630003, India;
| | - Selvaraj Alagu Lakshmi
- Department of Biotechnology, Alagappa University, Science Campus, Karaikudi 630003, India; (S.A.L.); (S.K.P.)
| | - Shunmugiah Karutha Pandian
- Department of Biotechnology, Alagappa University, Science Campus, Karaikudi 630003, India; (S.A.L.); (S.K.P.)
| | - Young-Mo Kim
- Industry Academic Collaboration Foundation, Kwangju Women’s University, Gwangju 62396, Korea;
| | - Joseph Deutsch
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel; (J.D.); (E.K.)
| | - Elena Katrich
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel; (J.D.); (E.K.)
| | - Shela Gorinstein
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel; (J.D.); (E.K.)
- Correspondence: ; Tel.: +972-2-6758690
| |
Collapse
|
27
|
Zhang P, Zhang R, Sirisena S, Gan R, Fang Z. Beta-glucosidase activity of wine yeasts and its impacts on wine volatiles and phenolics: A mini-review. Food Microbiol 2021; 100:103859. [PMID: 34416959 DOI: 10.1016/j.fm.2021.103859] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 06/04/2021] [Accepted: 06/06/2021] [Indexed: 10/21/2022]
Abstract
Beta-glucosidase is an important enzyme for the hydrolysis of grape glycosides in the course of winemaking. Yeasts are the main producers of β-glucosidase in winemaking, therefore play an important role in determining wine aroma and flavour. This article discusses common methods for β-glucosidase evaluation, the β-glucosidase activity of different Saccharomyces and non- Saccharomyces yeasts and the influences of winemaking conditions, such as glucose and ethanol concentration, low pH environment, fermentation temperature and SO2 level, on their activity. This review further highlights the roles of β-glucosidase in promoting the release of free volatile compounds especially terpenes and the modification of wine phenolic composition during the winemaking process. Furthermore, this review proposes future research direction in this area and guides wine professionals in yeast selection to improve wine quality.
Collapse
Affiliation(s)
- Pangzhen Zhang
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, 3030, Australia.
| | - Ruige Zhang
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, 3030, Australia
| | - Sameera Sirisena
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, 3030, Australia
| | - Renyou Gan
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, 610213, China; Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, Chengdu University, Chengdu, 610106, China
| | - Zhongxiang Fang
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, 3030, Australia
| |
Collapse
|