1
|
Soto DF, Muñoz C, Huovinen P, Garcés-Vargas J, Gómez I. Bacterial communities on giant kelp in the Magellan Strait: Geographical and intra-thallus patterns. Environ Microbiol 2024; 26:e70003. [PMID: 39529489 DOI: 10.1111/1462-2920.70003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
The giant kelp Macrocystis pyrifera is categorized as a keystone species, forming highly productive forests that provide ecosystem services and host a remarkable marine biodiversity of macro and microorganisms. The association of microorganisms with the algae is close and can be functionally interdependent. The Magellan Strait, a natural marine passage between the Atlantic and Pacific oceans, harbours extensive giant kelp forests. However, information related to the diversity of bacterial communities in this region is still scarce. In this study, 16S rRNA gene metabarcoding was used to characterize the diversity and composition of bacterial communities associated with apical blades and sporophylls of M. pyrifera from different sites (Bahía Buzo, San Gregorio, and Buque Quemado). Additionally, data from satellites and reanalysis, as well as tide data, were used to characterize the environmental variability. The findings revealed discernible local variations in bacterial taxa across sampling sites, with consistent dominance of Proteobacteria, Verrucomicrobia, Bacteroidetes, and Planctomycetes. Furthermore, a distinctive bacterial community structure was identified between apical and sporophyll blades of M. pyrifera. This research marks the inaugural characterization of bacterial community diversity and composition associated with M. pyrifera in the remote and understudied sub-Antarctic region of the Magellan Strait.
Collapse
Affiliation(s)
- Daniela F Soto
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile
- Research Center on Dynamics of High Latitude Marine Ecosystems (IDEAL), Universidad Austral de Chile, Valdivia, Chile
| | - Camilo Muñoz
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile
| | - Pirjo Huovinen
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile
- Research Center on Dynamics of High Latitude Marine Ecosystems (IDEAL), Universidad Austral de Chile, Valdivia, Chile
| | - José Garcés-Vargas
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile
- Research Center on Dynamics of High Latitude Marine Ecosystems (IDEAL), Universidad Austral de Chile, Valdivia, Chile
| | - Iván Gómez
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile
- Research Center on Dynamics of High Latitude Marine Ecosystems (IDEAL), Universidad Austral de Chile, Valdivia, Chile
| |
Collapse
|
2
|
Chen X, Mo L, Zhang L, Huang L, Gao Z, Peng J, Yu Z, Zhang X. Taxonomic Diversity, Predicted Metabolic Pathway, and Interaction Pattern of Bacterial Community in Sea Urchin Anthocidaris crassispina. Microorganisms 2024; 12:2094. [PMID: 39458402 PMCID: PMC11514596 DOI: 10.3390/microorganisms12102094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
Bacterial assemblages associated with sea urchin are critical to their physiology and ecology within marine ecosystems. In this study, we characterized the bacterial communities in wild sea urchin Anthocidaris crassispina captured in Daya Bay, South China Sea. A total of 363 amplicon sequence variants belonging to nine phyla and 141 genera were classified from intestine, body surface, and surrounding seawater samples. Proteobacteria, Firmicutes, and Bacteroidetes were the dominant bacteria phyla found in this study. A network analysis of bacterial interspecies interactions revealed varying complexity, stability, connectivity, and relationship patterns across the samples, with the most intricate network observed in the surrounding seawater. Metagenomic predictions highlighted the distinct bacterial metabolic pathways, with significant differences between intestine and seawater samples. Notably, pathways associated with polysaccharide degradation, including chitin derivatives, starch, and CoM biosynthesis, were markedly abundant, underscoring the gut microbiota's key role in digesting algae. In addition, other metabolic pathways in intestine samples were linked to immune response regulation of sea urchins. Overall, this study provides a comprehensive overview of the bacterial community structure and potential functional roles in A. crassispina.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Zonghe Yu
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Xiaoyong Zhang
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
3
|
Saha M, Dittami SM, Chan CX, Raina JB, Stock W, Ghaderiardakani F, Valathuparambil Baby John AM, Corr S, Schleyer G, Todd J, Cardini U, Bengtsson MM, Prado S, Skillings D, Sonnenschein EC, Engelen AH, Wang G, Wichard T, Brodie J, Leblanc C, Egan S. Progress and future directions for seaweed holobiont research. THE NEW PHYTOLOGIST 2024; 244:364-376. [PMID: 39137959 DOI: 10.1111/nph.20018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 07/03/2024] [Indexed: 08/15/2024]
Abstract
In the marine environment, seaweeds (i.e. marine macroalgae) provide a wide range of ecological services and economic benefits. Like land plants, seaweeds do not provide these services in isolation, rather they rely on their associated microbial communities, which together with the host form the seaweed holobiont. However, there is a poor understanding of the mechanisms shaping these complex seaweed-microbe interactions, and of the evolutionary processes underlying these interactions. Here, we identify the current research challenges and opportunities in the field of seaweed holobiont biology. We argue that identifying the key microbial partners, knowing how they are recruited, and understanding their specific function and their relevance across all seaweed life history stages are among the knowledge gaps that are particularly important to address, especially in the context of the environmental challenges threatening seaweeds. We further discuss future approaches to study seaweed holobionts, and how we can apply the holobiont concept to natural or engineered seaweed ecosystems.
Collapse
Affiliation(s)
- Mahasweta Saha
- Plymouth Marine Laboratory, Marine Ecology and Biodiversity, Prospect Place, Plymouth, PL1 3DH, UK
| | - Simon M Dittami
- CNRS, Integrative Biology of Marine Models Laboratory (LBI2M, UMR 8227), Station Biologique de Roscoff, Place Georges Teissier, Sorbonne Université, Roscoff, 29680, France
| | - Cheong Xin Chan
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Qld, 4072, Australia
| | - Jean-Baptiste Raina
- Climate Change Cluster, Faculty of Science, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Willem Stock
- Phycology Research Group, Ghent University, Krijgslaan 281 Sterre S8, Ghent, 9000, Belgium
| | - Fatemeh Ghaderiardakani
- Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Lessingstr. 8, Jena, 07743, Germany
| | | | - Shauna Corr
- Plymouth Marine Laboratory, Marine Ecology and Biodiversity, Prospect Place, Plymouth, PL1 3DH, UK
| | - Guy Schleyer
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Beutenbergstr. 11a, Jena, 07745, Germany
| | - Jonathan Todd
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Ulisse Cardini
- Department of Integrative Marine Ecology (EMI), Genoa Marine Centre, Stazione Zoologica Anton Dohrn - National Institute of Marine Biology, Ecology and Biotechnology, Genoa, 16126, Italy
| | - Mia M Bengtsson
- Institute of Microbiology, University of Greifswald, Felix-Hausdorff-Str. 8, Greifswald, 17489, Germany
| | - Soizic Prado
- National Museum of Natural History, Unit Molecules of Communication and Adaptation of Microorganisms (UMR 7245), Paris, France
| | - Derek Skillings
- Department of Philosophy, University of North Carolina Greensboro, Greensboro, NC, 27402, USA
| | - Eva C Sonnenschein
- Department of Biosciences, Swansea University, Singleton Park, Swansea, SA2 8PP, UK
| | | | - Gaoge Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
- MoE Key Laboratory of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Thomas Wichard
- Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Lessingstr. 8, Jena, 07743, Germany
| | - Juliet Brodie
- Natural History Museum, Research, Cromwell Road, London, SW7 5BD, UK
| | - Catherine Leblanc
- CNRS, Integrative Biology of Marine Models Laboratory (LBI2M, UMR 8227), Station Biologique de Roscoff, Place Georges Teissier, Sorbonne Université, Roscoff, 29680, France
| | - Suhelen Egan
- Centre for Marine Science and Innovation (CMSI), School of Biological, Earth and Environmental Sciences (BEES), UNSW Sydney, Sydney, NSW, 2052, Australia
| |
Collapse
|
4
|
Tharani PV, Rao KVB. A comprehensive review on microbial diversity and anticancer compounds derived from seaweed endophytes: a pharmacokinetic and pharmacodynamic approach. Arch Microbiol 2024; 206:403. [PMID: 39276253 DOI: 10.1007/s00203-024-04121-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/17/2024] [Accepted: 08/25/2024] [Indexed: 09/16/2024]
Abstract
Seaweed endophytes are a rich source of microbial diversity and bioactive compounds. This review provides a comprehensive analysis of the microbial diversity associated with seaweeds and their interaction between them. These diverse bacteria and fungi have distinct metabolic pathways, which result in the synthesis of bioactive compounds with potential applications in a variety of health fields. We examine many types of seaweed-associated microorganisms, their bioactive metabolites, and their potential role in cancer treatment using a comprehensive literature review. By incorporating recent findings, we hope to highlight the importance of seaweed endophytes as a prospective source of novel anticancer drugs and promote additional studies in this area. We also investigate the pharmacokinetic and pharmacodynamic profiles of these bioactive compounds because understanding their absorption, distribution, metabolism, excretion (ADMET), and toxicity profiles is critical for developing bioactive compounds with anticancer potential into effective cancer drugs. This knowledge ensures the safety and efficacy of proposed medications prior to clinical trials. This study not only provides promise for novel and more effective treatments for cancer with fewer side effects, but it also emphasizes the necessity of sustainable harvesting procedures and ethical considerations for protecting the delicate marine ecology during bioprospecting activities.
Collapse
Affiliation(s)
- P V Tharani
- Marine Biotechnology Laboratory, Department of Bio-Medical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - K V Bhaskara Rao
- Marine Biotechnology Laboratory, Department of Bio-Medical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
5
|
Cherif W, Ktari L, Hassen B, Ismail A, El Bour M. Epibiotic Bacteria Isolated from the Non-Indigenous Species Codium fragile ssp. fragile: Identification, Characterization, and Biotechnological Potential. Microorganisms 2024; 12:1803. [PMID: 39338477 PMCID: PMC11434462 DOI: 10.3390/microorganisms12091803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 09/30/2024] Open
Abstract
Due to their richness in organic substances and nutrients, seaweed (macroalgae) harbor a large number of epiphytic bacteria on their surfaces. These bacteria interact with their host in multiple complex ways, in particular, by producing chemical compounds. The released metabolites may have biological properties beneficial for applications in both industry and medicine. In this study, we assess the diversity of culturable bacterial community of the invasive alga Codium fragile ssp. fragile with the aim to identify key groups within this epiphytic community. Seaweed samples were collected from the Northern Tunisian coast. A total of fifty bacteria were isolated in pure culture. These bacterial strains were identified by amplification of the ribosomal intergenic transcribed spacer between the 16S and the 23S rRNA genes (ITS-PCR) and by 16S rRNA sequencing. Antimicrobial activity, biochemical, and antibiotic resistance profile characterization were determined for the isolates. Isolated strains were tested for their antimicrobial potential against human and fish bacterial pathogens and the yeast Candida albicans, using the in vitro drop method. About 37% of isolated strains possess antibacterial activity with a variable antimicrobial spectrum. Ba1 (closely related to Pseudoalteromonas spiralis), Ba12 (closely related to Enterococcus faecium), and Bw4 (closely related to Pseudoalteromonas sp.) exhibited strong antimicrobial activity against E. coli. The isolated strain Ba4, closely related to Serratia marcescens, demonstrated the most potent activity against pathogens. The susceptibility of these strains to 12 commonly used antibiotics was investigated. Majority of the isolates were resistant to oxacillin, cefoxitin, tobramycin, and nitrofurantoin. Ba7 and Ba10, closely related to the Vibrio anguillarum strains, had the highest multidrug resistance profiles. The enzymes most commonly produced by the isolated strains were amylase, lecithinase, and agarase. Moreover, nine isolates produced disintegration zones around their colonies on agar plates with agarolitic index, ranging from 0.60 to 2.38. This investigation highlighted that Codium fragile ssp. fragile possesses an important diversity of epiphytic bacteria on its surface that could be cultivated in high biomass and may be considered for biotechnological application and as sources of antimicrobial drugs.
Collapse
Affiliation(s)
| | - Leila Ktari
- National Institute of Marine Sciences and Technologies (INSTM), University of Carthage, Tunis 2025, Tunisia; (W.C.); (B.H.); (A.I.)
| | | | | | - Monia El Bour
- National Institute of Marine Sciences and Technologies (INSTM), University of Carthage, Tunis 2025, Tunisia; (W.C.); (B.H.); (A.I.)
| |
Collapse
|
6
|
Nahor O, Israel Á, Barger N, Rubin-Blum M, Luzzatto-Knaan T. Epiphytic microbiome associated with intertidal seaweeds in the Mediterranean Sea: comparative analysis of bacterial communities across seaweed phyla. Sci Rep 2024; 14:18631. [PMID: 39128929 PMCID: PMC11317491 DOI: 10.1038/s41598-024-69362-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/05/2024] [Indexed: 08/13/2024] Open
Abstract
The complex interactions between epiphytic bacteria and marine macroalgae are still poorly understood, with limited knowledge about their community structure, interactions, and functions. This study focuses on comparing epiphytic prokaryotes community structure between three seaweed phyla; Chlorophyta, Rhodophyta, and Heterokontophyta in an easternmost rocky intertidal site of the Mediterranean Sea. By taking a snapshot approach and simultaneously collecting seaweed samples from the same habitat, we minimize environmental variations that could affect epiphytic bacterial assembly, thereby emphasizing host specificity. Through 16S rRNA gene amplicon sequencing, we identified that the microbial community composition was more similar within the same seaweed phylum host compared to seaweed host from other phyla. Furthermore, exclusive Amplicon Sequence Variants (ASVs) were identified for each algal phyla despite sharing higher taxonomic classifications across the other phyla. Analysis of niche breadth indices uncovers distinctive affinities and potential specialization among seaweed host phyla, with 39% of all ASVs identified as phylum specialists and 13% as generalists. Using taxonomy function prediction, we observed that the taxonomic variability does not significantly impact functional redundancy, suggesting resilience to disturbance. The study concludes that epiphytic bacteria composition is connected to host taxonomy, possibly influenced by shared morphological and chemical traits among genetically related hosts, implying a potential coevolutionary relationship between specific bacteria and their host seaweeds.
Collapse
Affiliation(s)
- Omri Nahor
- Department of Marine Biology, The Charney School of Marine Sciences, University of Haifa, Haifa, Israel
- Israel Oceanographic and Limnological Research, Tel Shikmona, Haifa, Israel
| | - Álvaro Israel
- Israel Oceanographic and Limnological Research, Tel Shikmona, Haifa, Israel
| | - Nataly Barger
- Department of Marine Biology, The Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - Maxim Rubin-Blum
- Department of Marine Biology, The Charney School of Marine Sciences, University of Haifa, Haifa, Israel
- Israel Oceanographic and Limnological Research, Tel Shikmona, Haifa, Israel
| | - Tal Luzzatto-Knaan
- Department of Marine Biology, The Charney School of Marine Sciences, University of Haifa, Haifa, Israel.
| |
Collapse
|
7
|
Abdelrazek HM, Shams El-Din NG, Ghozlan HA, Sabry SA, Abouelkheir SS. Distribution and functional perspective analysis of epiphytic and endophytic bacterial communities associated with marine seaweeds, Alexandria shores, Egypt. BMC Microbiol 2024; 24:293. [PMID: 39107684 PMCID: PMC11302221 DOI: 10.1186/s12866-024-03426-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 07/15/2024] [Indexed: 08/10/2024] Open
Abstract
There is an enormous diversity of life forms present in the extremely intricate marine environment. The growth and development of seaweeds in this particular environment are controlled by the bacteria that settle on their surfaces and generate a diverse range of inorganic and organic chemicals. The purpose of this work was to identify epiphytic and endophytic bacterial populations associated with ten common marine macroalgae from various areas along the Mediterranean Sea coast in Alexandria. This was done to target their distribution and possible functional aspects. Examine the effects of the algal habitat on the counting and phenotypic characterization of bacteria, which involves grouping bacteria based on characteristics such as shape, colour, mucoid nature, type of Gram stain, and their ability to generate spores. Furthermore, studying the physiological traits of the isolates under exploration provides insight into the optimum environmental circumstances for bacteria associated with the formation of algae. The majority of the bacterial isolates exhibited a wide range of enzyme activities, with cellulase, alginase, and caseinase being the most prevalent, according to the data. Nevertheless, 26% of the isolates displayed amylolytic activity, while certain isolates from Miami, Eastern Harbor, and Montaza lacked catalase activity. Geographical variations with the addition of algal extract may impact on the enumeration of the bacterial population, and this might have a relationship with host phylogeny. The most significant observation was that endophytic bacteria associated with green algae increased in all sites, while those associated with red algae increased in Abu Qir and Miami sites and decreased in Eastern Harbor. At the species level, the addition of algal extract led to a ninefold increase in the estimated number of epiphytic bacteria for Cladophora pellucida in Montaza. Notably, after adding algal extract, the number of presented endophytic bacteria associated with Codium sp. increased in Abu Qir while decreasing with the same species in Montaza. In addition to having the most different varieties of algae, Abu Qir has the most different bacterial isolates.
Collapse
Affiliation(s)
- Hanan M Abdelrazek
- Faculty of Science, Alexandria University, Moharrem Bey, Alexandria, 21511, Egypt
| | | | - Hanan A Ghozlan
- Faculty of Science, Alexandria University, Moharrem Bey, Alexandria, 21511, Egypt
| | - Soraya A Sabry
- Faculty of Science, Alexandria University, Moharrem Bey, Alexandria, 21511, Egypt
| | | |
Collapse
|
8
|
Gong W, Guo L, Huang C, Xie B, Jiang M, Zhao Y, Zhang H, Wu Y, Liang H. A systematic review of antibiotics and antibiotic resistance genes (ARGs) in mariculture wastewater: Antibiotics removal by microalgal-bacterial symbiotic system (MBSS), ARGs characterization on the metagenomic. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 930:172601. [PMID: 38657817 DOI: 10.1016/j.scitotenv.2024.172601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 04/10/2024] [Accepted: 04/17/2024] [Indexed: 04/26/2024]
Abstract
Antibiotic residues in mariculture wastewater seriously affect the aquatic environment. Antibiotic Resistance Genes (ARGs) produced under antibiotic stress flow through the environment and eventually enter the human body, seriously affecting human health. Microalgal-bacterial symbiotic system (MBSS) can remove antibiotics from mariculture and reduce the flow of ARGs into the environment. This review encapsulates the present scenario of mariculture wastewater, the removal mechanism of MBSS for antibiotics, and the biomolecular information under metagenomic assay. When confronted with antibiotics, there was a notable augmentation in the extracellular polymeric substances (EPS) content within MBSS, along with a concurrent elevation in the proportion of protein (PN) constituents within the EPS, which limits the entry of antibiotics into the cellular interior. Quorum sensing stimulates the microorganisms to produce biological responses (DNA synthesis - for adhesion) through signaling. Oxidative stress promotes gene expression (coupling, conjugation) to enhance horizontal gene transfer (HGT) in MBSS. The microbial community under metagenomic detection is dominated by aerobic bacteria in the bacterial-microalgal system. Compared to aerobic bacteria, anaerobic bacteria had the significant advantage of decreasing the distribution of ARGs. Overall, MBSS exhibits remarkable efficacy in mitigating the challenges posed by antibiotics and resistant genes from mariculture wastewater.
Collapse
Affiliation(s)
- Weijia Gong
- School of Engineering, Northeast Agricultural University, 600 Changjiang Street, Xiangfang District, Harbin 150030, PR China; State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin 150090, PR China.
| | - Lin Guo
- School of Engineering, Northeast Agricultural University, 600 Changjiang Street, Xiangfang District, Harbin 150030, PR China
| | - Chenxin Huang
- School of Engineering, Northeast Agricultural University, 600 Changjiang Street, Xiangfang District, Harbin 150030, PR China
| | - Binghan Xie
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai 264209, PR China.
| | - Mengmeng Jiang
- School of Engineering, Northeast Agricultural University, 600 Changjiang Street, Xiangfang District, Harbin 150030, PR China
| | - Yuzhou Zhao
- School of Engineering, Northeast Agricultural University, 600 Changjiang Street, Xiangfang District, Harbin 150030, PR China
| | - Haotian Zhang
- School of Engineering, Northeast Agricultural University, 600 Changjiang Street, Xiangfang District, Harbin 150030, PR China
| | - YuXuan Wu
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai 264209, PR China
| | - Heng Liang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin 150090, PR China
| |
Collapse
|
9
|
Supty MSA, Jahan K, Lee JS, Choi KH. Epiphytic Bacterial Community Analysis of Ulva prolifera in Garorim and Muan Bays, Republic of Korea. Microorganisms 2024; 12:1142. [PMID: 38930524 PMCID: PMC11205692 DOI: 10.3390/microorganisms12061142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/16/2024] [Accepted: 06/02/2024] [Indexed: 06/28/2024] Open
Abstract
The bacterial communities related to seaweed can vary considerably across different locations, and these variations influence the seaweed's nutrition, growth, and development. To study this further, we evaluated the bacteria found on the green marine seaweed Ulva prolifera from Garorim Bay and Muan Bay, two key locations on Republic of Korea's west coast. Our analysis found notable differences in the bacterial communities between the two locations. Garorim Bay hosted a more diverse bacterial population, with the highest number of ASVs (871) compared to Muan Bay's 156 ASVs. In Muan Bay, more than 50% of the bacterial community was dominated by Pseudomonadota. On the other hand, Garorim Bay had a more balanced distribution between Bacteroidota and Pseudomonadota (37% and 35.5%, respectively). Additionally, Cyanobacteria, particularly Cyanothece aeruginosa, were found in significant numbers in Garorim Bay, making up 8% of the community. Mineral analysis indicated that Garorim Bay had higher levels of S, Na, Mg, Ca, and Fe. Function-wise, both locations exhibited bacterial enrichment in amino acid production, nucleosides, and nucleotide pathways. In conclusion, this study broadens our understanding of the bacterial communities associated with Ulva prolifera in Korean waters and provides a foundation for future research on the relationships between U. prolifera and its bacteria.
Collapse
Affiliation(s)
| | | | | | - Keun-Hyung Choi
- Department of Earth, Environmental and Space Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| |
Collapse
|
10
|
Kim KH, Kim JM, Baek JH, Jeong SE, Kim H, Yoon HS, Jeon CO. Metabolic relationships between marine red algae and algae-associated bacteria. MARINE LIFE SCIENCE & TECHNOLOGY 2024; 6:298-314. [PMID: 38827136 PMCID: PMC11136935 DOI: 10.1007/s42995-024-00227-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 12/28/2023] [Indexed: 06/04/2024]
Abstract
Mutualistic interactions between marine phototrophs and associated bacteria are an important strategy for their successful survival in the ocean, but little is known about their metabolic relationships. Here, bacterial communities in the algal sphere (AS) and bulk solution (BS) of nine marine red algal cultures were analyzed, and Roseibium and Phycisphaera were identified significantly more abundantly in AS than in BS. The metabolic features of Roseibium RMAR6-6 (isolated and genome-sequenced), Phycisphaera MAG 12 (obtained by metagenomic sequencing), and a marine red alga, Porphyridium purpureum CCMP1328 (from GenBank), were analyzed bioinformatically. RMAR6-6 has the genetic capability to fix nitrogen and produce B vitamins (B1, B2, B5, B6, B9, and B12), bacterioferritin, dimethylsulfoniopropionate (DMSP), and phenylacetate that may enhance algal growth, whereas MAG 12 may have a limited metabolic capability, not producing vitamins B9 and B12, DMSP, phenylacetate, and siderophores, but with the ability to produce bacitracin, possibly modulating algal microbiome. P. purpureum CCMP1328 lacks the genetic capability to fix nitrogen and produce vitamin B12, DMSP, phenylacetate, and siderophore. It was shown that the nitrogen-fixing ability of RMAR6-6 promoted the growth of P. purpureum, and DMSP reduced the oxidative stress of P. purpureum. The metabolic interactions between strain RMAR6-6 and P. purpureum CCMP1328 were also investigated by the transcriptomic analyses of their monoculture and co-culture. Taken together, potential metabolic relationships between Roseibium and P. purpureum were proposed. This study provides a better understanding of the metabolic relationships between marine algae and algae-associated bacteria for successful growth. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-024-00227-z.
Collapse
Affiliation(s)
- Kyung Hyun Kim
- Department of Biological Sciences and Biotechnology, Hannam University, Daejon, 34054 Republic of Korea
| | - Jeong Min Kim
- Department of Life Science, Chung-Ang University, Seoul, 06974 Republic of Korea
| | - Ju Hye Baek
- Department of Life Science, Chung-Ang University, Seoul, 06974 Republic of Korea
| | - Sang Eun Jeong
- Department of Life Science, Chung-Ang University, Seoul, 06974 Republic of Korea
| | - Hocheol Kim
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419 Republic of Korea
| | - Hwan Su Yoon
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419 Republic of Korea
| | - Che Ok Jeon
- Department of Life Science, Chung-Ang University, Seoul, 06974 Republic of Korea
| |
Collapse
|
11
|
Girão M, Freitas S, Martins TP, Urbatzka R, Carvalho MF, Leão PN. Decylprodigiosin: a new member of the prodigiosin family isolated from a seaweed-associated Streptomyces. Front Pharmacol 2024; 15:1347485. [PMID: 38576493 PMCID: PMC10991731 DOI: 10.3389/fphar.2024.1347485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/11/2024] [Indexed: 04/06/2024] Open
Abstract
Bioprospecting actinobacterial secondary metabolism from untapped marine sources may lead to the discovery of biotechnologically-relevant compounds. While studying the diversity and bioactive potential of Actinomycetota associated with Codium tomentosum, a green seaweed collected in the northern Portuguese cost, strain CT-F61, identified as Streptomyces violaceoruber, was isolated. Its extracts displayed a strong anticancer activity on breast carcinoma T-47D and colorectal carcinoma HCT116 cells, being effective as well against a panel of human and fish pathogenic bacteria. Following a bioactivity-guided isolation pipeline, a new analogue of the red-pigmented family of the antibiotics prodigiosins, decylprodigiosin (1), was identified and chemically characterized. Despite this family of natural products being well-known for a long time, we report a new analogue and the first evidence for prodigiosins being produced by a seaweed-associated actinomycete.
Collapse
Affiliation(s)
- Mariana Girão
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Matosinhos, Portugal
- School of Medicine and Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Sara Freitas
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Matosinhos, Portugal
| | - Teresa P. Martins
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Matosinhos, Portugal
| | - Ralph Urbatzka
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Matosinhos, Portugal
| | - Maria F. Carvalho
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Matosinhos, Portugal
- School of Medicine and Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Pedro N. Leão
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Matosinhos, Portugal
| |
Collapse
|
12
|
Syukur S, Richmond J, Majzoub ME, Nappi J, Egan S, Thomas T. Not all parents are the same: Diverse strategies of symbiont transmission in seaweeds. Environ Microbiol 2024; 26:e16564. [PMID: 38151764 DOI: 10.1111/1462-2920.16564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/11/2023] [Indexed: 12/29/2023]
Abstract
Different marine seaweed species have been shown to harbour specific bacterial communities, however, the extent to which vertical symbiont transmission from parents to offspring contributes to host-specificity is unclear. Here we use fluorescence and electron microscopy as well as 16S rRNA gene-based community analysis to investigate symbiont transmission in members of the three major seaweed groups (green Chlorophyta, red Rhodophyta and brown Phaeophyceae). We found seaweeds employ diverse strategies to transfer symbionts to their progeny. For instance, the green Ulva australis does not appear to have the capacity for vertical transmission. In contrast, the brown Phyllospora comosa adopts a non-selective vertical transmission. The red Delisea pulchra demonstrates weak selectivity in symbiont transmission, while the brown Hormosira banksii exhibits a strongly selective symbiont transfer. Mucilage on the gametes appears to facilitate vertical transmission and transferred bacteria have predicted properties that could support early development of the seaweeds. Previous meta-analysis has indicated that vertical transmission is rare in aquatic compared to terrestrial environments, however, our results contribute to the growing evidence that this might not be the case and that instead vertical transmission with various degrees of symbiont selection occurs in the ecologically important group of seaweeds.
Collapse
Affiliation(s)
- Syukur Syukur
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, UNSW Sydney, Kensington, Australia
| | - Joanna Richmond
- Electron Microscope Unit, Mark Wainwright Analytical Centre, UNSW Sydney, Kensington, Australia
| | - Marwan E Majzoub
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, UNSW Sydney, Kensington, Australia
| | - Jadranka Nappi
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, UNSW Sydney, Kensington, Australia
| | - Suhelen Egan
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, UNSW Sydney, Kensington, Australia
| | - Torsten Thomas
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, UNSW Sydney, Kensington, Australia
| |
Collapse
|
13
|
Muhammad N, Avila F, Nedashkovskaya OI, Kim SG. Three novel marine species of the genus Reichenbachiella exhibiting degradation of complex polysaccharides. Front Microbiol 2023; 14:1265676. [PMID: 38156005 PMCID: PMC10752948 DOI: 10.3389/fmicb.2023.1265676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 11/23/2023] [Indexed: 12/30/2023] Open
Abstract
Three novel strains designated ABR2-5T, BKB1-1T, and WSW4-B4T belonging to the genus Reichenbachiella of the phylum Bacteroidota were isolated from algae and mud samples collected in the West Sea, Korea. All three strains were enriched for genes encoding up to 216 carbohydrate-active enzymes (CAZymes), which participate in the degradation of agar, alginate, carrageenan, laminarin, and starch. The 16S rRNA sequence similarities among the three novel isolates were 94.0%-94.7%, and against all three existing species in the genus Reichenbachiella they were 93.6%-97.2%. The genome sizes of the strains ABR2-5T, BKB1-1T, and WSW4-B4T were 5.5, 4.4, and 5.0 Mb, respectively, and the GC content ranged from 41.1%-42.0%. The average nucleotide identity and the digital DNA-DNA hybridization values of each novel strain within the isolates and all existing species in the genus Reichenbachiella were in a range of 69.2%-75.5% and 17.7-18.9%, respectively, supporting the creation of three new species. The three novel strains exhibited a distinctive fatty acid profile characterized by elevated levels of iso-C15:0 (37.7%-47.4%) and C16:1 ω5c (14.4%-22.9%). Specifically, strain ABR2-5T displayed an additional higher proportion of C16:0 (13.0%). The polar lipids were phosphatidylethanolamine, unidentified lipids, aminolipids, and glycolipids. Menaquinone-7 was identified as the respiratory quinone of the isolates. A comparative genome analysis was performed using the KEGG, RAST, antiSMASH, CRISPRCasFinder, dbCAN, and dbCAN-PUL servers and CRISPRcasIdentifier software. The results revealed that the isolates harbored many key genes involved in central metabolism for the synthesis of essential amino acids and vitamins, hydrolytic enzymes, carotenoid pigments, and antimicrobial compounds. The KEGG analysis showed that the three isolates possessed a complete pathway of dissimilatory nitrate reduction to ammonium (DNRA), which is involved in the conservation of bioavailable nitrogen within the ecosystem. Moreover, all the strains possessed genes that participated in the metabolism of heavy metals, including arsenic, copper, cobalt, ferrous, and manganese. All three isolated strains contain the class 2 type II subtype C1 CRISPR-Cas system in their genomes. The distinguished phenotypic, chemotaxonomic, and genomic characteristics led us to propose that the three strains represent three novel species in the genus Reichenbachiella: R. ulvae sp. nov. (ABR2-5T = KCTC 82990T = JCM 35839T), R. agarivorans sp. nov. (BKB1-1T = KCTC 82964T = JCM 35840T), and R. carrageenanivorans sp. nov. (WSW4-B4T = KCTC 82706T = JCM 35841T).
Collapse
Affiliation(s)
- Neak Muhammad
- Biological Resource Center/Korean Collection for Type Cultures (KCTC), Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Forbes Avila
- Biological Resource Center/Korean Collection for Type Cultures (KCTC), Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Olga I. Nedashkovskaya
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry of the Far-Eastern Branch of the Russian Academy of Sciences, Vladivostok, Russia
| | - Song-Gun Kim
- Biological Resource Center/Korean Collection for Type Cultures (KCTC), Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon, Republic of Korea
| |
Collapse
|
14
|
Padayao MHR, Padayao FRP, Patalinghug JM, Raña GS, Yee J, Geraldino PJ, Quilantang N. Antimicrobial and quorum sensing inhibitory activity of epiphytic bacteria isolated from the red alga Halymenia durvillei. Access Microbiol 2023; 5:000563.v4. [PMID: 38188234 PMCID: PMC10765052 DOI: 10.1099/acmi.0.000563.v4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 11/10/2023] [Indexed: 01/09/2024] Open
Abstract
Halymenia durvillei is a red alga that is commonly utilized in the Philippines as food and as a source of high-value natural products for industrial applications. However, there are no studies regarding the microbial community associated with H. durvillei and its potential applications. This study aimed to isolate and identify the epiphytic bacteria of H. durvillei and determine their antimicrobial and quorum sensing inhibitory (QSI) effects. The thalli of H. durvillei were collected at the shores of Santa Fe, Bantayan, Cebu, Philippines. Bacterial isolates were identified using 16S rRNA, and their ethyl acetate (EtOAc) extracts were subjected to antimicrobial susceptibility tests against representative species of yeast and Gram-negative and Gram-positive bacteria. Their QSI activity against Chromobacterium violaceum was also determined. Fourteen distinct bacterial colonies belonging to four genera, namely Alteromonas (3), Bacillus (5), Oceanobacillus (1) and Vibrio (5), were successfully isolated and identified. All 14 bacterial isolates exhibited antibacterial effects. EPB9, identified as Bacillus safensis , consistently showed the strongest inhibition against Escherichia coli , Staphylococcus aureus and Staphylococcus epidermidis , with minimum inhibitory concentrations (MICs) ranging from 0.0625 to 1.0 mg ml-1. In contrast, all 14 isolates showed weak antifungal effects. Both B. safensis (EPB9) and Bacillus australimaris (EPB15) exhibited QSI effects at 100 mg ml-1, showing opaque zones of 3.1±0.9 and 3.8±0.4 mm, respectively. This study is the first to isolate and identify the distinct microbial epiphytic bacterial community of H. durvillei and its potential as an abundant resource for new antibacterial and QSI bioactives.
Collapse
Affiliation(s)
- Mary Hannah Rose Padayao
- Applied Microbiology and Molecular Biology Laboratory, Department of Biology, University of San Carlos, Cebu City 6000, Philippines
- Tuklas Lunas Development Center, University of San Carlos, Cebu City 6000, Philippines
| | - Francis Reuben Paul Padayao
- Applied Microbiology and Molecular Biology Laboratory, Department of Biology, University of San Carlos, Cebu City 6000, Philippines
| | - Jenny Marie Patalinghug
- Applied Microbiology and Molecular Biology Laboratory, Department of Biology, University of San Carlos, Cebu City 6000, Philippines
| | - Gem Stephen Raña
- Applied Microbiology and Molecular Biology Laboratory, Department of Biology, University of San Carlos, Cebu City 6000, Philippines
| | - Jonie Yee
- Applied Microbiology and Molecular Biology Laboratory, Department of Biology, University of San Carlos, Cebu City 6000, Philippines
- Tuklas Lunas Development Center, University of San Carlos, Cebu City 6000, Philippines
| | - Paul John Geraldino
- Applied Microbiology and Molecular Biology Laboratory, Department of Biology, University of San Carlos, Cebu City 6000, Philippines
- Tuklas Lunas Development Center, University of San Carlos, Cebu City 6000, Philippines
| | - Norman Quilantang
- Applied Microbiology and Molecular Biology Laboratory, Department of Biology, University of San Carlos, Cebu City 6000, Philippines
- Tuklas Lunas Development Center, University of San Carlos, Cebu City 6000, Philippines
| |
Collapse
|
15
|
Kuba GM, Spalding HL, Hill-Spanik KM, Williams TM, Paiano MO, Sherwood AR, Hauk BB, Kosaki RK, Fullerton H. Characterization of macroalgal-associated microbial communities from shallow to mesophotic depths at Manawai, Papahānaumokuākea Marine National Monument, Hawai'i. PeerJ 2023; 11:e16114. [PMID: 37842050 PMCID: PMC10569167 DOI: 10.7717/peerj.16114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 08/27/2023] [Indexed: 10/17/2023] Open
Abstract
The Papahānaumokuākea Marine National Monument, Hawai'i, is one of the most isolated and protected archipelagos in the world, making it a natural laboratory to examine macroalgal-microbial diversity because of limited direct anthropogenic impacts. We collected the most abundant macroalgae from nine sites ranging from shallow subtidal (1.5 m) to mesophotic (75 m) depths around Manawai (Pearl and Hermes Atoll). We characterized the macroalgal bacterial communities via high-throughput amplicon sequencing and compared the influence of host phylum, species, site, and depth on these relationships at a single atoll. Ochrophyta species had the lowest bacterial diversity compared to Chlorophyta and Rhodophyta. Site and/or depth may influence the microbial community structure associated with Microdictyon setchellianum, indicating a possible disconnect of these microbial communities among habitats. Chondria tumulosa, a cryptogenic species with invasive traits, differed in associated microbiota compared to the native Laurencia galtsoffii, an alga from the same family collected at the same site and depth. While there was overlap of bacterial communities across sites for some algal species, the majority had minimal macroalgal-microbial community connectivity across Manawai. This mesophotic system, therefore, did not appear to be refugia for shallow water coral reefs at microscopic scales. Additional studies are required to identify other significant influences on microbial community variation.
Collapse
Affiliation(s)
- Gabrielle M. Kuba
- Department of Biology, College of Charleston, Charleston, SC, United States
| | | | - Kristina M. Hill-Spanik
- Department of Biology, Grice Marine Laboratory, College of Charleston, Charleston, SC, United States
| | - Taylor M. Williams
- Department of Biology, College of Charleston, Charleston, SC, United States
| | - Monica O. Paiano
- School of Life Sciences, University of Hawai‘i at Mānoa, Honolulu, HI, United States
| | - Alison R. Sherwood
- School of Life Sciences, University of Hawai‘i at Mānoa, Honolulu, HI, United States
| | - Brian B. Hauk
- Cooperative Institute for Marine and Atmospheric Research, University of Hawai‘i at Mānoa, Honolulu, HI, United States
- Papahānaumokuākea Marine National Monument, National Oceanic and Atmospheric Administration, Honolulu, HI, United States
| | - Randall K. Kosaki
- Papahānaumokuākea Marine National Monument, National Oceanic and Atmospheric Administration, Honolulu, HI, United States
- Center for the Exploration of Coral Reef Ecosystems (XCoRE), Bishop Museum, Honolulu, HI, United States
| | - Heather Fullerton
- Department of Biology, College of Charleston, Charleston, SC, United States
| |
Collapse
|
16
|
Alker AT, Farrell MV, Aspiras AE, Dunbar TL, Fedoriouk A, Jones JE, Mikhail SR, Salcedo GY, Moore BS, Shikuma NJ. A modular plasmid toolkit applied in marine bacteria reveals functional insights during bacteria-stimulated metamorphosis. mBio 2023; 14:e0150223. [PMID: 37530556 PMCID: PMC10470607 DOI: 10.1128/mbio.01502-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 06/17/2023] [Indexed: 08/03/2023] Open
Abstract
A conspicuous roadblock to studying marine bacteria for fundamental research and biotechnology is a lack of modular synthetic biology tools for their genetic manipulation. Here, we applied, and generated new parts for, a modular plasmid toolkit to study marine bacteria in the context of symbioses and host-microbe interactions. To demonstrate the utility of this plasmid system, we genetically manipulated the marine bacterium Pseudoalteromonas luteoviolacea, which stimulates the metamorphosis of the model tubeworm, Hydroides elegans. Using these tools, we quantified constitutive and native promoter expression, developed reporter strains that enable the imaging of host-bacteria interactions, and used CRISPR interference (CRISPRi) to knock down a secondary metabolite and a host-associated gene. We demonstrate the broader utility of this modular system for testing the genetic tractability of marine bacteria that are known to be associated with diverse host-microbe symbioses. These efforts resulted in the successful conjugation of 12 marine strains from the Alphaproteobacteria and Gammaproteobacteria classes. Altogether, the present study demonstrates how synthetic biology strategies enable the investigation of marine microbes and marine host-microbe symbioses with potential implications for environmental restoration and biotechnology. IMPORTANCE Marine Proteobacteria are attractive targets for genetic engineering due to their ability to produce a diversity of bioactive metabolites and their involvement in host-microbe symbioses. Modular cloning toolkits have become a standard for engineering model microbes, such as Escherichia coli, because they enable innumerable mix-and-match DNA assembly and engineering options. However, such modular tools have not yet been applied to most marine bacterial species. In this work, we adapt a modular plasmid toolkit for use in a set of 12 marine bacteria from the Gammaproteobacteria and Alphaproteobacteria classes. We demonstrate the utility of this genetic toolkit by engineering a marine Pseudoalteromonas bacterium to study their association with its host animal Hydroides elegans. This work provides a proof of concept that modular genetic tools can be applied to diverse marine bacteria to address basic science questions and for biotechnology innovations.
Collapse
Affiliation(s)
- Amanda T. Alker
- Department of Biology, San Diego State University, San Diego, California, USA
| | - Morgan V. Farrell
- Department of Biology, San Diego State University, San Diego, California, USA
| | - Alpher E. Aspiras
- Department of Biology, San Diego State University, San Diego, California, USA
| | - Tiffany L. Dunbar
- Department of Biology, San Diego State University, San Diego, California, USA
| | - Andriy Fedoriouk
- Department of Biology, San Diego State University, San Diego, California, USA
| | - Jeffrey E. Jones
- Department of Biology, San Diego State University, San Diego, California, USA
| | - Sama R. Mikhail
- Department of Biology, San Diego State University, San Diego, California, USA
| | | | - Bradley S. Moore
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, California, USA
| | - Nicholas J. Shikuma
- Department of Biology, San Diego State University, San Diego, California, USA
| |
Collapse
|
17
|
Mancuso FP, Morrissey KL, De Clerck O, Airoldi L. Warming and nutrient enrichment can trigger seaweed loss by dysregulation of the microbiome structure and predicted function. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 879:162919. [PMID: 36958561 DOI: 10.1016/j.scitotenv.2023.162919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/05/2023] [Accepted: 03/13/2023] [Indexed: 05/17/2023]
Abstract
Warming and nutrient enrichment are key pervasive drivers of ecological shifts in both aquatic and terrestrial ecosystems, impairing the physiology and survival of a wide range of foundation species. But the underlying mechanisms often remain unclear, and experiments have overlooked the potential effects mediated by changes in the microbial communities. We experimentally tested in the field orthogonal stress combinations from simulated air warming and nutrient enrichment on the intertidal foundation seaweed Cystoseira compressa, and its associated bacterial communities. A total of 523 Amplicon Sequence Variance (ASVs) formed the bacterial community on C. compressa, with 222 ASVs assigned to 69 taxa at the genus level. Most bacteria taxa experienced changes in abundance as a result of additive (65 %) and antagonistic (30 %) interactions between the two stressors, with synergies (5 %) occurring less frequently. The analysis of the predicted bacterial functional profile identified 160 metabolic pathways, and showed that these were mostly affected by additive interactions (74 %) between air warming and nutrient enrichment, while antagonisms (20 %) and synergisms (6 %) were less frequent. Overall, the two stressors combined increased functions associated with seaweed disease or degradation of major cell-wall polymers and other algicidal processes, and decreased functions associated with Quorum Quenching and photosynthetic response. We conclude that warming and nutrient enrichment can dysregulate the microbiome of seaweeds, providing a plausible mechanism for their ongoing loss, and encourage more research into the effects of human impacts on crucial but yet largely unstudied host-microbiome relationships in different aquatic and terrestrial species.
Collapse
Affiliation(s)
- Francesco Paolo Mancuso
- Department of Earth and Marine Sciences (DiSTeM), University of Palermo, viale delle Scienze Ed. 16, 90128 Palermo, Italy; Department of Biological, Geological, and Environmental Sciences, University of Bologna, Ravenna, Italy; NBFC, National Biodiversity Future Center, Palermo 90133, Italy.
| | - Kathryn Lee Morrissey
- Phycology Research Group and Center for Molecular Phylogenetics and Evolution, Ghent University, Ghent, Belgium
| | - Olivier De Clerck
- Phycology Research Group and Center for Molecular Phylogenetics and Evolution, Ghent University, Ghent, Belgium
| | - Laura Airoldi
- NBFC, National Biodiversity Future Center, Palermo 90133, Italy; Chioggia Hydrobiological Station "Umberto D'Ancona", Department of Biology, UO CoNISMa, University of Padova, Chioggia, Italy.
| |
Collapse
|
18
|
Masasa M, Kushmaro A, Nguyen D, Chernova H, Shashar N, Guttman L. Spatial Succession Underlies Microbial Contribution to Food Digestion in the Gut of an Algivorous Sea Urchin. Microbiol Spectr 2023; 11:e0051423. [PMID: 37097162 PMCID: PMC10269587 DOI: 10.1128/spectrum.00514-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/06/2023] [Indexed: 04/26/2023] Open
Abstract
Dietary influence on the microbiome in algivorous sea urchins such as Tripneustes gratilla elatensis suggests a bacterial contribution to the digestion of fiber-rich seaweed. An ecological insight into the spatial arrangement in the gut bacterial community will improve our knowledge of host-microbe relations concerning the involved taxa, their metabolic repertoire, and the niches of activity. Toward this goal, we investigated the bacterial communities in the esophagus, stomach, and intestine of Ulva-fed sea urchins through 16S rRNA amplicon sequencing, followed by the prediction of their functional genes. We revealed communities with distinct features, especially those in the esophagus and intestine. The esophageal community was less diverse and was poor in food digestive or fermentation genes. In contrast, bacteria that can contribute to the digestion of the dietary Ulva were common in the stomach and intestine and consisted of genes for carbohydrate decomposition, fermentation, synthesis of short-chain fatty acids, and various ways of N and S metabolism. Bacteroidetes and Firmicutes were found as the main phyla in the gut and are presumably also necessary in food digestion. The abundant sulfate-reducing bacteria in the stomach and intestine from the genera Desulfotalea, Desulfitispora, and Defluviitalea may aid in removing the excess sulfate from the decomposition of the algal polysaccharides. Although these sea urchins were fed with Ulva, genes for the degradation of polysaccharides of other algae and plants were present in this sea urchin gut microbiome. We conclude that the succession of microbial communities along the gut obtained supports the hypothesis on bacterial contribution to food digestion. IMPORTANCE Alga grazing by the sea urchin Tripneustes gratilla elatensis is vital for nutrient recycling and constructing new reefs. This research was driven by the need to expand the knowledge of bacteria that may aid this host in alga digestion and their phylogeny, roles, and activity niches. We hypothesized alterations in the bacterial compositional structure along the gut and their association with the potential contribution to food digestion. The current spatial insight into the sea urchin's gut microbiome ecology is novel and reveals how distinct bacterial communities are when distant from each other in this organ. It points to keynote bacteria with genes that may aid the host in the digestion of the complex sulfated polysaccharides in dietary Ulva by removing the released sulfates and fermentation to provide energy. The gut bacteria's genomic arsenal may also help to gain energy from diets of other algae and plants.
Collapse
Affiliation(s)
- Matan Masasa
- Marine Biology and Biotechnology Program, Department of Life Sciences, Ben-Gurion University of the Negev, Eilat, Israel
- Israel Oceanographic and Limnological Research, The National Center for Mariculture, Eilat, Israel
| | - Ariel Kushmaro
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- The Ilse Katz Center for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- School of Sustainability and Climate Change, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Dzung Nguyen
- Marine Biology and Biotechnology Program, Department of Life Sciences, Ben-Gurion University of the Negev, Eilat, Israel
- Israel Oceanographic and Limnological Research, The National Center for Mariculture, Eilat, Israel
| | - Helena Chernova
- Israel Oceanographic and Limnological Research, The National Center for Mariculture, Eilat, Israel
| | - Nadav Shashar
- Marine Biology and Biotechnology Program, Department of Life Sciences, Ben-Gurion University of the Negev, Eilat, Israel
| | - Lior Guttman
- Israel Oceanographic and Limnological Research, The National Center for Mariculture, Eilat, Israel
- Ben-Gurion University of the Negev, Department of Life Sciences, Beer-Sheva, Israel
| |
Collapse
|
19
|
Deb M, Redkar N, Manohar CS, Jagtap AS, Saxena S, Shukla S. Bacillussp. based nano-bio hybrids for efficient water remediation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 326:121490. [PMID: 36965681 DOI: 10.1016/j.envpol.2023.121490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 02/26/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
Macroalgae are a diverse group of primary producers that offer indispensable ecosystem services towards bacterial colonization and proliferation in aquatic biomes. Macroalgae/bacteria interactions are complex in natural biomes and contribute mutually to their growth and biotechnological outcomes. Most findings on macroalgae-associated bacteria and their secreted enzymes have largely been limited to nutraceutical applications. Here, in this study, we demonstrate and investigate the growth of Bacillus sp. (macroalgae-associated bacteria) with the substitution of its associated macroalgae (Gracilaria corticata) on graphene oxide (GO). The findings indicated that the presence of wrinkles of GO nanosheets resulted in cell proliferation and adherence without causing mechanical damage to the cell membrane. Furthermore, the assembly of GO-marine bacteria was explored for organic pollutant treatment using methylene blue (MB) as a model dye. The degradation results suggest the breakdown of MB into non-toxic byproducts as suggested by the phytotoxicity assay.
Collapse
Affiliation(s)
- Madhurima Deb
- Nanostructures Engineering and Modeling Laboratory, Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Mumbai, 400076, India; Centre for Research in Nano Technology and Science, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Neha Redkar
- Nanostructures Engineering and Modeling Laboratory, Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Cathrine Sumathi Manohar
- Biological Oceanography Division, CSIR-National Institute of Oceanography, Dona Paula, Goa, 403004, India
| | - Ashok Shivaji Jagtap
- Biological Oceanography Division, CSIR-National Institute of Oceanography, Dona Paula, Goa, 403004, India
| | - Sumit Saxena
- Nanostructures Engineering and Modeling Laboratory, Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Mumbai, 400076, India; Water Innovation Centre: Technology, Research & Education (WICTRE), Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Shobha Shukla
- Nanostructures Engineering and Modeling Laboratory, Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Mumbai, 400076, India; Water Innovation Centre: Technology, Research & Education (WICTRE), Indian Institute of Technology Bombay, Mumbai, 400076, India.
| |
Collapse
|
20
|
Sun Y, Li H, Wang X, Li H, Deng Y. Kelp Culture Enhances Coastal Biogeochemical Cycles by Maintaining Bacterioplankton Richness and Regulating Its Interactions. mSystems 2023; 8:e0000223. [PMID: 36794972 PMCID: PMC10134829 DOI: 10.1128/msystems.00002-23] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 01/30/2023] [Indexed: 02/17/2023] Open
Abstract
As an important carbon sink, seaweed cultivation plays a vital role in controlling global climate change. However, most studies have been focused on the seaweed itself, and knowledge of bacterioplankton dynamics in seaweed cultivation activities is still limited. Here, a total of 80 water samples were obtained from a coastal kelp cultivation area and adjacent non-culture area in the seedling and mature stages. The bacterioplankton communities were analyzed using high-throughput sequencing of bacterial 16S rRNA genes, and the microbial genes involving biogeochemical cycles were measured by a high-throughput quantitative PCR (qPCR) chip. Seasonal variations in alpha diversity indices of bacterioplankton were found, and kelp cultivation mitigated this decline in biodiversity from the seedling to the mature stage. Further beta diversity and core taxa analyses revealed that the maintenance of biodiversity was due to kelp cultivation favoring the survival of rare bacteria. Comparisons of gene abundances between coastal water with and without kelp cultivation showed a more powerful capacity of biogeochemical cycles induced by kelp cultivation. More importantly, a positive relationship between bacterial richness and biogeochemical cycling functions was observed in samples with kelp cultivation. Finally, a co-occurrence network and pathway model indicated that the higher bacterioplankton biodiversity in kelp culture areas compared to non-mariculture regions could balance the microbial interactions to regulate biogeochemical cycles and thus enhance the ecosystem functions of kelp cultivation coasts. The findings of this study allow us to better understand the effects of kelp cultivation on coastal ecosystems and provide novel insights into the relationship between biodiversity and ecosystem functions. IMPORTANCE In this study, we tried to address the effects of seaweed cultivation on the microbial biogeochemical cycles and the underlying relationships between biodiversity and ecosystem functions. We revealed clear enhancement of biogeochemical cycles in the seaweed cultivation areas compared to the non-mariculture coasts at both the beginning and ending of the culture cycle. Moreover, the enhanced biogeochemical cycling functions in the culture areas were found to contribute to the richness and interspecies interactions of bacterioplankton communities. The findings of this study allow us to better understand the effects of seaweed cultivation on coastal ecosystems and provide novel insights into the relationship between biodiversity and ecosystem functions.
Collapse
Affiliation(s)
- Yi Sun
- State Environmental Protection Key Laboratory of Coastal Ecosystem, National Marine Environmental Monitoring Center, Dalian, China
| | - Hongjun Li
- State Environmental Protection Key Laboratory of Coastal Ecosystem, National Marine Environmental Monitoring Center, Dalian, China
| | - Xiaocheng Wang
- State Environmental Protection Key Laboratory of Coastal Ecosystem, National Marine Environmental Monitoring Center, Dalian, China
| | - Hongbo Li
- State Environmental Protection Key Laboratory of Coastal Ecosystem, National Marine Environmental Monitoring Center, Dalian, China
| | - Ye Deng
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
21
|
Li J, Weinberger F, de Nys R, Thomas T, Egan S. A pathway to improve seaweed aquaculture through microbiota manipulation. Trends Biotechnol 2023; 41:545-556. [PMID: 36089422 DOI: 10.1016/j.tibtech.2022.08.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/13/2022] [Accepted: 08/17/2022] [Indexed: 11/19/2022]
Abstract
Eukaryotic hosts are associated with microbial communities that are critical to their function. Microbiota manipulation using beneficial microorganisms, for example, in the form of animal probiotics or plant growth-promoting microorganisms (PGPMs), can enhance host performance and health. Recently, seaweed beneficial microorganisms (SBMs) have been identified that promote the growth and development and/or improve disease resistance of seaweeds. This knowledge coincides with global initiatives seeking to expand and intensify seaweed aquaculture. Here, we provide a pathway with the potential to improve commercial cultivation of seaweeds through microbiota manipulation, highlighting that seaweed restoration practices can also benefit from further understanding SBMs and their modes of action. The challenges and opportunities of different approaches to identify and apply SBMs to seaweed aquaculture are discussed.
Collapse
Affiliation(s)
- Jiasui Li
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, Faculty of Science, The University of New South Wales, Kensington, NSW, 2052, Australia
| | - Florian Weinberger
- Marine Ecology Division, GEOMAR Helmholtz Centre for Ocean Research Kiel, Düsternbrooker Weg 20, 24105 Kiel, Germany
| | - Rocky de Nys
- Sea Forest Limited, 488 Freestone Point Road, Triabunna, Tasmania 7190, Australia and College of Science and Engineering, James Cook University, Townsville 4810, Australia
| | - Torsten Thomas
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, Faculty of Science, The University of New South Wales, Kensington, NSW, 2052, Australia
| | - Suhelen Egan
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, Faculty of Science, The University of New South Wales, Kensington, NSW, 2052, Australia.
| |
Collapse
|
22
|
Düsedau L, Ren Y, Hou M, Wahl M, Hu ZM, Wang G, Weinberger F. Elevated Temperature-Induced Epimicrobiome Shifts in an Invasive Seaweed Gracilaria vermiculophylla. Microorganisms 2023; 11:599. [PMID: 36985173 PMCID: PMC10058608 DOI: 10.3390/microorganisms11030599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/04/2023] [Accepted: 02/05/2023] [Indexed: 03/02/2023] Open
Abstract
Epibacterial communities on seaweeds are affected by several abiotic factors such as temperature and acidification. Due to global warming, surface seawater temperatures are expected to increase by 0.5-5 °C in the next century. However, how epibacterial communities associated with seaweeds will respond to global warming remains unknown. In this study, we investigated the response of epibacterial communities associated with the invasive Gracilaria vermiculophylla exposed to 3 °C above ambient temperature for 4 months using a benthocosm system in Kiel, Germany, and 16S rRNA gene amplicon sequencing. The results showed that elevated temperature affected the beta-diversity of the epibacterial communities. Some potential seaweed pathogens such as Pseudoalteromonas, Vibrio, Thalassotalea, and Acinetobacter were identified as indicator genera at the elevated temperature level. Thirteen core raw amplicon sequence variants in the elevated temperature group were the same as the populations distributed over a wide geographical range, indicating that these core ASVs may play an important role in the invasive G. vermicullophylla. Overall, this study not only contributes to a better understanding of how epibacterial communities associated with G. vermiculophylla may adapt to ocean warming, but also lays the foundation for further exploration of the interactions between G. vermiculophylla and its epimicrobiota.
Collapse
Affiliation(s)
- Luisa Düsedau
- Marine Ecology Division, GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel, Düsternbrooker Weg 20, D-24105 Kiel, Germany
- Alfred Wegener Institute, Helmholtz Center for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany
| | - Yifei Ren
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Minglei Hou
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Martin Wahl
- Marine Ecology Division, GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel, Düsternbrooker Weg 20, D-24105 Kiel, Germany
| | - Zi-Min Hu
- Ocean School, Yantai University, Yantai 264005, China
| | - Gaoge Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Florian Weinberger
- Marine Ecology Division, GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel, Düsternbrooker Weg 20, D-24105 Kiel, Germany
| |
Collapse
|
23
|
Alker AT, Aspiras AE, Dunbar TL, Farrell MV, Fedoriouk A, Jones JE, Mikhail SR, Salcedo GY, Moore BS, Shikuma NJ. A modular plasmid toolkit applied in marine Proteobacteria reveals functional insights during bacteria-stimulated metamorphosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.31.526474. [PMID: 36778221 PMCID: PMC9915575 DOI: 10.1101/2023.01.31.526474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A conspicuous roadblock to studying marine bacteria for fundamental research and biotechnology is a lack of modular synthetic biology tools for their genetic manipulation. Here, we applied, and generated new parts for, a modular plasmid toolkit to study marine bacteria in the context of symbioses and host-microbe interactions. To demonstrate the utility of this plasmid system, we genetically manipulated the marine bacterium Pseudoalteromonas luteoviolacea , which stimulates the metamorphosis of the model tubeworm, Hydroides elegans . Using these tools, we quantified constitutive and native promoter expression, developed reporter strains that enable the imaging of host-bacteria interactions, and used CRISPR interference (CRISPRi) to knock down a secondary metabolite and a host-associated gene. We demonstrate the broader utility of this modular system for rapidly creating and iteratively testing genetic tractability by modifying marine bacteria that are known to be associated with diverse host-microbe symbioses. These efforts enabled the successful transformation of twelve marine strains across two Proteobacteria classes, four orders and ten genera. Altogether, the present study demonstrates how synthetic biology strategies enable the investigation of marine microbes and marine host-microbe symbioses with broader implications for environmental restoration and biotechnology.
Collapse
|
24
|
From model organism to application: Bacteria-induced growth and development of the green seaweed Ulva and the potential of microbe leveraging in algal aquaculture. Semin Cell Dev Biol 2023; 134:69-78. [PMID: 35459546 DOI: 10.1016/j.semcdb.2022.04.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 03/24/2022] [Accepted: 04/10/2022] [Indexed: 11/21/2022]
Abstract
The marine green macroalga Ulva (Chlorophyta, Ulvales), also known as sea lettuce, coexists with a diverse microbiome. Many Ulva species proliferate in nature and form green algal blooms ("green tides"), which can occur when nutrient-rich wastewater from agricultural or densely populated areas is flushed into the sea. Bacteria are necessary for the adhesion of Ulva to its substrate, its growth, and the development of its blade morphology. In the absence of certain bacteria, Ulva mutabilis develops into a callus-like morphotype. However, with the addition of the necessary marine bacteria, the entire morphogenesis can be restored. Surprisingly, just two bacteria isolated from U. mutabilis are sufficient for inducing morphogenesis and establishing the reductionist system of a tripartite community. While one bacterial strain causes algal blade cell division, another causes the differentiation of basal cells into a rhizoid and supports cell wall formation because of a low concentration of the morphogen thallusin (below 10-10 mol/L). This review focuses on the research conducted on this topic since 2015, discusses how U. mutabilis has developed into a model organism in chemical ecology, and explores the questions that have already been addressed and the perspectives that a reductionist model system allows. In particular, the field of systems biology will achieve a comprehensive, quantitative understanding of the dynamic interactions between Ulva and its associated bacteria to better predict the behavior of the system as a whole. The reductionist approach has enabled the study of the bacteria-induced morphogenesis of Ulva. Specific questions regarding the optimization of cultivation conditions as well as the yield of raw materials for the food and animal feed industries can be answered in the laboratory and through applied science. Genome sequencing, the improvement of genetic engineering tools, and the first promising attempts to leverage macroalgae-microbe interactions in aquaculture make this model organism, which has a comparatively short parthenogenetic life cycle, attractive for both fundamental and applied research. The reviewed research paves the way for the synthetic biology of macroalgae-associated microbiomes in sustainable aquacultures.
Collapse
|
25
|
SATMALEE P, PANTOA T, SAAH S, PAOPUN Y, TAMTIN M, KOSAWATPAT P, THONGDANG B. Effects of pretreatment and drying methods on physical properties and bioactivity of sea lettuce (Ulva rigida). FOOD SCIENCE AND TECHNOLOGY 2023. [DOI: 10.1590/fst.113622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
| | | | | | | | | | - Prapat KOSAWATPAT
- Phetchaburi Coastal Aquaculture Research and Development Center, Thailand
| | - Busaba THONGDANG
- Phetchaburi Coastal Aquaculture Research and Development Center, Thailand
| |
Collapse
|
26
|
Das CGA, Kumar VG, Dhas TS, Karthick V, Kumar CMV. Nanomaterials in anticancer applications and their mechanism of action - A review. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2023; 47:102613. [PMID: 36252911 DOI: 10.1016/j.nano.2022.102613] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 10/01/2022] [Accepted: 10/03/2022] [Indexed: 11/06/2022]
Abstract
The current challenges in cancer treatment using conventional therapies have made the emergence of nanotechnology with more advancements. The exponential growth of nanoscience has drawn to develop nanomaterials (NMs) with therapeutic activities. NMs have enormous potential in cancer treatment by altering the drug toxicity profile. Nanoparticles (NPs) with enhanced surface characteristics can diffuse more easily inside tumor cells, thus delivering an optimal concentration of drugs at tumor site while reducing the toxicity. Cancer cells can be targeted with greater affinity by utilizing NMs with tumor specific constituents. Furthermore, it bypasses the bottlenecks of indiscriminate biodistribution of the antitumor agent and high administration dosage. Here, we focus on the recent advances on the use of various nanomaterials for cancer treatment, including targeting cancer cell surfaces, tumor microenvironment (TME), organelles, and their mechanism of action. The paradigm shift in cancer management is achieved through the implementation of anticancer drug delivery using nano routes.
Collapse
Affiliation(s)
- C G Anjali Das
- Centre for Ocean Research, Col. Dr. Jeppiaar Research Park, Sathyabama Institute of Science and Technology, Jeppiaar Nagar, Rajiv Gandhi Salai, Chennai 600119, India; Earth Science and Technology Cell (Marine Biotechnological Studies), Sathyabama Institute of Science and Technology, Rajiv Gandhi Salai, Chennai 600119, India.
| | - V Ganesh Kumar
- Centre for Ocean Research, Col. Dr. Jeppiaar Research Park, Sathyabama Institute of Science and Technology, Jeppiaar Nagar, Rajiv Gandhi Salai, Chennai 600119, India; Earth Science and Technology Cell (Marine Biotechnological Studies), Sathyabama Institute of Science and Technology, Rajiv Gandhi Salai, Chennai 600119, India.
| | - T Stalin Dhas
- Centre for Ocean Research, Col. Dr. Jeppiaar Research Park, Sathyabama Institute of Science and Technology, Jeppiaar Nagar, Rajiv Gandhi Salai, Chennai 600119, India; Earth Science and Technology Cell (Marine Biotechnological Studies), Sathyabama Institute of Science and Technology, Rajiv Gandhi Salai, Chennai 600119, India.
| | - V Karthick
- Centre for Ocean Research, Col. Dr. Jeppiaar Research Park, Sathyabama Institute of Science and Technology, Jeppiaar Nagar, Rajiv Gandhi Salai, Chennai 600119, India; Earth Science and Technology Cell (Marine Biotechnological Studies), Sathyabama Institute of Science and Technology, Rajiv Gandhi Salai, Chennai 600119, India.
| | - C M Vineeth Kumar
- Centre for Ocean Research, Col. Dr. Jeppiaar Research Park, Sathyabama Institute of Science and Technology, Jeppiaar Nagar, Rajiv Gandhi Salai, Chennai 600119, India; Earth Science and Technology Cell (Marine Biotechnological Studies), Sathyabama Institute of Science and Technology, Rajiv Gandhi Salai, Chennai 600119, India.
| |
Collapse
|
27
|
Li H, Li JJ, Gao TH, Bi YX, Liu ZY. The Influence of Host Specificity and Temperature on Bacterial Communities Associated with Sargassum (Phaeophyceae) Species. JOURNAL OF PHYCOLOGY 2022; 58:815-828. [PMID: 36308470 DOI: 10.1111/jpy.13293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Host-related microbiota are critically important for the adaptation/acclimation of hosts to changing environments, but how environmental factors and host characteristics shape the microbial communities remains largely unknown. We investigated the effects of temperature on habitat-forming macroalgae and their associated bacterial communities. Three Sargassum species (S. horneri, S. fusiforme, and S. thunbergii) and seawater samples were sampled in Gouqi Island, China, and these macroalgal samples were incubated at different temperatures (10, 20, and 27°C) for 7 d. Bacterial communities were identified from the 16S rRNA gene V3-V4 regions. The algae-associated bacterial communities of the field samples were significantly different from seawater, implying host specificity. During laboratory incubation, decreased physiological status (photosynthetic rate and oxidative stress response) was detected for all the species at 10°C, especially with regard to S. horneri and S. fusiforme. For each host, associated bacterial communities at 20 and 27°C clustered closely, and these were separated from samples at 10°C based on constrained PCoA analyses. Permutational multivariate analysis of variance revealed that algae-associated bacterial communities were more affected by host species (23.3%) than by temperature (2.48%) during laboratory incubation. The changes in bacterial community composition may be influenced by algae metabolites, which should be tested in a future study. These results further contribute to our understanding of algal microbiome changes in response to environmental changes.
Collapse
Affiliation(s)
- Huan Li
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, Hohai University, Nanjing, 210024, China
- College of Oceanography, Hohai University, Nanjing, 210024, China
| | - Jing-Jing Li
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, Hohai University, Nanjing, 210024, China
- College of Oceanography, Hohai University, Nanjing, 210024, China
| | - Tian-Heng Gao
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, Hohai University, Nanjing, 210024, China
- College of Oceanography, Hohai University, Nanjing, 210024, China
| | - Yuan-Xin Bi
- Key Laboratory of Sustainable Utilization of Technology Research for Fishery Resource of Zhejiang Province, Marine Fisheries Research Institute of Zhejiang Province, Zhoushan, 316021, China
| | - Zheng-Yi Liu
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, 17 Chunhui Road, Yantai, 264003, China
| |
Collapse
|
28
|
Park J, Davis K, Lajoie G, Parfrey LW. Alternative approaches to identify core bacteria in Fucus distichus microbiome and assess their distribution and host-specificity. ENVIRONMENTAL MICROBIOME 2022; 17:55. [PMID: 36384808 PMCID: PMC9670562 DOI: 10.1186/s40793-022-00451-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Identifying meaningful ecological associations between host and components of the microbiome is challenging. This is especially true for hosts such as marine macroalgae where the taxonomic composition of the microbiome is highly diverse and variable in space and time. Identifying core taxa is one way forward but there are many methods and thresholds in use. This study leverages a large dataset of microbial communities associated with the widespread brown macroalga, Fucus distichus, across sites and years on one island in British Columbia, Canada. We compare three different methodological approaches to identify core taxa at the amplicon sequence variant (ASV) level from this dataset: (1) frequency analysis of taxa on F. distichus performed over the whole dataset, (2) indicator species analysis (IndVal) over the whole dataset that identifies frequent taxa that are enriched on F. distichus in comparison to the local environment, and (3) a two-step IndVal method that identifies taxa that are consistently enriched on F. distichus across sites and time points. We then investigated a F. distichus time-series dataset to see if those core taxa are seasonally consistent on another remote island in British Columbia, Canada. We then evaluate host-specificity of the identified F. distichus core ASVs using comparative data from 32 other macroalgal species sampled at one of the sites. RESULTS We show that a handful of core ASVs are consistently identified by both frequency analysis and IndVal approaches with alternative definitions, although no ASVs were always present on F. distichus and IndVal identified a diverse array of F. distichus indicator taxa across sites on Calvert Island in multiple years. Frequency analysis captured a broader suit of taxa, while IndVal was better at identifying host-specific microbes. Finally, two-step IndVal identified hundreds of indicator ASVs for particular sites/timepoints but only 12 that were indicators in a majority (> 6 out of 11) of sites/timepoints. Ten of these ASVs were also indicators on Quadra Island, 250 km away. Many F. distichus-core ASVs are generally found on multiple macroalgal species, while a few ASVs are highly specific to F. distichus. CONCLUSIONS Different methodological approaches with variable set thresholds influence core identification, but a handful of core taxa are apparently identifiable as they are widespread and temporally associated with F. distichus and enriched in comparison to the environment. Moreover, we show that many of these core ASVs of F. distichus are found on multiple macroalgal hosts, indicating that most occupy a macroalgal generalist niche rather than forming highly specialized associations with F. distichus. Further studies should test whether macroalgal generalists or specialists are more likely to engage in biologically important exchanges with host.
Collapse
Affiliation(s)
- Jungsoo Park
- Department of Botany, Biodiversity Research Centre, University of British Columbia, Vancouver, BC Canada
| | - Katherine Davis
- Department of Botany, Biodiversity Research Centre, University of British Columbia, Vancouver, BC Canada
| | - Geneviève Lajoie
- Department of Botany, Biodiversity Research Centre, University of British Columbia, Vancouver, BC Canada
- Institut de Recherche en Biologie Végétale, Département de Sciences Biologiques, Université de Montréal, Montréal, QC Canada
| | - Laura Wegener Parfrey
- Department of Botany, Biodiversity Research Centre, University of British Columbia, Vancouver, BC Canada
- Department of Zoology, University of British Columbia, Vancouver, BC Canada
| |
Collapse
|
29
|
Simon C, McHale M, Sulpice R. Applications of Ulva Biomass and Strategies to Improve Its Yield and Composition: A Perspective for Ulva Aquaculture. BIOLOGY 2022; 11:1593. [PMID: 36358294 PMCID: PMC9687441 DOI: 10.3390/biology11111593] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/10/2022] [Accepted: 10/23/2022] [Indexed: 09/08/2024]
Abstract
Sea lettuce (Ulva spp.), with its worldwide distribution and remarkable ability to grow rapidly under various conditions, represents an important natural resource that is still under-exploited. Its biomass can be used for a wide range of applications in the food/feed, pharmaceutical, nutraceutical, biofuel, and bioremediation industries. However, knowledge of the factors affecting Ulva biomass yield and composition is far from complete. Indeed, the respective contributions of the microbiome, natural genetic variation in Ulva species, environmental conditions and importantly, the interactions between these three factors on the Ulva biomass, have been only partially elucidated. Further investigation is important for the implementation of large-scale Ulva aquaculture, which requires stable and controlled biomass composition and yields. In this review, we document Ulva biomass composition, describe the uses of Ulva biomass and we propose different strategies for developing a sustainable and profitable Ulva aquaculture industry.
Collapse
Affiliation(s)
- Clara Simon
- Plant Systems Biology Laboratory, Ryan Institute & Marei Centre for Marine, Climate and Energy, School of Biological & Chemical Sciences, University of Galway, H91 TK33 Galway, Ireland
| | | | | |
Collapse
|
30
|
Díaz-Abad L, Bacco-Mannina N, Miguel Madeira F, Serrao EA, Regalla A, Patrício AR, Frade PR. Red, Gold and Green: Microbial Contribution of Rhodophyta and Other Algae to Green Turtle ( Chelonia mydas) Gut Microbiome. Microorganisms 2022; 10:microorganisms10101988. [PMID: 36296266 PMCID: PMC9610419 DOI: 10.3390/microorganisms10101988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/28/2022] [Accepted: 09/30/2022] [Indexed: 11/23/2022] Open
Abstract
The fitness of the endangered green sea turtle (Chelonia mydas) may be strongly affected by its gut microbiome, as microbes play important roles in host nutrition and health. This study aimed at establishing environmental microbial baselines that can be used to assess turtle health under altered future conditions. We characterized the microbiome associated with the gastrointestinal tract of green turtles from Guinea Bissau in different life stages and associated with their food items, using 16S rRNA metabarcoding. We found that the most abundant (% relative abundance) bacterial phyla across the gastrointestinal sections were Proteobacteria (68.1 ± 13.9% “amplicon sequence variants”, ASVs), Bacteroidetes (15.1 ± 10.1%) and Firmicutes (14.7 ± 21.7%). Additionally, we found the presence of two red algae bacterial indicator ASVs (the Alphaproteobacteria Brucella pinnipedialis with 75 ± 0% and a Gammaproteobacteria identified as methanotrophic endosymbiont of Bathymodiolus, with <1%) in cloacal compartments, along with six bacterial ASVs shared only between cloacal and local environmental red algae samples. We corroborate previous results demonstrating that green turtles fed on red algae (but, to a lower extent, also seagrass and brown algae), thus, acquiring microbial components that potentially aid them digest these food items. This study is a foundation for better understanding the microbial composition of sea turtle digestive tracts.
Collapse
Affiliation(s)
- Lucía Díaz-Abad
- CCMAR—Centre of Marine Sciences, CIMAR, University of Algarve, 8005-139 Faro, Portugal
- IMBRSea, International Master of Science in Marine Biological Resources, IMBRSea Universities Consortium, 9000 Ghent, Belgium
| | | | - Fernando Miguel Madeira
- cE3c—Centre for Ecology, Evolution and Environmental Changes, CHANGE—Global Change and Sustainability Institute, Faculdade de Ciências da Universidade de Lisboa, 1749-016 Lisbon, Portugal
| | - Ester A. Serrao
- CCMAR—Centre of Marine Sciences, CIMAR, University of Algarve, 8005-139 Faro, Portugal
- CIBIO/InBIO—Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, 4485-661 Vairão, Portugal
| | - Aissa Regalla
- IBAP—Instituto da Biodiversidade e das Áreas Protegidas Dr. Alfredo Simão da Silva, Bissau 1220, Guinea-Bissau
| | - Ana R. Patrício
- MARE—Marine and Environmental Sciences Centre, Ispa—Instituto Universitário, 1149-041 Lisbon, Portugal
- Centre for Ecology & Conservation, College of Life and Environmental Sciences, University of Exeter, Penryn TR10 9FE, Cornwall, UK
| | - Pedro R. Frade
- CCMAR—Centre of Marine Sciences, CIMAR, University of Algarve, 8005-139 Faro, Portugal
- Natural History Museum Vienna, 1010 Vienna, Austria
- Correspondence:
| |
Collapse
|
31
|
Kiselevskiy MV, Anisimova NY, Ustyuzhanina NE, Vinnitskiy DZ, Tokatly AI, Reshetnikova VV, Chikileva IO, Shubina IZ, Kirgizov KI, Nifantiev NE. Perspectives for the Use of Fucoidans in Clinical Oncology. Int J Mol Sci 2022; 23:11821. [PMID: 36233121 PMCID: PMC9569813 DOI: 10.3390/ijms231911821] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/28/2022] [Accepted: 09/30/2022] [Indexed: 11/17/2022] Open
Abstract
Fucoidans are natural sulfated polysaccharides that have a wide range of biological functions and are regarded as promising antitumor agents. The activity of various fucoidans and their derivatives has been demonstrated in vitro on tumor cells of different histogenesis and in experiments on mice with grafted tumors. However, these experimental models showed low levels of antitumor activity and clinical trials did not prove that this class of compounds could serve as antitumor drugs. Nevertheless, the anti-inflammatory, antiangiogenic, immunostimulating, and anticoagulant properties of fucoidans, as well as their ability to stimulate hematopoiesis during cytostatic-based antitumor therapy, suggest that effective fucoidan-based drugs could be designed for the supportive care and symptomatic therapy of cancer patients. The use of fucoidans in cancer patients after chemotherapy and radiation therapy might promote the rapid improvement of hematopoiesis, while their anti-inflammatory, immunomodulatory, and anticoagulant effects have the potential to improve the quality of life of patients with advanced cancer.
Collapse
Affiliation(s)
- Mikhail V. Kiselevskiy
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia, 24 Kashirskoe Sh., Moscow 115478, Russia
- Center for Biomedical Engineering, National University of Science and Technology MISIS, Leninsky Prospect 4, Moscow 119049, Russia
| | - Natalia Yu. Anisimova
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia, 24 Kashirskoe Sh., Moscow 115478, Russia
- Center for Biomedical Engineering, National University of Science and Technology MISIS, Leninsky Prospect 4, Moscow 119049, Russia
| | - Nadezhda E. Ustyuzhanina
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Av., 47, Moscow 119991, Russia
| | - Dmitry Z. Vinnitskiy
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Av., 47, Moscow 119991, Russia
| | - Alexandra I. Tokatly
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Av., 47, Moscow 119991, Russia
| | - Vera V. Reshetnikova
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia, 24 Kashirskoe Sh., Moscow 115478, Russia
| | - Irina O. Chikileva
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia, 24 Kashirskoe Sh., Moscow 115478, Russia
| | - Irina Zh. Shubina
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia, 24 Kashirskoe Sh., Moscow 115478, Russia
| | - Kirill I. Kirgizov
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia, 24 Kashirskoe Sh., Moscow 115478, Russia
| | - Nikolay E. Nifantiev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Av., 47, Moscow 119991, Russia
| |
Collapse
|
32
|
Jackson SA, Duan M, Zhang P, Ihua MW, Stengel DB, Duan D, Dobson ADW. Isolation, identification, and biochemical characterization of a novel bifunctional phosphomannomutase/phosphoglucomutase from the metagenome of the brown alga Laminaria digitata. Front Microbiol 2022; 13:1000634. [PMID: 36212884 PMCID: PMC9537760 DOI: 10.3389/fmicb.2022.1000634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 08/15/2022] [Indexed: 11/17/2022] Open
Abstract
Macroalgae host diverse epiphytic bacterial communities with potential symbiotic roles including important roles influencing morphogenesis and growth of the host, nutrient exchange, and protection of the host from pathogens. Macroalgal cell wall structures, exudates, and intra-cellular environments possess numerous complex and valuable carbohydrates such as cellulose, hemi-cellulose, mannans, alginates, fucoidans, and laminarin. Bacterial colonizers of macroalgae are important carbon cyclers, acquiring nutrition from living macroalgae and also from decaying macroalgae. Seaweed epiphytic communities are a rich source of diverse carbohydrate-active enzymes which may have useful applications in industrial bioprocessing. With this in mind, we constructed a large insert fosmid clone library from the metagenome of Laminaria digitata (Ochrophyta) in which decay was induced. Subsequent sequencing of a fosmid clone insert revealed the presence of a gene encoding a bifunctional phosphomannomutase/phosphoglucomutase (PMM/PGM) enzyme 10L6AlgC, closely related to a protein from the halophilic marine bacterium, Cobetia sp. 10L6AlgC was subsequently heterologously expressed in Escherichia coli and biochemically characterized. The enzyme was found to possess both PMM and PGM activity, which had temperature and pH optima of 45°C and 8.0, respectively; for both activities. The PMM activity had a K m of 2.229 mM and V max of 29.35 mM min-1 mg-1, while the PGM activity had a K m of 0.5314 mM and a V max of 644.7 mM min-1 mg-1. Overall characterization of the enzyme including the above parameters as well as the influence of various divalent cations on these activities revealed that 10L6AlgC has a unique biochemical profile when compared to previously characterized PMM/PGM bifunctional enzymes. Thus 10L6AlgC may find utility in enzyme-based production of biochemicals with different potential industrial applications, in which other bacterial PMM/PGMs have previously been used such as in the production of low-calorie sweeteners in the food industry.
Collapse
Affiliation(s)
- Stephen A. Jackson
- School of Microbiology, University College Cork, Cork, Ireland
- Environmental Research Institute, University College Cork, Cork, Ireland
| | - Maohang Duan
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Pengyan Zhang
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Maureen W. Ihua
- School of Microbiology, University College Cork, Cork, Ireland
| | - Dagmar B. Stengel
- Botany and Plant Science, School of Natural Sciences, Ryan Institute for Environmental, Marine and Energy Research, University of Galway, Galway, Ireland
| | - Delin Duan
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Alan D. W. Dobson
- School of Microbiology, University College Cork, Cork, Ireland
- Environmental Research Institute, University College Cork, Cork, Ireland
| |
Collapse
|
33
|
Rothäusler E, Dobretsov S, Gómez MF, Jofré-Madariaga D, Thiel M, Véliz K, Tala F. Effect of UV-radiation on the physiology of the invasive green seaweed Codium fragile and its associated bacteria. MARINE ENVIRONMENTAL RESEARCH 2022; 180:105708. [PMID: 35952513 DOI: 10.1016/j.marenvres.2022.105708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 07/18/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
Invasive species such as seaweeds often have a broad tolerance, allowing them to colonize novel habitats. During invasion, also new epibacteria can be formed on seaweeds, which have important chemo-ecological effects. Since UV-radiation (UVR) is one of the main factors affecting seaweeds and their epibacteria, we tested its effect on intertidal and subtidal thalli of the invasive seaweed Codium fragile from three sites and monitored photosynthesis, antioxidant activity and epibacteria. Exposure to UV-radiation resulted in photoinhibition with a subsequent low recovery in subtidal thalli from 23°S compared to 27°S and 30°S, which both showed a higher and almost complete recovery. However, a high antioxidant activity was present in all thalli, permitting to explain its relatively high tolerance to new environments. UV-radiation modified the composition of the epibacteria community by reducing its diversity and evenness. Our results showed that C. fragile responds plastic to variable UV-radiation (depending on site and water depth), which contributes to its high invasion potential.
Collapse
Affiliation(s)
- Eva Rothäusler
- Centro de Investigaciones Costeras - Universidad de Atacama (CIC - UDA), Avenida Copayapu 485, Copiapó, Atacama, Chile
| | - Sergey Dobretsov
- Department of Marine Science and Fisheries, Sultan Qaboos University, Muscat, Oman; Center of Excellence in Marine Biotechnology, Sultan Qaboos University, Muscat, Oman
| | - María Fernanda Gómez
- Centro de Investigación y Desarrollo Tecnológico en Algas y Otros Recursos Biológicos (CIDTA), Facultad de Ciencias del Mar, Universidad Católica del Norte, Coquimbo, Chile
| | - David Jofré-Madariaga
- Programa de Doctorado en Ciencias Aplicadas mención Sistemas Marinos Costeros, Universidad de Antofagasta, Avenida Universidad de Antofagasta, 02800, Antofagasta, Chile
| | - Martin Thiel
- Departamento de Biología Marina, Universidad Católica del Norte, Coquimbo, Chile; Millennium Nucleus of Ecology and Sustainable Management of Oceanic Island (ESMOI), Coquimbo, Chile; Centro de Estudios Avanzados en Zonas Áridas, Coquimbo, Chile
| | - Karina Véliz
- Centro de Investigación y Desarrollo Tecnológico en Algas y Otros Recursos Biológicos (CIDTA), Facultad de Ciencias del Mar, Universidad Católica del Norte, Coquimbo, Chile
| | - Fadia Tala
- Centro de Investigación y Desarrollo Tecnológico en Algas y Otros Recursos Biológicos (CIDTA), Facultad de Ciencias del Mar, Universidad Católica del Norte, Coquimbo, Chile; Departamento de Biología Marina, Universidad Católica del Norte, Coquimbo, Chile; Instituto Milenio en Socio-Ecología Costera (SECOS), Santiago, Chile.
| |
Collapse
|
34
|
Impact of high pressure treatment on shelf life and microbial profile of wild harvested Ascophyllum nodosum and aquacultured Alaria esculenta during storage. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
35
|
Taya K, Takeuchi S, Takahashi M, Hayashi KI, Mikami K. Auxin Regulates Apical Stem Cell Regeneration and Tip Growth in the Marine Red Alga Neopyropia yezoensis. Cells 2022; 11:cells11172652. [PMID: 36078060 PMCID: PMC9454478 DOI: 10.3390/cells11172652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022] Open
Abstract
The red alga Neopyropia yezoensis undergoes polarized elongation and asymmetrical cell division of the apical stem cell during tip growth in filamentous generations of its life cycle: the conchocelis and conchosporangium. Side branches are also produced via tip growth, a process involving the regeneration and asymmetrical division of the apical stem cell. Here, we demonstrate that auxin plays a crucial role in these processes by using the auxin antagonist 2-(1H-Indol-3-yl)-4-oxo-4-phenyl-butyric acid (PEO-IAA), which specifically blocks the activity of the auxin receptor TRANSPORT INHIBITOR RESPONSE1 (TIR1) in land plants. PEO-IAA repressed both the regeneration and polarized tip growth of the apical stem cell in single-celled conchocelis; this phenomenon was reversed by treatment with the auxin indole-3-acetic acid (IAA). In addition, tip growth of the conchosporangium was accelerated by IAA treatment but repressed by PEO-IAA treatment. These findings indicate that auxin regulates polarized tip cell growth and that an auxin receptor-like protein is present in N. yezoensis. The sensitivity to different 5-alkoxy-IAA analogs differs considerably between N. yezoensis and Arabidopsis thaliana. N. yezoensis lacks a gene encoding TIR1, indicating that its auxin receptor-like protein differs from the auxin receptor of terrestrial plants. These findings shed light on auxin-induced mechanisms and the regulation of tip growth in plants.
Collapse
Affiliation(s)
- Kensuke Taya
- Graduate School of Fisheries Sciences, Hokkaido University, 3-1-1 Minato-cho, Hakodate 041-8611, Japan
| | - Shunzei Takeuchi
- School of Fisheries Sciences, Hokkaido University, 3-1-1 Minato-cho, Hakodate 041-8611, Japan
| | - Megumu Takahashi
- Faculty of Bio-Industry, Tokyo University of Agriculture, 196 Yasaka, Abashiri 099-2493, Japan
| | - Ken-ichiro Hayashi
- Department of Bioscience, Okayama University of Science, 1-1 Ridaicho, Kita-ku, Okayama 700-0005, Japan
| | - Koji Mikami
- School of Food Industrial Sciences, Miyagi University, 2-2-1 Hatatate, Taihaku-ku, Sendai 982-0215, Japan
- Correspondence: ; Tel.: +81-22-245-1411
| |
Collapse
|
36
|
Jagtap AS, Parab AS, Manohar CS, Kadam NS. Prebiotic potential of enzymatically produced ulvan oligosaccharides using ulvan lyase of Bacillus subtilis, NIOA181, a macroalgae-associated bacteria. J Appl Microbiol 2022; 133:3176-3190. [PMID: 35957555 DOI: 10.1111/jam.15775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 07/18/2022] [Accepted: 08/09/2022] [Indexed: 11/28/2022]
Abstract
AIMS To characterize the polysaccharide hydrolyzing potential of macroalgae-associated bacteria (MABs) for enzymatic production of oligosaccharides and determining their prebiotic potential. METHODS AND RESULTS Approximately 400 MABs were qualitatively characterised for polysaccharide hydrolyzing activity. Only about 5 to 15% of the isolates were found to have the potential for producing porphyranase, alginate lyase and ulvan lyase enzymes which were quantified in specific substrate broths. One potential MAB, Bacillus subtilis, NIOA181, isolated from green macroalgae, showed the highest ulvan lyase activity. This enzyme was partially purified and used to hydrolyse ulvan into ulvan oligosaccharides. Structural characterization of ulvan oligosaccharides showed that they are predominantly composed of di-, tri-, and tetrasaccharide units. Results showed that the enzymatically produced ulvan oligosaccharides exhibited prebiotic activity by promoting the growth of probiotic bacteria and suppressing the enteric pathogens, which were higher than the ulvan polysaccharide and equivalent to commercial fructooligosaccharides. CONCLUSIONS A potential MAB, NIOA181, producing ulvan lyase was isolated and used for the production of ulvan oligosaccharides with prebiotic activity. SIGNIFICANCE AND IMPACT OF STUDY Rarely studied ulvan oligosaccharides with prebiotic activity can be widely used as an active pharmaceutical ingredient in nutraceutical and other healthcare applications.
Collapse
Affiliation(s)
- Ashok S Jagtap
- Biological Oceanography Division, CSIR-National Institute of Oceanography, Dona Paula, Goa, India.,School of Earth, Ocean and Atmospheric Sciences, Goa University, Taleigao Plateau, Goa, India
| | - Ashutosh S Parab
- Biological Oceanography Division, CSIR-National Institute of Oceanography, Dona Paula, Goa, India.,School of Earth, Ocean and Atmospheric Sciences, Goa University, Taleigao Plateau, Goa, India
| | - Cathrine S Manohar
- Biological Oceanography Division, CSIR-National Institute of Oceanography, Dona Paula, Goa, India
| | - Nitin S Kadam
- Central Instrumentation Facility, Savitribai Phule Pune University, Pune, India
| |
Collapse
|
37
|
Panja A, Peter MJ, Nayagi N, Maruthupandi N, Ganesan M, Haldar S. Identification and determination of optimum growth condition with respect to selected environmental parameters for open sea cultivation of Gracillaria edulis in Andaman water. MARINE POLLUTION BULLETIN 2022; 181:113893. [PMID: 35797810 DOI: 10.1016/j.marpolbul.2022.113893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/05/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
Gracilaria edulis is one of India's most widely cultivated seaweeds. Pilot scale cultivation of Gracilaria edulis was initiated at Andaman, India for the first time. In the present study attempt has been made to identify how different water quality parameters influence the growth. Total 11 physicochemical parameters and 9 microbiological parameters, as well as chlorophyll and zooplankton, phytoplankton parameters were studied for two different seasons to evaluate which parameters influence seaweed growth. Six (nitrate, nitrite, ammonia, silicate, chlorophyll, photosynthetic active radiation) have a positive impact on seaweed growth, while some of the bacterial species showed negative impact. Lowess 3D curve fit model showed pH range from 7.59 to 7.82, N/P ratio of 2.046, rainfall 23.85-24 mm, and Photosynthetic active radiation of 376.6 W/m2 are optimum for Gracillaria growth. This model can be applied to future mass culture.
Collapse
Affiliation(s)
- Atanu Panja
- Analytical and Environmental Science Division & Centralized Instrument Facility, CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar 364 002, Gujarat, India
| | - Malarvizhi J Peter
- CSIR-Central Salt & Marine Chemicals Research Institute, Marine Algal Research Station, Mandappam, India
| | - N Nayagi
- CSIR-Central Salt & Marine Chemicals Research Institute, Marine Algal Research Station, Mandappam, India
| | - N Maruthupandi
- CSIR-Central Salt & Marine Chemicals Research Institute, Marine Algal Research Station, Mandappam, India
| | - M Ganesan
- CSIR-Central Salt & Marine Chemicals Research Institute, Marine Algal Research Station, Mandappam, India; Academy of Scientifc and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Soumya Haldar
- Analytical and Environmental Science Division & Centralized Instrument Facility, CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar 364 002, Gujarat, India; Academy of Scientifc and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
38
|
Barbato M, Vacchini V, Engelen AH, Patania G, Mapelli F, Borin S, Crotti E. What lies on macroalgal surface: diversity of polysaccharide degraders in culturable epiphytic bacteria. AMB Express 2022; 12:98. [PMID: 35895126 PMCID: PMC9329506 DOI: 10.1186/s13568-022-01440-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 07/13/2022] [Indexed: 11/10/2022] Open
Abstract
Macroalgal surface constitutes a peculiar ecological niche and an advantageous substratum for microorganisms able to degrade the wide diversity of algal glycans. The degrading enzymatic activities of macroalgal epiphytes are of paramount interest for the industrial by-product sector and biomass resource applications. We characterized the polysaccharide hydrolytic profile of bacterial isolates obtained from three macroalgal species: the red macroalgae Asparagopsis taxiformis and Sphaerococcus coronopifolius (Rhodophyceae) and the brown Halopteris scoparia (Phaeophyceae), sampled in South Portugal. Bacterial enrichment cultures supplemented with chlorinated aliphatic compounds, typically released by marine algae, were established using as inoculum the decaying biomass of the three macroalgae, obtaining a collection of 634 bacterial strains. Although collected from the same site and exposed to the same seawater seeding microbiota, macroalgal cultivable bacterial communities in terms of functional and phylogenetic diversity showed host specificity. Isolates were tested for the hydrolysis of starch, pectin, alginate and agar, exhibiting a different hydrolytic potential according to their host: A. taxiformis showed the highest percentage of active isolates (91%), followed by S. coronopifolius (54%) and H. scoparia (46%). Only 30% of the isolates were able to degrade starch, while the other polymers were degraded by 55-58% of the isolates. Interestingly, several isolates showed promiscuous capacities to hydrolyze more than one polysaccharide. The isolate functional fingerprint was statistically correlated to bacterial phylogeny, host species and enrichment medium. In conclusion, this work depicts macroalgae as holobionts with an associated microbiota of interest for blue biotechnologies, suggesting isolation strategies and bacterial targets for polysaccharidases' discovery.
Collapse
Affiliation(s)
- Marta Barbato
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'Ambiente (DeFENS), Università degli Studi di Milano, via Celoria 2, 20133, Milano, Italy.,Department of Biology, Section for Microbiology, Aarhus University, Ny Munkegade 116, 8000, Aarhus, Denmark
| | - Violetta Vacchini
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'Ambiente (DeFENS), Università degli Studi di Milano, via Celoria 2, 20133, Milano, Italy
| | - Aschwin H Engelen
- Centro de Ciências do Mar (CCMAR), Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Giovanni Patania
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'Ambiente (DeFENS), Università degli Studi di Milano, via Celoria 2, 20133, Milano, Italy
| | - Francesca Mapelli
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'Ambiente (DeFENS), Università degli Studi di Milano, via Celoria 2, 20133, Milano, Italy
| | - Sara Borin
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'Ambiente (DeFENS), Università degli Studi di Milano, via Celoria 2, 20133, Milano, Italy.
| | - Elena Crotti
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'Ambiente (DeFENS), Università degli Studi di Milano, via Celoria 2, 20133, Milano, Italy
| |
Collapse
|
39
|
Weigel BL, Miranda KK, Fogarty EC, Watson AR, Pfister CA. Functional Insights into the Kelp Microbiome from Metagenome-Assembled Genomes. mSystems 2022; 7:e0142221. [PMID: 35642511 PMCID: PMC9238374 DOI: 10.1128/msystems.01422-21] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 05/13/2022] [Indexed: 11/20/2022] Open
Abstract
Eukaryotic organisms evolved in a microbial world and often have intimate associations with diverse bacterial groups. Kelp, brown macroalgae in the order Laminariales, play a vital role in coastal ecosystems, yet we know little about the functional role of the microbial symbionts that cover their photosynthetic surfaces. Here, we reconstructed 79 bacterial metagenome-assembled genomes (MAGs) from blades of the bull kelp, Nereocystis luetkeana, allowing us to determine their metabolic potential and functional roles. Despite the annual life history of bull kelp, nearly half of the bacterial MAGs were detected across multiple years. Diverse members of the kelp microbiome, spanning 6 bacterial phyla, contained genes for transporting and assimilating dissolved organic matter (DOM), which is secreted by kelp in large quantities and likely fuels the metabolism of these heterotrophic bacteria. Bacterial genomes also contained alginate lyase and biosynthesis genes, involved in polysaccharide degradation and biofilm formation, respectively. Kelp-associated bacterial genomes contained genes for dissimilatory nitrate reduction and urea hydrolysis, likely providing a reduced source of nitrogen to the host kelp. The genome of the most abundant member of the kelp microbiome and common macroalgal symbiont, Granulosicoccus, contained a full suite of genes for synthesizing cobalamin (vitamin B12), suggesting that kelp-associated bacteria have the potential to provide their host kelp with vitamins. Finally, kelp-associated Granulosicoccus contained genes that typify the aerobic anoxygenic phototrophic bacteria, including genes for bacteriochlorophyll synthesis and photosystem II reaction center proteins, making them the first known photoheterotrophic representatives of this genus. IMPORTANCE Kelp (brown algae in the order Laminariales) are foundational species that create essential habitat in temperate and arctic coastal marine ecosystems. These photosynthetic giants host millions of microbial taxa whose functions are relatively unknown, despite their potential importance for host-microbe interactions and nutrient cycling in kelp forest ecosystems. We reconstructed bacterial genomes from metagenomic samples collected from blades of the bull kelp, Nereocystis luetkeana, allowing us to determine the functional gene content of specific members of the kelp microbiome. These bacterial genomes spanned 6 phyla and 19 families and included common alga-associated microbial symbionts such as Granulosicoccus. Key functions encoded in kelp-associated bacterial genomes included dissolved organic matter assimilation, alginate metabolism, vitamin B12 biosynthesis, and nitrogen reduction from nitrate and urea to ammonium, potentially providing the host kelp with vitamins and reduced nitrogen.
Collapse
Affiliation(s)
- Brooke L. Weigel
- Committee on Evolutionary Biology, University of Chicago, Chicago, Illinois, USA
| | | | - Emily C. Fogarty
- Committee on Microbiology, University of Chicago, Chicago, Illinois, USA
- Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | - Andrea R. Watson
- Committee on Microbiology, University of Chicago, Chicago, Illinois, USA
- Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | - Catherine A. Pfister
- Department of Ecology & Evolution, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
40
|
Dynamics of Planktonic Microbial Community Associated with Saccharina japonica Seedling. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2022. [DOI: 10.3390/jmse10060726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Macroalgae interact with planktonic microbes in seawater. It remains unclear how planktonic microbes interact with the environment and each other during the cultivation processes of commercially important algal species. Such an interaction is important for developing environment-friendly mariculture methods. In this study, the dynamics of the planktonic microbial community associated with Saccharina japonica were profiled during the seedling production stage, with its environmental correlation and co-occurrence pattern determined simultaneously. Microbial richness increased and positively correlated with light intensity and contents of NO3− and PO43−. A clear temporal succession of the community was observed, which coincided with changes in light intensity, dissolved oxygen, pH, and NO3− content. α-Proteobacteria, Bacteroidetes, γ-Proteobacteria, and the genera prevalent in these taxa dominated the planktonic microbial community, and their relative abundance temporally changed. A profile of keystone taxa that is different from prevalent genera was identified based on betweenness centrality scores. A modularized co-occurrence pattern was determined, in addition to intensified species-to-species interactions at the core of the co-occurrence network. These findings expanded our cognization of the planktonic microbial community in response to S. japonica cultivation.
Collapse
|
41
|
Shannon E, Conlon M, Hayes M. The Prebiotic Effect of Australian Seaweeds on Commensal Bacteria and Short Chain Fatty Acid Production in a Simulated Gut Model. Nutrients 2022; 14:nu14102163. [PMID: 35631304 PMCID: PMC9146517 DOI: 10.3390/nu14102163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/20/2022] [Accepted: 05/20/2022] [Indexed: 02/01/2023] Open
Abstract
Diet is known to affect the composition and metabolite production of the human gut microbial community, which in turn is linked with the health and immune status of the host. Whole seaweeds (WH) and their extracts contain prebiotic components such as polysaccharides (PS) and polyphenols (PP). In this study, the Australian seaweeds, Phyllospora comosa, Ecklonia radiata, Ulva ohnoi, and their PS and PP extracts were assessed for potential prebiotic activities using an in vitro gut model that included fresh human faecal inoculum. 16S rRNA sequencing post gut simulation treatment revealed that the abundance of several taxa of commensal bacteria within the phylum Firmicutes linked with short chain fatty acid (SCFA) production, and gut and immune function, including the lactic acid producing order Lactobacillales and the chief butyrate-producing genera Faecalibacteria, Roseburia, Blautia, and Butyricicoccus were significantly enhanced by the inclusion of WH, PS and PP extracts. After 24 h fermentation, the abundance of total Firmicutes ranged from 57.35−81.55% in the WH, PS and PP samples, which was significantly greater (p ≤ 0.01) than the inulin (INU) polysaccharide control (32.50%) and the epigallocatechingallate (EGCG) polyphenol control (67.13%); with the exception of P. comosa PP (57.35%), which was significantly greater than INU only. However, all WH, PS and PP samples also increased the abundance of the phylum Proteobacteria; while the abundance of the phylum Actinobacteria was decreased by WH and PS samples. After 24 h incubation, the total and individual SCFAs present, including butyric, acetic and propionic acids produced by bacteria fermented with E. radiata and U. ohnoi, were significantly greater than the SCFAs identified in the INU and EGCG controls. Most notably, total SCFAs in the E. radiata PS and U. ohnoi WH samples were 227.53 and 208.68 µmol/mL, respectively, compared to only 71.05 µmol/mL in INU and 7.76 µmol/mL in the EGCG samples. This study demonstrates that whole seaweeds and their extracts have potential as functional food ingredients to support normal gut and immune function.
Collapse
Affiliation(s)
- Emer Shannon
- Teagasc Food Biosciences, Ashtown Food Research Centre, Dunsinea Lane, Ashtown, D15 KN3K Dublin, Ireland;
- The Commonwealth Scientific and Industrial Research Organisation, Health and Biosecurity, Adelaide, SA 5000, Australia;
- Correspondence: ; Tel.: +353-1-8059980
| | - Michael Conlon
- The Commonwealth Scientific and Industrial Research Organisation, Health and Biosecurity, Adelaide, SA 5000, Australia;
| | - Maria Hayes
- Teagasc Food Biosciences, Ashtown Food Research Centre, Dunsinea Lane, Ashtown, D15 KN3K Dublin, Ireland;
| |
Collapse
|
42
|
Guo Z, Wang L, Jiang Z, Liang Z. Comparison studies of epiphytic microbial communities on four macroalgae and their rocky substrates. MARINE POLLUTION BULLETIN 2022; 176:113435. [PMID: 35183021 DOI: 10.1016/j.marpolbul.2022.113435] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/09/2022] [Accepted: 02/04/2022] [Indexed: 06/14/2023]
Abstract
Macroalgae and their rocky substrates both support diverse and abundant microbiota, performing essential ecological functions in marine ecosystem. However, the differences in the epiphytic microbial communities on macroalgae and rocky substrate are still poorly understood. In this study, the epiphytic microbial communities on four macroalgae (Corallina officinalis, Rhodomela confervoides, Sargassum thunbergii, and Ulva linza) and their rocky substrates from Weihai coast zone were characterized using high-throughput sequencing technology. The results showed that the alpha diversity indices were greater in rocky substrates than that in macroalgae. The microbial similarities among macroalgae and rocky substrate groups tended to decrease from the high taxonomic ranks to lower ranks, only 22.69% of the total amplicon sequence variants (ASVs) were shared between them. The functional analysis revealed that the microbiotas were mainly involved in metabolic activities. This study would provide the theoretical foundation for macroalgal cultivation and algal reef applications.
Collapse
Affiliation(s)
- Zhansheng Guo
- Marine College, Shandong University, Weihai 264209, China
| | - Lu Wang
- Marine College, Shandong University, Weihai 264209, China
| | - Zhaoyang Jiang
- Marine College, Shandong University, Weihai 264209, China.
| | - Zhenlin Liang
- Marine College, Shandong University, Weihai 264209, China.
| |
Collapse
|
43
|
Obando JMC, dos Santos TC, Bernardes M, Nascimento N, Villaça RC, Teixeira VL, Barbarino E, Cavalcanti DN. Chemical variation and analysis of diterpenes from seaweed Dictyota menstrualis under controlled conditions. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102637] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
44
|
Easy Removal of Epiphytic Bacteria on Ulva (Ulvophyceae, Chlorophyta) by Vortex with Silica Sands. Microorganisms 2022; 10:microorganisms10020476. [PMID: 35208930 PMCID: PMC8878427 DOI: 10.3390/microorganisms10020476] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/13/2022] [Accepted: 02/15/2022] [Indexed: 01/27/2023] Open
Abstract
Macroalgae-associated bacteria play an important role in their algal hosts’ biological processes. They are localized on surfaces of the host thalli, as well as between and even within algal cells. To examine the differences in community structures and functions between epi- and endo- bacteria, an effective approach for maximizing epiphyte removal from delicate seaweeds while retaining endophyte fidelity must be developed. In this study, a variety of surface sterilization methods for Ulva prolifera were compared, including mechanical, chemical, and enzymatical treatments. According to the results of scanning electron microscope (SEM) and denaturing gradient gel electrophoresis (DGGE) analysis, almost complete removal of epiphytic bacteria on Ulva was obtained simply by co-vortex of seaweeds with silica sands, causing minimal disturbance to endosymbionts when compared to previous published methods. In addition, the adaptability was also confirmed in additional U. prolifera strains and Ulva species with blade-like or narrow tubular thallus shapes. This easy mechanical method would enable the analysis of community composition and host specificity for Ulva-associated epi- and endo-bacteria separately.
Collapse
|
45
|
Dugeny E, de Lorgeril J, Petton B, Toulza E, Gueguen Y, Pernet F. Seaweeds influence oyster microbiota and disease susceptibility. J Anim Ecol 2022; 91:805-818. [PMID: 35137405 DOI: 10.1111/1365-2656.13662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 01/03/2022] [Indexed: 11/29/2022]
Abstract
A growing awareness of role that microbiota can play in mediating the effects of pathogens on hosts has given rise to the concept of the pathobiome. Recently, we demonstrated that the Pacific oyster mortality syndrome affecting Crassostrea gigas oysters is caused by infection with the Ostreid herpesvirus type 1 (OsHV-1) followed by infection with multiple bacterial taxa. Here we extend the concept of this pathobiome beyond the host species and its bacterial microbiota by investigating how seaweed living in association with oysters influences their response to the disease. We hypothesized that by their mere presence in the environment, different species of seaweeds can positively or negatively influence the risk of disease in oysters by shaping their bacterial microbiota and their immune response. Although seaweed and oysters do not have direct ecological interactions, they are connected by seawater and likely share microbes. To test our hypothesis, oysters were acclimated with green, brown or red algae for 2 weeks and then challenged with OsHV-1. We monitored host survival and pathogen proliferation and performed bacterial microbiota and transcriptome analyses. We found that seaweeds can alter the bacterial microbiota of the host and its response to the disease. More particularly, green algae belonging to the genus Ulva spp. induced bacterial microbiota dysbiosis in oyster and modification of its transcriptional immune response leading to increased susceptibility to the disease. This work provides a better understanding of a marine disease and highlights the importance of considering both macrobiotic and microbiotic interactions for conservation, management and exploitation of marine ecosystems and resources.
Collapse
Affiliation(s)
- Elyne Dugeny
- Université de Brest, Ifremer, CNRS, IRD, LEMAR, Plouzané, France
| | - Julien de Lorgeril
- IHPE, Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, Montpellier, France
| | - Bruno Petton
- Université de Brest, Ifremer, CNRS, IRD, LEMAR, Plouzané, France
| | - Eve Toulza
- IHPE, Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, Montpellier, France
| | - Yannick Gueguen
- IHPE, Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, Montpellier, France
| | - Fabrice Pernet
- Université de Brest, Ifremer, CNRS, IRD, LEMAR, Plouzané, France
| |
Collapse
|
46
|
Ren CG, Liu ZY, Wang XL, Qin S. The seaweed holobiont: from microecology to biotechnological applications. Microb Biotechnol 2022; 15:738-754. [PMID: 35137526 PMCID: PMC8913876 DOI: 10.1111/1751-7915.14014] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 01/25/2022] [Accepted: 01/27/2022] [Indexed: 01/17/2023] Open
Abstract
In the ocean, seaweed and microorganisms have coexisted since the earliest stages of evolution and formed an inextricable relationship. Recently, seaweed has attracted extensive attention worldwide for ecological and industrial purposes, but the function of its closely related microbes is often ignored. Microbes play an indispensable role in different stages of seaweed growth, development and maturity. A very diverse group of seaweed‐associated microbes have important functions and are dynamically reconstructed as the marine environment fluctuates, forming an inseparable ‘holobiont’ with their host. To further understand the function and significance of holobionts, this review first reports on recent advances in revealing seaweed‐associated microbe spatial and temporal distribution. Then, this review discusses the microbe and seaweed interactions and their ecological significance, and summarizes the current applications of the seaweed–microbe relationship in various environmental and biological technologies. Sustainable industries based on seaweed holobionts could become an integral part of the future bioeconomy because they can provide more resource‐efficient food, high‐value chemicals and medical materials. Moreover, holobionts may provide a new approach to marine environment restoration.
Collapse
Affiliation(s)
- Cheng-Gang Ren
- Key Laboratory of Biology and Utilization of Biological Resources of Coastal Zone, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China.,Center for Ocean Mag-Science, Chinese Academy of Sciences, Qingdao, China
| | - Zheng-Yi Liu
- Key Laboratory of Biology and Utilization of Biological Resources of Coastal Zone, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China.,Center for Ocean Mag-Science, Chinese Academy of Sciences, Qingdao, China
| | | | - Song Qin
- Key Laboratory of Biology and Utilization of Biological Resources of Coastal Zone, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China.,Center for Ocean Mag-Science, Chinese Academy of Sciences, Qingdao, China
| |
Collapse
|
47
|
Bacterial controlled mitigation of dysbiosis in a seaweed disease. THE ISME JOURNAL 2022; 16:378-387. [PMID: 34341505 PMCID: PMC8776837 DOI: 10.1038/s41396-021-01070-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 07/13/2021] [Accepted: 07/15/2021] [Indexed: 02/06/2023]
Abstract
Disease in the marine environment is predicted to increase with anthropogenic stressors and already affects major habitat-formers, such as corals and seaweeds. Solutions to address this issue are urgently needed. The seaweed Delisea pulchra is prone to a bleaching disease, which is caused by opportunistic pathogens and involves bacterial dysbiosis. Bacteria that can inhibit these pathogens and/or counteract dysbiosis are therefore hypothesised to reduce disease. This study aimed to identify such disease-protective bacteria and investigate their protective action. One strain, Phaeobacter sp. BS52, isolated from healthy D. pulchra, was antagonistic towards bleaching pathogens and significantly increased the proportion of healthy individuals when applied before the pathogen challenge (pathogen-only vs. BS52 + pathogen: 41-80%), and to a level similar to the control. However, no significant negative correlations between the relative abundances of pathogens and BS52 on D. pulchra were detected. Instead, inoculation of BS52 mitigated pathogen-induced changes in the epibacterial community. These observations suggest that the protective activity of BS52 was due to its ability to prevent dysbiosis, rather than direct pathogen inhibition. This study demonstrates the feasibility of manipulating bacterial communities in seaweeds to reduce disease and that mitigation of dysbiosis can have positive health outcomes.
Collapse
|
48
|
Glasl B, Haskell JB, Aires T, Serrão EA, Bourne DG, Webster NS, Frade PR. Microbial Surface Biofilm Responds to the Growth-Reproduction-Senescence Cycle of the Dominant Coral Reef Macroalgae Sargassum spp. Life (Basel) 2021; 11:life11111199. [PMID: 34833075 PMCID: PMC8621314 DOI: 10.3390/life11111199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/01/2021] [Accepted: 11/02/2021] [Indexed: 11/16/2022] Open
Abstract
Macroalgae play an intricate role in microbial-mediated coral reef degradation processes due to the release of dissolved nutrients. However, temporal variabilities of macroalgal surface biofilms and their implication on the wider reef system remain poorly characterized. Here, we study the microbial biofilm of the dominant reef macroalgae Sargassum over a period of one year at an inshore Great Barrier Reef site (Magnetic Island, Australia). Monthly sampling of the Sargassum biofilm links the temporal taxonomic and putative functional metabolic microbiome changes, examined using 16S rRNA gene amplicon and metagenomic sequencing, to the pronounced growth-reproduction-senescence cycle of the host. Overall, the macroalgal biofilm was dominated by the heterotrophic phyla Firmicutes (35% ± 5.9% SD) and Bacteroidetes (12% ± 0.6% SD); their relative abundance ratio shifted significantly along the annual growth-reproduction-senescence cycle of Sargassum. For example, Firmicutes were 1.7 to 3.9 times more abundant during host growth and reproduction cycles than Bacteroidetes. Both phyla varied in their carbohydrate degradation capabilities; hence, temporal fluctuations in the carbohydrate availability are potentially linked to the observed shift. Dominant heterotrophic macroalgal biofilm members, such as Firmicutes and Bacteroidetes, are implicated in exacerbating or ameliorating the release of dissolved nutrients into the ambient environment, though their contribution to microbial-mediated reef degradation processes remains to be determined.
Collapse
Affiliation(s)
- Bettina Glasl
- Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, University of Vienna, 1030 Vienna, Austria
- Correspondence:
| | - Jasmine B. Haskell
- CCMAR-Centre of Marine Sciences, CIMAR, University of Algarve, 8005-139 Faro, Portugal; (J.B.H.); (T.A.); (E.A.S.)
| | - Tania Aires
- CCMAR-Centre of Marine Sciences, CIMAR, University of Algarve, 8005-139 Faro, Portugal; (J.B.H.); (T.A.); (E.A.S.)
| | - Ester A. Serrão
- CCMAR-Centre of Marine Sciences, CIMAR, University of Algarve, 8005-139 Faro, Portugal; (J.B.H.); (T.A.); (E.A.S.)
| | - David G. Bourne
- Australian Institute of Marine Science, Townsville 4810, Australia
- College of Science and Engineering, James Cook University, Townsville 4811, Australia;
| | - Nicole S. Webster
- Australian Institute of Marine Science, Townsville 4810, Australia
- Australian Centre for Ecogenomics, University of Queensland, Brisbane 4072, Australia
- Australian Antarctic Division, Hobart 7050, Australia;
| | - Pedro R. Frade
- CCMAR-Centre of Marine Sciences, CIMAR, University of Algarve, 8005-139 Faro, Portugal; (J.B.H.); (T.A.); (E.A.S.)
- Zoological Department III, Natural History Museum Vienna, 1010 Vienna, Austria;
| |
Collapse
|
49
|
Løvdal T, Lunestad BT, Myrmel M, Rosnes JT, Skipnes D. Microbiological Food Safety of Seaweeds. Foods 2021; 10:foods10112719. [PMID: 34829000 PMCID: PMC8619114 DOI: 10.3390/foods10112719] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/25/2021] [Accepted: 10/30/2021] [Indexed: 12/13/2022] Open
Abstract
The use of seaweeds in the human diet has a long history in Asia and has now been increasing also in the western world. Concurrent with this trend, there is a corresponding increase in cultivation and harvesting for commercial production. Edible seaweed is a heterogenous product category including species within the green, red, and brown macroalgae. Moreover, the species are utilized on their own or in combinatorial food products, eaten fresh or processed by a variety of technologies. The present review summarizes available literature with respect to microbiological food safety and quality of seaweed food products, including processing and other factors controlling these parameters, and emerging trends to improve on the safety, utilization, quality, and storability of seaweeds. The over- or misuse of antimicrobials and the concurrent development of antimicrobial resistance (AMR) in bacteria is a current worldwide health concern. The role of seaweeds in the development of AMR and the spread of antimicrobial resistance genes is an underexplored field of research and is discussed in that context. Legislation and guidelines relevant to edible seaweed are also discussed.
Collapse
Affiliation(s)
- Trond Løvdal
- Nofima–Norwegian Institute of Food, Fisheries and Aquaculture Research, Department of Process Technology, Richard Johnsens Gate 4, P.O. Box 8034, NO-4021 Stavanger, Norway; (J.T.R.); (D.S.)
- Correspondence:
| | - Bjørn Tore Lunestad
- Institute of Marine Research, Section for Contaminants and Biohazards, Nordnesgaten 50, P.O. Box 1870, NO-5005 Bergen, Norway;
| | - Mette Myrmel
- Virology Unit, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Elizabeth Stephansens vei 15, P.O. Box 5003, NO-1433 Ås, Norway;
| | - Jan Thomas Rosnes
- Nofima–Norwegian Institute of Food, Fisheries and Aquaculture Research, Department of Process Technology, Richard Johnsens Gate 4, P.O. Box 8034, NO-4021 Stavanger, Norway; (J.T.R.); (D.S.)
| | - Dagbjørn Skipnes
- Nofima–Norwegian Institute of Food, Fisheries and Aquaculture Research, Department of Process Technology, Richard Johnsens Gate 4, P.O. Box 8034, NO-4021 Stavanger, Norway; (J.T.R.); (D.S.)
| |
Collapse
|
50
|
Kopprio GA, Luyen ND, Cuong LH, Duc TM, Fricke A, Kunzmann A, Huong LM, Gärdes A. Insights into the bacterial community composition of farmed Caulerpa lentillifera: A comparison between contrasting health states. Microbiologyopen 2021; 10:e1253. [PMID: 34821475 PMCID: PMC8628300 DOI: 10.1002/mbo3.1253] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 10/29/2021] [Accepted: 11/10/2021] [Indexed: 11/23/2022] Open
Abstract
The bacterial communities of Caulerpa lentillifera were studied during an outbreak of an unknown disease in a sea grape farm from Vietnam. Clear differences between healthy and diseased cases were observed at the order, genus, and Operational Taxonomic Unit (OTU) level. A richer diversity was detected in the diseased thalli of C. lentillifera, as well as the dominance of the orders Flavobacteriales (phylum Bacteroidetes) and Phycisphaerales (Planctomycetes). Aquibacter, Winogradskyella, and other OTUs of the family Flavobacteriaceae were hypothesized as detrimental bacteria, this family comprises some well-known seaweed pathogens. Phycisphaera together with other Planctomycetes and Woeseia were probably saprophytes of C. lentillifera. The Rhodobacteraceae and Rhodovulum dominated the bacterial community composition of healthy C. lentillifera. The likely beneficial role of Bradyrhizobium, Paracoccus, and Brevundimonas strains on nutrient cycling and phytohormone production was discussed. The bleaching of diseased C. lentillifera might not only be associated with pathogens but also with an oxidative response. This study offers pioneering insights on the co-occurrence of C. lentillifera-attached bacteria, potential detrimental or beneficial microbes, and a baseline for understanding the C. lentillifera holobiont. Further applied and basic research is urgently needed on C. lentillifera microbiome, shotgun metagenomic, metatranscriptomic, and metabolomic studies as well as bioactivity assays are recommended.
Collapse
Affiliation(s)
- Germán A. Kopprio
- Department of Ecohydrology and BiogeochemistryLeibniz Institute of Freshwater Ecology and Inland FisheriesBerlinGermany
| | - Nguyen D. Luyen
- Institute of Natural Product ChemistryVietnam Academy of Science and TechnologyHanoiVietnam
- Vietnam Academy of Science and TechnologyGraduate University of Science and TechnologyHanoiVietnam
| | - Le Huu Cuong
- Institute of Natural Product ChemistryVietnam Academy of Science and TechnologyHanoiVietnam
- Vietnam Academy of Science and TechnologyGraduate University of Science and TechnologyHanoiVietnam
| | - Tran Mai Duc
- Nha Trang Institute of Technology Research and ApplicationVietnam Academy of Science and TechnologyNha TrangVietnam
| | - Anna Fricke
- Department of Plant Quality and Food SecurityLeibniz Institute of Vegetable and Ornamental CropsGroßbeerenGermany
| | - Andreas Kunzmann
- Department of EcologyLeibniz Centre for Tropical Marine ResearchBremenGermany
| | - Le Mai Huong
- Institute of Natural Product ChemistryVietnam Academy of Science and TechnologyHanoiVietnam
- Vietnam Academy of Science and TechnologyGraduate University of Science and TechnologyHanoiVietnam
| | - Astrid Gärdes
- University of Applied SciencesBremerhavenGermany
- Department of Biosciences, Alfred Wegener InstituteHelmholtz Centre for Polar and Marine ResearchBremerhavenGermany
| |
Collapse
|