1
|
Khadour FA, Khadour YA, Xu T. NLRP3 overexpression exacerbated synovium tissue degeneration in juvenile collagen-induced arthritis. Sci Rep 2025; 15:7024. [PMID: 40016261 PMCID: PMC11868420 DOI: 10.1038/s41598-025-86720-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 01/13/2025] [Indexed: 03/01/2025] Open
Abstract
Juvenile idiopathic arthritis (JIA) can lead to synovial inflammation. JIA is a chronic autoimmune inflammatory condition that primarily affects children. It is recognized as the most prevalent form of arthritis in the pediatric population and is associated with significant impairment and disability. As an inflammatory regulator, Nod-like receptor 3 (NLRP3) has been implicated in various autoimmune diseases. However, the specific mechanism by which NLRP3 impacts the progress of JIA remains unclear. Therefore, we conducted this study to investigate the specific mechanism of NLRP3 on the progress of synovial inflammation in juvenile collagen-induced arthritis (CIA). The CIA model was established using Sprague‒Dawley (SD) rats aged 2-3 weeks. In this study, we investigated the potential role of NLRP3 on JIA by regulating the NLRP3-NF-κB axis in CIA rats. To verify the effect of NLRP3 on JIA, the expression of NLRP3 was knocked down or overexpressed by an adeno-associated virus injected into the knee joint of the CIA rats. In this study, we observed that NLRP3 plays an important role in the development of juvenile CIA, and knocking down NLRP3 inhibited inflammation and alleviated synovium inflammation. We also demonstrated that the expression of NLRP3 was increased in synovial tissue, and NLRP3 could upregulate the NF-κB signal pathway and influence inflammation. Moreover, we also found that increases in the expression of NLRP3 impairs autophagy capacity and increases activation of the pyroptosis pathway in the synovium of the juvenile CIA rats. The results demonstrated that NLRP3 interferes with synovial inflammation in juvenile CIA. These results provide new insight into the mechanism by which NLRP3 impacts the development of JIA and suggest that targeting the NLRP3 inflammasome may represent a promising therapeutic strategy for managing JIA.
Collapse
MESH Headings
- Animals
- NLR Family, Pyrin Domain-Containing 3 Protein/metabolism
- NLR Family, Pyrin Domain-Containing 3 Protein/genetics
- Synovial Membrane/metabolism
- Synovial Membrane/pathology
- Rats
- Arthritis, Experimental/metabolism
- Arthritis, Experimental/pathology
- Arthritis, Experimental/genetics
- Rats, Sprague-Dawley
- Arthritis, Juvenile/metabolism
- Arthritis, Juvenile/pathology
- Arthritis, Juvenile/genetics
- NF-kappa B/metabolism
- Male
- Signal Transduction
- Disease Models, Animal
- Inflammation/metabolism
- Inflammation/pathology
- Inflammation/genetics
- Inflammasomes/metabolism
Collapse
Affiliation(s)
- Fater A Khadour
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095#, Jie-Fang Avenue, Qiaokou District, Wuhan, 430030, Hubei, China
- Department of Rehabilitation, Faculty of Medicine, Al Baath University, Homs, Syria
- Department of Physical Therapy, Health Science Faculty, Al-Baath University, Homs, Syria
| | - Younes A Khadour
- Department of Rehabilitation, Faculty of Medicine, Al Baath University, Homs, Syria
- Department of Physical Therapy, Cairo University, Cairo, 11835, Egypt
| | - Tao Xu
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095#, Jie-Fang Avenue, Qiaokou District, Wuhan, 430030, Hubei, China.
| |
Collapse
|
2
|
Zhu L, Zhang Y, Chen X, Li Y, Pan H, Wang Y, Chen N, Wu Y, Li Y, Zhao M. Correlation Analysis of Pyroptosis-Related Genes CASP1, NLRP3, AIM2, and NLRP1 With Lung Adenocarcinoma. Int J Genomics 2025; 2025:8282590. [PMID: 40026444 PMCID: PMC11871981 DOI: 10.1155/ijog/8282590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 01/08/2025] [Indexed: 03/05/2025] Open
Abstract
Purpose: This study is aimed at exploring the role of pyroptosis-related genes in the development, immune infiltration, and clinical features of lung adenocarcinoma. Method: Pyroptosis-related genes were searched using online databases, including MSigDB, Gene, and GeneCards. We explored pyroptosis-related gene expression patterns in lung adenocarcinoma using the UALCAN database. Functional enrichment analysis of pyroptosis-related genes in lung adenocarcinoma was performed using the Metascape database. A protein-protein interaction network was constructed using the STRING database, and the outcomes were visualized using Cytoscape. The top five core genes were screened utilizing the MCC algorithm with its cytoHubba plugin. The correlation between immune cell infiltration, diagnosis, and prognosis of core genes in lung adenocarcinoma was explored using the TIMER 2.0, TCGA, and Kaplan-Meier plotter databases. A nomogram was constructed to predict the survival of patients with lung adenocarcinoma using Cox regression analysis, and its clinical value was validated. Samples of paraffin-embedded lung adenocarcinoma tissues were collected and subjected to immunohistochemical tests to verify the expression of core genes in lung adenocarcinoma and adjacent tissues. Results: Overall, 202 genes related to pyroptosis were identified, with 67 upregulated and 60 downregulated in lung adenocarcinomas. The top five core genes-namely, CASP1 (caspase1), PYCARD (PYD and CARD domain-containing protein), NLRP3 (NOD-like receptor protein 3), AIM2 (absent in melanoma 2), and NLRP1 (NOD-like receptor protein 1)-related to lung adenocarcinoma pyroptosis were selected. The correlation analysis of immune cell infiltration showed that CASP1, NLRP3, and AIM2, which showed that pyroptosis was involved in the infiltration of immune cells in the tumor microenvironment and NLRP1 exhibited high diagnostic efficacy, while PYCARD demonstrated poor diagnostic efficacy. High expression of CASP1, NLRP3, and NLRP1 correlated with a better prognosis (p < 0.05), while elevated AIM2 expression was associated with a poor prognosis (p < 0.05). However, PYCARD exhibited no significant correlation with prognosis (p > 0.05). The immunohistochemistry results showed that positive rates of CASP1, NLRP3, AIM2, and NLRP1 were 20%, 15%, 70%, and 10%, respectively, while in adjacent tissues, the positive rates were 60%, 60%, 20%, and70%, indicating high expression of AIM2 and low expression of CASP1, NLRP3, and NLRP1 in lung adenocarcinoma. Conclusion: CASP1, NLRP3, AIM2, and NLRP1 are core pyroptotic genes in lung adenocarcinoma and exhibit a strong correlation with immune cell infiltration, diagnosis, and prognosis of this condition. These genes may be useful in the clinical diagnosis and treatment of patients with lung adenocarcinoma.
Collapse
Affiliation(s)
- Lingling Zhu
- Department of Oncology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yongqian Zhang
- Department of Oncology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xiaojing Chen
- Department of Oncology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Graduate School, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yuehang Li
- Department of Respiratory and Critical Care Medicine Ward 1, Handan Central Hospital, Handan, Hebei, China
| | - Haiqiao Pan
- Department of Oncology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Graduate School, Chengde Medical University, Chengde, Hebei, China
| | - Yuan Wang
- Department of Respiratory, Hebei Chest Hospital, Shijiazhuang, Hebei, China
| | - Ning Chen
- Department of Pathology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yajing Wu
- Department of Radiotherapy, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yishuai Li
- Department of Thoracic Surgery, Hebei Chest Hospital, Shijiazhuang, Hebei, China
| | - Min Zhao
- Department of Oncology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
3
|
Li Y, Chen J, Liang H, Du Q, Shen J, Wang X. Gasdermin D regulates the activation of EGFR in colorectal cancer. J Transl Med 2024; 22:1170. [PMID: 39741309 DOI: 10.1186/s12967-024-05984-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 12/13/2024] [Indexed: 01/02/2025] Open
Abstract
BACKGROUND Gasdermin D (GSDMD) is a key effector molecule that activates pyroptosis through its N terminal domain (GSDMD-NT). However, the roles of GSDMD in colorectal cancer (CRC) have not been fully explored. The role of the full-length GSDMD (GSDMD-FL) is also not clear. In this study, we observed that GSDMD modulates CRC progression through other mechanisms in addition to activating GSDMD-NT. METHODS Clinical CRC samples and human-derived CRC cell lines were used in this study. GSDMD expression was evaluated by RT-qPCR, Western blot and immunohistochemical (IHC) analysis. GSDMD knockdown and overexpression stable cell lines were established by Lentiviral transduction. CCK-8 assay, flow cytometry analysis for cell cycle, Transwell assay, and cell scratch assay were performed in vitro to explore the impact of GSDMD on CRC progression. Mouse subcutaneous transplantation tumor models were constructed to assess the role of GSDMD in vivo. Intestinal epithelial cell (IEC)-specific knockout of Gsdmd mice (GsdmdΔIEC) was used to evaluate the effect of GSDMD on intestinal adenoma formation in AOM-DSS and Apcmin/+ mouse models. RNA sequencing was performed to explore the regulatory pathways associated with the role of GSDMD in CRC cells. Co-Immunoprecipitation (CO-IP), Western blot and immunofluorescence (IF) were conducted to investigate the interactions between GSDMD and EGFR. Exogenous addition of Gefitinib was used to evaluate the effect of GSDMD on autophosphorylation of EGFR at the Tyr1068 site. RESULTS GSDMD was highly expressed in clinical CRC tissues and human-derived CRC cell lines. GSDMD knockdown inhibited the viability, cell cycle changes, invasion ability and migration ability of CRC cell lines in vitro and vivo, whereas GSDMD overexpression had the opposite effects. Intestinal adenoma development was reduced in GsdmdΔIEC mice in both AOM-DSS and Apcmin/+ mouse models. GSDMD-FL interacted with EGFR and promoted CRC progression by inducing autophosphorylation of EGFR at the Tyr1068 site, subsequently activating ERK1/2. Exogenous Gefitinib abrogated the tumorigenic properties of GSDMD. CONCLUSIONS GSDMD-FL promotes CRC progression by inducing EGFR autophosphorylation at the Tyr1068 site, subsequently activating the downstream ERK1/2. Inhibition of GSDMD is a potential strategy for the treatment of colorectal cancer.
Collapse
Affiliation(s)
- Ying Li
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China
| | - Jiayao Chen
- Department of Oncology, Zhangjiagang Third People's Hospital, Suzhou, 215611, China
| | - Huijun Liang
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China
| | - Qindan Du
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China
| | - Jingjie Shen
- The Ninth People's Hospital of Suzhou City, Suzhou, China
| | - Xiaoying Wang
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China.
- MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases, School of medicine, Jiangnan University, Wuxi, China.
| |
Collapse
|
4
|
Wang H, Wang T, Yan S, Tang J, Zhang Y, Wang L, Xu H, Tu C. Crosstalk of pyroptosis and cytokine in the tumor microenvironment: from mechanisms to clinical implication. Mol Cancer 2024; 23:268. [PMID: 39614288 PMCID: PMC11607834 DOI: 10.1186/s12943-024-02183-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 11/22/2024] [Indexed: 12/01/2024] Open
Abstract
In the realm of cancer research, the tumor microenvironment (TME) plays a crucial role in tumor initiation and progression, shaped by complex interactions between cancer cells and surrounding non-cancerous cells. Cytokines, as essential immunomodulatory agents, are secreted by various cellular constituents within the TME, including immune cells, cancer-associated fibroblasts, and cancer cells themselves. These cytokines facilitate intricate communication networks that significantly influence tumor initiation, progression, metastasis, and immune suppression. Pyroptosis contributes to TME remodeling by promoting the release of pro-inflammatory cytokines and sustaining chronic inflammation, impacting processes such as immune escape and angiogenesis. However, challenges remain due to the complex interplay among cytokines, pyroptosis, and the TME, along with the dual effects of pyroptosis on cancer progression and therapy-related complications like cytokine release syndrome. Unraveling these complexities could facilitate strategies that balance inflammatory responses while minimizing tissue damage during therapy. This review delves into the complex crosstalk between cytokines, pyroptosis, and the TME, elucidating their contribution to tumor progression and metastasis. By synthesizing emerging therapeutic targets and innovative technologies concerning TME, this review aims to provide novel insights that could enhance treatment outcomes for cancer patients.
Collapse
Affiliation(s)
- Hua Wang
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Tao Wang
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Shuxiang Yan
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Jinxin Tang
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Yibo Zhang
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Liming Wang
- School of Biomedical Sciences, Hunan University, Changsha, Hunan, 410011, China.
| | - Haodong Xu
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China.
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China.
- Center for Precision Health, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
| | - Chao Tu
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China.
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China.
- Shenzhen Research Institute of Central South University, Guangdong, 518063, China.
- Hunan Engineering Research Center of AI Medical Equipment, The Second Xiangya Hospital of Central, South University, Changsha, Hunan, 410011, China.
| |
Collapse
|
5
|
Liu X, Xu Z, Yin H, Zhao X, Duan J, Zhou K, Shen Q. Immune-oncology targets and therapeutic response of cell pyroptosis-related genes with prognostic implications in neuroblastoma. Discov Oncol 2024; 15:661. [PMID: 39548036 PMCID: PMC11568093 DOI: 10.1007/s12672-024-01518-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 11/04/2024] [Indexed: 11/17/2024] Open
Abstract
OBJECTIVE Construction of a neuroblastoma (NB) prognostic predictive model based on pyroptosis-related genes (PRGs) to improve individualized management of NB patients. METHODS The NB cohort GSE49711 was obtained from the Gene Expression Omnibus (GEO) database, and a total of 498 patients were enrolled into the study, which were randomized into a training set and a test set at a ratio of 1:1, with 250 patients in the training set and 248 patients in the test set. A risk prediction model was constructed using the training set, and the GSE49711 cohort and test set were used as internal validation to verify the reliability of the model. Independent predictors associated with prognosis were screened using univariate and multivariate COX regression analyses, and risk score models were constructed. Single-cell gene set enrichment analysis (ssGSEA) was used to assess the relationship between PRGs and the tumor immune microenvironment. Nomograms were constructed to extend the clinical usability of the model and the reliability of the model was verified using ROC curves and calibration curves. Protein interaction networks of risk genes were mapped using the String database, and the expression of PRGs in NB cell lines was staged using the CCLE database. RESULTS A prognostic model was first developed with the training set: the risk score formula was (- 0.30 × GSDMB) + (- 0.46 × IL-18) + (- 0.21 × NLRP3) + (0.56 × AIM2). Patients were categorized into high- and low-risk groups based on the median risk score value. Survival analysis showed that NB patients in the high-risk group had a significantly lower survival rate than those in the low-risk group (P < 0.001). In both the GSE49711 overall cohort and the test cohort, survival analyses showed that patients in the high-risk group had significantly lower survival than those in the low-risk group (P < 0.001). Single-cell gene set enrichment analysis was used to assess the relationship between PRGs and the tumor immune microenvironment. Time-dependent ROC curves assessed the predictive performance of the nomogram in 5-, 7.5-, and 10-year survival with areas under the curve (AUC) of 0.843, 0.802 and 0.797, respectively. The calibration curves show good clinical predictive performance for nomograms. CONCLUSION The results suggest that PRGs may serve as a novel prognostic marker for NB patients to provide new immunotherapeutic targets for the clinical treatment of NB patients.
Collapse
Affiliation(s)
- Xingyu Liu
- Department of Pediatric Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Zhongya Xu
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Jiangsu, China
| | - Hanjun Yin
- Department of Pediatrics, Nanjing Drum Tower Hospital Group Suqian Hospital, Suqian, China
| | - Xu Zhao
- Department of Pediatric Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Jinjiang Duan
- Department of Pediatric Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Kai Zhou
- Department of Pediatric Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China.
| | - Qiyang Shen
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Jiangsu, China.
| |
Collapse
|
6
|
Liu Z, Xu S, Chen L, Gong J, Wang M. The role of pyroptosis in cancer: key components and therapeutic potential. Cell Commun Signal 2024; 22:548. [PMID: 39548573 PMCID: PMC11566483 DOI: 10.1186/s12964-024-01932-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 11/07/2024] [Indexed: 11/18/2024] Open
Abstract
Pyroptosis is a lytic and inflammatory form of gasdermin protein-mediated programmed cell death that is typically initiated by inflammasomes. The inflammasome response is an effective mechanism for eradicating germs and cancer cells in the event of cellular injury. The gasdermin family is responsible for initiating pyroptosis, a process in which holes are made in the cell membrane to allow inflammatory chemicals to escape. Mounting evidence indicates that pyroptosis is critical for controlling the development of cancer. In this review, we provide a general overview of pyroptosis, examine the relationship between the primary elements of pyroptosis and tumors, and stress the necessity of pyroptosis-targeted therapy in tumors. Furthermore, we explore its dual nature as a double-edged sword capable of both inhibiting and facilitating the growth of cancer, depending on the specific conditions. Ultimately, pyroptosis is a phenomenon that has both positive and negative effects on tumors. Using this dual impact in a reasonable manner may facilitate investigation into the initiation and progression of tumors and offer insights for the development of novel treatments centered on pyroptosis.
Collapse
Affiliation(s)
- Zixi Liu
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, Hubei, 430030, China
| | - Simiao Xu
- Division of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Lin Chen
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, Hubei, 430030, China
| | - Jun Gong
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, Hubei, 430030, China.
| | - Min Wang
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, Hubei, 430030, China.
| |
Collapse
|
7
|
Zhang Y, Wang Y, Weng J, Chen J, Zheng Y, Xia Y, Huang Z, Zhao L, Chen X, Tang H, Huang Y. Pyroptosis-related gene GSDMC indicates poor prognosis and promotes tumor progression by activating the AKT/mTOR pathway in lung squamous cell carcinoma. Mol Carcinog 2024; 63:2218-2236. [PMID: 39136610 DOI: 10.1002/mc.23805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/23/2024] [Accepted: 07/29/2024] [Indexed: 10/11/2024]
Abstract
Lung squamous cell carcinoma (LUSC) is one of the most common malignant tumors of the respiratory. Pyroptosis plays an essential role in cancer, but there is limited research investigating pyroptosis in LUSC. In this study, pyroptosis-related genes were observed to have extensive multiomics alterations in LUSC through analysis of the TCGA database. Utilizing machine learning for selection and verifying expression levels, GSDMC was chosen as the critical gene for further experiments. Our research found that GSDMC is overexpressed in LUSC tissues and cells, and is associated with poor prognosis. Knockdown of GSDMC in LUSC inhibits cell proliferation, invasion, metastasis, chemotherapeutic sensitivity, and reduced tumor formation in nude mice, accompanied by downregulation of proliferative and EMT-related protein expression. However, these effects were counteracted in cells where GSDMC is overexpressed. Mechanistically, the oncogenic role of GSDMC is primarily achieved through the activation of the AKT/mTOR pathway, and this effect can be significantly reversed by rapamycin. Finally, SMAD4's interaction with the promoter region of GSDMC results in the suppression of GSDMC expression. In summary, our study through bioinformatics and experimental approaches not only proves that SMAD4 regulates the protumorigenic role of GSDMC through transcriptional targeting, but also indicates the possibility of developing the SMAD4/GSDMC/AKT/mTOR signaling axis as a potential biomarker and treatment target for LUSC.
Collapse
Affiliation(s)
- Yi Zhang
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, Fujian, China
- Department of Clinical Laboratory, Fujian Provincial Hospital, Fuzhou, Fujian, China
| | - Yuzhi Wang
- Department of Laboratory Medicine, Deyang People's Hospital, Deyang, Sichuan, China
| | - Jiamiao Weng
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, Fujian, China
- Department of Clinical Laboratory, Fujian Provincial Hospital, Fuzhou, Fujian, China
| | - Jianlin Chen
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, Fujian, China
- Department of Clinical Laboratory, Fujian Provincial Hospital, Fuzhou, Fujian, China
| | - Yue Zheng
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, Fujian, China
- Department of Clinical Laboratory, Fujian Provincial Hospital, Fuzhou, Fujian, China
| | - Yu Xia
- Department of Clinical Laboratory, Fujian Provincial Hospital, Fuzhou, Fujian, China
- Integrated Chinese and Western Medicine College, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Zhixin Huang
- Department of Clinical Laboratory, Fujian Provincial Hospital, Fuzhou, Fujian, China
- Integrated Chinese and Western Medicine College, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Lilan Zhao
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, Fujian, China
- Department of General Thoracic Surgery, Fujian Provincial Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Xiongfeng Chen
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, Fujian, China
- Department of Scientific Research, Fujian Provincial Hospital, Fuzhou, Fujian, China
| | - Haijun Tang
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, Fujian, China
- Fujian Provincial Key Laboratory of Critical Care Medicine, Fujian Provincial Key Laboratory of Cardiovascular Disease, Fuzhou, Fujian, China
| | - Yi Huang
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, Fujian, China
- Department of Clinical Laboratory, Fujian Provincial Hospital, Fuzhou, Fujian, China
- Fujian Provincial Key Laboratory of Critical Care Medicine, Fujian Provincial Key Laboratory of Cardiovascular Disease, Fuzhou, Fujian, China
- Center for Experimental Research in Clinical Medicine, Fujian Provincial Hospital, Fuzhou, Fujian, China
- Central Laboratory, Fujian Provincial Hospital, Fuzhou, Fujian, China
| |
Collapse
|
8
|
Shang B, Qiao H, Wang L, Wang J. In-depth study of pyroptosis-related genes and immune infiltration in colon cancer. PeerJ 2024; 12:e18374. [PMID: 39494275 PMCID: PMC11529595 DOI: 10.7717/peerj.18374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 09/30/2024] [Indexed: 11/05/2024] Open
Abstract
Background Pyroptosis is a form of regulated necrosis that occurs in many cell and tissue types and plays a critical role in tumor progression. The diagnostic value of pyroptosis-related genes (PRGs) in colon cancer has been widely investigated. In the present study, we explored the relationship between PRG expression and colon cancer. Methods We retrieved genomic and clinical data pertaining to The Cancer Genome Atlas-Colon Adenocarcinoma from the UCSC Xena database, along with the corresponding genome annotation information from the GENCODE data portal. Utilising these data and a list of 33 pyrogenic genes, we performed principal component analysis and unsupervised clustering analysis to assess the pyroptosis subtypes. We analysed the differential expression between these subtypes to obtain PRGs, ultimately selecting 10 PRGs. We conducted Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, gene set variation analysis, protein-protein interaction, and immune infiltration analyses of these PRGs. We validated the expression of TNNC1 via immunohistochemistry (IHC) and real-time quantitative PCR. Results After rigorous screening, excluding patients with incomplete survival data and unmatched transcriptomes, we refined our study cohort to 431 patients. We performed differential mRNA analysis and identified 445 PRGs, 10 of which were selected as hub genes. These genes were associated with various immune cell types. Specifically, TNNC1 expression was positively associated with immature dendritic cells and NK CD56+ cells. IHC staining indicated higher TNNC1 expression levels in tumor samples. Notably, TNNC1 expression levels were high in all the colon cancer cell lines, particularly in SW480 cells. Conclusion In this study, we explored the characteristics of PRGs in colon cancer and identified novel biological targets for early individualised treatment and accurate diagnosis of colon cancer, thus contributing to the advancement of clinical oncology.
Collapse
Affiliation(s)
- Bingbing Shang
- Laboratory Animal Center, Dalian Medical University, Dalian, China
- Emergency Department, The Second Hospital of Dalian Medical University, Dalian, China
| | - Haiyan Qiao
- Laboratory Animal Center, Dalian Medical University, Dalian, China
| | - Liang Wang
- Laboratory Animal Center, Dalian Medical University, Dalian, China
| | - Jingyu Wang
- Laboratory Animal Center, Dalian Medical University, Dalian, China
| |
Collapse
|
9
|
Li LR, Chen L, Sun ZJ. Igniting hope: Harnessing NLRP3 inflammasome-GSDMD-mediated pyroptosis for cancer immunotherapy. Life Sci 2024; 354:122951. [PMID: 39127315 DOI: 10.1016/j.lfs.2024.122951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/19/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
In the contemporary landscape of oncology, immunotherapy, represented by immune checkpoint blockade (ICB) therapy, stands out as a beacon of innovation in cancer treatment. Despite its promise, the therapy's progression is hindered by suboptimal clinical response rates. Addressing this challenge, the modulation of the NLRP3 inflammasome-GSDMD-mediated pyroptosis pathway holds promise as a means to augment the efficacy of immunotherapy. In the pathway, the NLRP3 inflammasome serves as a pivotal molecular sensor that responds to inflammatory stimuli within the organism. Its activation leads to the release of cytokines interleukin 1β and interleukin 18 through the cleavage of GSDMD, thereby forming membrane pores and potentially resulting in pyroptosis. This cascade of processes exerts a profound impact on tumor development and progression, with its function and expression exhibiting variability across different tumor types and developmental stages. Consequently, understanding the specific roles of the NLRP3 inflammasome and GSDMD-mediated pyroptosis in diverse tumors is imperative for comprehending tumorigenesis and crafting precise therapeutic strategies. This review aims to elucidate the structure and activation mechanisms of the NLRP3 inflammasome, as well as the induction mechanisms of GSDMD-mediated pyroptosis. Additionally, we provide a comprehensive overview of the involvement of this pathway in various cancer types and its applications in tumor immunotherapy, nanotherapy, and other fields. Emphasis is placed on the feasibility of leveraging this approach to enhance ICB therapy within the field of immunotherapy. Furthermore, we discuss the potential applications of this pathway in other immunotherapy methods, such as chimeric antigen receptor T-cell (CAR-T) therapy and tumor vaccines.
Collapse
Affiliation(s)
- Ling-Rui Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Lei Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China.
| | - Zhi-Jun Sun
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China.
| |
Collapse
|
10
|
Wang S, He H, Qu L, Shen Q, Dai Y. Dual roles of inflammatory programmed cell death in cancer: insights into pyroptosis and necroptosis. Front Pharmacol 2024; 15:1446486. [PMID: 39257400 PMCID: PMC11384570 DOI: 10.3389/fphar.2024.1446486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 08/16/2024] [Indexed: 09/12/2024] Open
Abstract
Programmed cell death (PCD) is essential for cellular homeostasis and defense against infections, with inflammatory forms like pyroptosis and necroptosis playing significant roles in cancer. Pyroptosis, mediated by caspases and gasdermin proteins, leads to cell lysis and inflammatory cytokine release. It has been implicated in various diseases, including cancer, where it can either suppress tumor growth or promote tumor progression through chronic inflammation. Necroptosis, involving RIPK1, RIPK3, and MLKL, serves as a backup mechanism when apoptosis is inhibited. In cancer, necroptosis can enhance immune responses or contribute to tumor progression. Both pathways have dual roles in cancer, acting as tumor suppressors or promoting a pro-tumorigenic environment depending on the context. This review explores the molecular mechanisms of pyroptosis and necroptosis, their roles in different cancers, and their potential as therapeutic targets. Understanding the context-dependent effects of these pathways is crucial for developing effective cancer therapies.
Collapse
Affiliation(s)
- Shuai Wang
- Collage of Medicine, Xinyang Normal University, Xinyang, China
| | - Huanhuan He
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Lailiang Qu
- Collage of Medicine, Xinyang Normal University, Xinyang, China
| | - Qianhe Shen
- Collage of Medicine, Xinyang Normal University, Xinyang, China
| | - Yihang Dai
- Collage of Medicine, Xinyang Normal University, Xinyang, China
| |
Collapse
|
11
|
Fang Q, Xu Y, Tan X, Wu X, Li S, Yuan J, Chen X, Huang Q, Fu K, Xiao S. The Role and Therapeutic Potential of Pyroptosis in Colorectal Cancer: A Review. Biomolecules 2024; 14:874. [PMID: 39062587 PMCID: PMC11274949 DOI: 10.3390/biom14070874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
Colorectal cancer (CRC) is one of the leading causes of cancer-related mortality worldwide. The unlimited proliferation of tumor cells is one of the key features resulting in the malignant development and progression of CRC. Consequently, understanding the potential proliferation and growth molecular mechanisms and developing effective therapeutic strategies have become key in CRC treatment. Pyroptosis is an emerging type of regulated cell death (RCD) that has a significant role in cells proliferation and growth. For the last few years, numerous studies have indicated a close correlation between pyroptosis and the occurrence, progression, and treatment of many malignancies, including CRC. The development of effective therapeutic strategies to inhibit tumor growth and proliferation has become a key area in CRC treatment. Thus, this review mainly summarized the different pyroptosis pathways and mechanisms, the anti-tumor (tumor suppressor) and protective roles of pyroptosis in CRC, and the clinical and prognostic value of pyroptosis in CRC, which may contribute to exploring new therapeutic strategies for CRC.
Collapse
Affiliation(s)
- Qing Fang
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China; (Q.F.); (Y.X.); (X.T.); (X.W.)
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Yunhua Xu
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China; (Q.F.); (Y.X.); (X.T.); (X.W.)
- Institute of Clinical Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Xiangwen Tan
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China; (Q.F.); (Y.X.); (X.T.); (X.W.)
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Xiaofeng Wu
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China; (Q.F.); (Y.X.); (X.T.); (X.W.)
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Shuxiang Li
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China; (S.L.); (J.Y.); (X.C.); (Q.H.)
| | - Jinyi Yuan
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China; (S.L.); (J.Y.); (X.C.); (Q.H.)
| | - Xiguang Chen
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China; (S.L.); (J.Y.); (X.C.); (Q.H.)
| | - Qiulin Huang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China; (S.L.); (J.Y.); (X.C.); (Q.H.)
| | - Kai Fu
- Institute of Molecular Precision Medicine and Hunan Key Laboratory of Molecular Precision Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Shuai Xiao
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China; (Q.F.); (Y.X.); (X.T.); (X.W.)
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China; (S.L.); (J.Y.); (X.C.); (Q.H.)
| |
Collapse
|
12
|
Zhou Z, Hu C, Cui B, You L, An R, Liang K, Wang X. Ginsenoside Rg1 Suppresses Pyroptosis via the NF-κB/NLRP3/GSDMD Pathway to Alleviate Chronic Atrophic Gastritis In Vitro and In Vivo. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 38855973 DOI: 10.1021/acs.jafc.4c01271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Chronic atrophic gastritis (CAG) is characterized by the loss of gastric glandular cells, which are replaced by the intestinal-type epithelium and fibrous tissue. Ginsenoside Rg1 (Rg1) is the prevalent ginsenoside in ginseng, with a variety of biological activities, and is usually added to functional foods. As a novel form of programmed cell death (PCD), pyroptosis has received substantial attention in recent years. Despite the numerous beneficial effects, the curative impact of Rg1 on CAG and whether its putative mechanism is partially via inhibiting pyroptosis still remain unknown. To address this gap, we conducted a study to explore the mechanisms underlying the potential anti-CAG effect of Rg1. We constructed a CAG rat model using a multifactor comprehensive method. A cellular model was developed by using 1-methyl-3-nitro-1-nitrosoguanidine (MNNG) combined with Nigericin as a stimulus applied to GES-1 cells. After Rg1 intervention, the levels of inflammatory indicators in the gastric tissue/cell supernatant were reduced. Rg1 relieved oxidative stress via reducing the myeloperoxidase (MPO) and malonaldehyde (MDA) levels in the gastric tissue and increasing the level of superoxide dismutase (SOD). Additionally, Rg1 improved MNNG+Nigericin-induced pyroptosis in the morphology and plasma membrane of the cells. Further research supported novel evidence for Rg1 in the regulation of the NF-κB/NLRP3/GSDMD pathway and the resulting pyroptosis underlying its therapeutic effect. Moreover, by overexpression and knockout of GSDMD in GES-1 cells, our findings suggested that GSDMD might serve as the key target in the effect of Rg1 on suppressing pyroptosis. All of these offer a potential theoretical foundation for applying Rg1 in ameliorating CAG.
Collapse
Affiliation(s)
- Zehua Zhou
- Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Cheng Hu
- Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Bo Cui
- Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Lisha You
- Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Rui An
- Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Kun Liang
- Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xinhong Wang
- Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
13
|
Zhu C, Xu S, Jiang R, Yu Y, Bian J, Zou Z. The gasdermin family: emerging therapeutic targets in diseases. Signal Transduct Target Ther 2024; 9:87. [PMID: 38584157 PMCID: PMC10999458 DOI: 10.1038/s41392-024-01801-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/03/2024] [Accepted: 03/05/2024] [Indexed: 04/09/2024] Open
Abstract
The gasdermin (GSDM) family has garnered significant attention for its pivotal role in immunity and disease as a key player in pyroptosis. This recently characterized class of pore-forming effector proteins is pivotal in orchestrating processes such as membrane permeabilization, pyroptosis, and the follow-up inflammatory response, which are crucial self-defense mechanisms against irritants and infections. GSDMs have been implicated in a range of diseases including, but not limited to, sepsis, viral infections, and cancer, either through involvement in pyroptosis or independently of this process. The regulation of GSDM-mediated pyroptosis is gaining recognition as a promising therapeutic strategy for the treatment of various diseases. Current strategies for inhibiting GSDMD primarily involve binding to GSDMD, blocking GSDMD cleavage or inhibiting GSDMD-N-terminal (NT) oligomerization, albeit with some off-target effects. In this review, we delve into the cutting-edge understanding of the interplay between GSDMs and pyroptosis, elucidate the activation mechanisms of GSDMs, explore their associations with a range of diseases, and discuss recent advancements and potential strategies for developing GSDMD inhibitors.
Collapse
Affiliation(s)
- Chenglong Zhu
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
- School of Anesthesiology, Naval Medical University, Shanghai, 200433, China
| | - Sheng Xu
- National Key Laboratory of Immunity & Inflammation, Naval Medical University, Shanghai, 200433, China
| | - Ruoyu Jiang
- School of Anesthesiology, Naval Medical University, Shanghai, 200433, China
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Naval Medical University, Shanghai, 200433, China
| | - Yizhi Yu
- National Key Laboratory of Immunity & Inflammation, Naval Medical University, Shanghai, 200433, China.
| | - Jinjun Bian
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China.
| | - Zui Zou
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China.
- School of Anesthesiology, Naval Medical University, Shanghai, 200433, China.
| |
Collapse
|
14
|
Bhatti R, Sato PY. Exploring the role of pyroptosis in the pathogenicity of heart disease. Front Physiol 2024; 15:1357285. [PMID: 38645692 PMCID: PMC11026861 DOI: 10.3389/fphys.2024.1357285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 03/25/2024] [Indexed: 04/23/2024] Open
Abstract
Cell death is an essential cellular mechanism that ensures quality control and whole-body homeostasis. Various modes of cell death have been studied and detailed. Unbalanced cell death can lead to uncontrolled cell proliferation (i.e., tumors) or excessive loss of cells (i.e., ischemia injury tissue loss). Thus, it is imperative for modes of cell death to be balanced and controlled. Here, we will focus on a recent mode of cell death called pyroptosis. While extensive studies have shown the role of this route of cell death in macrophages and monocytes, evidence for pyroptosis have expanded to encompass other pathologies, including cancer and cardiac diseases. Herein, we provide a brief review on pyroptosis and discuss current gaps in knowledge and scientific advances in cardiac pyroptosis in recent years. Lastly, we provide conclusions and prospective on the relevance to various cardiac diseases.
Collapse
Affiliation(s)
| | - Priscila Y. Sato
- Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
15
|
Chen Q, Sun Y, Wang S, Xu J. New prospects of cancer therapy based on pyroptosis and pyroptosis inducers. Apoptosis 2024; 29:66-85. [PMID: 37943371 DOI: 10.1007/s10495-023-01906-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/15/2023] [Indexed: 11/10/2023]
Abstract
Pyroptosis is a gasdermin-mediated programmed cell death (PCD) pathway. It differs from apoptosis because of the secretion of inflammatory molecules. Pyroptosis is closely associated with various malignant tumors. Recent studies have demonstrated that pyroptosis can either inhibit or promote the development of malignant tumors, depending on the cell type (immune or cancer cells) and duration and severity of the process. This review summarizes the molecular mechanisms of pyroptosis, its relationship with malignancies, and focuses on current pyroptosis inducers and their significance in cancer treatment. The molecules involved in the pyroptosis signaling pathway could serve as therapeutic targets for the development of novel drugs for cancer therapy. In addition, we analyzed the potential of combining pyroptosis with conventional anticancer techniques as a promising strategy for cancer treatment.
Collapse
Affiliation(s)
- Qiaoyun Chen
- China Pharmaceutical University Nanjing Drum Tower Hospital, Nanjing, 210008, China
- Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Yuxiang Sun
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225000, China
| | - Siliang Wang
- China Pharmaceutical University Nanjing Drum Tower Hospital, Nanjing, 210008, China.
- Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China.
| | - Jingyan Xu
- China Pharmaceutical University Nanjing Drum Tower Hospital, Nanjing, 210008, China.
- Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China.
| |
Collapse
|
16
|
Lin Z, Chen Q, Ruan HB. To die or not to die: Gasdermins in intestinal health and disease. Semin Immunol 2024; 71:101865. [PMID: 38232665 PMCID: PMC10872225 DOI: 10.1016/j.smim.2024.101865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 01/04/2024] [Accepted: 01/09/2024] [Indexed: 01/19/2024]
Abstract
Intestinal homeostasis is achieved by the balance among intestinal epithelium, immune cells, and gut microbiota. Gasdermins (GSDMs), a family of membrane pore forming proteins, can trigger rapid inflammatory cell death in the gut, mainly pyroptosis and NETosis. Importantly, there is increasing literature on the non-cell lytic roles of GSDMs in intestinal homeostasis and disease. While GSDMA is low and PJVK is not expressed in the gut, high GSDMB and GSDMC expression is found almost restrictively in intestinal epithelial cells. Conversely, GSDMD and GSDME show more ubiquitous expression among various cell types in the gut. The N-terminal region of GSDMs can be liberated for pore formation by an array of proteases in response to pathogen- and danger-associated signals, but it is not fully understood what cell type-specific mechanisms activate intestinal GSDMs. The host relies on GSDMs for pathogen defense, tissue tolerance, and cancerous cell death; however, pro-inflammatory milieu caused by pyroptosis and excessive cytokine release may favor the development and progression of inflammatory bowel disease and cancer. Therefore, a thorough understanding of spatiotemporal mechanisms that control gasdermin expression, activation, and function is essential for the development of future therapeutics for intestinal disorders.
Collapse
Affiliation(s)
- Zhaoyu Lin
- MOE Key Laboratory of Model Animals for Disease Study, State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center, National Resource Center for Mutant Mice of China, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, China.
| | - Qianyue Chen
- MOE Key Laboratory of Model Animals for Disease Study, State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center, National Resource Center for Mutant Mice of China, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, China
| | - Hai-Bin Ruan
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN, USA; Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, USA.
| |
Collapse
|
17
|
Huang H, Chen R, Deng X, Wang J, Chen J. GSDMB: A novel, independent prognostic marker and potential new therapeutic target in clear cell renal cell carcinoma. Oncol Lett 2024; 27:85. [PMID: 38249806 PMCID: PMC10797315 DOI: 10.3892/ol.2024.14219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 11/08/2023] [Indexed: 01/23/2024] Open
Abstract
Gasdermin (GSDM) family members are involved in numerous biological processes, including pyroptosis, as well as in the initiation and progression of various types of cancer. However, the specific role of GSDM genes in clear cell renal cell carcinoma (ccRCC) has yet to be fully clarified. The present study investigated the differential expression and genetic alterations GSDM genes, their effects on prognosis and immune modulation, and their functional enrichment in ccRCC. Several bioinformatics databases were used, including UALCAN, The Cancer Genome Atlas, Gene Expression Profiling Interactive Analysis, Metascape, Tumor Immune Estimation Resource, GSCALite and cBioPortal. The results revealed that the expression levels of GSDMA, GSDMB, GSDMC and GSDMD were significantly upregulated in cancer tissues compared with those in paracancerous tissues in patients with ccRCC, whereas the expression of DFNB59 exhibited the opposite trend. The results were experimentally validated in patients with ccRCC, and it was confirmed that the expression levels of GSDMA, GSDMB, GSDMC, GSDMD and GSDME (DFNA5) were significantly enhanced, whereas (PJVK, DFNB59) expression was reduced. In addition, elevated GSDMB, GSDMD and DFNA5 expression levels were clearly associated with worse pathological characteristics of ccRCC, including a high pathological stage and high tumor grade. Furthermore, the high expression levels of GSDMB, GSDMC, GSDMD, DFNA5 and PJVK were shown to be associated with worse overall survival (OS) and progression-free interval in patients with ccRCC. Both univariate and multivariate analyses indicated that the expression of GSDMB was independently associated with the OS of patients with ccRCC. Additionally, a high mutation rate of GSDM genes (33%) was observed in patients with ccRCC, and GSDM gene mutations were also significantly associated with a poor OS in patients with ccRCC. Significant associations between GSDM genes and ccRCC immunoprofiling and drug sensitivity were also determined. In conclusion, the findings of the present study indicated that GSDMB, GSDMD and DFNA5 may be considered promising therapeutic agents and potential biomarkers for patients with ccRCC. Furthermore, GSDMB could act as an independent predictor for the OS of patients with ccRCC.
Collapse
Affiliation(s)
- Hongshuang Huang
- Department of Urology, The Affiliated Hospital of Putian University, Putian, Fujian 351100, P.R. China
| | - Ru Chen
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330000, P.R. China
| | - Xinxi Deng
- Department of Urology, Jiujiang No. 1 People's Hospital, Jiujiang, Jiangxi 332000, P.R. China
| | - Jie Wang
- Department of Ultrasound, Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan 610500, P.R. China
| | - Jianhui Chen
- Department of Urology, Fujian Medical University Union Hospital, Fuzhou, Fujian 350000, P.R. China
| |
Collapse
|
18
|
Wu L, Shan L, Xu D, Lin D, Bai B. Pyroptosis in cancer treatment and prevention: the role of natural products and their bioactive compounds. Med Oncol 2024; 41:66. [PMID: 38281254 DOI: 10.1007/s12032-023-02293-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 12/22/2023] [Indexed: 01/30/2024]
Abstract
Targeting programmed cell death (PCD) has been emerging as a promising therapeutic strategy in cancer. Pyroptosis, as a type of PCDs, leads to the cleavage of the gasdermin family and the secretion of pro-inflammatory factors. Gasdermin D (GSDMD) and gasdermin E (GSDME) are the two main executors of pyroptosis. Pyroptosis in tumor and immune cells is essential for tumor progression. Natural products, especially Chinese medicinal herb and their bioactive compounds have recently been regarded as anti-tumor agents that regulate cell pyroptosis under different circumstances. Here, we review the underlying mechanisms of natural products that activate pyroptosis in tumor cells and inhibit pyroptosis in immune cells. Pyroptosis activation in tumor cells leads to tumor cell death, yet pyroptosis inhibition in immune cells may prevent tumor occurrence. Elucidation of the signaling pathways involved in pyroptosis contributes to the understanding of the anti-tumor role of natural products and their potential clinical applications. Therefore, we outline a promising strategy for cancer therapy and prevention using natural products via modulation of pyroptosis.
Collapse
Affiliation(s)
- Liyi Wu
- Department of Pharmacy, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, 3# East Qingchun Road, Hangzhou, 310016, People's Republic of China
| | - Lina Shan
- Department of Colorectal Surgery, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, People's Republic of China
| | - Dengyong Xu
- Department of Colorectal Surgery, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, People's Republic of China
| | - Dengfeng Lin
- Department of Colorectal Surgery, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, People's Republic of China
| | - Bingjun Bai
- Department of Colorectal Surgery, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, People's Republic of China.
| |
Collapse
|
19
|
Li H, Yang T, Zhang J, Xue K, Ma X, Yu B, Jin X. Pyroptotic cell death: an emerging therapeutic opportunity for radiotherapy. Cell Death Discov 2024; 10:32. [PMID: 38228635 DOI: 10.1038/s41420-024-01802-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/24/2023] [Accepted: 01/04/2024] [Indexed: 01/18/2024] Open
Abstract
Pyroptotic cell death, an inflammatory form of programmed cell death (PCD), is emerging as a potential therapeutic opportunity for radiotherapy (RT). RT is commonly used for cancer treatment, but its effectiveness can be limited by tumor resistance and adverse effects on healthy tissues. Pyroptosis, characterized by cell swelling, membrane rupture, and release of pro-inflammatory cytokines, has been shown to enhance the immune response against cancer cells. By inducing pyroptotic cell death in tumor cells, RT has the potential to enhance treatment outcomes by stimulating anti-tumor immune responses and improving the overall efficacy of RT. Furthermore, the release of danger signals from pyroptotic cells can promote the recruitment and activation of immune cells, leading to a systemic immune response that may target distant metastases. Although further research is needed to fully understand the mechanisms and optimize the use of pyroptotic cell death in RT, it holds promise as a novel therapeutic strategy for improving cancer treatment outcomes. This review aims to synthesize recent research on the regulatory mechanisms underlying radiation-induced pyroptosis and to elucidate the potential significance of this process in RT. The insights gained from this analysis may inform strategies to enhance the efficacy of RT for tumors.
Collapse
Affiliation(s)
- Hongbin Li
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Tiantian Yang
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Jialin Zhang
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Kai Xue
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Xiaoli Ma
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Boyi Yu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730030, China
| | - Xiaodong Jin
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730030, China.
| |
Collapse
|
20
|
Chen W, Cheng J, Cai Y, Wang P, Jin J. The pyroptosis-related signature predicts prognosis and influences the tumor immune microenvironment in dedifferentiated liposarcoma. Open Med (Wars) 2024; 19:20230886. [PMID: 38221934 PMCID: PMC10787309 DOI: 10.1515/med-2023-0886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 10/21/2023] [Accepted: 12/06/2023] [Indexed: 01/16/2024] Open
Abstract
Background Dedifferentiated liposarcoma (DDL), a member of malignant mesenchymal tumors, has a high local recurrence rate and poor prognosis. Pyroptosis, a newly discovered programmed cell death, is tightly connected with the progression and outcome of tumor. Objective The aim of this study was to explore the role of pyroptosis in DDL. Methods We obtained the RNA sequencing data from The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression databases to identify different pyroptosis-related genes (PRGs) expression pattern. An unsupervised method for clustering based on PRGs was performed. Based on the result of cluster analysis, we researched clinical outcomes and immune microenvironment between clusters. The differentially expressed genes (DEGs) between the two clusters were used to develop a prognosis model by the LASSO Cox regression method, followed by the performance of functional enrichment analysis and single-sample gene set enrichment analysis. All of the above results were validated in the Gene Expression Omnibus (GEO) dataset. Results Forty-one differentially expressed PRGs were found between tumor and normal tissues. A consensus clustering analysis based on PRGs was conducted and classified DDL patients into two clusters. Cluster 2 showed a better outcome, higher immune scores, higher immune cells abundances, and higher expression levels in numerous immune checkpoints. DEGs between clusters were identified. A total of 5 gene signatures was built based on the DEGs and divided all DDL patients of the TCGA cohort into low-risk and high-risk groups. The low-risk group indicates greater inflammatory cell infiltration and better outcome. For external validation, the survival difference and immune landscape between the two risk groups of the GEO cohort were also significant. Receiver operating characteristic curves implied that the risk model could exert its function as an outstanding predictor in predicting DDL patients' prognoses. Conclusion Our findings revealed the clinical implication and key role in tumor immunity of PRGs in DDL. The risk model is a promising predictive tool that could provide a fundamental basis for future studies and individualized immunotherapy.
Collapse
Affiliation(s)
- Wenjing Chen
- Departments of Gastrointestinal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Ouhai District, Wenzhou, 325003, Zhejiang Province, China
| | - Jun Cheng
- Departments of Gastrointestinal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Ouhai District, Wenzhou, 325003, Zhejiang Province, China
| | - Yiqi Cai
- Departments of Gastrointestinal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Ouhai District, Wenzhou, 325003, Zhejiang Province, China
| | - Pengfei Wang
- Departments of Gastrointestinal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Ouhai District, Wenzhou, 325003, Zhejiang Province, China
| | - Jinji Jin
- Departments of Gastrointestinal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Ouhai District, Wenzhou, 325003, Zhejiang Province, China
| |
Collapse
|
21
|
Shen C, Han C, Li Z, Yan Y, Li C, Chen H, Fan Z, Hu H. Construction and Validation of a Prognostic Model Based on Pyroptosis-related Genes in Bladder Cancer. Comb Chem High Throughput Screen 2024; 27:2335-2349. [PMID: 37849225 DOI: 10.2174/0113862073256363230929200157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 08/02/2023] [Accepted: 08/23/2023] [Indexed: 10/19/2023]
Abstract
BACKGROUND Bladder cancer (BCa) is a highly prevalent disease with a poor prognosis. There is no better forecasting method for it yet. Current studies demonstrate that pyroptosis is involved in the development and progression of various cancers. METHODS This study employed bioinformatics techniques to analyze the data of BCa patients obtained from the TCGA and GEO databases in order to construct a prognostic risk model. The TCGA dataset was used for the training set, and the multiple external datasets (including GSE13507, GSE31684, GSE48075, IMvigor210, and GSE32894) were applied as the validation sets. Prognostic-associated pyroptosis genes screened by univariate Cox regression analysis were utilized to construct the lasso Cox regression model. GO and KEGG analysis results identified the selected genes that are primarily involved in the inflammation and cell death processes. The related patients were grouped into low- and high-risk groups. Kaplan-Meier survival analysis was performed to compare survival differences between the risk groups. The accuracy of this risk prediction model was assessed by ROC. We also applied the Human Protein Atlas (HPA) to detect the protein expression of these genes. Subsequently, qRT-PCR was performed to verify the expression of these model genes. RESULTS There are 29 pyroptosis-related genes with significant expression differences between BCa and corresponding adjacent tissues, and 11 genes (SH2D2A, CHMP4C, MRFAP1L1, GBP2, EHBP1, RAD9A, ANXA1, TMEM109, HEYL, APOL2, ORMDL1) were picked by univariate and LASSO Cox regression analysis. Immunological cell infiltration and ssGSEA results further indicated that the low and high-risk groups were substantially correlated with the immune status of BCa patients. According to TCGA and multiple external datasets, Kaplan-Meier survival curves showed the overall survival rate of the high-risk group to be decreased. ROC curves showed the model established to be accurate and reliable. Moreover, the HPA database also demonstrated the verification of the modeled genes' expression in BCa and normal bladder tissue using the HPA database. qRT-PCR results also suggested the up-regulated EHBP1 and down-regulated RAD9A mRNA expression levels to be confirmed in 15 pairs of BCa and corresponding adjacent tissues. CONCLUSION This study presents the development and validation of a novel gene signature associated with pyroptosis, which holds the potential for predicting patient outcomes in BCa and providing insights into the immune microenvironment of BCa.
Collapse
Affiliation(s)
- Chong Shen
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, P.R. China
- Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, P.R. China
| | - Chenyang Han
- Department of Pain Therapeutic Centre, The Second Hospital of Tianjin Medical University, Tianjin, P.R. China
| | - Zhi Li
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, P.R. China
- Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, P.R. China
| | - Yan Yan
- Department of Vascular Surgery, University Hospital Aachen, Pauwelsstr 30, Aachen 52074, Germany
| | - Chenyun Li
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, P.R. China
- Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, P.R. China
| | - Houyuan Chen
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, P.R. China
- Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, P.R. China
| | - Zhenqian Fan
- Department of Endocrinology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Hailong Hu
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, P.R. China
- Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, P.R. China
| |
Collapse
|
22
|
Mulla J, Katti R, Scott MJ. The Role of Gasdermin-D-Mediated Pyroptosis in Organ Injury and Its Therapeutic Implications. Organogenesis 2023; 19:2177484. [PMID: 36967609 PMCID: PMC9980590 DOI: 10.1080/15476278.2023.2177484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 02/03/2023] [Indexed: 02/25/2023] Open
Abstract
Gasdermin-D (GSDMD) belongs to the Gasdermin family (GSDM), which are pore-forming effector proteins that facilitate inflammatory cell death, also known as pyroptosis. This type of programmed cell death is dependent on inflammatory caspase activation, which cleaves gasdermin-D (GSDMD) to form membrane pores and initiates the release of pro-inflammatory cytokines. Pyroptosis plays an important role in achieving immune regulation and homeostasis within various organ systems. The role of GSDMD in pyroptosis has been extensively studied in recent years. In this review, we summarize the role of GSDMD in cellular and organ injury mediated by pyroptosis. We will also provide an outlook on GSDMD therapeutic targets in various organ systems.
Collapse
Affiliation(s)
- Joud Mulla
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Rohan Katti
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Melanie J. Scott
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
23
|
Wen Z, Pei B, Dai L, Lu P, Li X, Zhang C, Ge S. Risk factors analysis and survival prediction model establishment of patients with lung adenocarcinoma based on different pyroptosis-related gene subtypes. Eur J Med Res 2023; 28:601. [PMID: 38111060 PMCID: PMC10726488 DOI: 10.1186/s40001-023-01581-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 12/08/2023] [Indexed: 12/20/2023] Open
Abstract
BACKGROUND Lung adenocarcinoma (LUAD) is a common cancer with a poor prognosis. Pyroptosis is an important process in the development and progression of LUAD. We analyzed the risk factors affecting the prognosis of patients and constructed a nomogram to predict the overall survival of patients based on different pyroptosis-related genes (PRGs) subtypes. METHODS The genomic data of LUAD were downloaded from the TCGA and GEO databases, and all data were filtered and divided into TCGA and GEO cohorts. The process of data analysis and visualization was performed via R software. The data were classified based on different PRGs subtypes using the K-means clustering method. Then, the differentially expressed genes were identified between two different subtypes, and risk factors analysis, survival analysis, functional enrichment analysis, and immune cells infiltration landscape analysis were conducted. The COX regression analysis was used to construct the prediction model. RESULTS Based on the PRGs of LUAD, the patients were divided into two subtypes. We found the survival probability of patients in subtype 1 is higher than that in subtype 2. The results of the logistics analysis showed that gene risk score was closely associated with the prognosis of LUAD patients. The results of GO analysis and KEGG analysis revealed important biological processes and signaling pathways involved in the differentially expressed proteins between the two subtypes. Then we constructed a prediction model of patients' prognosis based on 13 genes, including IL-1A, P2RX1, GSTM2, ESYT3, ZNF682, KCNF1, STK32A, HHIPL2, GDF10, NDC80, GSTA1, BCL2L10, and CCR2. This model was strongly related to the overall survival (OS) and also reflects the immune status in patients with LUAD. CONCLUSION In our study, we examined LUAD heterogeneity with reference to pyroptosis and found different prognoses between the two subtypes. And a novel prediction model was constructed to predict the OS of LUAD patients based on different PRGs signatures. The model has shown excellent predictive efficiency through validation.
Collapse
Affiliation(s)
- Ziang Wen
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Bei Pei
- The Graduated School, Anhui University of Traditonal Chinese Medicine, Hefei, China
| | - Longfei Dai
- The Graduated School, Anhui Medical University, Hefei, China
| | - Peng Lu
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiangyu Li
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chengxin Zhang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Shenglin Ge
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China.
| |
Collapse
|
24
|
Li M, Jiang P, Yang Y, Xiong L, Wei S, Wang J, Li C. The role of pyroptosis and gasdermin family in tumor progression and immune microenvironment. Exp Hematol Oncol 2023; 12:103. [PMID: 38066523 PMCID: PMC10704735 DOI: 10.1186/s40164-023-00464-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 11/29/2023] [Indexed: 06/29/2024] Open
Abstract
Pyroptosis, an inflammatory programmed cell death, distinguishes itself from apoptosis and necroptosis and has drawn increasing attention. Recent studies have revealed a correlation between the expression levels of many pyroptosis-related genes and both tumorigenesis and progression. Despite advancements in cancer treatments such as surgery, radiotherapy, chemotherapy, and immunotherapy, the persistent hallmark of cancer enables malignant cells to elude cell death and develop resistance to therapy. Recent findings indicate that pyroptosis can overcome apoptosis resistance amplify treatment-induced tumor cell death. Moreover, pyroptosis triggers antitumor immunity by releasing pro-inflammatory cytokines, augmenting macrophage phagocytosis, and activating cytotoxic T cells and natural killer cells. Additionally, it transforms "cold" tumors into "hot" tumors, thereby enhancing the antitumor effects of various treatments. Consequently, pyroptosis is intricately linked to tumor development and holds promise as an effective strategy for boosting therapeutic efficacy. As the principal executive protein of pyroptosis, the gasdermin family plays a pivotal role in influencing pyroptosis-associated outcomes in tumors and can serve as a regulatory target. This review provides a comprehensive summary of the relationship between pyroptosis and gasdermin family members, discusses their roles in tumor progression and the tumor immune microenvironment, and analyses the underlying therapeutic strategies for tumor treatment based on pyroptotic cell death.
Collapse
Affiliation(s)
- Mengyuan Li
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, 100191, China
| | - Ping Jiang
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, 100191, China
| | - Yuhan Yang
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, 100191, China
| | - Liting Xiong
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, 100191, China
| | - Shuhua Wei
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, 100191, China
| | - Junjie Wang
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, 100191, China.
| | - Chunxiao Li
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, 100191, China.
| |
Collapse
|
25
|
Pérez-Gómez JM, Montero-Hidalgo AJ, Fuentes-Fayos AC, Sarmento-Cabral A, Guzmán-Ruiz R, Malagón MM, Herrera-Martínez AD, Gahete MD, Luque RM. Exploring the role of the inflammasomes on prostate cancer: Interplay with obesity. Rev Endocr Metab Disord 2023; 24:1165-1187. [PMID: 37819510 PMCID: PMC10697898 DOI: 10.1007/s11154-023-09838-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/21/2023] [Indexed: 10/13/2023]
Abstract
Obesity is a weight-related disorder characterized by excessive adipose tissue growth and dysfunction which leads to the onset of a systemic chronic low-grade inflammatory state. Likewise, inflammation is considered a classic cancer hallmark affecting several steps of carcinogenesis and tumor progression. In this regard, novel molecular complexes termed inflammasomes have been identified which are able to react to a wide spectrum of insults, impacting several metabolic-related disorders, but their contribution to cancer biology remains unclear. In this context, prostate cancer (PCa) has a markedly inflammatory component, and patients frequently are elderly individuals who exhibit weight-related disorders, being obesity the most prevalent condition. Therefore, inflammation, and specifically, inflammasome complexes, could be crucial players in the interplay between PCa and metabolic disorders. In this review, we will: 1) discuss the potential role of each inflammasome component (sensor, molecular adaptor, and targets) in PCa pathophysiology, placing special emphasis on IL-1β/NF-kB pathway and ROS and hypoxia influence; 2) explore the association between inflammasomes and obesity, and how these molecular complexes could act as the cornerstone between the obesity and PCa; and, 3) compile current clinical trials regarding inflammasome targeting, providing some insights about their potential use in the clinical practice.
Collapse
Affiliation(s)
- Jesús M Pérez-Gómez
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), IMIBIC Building, Av. Menéndez Pidal s/n, 14004, Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain
- Hospital Universitario Reina Sofía (HURS), Cordoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Cordoba, Spain
| | - Antonio J Montero-Hidalgo
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), IMIBIC Building, Av. Menéndez Pidal s/n, 14004, Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain
- Hospital Universitario Reina Sofía (HURS), Cordoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Cordoba, Spain
| | - Antonio C Fuentes-Fayos
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), IMIBIC Building, Av. Menéndez Pidal s/n, 14004, Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain
- Hospital Universitario Reina Sofía (HURS), Cordoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Cordoba, Spain
| | - André Sarmento-Cabral
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), IMIBIC Building, Av. Menéndez Pidal s/n, 14004, Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain
- Hospital Universitario Reina Sofía (HURS), Cordoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Cordoba, Spain
| | - Rocio Guzmán-Ruiz
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), IMIBIC Building, Av. Menéndez Pidal s/n, 14004, Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain
- Hospital Universitario Reina Sofía (HURS), Cordoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Cordoba, Spain
| | - María M Malagón
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), IMIBIC Building, Av. Menéndez Pidal s/n, 14004, Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain
- Hospital Universitario Reina Sofía (HURS), Cordoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Cordoba, Spain
| | - Aura D Herrera-Martínez
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), IMIBIC Building, Av. Menéndez Pidal s/n, 14004, Córdoba, Spain
- Hospital Universitario Reina Sofía (HURS), Cordoba, Spain
- Endocrinology and Nutrition Service, HURS/IMIBIC, Córdoba, Spain
| | - Manuel D Gahete
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), IMIBIC Building, Av. Menéndez Pidal s/n, 14004, Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain
- Hospital Universitario Reina Sofía (HURS), Cordoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Cordoba, Spain
| | - Raúl M Luque
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), IMIBIC Building, Av. Menéndez Pidal s/n, 14004, Córdoba, Spain.
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain.
- Hospital Universitario Reina Sofía (HURS), Cordoba, Spain.
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Cordoba, Spain.
| |
Collapse
|
26
|
Wang RH, Shang BB, Wu SX, Wang L, Sui SG. Recent updates on pyroptosis in tumors of the digestive tract. J Dig Dis 2023; 24:640-647. [PMID: 38059890 DOI: 10.1111/1751-2980.13244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 11/27/2023] [Accepted: 12/06/2023] [Indexed: 12/08/2023]
Abstract
Pyroptosis is an inflammasome-dependent form of programmed cell death that is mediated by caspases-1, -4, -5, and -11, and the gasdermin protein family. It is characterized by the rupture of cell membrane and the subsequent release of cell contents and interleukins, leading to inflammatory reaction and activation of the immune system. Recent studies have suggested that pyroptosis plays a role in the development of gastrointestinal tumors, impeding tumor generation and progression as well as providing a favorable microenvironment for tumor growth. In this review we outlined the current knowledge regarding the implications of pyroptosis in gastrointestinal cancers.
Collapse
Affiliation(s)
- Ruo Han Wang
- Emergency Department, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - Bing Bing Shang
- Emergency Department, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - Shi Xi Wu
- Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - Liang Wang
- Research and Teaching Department of Comparative Medicine, Dalian Medical University, Dalian, Liaoning Province, China
| | - Shao Guang Sui
- Emergency Department, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| |
Collapse
|
27
|
Wan N, Shi J, Xu J, Huang J, Gan D, Tang M, Li X, Huang Y, Li P. Gasdermin D: A Potential New Auxiliary Pan-Biomarker for the Detection and Diagnosis of Diseases. Biomolecules 2023; 13:1664. [PMID: 38002346 PMCID: PMC10669528 DOI: 10.3390/biom13111664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/10/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
Pyroptosis is a form of programmed cell death mediated by gasdermins, particularly gasdermin D (GSDMD), which is widely expressed in tissues throughout the body. GSDMD belongs to the gasdermin family, which is expressed in a variety of cell types including epithelial cells and immune cells. It is involved in the regulation of anti-inflammatory responses, leading to its differential expression in a wide range of diseases. In this review, we provide an overview of the current understanding of the major activation mechanisms and effector pathways of GSDMD. Subsequently, we examine the importance and role of GSDMD in different diseases, highlighting its potential as a pan-biomarker. We specifically focus on the biological characteristics of GSDMD in several diseases and its promising role in diagnosis, early detection, and differential diagnosis. Furthermore, we discuss the application of GSDMD in predicting prognosis and monitoring treatment efficacy in cancer. This review proposes a new strategy to guide therapeutic decision-making and suggests potential directions for further research into GSDMD.
Collapse
Affiliation(s)
- Ningyi Wan
- Department of Clinical Laboratory, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Jing Shi
- Department of Clinical Laboratory, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Jianguo Xu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Juan Huang
- Department of Information Center, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Delu Gan
- Department of Clinical Laboratory, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Min Tang
- Key Laboratory of Medical Diagnostics Designated by Chinese Ministry of Education, Chongqing Medical University, Chongqing 400016, China
| | - Xiaohan Li
- Department of Clinical Laboratory, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Ying Huang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Pu Li
- Department of Clinical Laboratory, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| |
Collapse
|
28
|
Zhao S, Zhu Y, Liu H, He X, Xie J. System analysis based on the pyroptosis-related genes identifes GSDMD as a novel therapy target for skin cutaneous melanoma. J Transl Med 2023; 21:801. [PMID: 37950289 PMCID: PMC10636830 DOI: 10.1186/s12967-023-04513-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 09/08/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND Skin cutaneous melanoma (SKCM) is the most aggressive skin cancer, accounting for more than 75% mortality rate of skin-related cancers. As a newly identified programmed cell death, pyroptosis has been found to be closely associated with tumor progression. Nevertheless, the prognostic significance of pyroptosis in SKCM remains elusive. METHODS A total of 469 SKCM samples and 812 normal samples were obtained from The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) databases. Firstly, differentially expressed pyroptosis-related genes (PRGs) between normal samples and SKCM samples were identified. Secondly, we established a prognostic model based on univariate Cox and LASSO Cox regression analyses, which was validated in the test cohort from GSE65904. Thirdly, a nomogram was used to predict the survival probability of SKCM patients. The R package "pRRophetic" was utilized to identify the drug sensitivity between the low- and high-risk groups. Tumor immune infiltration was evaluated using "immuneeconv" R package. Finally, the function of GSDMD and SB525334 was explored in A375 and A2058 cells. RESULTS Based on univariate Cox and LASSO regression analyses, we established a prognostic model with identified eight PRGs (AIM2, CASP3, GSDMA, GSDMC, GSDMD, IL18, NLRP3, and NOD2), which was validated in the test cohort. SKCM patients were divided into low- and high-risk groups based on the median of risk score. Kaplan-Meier survival analysis showed that high-risk patients had shorter overall survival than low-risk patients. Additionally, time-dependent ROC curves validated the accuracy of the risk model in predicting the prognosis of SKCM. More importantly, 4 small molecular compounds (SB525334, SR8278, Gemcitabine, AT13387) were identified, which might be potential drugs for patients in different risk groups. Finally, overexpression of GSDMD and SB525334 treatment inhibit the proliferation, migration, and invasion of SKCM cells. CONCLUSION In this study, we constructed a prognostic model based on PRGs and identified GSDMD as a potential therapeutic target, which provide new insights into SKCM treatment.
Collapse
Affiliation(s)
- Shixin Zhao
- Department of Burns, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Yongkang Zhu
- Department of Burns, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Hengdeng Liu
- Department of Burns, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Xuefeng He
- Department of Burns, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Julin Xie
- Department of Burns, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China.
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
29
|
You HM, Wang L, Meng HW, Huang C, Fang GY, Li J. Pyroptosis: shedding light on the mechanisms and links with cancers. Front Immunol 2023; 14:1290885. [PMID: 38016064 PMCID: PMC10651733 DOI: 10.3389/fimmu.2023.1290885] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 10/20/2023] [Indexed: 11/30/2023] Open
Abstract
Pyroptosis, a novel form of programmed cell death (PCD) discovered after apoptosis and necrosis, is characterized by cell swelling, cytomembrane perforation and lysis, chromatin DNA fragmentation, and the release of intracellular proinflammatory contents, such as Interleukin (IL) 8, IL-1β, ATP, IL-1α, and high mobility group box 1 (HMGB1). Our understanding of pyroptosis has increased over time with an increase in research on the subject: gasdermin-mediated lytic PCD usually, but not always, requires cleavage by caspases. Moreover, new evidence suggests that pyroptosis induction in tumor cells results in a strong inflammatory response and significant cancer regression, which has stimulated great interest among scientists for its potential application in clinical cancer therapy. It's worth noting that the side effects of chemotherapy and radiotherapy can be triggered by pyroptosis. Thus, the intelligent use of pyroptosis, the double-edged sword for tumors, will enable us to understand the genesis and development of cancers and provide potential methods to develop novel anticancer drugs based on pyroptosis. Hence, in this review, we systematically summarize the molecular mechanisms of pyroptosis and provide the latest available evidence supporting the antitumor properties of pyroptosis, and provide a summary of the various antitumor medicines targeting pyroptosis signaling pathways.
Collapse
Affiliation(s)
- Hong-mei You
- Department of Pharmacy, Hangzhou Women’s Hospital, Hangzhou, China
| | - Ling Wang
- Department of Pharmacy, Shangyu People’s Hospital of Shaoxing, Shaoxing, China
| | - Hong-wu Meng
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Cheng Huang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Guo-ying Fang
- Department of Pharmacy, Hangzhou Women’s Hospital, Hangzhou, China
| | - Jun Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| |
Collapse
|
30
|
Arrè V, Scialpi R, Centonze M, Giannelli G, Scavo MP, Negro R. The 'speck'-tacular oversight of the NLRP3-pyroptosis pathway on gastrointestinal inflammatory diseases and tumorigenesis. J Biomed Sci 2023; 30:90. [PMID: 37891577 PMCID: PMC10612184 DOI: 10.1186/s12929-023-00983-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/23/2023] [Indexed: 10/29/2023] Open
Abstract
The NLRP3 inflammasome is an intracellular sensor and an essential component of the innate immune system involved in danger recognition. An important hallmark of inflammasome activation is the formation of a single supramolecular punctum, known as a speck, per cell, which is the site where the pro-inflammatory cytokines IL-1β and IL-18 are converted into their bioactive form. Speck also provides the platform for gasdermin D protein activation, whose N-terminus domain perforates the plasma membrane, allowing the release of mature cytokines alongside with a highly inflammatory form of cell death, namely pyroptosis. Although controlled NLRP3 inflammasome-pyroptosis pathway activation preserves mucosal immunity homeostasis and contributes to host defense, a prolonged trigger is deleterious and could lead, in genetically predisposed subjects, to the onset of inflammatory bowel disease, including Crohn's disease and ulcerative colitis, as well as to gastrointestinal cancer. Experimental evidence shows that the NLRP3 inflammasome has both protective and pathogenic abilities. In this review we highlight the impact of the NLRP3-pyroptosis axis on the pathophysiology of the gastrointestinal tract at molecular level, focusing on newly discovered features bearing pro- and anti-inflammatory and neoplastic activity, and on targeted therapies tested in preclinical and clinical trials.
Collapse
Affiliation(s)
- Valentina Arrè
- Personalized Medicine Laboratory, National Institute of Gastroenterology "S. de Bellis", IRCCS Research Hospital, Via Turi 27, 70013, Castellana Grotte, BA, Italy
| | - Rosanna Scialpi
- Personalized Medicine Laboratory, National Institute of Gastroenterology "S. de Bellis", IRCCS Research Hospital, Via Turi 27, 70013, Castellana Grotte, BA, Italy
| | - Matteo Centonze
- Personalized Medicine Laboratory, National Institute of Gastroenterology "S. de Bellis", IRCCS Research Hospital, Via Turi 27, 70013, Castellana Grotte, BA, Italy
| | - Gianluigi Giannelli
- Scientific Direction, National Institute of Gastroenterology "S. de Bellis", IRCCS Research Hospital, Via Turi 27, 70013, Castellana Grotte, BA, Italy
| | - Maria Principia Scavo
- Personalized Medicine Laboratory, National Institute of Gastroenterology "S. de Bellis", IRCCS Research Hospital, Via Turi 27, 70013, Castellana Grotte, BA, Italy
| | - Roberto Negro
- Personalized Medicine Laboratory, National Institute of Gastroenterology "S. de Bellis", IRCCS Research Hospital, Via Turi 27, 70013, Castellana Grotte, BA, Italy.
| |
Collapse
|
31
|
Barar E, Shi J. Genome, Metabolism, or Immunity: Which Is the Primary Decider of Pancreatic Cancer Fate through Non-Apoptotic Cell Death? Biomedicines 2023; 11:2792. [PMID: 37893166 PMCID: PMC10603981 DOI: 10.3390/biomedicines11102792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a solid tumor characterized by poor prognosis and resistance to treatment. Resistance to apoptosis, a cell death process, and anti-apoptotic mechanisms, are some of the hallmarks of cancer. Exploring non-apoptotic cell death mechanisms provides an opportunity to overcome apoptosis resistance in PDAC. Several recent studies evaluated ferroptosis, necroptosis, and pyroptosis as the non-apoptotic cell death processes in PDAC that play a crucial role in the prognosis and treatment of this disease. Ferroptosis, necroptosis, and pyroptosis play a crucial role in PDAC development via several signaling pathways, gene expression, and immunity regulation. This review summarizes the current understanding of how ferroptosis, necroptosis, and pyroptosis interact with signaling pathways, the genome, the immune system, the metabolism, and other factors in the prognosis and treatment of PDAC.
Collapse
Affiliation(s)
- Erfaneh Barar
- Liver and Pancreatobiliary Diseases Research Center, Digestive Disease Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran 1416753955, Iran
| | - Jiaqi Shi
- Department of Pathology & Clinical Labs, Rogel Cancer Center, Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
32
|
Wang J, Hua S, Bao H, Yuan J, Zhao Y, Chen S. Pyroptosis and inflammasomes in cancer and inflammation. MedComm (Beijing) 2023; 4:e374. [PMID: 37752941 PMCID: PMC10518439 DOI: 10.1002/mco2.374] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 08/20/2023] [Accepted: 08/22/2023] [Indexed: 09/28/2023] Open
Abstract
Nonprogrammed cell death (NPCD) and programmed cell death (PCD) are two types of cell death. Cell death is significantly linked to tumor development, medication resistance, cancer recurrence, and metastatic dissemination. Therefore, a comprehensive understanding of cell death is essential for the treatment of cancer. Pyroptosis is a kind of PCD distinct from autophagy and apoptosis in terms of the structure and function of cells. The defining features of pyroptosis include the release of an inflammatory cascade reaction and the expulsion of lysosomes, inflammatory mediators, and other cellular substances from within the cell. Additionally, it displays variations in osmotic pressure both within and outside the cell. Pyroptosis, as evidenced by a growing body of research, is critical for controlling the development of inflammatory diseases and cancer. In this paper, we reviewed the current level of knowledge on the mechanism of pyroptosis and inflammasomes and their connection to cancer and inflammatory diseases. This article presents a theoretical framework for investigating the potential of therapeutic targets in cancer and inflammatory diseases, overcoming medication resistance, establishing nanomedicines associated with pyroptosis, and developing risk prediction models in refractory cancer. Given the link between pyroptosis and the emergence of cancer and inflammatory diseases, pyroptosis-targeted treatments may be a cutting-edge treatment strategy.
Collapse
Affiliation(s)
- Jie‐Lin Wang
- Department of Obstetrics and GynecologyGuangzhou Key Laboratory of Targeted Therapy for Gynecologic OncologyGuangdong Provincial Key Laboratory of Major Obstetric DiseasesThe Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
- Department of Gynecologic Oncology Research OfficeGuangzhou Key Laboratory of Targeted Therapy for Gynecologic OncologyGuangdong Provincial Key Laboratory of Major Obstetric DiseasesThe Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Sheng‐Ni Hua
- Department of Radiation OncologyZhuhai Peoples HospitalZhuhai Hospital Affiliated with Jinan UniversityZhuhaiChina
| | - Hai‐Juan Bao
- Department of Obstetrics and GynecologyGuangzhou Key Laboratory of Targeted Therapy for Gynecologic OncologyGuangdong Provincial Key Laboratory of Major Obstetric DiseasesThe Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
- Department of Gynecologic Oncology Research OfficeGuangzhou Key Laboratory of Targeted Therapy for Gynecologic OncologyGuangdong Provincial Key Laboratory of Major Obstetric DiseasesThe Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Jing Yuan
- Department of Obstetrics and GynecologyGuangzhou Key Laboratory of Targeted Therapy for Gynecologic OncologyGuangdong Provincial Key Laboratory of Major Obstetric DiseasesThe Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
- Department of Gynecologic Oncology Research OfficeGuangzhou Key Laboratory of Targeted Therapy for Gynecologic OncologyGuangdong Provincial Key Laboratory of Major Obstetric DiseasesThe Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Yang Zhao
- Department of Obstetrics and GynecologyGuangzhou Key Laboratory of Targeted Therapy for Gynecologic OncologyGuangdong Provincial Key Laboratory of Major Obstetric DiseasesThe Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
- Department of Gynecologic Oncology Research OfficeGuangzhou Key Laboratory of Targeted Therapy for Gynecologic OncologyGuangdong Provincial Key Laboratory of Major Obstetric DiseasesThe Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Shuo Chen
- Department of Obstetrics and GynecologyGuangzhou Key Laboratory of Targeted Therapy for Gynecologic OncologyGuangdong Provincial Key Laboratory of Major Obstetric DiseasesThe Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
- Department of Gynecologic Oncology Research OfficeGuangzhou Key Laboratory of Targeted Therapy for Gynecologic OncologyGuangdong Provincial Key Laboratory of Major Obstetric DiseasesThe Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| |
Collapse
|
33
|
Li GQ, Gao SX, Wang FH, Kang L, Tang ZY, Ma XD. Anticancer mechanisms on pyroptosis induced by Oridonin: New potential targeted therapeutic strategies. Biomed Pharmacother 2023; 165:115019. [PMID: 37329709 DOI: 10.1016/j.biopha.2023.115019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/07/2023] [Accepted: 06/12/2023] [Indexed: 06/19/2023] Open
Abstract
Pyroptosis is a type of inflammatory cell death that is triggered by the formation of pores on the cell membrane by gasdermin (GSDM) family proteins. This process activates inflammasomes and leads to the maturation and release of proinflammatory cytokines such as interleukin-1β (IL-1β) and interleukin-18 (IL-18). Pyroptosis, a form of programmed cell death, has been found to be associated with various biomolecules such as caspases, granzymes, non-coding RNA (lncRNA), reactive oxygen species (ROS), and NOD-like receptor protein 3 (NLRP3). These biomolecules have been shown to play a dual role in cancer by affecting cell proliferation, metastasis, and the tumor microenvironment (TME), resulting in both tumor promotion and anti-tumor effects. Recent studies have found that Oridonin (Ori) has anti-tumor effects by regulating pyroptosis through various pathways. Ori can inhibit pyroptosis by inhibiting caspase-1, which is responsible for activating pyroptosis of the canonical pathway. Additionally, Ori can inhibit pyroptosis by inhibiting NLRP3, which is responsible for activating pyroptosis of the noncanonical pathway. Interestingly, Ori can also activate pyroptosis by activating caspase-3 and caspase-8, which are responsible for activating pyroptosis of the emerging pathway; Ori has been found to be effective in inhibiting pyroptosis by blocking the action of perforin, which is responsible for facilitating the entry of granzyme into cells and activating pyroptosis. Additionally, Ori plays a crucial role in regulating pyroptosis by promoting the accumulation of ROS while inhibiting the ncRNA and NLRP3 pathways. It is worth noting that all of these pathways ultimately regulate pyroptosis by influencing the cleavage of GSDM, which is a key factor in the process. These studies concludes that Ori has extensive anti-cancer effects that are related to its potential regulatory function on pyroptosis. The paper summarizes several potential ways in which Ori participates in the regulation of pyroptosis, providing a reference for further study on the relationship between Ori, pyroptosis, and cancer.
Collapse
Affiliation(s)
- Guo Qiang Li
- Pharmacy school, Dalian Medical University, Dalian 116044, Liaoning, PR China
| | - Shi Xiang Gao
- Pharmacy school, Dalian Medical University, Dalian 116044, Liaoning, PR China
| | - Fu Han Wang
- Pharmacy school, Dalian Medical University, Dalian 116044, Liaoning, PR China
| | - Le Kang
- Department of Cardiac Surgery, Zhongshan Hospital, Affiliated Fudan University, Shang Hai 200030, PR China.
| | - Ze Yao Tang
- Pharmacy school, Dalian Medical University, Dalian 116044, Liaoning, PR China.
| | - Xiao Dong Ma
- Pharmacy school, Dalian Medical University, Dalian 116044, Liaoning, PR China.
| |
Collapse
|
34
|
Yang X, Tang Z. Role of gasdermin family proteins in cancers (Review). Int J Oncol 2023; 63:100. [PMID: 37477150 PMCID: PMC10552715 DOI: 10.3892/ijo.2023.5548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/05/2023] [Indexed: 07/22/2023] Open
Abstract
The gasdermin (GSDM) family comprises six proteins, including GSDMA‑GSDME and Pejvakin. Most of these proteins have a crucial role in inducing pyroptosis; in particular, GSDMD and GSDME are the most extensively studied proteins as the executioners of the pyroptosis process. Pyroptosis is a highly pro‑inflammatory form of programmed cell death and is closely associated with the incidence, development and prognosis of multiple cancer types. The present review focused on the current knowledge of the molecular mechanism of GSDM‑mediated pyroptosis, its intricate role in cancer and the potential therapeutic value of its anti‑tumor effects.
Collapse
Affiliation(s)
- Xin Yang
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Zhe Tang
- Department of Thoracic Surgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| |
Collapse
|
35
|
Stoess C, Leszczynska A, Kui L, Feldstein AE. Pyroptosis and gasdermins-Emerging insights and therapeutic opportunities in metabolic dysfunction-associated steatohepatitis. Front Cell Dev Biol 2023; 11:1218807. [PMID: 37664463 PMCID: PMC10470644 DOI: 10.3389/fcell.2023.1218807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/24/2023] [Indexed: 09/05/2023] Open
Abstract
In recent years, there has been a rapid expansion in our understanding of regulated cell death, leading to the discovery of novel mechanisms that govern diverse cell death pathways. One recently discovered type of cell death is pyroptosis, initially identified in the 1990s as a caspase-1-dependent lytic cell death. However, further investigations have redefined pyroptosis as a regulated cell death that relies on the activation of pore-forming proteins, particularly the gasdermin family. Among the key regulators of pyroptosis is the inflammasome sensor NOD-like receptor 3 (NLRP3), a critical innate immune sensor responsible for regulating the activation of caspase-1 and gasdermin D. A deeper understanding of pyroptosis and its interplay with other forms of regulated cell death is emerging, shedding light on a complex regulatory network controlling pore-forming proteins and cell fate. Cell death processes play a central role in diseases such as metabolic dysfunction-associated steatotic liver disease, metabolic dysfunction-associated steatohepatitis, autoinflammatory disorders, and cancer. Cell death often acts as a starting point in these diseases, making it an appealing target for drug development. Yet, the complete molecular mechanisms are not fully understood, and new discoveries reveal promising novel avenues for therapeutic interventions. In this review, we summarize recent evidence on pathways and proteins controlling pyroptosis and gasdermins. Furthermore, we will address the role of pyroptosis and the gasdermin family in metabolic dysfunction-associated steatotic liver disease and steatohepatitis. Additionally, we highlight new potential therapeutic targets for treating metabolic dysfunction-associated steatohepatitis and other inflammatory-associated diseases.
Collapse
Affiliation(s)
- Christian Stoess
- Department of Pediatric Gastroenterology, University of California, San Diego, San Diego, CA, United States
- Department of Surgery, TUM School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Aleksandra Leszczynska
- Department of Pediatric Gastroenterology, University of California, San Diego, San Diego, CA, United States
| | - Lin Kui
- Department of Pediatric Gastroenterology, University of California, San Diego, San Diego, CA, United States
| | - Ariel E. Feldstein
- Department of Pediatric Gastroenterology, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
36
|
Allali-Boumara I, Marrero AD, Quesada AR, Martínez-Poveda B, Medina MÁ. Pyroptosis Modulators: New Insights of Gasdermins in Health and Disease. Antioxidants (Basel) 2023; 12:1551. [PMID: 37627547 PMCID: PMC10451529 DOI: 10.3390/antiox12081551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/30/2023] [Accepted: 08/01/2023] [Indexed: 08/27/2023] Open
Abstract
Pyroptosis is an inflammation-dependent type of cell death that has been in the spotlight for the scientific community in the last few years. Crucial players in the process of pyroptosis are the members of the gasdermin family of proteins, which have been parallelly studied. Upon induction of pyroptosis, gasdermins suffer from structural changes leading to the formation of pores in the membrane that subsequently cause the release of pro-inflammatory contents. Recently, it has been discovered that oxidation plays a key role in the activation of certain gasdermins. Here, we review the current knowledge on pyroptosis and human gasdermins, focusing on the description of the different members of the family, their molecular structures, and their influence on health and disease directly or non-directly related to inflammation. Noteworthy, we have focused on the existing understanding of the role of this family of proteins in cancer, which could translate into novel promising strategies aimed at benefiting human health. In conclusion, the modulation of pyroptosis and gasdermins by natural and synthetic compounds through different mechanisms, including modification of the redox state of cells, has been proven effective and sets precedents for future therapeutic strategies.
Collapse
Affiliation(s)
- Imane Allali-Boumara
- Andalucía Tech, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, E-29071 Málaga, Spain; (I.A.-B.); (A.D.M.); (A.R.Q.); (B.M.-P.)
| | - Ana Dácil Marrero
- Andalucía Tech, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, E-29071 Málaga, Spain; (I.A.-B.); (A.D.M.); (A.R.Q.); (B.M.-P.)
- Instituto de Investigación Biomédica y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND (Biomedical Research Institute of Málaga), E-29071 Málaga, Spain
- CIBER de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| | - Ana R. Quesada
- Andalucía Tech, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, E-29071 Málaga, Spain; (I.A.-B.); (A.D.M.); (A.R.Q.); (B.M.-P.)
- Instituto de Investigación Biomédica y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND (Biomedical Research Institute of Málaga), E-29071 Málaga, Spain
- CIBER de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| | - Beatriz Martínez-Poveda
- Andalucía Tech, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, E-29071 Málaga, Spain; (I.A.-B.); (A.D.M.); (A.R.Q.); (B.M.-P.)
- Instituto de Investigación Biomédica y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND (Biomedical Research Institute of Málaga), E-29071 Málaga, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| | - Miguel Ángel Medina
- Andalucía Tech, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, E-29071 Málaga, Spain; (I.A.-B.); (A.D.M.); (A.R.Q.); (B.M.-P.)
- Instituto de Investigación Biomédica y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND (Biomedical Research Institute of Málaga), E-29071 Málaga, Spain
- CIBER de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| |
Collapse
|
37
|
Salami A, Bettadapura S, Wang S. Gasdermin D kills bacteria. Microbiol Res 2023; 272:127383. [PMID: 37062105 PMCID: PMC10192060 DOI: 10.1016/j.micres.2023.127383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/07/2023] [Accepted: 04/08/2023] [Indexed: 04/18/2023]
Abstract
The recognition of pathogen- or damage- associated molecular patterns (PAMPs/DAMPs) signals a series of coordinated responses as part of innate immunity or host cell defense during infection. The inflammasome is an assemblage of multiprotein complexes in the cytosol that activate inflammatory caspases and release pro-inflammatory mediators. This review examines the two-edged sword activity of gasdermin D (GSDMD). Since its discovery in 2015, GSDMD has played a crucial role in the programmed necrotic type of cell death called pyroptosis. Pyroptosis is an important response in host self-protection against danger signals and infection. Although excessive pyroptosis has a deleterious effect on the host, it proves to have a game-changing therapeutic application against pathogenic invasion when controlled. Here, we explore the mechanism utilized by GSDMD, the best studied member of the gasdermin protein family, in host immune defense against many bacteria. While the protein contributes to the clearance of some bacteria, we also discussed results from previous studies and research, that its presence might hinder effective immunity against other pathogens, thus aiding pathogenic invasion and spread.
Collapse
Affiliation(s)
- Abosede Salami
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, United States
| | - Sahana Bettadapura
- Biology Department, University of Arkansas at Little Rock, Little Rock, AR 72204, United States
| | - Shanzhi Wang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, United States.
| |
Collapse
|
38
|
Zhang M, Liu YF, Gao Y, Zhao C, Chen M, Pan KH. Immune-pyroptosis-related genes predict the prognosis of kidney renal clear cell carcinoma. Transl Oncol 2023; 34:101693. [PMID: 37315507 DOI: 10.1016/j.tranon.2023.101693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/30/2023] [Accepted: 05/11/2023] [Indexed: 06/16/2023] Open
Abstract
BACKGROUND Kidney renal clear cell carcinoma (KIRC) is a common cancer of the adult urological system. Recent developments in tumor immunology and pyroptosis biology have provided new directions for kidney cancer treatment. Therefore, there is an urgent need to identify potential targets and prognostic biomarkers for the combination of immunotherapy and pyroptosis-targeted therapy. METHODS The expression of immune-pyroptosis-related differentially expressed genes (IPR-DEGs) between KIRC and healthy tissues was examined using the Gene Expression Omnibus datasets. The GSE168845 dataset was selected for subsequent analyses. Data of 1793 human immune-related genes were downloaded from the ImmPort database (https://www.immport.org./home), while those of 33 pyroptosis-related genes were extracted from previous reviews. The independent prognostic value of IPR-DEGs was determined using differential expression, prognostic, and univariate and multivariate Cox regression analyses. The GSE53757 dataset was used to further verify the GSDMB and PYCARD levels. In our cohorts, the association among DEGs and clinicopathological features and overall survival was analyzed. The least absolute shrinkage and selection operator Cox regression model was established to evaluate the correlation of IPR-DEGs with the immune score, immune checkpoint gene expression, and one-class logistic regression (OCLR) score. KIRC cells and clinical tissue samples were subjected to quantitative real-time polymerase chain reaction to examine the GSDMB and PYCARD mRNA levels. The GSDMB and PYCARD levels in a healthy kidney cell line (HK-2 cells) and two KIRC cell lines (786-O and Caki-1 cells) were verified. The tissue levels of GSDMB and PYCARD were evaluated using immunohistochemical analysis. GSDMB and PYCARD were knocked down in 786-O cells using short-interfering RNA. Cell proliferation was examined using the cell counting kit-8 assay. Cell migration was measured by transwell migration assays RESULTS: GSDMB and PYCARD were determined to be IPR-DEGs with independent prognostic values. A risk prognostic model based on GSDMB and PYCARD was successfully established. In the GSE53757 dataset, the GSDMB and PYCARD levels in KIRC tissues were significantly higher than those in healthy tissues. The GSDMB and PYCARD expression was related to T stage and OS in our cohort. The GSDMB and PYCARD levels were significantly correlated with the immune score, immune checkpoint gene expression, and OCLR score. The results of experimental studies were consistent with those of bioinformatics analysis. The GSDMB and PYCARD levels in KIRC cells were significantly upregulated when compared with those in healthy kidney cells. Consistently, GSDMB and PYCARD in KIRC tissues were significantly upregulated when compared with those in adjacent healthy kidney tissues. GSDMB and PYCARD knockdown significantly decreased 786-O cell proliferation (p < 0.05). Transwell migration result reflects that silencing GSDMB and PYCARD inhibited 786-O cell migration (p < 0.05) . CONCLUSIONS GSDMB and PYCARD are potential targets and effective prognostic biomarkers for the combination of immunotherapy and pyroptosis-targeted therapy in KIRC.
Collapse
Affiliation(s)
- Minhao Zhang
- Department of Urology, XiShan People's Hospital Of Wuxi City, Wuxi, China
| | - Yi-Fan Liu
- Southeast University, 87 Dingjia Bridge Hunan Road, Nanjing, China
| | - Yue Gao
- Affiliated Zhongda Hospital of Southeast University, Southeast University, 87 Dingjia Bridge Hunan Road, Nanjing, China
| | - Chenggui Zhao
- Affiliated Zhongda Hospital of Southeast University, Southeast University, 87 Dingjia Bridge Hunan Road, Nanjing, China
| | - Ming Chen
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Lishui District People's Hospital, 87 Dingjia Bridge Hunan Road, Nanjing, China
| | - Ke-Hao Pan
- Affiliated Zhongda Hospital of Southeast University, Southeast University, 87 Dingjia Bridge Hunan Road, Nanjing, China.
| |
Collapse
|
39
|
Privitera G, Rana N, Armuzzi A, Pizarro TT. The gasdermin protein family: emerging roles in gastrointestinal health and disease. Nat Rev Gastroenterol Hepatol 2023; 20:366-387. [PMID: 36781958 PMCID: PMC10238632 DOI: 10.1038/s41575-023-00743-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/19/2023] [Indexed: 02/15/2023]
Abstract
Since the identification and characterization of gasdermin (GSDM) D as the main effector of inflammatory regulated cell death (or pyroptosis), literature on the GSDM family of pore-forming proteins is rapidly expanding, revealing novel mechanisms regulating their expression and functions that go beyond pyroptosis. Indeed, a growing body of evidence corroborates the importance of GSDMs within the gastrointestinal system, underscoring their critical contributions to the pathophysiology of gastrointestinal cancers, enteric infections and gut mucosal inflammation, such as inflammatory bowel disease. However, with this increase in knowledge, several important and controversial issues have arisen regarding basic GSDM biology and its role(s) during health and disease states. These include critical questions centred around GSDM-dependent lytic versus non-lytic functions, the biological activities of cleaved versus full-length proteins, the differential roles of GSDM-expressing mucosal immune versus epithelial cells, and whether GSDMs promote pathogenic or protective effects during specific disease settings. This Review provides a comprehensive summary and interpretation of the current literature on GSDM biology, specifically focusing on the gastrointestinal tract, highlighting the main controversial issues and their clinical implications, and addressing future areas of research to unravel the specific role(s) of this intriguing, yet enigmatic, family of proteins.
Collapse
Affiliation(s)
- Giuseppe Privitera
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Nitish Rana
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Department of Physiology & Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Alessandro Armuzzi
- IBD Center, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
| | - Theresa T Pizarro
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA.
| |
Collapse
|
40
|
Hsu SK, Chen YE, Shu ED, Ko CC, Chang WT, Lin IL, Li CY, Gallego RP, Chiu CC. The Pyroptotic and Nonpyroptotic Roles of Gasdermins in Modulating Cancer Progression and Their Perspectives on Cancer Therapeutics. Arch Immunol Ther Exp (Warsz) 2023; 71:14. [PMID: 37258998 DOI: 10.1007/s00005-023-00678-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/09/2023] [Indexed: 06/02/2023]
Abstract
Gasdermins (GSDMs) are a protein family encoded by six paralogous genes in humans, including GSDMA, GSDMB, GSDMC, GSDMD, GSDME (also known as DFNA5), and DFNB59 (also known as pejvakin). Structurally, members of the GSDM family possess a C-terminus (an autoinhibitory domain) and a positively charged N-terminus (a pore-forming domain) linked with divergent peptide linkers. Recently, GSDMs have been identified as key executors of pyroptosis (an immunogenic programmed cell death) due to their pore-forming activities on the plasma membrane when proteolytically cleaved by caspases or serine proteases. Accumulating studies suggest that chemoresistance is attributed to dysregulation of apoptotic machinery and that inducing pyroptosis to bypass aberrant apoptosis can potently resensitize apoptosis-resistant cancer to chemotherapeutics. Pyroptosis is initiated by pore formation and culminates with plasma membrane rupture; these processes enable the release of proinflammatory cytokines (e.g., IL-1β and IL-18) and damage-associated molecular patterns, which further modulate antitumor immunity within the tumor microenvironment. Although pyroptosis is considered a promising strategy to boost antitumor effects, it is also reported to cause unwanted tissue damage (e.g., gut damage and nephrotoxicity). Intriguingly, mounting evidence has uncovered nonpyroptotic roles of GSDMs in tumorigenesis, such as proliferation, invasion, metastasis, and drug resistance. Thus, this provides a rationale for GSDMs as potential therapeutic targets. Taken together, we shed unbiased light on the pyroptosis-dependent roles of GSDMs in cancer progression and highlighted how GSDMs modulate tumorigenesis in a pyroptosis-independent manner. It is evident that targeting GSDMs seems profound in cancer management; however, several problems require further investigation to target GSDMs from bench to bedside, which is elucidated in the discussion section.
Collapse
Affiliation(s)
- Sheng-Kai Hsu
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Yi-En Chen
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - En-De Shu
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Ching-Chung Ko
- Department of Medical Imaging, Chi Mei Medical Center, Tainan, 710, Taiwan
- Department of Health and Nutrition, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| | - Wen-Tsan Chang
- Division of General and Digestive Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan
- Department of Surgery, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
- Center for Cancer Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - I-Ling Lin
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Chia-Yang Li
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Rovelyn P Gallego
- Department of Biomedical Science and Environment Biology, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Chien-Chih Chiu
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
- Center for Cancer Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan.
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan.
- National Laboratory Animal Center, National Applied Research Laboratories, Taipei, 115, Taiwan.
| |
Collapse
|
41
|
Wu Y, Wen X, Xia Y, Yu X, Lou Y. LncRNAs and regulated cell death in tumor cells. Front Oncol 2023; 13:1170336. [PMID: 37313458 PMCID: PMC10258353 DOI: 10.3389/fonc.2023.1170336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/17/2023] [Indexed: 06/15/2023] Open
Abstract
Regulated Cell Death (RCD) is a mode of cell death that occurs through drug or genetic intervention. The regulation of RCDs is one of the significant reasons for the long survival time of tumor cells and poor prognosis of patients. Long non-coding RNAs (lncRNAs) which are involved in the regulation of tumor biological processes, including RCDs occurring on tumor cells, are closely related to tumor progression. In this review, we describe the mechanisms of eight different RCDs which contain apoptosis, necroptosis, pyroptosis, NETosis, entosis, ferroptosis, autosis and cuproptosis. Meanwhile, their respective roles in the tumor are aggregated. In addition, we outline the literature that is related to the regulatory relationships between lncRNAs and RCDs in tumor cells, which is expected to provide new ideas for tumor diagnosis and treatment.
Collapse
|
42
|
Li M, Jiang P, Wei S, Yang Y, Xiong L, Wang J, Li C. Gasdermin D Plays an Oncogenic Role in Glioma and Correlates to an Immunosuppressive Microenvironment. Biomolecules 2023; 13:904. [PMID: 37371484 DOI: 10.3390/biom13060904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 05/17/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND Understanding the molecular mechanisms driving oncogenic processes in glioma is important in order to develop efficient treatments. Recent studies have proposed gasdermin D (GSDMD) as a newly discovered pyroptosis executive protein associated with tumorigenesis. However, the precise effect of GSDMD on glioma progression remains unknown. METHODS The expression levels of GSDMD in 931 glioma and 1157 normal control tissues were collected. A series of bioinformatic approaches and in vivo and in vitro experiments were used to investigate the roles and mechanisms of GDSMD in glioma. RESULTS Significant upregulation of GSDMD was detected in glioma tissues compared to normal brain tissues. Patients with glioma and higher GSDMD levels had shorter overall survival, and the Cox regression analysis revealed that GSDMD was an independent risk factor. In addition, upregulation of GSDMD was associated with higher tumor mutation burden and PD-1/PD-L1 expression. Immune infiltration and single-cell analyses indicated that GSDMD was positively associated with an immunosuppressive microenvironment with more infiltrated macrophages and cancer-associated fibroblasts. Furthermore, the in vitro and in vivo experiments revealed that GSDMD knockdown inhibited glioma proliferation, migration, and growth in vivo. CONCLUSION Our analyses revealed a relatively comprehensive understanding of the oncogenic role of GSDMD in glioma. GSDMD is a promising prognostic biomarker and a potential target for glioma treatment.
Collapse
Affiliation(s)
- Mengyuan Li
- Department of Radiation Oncology, Peking University Third Hospital, Beijing 100191, China
| | - Ping Jiang
- Department of Radiation Oncology, Peking University Third Hospital, Beijing 100191, China
| | - Shuhua Wei
- Department of Radiation Oncology, Peking University Third Hospital, Beijing 100191, China
| | - Yuhan Yang
- Department of Radiation Oncology, Peking University Third Hospital, Beijing 100191, China
| | - Liting Xiong
- Department of Radiation Oncology, Peking University Third Hospital, Beijing 100191, China
| | - Junjie Wang
- Department of Radiation Oncology, Peking University Third Hospital, Beijing 100191, China
| | - Chunxiao Li
- Department of Radiation Oncology, Peking University Third Hospital, Beijing 100191, China
| |
Collapse
|
43
|
Ding C, Yang X, Li S, Zhang E, Fan X, Huang L, He Z, Sun J, Ma J, Zang L, Zheng M. Exploring the role of pyroptosis in shaping the tumor microenvironment of colorectal cancer by bulk and single-cell RNA sequencing. Cancer Cell Int 2023; 23:95. [PMID: 37198617 DOI: 10.1186/s12935-023-02897-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 03/12/2023] [Indexed: 05/19/2023] Open
Abstract
BACKGROUND Emerging studies have shown that pyroptosis plays a non-negligible role in the development and treatment of tumors. However, the mechanism of pyroptosis in colorectal cancer (CRC) remains still unclear. Therefore, this study investigated the role of pyroptosis in CRC. METHODS A pyroptosis-related risk model was developed using univariate Cox regression and LASSO Cox regression analyses. Based on this model, pyroptosis-related risk scores (PRS) of CRC samples with OS time > 0 from Gene Expression Omnibus (GEO) database and The Cancer Genome Atlas (TCGA) database were calculated. The abundance of immune cells in CRC tumor microenvironment (TME) was predicted by single-sample gene-set enrichment analysis (ssGSEA). Then, the responses to chemotherapy and immunotherapy were predicted by pRRophetic algorithm, the tumor immune dysfunction and exclusion (TIDE) and SubMap algorithms, respectively. Moreover, the Cancer Therapeutics Response Portal (CTRP) and PRISM Repurposing dataset (PRISM) were used to explore novel drug treatment strategies of CRC. Finally, we investigated pyroptosis-related genes in the level of single-cell and validated the expression levels of these genes between normal and CRC cell lines by RT-qPCR. RESULTS Survival analysis showed that CRC samples with low PRS had better overall survival (OS) and progression-free survival (PFS). CRC samples with low PRS had higher immune-related gene expression and immune cell infiltration than those with high PRS. Besides, CRC samples with low PRS were more likely to benefit from 5-fluorouracil based chemotherapy and anti-PD-1 immunotherapy. In novel drug prediction, some compounds such as C6-ceramide and noretynodrel, were inferred as potential drugs for CRC with different PRS. Single-cell analysis revealed pyroptosis-related genes were highly expressed in tumor cells. RT-qPCR also demonstrated different expression levels of these genes between normal and CRC cell lines. CONCLUSIONS Taken together, this study provides a comprehensive investigation of the role of pyroptosis in CRC at the bulk RNA sequencing (RNA-seq) and single-cell RNA sequencing (scRNA-seq) levels, advances our understanding of CRC characteristics, and guides more effective treatment regimens.
Collapse
Affiliation(s)
- Chengsheng Ding
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
- Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Department of Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, School of Medicine, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Xiao Yang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
- Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Department of Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, School of Medicine, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Shuchun Li
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
- Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Department of Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, School of Medicine, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Enkui Zhang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
- Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Department of Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, School of Medicine, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Xiaodong Fan
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
- Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Department of Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, School of Medicine, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Ling Huang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
- Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Department of Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, School of Medicine, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Zirui He
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
- Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Department of Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, School of Medicine, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Jing Sun
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China.
- Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Department of Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, School of Medicine, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, 200025, China.
| | - Junjun Ma
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China.
- Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Department of Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, School of Medicine, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, 200025, China.
| | - Lu Zang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China.
- Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Department of Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, School of Medicine, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, 200025, China.
| | - Minhua Zheng
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China.
- Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Department of Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, School of Medicine, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, 200025, China.
| |
Collapse
|
44
|
Wang D, Wan X. Progress in the study of molecular mechanisms of cell pyroptosis in tumor therapy. Int Immunopharmacol 2023; 118:110143. [PMID: 37030114 DOI: 10.1016/j.intimp.2023.110143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 04/08/2023]
Abstract
Pyroptosis, also known as cellular inflammatory necrosis, is a programmed cell death mediated by the Gasdermin family of proteins. The mechanisms by which pyroptosis occurs are divided into the GSDMD-mediated Caspase-1 and Caspase-4/-5/-11-dependent classical inflammatory vesicle pathway and the GSDME-mediated Caspase-3 and granzyme-dependent non-classical inflammatory vesicle pathways, among others. Recent studies have shown that pyroptosis has both inhibitory and promotive effects on tumor development. Pyroptosis induction also plays a dual role in antitumor immunotherapy: on the one hand, it suppresses antitumor immunity by promoting the release of inflammatory factors, and on the other hand, it inhibits tumor cell proliferation by triggering antitumor inflammatory responses. In addition, cell scorching plays an essential role in chemotherapy. It has been found that natural drugs modulating the induction of cell scorch are necessary to treat tumors. Therefore, studying the specific mechanisms of cell pyroptosis in different tumors can provide more ideas for developing oncology drugs. In this paper, we review the molecular mechanisms of pyroptosis and the role of pyroptosis in tumor development and treatment to provide new targets for clinical tumor treatment, prognosis, and antitumor drug development.
Collapse
|
45
|
Liu SW, Song WJ, Ma GK, Wang H, Yang L. Pyroptosis and its role in cancer. World J Clin Cases 2023; 11:2386-2395. [PMID: 37123307 PMCID: PMC10130989 DOI: 10.12998/wjcc.v11.i11.2386] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/23/2023] [Accepted: 03/14/2023] [Indexed: 04/06/2023] Open
Abstract
Programmed cell death (PCD) is mediated by specific genes that encode signals. It can balance cell survival and death. Pyroptosis is a type of inflammatory, caspase-dependent PCD mediated by gasdermin proteins, which function in pore formation, cell expansion, and plasma membrane rupture, followed by the release of intracellular contents. Pyroptosis is mediated by caspase-1/3/4/5/11 and is primarily divided into the classical pathway, which is dependent on caspase-1, and the non-classical pathway, which is dependent on caspase-4/5/11. Inflammasomes play a vital role in these processes. The various components of the pyroptosis pathway are related to the occurrence, invasion, and metastasis of tumors. Research on pyroptosis has revealed new options for tumor treatment. This article summarizes the recent research progress on the molecular mechanism of pyroptosis, the relationship between the various components of the pyroptosis pathway and cancer, and the applications and prospects of pyroptosis in anticancer therapy.
Collapse
Affiliation(s)
- Shi-Wei Liu
- Department of Joint Surgery, Dalian Medical University, Dalian 116044, Liaoning Province, China
| | - Wen-Jing Song
- Department of Oncology, The First Affiliated Hospital of Weifang Medical University, Weifang 261000, Shandong Province, China
| | - Gui-Kai Ma
- Department of Oncology, The First Affiliated Hospital of Weifang Medical University, Weifang 261000, Shandong Province, China
| | - Hui Wang
- Department of Oncology, The First Affiliated Hospital of Weifang Medical University, Weifang 261000, Shandong Province, China
| | - Liang Yang
- Department of Joint Surgery, The Second Hospital of Dalian Medical University, Dalian 116023, Liaoning Province, China
| |
Collapse
|
46
|
Wang X, Zhou J, Li Z, Chen X, Wei Q, Chen K, Jiang R. A novel pyroptosis-related prognostic signature for lung adenocarcinoma: Identification and multi-angle verification. Front Genet 2023; 14:1160915. [PMID: 37077542 PMCID: PMC10106613 DOI: 10.3389/fgene.2023.1160915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 03/20/2023] [Indexed: 04/05/2023] Open
Abstract
Background: Lung adenocarcinoma (LUAD) is an aggressive disease of heterogeneous characteristics with poor prognosis and high mortality. Pyroptosis, a newly uncovered type of programmed cell death with an inflammatory nature, has been determined to hold substantial importance in the progression of tumors. Despite this, the knowledge about pyroptosis-related genes (PRGs) in LUAD is limited. This study aimed to develop and validate a prognostic signature for LUAD based on PRGs.Methods: In this research, gene expression information from The Cancer Genome Atlas (TCGA) served as the training cohort and data from Gene Expression Omnibus (GEO) was utilized as the validation cohort. PRGs list was taken from the Molecular Signatures Database (MSigDB) and previous studies. Univariate Cox regression and Lasso analysis were then conducted to identify prognostic PRGs and develop a LUAD prognostic signature. The Kaplan-Meier method, univariate and multivariate Cox regression models were employed to assess the independent prognostic value and forecasting accuracy of the pyroptosis-related prognostic signature. The correlation between prognostic signature and immune infiltrating was analyzed to examine the role in tumor diagnosis and immunotherapy. Further, RNA-seq as well as quantitative real-time polymerase chain reaction (qRT-PCR) analysis in separate data sets was applied in order to validate the potential biomarkers for LUAD.Results: A novel prognostic signature based on 8 PRGs (BAK1, CHMP2A, CYCS, IL1A, CASP9, NLRC4, NLRP1, and NOD1) was established to predict the survival of LUAD. The prognostic signature proved to be an independent prognostic factor of LUAD with satisfactory sensitivity and specificity in the training and validation sets. High-risk scores subgroups in the prognostic signature were significantly associated with advanced tumor stage, poor prognosis, less immune cell infiltration, and immune function deficiency. RNA sequencing and qRT-PCR analysis confirmed that the expression of CHMP2A and NLRC4 could be used as biomarkers for LUAD.Conclusion: We have successfully developed a prognostic signature consisting of eight PRGs that providing a novel perspective on predicting prognosis, assessing infiltration levels of tumor immune cells, and determining the outcomes of immunotherapy for LUAD.
Collapse
Affiliation(s)
- Xinyue Wang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- Department of Thoracic Oncology, Tianjin Lung Cancer Center, Tianjin Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Jing Zhou
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- Department of Thoracic Oncology, Tianjin Lung Cancer Center, Tianjin Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Zhaona Li
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- Department of Thoracic Oncology, Tianjin Lung Cancer Center, Tianjin Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Xiuqiong Chen
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- Department of Thoracic Oncology, Tianjin Lung Cancer Center, Tianjin Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Qianhui Wei
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- Department of Thoracic Oncology, Tianjin Lung Cancer Center, Tianjin Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Kaidi Chen
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- Department of Thoracic Oncology, Tianjin Lung Cancer Center, Tianjin Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Richeng Jiang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- Department of Thoracic Oncology, Tianjin Lung Cancer Center, Tianjin Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
- *Correspondence: Richeng Jiang,
| |
Collapse
|
47
|
Zhang Z, Li X, Wang Y, Wei Y, Wei X. Involvement of inflammasomes in tumor microenvironment and tumor therapies. J Hematol Oncol 2023; 16:24. [PMID: 36932407 PMCID: PMC10022228 DOI: 10.1186/s13045-023-01407-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 02/08/2023] [Indexed: 03/19/2023] Open
Abstract
Inflammasomes are macromolecular platforms formed in response to damage-associated molecular patterns (DAMPs) and pathogen-associated molecular patterns, whose formation would cause maturation of interleukin-1 (IL-1) family members and gasdermin D (GSDMD), leading to IL-1 secretion and pyroptosis respectively. Several kinds of inflammasomes detecting different types of dangers have been found. The activation of inflammasomes is regulated at both transcription and posttranscription levels, which is crucial in protecting the host from infections and sterile insults. Present findings have illustrated that inflammasomes are involved in not only infection but also the pathology of tumors implying an important link between inflammation and tumor development. Generally, inflammasomes participate in tumorigenesis, cell death, metastasis, immune evasion, chemotherapy, target therapy, and radiotherapy. Inflammasome components are upregulated in some tumors, and inflammasomes can be activated in cancer cells and other stromal cells by DAMPs, chemotherapy agents, and radiation. In some cases, inflammasomes inhibit tumor progression by initiating GSDMD-mediated pyroptosis in cancer cells and stimulating IL-1 signal-mediated anti-tumor immunity. However, IL-1 signal recruits immunosuppressive cell subsets in other cases. We discuss the conflicting results and propose some possible explanations. Additionally, we also summarize interventions targeting inflammasome pathways in both preclinical and clinical stages. Interventions targeting inflammasomes are promising for immunotherapy and combination therapy.
Collapse
Affiliation(s)
- Ziqi Zhang
- grid.13291.380000 0001 0807 1581Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041 Sichuan People’s Republic of China
| | - Xue Li
- grid.13291.380000 0001 0807 1581Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041 Sichuan People’s Republic of China
| | - Yang Wang
- grid.13291.380000 0001 0807 1581Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041 Sichuan People’s Republic of China
| | - Yuquan Wei
- grid.13291.380000 0001 0807 1581Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041 Sichuan People’s Republic of China
| | - Xiawei Wei
- grid.13291.380000 0001 0807 1581Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041 Sichuan People’s Republic of China
| |
Collapse
|
48
|
Jiang M, Fang C, Ma Y. Prognosis Risk Model Based on Pyroptosis-Related lncRNAs for Gastric Cancer. Biomolecules 2023; 13:biom13030469. [PMID: 36979404 PMCID: PMC10046686 DOI: 10.3390/biom13030469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/29/2023] [Accepted: 02/27/2023] [Indexed: 03/08/2023] Open
Abstract
Gastric cancer (GC) is a malignant tumor with a low survival rate, high recurrence rate, and poor prognosis. With respect to this, pyroptosis is a type of programmed cell death that can affect the occurrence and development of tumors. Indeed, long non-coding RNAs (lncRNAs) were broadly applied for the purposes of early diagnosis, treatment, and prognostic analysis in regard to cancer. Based on the association of these three purposes, we developed a novel prognosis risk model based on pyroptosis-related lncRNAs (PRlncRNAs) for GC. The PRlncRNAs were obtained via univariate and multivariate Cox regression in order to build the predictive signatures. The Kaplan–Meier and gene set enrichment analysis (GSEA) methods were used to evaluate the overall survival (OS) and functional differences between the high- and low-risk groups. Moreover, the correlation of the signatures with immune cell infiltration was determined through single-sample gene set enrichment analysis (ssGSEA). Finally, we analyzed this correlation with the treatment responses in the GC patients; then, we performed quantitative reverse transcription polymerase chain reactions (qRT-PCRs) in order to verify the risk model. The high-risk group received a worse performance in terms of prognosis and OS when compared to the low-risk group. With respect to this, the area under the receiver operating characteristic curve (ROC) was found to be 0.808. Through conducting the GSEA, it was found that the high-risk groups possessed a significant enrichment in terms of tumor–immunity pathways. Furthermore, the ssGSEA revealed that the predictive features possessed strong associations with immune cell infiltration in regard to GC. In addition, we highlighted that anti-immune checkpoint therapy, combined with conventional chemotherapy drugs, may be more suitable for high-risk patients. The expression levels of LINC01315, AP003392.1, AP000695.2, and HAGLR were significantly different between the GC cell lines and the normal cell lines. As such, the six PRlncRNAs could be regarded as important prognostic biomarkers for the purposes of subsequent diagnoses, treatments, prognostic predictions, and the mechanism research of GC.
Collapse
|
49
|
Wang Z, Dai Z, Zhang H, Zhang N, Liang X, Peng L, Zhang J, Liu Z, Peng Y, Cheng Q, Liu Z. Comprehensive analysis of pyroptosis-related gene signatures for glioblastoma immune microenvironment and target therapy. Cell Prolif 2023; 56:e13376. [PMID: 36681858 PMCID: PMC9977674 DOI: 10.1111/cpr.13376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 10/25/2022] [Accepted: 11/16/2022] [Indexed: 01/23/2023] Open
Abstract
Glioblastoma (GBM) is a malignant brain tumour, but its subtypes (mesenchymal, classical, and proneural) show different prognoses. Pyroptosis is a programmed cell death relating to tumour progression, but its association with GBM is poorly understood. In this work, we collected 73 GBM samples (the Xiangya GBM cohort) and reported that pyroptosis involves tumour-microglia interaction and tumour response to interferon-gamma. GBM samples were grouped into different subtypes, cluster 1 and cluster 2, based on pyroptosis-related genes. Cluster 1 samples manifested a worse prognosis and had a more complicated immune landscape than cluster 2 samples. Single-cell RNA-seq data analysis supported that cluster 1 samples respond to interferon-gamma more actively. Moreover, the machine learning algorithm screened several potential compounds, including nutlin-3, for cluster 1 samples as a novel treatment. In vitro experiments supported that cluster 1 cell line, T98G, is more sensitive to nutlin-3 than cluster 2 cell line, LN229. Nutlin-3 can trigger oxidative stress by increasing DHCR24 expression. Moreover, pyroptosis-resistant genes were upregulated in LN229, which may participate against nutlin-3. Therefore, we hypothesis that GBM may be able to upregulate pyroptosis resistant related genes to against nutlin-3-triggered cell death. In summary, we conclude that pyroptosis highly associates with GBM progression, tumour immune landscape, and tumour response to nutlin-3.
Collapse
Affiliation(s)
- Zeyu Wang
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaChina,National Clinical Research Center for Geriatric DisordersChangshaChina,MRC Centre for Regenerative Medicine, Institute for Regeneration and RepairUniversity of EdinburghEdinburghUK
| | - Ziyu Dai
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaChina,National Clinical Research Center for Geriatric DisordersChangshaChina
| | - Hao Zhang
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaChina,National Clinical Research Center for Geriatric DisordersChangshaChina
| | - Nan Zhang
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaChina,One‐Third Lab, College of Bioinformatics Science and TechnologyHarbin Medical UniversityHarbinChina
| | - Xisong Liang
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaChina,National Clinical Research Center for Geriatric DisordersChangshaChina
| | - Luo Peng
- Department of Oncology, Zhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Jian Zhang
- Department of Interventional RadiologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Zaoqu Liu
- Department of Interventional RadiologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Yun Peng
- Department of Geriatrics, Xiangya HospitalCentral South UniversityChangshaChina,Teaching and Research Section of Clinical NursingXiangya Hospital of Central South UniversityChangshaChina
| | - Quan Cheng
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaChina,National Clinical Research Center for Geriatric DisordersChangshaChina
| | - Zhixiong Liu
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaChina,National Clinical Research Center for Geriatric DisordersChangshaChina
| |
Collapse
|
50
|
Awwad SF, Assaf RH, Emam AA, Fouad AA, Arafa LF, El-Hanafy AA. NLRP3 inflammasome activation By 17β-estradiol is a potential therapeutic target in hepatocellular carcinoma treatment. Med Oncol 2023; 40:94. [PMID: 36763290 PMCID: PMC9918588 DOI: 10.1007/s12032-022-01945-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 12/26/2022] [Indexed: 02/11/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide, and it mostly arises as a consequence of persistent chronic inflammation. Recently, NLRP3 inflammasome has caught the attention of many research groups due to its involvement in different types of cancer. However, its direct role in HCC remains elusive. Our study aimed to evaluate the role of NLRP3 inflammasome and pyroptosis in HCC and to clarify the potential mechanism by which 17β-estradiol (E2) can be used as a protective factor against HCC. NLRP3, caspase-1 (CASP1) as well as gasdermin-D (GSDMD) mRNA expression levels were assessed in human HCC tissues and adjacent non-cancerous liver tissues. Also, HepG2 HCC cells were cultured and treated with E2, followed by detection of the mRNA levels of these three genes. Our results revealed that NLRP3, CASP1, and GSDMD mRNA expressions were significantly lower in HCC tissues than in controls, and this under-expression was closely correlated with advanced HCC stages and grades. In contrast, HepG2 HCC cells displayed significantly higher expression levels of NLRP3 inflammasome components and GSDMD in the two E2-treated groups compared to the untreated group. Also, NLRP3, CASP1, and GSDMD mRNA expression levels were positively correlated with each other. This study confirmed that lack of NLRP3 inflammasome is involved in HCC progression and 17β-estradiol-induced activation of NLRP3 inflammasome may be effective in HCC treatment as it inhibited tumor cell growth and proliferation by triggering CASP1-dependent pyroptosis in HCC cells.
Collapse
Affiliation(s)
- Sara F. Awwad
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Raymonde H. Assaf
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Ahmed A. Emam
- Medical Experimental Research Center (MERC), Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Amgad A. Fouad
- Gastroenterology Surgical Center, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Lamiaa F. Arafa
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Aya A. El-Hanafy
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|