1
|
Hirsch LO, Gandu B, Chiliveru A, Dubrovin IA, Jukanti A, Schechter A, Cahan R. Hydrogen Production in Microbial Electrolysis Cells Using an Alginate Hydrogel Bioanode Encapsulated with a Filter Bag. Polymers (Basel) 2024; 16:1996. [PMID: 39065313 PMCID: PMC11280511 DOI: 10.3390/polym16141996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/10/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
The bacterial anode of microbial electrolysis cells (MECs) is the limiting factor in a high hydrogen evolution reaction (HER). This study focused on improving biofilm attachment to a carbon-cloth anode using an alginate hydrogel. In addition, the modified bioanode was encapsulated by a filter bag that served as a physical barrier, to overcome its low mechanical strength and alginate degradation by certain bacterial species in wastewater. The MEC based on an encapsulated alginate bioanode (alginate bioanode encapsulated by a filter bag) was compared with three controls: an MEC based on a bare bioanode (non-immobilized bioanode), an alginate bioanode, and an encapsulated bioanode (bioanode encapsulated by a filter bag). At the beginning of the operation, the Rct value for the encapsulated alginate bioanode was 240.2 Ω, which decreased over time and dropped to 9.8 Ω after three weeks of operation when the Geobacter medium was used as the carbon source. When the MECs were fed with wastewater, the encapsulated alginate bioanode led to the highest current density of 9.21 ± 0.16 A·m-2 (at 0.4 V), which was 20%, 95%, and 180% higher, compared to the alginate bioanode, bare bioanode, and encapsulated bioanode, respectively. In addition, the encapsulated alginate bioanode led to the highest reduction currents of (4.14 A·m-2) and HER of 0.39 m3·m-3·d-1. The relative bacterial distribution of Geobacter was 79%. The COD removal by all the bioanodes was between 62% and 88%. The findings of this study demonstrate that the MEC based on the encapsulated alginate bioanode exhibited notably higher bio-electroactivity compared to both bare, alginate bioanode, and an encapsulated bioanode. We hypothesize that this improvement in electron transfer rate is attributed to the preservation and the biofilm on the anode material using alginate hydrogel which was inserted into a filter bag.
Collapse
Affiliation(s)
- Lea Ouaknin Hirsch
- Department of Chemical Engineering, Ariel University, Ariel 40700, Israel; (L.O.H.); (B.G.); (A.C.); (I.A.D.); (A.J.)
| | - Bharath Gandu
- Department of Chemical Engineering, Ariel University, Ariel 40700, Israel; (L.O.H.); (B.G.); (A.C.); (I.A.D.); (A.J.)
- Department of Environmental Studies, University of Delhi, New Delhi 110007, India
| | - Abhishiktha Chiliveru
- Department of Chemical Engineering, Ariel University, Ariel 40700, Israel; (L.O.H.); (B.G.); (A.C.); (I.A.D.); (A.J.)
| | - Irina Amar Dubrovin
- Department of Chemical Engineering, Ariel University, Ariel 40700, Israel; (L.O.H.); (B.G.); (A.C.); (I.A.D.); (A.J.)
| | - Avinash Jukanti
- Department of Chemical Engineering, Ariel University, Ariel 40700, Israel; (L.O.H.); (B.G.); (A.C.); (I.A.D.); (A.J.)
| | - Alex Schechter
- Department of Chemical Sciences, Ariel University, Ariel 40700, Israel;
- Research and Development Centre for Renewable Energy, New Technologies, Research Centre (NTC), University of West Bohemia, 30100 Pilsen, Czech Republic
| | - Rivka Cahan
- Department of Chemical Engineering, Ariel University, Ariel 40700, Israel; (L.O.H.); (B.G.); (A.C.); (I.A.D.); (A.J.)
| |
Collapse
|
2
|
Zhu Q, Li X, Nie Z, Wang Y, Dang T, Papadakis VG, Goula MA, Wang W, Yang Z. In-situ microbial protein production by using nitrogen extracted from multifunctional bio-electrochemical system. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 347:119050. [PMID: 37751664 DOI: 10.1016/j.jenvman.2023.119050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 09/11/2023] [Accepted: 09/18/2023] [Indexed: 09/28/2023]
Abstract
Upgrading of waste nitrogen sources is considered as an important approach to promote sustainable development. In this study, a multifunctional bio-electrochemical system with three chambers was established, innovatively achieving 2.02 g/L in-situ microbial protein (MP) production via hydrogen-oxidizing bacteria (HOB) in the protein chamber (middle chamber), along with over 2.9 L CO2/(L·d) consumption rate. Also, 69% chemical oxygen demand was degraded by electrogenic bacteria in the anode chamber, resulting in the 394.67 J/L electricity generation. Focusing on the NH4+-N migration in the system, the current intensity contributed 4%-9% in the anode and protein chamber, whereas, the negative effect of -6.69% on contribution was shown in the cathode chamber. On the view of kinetics, NH4+-N migration in anode and cathode chambers was fitted well with Levenberg-Marquardt equation (R2 > 0.92), along with the well-matched results of HOB growth in the protein chamber based on Gompertz model (R2 > 0.99). Further evaluating MPs produced by HOB, 0.45 g/L essential amino acids was detected, showing the better amino acid profile than fish and soybean. Multifunctional bio-electrochemical system revealed the economic potential of producing 6.69 €/m3 wastewater according to a simplified economic evaluation.
Collapse
Affiliation(s)
- Qile Zhu
- Biomass Energy and Environmental Engineering Research Center, Beijing University of Chemical Technology, Beijing, 100029, China; College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xiaoyue Li
- Biomass Energy and Environmental Engineering Research Center, Beijing University of Chemical Technology, Beijing, 100029, China; College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Zhenchuan Nie
- Biomass Energy and Environmental Engineering Research Center, Beijing University of Chemical Technology, Beijing, 100029, China; College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yiwen Wang
- Biomass Energy and Environmental Engineering Research Center, Beijing University of Chemical Technology, Beijing, 100029, China; College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Tianqi Dang
- Biomass Energy and Environmental Engineering Research Center, Beijing University of Chemical Technology, Beijing, 100029, China; College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Vagelis G Papadakis
- Department of Civil Engineering, University of Patras, 26500, Rio, Patras, Greece
| | - Maria A Goula
- Laboratory of Alternative Fuels and Environmental Catalysis, Department of Chemical Engineering, University of Western Macedonia, GR-50100, Greece
| | - Wen Wang
- Biomass Energy and Environmental Engineering Research Center, Beijing University of Chemical Technology, Beijing, 100029, China; College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Ziyi Yang
- Biomass Energy and Environmental Engineering Research Center, Beijing University of Chemical Technology, Beijing, 100029, China; College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
3
|
Mutyala S, Kim JR. Recent advances and challenges in the bioconversion of acetate to value-added chemicals. BIORESOURCE TECHNOLOGY 2022; 364:128064. [PMID: 36195215 DOI: 10.1016/j.biortech.2022.128064] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Acetate is a major byproduct of the bioconversion of the greenhouse gas carbon dioxide, pretreatment of lignocellulose biomass, and microbial fermentation. The utilization and valorization of acetate have been emphasized in transforming waste to clean energy and value-added platform chemicals, contributing to the development of a closed carbon loop toward a low-carbon circular bio-economy. Acetate has been used to produce several platform chemicals, including succinate, 3-hydroxypropionate, and itaconic acid, highlighting the potential of acetate to synthesize many biochemicals and biofuels. On the other hand, the yields and titers have not reached the theoretical maximum. Recently, recombinant strain development and pathway regulation have been suggested to overcome this limitation. This review provides insights into the important constraints limiting the yields and titers of the biochemical and metabolic pathways of bacteria capable of metabolizing acetate for acetate bioconversion. The current developments in recombinant strain engineering are also discussed.
Collapse
Affiliation(s)
- Sakuntala Mutyala
- School of Chemical Engineering, Pusan National University, 63 Busandeahak-ro, Geumjeong-Gu, Busan 46241, Republic of Korea
| | - Jung Rae Kim
- School of Chemical Engineering, Pusan National University, 63 Busandeahak-ro, Geumjeong-Gu, Busan 46241, Republic of Korea.
| |
Collapse
|
4
|
Tarasov S, Plekhanova Y, Kashin V, Gotovtsev P, Signore MA, Francioso L, Kolesov V, Reshetilov A. Gluconobacter Oxydans-Based MFC with PEDOT:PSS/Graphene/Nafion Bioanode for Wastewater Treatment. BIOSENSORS 2022; 12:bios12090699. [PMID: 36140084 PMCID: PMC9496339 DOI: 10.3390/bios12090699] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/23/2022] [Accepted: 08/28/2022] [Indexed: 11/16/2022]
Abstract
Microbial fuel cells (MFCs) are a variety of bioelectrocatalytic devices that utilize the metabolism of microorganisms to generate electric energy from organic matter. This study investigates the possibility of using a novel PEDOT:PSS/graphene/Nafion composite in combination with acetic acid bacteria Gluconobacter oxydans to create a pure culture MFC capable of effective municipal wastewater treatment. The developed MFC was shown to maintain its activity for at least three weeks. The level of COD in municipal wastewater treatment was reduced by 32%; the generated power was up to 81 mW/m2 with a Coulomb efficiency of 40%. Combining the MFC with a DC/DC boost converter increased the voltage generated by two series-connected MFCs from 0.55 mV to 3.2 V. A maximum efficiency was achieved on day 8 of MFC operation and was maintained for a week; capacitors of 6800 µF capacity were fully charged in ~7 min. Thus, G. oxydans cells can become an important part of microbial consortia in MFCs used for treatment of wastewaters with reduced pH.
Collapse
Affiliation(s)
- Sergei Tarasov
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Center for Biological Research of the Russian Academy of Sciences, Moscow Region, 142290 Pushchino, Russia
- Correspondence:
| | - Yulia Plekhanova
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Center for Biological Research of the Russian Academy of Sciences, Moscow Region, 142290 Pushchino, Russia
| | - Vadim Kashin
- FSBIS V.A. Kotelnikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, 125009 Moscow, Russia
| | - Pavel Gotovtsev
- Biotechnology and Bioenergy Department, National Research Centre “Kurchatov Institute”, 123182 Moscow, Russia
- Moscow Institute of Physics and Technology (National Research University), Moscow Region, 141701 Dolgoprudny, Russia
| | - Maria Assunta Signore
- CNR IMM, Institute for Microelectronics and Microsystems, Via Monteroni, I-73100 Lecce, Italy
| | - Luca Francioso
- CNR IMM, Institute for Microelectronics and Microsystems, Via Monteroni, I-73100 Lecce, Italy
| | - Vladimir Kolesov
- FSBIS V.A. Kotelnikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, 125009 Moscow, Russia
| | - Anatoly Reshetilov
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Center for Biological Research of the Russian Academy of Sciences, Moscow Region, 142290 Pushchino, Russia
| |
Collapse
|
5
|
Hydrogen Production in Microbial Electrolysis Cells Based on Bacterial Anodes Encapsulated in a Small Bioreactor Platform. Microorganisms 2022; 10:microorganisms10051007. [PMID: 35630450 PMCID: PMC9142973 DOI: 10.3390/microorganisms10051007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 05/04/2022] [Accepted: 05/09/2022] [Indexed: 01/25/2023] Open
Abstract
Microbial electrolysis cells (MECs) are an emerging technology capable of harvesting part of the potential chemical energy in organic compounds while producing hydrogen. One of the main obstacles in MECs is the bacterial anode, which usually contains mixed cultures. Non-exoelectrogens can act as a physical barrier by settling on the anode surface and displacing the exoelectrogenic microorganisms. Those non-exoelectrogens can also compete with the exoelectrogenic microorganisms for nutrients and reduce hydrogen production. In addition, the bacterial anode needs to withstand the shear and friction forces existing in domestic wastewater plants. In this study, a bacterial anode was encapsulated by a microfiltration membrane. The novel encapsulation technology is based on a small bioreactor platform (SBP) recently developed for achieving successful bioaugmentation in wastewater treatment plants. The 3D capsule (2.5 cm in length, 0.8 cm in diameter) physically separates the exoelectrogenic biofilm on the carbon cloth anode material from the natural microorganisms in the wastewater, while enabling the diffusion of nutrients through the capsule membrane. MECs based on the SBP anode (MEC-SBPs) and the MECs based on a nonencapsulated anode (MEC control) were fed with Geobacter medium supplied with acetate for 32 days, and then with artificial wastewater for another 46 days. The electrochemical activity, chemical oxygen demand (COD), bacterial anode viability and relative distribution on the MEC-SBP anode were compared with the MEC control. When the MECs were fed with artificial wastewater, the MEC-SBP produced (at −0.6 V) 1.70 ± 0.22 A m−2, twice that of the MEC control. The hydrogen evolution rates were 0.017 and 0.005 m3 m−3 day−1, respectively. The COD consumption rate for both was about the same at 650 ± 70 mg L−1. We assume that developing the encapsulated bacterial anode using the SBP technology will help overcome the problem of contamination by non-exoelectrogenic bacteria, as well as the shear and friction forces in wastewater plants.
Collapse
|
6
|
Changmei L, Gengrui W, Haizhen W, Yuxiao W, Shuang Z, Chaohai W. Kinetics and molecular mechanism of enhanced fluoranthene biodegradation by co-substrate phenol in co-culture of Stenotrophomonas sp. N5 and Advenella sp. B9. ENVIRONMENTAL RESEARCH 2022; 205:112413. [PMID: 34861230 DOI: 10.1016/j.envres.2021.112413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/16/2021] [Accepted: 11/16/2021] [Indexed: 06/13/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) and phenol are persistent pollutants that coexist in coking wastewater (CWW). Fluoranthene (Flu) is the predominant PAH species in the CWW treatment system. Our work emphasized on distinguishing the effects of phenol on Flu biodegradation by co-culture of Stenotrophomonas sp. N5 and Advenella sp. B9 and illustrated the molecular mechanisms. Results showed Flu biodegradation by co-culture was enhanced by phenol. According to the first-order degradation kinetic analysis of Flu, phenol significantly increased the biodegradation rate constant and shortened the half-life of Flu. Transcriptome analysis pointed out the up-regulation of DNA repair activity and 3717 significantly differentially expressed genes (DEGs), were triggered by 800 mg/L phenol. GO enrichment analysis suggested these DEGs are mainly concentrated in biochemical processes such as metal ion binding and alpha-amino acid biosynthesis, which are closely associated with Flu biodegradation, indicating that phenol promotes DNA repair activity and reduces Flu genotoxicity. qRT-PCR was performed to detect the gene expression of aromatic ring-opening dioxygenase. Combined with transcriptome analysis, the qRT-PCR results suggested phenol did not induce the expression of related PAHs-degrading enzymes. RNA extraction and microbial growth curves of COC and COC + Ph provided further evidence that phenol serves as co-substrate which increases biomass and the concentration of degrading enzymes, therefore promoting the Flu degradation.
Collapse
Affiliation(s)
- Li Changmei
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Wei Gengrui
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Wu Haizhen
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China.
| | - Wang Yuxiao
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Zhu Shuang
- Cener for Bioresources & Drug Discovery and School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Wei Chaohai
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| |
Collapse
|
7
|
Prathiba S, Kumar PS, Vo DVN. Recent advancements in microbial fuel cells: A review on its electron transfer mechanisms, microbial community, types of substrates and design for bio-electrochemical treatment. CHEMOSPHERE 2022; 286:131856. [PMID: 34399268 DOI: 10.1016/j.chemosphere.2021.131856] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 07/28/2021] [Accepted: 08/08/2021] [Indexed: 06/13/2023]
Abstract
The development in urbanization, growth in industrialization and deficiency in crude oil wealth has made to focus more for the renewable and also sustainable spotless energy resources. In the past two decades, the concepts of microbial fuel cell have caught more considerations among the scientific societies for the probability of converting, organic waste materials into bio-energy using microorganisms catalyzed anode, and enzymatic/microbial/abiotic/biotic cathode electro-chemical reactions. The added benefit with MFCs technology for waste water treatment is numerous bio-centered processes are available such as sulfate removal, denitrification, nitrification, removal of chemical oxygen demand and biological oxygen demand and heavy metals removal can be performed in the same MFC designed systems. The various factors intricate in MFC concepts in the direction of bioenergy production consists of maximum coulombic efficiency, power density and also the rate of removal of chemical oxygen demand which calculates the efficacy of the MFC unit. Even though the efficacy of MFCs in bioenergy production was initially quietly low, therefore to overcome these issues few modifications are incorporated in design and components of the MFC units, thereby functioning of the MFC unit have improvised the rate of bioenergy production to a substantial level by this means empowering application of MFC technology in numerous sectors including carbon capture, bio-hydrogen production, bioremediation, biosensors, desalination, and wastewater treatment. The present article reviews about the microbial community, types of substrates and information about the several designs of MFCs in an endeavor to get the better of practical difficulties of the MFC technology.
Collapse
Affiliation(s)
- S Prathiba
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, India.
| | - Dai-Viet N Vo
- Institute of Environmental Sciences, Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam
| |
Collapse
|
8
|
Ramanaiah S, Cordas CM, Matias SC, Reddy M, Leitão JH, Fonseca LP. Bioelectricity generation using long-term operated biocathode: RFLP based microbial diversity analysis. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2021; 32:e00693. [PMID: 34917493 PMCID: PMC8666517 DOI: 10.1016/j.btre.2021.e00693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/17/2021] [Accepted: 12/03/2021] [Indexed: 10/25/2022]
Abstract
In the present work, power generation and substrate removal efficiencies of long-term operated microbial fuel cells, containing abiotic cathodes and biocathodes, were evaluated for 220 days. Among the two microbial fuel cell (MFC) types, the one containing biocathode showed higher power density (54 mW/m2), current density (122 mA/m2) coulombic efficiency (33%), and substrate removal efficiency (94%) than the abiotic cathode containing MFC. Voltammetric analysis also witnessed higher and sustainable electron discharge for the MFC with biocathode, when compared with the abiotic cathode MFC. Over the tested period, both MFC have shown a cell voltage drop, after 150 and 165, days, for the MFC with biocathode and abiotic cathodes, respectively. Polymerase chain reaction (PCR) based restriction fragment length polymorphism (RFLP) analysis identified 281 clones. Bacteria belonging to Acinetobacter, Acidovorax, Pseudomonas and Burkholderia were observed in the abiotic cathode MFC. Bacteria belonging to Geobacter, Cupriavidus and Acidobacteria were observed in the biocathode MFC. Almost similar types of archaea (Methanosarcinales, Methanolinea, Nitrososphaera and Methanomicrobiales) were observed in both MFCs.
Collapse
Affiliation(s)
- S.V. Ramanaiah
- iBB – Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, Lisboa, 1049-001 Portugal
- Food and Biotechnology Research Lab, South Ural State University (National Research University), 76, Lenin prospekt, Chelyabinsk, 454080, Russian Federation
| | - Cristina M. Cordas
- LAQV- REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade Nova de Lisboa, Caparica, 2829-516, Portugal
| | - Sara C. Matias
- iBB – Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, Lisboa, 1049-001 Portugal
| | - M.Venkateswar Reddy
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute,110 8th Street, Troy, NY 12180, USA
| | - Jorge Humberto Leitão
- Department of Bioengineering, iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, Lisboa, 1049-001 Portugal
| | - Luis P. Fonseca
- iBB – Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, Lisboa, 1049-001 Portugal
| |
Collapse
|
9
|
Sustainable approach for wastewater treatment using microbial fuel cells and green energy generation – A comprehensive review. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117795] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
10
|
Mukherjee A, Zaveri P, Patel R, Shah MT, Munshi NS. Optimization of microbial fuel cell process using a novel consortium for aromatic hydrocarbon bioremediation and bioelectricity generation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 298:113546. [PMID: 34435573 DOI: 10.1016/j.jenvman.2021.113546] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 07/23/2021] [Accepted: 08/11/2021] [Indexed: 06/13/2023]
Abstract
Microbial Fuel Cell (MFC) is an innovative bio-electrochemical approach which converts biochemical energy inherent in wastewater into electrical energy, thus contributing to circular economy. Five electrogenic bacteria, Kocuria rosea (GTPAS76), two strains of Bacillus circulans (GTPO28 and GTPAS54), and two strains of Corynebacterium vitaeruminis (GTPO38 and GTPO42) were isolated from a common effluent treatment plant (CETP) and were used individually as well as in consortium form to run double chambered "H" type microbial fuel cell. Individually they could produce voltage in the range of 0.4-0.7 V in the MFC systems. Consortium developed using GTPO28, GTPO38, GTPAS54 and GTPAS76 were capable of producing voltage output of 0.8 V with 81.81 % and 64 % COD and BOD reduction, respectively. The EPS production capacity and electricity generation by the isolated bacteria correlated significantly (r = 0.72). Various parameters like, effect of preformed biofilm, length of salt bridge and its reuse, aeration, substrate concentration and external resistance were studied in detail. The study emphasizes on improving the commercialization aspect of MFC with repeated use of salt bridge and improving wastewater treatment potential after optimization of MFC system. Polarization curve and power density trends were studied in optimized MFC. A maximum power density and current density achieved were 18.15 mW/m2 and 370.37 mA/m2, respectively using 5 mM sodium benzoate. This study reports the use of sodium benzoate as a substrate along with reusing of the salt bridge in MFC study with promising results for BOD and COD reduction, proving it to be futuristic technology for bio-based circular ecosystem development.
Collapse
Affiliation(s)
- Anwesha Mukherjee
- Institute of Science, Nirma University, Sarkhej- Gandhinagar Highway, Ahmedabad, 382481, Gujarat, India
| | - Purvi Zaveri
- Institute of Science, Nirma University, Sarkhej- Gandhinagar Highway, Ahmedabad, 382481, Gujarat, India; Biocare Research India Pvt. Ltd., Ahmedabad, 380006, Gujarat, India
| | - Rushika Patel
- Institute of Science, Nirma University, Sarkhej- Gandhinagar Highway, Ahmedabad, 382481, Gujarat, India; School of Sciences, Rai University, Ahmedabad, 382260, Gujarat, India
| | - Manisha T Shah
- Department of Electrical Engineering, Institute of Technology, Nirma University, Sarkhej- Gandhinagar Highway, Ahmedabad, 382481, Gujarat, India
| | - Nasreen S Munshi
- Institute of Science, Nirma University, Sarkhej- Gandhinagar Highway, Ahmedabad, 382481, Gujarat, India.
| |
Collapse
|
11
|
Iannaci A, Myles A, Philippon T, Barrière F, Scanlan EM, Colavita PE. Controlling the Carbon-Bio Interface via Glycan Functional Adlayers for Applications in Microbial Fuel Cell Bioanodes. Molecules 2021; 26:4755. [PMID: 34443344 PMCID: PMC8400688 DOI: 10.3390/molecules26164755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 07/30/2021] [Accepted: 08/03/2021] [Indexed: 11/17/2022] Open
Abstract
Surface modification of electrodes with glycans was investigated as a strategy for modulating the development of electrocatalytic biofilms for microbial fuel cell applications. Covalent attachment of phenyl-mannoside and phenyl-lactoside adlayers on graphite rod electrodes was achieved via electrochemically assisted grafting of aryldiazonium cations from solution. To test the effects of the specific bio-functionalities, modified and unmodified graphite rods were used as anodes in two-chamber microbial fuel cell devices. Devices were set up with wastewater as inoculum and acetate as nutrient and their performance, in terms of output potential (open circuit and 1 kΩ load) and peak power output, was monitored over two months. The presence of glycans was found to lead to significant differences in startup times and peak power outputs. Lactosides were found to inhibit the development of biofilms when compared to bare graphite. Mannosides were found, instead, to promote exoelectrogenic biofilm adhesion and anode colonization, a finding that is supported by quartz crystal microbalance experiments in inoculum media. These differences were observed despite both adlayers possessing thickness in the nm range and similar hydrophilic character. This suggests that specific glycan-mediated bioaffinity interactions can be leveraged to direct the development of biotic electrocatalysts in bioelectrochemical systems and microbial fuel cell devices.
Collapse
Affiliation(s)
- Alessandro Iannaci
- School of Chemistry, CRANN and AMBER Research Centres, Trinity College Dublin, College Green, Dublin 2, Ireland; (A.I.); (A.M.)
| | - Adam Myles
- School of Chemistry, CRANN and AMBER Research Centres, Trinity College Dublin, College Green, Dublin 2, Ireland; (A.I.); (A.M.)
| | - Timothé Philippon
- Institut des Sciences Chimiques de Rennes-UMR 6226, CNRS, Univ Rennes, F-35000 Rennes, France;
| | - Frédéric Barrière
- Institut des Sciences Chimiques de Rennes-UMR 6226, CNRS, Univ Rennes, F-35000 Rennes, France;
| | - Eoin M. Scanlan
- School of Chemistry, CRANN and AMBER Research Centres, Trinity College Dublin, College Green, Dublin 2, Ireland; (A.I.); (A.M.)
| | - Paula E. Colavita
- School of Chemistry, CRANN and AMBER Research Centres, Trinity College Dublin, College Green, Dublin 2, Ireland; (A.I.); (A.M.)
| |
Collapse
|
12
|
Cestellos-Blanco S, Friedline S, Sander KB, Abel AJ, Kim JM, Clark DS, Arkin AP, Yang P. Production of PHB From CO 2-Derived Acetate With Minimal Processing Assessed for Space Biomanufacturing. Front Microbiol 2021; 12:700010. [PMID: 34394044 PMCID: PMC8355900 DOI: 10.3389/fmicb.2021.700010] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 07/05/2021] [Indexed: 11/13/2022] Open
Abstract
Providing life-support materials to crewed space exploration missions is pivotal for mission success. However, as missions become more distant and extensive, obtaining these materials from in situ resource utilization is paramount. The combination of microorganisms with electrochemical technologies offers a platform for the production of critical chemicals and materials from CO2 and H2O, two compounds accessible on a target destination like Mars. One such potential commodity is poly(3-hydroxybutyrate) (PHB), a common biopolyester targeted for additive manufacturing of durable goods. Here, we present an integrated two-module process for the production of PHB from CO2. An autotrophic Sporomusa ovata (S. ovata) process converts CO2 to acetate which is then directly used as the primary carbon source for aerobic PHB production by Cupriavidus basilensis (C. basilensis). The S. ovata uses H2 as a reducing equivalent to be generated through electrocatalytic solar-driven H2O reduction. Conserving and recycling media components is critical, therefore we have designed and optimized our process to require no purification or filtering of the cell culture media between microbial production steps which could result in up to 98% weight savings. By inspecting cell population dynamics during culturing we determined that C. basilensis suitably proliferates in the presence of inactive S. ovata. During the bioprocess 10.4 mmol acetate L -1 day-1 were generated from CO2 by S. ovata in the optimized media. Subsequently, 12.54 mg PHB L-1 hour-1 were produced by C. basilensis in the unprocessed media with an overall carbon yield of 11.06% from acetate. In order to illustrate a pathway to increase overall productivity and enable scaling of our bench-top process, we developed a model indicating key process parameters to optimize.
Collapse
Affiliation(s)
- Stefano Cestellos-Blanco
- Center for the Utilization of Biological Engineering in Space, Berkeley, CA, United States.,Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, CA, United States
| | - Skyler Friedline
- Center for the Utilization of Biological Engineering in Space, Berkeley, CA, United States.,Department of Bioengineering, University of California, Berkeley, Berkeley, CA, United States
| | - Kyle B Sander
- Center for the Utilization of Biological Engineering in Space, Berkeley, CA, United States.,Department of Bioengineering, University of California, Berkeley, Berkeley, CA, United States
| | - Anthony J Abel
- Center for the Utilization of Biological Engineering in Space, Berkeley, CA, United States.,Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, United States
| | - Ji Min Kim
- Center for the Utilization of Biological Engineering in Space, Berkeley, CA, United States.,Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, CA, United States
| | - Douglas S Clark
- Center for the Utilization of Biological Engineering in Space, Berkeley, CA, United States.,Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, United States.,Lawrence Berkeley National Laboratory, Molecular Biophysics and Integrated Bioimaging Division, Berkeley, CA, United States
| | - Adam P Arkin
- Center for the Utilization of Biological Engineering in Space, Berkeley, CA, United States.,Department of Bioengineering, University of California, Berkeley, Berkeley, CA, United States.,Lawrence Berkeley National Laboratory, Environmental Genomics and Systems Biology Division, Berkeley, CA, United States
| | - Peidong Yang
- Center for the Utilization of Biological Engineering in Space, Berkeley, CA, United States.,Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, CA, United States.,Department of Chemistry, University of California, Berkeley, Berkeley, CA, United States.,Lawrence Berkeley National Laboratory, Chemical Sciences Division, Berkeley, CA, United States.,Kavli Energy NanoSciences Institute, University of California, Berkeley, Berkeley, CA, United States
| |
Collapse
|
13
|
Song Q, Sun Z, Chang Y, Zhang W, Lv Y, Wang J, Sun F, Ma Y, Li Y, Wang F, Chen X. Efficient degradation of polyacrylate containing wastewater by combined anaerobic-aerobic fluidized bed bioreactors. BIORESOURCE TECHNOLOGY 2021; 332:125108. [PMID: 33845320 DOI: 10.1016/j.biortech.2021.125108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 03/25/2021] [Accepted: 03/27/2021] [Indexed: 06/12/2023]
Abstract
Polyacrylate containing wastewater (PCW) is the typical sewage discharged by the textile industry. It has extremely poor biodegradability, and chemical methods were used conventionally as the only way for treating PCW. This study is demonstrating a novel biological method. In batch experiment monod kinetics was applied to the experimental data, which indicated that anaerobic treatment used for PCW is feasible. The pilot-scale experiment combined a Spiral Symmetry Stream Anaerobic Bioreactor (SSSAB) and an air-lift external circulation vortex enhancement nitrogen removal fluidized bed bioreactor (AFB). The COD and NH4+-N removal reached up to 95.2% and 96.6%, respectively, which were higher than the value obtained by other chemical methods. High-throughput sequencing analysis indicated that the relative abundance of Proteobacteria, Firmicutes and Bacteroidetes increased, which contribute to the degradation of PCW. Therefore, PCW can be degraded efficiently by using a SSSAB-AFB technique and thus provides an alternative to the chemical methods.
Collapse
Affiliation(s)
- Qi Song
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai 201620, China
| | - Zheng Sun
- Bashan Weaving Group Co., Ltd, Zibo 255000, China
| | - Yong Chang
- Bashan Weaving Group Co., Ltd, Zibo 255000, China
| | - Weifeng Zhang
- China Filament Weaving Association, Beijing 100742, China
| | - Yingzhi Lv
- Bashan Weaving Group Co., Ltd, Zibo 255000, China
| | - Jiayi Wang
- China Filament Weaving Association, Beijing 100742, China
| | - Fenghao Sun
- Bashan Weaving Group Co., Ltd, Zibo 255000, China
| | - Yanxue Ma
- College of Textiles, Donghua University, Shanghai 201620, China
| | - Yuling Li
- College of Textiles, Donghua University, Shanghai 201620, China
| | - Fengbo Wang
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai 201620, China
| | - Xiaoguang Chen
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai 201620, China.
| |
Collapse
|
14
|
Metze D, Popp D, Schwab L, Keller NS, da Rocha UN, Richnow HH, Vogt C. Temperature management potentially affects carbon mineralization capacity and microbial community composition of a shallow aquifer. FEMS Microbiol Ecol 2021; 97:6055686. [PMID: 33378450 DOI: 10.1093/femsec/fiaa261] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 12/28/2020] [Indexed: 11/14/2022] Open
Abstract
High-temperature aquifer thermal energy storage (HT-ATES) is a promising technique to reduce the CO2 footprint of heat supply in the frame of transitioning to renewable energies. However, HT-ATES causes temperature fluctuations in groundwater ecosystems potentially affecting important microbial-mediated ecosystem services. Hence, assessing the impact of increasing temperatures on the structure and functioning of aquifer microbiomes is crucial to evaluate potential environmental risks associated with HT-ATES. In this study, we investigated the effects of temperature variations (12-80°C) on microbial communities and their capacity to mineralize acetate in aerobically incubated sediment sampled from a pristine aquifer. Compared to natural conditions (12°C), increased acetate mineralization rates were observed at 25°C, 37°C and 45°C, whereas mineralization was decelerated at 60°C and absent at 80°C. Sequencing of 16S rRNA genes revealed that the bacterial diversity in acetate-amended and non-acetate-amended sediments decreased with rising temperatures. Distinct communities dominated by bacterial groups affiliated with meso- and thermophilic bacteria established at 45°C and 60°C, respectively, while the number of archaeal phylotypes decreased. The changes in microbial diversity observed at 45°C and 60°C indicate a potential loss of ecosystem functioning, functional redundancy and resilience, while heat storage at 80°C bears the risk of ecological collapse.
Collapse
Affiliation(s)
- Dennis Metze
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research - UFZ, 04318 Leipzig, Permoserstraße 15, Germany.,Centre for Microbiology and Environmental Systems Science, University of Vienna, 1090 Vienna, Althanstraße 14, Austria
| | - Denny Popp
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research - UFZ, 04318 Leipzig, Permoserstraße 15, Germany
| | - Laura Schwab
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research - UFZ, 04318 Leipzig, Permoserstraße 15, Germany
| | - Nina-Sophie Keller
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research - UFZ, 04318 Leipzig, Permoserstraße 15, Germany
| | - Ulisses Nunes da Rocha
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research - UFZ, 04318 Leipzig, Permoserstraße 15, Germany
| | - Hans-Hermann Richnow
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research - UFZ, 04318 Leipzig, Permoserstraße 15, Germany
| | - Carsten Vogt
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research - UFZ, 04318 Leipzig, Permoserstraße 15, Germany
| |
Collapse
|
15
|
Liu T, Nadaraja AV, Friesen J, Gill K, Lam MI, Roberts DJ. Narrow pH tolerance found for a microbial fuel cell treating winery wastewater. J Appl Microbiol 2021; 131:2280-2293. [PMID: 33843137 DOI: 10.1111/jam.15102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 03/11/2021] [Accepted: 03/31/2021] [Indexed: 11/30/2022]
Abstract
AIMS The use of microbial fuel cells (MFC) to treat winery wastewater is promising; however, an initial acidic pH, fluctuating chemical oxygen demand (COD) levels and a lack of natural buffering in these wastewaters make providing a suitable buffer system at an ideal buffer to COD ratio. METHODS AND RESULTS A lab scale MFC was designed, inoculated with anaerobic winery sludge and fed with synthetic winery wastewater. It was observed that at pH 6·5, the MFC performed best, the maximum output voltage was 0·63 ± 0·01 V for 60 ± 3 h, and the COD removal efficiency reached 77 ± 7%. The electrogens were affected by pH much more than the bulk COD degrading organisms. Fluorescent in situ hybridization suggested Betaproteobacteria played a significant role in electron transfer. CONCLUSIONS A ratio of 1 mmol l-1 phosphate buffer to 100 mg l-1 COD was ideal to maintain a stable pH for MFCs treating synthetic winery wastewater. SIGNIFICANCE AND IMPACT OF THE STUDY The results find the narrow pH tolerance for MFCs treating winery wastewater and demonstrate the significance of pH and buffer to COD ratio for steady performance of MFCs.
Collapse
Affiliation(s)
- T Liu
- School of Engineering, The University of British Columbia Okanagan, Kelowna, BC, Canada
| | - A V Nadaraja
- School of Engineering, The University of British Columbia Okanagan, Kelowna, BC, Canada
| | - J Friesen
- School of Engineering, The University of British Columbia Okanagan, Kelowna, BC, Canada
| | - K Gill
- School of Engineering, The University of British Columbia Okanagan, Kelowna, BC, Canada
| | - M I Lam
- School of Engineering, The University of British Columbia Okanagan, Kelowna, BC, Canada
| | - D J Roberts
- School of Engineering, The University of British Columbia Okanagan, Kelowna, BC, Canada.,Faculty of Science and Engineering, University of Northern British Columbia, Prince George, BC, Canada
| |
Collapse
|
16
|
Kutscha R, Pflügl S. Microbial Upgrading of Acetate into Value-Added Products-Examining Microbial Diversity, Bioenergetic Constraints and Metabolic Engineering Approaches. Int J Mol Sci 2020; 21:ijms21228777. [PMID: 33233586 PMCID: PMC7699770 DOI: 10.3390/ijms21228777] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 10/29/2020] [Accepted: 11/18/2020] [Indexed: 01/20/2023] Open
Abstract
Ecological concerns have recently led to the increasing trend to upgrade carbon contained in waste streams into valuable chemicals. One of these components is acetate. Its microbial upgrading is possible in various species, with Escherichia coli being the best-studied. Several chemicals derived from acetate have already been successfully produced in E. coli on a laboratory scale, including acetone, itaconic acid, mevalonate, and tyrosine. As acetate is a carbon source with a low energy content compared to glucose or glycerol, energy- and redox-balancing plays an important role in acetate-based growth and production. In addition to the energetic challenges, acetate has an inhibitory effect on microorganisms, reducing growth rates, and limiting product concentrations. Moreover, extensive metabolic engineering is necessary to obtain a broad range of acetate-based products. In this review, we illustrate some of the necessary energetic considerations to establish robust production processes by presenting calculations of maximum theoretical product and carbon yields. Moreover, different strategies to deal with energetic and metabolic challenges are presented. Finally, we summarize ways to alleviate acetate toxicity and give an overview of process engineering measures that enable sustainable acetate-based production of value-added chemicals.
Collapse
|
17
|
Enhancing the Performance of Microbial Fuel Cell by Using Chloroform Pre-treated Mixed Anaerobic Sludge to Control Methanogenesis in Anodic Chamber. Appl Biochem Biotechnol 2020; 193:846-855. [PMID: 33196970 DOI: 10.1007/s12010-020-03458-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 11/08/2020] [Indexed: 02/05/2023]
Abstract
Formation of methane in the anodic chamber of a microbial fuel cell (MFC) indicates an energy inefficiency in electricity generation as the energy required for electrogenesis gets redirected to methanogenesis. The hypothesis of this research is that inhibition of methanogenesis in the mixed anaerobic anodic inoculum is associated with an enhanced activity of the electrogenic bacterial consortia. Hence, the primary objective of this investigation is to evaluate the ability of chloroform to inhibit the methanogenesis at different dosing to enhance the activity of electrogenic consortia in MFC. A higher methane inhibition and hence an enhanced performance of MFC was achieved when mixed anaerobic sludge, collected from septic tank, was used as inoculum after pre-treatment with 0.25% (v/v) chloroform dosing (MFC-0.25CF). The MFC-0.25CF attained a maximum power density of 8.51 W/m3, which was more than twice as that of MFC inoculated with untreated sludge. Also, a clear correlation between the chloroform dosing, methane inhibition, wastewater treatment, and power generation was established, which demonstrated the effectiveness of the technique in enhancing power generation in MFC along with adequate biodegradation of organic matter present in wastewater at an optimum chloroform dosing of 0.25% (v/v) to inhibit methanogenesis.
Collapse
|
18
|
Chen Q, Liu L, Liu L, Zhang Y. A novel UV-assisted PEC-MFC system with CeO 2/TiO 2/ACF catalytic cathode for gas phase VOCs treatment. CHEMOSPHERE 2020; 255:126930. [PMID: 32402878 DOI: 10.1016/j.chemosphere.2020.126930] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 04/05/2020] [Accepted: 04/27/2020] [Indexed: 06/11/2023]
Abstract
Emissions of volatile organic compounds (VOCs) air pollutants could worsen air quality and adversely affect human health, thus developing more efficient low-temperature VOCs removal techniques is desired. A novel continuous system integrating UV-assisted photo-electrochemical catalysis with microbial fuel cell (UV-assisted PEC-MFC) has been established for promoting removal of gaseous ethyl acetate or toluene and generating electricity simultaneously. In this system, CeO2/TiO2/ACF catalytic cathode is prepared and used for combination with bio-anode for accelerating cathodic reaction. This UV-assisted PEC-MFC system exhibits an excellent elimination capacity (EC) of ethyl acetate (∼0.39 g/m3, EC: ∼2.52 g/m3/h) or toluene (∼0.29 g/m3, EC: 1.89 g/m3/h) under close-circuit condition. Furthermore, an outstanding elimination capacity (EC: 28.04 g/m3/h) for high concentration toluene (∼4.10 g/m3) removal is obtained after toluene gas passes sequentially through the catalytic cathode then the bio-anode. This way of PEC degradation and biodegradation, avoids inhibition of exoelectrogens activity from toxicity of high concentration toluene. Simultaneously, the cell voltage of UV-assisted PEC-MFC system is stable at 0.11 V (vs. SCE) and 1.452×10-4 kWh is generated from treatment of toluene gas stream in 6 h duration time. The possible mechanism of VOCs removal in this novel system has been proposed and discussed. This study provides new technical basis for treating gaseous pollutants via integrating photo-electrochemical catalysis with electricity generating microbial fuel cell for energy conversion.
Collapse
Affiliation(s)
- Qiyuan Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Lu Liu
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Lifen Liu
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China; School of Ocean Science and Technology, Dalian University of Technology, Panjin, 124221, China.
| | - Yizhen Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
19
|
Şen-Doğan B, Okan M, Afşar-Erkal N, Özgür E, Zorlu Ö, Külah H. Enhancement of the Start-Up Time for Microliter-Scale Microbial Fuel Cells (µMFCs) via the Surface Modification of Gold Electrodes. MICROMACHINES 2020; 11:E703. [PMID: 32708083 PMCID: PMC7407754 DOI: 10.3390/mi11070703] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 06/26/2020] [Accepted: 06/29/2020] [Indexed: 02/07/2023]
Abstract
Microbial Fuel Cells (MFCs) are biological fuel cells based on the oxidation of fuels by electrogenic bacteria to generate an electric current in electrochemical cells. There are several methods that can be employed to improve their performance. In this study, the effects of gold surface modification with different thiol molecules were investigated for their implementation as anode electrodes in micro-scale MFCs (µMFCs). Several double-chamber µMFCs with 10.4 µL anode and cathode chambers were fabricated using silicon-microelectromechanical systems (MEMS) fabrication technology. µMFC systems assembled with modified gold anodes were operated under anaerobic conditions with the continuous feeding of anolyte and catholyte to compare the effect of different thiol molecules on the biofilm formation of Shewanella oneidensis MR-1. Performances were evaluated using polarization curves, Electrochemical Impedance Spectroscopy (EIS), and Scanning Electron Microcopy (SEM). The results showed that µMFCs modified with thiol self-assembled monolayers (SAMs) (cysteamine and 11-MUA) resulted in more than a 50% reduction in start-up times due to better bacterial attachment on the anode surface. Both 11-MUA and cysteamine modifications resulted in dense biofilms, as observed in SEM images. The power output was found to be similar in cysteamine-modified and bare gold µMFCs. The power and current densities obtained in this study were comparable to those reported in similar studies in the literature.
Collapse
Affiliation(s)
- Begüm Şen-Doğan
- Department of Micro and Nanotechnology, Middle East Technical University, Ankara 06800, Turkey; (B.Ş.-D.); (M.O.)
| | - Meltem Okan
- Department of Micro and Nanotechnology, Middle East Technical University, Ankara 06800, Turkey; (B.Ş.-D.); (M.O.)
- METU MEMS Research and Application Center, Ankara 06800, Turkey; (E.Ö.); (Ö.Z.)
| | | | - Ebru Özgür
- METU MEMS Research and Application Center, Ankara 06800, Turkey; (E.Ö.); (Ö.Z.)
| | - Özge Zorlu
- METU MEMS Research and Application Center, Ankara 06800, Turkey; (E.Ö.); (Ö.Z.)
| | - Haluk Külah
- Department of Micro and Nanotechnology, Middle East Technical University, Ankara 06800, Turkey; (B.Ş.-D.); (M.O.)
- METU MEMS Research and Application Center, Ankara 06800, Turkey; (E.Ö.); (Ö.Z.)
- Department of Electrical and Electronics Engineering, Middle East Technical University, Ankara 06800, Turkey
| |
Collapse
|
20
|
Guo Y, Wang J, Shinde S, Wang X, Li Y, Dai Y, Ren J, Zhang P, Liu X. Simultaneous wastewater treatment and energy harvesting in microbial fuel cells: an update on the biocatalysts. RSC Adv 2020; 10:25874-25887. [PMID: 35518611 PMCID: PMC9055303 DOI: 10.1039/d0ra05234e] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 07/03/2020] [Indexed: 01/17/2023] Open
Abstract
The development of microbial fuel cell (MFC) makes it possible to generate clean electricity as well as remove pollutants from wastewater. Extensive studies on MFC have focused on structural design and performance optimization, and tremendous advances have been made in these fields. However, there is still a lack of systematic analysis on biocatalysts used in MFCs, especially when it comes to pollutant removal and simultaneous energy recovery. In this review, we aim to provide an update on MFC-based wastewater treatment and energy harvesting research, and analyze various biocatalysts used in MFCs and their underlying mechanisms in pollutant removal as well as energy recovery from wastewater. Lastly, we highlight key future research areas that will further our understanding in improving MFC performance for simultaneous wastewater treatment and sustainable energy harvesting.
Collapse
Affiliation(s)
- Yajing Guo
- Tianjin Key Lab. of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University Tianjin 300354 PR China
| | - Jiao Wang
- Tianjin Key Lab. of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University Tianjin 300354 PR China
| | - Shrameeta Shinde
- Department of Microbiology, Miami University Oxford OH 45056 USA
| | - Xin Wang
- Department of Microbiology, Miami University Oxford OH 45056 USA
| | - Yang Li
- Tianjin Key Lab. of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University Tianjin 300354 PR China
| | - Yexin Dai
- Tianjin Key Lab. of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University Tianjin 300354 PR China
| | - Jun Ren
- Tianjin Key Lab. of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University Tianjin 300354 PR China
| | - Pingping Zhang
- College of Food Science and Engineering, Tianjin Agricultural University Tianjin 300384 PR China
| | - Xianhua Liu
- Tianjin Key Lab. of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University Tianjin 300354 PR China
| |
Collapse
|
21
|
Abstract
A relevant trend in winemaking is to reduce the use of chemical compounds in both the vineyard and winery. In organic productions, synthetic chemical fertilizers, pesticides, and genetically modified organisms must be avoided, aiming to achieve the production of a “safer wine”. Safety represents a big threat all over the world, being one of the most important goals to be achieved in both Western society and developing countries. An occurrence in wine safety results in the recovery of a broad variety of harmful compounds for human health such as amines, carbamate, and mycotoxins. The perceived increase in sensory complexity and superiority of successful uninoculated wine fermentations, as well as a thrust from consumers looking for a more “natural” or “organic” wine, produced with fewer additives, and perceived health attributes has led to more investigations into the use of non-Saccharomyces yeasts in winemaking, namely in organic wines. However, the use of copper and sulfur-based molecules as an alternative to chemical pesticides, in organic vineyards, seems to affect the composition of grape microbiota; high copper residues can be present in grape must and wine. This review aims to provide an overview of organic wine safety, when using indigenous and/or non-Saccharomyces yeasts to perform fermentation, with a special focus on some metabolites of microbial origin, namely, ochratoxin A (OTA) and other mycotoxins, biogenic amines (BAs), and ethyl carbamate (EC). These health hazards present an increased awareness of the effects on health and well-being by wine consumers, who also enjoy wines where terroir is perceived and is a characteristic of a given geographical area. In this regard, vineyard yeast biota, namely non-Saccharomyces wine-yeasts, can strongly contribute to the uniqueness of the wines derived from each specific region.
Collapse
|
22
|
Shen J, Du Z, Li J, Cheng F. Co-metabolism for enhanced phenol degradation and bioelectricity generation in microbial fuel cell. Bioelectrochemistry 2020; 134:107527. [PMID: 32279033 DOI: 10.1016/j.bioelechem.2020.107527] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 03/31/2020] [Accepted: 04/01/2020] [Indexed: 12/16/2022]
Abstract
Co-metabolism is one of the effective approaches to increase the removal of refractory pollutants in microbial fuel cells (MFCs), but studies on the links between the co-substrates and biodegradation remain limited. In this study, four external carbon resources were used as co-substrates for phenol removal and power generation in MFC. The result demonstrated that acetate was the most efficient co-substrate with an initial phenol degradation of 78.8% and the voltage output of 389.0 mV. Polarization curves and cyclic voltammogram analysis indicated that acetate significantly increased the activity of extracellular electron transfer (EET) enzyme of the anodic microorganism, such as cytochrome c OmcA. GC-MS and LC-MS results suggested that phenol was biodegraded via catechol, 2-hydroxymuconic semialdehyde, and pyruvic acid, and these intermediates were reduced apparently in acetate feeding MFC. The microbial community analysis by high-throughput sequencing showed that Acidovorax, Geobacter, and Thauera were predominant species when using acetate as co-substrate. It can be concluded that the efficient removal of phenol was contributed to the positive interactions between electrochemically active bacteria and phenolic degradation bacteria. This study might provide new insight into the positive role of the co-substrate during the treatment of phenolic wastewater by MFC.
Collapse
Affiliation(s)
- Jing Shen
- Institute of Resources and Environmental Engineering, Shanxi Collaborative Innovation Center of High Value-added Utilization of Coal-related Wastes, Shanxi University, Taiyuan 030006, China
| | - Zhiping Du
- Institute of Resources and Environmental Engineering, Shanxi Collaborative Innovation Center of High Value-added Utilization of Coal-related Wastes, Shanxi University, Taiyuan 030006, China.
| | - Jianfeng Li
- Institute of Resources and Environmental Engineering, Shanxi Collaborative Innovation Center of High Value-added Utilization of Coal-related Wastes, Shanxi University, Taiyuan 030006, China.
| | - Fangqin Cheng
- Institute of Resources and Environmental Engineering, Shanxi Collaborative Innovation Center of High Value-added Utilization of Coal-related Wastes, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
23
|
Li B, Liu XN, Tang C, Zhou J, Wu XY, Xie XX, Wei P, Jia HH, Yong XY. Degradation of phenolic compounds with simultaneous bioelectricity generation in microbial fuel cells: Influence of the dynamic shift in anode microbial community. BIORESOURCE TECHNOLOGY 2019; 291:121862. [PMID: 31357047 DOI: 10.1016/j.biortech.2019.121862] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/16/2019] [Accepted: 07/20/2019] [Indexed: 06/10/2023]
Abstract
This study evaluated the feasibility of microbial fuel cells (MFCs) for simultaneous electricity generation and degradation of phenolic compounds. The voltage generation was inhibited by 36.18-63.90%, but the degradation rate increased by 146.15-392.31% when the initial concentration of syringic acid (SA), vanillic acid (VA), and 4-hydroxybenzoic acid (HBA) increased from 0.3 to 3.0 g/L. The collaboration among the functional microbes significantly enhanced the degradation rate of parent compounds and their intermediates in MFCs systems, while the accumulated intermediates severely inhibited their complete mineralization in fermentative systems. High-throughput sequencing showed that the growth of fermentative bacteria prevailed, but electrogenic bacteria were inhibited in the anode microbial community (AMC) under high concentrations of phenolic compounds (3.0 g/L). These findings provide a better understanding of the dynamic shift and synergy effects of the AMC to evaluate its potential for the treatment of phenolic-containing wastewater.
Collapse
Affiliation(s)
- Biao Li
- College of Biotechnology and Pharmaceutical Engineering, Nanjing TECH University, Nanjing 211816, China
| | - Xiao-Na Liu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing TECH University, Nanjing 211816, China
| | - Chen Tang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing TECH University, Nanjing 211816, China
| | - Jun Zhou
- College of Biotechnology and Pharmaceutical Engineering, Nanjing TECH University, Nanjing 211816, China
| | - Xia-Yuan Wu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing TECH University, Nanjing 211816, China
| | - Xin-Xin Xie
- College of Biotechnology and Pharmaceutical Engineering, Nanjing TECH University, Nanjing 211816, China
| | - Ping Wei
- College of Biotechnology and Pharmaceutical Engineering, Nanjing TECH University, Nanjing 211816, China
| | - Hong-Hua Jia
- College of Biotechnology and Pharmaceutical Engineering, Nanjing TECH University, Nanjing 211816, China
| | - Xiao-Yu Yong
- College of Biotechnology and Pharmaceutical Engineering, Nanjing TECH University, Nanjing 211816, China.
| |
Collapse
|
24
|
Yang LH, Zhu TT, Cai WW, Haider MR, Wang HC, Cheng HY, Wang AJ. Micro-oxygen bioanode: An efficient strategy for enhancement of phenol degradation and current generation in mix-cultured MFCs. BIORESOURCE TECHNOLOGY 2018; 268:176-182. [PMID: 30077174 DOI: 10.1016/j.biortech.2018.07.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 07/03/2018] [Accepted: 07/06/2018] [Indexed: 06/08/2023]
Abstract
It is controversial to introduce oxygen into anode chamber as oxygen would decrease the CE (Coulombic efficiency) while it could also enhance the degradation of aromatics in microbial fuel cell (MFCs). Therefore, it is important to balance the pros and cons of oxygen in aromatics driven MFCs. A RMO (micro-oxygen bioanode MFC) was designed to determine the effect of oxygen on electricity output and phenol degradation. The RMO showed 6-fold higher phenol removal efficiency, 4-fold higher current generation than the RAN (anaerobic bioanode MFC) at a cost of 26.9% decline in CE. The Zoogloea and Geobacter, which account for phenol degradation and current generation, respectively, were dominated in the RMO bioanode biofilm. The biomass also showed great difference between RMO and RAN (114.3 ± 14.1 vs. 2.2 ± 0.5 nmol/g). Therefore, different microbial community, higher biomass as well as the different degradation pathway were suggested as reasons for the better performance in RMO.
Collapse
Affiliation(s)
- Li-Hui Yang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Ting-Ting Zhu
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Wei-Wei Cai
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Muhammad Rizwan Haider
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Hong-Cheng Wang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Hao-Yi Cheng
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Ai-Jie Wang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| |
Collapse
|
25
|
Noori MT, Bhowmick GD, Tiwari BR, Das I, Ghangrekar MM, Mukherjee CK. Utilisation of waste medicine wrappers as an efficient low-cost electrode material for microbial fuel cell. ENVIRONMENTAL TECHNOLOGY 2018; 41:1209-1218. [PMID: 30230426 DOI: 10.1080/09593330.2018.1526216] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Waste generation from healthcare facilities now has become a concerning issue as it contain plastic and metals. Medicine wrappers are one of the major portions of healthcare solid waste, which impel intensive solid waste management practice due to fewer possibilities of deriving by-products. However, it can be recycled and used as an electrode material in microbial fuel cells (MFCs). An electrode material for application in MFCs is a crucial component, which governs total fabrication cost as well as power recovery, thus a cost-effective, stable and durable electrode is essential. In this endeavour, a new metallic (aluminium) waste material, a waste medicine wrapper (WMW), was evaluated for feasibility to be used as anode/cathode in MFCs. Based on the stability test under corrosive environment (1 N KCl), the WMW electrode sustained a maximum current of 46 mA during cyclic voltammetry (CV) and noted only 14% reduction in current at an applied voltage of +0.4 V after 2500 s in chronoamperometry, indicating its good stability. Power recovery from MFC using WMW was higher than the MFC using bare carbon felt as an anode (27 vs. 21 mW/m2). The entire analytical test results viz. CV, electrochemical impedance spectroscopy and power performance established WMW as an excellent anode rather than cathode material.
Collapse
Affiliation(s)
- Md T Noori
- Department of Agricultural and Food Engineering, Indian Institute of Technology, Kharagpur, India
| | - G D Bhowmick
- Department of Agricultural and Food Engineering, Indian Institute of Technology, Kharagpur, India
| | - B R Tiwari
- Department of Civil Engineering, Indian Institute of Technology, Kharagpur, India
| | - I Das
- Department of Civil Engineering, Indian Institute of Technology, Kharagpur, India
| | - M M Ghangrekar
- Department of Civil Engineering, Indian Institute of Technology, Kharagpur, India
| | - C K Mukherjee
- Department of Agricultural and Food Engineering, Indian Institute of Technology, Kharagpur, India
| |
Collapse
|
26
|
Koók L, Kanyó N, Dévényi F, Bakonyi P, Rózsenberszki T, Bélafi-Bakó K, Nemestóthy N. Improvement of waste-fed bioelectrochemical system performance by selected electro-active microbes: Process evaluation and a kinetic study. Biochem Eng J 2018. [DOI: 10.1016/j.bej.2018.05.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
27
|
Oyiwona GE, Ogbonna JC, Anyanwu CU, Okabe S. Electricity generation potential of poultry droppings wastewater in microbial fuel cell using rice husk charcoal electrodes. BIORESOUR BIOPROCESS 2018. [DOI: 10.1186/s40643-018-0201-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
28
|
Moreno L, Nemati M, Predicala B. Biodegradation of phenol in batch and continuous flow microbial fuel cells with rod and granular graphite electrodes. ENVIRONMENTAL TECHNOLOGY 2018; 39:144-156. [PMID: 28278769 DOI: 10.1080/09593330.2017.1296895] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 02/14/2017] [Indexed: 06/06/2023]
Abstract
Phenol biodegradation was evaluated in batch and continuous flow microbial fuel cells (MFCs). In batch-operated MFCs, biodegradation of 100-1000 mg L-1 phenol was four to six times faster when graphite granules were used instead of rods (3.5-4.8 mg L-1 h-1 vs 0.5-0.9 mg L-1 h-1). Similarly maximum phenol biodegradation rates in continuous MFCs with granular and single-rod electrodes were 11.5 and 0.8 mg L-1 h-1, respectively. This superior performance was also evident in terms of electrochemical outputs, whereby continuous flow MFCs with granular graphite electrodes achieved maximum current and power densities (3444.4 mA m-3 and 777.8 mW m-3) that were markedly higher than those with single-rod electrodes (37.3 mA m-3 and 0.8 mW m-3). Addition of neutral red enhanced the electrochemical outputs to 5714.3 mA m-3 and 1428.6 mW m-3. Using the data generated in the continuous flow MFC, biokinetic parameters including μm, KS, Y and Ke were determined as 0.03 h-1, 24.2 mg L-1, 0.25 mg cell (mg phenol)-1 and 3.7 × 10-4 h-1, respectively. Access to detailed kinetic information generated in MFC environmental conditions is critical in the design, operation and control of large-scale treatment systems utilizing MFC technology.
Collapse
Affiliation(s)
- Lyman Moreno
- a Department of Chemical and Biological Engineering , University of Saskatchewan , Saskatoon , Canada
| | - Mehdi Nemati
- a Department of Chemical and Biological Engineering , University of Saskatchewan , Saskatoon , Canada
| | | |
Collapse
|
29
|
Palma E, Daghio M, Franzetti A, Petrangeli Papini M, Aulenta F. The bioelectric well: a novel approach for in situ treatment of hydrocarbon-contaminated groundwater. Microb Biotechnol 2017; 11:112-118. [PMID: 28696043 PMCID: PMC5743819 DOI: 10.1111/1751-7915.12760] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 06/02/2017] [Accepted: 06/05/2017] [Indexed: 11/28/2022] Open
Abstract
Groundwater contamination by petroleum hydrocarbons (PHs) is a widespread problem which poses serious environmental and health concerns. Recently, microbial electrochemical technologies (MET) have attracted considerable attention for remediation applications, having the potential to overcome some of the limiting factors of conventional in situ bioremediation systems. So far, field‐scale application of MET has been largely hindered by the limited availability of scalable system configurations. Here, we describe the ‘bioelectric well’ a bioelectrochemical reactor configuration, which can be installed directly within groundwater wells and can be applied for in situ treatment of organic contaminants, such as PHs. A laboratory‐scale prototype of the bioelectric well has been set up and operated in continuous‐flow regime with phenol as the model contaminant. The best performance was obtained when the system was inoculated with refinery sludge and the anode potentiostatically controlled at +0.2 V versus SHE. Under this condition, the influent phenol (25 mg l−1) was nearly completely (99.5 ± 0.4%) removed, with an average degradation rate of 59 ± 3 mg l−1 d and a coulombic efficiency of 104 ± 4%. Microbial community analysis revealed a remarkable enrichment of Geobacter species on the surface of the graphite anode, clearly pointing to a direct involvement of this electro‐active bacterium in the current‐generating and phenol‐oxidizing process.
Collapse
Affiliation(s)
- Enza Palma
- Department of Chemistry - Sapienza University of Rome, P.le Aldo Moro 5, Rome, 00185, Italy.,Water Research Institute (IRSA) - National Research Council (CNR), Via Salaria km 29, 300, Monterotondo (RM), 00015, Italy
| | - Matteo Daghio
- Department of Earth and Environmental Sciences - University of Milano-Bicocca, Piazza della Scienza 1, Milan, 20126, Italy
| | - Andrea Franzetti
- Department of Earth and Environmental Sciences - University of Milano-Bicocca, Piazza della Scienza 1, Milan, 20126, Italy
| | | | - Federico Aulenta
- Water Research Institute (IRSA) - National Research Council (CNR), Via Salaria km 29, 300, Monterotondo (RM), 00015, Italy
| |
Collapse
|
30
|
Zhang D, Li Z, Zhang C, Zhou X, Xiao Z, Awata T, Katayama A. Phenol-degrading anode biofilm with high coulombic efficiency in graphite electrodes microbial fuel cell. J Biosci Bioeng 2017; 123:364-369. [DOI: 10.1016/j.jbiosc.2016.10.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Revised: 10/11/2016] [Accepted: 10/19/2016] [Indexed: 11/17/2022]
|
31
|
Zeng X, Collins MA, Borole AP, Pavlostathis SG. The extent of fermentative transformation of phenolic compounds in the bioanode controls exoelectrogenic activity in a microbial electrolysis cell. WATER RESEARCH 2017; 109:299-309. [PMID: 27914260 DOI: 10.1016/j.watres.2016.11.057] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 11/21/2016] [Accepted: 11/23/2016] [Indexed: 06/06/2023]
Abstract
Phenolic compounds in hydrolysate/pyrolysate and wastewater streams produced during the pretreatment of lignocellulosic biomass for biofuel production present a significant challenge in downstream processes. Bioelectrochemical systems are increasingly recognized as an alternative technology to handle biomass-derived streams and to promote water reuse in biofuel production. Thus, a thorough understanding of the fate of phenolic compounds in bioanodes is urgently needed. The present study investigated the biotransformation of three structurally similar phenolic compounds (syringic acid, SA; vanillic acid, VA; 4-hydroxybenzoic acid, HBA), and their individual contribution to exoelectrogenesis in a microbial electrolysis cell (MEC) bioanode. Fermentation of SA resulted in the highest exoelectrogenic activity among the three compounds tested, with 50% of the electron equivalents converted to current, compared to 12 and 9% for VA and HBA, respectively. The biotransformation of SA, VA and HBA was initiated by demethylation and decarboxylation reactions common to all three compounds, resulting in their corresponding hydroxylated analogs. SA was transformed to pyrogallol (1,2,3-trihydroxybenzene), whose aromatic ring was then cleaved via a phloroglucinol pathway, resulting in acetate production, which was then used in exoelectrogenesis. In contrast, more than 80% of VA and HBA was converted to catechol (1,2-dihydroxybenzene) and phenol (hydroxybenzene) as their respective dead-end products. The persistence of catechol and phenol is explained by the fact that the phloroglucinol pathway does not apply to di- or mono-hydroxylated benzenes. Previously reported, alternative ring-cleaving pathways were either absent in the bioanode microbial community or unfavorable due to high energy-demand reactions. With the exception of acetate oxidation, all biotransformation steps in the bioanode occurred via fermentation, independently of exoelectrogenesis. Therefore, the observed exoelectrogenic activity in batch runs conducted with SA, VA and HBA was controlled by the extent of fermentative transformation of the three phenolic compounds in the bioanode, which is related to the number and position of the methoxy and hydroxyl substituents.
Collapse
Affiliation(s)
- Xiaofei Zeng
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0512, United States
| | - Maya A Collins
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0512, United States
| | - Abhijeet P Borole
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States; Bredesen Center for Interdisciplinary Research and Education, The University of Tennessee, Knoxville, TN 37996, United States
| | - Spyros G Pavlostathis
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0512, United States.
| |
Collapse
|
32
|
Marone A, Carmona-Martínez AA, Sire Y, Meudec E, Steyer JP, Bernet N, Trably E. Bioelectrochemical treatment of table olive brine processing wastewater for biogas production and phenolic compounds removal. WATER RESEARCH 2016; 100:316-325. [PMID: 27208920 DOI: 10.1016/j.watres.2016.05.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 04/25/2016] [Accepted: 05/02/2016] [Indexed: 06/05/2023]
Abstract
Industry of table olives is widely distributed over the Mediterranean countries and generates large volumes of processing wastewaters (TOPWs). TOPWs contain high levels of organic matter, salt, and phenolic compounds that are recalcitrant to microbial degradation. This work aims to evaluate the potential of bioelectrochemical systems to simultaneously treat real TOPWs and recover energy. The experiments were performed in potentiostatically-controlled single-chamber systems fed with real TOPW and using a moderate halophilic consortium as biocatalyst. In conventional anaerobic digestion (AD) treatment, ie. where no potential was applied, no CH4 was produced. In comparison, Bio-Electrochemical Systems (BES) showed a maximum CH4 yield of 701 ± 13 NmL CH4·LTOPW(-1) under a current density of 7.1 ± 0.4 A m(-2) and with a coulombic efficiency of 30%. Interestingly, up to 80% of the phenolic compounds found in the raw TOPW (i.e. hydroxytyrosol and tyrosol) were removed. A new theoretical degradation pathway was proposed after identification of the metabolic by-products. Consistently, microbial community analysis at the anode revealed a clear and specific enrichment in anode-respiring bacteria (ARB) from the genera Desulfuromonas and Geoalkalibacter, supporting the key role of these electroactive microorganisms. As a conclusion, bioelectrochemical systems represent a promising bioprocess alternative for the treatment and energy recovery of recalcitrant TOPWs.
Collapse
Affiliation(s)
- A Marone
- LBE, INRA, 102 Avenue des Etangs, Narbonne, 11100, France
| | | | - Y Sire
- INRA, UE999 Unité Expérimentale de Pech-Rouge, 11430, Gruissan, France
| | - E Meudec
- INRA, UMR1083 Sciences pour l'œnologie, Plateforme Polyphénols, Montpellier, France
| | - J P Steyer
- LBE, INRA, 102 Avenue des Etangs, Narbonne, 11100, France
| | - N Bernet
- LBE, INRA, 102 Avenue des Etangs, Narbonne, 11100, France.
| | - E Trably
- LBE, INRA, 102 Avenue des Etangs, Narbonne, 11100, France
| |
Collapse
|
33
|
Zhao X, Zhu JY. Efficient Conversion of Lignin to Electricity Using a Novel Direct Biomass Fuel Cell Mediated by Polyoxometalates at Low Temperatures. CHEMSUSCHEM 2016; 9:197-207. [PMID: 26692572 DOI: 10.1002/cssc.201501446] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 11/13/2015] [Indexed: 06/05/2023]
Abstract
A novel polyoxometalates (POMs) mediated direct biomass fuel cell (DBFC) was used in this study to directly convert lignin to electricity at low temperatures with high power output and Faradaic efficiency. When phosphomolybdic acid H3 PMo12 O40 (PMo12) was used as the electron and proton carrier in the anode solution with a carbon electrode, and O2 was directly used as the final electron acceptor under the catalysis of Pt, the peak power density reached 0.96 mW cm(-2), 560 times higher than that of phenol-fueled microbial fuel cells (MFCs). When the cathode reaction was catalyzed by PMo12, the power density could be greatly enhanced to 5 mW cm(-2). Continuous operation demonstrated that this novel fuel cell was promising as a stable electrochemical power source. Structure analysis of the lignin indicated that the hydroxyl group content was reduced whereas the carbonyl group content increased. Both condensation and depolymerization takes place during the PMo12 oxidation of lignin.
Collapse
Affiliation(s)
- Xuebing Zhao
- Department of Chemical Engineering, Tsinghua University, Beijing, P.R. China
- Department of Biological Systems Engineering, University of Wisconsin, Madison, WI, USA
- USDA Forest Service, Forest Products Lab, Madison, WI, USA
| | - J Y Zhu
- Department of Biological Systems Engineering, University of Wisconsin, Madison, WI, USA.
- USDA Forest Service, Forest Products Lab, Madison, WI, USA.
| |
Collapse
|
34
|
Sharma M, Bajracharya S, Gildemyn S, Patil SA, Alvarez-Gallego Y, Pant D, Rabaey K, Dominguez-Benetton X. A critical revisit of the key parameters used to describe microbial electrochemical systems. Electrochim Acta 2014. [DOI: 10.1016/j.electacta.2014.02.111] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
35
|
The treatment of PPCP-containing sewage in an anoxic/aerobic reactor coupled with a novel design of solid plain graphite-plates microbial fuel cell. BIOMED RESEARCH INTERNATIONAL 2014; 2014:765652. [PMID: 25197659 PMCID: PMC4150452 DOI: 10.1155/2014/765652] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Accepted: 07/16/2014] [Indexed: 11/18/2022]
Abstract
Synthetic sewage containing high concentrations of pharmaceuticals and personal care products (PPCPs, mg/L level) was treated using an anoxic/aerobic (A/O) reactor coupled with a microbial fuel cell (MFC) at hydraulic retention time (HRT) of 8 h. A novel design of solid plain graphite plates (SPGRPs) was used for the high surface area biodegradation of the PPCP-containing sewage and for the generation of electricity. The average CODCr and total nitrogen removal efficiencies achieved were 97.20% and 83.75%, respectively. High removal efficiencies of pharmaceuticals, including acetaminophen, ibuprofen, and sulfamethoxazole, were also obtained and ranged from 98.21% to 99.89%. A maximum power density of 532.61 mW/cm2 and a maximum coulombic efficiency of 25.20% were measured for the SPGRP MFC at the anode. Distinct differences in the bacterial community were presented at various locations including the mixed liquor suspended solids and biofilms. The bacterial groups involved in PPCP biodegradation were identified as Dechloromonas spp., Sphingomonas sp., and Pseudomonas aeruginosa. This design, which couples an A/O reactor with a novel design of SPGRP MFC, allows the simultaneous removal of PPCPs and successful electricity production.
Collapse
|
36
|
Ordaz-Guillén Y, Galíndez-Mayer CJ, Ruiz-Ordaz N, Juárez-Ramírez C, Santoyo-Tepole F, Ramos-Monroy O. Evaluating the degradation of the herbicides picloram and 2,4-D in a compartmentalized reactive biobarrier with internal liquid recirculation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:8765-8773. [PMID: 24737019 DOI: 10.1007/s11356-014-2809-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Accepted: 03/17/2014] [Indexed: 06/03/2023]
Abstract
Tordon is a widely used herbicide formulation of 2,4-dichlorophenoxyacetic acid (2,4-D) and 4-amino-3,5,6-trichloropicolinic acid (picloram), and it is considered a toxic herbicide. The purposes of this work were to assess the feasibility of a microbial consortium inoculated in a lab-scale compartmentalized biobarrier, to remove these herbicides, and isolate, identify, and evaluate their predominant microbial constituents. Volumetric loading rates of herbicides ranging from 31.2 to 143.9 g m(-3) day(-1), for 2,4-D, and 12.8 to 59.3 g m(-3) day(-1) for picloram were probed; however, the top operational limit of the biobarrier, detected by a decay in the removal efficiency, was not reached. At the highest loading rates probed, high average removal efficiencies of 2,4-D, 99.56 ± 0.44; picloram, 94.58 ± 2.62; and chemical oxygen demand (COD), 89.42 ± 3.68, were obtained. It was found that the lab-scale biofilm reactor efficiently removed both herbicides at dilution rates ranging from 0.92 to 4.23 day(-1), corresponding to hydraulic retention times from 1.087 to 0.236 days. On the other hand, few microbial strains able to degrade picloram are reported in the literature. In this work, three of the nine bacterial strains isolated cometabolically degrade picloram. They were identified as Hydrocarboniphaga sp., Tsukamurella sp., and Cupriavidus sp.
Collapse
Affiliation(s)
- Yolanda Ordaz-Guillén
- Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, IPN, Carpio y Plan de Ayala, Colonia Santo Tomás s/n, CP 11340, México, D.F., México
| | | | | | | | | | | |
Collapse
|
37
|
Zhou M, Yang J, Wang H, Jin T, Xu D, Gu T. Microbial fuel cells and microbial electrolysis cells for the production of bioelectricity and biomaterials. ENVIRONMENTAL TECHNOLOGY 2013; 34:1915-1928. [PMID: 24350445 DOI: 10.1080/09593330.2013.813951] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Today's global energy crisis requires a multifaceted solution. Bioenergy is an important part of the solution. The microbial fuel cell (MFC) technology stands out as an attractive potential technology in bioenergy. MFCs can convert energy stored in organic matter directly into bioelectricity. MFCs can also be operated in the electrolysis mode as microbial electrolysis cells to produce bioproducts such as hydrogen and ethanol. Various wastewaters containing low-grade organic carbons that are otherwise unutilized can be used as feed streams for MFCs. Despite major advances in the past decade, further improvements in MFC power output and cost reduction are needed for MFCs to be practical. This paper analysed MFC operating principles using bioenergetics and bioelectrochemistry. Several major issues were explored to improve the MFC performance. An emphasis was placed on the use of catalytic materials for MFC electrodes. Recent advances in the production of various biomaterials using MFCs were also investigated.
Collapse
Affiliation(s)
- Minghua Zhou
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, People's Republic of China.
| | - Jie Yang
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, People's Republic of China
| | - Hongyu Wang
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, People's Republic of China
| | - Tao Jin
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, People's Republic of China
| | - Dake Xu
- Department of Chemical and Biomolecular Engineering, Ohio University, Athens, OH 45701, USA
| | - Tingyue Gu
- Department of Chemical and Biomolecular Engineering, Ohio University, Athens, OH 45701, USA
| |
Collapse
|