1
|
Wu S, Zhou Y, Dai L, Yang A, Qiao J. Assembly of functional microbial ecosystems: from molecular circuits to communities. FEMS Microbiol Rev 2024; 48:fuae026. [PMID: 39496507 PMCID: PMC11585282 DOI: 10.1093/femsre/fuae026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 08/15/2024] [Accepted: 10/17/2024] [Indexed: 11/06/2024] Open
Abstract
Microbes compete and cooperate with each other via a variety of chemicals and circuits. Recently, to decipher, simulate, or reconstruct microbial communities, many researches have been engaged in engineering microbiomes with bottom-up synthetic biology approaches for diverse applications. However, they have been separately focused on individual perspectives including genetic circuits, communications tools, microbiome engineering, or promising applications. The strategies for coordinating microbial ecosystems based on different regulation circuits have not been systematically summarized, which calls for a more comprehensive framework for the assembly of microbial communities. In this review, we summarize diverse cross-talk and orthogonal regulation modules for de novo bottom-up assembling functional microbial ecosystems, thus promoting further consortia-based applications. First, we review the cross-talk communication-based regulations among various microbial communities from intra-species and inter-species aspects. Then, orthogonal regulations are summarized at metabolites, transcription, translation, and post-translation levels, respectively. Furthermore, to give more details for better design and optimize various microbial ecosystems, we propose a more comprehensive design-build-test-learn procedure including function specification, chassis selection, interaction design, system build, performance test, modeling analysis, and global optimization. Finally, current challenges and opportunities are discussed for the further development and application of microbial ecosystems.
Collapse
Affiliation(s)
- Shengbo Wu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Zhejiang Institute of Tianjin University, Shaoxing, 312300, China
| | - Yongsheng Zhou
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Zhejiang Institute of Tianjin University, Shaoxing, 312300, China
| | - Lei Dai
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Aidong Yang
- Department of Engineering Science, University of Oxford, Oxford, OX1 3PJ, UK
| | - Jianjun Qiao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Zhejiang Institute of Tianjin University, Shaoxing, 312300, China
| |
Collapse
|
2
|
Carrillo Rincón AF, Cabral AJ, Gyorgy A, Farny NG. A dual-inducible control system for multistep biosynthetic pathways. J Biol Eng 2024; 18:68. [PMID: 39568033 PMCID: PMC11580509 DOI: 10.1186/s13036-024-00462-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 10/28/2024] [Indexed: 11/22/2024] Open
Abstract
BACKGROUND The successful production of industrially relevant natural products hinges on two key factors: the cultivation of robust microbial chassis capable of synthesizing the desired compounds, and the availability of reliable genetic tools for expressing target genes. The development of versatile and portable genetic tools offers a streamlined pathway to efficiently produce a variety of compounds in well-established chassis organisms. The σ70lac and tet expression systems - adaptations of the widely used lac and tet regulatory systems developed in our laboratory - have shown effective regulation and robust expression of recombinant proteins in various Gram-negative bacteria. Understanding the strengths and limitations of these regulatory systems in controlling recombinant protein production is essential for progress in this area. RESULTS To assess their capacity for combinatorial control, both the σ70lac and tet expression systems were combined into a single plasmid and assessed for their performance in producing fluorescent reporters as well as the terpenoids lycopene and β-carotene. We thoroughly characterized the induction range, potential for synergistic effects, and metabolic costs of our dual σ70lac and tet expression system in the well-established microorganisms Escherichia coli, Pseudomonas putida, and Vibrio natriegens using combinations of fluorescent reporters. The dynamic range and basal transcriptional control of the σ70 expression systems were further improved through the incorporation of translational control mechanisms via toehold switches. This improvement was assessed using the highly sensitive luciferase reporter system. The improvement in control afforded by the integration of the toehold switches enabled the accumulation of a biosynthetic intermediate (lycopene) in the β-carotene synthesis pathway. CONCLUSION This study presents the development and remaining challenges of a set of versatile genetic tools that are portable across well-established gammaproteobacterial chassis and capable of controlling the expression of multigene biosynthetic pathways. The enhanced σ70 expression systems, combined with toehold switches, facilitate the biosynthesis and study of enzymes, recombinant proteins, and natural products, thus providing a valuable resource for producing a variety of compounds in microbial cell factories.
Collapse
Affiliation(s)
- Andrés Felipe Carrillo Rincón
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA, USA
- Division of Engineering, New York University Abu Dhabi, Abu Dhabi, UAE
| | - Alexandra J Cabral
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA, USA
| | - Andras Gyorgy
- Division of Engineering, New York University Abu Dhabi, Abu Dhabi, UAE
| | - Natalie G Farny
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA, USA.
- Program in Bioinformatics and Computational Biology, Worcester Polytechnic Institute, Worcester, MA, USA.
| |
Collapse
|
3
|
Liu M, Ge W, Zhong G, Yang Y, Xun L, Xia Y. Dual-Plasmid Mini-Tn5 System to Stably Integrate Multicopy of Target Genes in Escherichia coli. ACS Synth Biol 2024; 13:3523-3538. [PMID: 39418641 DOI: 10.1021/acssynbio.4c00140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
The efficiency of valuable metabolite production by engineered microorganisms underscores the importance of stable and controllable gene expression. While plasmid-based methods offer flexibility, integrating genes into host chromosomes can establish stability without selection pressure. However, achieving site-directed multicopy integration presents challenges, including site selection and stability. We introduced a stable multicopy integration method by using a novel dual-plasmid mini-Tn5 system to insert genes into Escherichia coli's genome. The gene of interest was combined with a removable antibiotic resistance gene. After the selection of bacteria with inserted genes, the antibiotic resistance gene was removed. Optimizations yielded an integration efficiency of approximately 5.5 × 10-3 per recipient cell in a single round. Six rounds of integration resulted in 19 and 5 copies of the egfp gene in the RecA+ strain MG1655 and the RecA- strain XL1-Blue MRF', respectively. Additionally, we integrated a polyhydroxybutyrate (PHB) synthesis gene cluster into E. coli MG1655, yielding an 8-copy integration strain producing more PHB than strains with the cluster on a high-copy plasmid. The method was efficient in generating gene insertions in various E. coli strains, and the inserted genes were stable after extended culture. This stable, high-copy integration tool offers potential for diverse applications in synthetic biology.
Collapse
Affiliation(s)
- Menghui Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, People's Republic of China
| | - Wei Ge
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, People's Republic of China
- Clinical Laboratory, Qingdao Fuwai Cardiovascular Hospital, Qingdao, Shandong 266024, People's Republic of China
| | - Guomei Zhong
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, People's Republic of China
| | - Yuqing Yang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, People's Republic of China
| | - Luying Xun
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, People's Republic of China
- School of Molecular Biosciences, Washington State University, Pullman, Washington 99164-7520, United States
| | - Yongzhen Xia
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, People's Republic of China
| |
Collapse
|
4
|
Zheng W, Wang Y, Cui J, Guo G, Li Y, Hou J, Tu Q, Yin Y, Stewart F, Zhang Y, Bian X, Wang X. ReaL-MGE is a tool for enhanced multiplex genome engineering and application to malonyl-CoA anabolism. Nat Commun 2024; 15:9790. [PMID: 39532871 PMCID: PMC11557832 DOI: 10.1038/s41467-024-54191-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024] Open
Abstract
The complexities encountered in microbial metabolic engineering continue to elude prediction and design. Unravelling these complexities requires strategies that go beyond conventional genetics. Using multiplex mutagenesis with double stranded (ds) DNA, we extend the multiplex repertoire previously pioneered using single strand (ss) oligonucleotides. We present ReaL-MGE (Recombineering and Linear CRISPR/Cas9 assisted Multiplex Genome Engineering). ReaL-MGE enables precise manipulation of numerous large DNA sequences as demonstrated by the simultaneous insertion of multiple kilobase-scale sequences into E. coli, Schlegelella brevitalea and Pseudomonas putida genomes without any off-target errors. ReaL-MGE applications to enhance intracellular malonyl-CoA levels in these three genomes achieved 26-, 20-, and 13.5-fold elevations respectively, thereby promoting target polyketide yields by more than an order of magnitude. In a further round of ReaL-MGE, we adapt S. brevitalea to malonyl-CoA elevation utilizing a restricted carbon source (lignocellulose from straw) to realize production of the anti-cancer secondary metabolite, epothilone from lignocellulose. Multiplex mutagenesis with dsDNA enables the incorporation of lengthy segments that can fully encode additional functions. Additionally, the utilization of PCR to generate the dsDNAs brings flexible design advantages. ReaL-MGE presents strategic options in microbial metabolic engineering.
Collapse
Affiliation(s)
- Wentao Zheng
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, P. R. China
- Suzhou Research Institute of Shandong University, Room607, Building B of NUSP, NO.388 Ruoshui Road, SIP, Suzhou, Jiangsu, P. R. China
- Shenzhen Research Institute of Shandong University, A301 Virtual University Park in South District of Shenzhen, Guangdong, P. R. China
| | - Yuxuan Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, P. R. China
| | - Jie Cui
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, P. R. China
| | - Guangyao Guo
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P. R. China
| | - Yufeng Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, P. R. China
| | - Jin Hou
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, P. R. China
| | - Qiang Tu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, P. R. China
| | | | - Francis Stewart
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, P. R. China.
- Genomics, Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47-51, Dresden, Germany.
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia.
| | - Youming Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, P. R. China.
| | - Xiaoying Bian
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, P. R. China.
| | - Xue Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, P. R. China.
| |
Collapse
|
5
|
Kim J, Lee S, Darlington APS, Kim J. Impact of fleQ Deficiency on Resource Allocation and Heterologous Gene Expression in Pseudomonas putida Across Various Growth Media. Microb Biotechnol 2024; 17:e70054. [PMID: 39570920 PMCID: PMC11580810 DOI: 10.1111/1751-7915.70054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 10/25/2024] [Accepted: 10/30/2024] [Indexed: 11/24/2024] Open
Abstract
Pseudomonas putida is widely used in industrial applications, including the recombinant proteins production, because of its natural advantageous properties. In this study, the gene encoding FleQ, the primary regulator of flagellar synthesis, was deleted to construct a new non-motile P. putida KT2440-derived strain (ΔfleQ). The non-motile cells showed reduced biofilm formation and enhanced expression of a heterologous gene in nutrient-rich media compared with the wild-type (WT) strain, attributed to the reallocation of cellular resources from flagellar synthesis and cellular motility. Additionally, the ΔfleQ strain exhibited enhanced tolerance to chloramphenicol, indicating higher ribosome production, confirmed by a higher RNA/protein ratio relative to the WT. While the WT strain showed decreased growth and a three-fold increase in reporter gene activity in minimal media, the ΔfleQ strain maintained consistent reporter gene expression and exhibited a relatively higher growth rate. This suggests that the FleQ is involved in modulating proteome allocation based on nutrient quality. The removal of FleQ allows for more flexible resource allocation, creating a chassis strain with nutrient quality-independent gene expression capacity, which could be valuable in industrial applications where consistent output is essential.
Collapse
Affiliation(s)
- Junyoung Kim
- School of Life SciencesBK21 FOUR KNU Creative BioResearch Group, Kyungpook National UniversityDaeguRepublic of Korea
| | - Sooyeon Lee
- School of Life SciencesBK21 FOUR KNU Creative BioResearch Group, Kyungpook National UniversityDaeguRepublic of Korea
| | | | - Juhyun Kim
- School of Life SciencesBK21 FOUR KNU Creative BioResearch Group, Kyungpook National UniversityDaeguRepublic of Korea
| |
Collapse
|
6
|
Masotti F, Krink N, Lencina N, Gottig N, Ottado J, Nikel PI. Disentangling the Regulatory Response of Agrobacterium tumefaciens CHLDO to Glyphosate for Engineering Whole-Cell Phosphonate Biosensors. ACS Synth Biol 2024; 13:3430-3445. [PMID: 39344999 PMCID: PMC11494704 DOI: 10.1021/acssynbio.4c00497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/12/2024] [Accepted: 09/17/2024] [Indexed: 10/01/2024]
Abstract
Phosphonates (PHTs), organic compounds with a stable C-P bond, are widely distributed in nature. Glyphosate (GP), a synthetic PHT, is extensively used in agriculture and has been linked to various human health issues and environmental damage. Given the prevalence of GP, developing cost-effective, on-site methods for GP detection is key for assessing pollution and reducing exposure risks. We adopted Agrobacterium tumefaciens CHLDO, a natural GP degrader, as a host and the source of genetic parts for constructing PHT biosensors. In this bacterial species, the phn gene cluster, encoding the C-P lyase pathway, is regulated by the PhnF transcriptional repressor. We selected the phnG promoter, which displays a dose-dependent response to GP, to build a set of whole-cell biosensors. Through stepwise genetic optimization of the transcriptional cascade, we created a whole-cell biosensor capable of detecting GP in the 0.25-50 μM range in various samples, including soil and water.
Collapse
Affiliation(s)
- Fiorella Masotti
- Instituto
de Biología Molecular y Celular de Rosario, Consejo Nacional
de Investigaciones Científicas y Técnicas (IBR-CONICET)
and Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Santa Fe S2000EZP, Argentina
| | - Nicolas Krink
- The
Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby 2800 Kgs, Denmark
| | - Nicolas Lencina
- Instituto
de Biología Molecular y Celular de Rosario, Consejo Nacional
de Investigaciones Científicas y Técnicas (IBR-CONICET)
and Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Santa Fe S2000EZP, Argentina
| | - Natalia Gottig
- Instituto
de Procesos Biotecnológicos y Químicos Rosario (IPROBYQ-CONICET-UNR), Rosario, Santa Fe S2000RLK, Argentina
| | - Jorgelina Ottado
- Instituto
de Biología Molecular y Celular de Rosario, Consejo Nacional
de Investigaciones Científicas y Técnicas (IBR-CONICET)
and Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Santa Fe S2000EZP, Argentina
| | - Pablo I. Nikel
- The
Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby 2800 Kgs, Denmark
| |
Collapse
|
7
|
Riquelme-Guzmán C, Stout AJ, Kaplan DL, Flack JE. Unlocking the potential of cultivated meat through cell line engineering. iScience 2024; 27:110877. [PMID: 39351194 PMCID: PMC11440241 DOI: 10.1016/j.isci.2024.110877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024] Open
Abstract
Cultivated meat has the potential to revolutionize food production, but its progress is hindered by fundamental shortcomings of mammalian cells with respect to industrial-scale bioprocesses. Here, we discuss the essential role of cell line engineering in overcoming these limitations, highlighting the balance between the benefits of enhanced cellular traits and the associated regulatory and consumer acceptance challenges. We believe that careful selection of cell engineering strategies, including both genetic and non-genetic modifications, can address this trade-off and is essential to advancing the field.
Collapse
Affiliation(s)
- Camilo Riquelme-Guzmán
- Biomedical Engineering Department, Tufts University Center for Cellular Agriculture, Tufts University, Medford, MA, USA
| | - Andrew J Stout
- Biomedical Engineering Department, Tufts University Center for Cellular Agriculture, Tufts University, Medford, MA, USA
- Deco Labs, Inc., Boston, MA, USA
| | - David L Kaplan
- Biomedical Engineering Department, Tufts University Center for Cellular Agriculture, Tufts University, Medford, MA, USA
| | - Joshua E Flack
- Department of Biotechnology, Delft University of Technology, Delft, the Netherlands
| |
Collapse
|
8
|
A. Ghomi F, Jung JJ, Langridge GC, Cain AK, Boinett CJ, Abd El Ghany M, Pickard DJ, Kingsley RA, Thomson NR, Parkhill J, Gardner PP, Barquist L. High-throughput transposon mutagenesis in the family Enterobacteriaceae reveals core essential genes and rapid turnover of essentiality. mBio 2024; 15:e0179824. [PMID: 39207104 PMCID: PMC11481867 DOI: 10.1128/mbio.01798-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
The Enterobacteriaceae are a scientifically and medically important clade of bacteria, containing the model organism Escherichia coli, as well as major human pathogens including Salmonella enterica and Klebsiella pneumoniae. Essential gene sets have been determined for several members of the Enterobacteriaceae, with the Keio E. coli single-gene deletion library often regarded as a gold standard. However, it remains unclear how gene essentiality varies between related strains and species. To investigate this, we have assembled a collection of 13 sequenced high-density transposon mutant libraries from five genera within the Enterobacteriaceae. We first assess several gene essentiality prediction approaches, investigate the effects of transposon density on essentiality prediction, and identify biases in transposon insertion sequencing data. Based on these investigations, we develop a new classifier for gene essentiality. Using this new classifier, we define a core essential genome in the Enterobacteriaceae of 201 universally essential genes. Despite the presence of a large cohort of variably essential genes, we find an absence of evidence for genus-specific essential genes. A clear example of this sporadic essentiality is given by the set of genes regulating the σE extracytoplasmic stress response, which appears to have independently acquired essentiality multiple times in the Enterobacteriaceae. Finally, we compare our essential gene sets to the natural experiment of gene loss in obligate insect endosymbionts that have emerged from within the Enterobacteriaceae. This isolates a remarkably small set of genes absolutely required for survival and identifies several instances of essential stress responses masked by redundancy in free-living bacteria.IMPORTANCEThe essential genome, that is the set of genes absolutely required to sustain life, is a core concept in genetics. Essential genes in bacteria serve as drug targets, put constraints on the engineering of biological chassis for technological or industrial purposes, and are key to constructing synthetic life. Despite decades of study, relatively little is known about how gene essentiality varies across related bacteria. In this study, we have collected gene essentiality data for 13 bacteria related to the model organism Escherichia coli, including several human pathogens, and investigated the conservation of essentiality. We find that approximately a third of the genes essential in any particular strain are non-essential in another related strain. Surprisingly, we do not find evidence for essential genes unique to specific genera; rather it appears a substantial fraction of the essential genome rapidly gains or loses essentiality during evolution. This suggests that essentiality is not an immutable characteristic but depends crucially on the genomic context. We illustrate this through a comparison of our essential genes in free-living bacteria to genes conserved in 34 insect endosymbionts with naturally reduced genomes, finding several cases where genes generally regarded as being important for specific stress responses appear to have become essential in endosymbionts due to a loss of functional redundancy in the genome.
Collapse
Affiliation(s)
- Fatemeh A. Ghomi
- Biomolecular Interactions Centre, School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Jakob J. Jung
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Center for Infection Research (HZI), Würzburg, Germany
| | - Gemma C. Langridge
- Microbes in the Food Chain, Quadram Institute Bioscience, Norwich Research Park, Norwich, United Kingdom
| | - Amy K. Cain
- ARC Centre of Excellence in Synthetic Biology, School of Natural Sciences, Macquarie University, Sydney, Australia
| | | | - Moataz Abd El Ghany
- The Westmead Institute for Medical Research, University of Sydney, Sydney, Australia
- Sydney Institute for Infectious Diseases, University of Sydney, Sydney, Australia
- School of Public Health, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
- King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Derek J. Pickard
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Robert A. Kingsley
- Microbes in the Food Chain, Quadram Institute Bioscience, Norwich Research Park, Norwich, United Kingdom
- Department of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | - Nicholas R. Thomson
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
- London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Julian Parkhill
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Paul P. Gardner
- Biomolecular Interactions Centre, School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
- Department of Biochemistry, Otago University, Dunedin, New Zealand
| | - Lars Barquist
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Center for Infection Research (HZI), Würzburg, Germany
- Faculty of Medicine, University of Würzburg, Würzburg, Germany
- Department of Biology, University of Toronto, Mississauga, Ontario, Canada
| |
Collapse
|
9
|
Bozkurt EU, Ørsted EC, Volke DC, Nikel PI. Accelerating enzyme discovery and engineering with high-throughput screening. Nat Prod Rep 2024. [PMID: 39403004 DOI: 10.1039/d4np00031e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Covering: up to August 2024Enzymes play an essential role in synthesizing value-added chemicals with high specificity and selectivity. Since enzymes utilize substrates derived from renewable resources, biocatalysis offers a pathway to an efficient bioeconomy with reduced environmental footprint. However, enzymes have evolved over millions of years to meet the needs of their host organisms, which often do not align with industrial requirements. As a result, enzymes frequently need to be tailored for specific industrial applications. Combining enzyme engineering with high-throughput screening has emerged as a key approach for developing novel biocatalysts, but several challenges are yet to be addressed. In this review, we explore emergent strategies and methods for isolating, creating, and characterizing enzymes optimized for bioproduction. We discuss fundamental approaches to discovering and generating enzyme variants and identifying those best suited for specific applications. Additionally, we cover techniques for creating libraries using automated systems and highlight innovative high-throughput screening methods that have been successfully employed to develop novel biocatalysts for natural product synthesis.
Collapse
Affiliation(s)
- Eray U Bozkurt
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark.
| | - Emil C Ørsted
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark.
| | - Daniel C Volke
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark.
| | - Pablo I Nikel
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark.
| |
Collapse
|
10
|
Nordio R, Belachqer-El Attar S, Clagnan E, Sánchez-Zurano A, Pichel N, Viviano E, Adani F, Guzmán JL, Acién G. Exploring microbial growth dynamics in a pilot-scale microalgae raceway fed with urban wastewater: Insights into the effect of operational variables. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 369:122385. [PMID: 39243421 DOI: 10.1016/j.jenvman.2024.122385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/12/2024] [Accepted: 08/31/2024] [Indexed: 09/09/2024]
Abstract
Microalgae-based wastewater treatment is a promising technology efficient for nutrient recycling and biomass production. Studies continuously optimize processes to reduce costs and increase productivity. However, changes in the operational conditions affect not only biomass productivity but the dynamics of the overall microbial community. This study characterizes a microalgae culture from an 80 m2 pilot-scale raceway reactor fed with untreated urban wastewater. Operational conditions such as pH, dissolved oxygen control strategies (On-off, PI, Event-based, no control), and culture height were varied to assess microbial population changes. Results demonstrate that increased culture height significantly promotes higher microalgal and bacterial diversity. pH, dissolved oxygen and culture height highly affects nitrifying bacteria activity and nitrogen accumulation. Furthermore, the system exhibited high disinfection capability with average Logarithmic Reduction Values (LRV) of 3.36 for E. coli and 2.57 for Clostridium perfringens. Finally, the fungi species detected included Chytridiomycota and Ascomycota, while purple photosynthetic bacteria were also found in significant abundance within the medium.
Collapse
Affiliation(s)
- Rebecca Nordio
- Department of Chemical Engineering, University of Almeria, 04120, Almería, Spain; CIESOL Solar Energy Research Centre, Joint Centre University of Almería-CIEMAT, 04120, Almería, Spain.
| | - Solaima Belachqer-El Attar
- Department of Chemical Engineering, University of Almeria, 04120, Almería, Spain; CIESOL Solar Energy Research Centre, Joint Centre University of Almería-CIEMAT, 04120, Almería, Spain
| | - Elisa Clagnan
- Gruppo Ricicla Labs, Dipartimento di Scienze Agrarie e Ambientali - Produzione, Territorio, Agroenergia (DiSAA), Università degli studi di Milano, Via Celoria 2, 20133, Milano, Italy
| | | | - Natalia Pichel
- Department of Biology and Geology, Physics and Inorganic Chemistry, University Rey Juan Carlos, Madrid, Spain
| | - Emanuele Viviano
- Department of Chemical Engineering, University of Almeria, 04120, Almería, Spain
| | - Fabrizio Adani
- Gruppo Ricicla Labs, Dipartimento di Scienze Agrarie e Ambientali - Produzione, Territorio, Agroenergia (DiSAA), Università degli studi di Milano, Via Celoria 2, 20133, Milano, Italy
| | - José Luis Guzmán
- Department of Informatics, University of Almeria, 04120, Almería, Spain
| | - Gabriel Acién
- Department of Chemical Engineering, University of Almeria, 04120, Almería, Spain; CIESOL Solar Energy Research Centre, Joint Centre University of Almería-CIEMAT, 04120, Almería, Spain
| |
Collapse
|
11
|
Hernández-Sancho JM, Boudigou A, Alván-Vargas MVG, Freund D, Arnling Bååth J, Westh P, Jensen K, Noda-García L, Volke DC, Nikel PI. A versatile microbial platform as a tunable whole-cell chemical sensor. Nat Commun 2024; 15:8316. [PMID: 39333077 PMCID: PMC11436707 DOI: 10.1038/s41467-024-52755-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 09/17/2024] [Indexed: 09/29/2024] Open
Abstract
Biosensors are used to detect and quantify chemicals produced in industrial microbiology with high specificity, sensitivity, and portability. Most biosensors, however, are limited by the need for transcription factors engineered to recognize specific molecules. In this study, we overcome the limitations typically associated with traditional biosensors by engineering Pseudomonas putida for whole-cell sensing of a variety of chemicals. Our approach integrates fluorescent reporters with synthetic auxotrophies within central metabolism that can be complemented by target analytes in growth-coupled setups. This platform enables the detection of a wide array of structurally diverse chemicals under various conditions, including co-cultures of producer cell factories and sensor strains. We also demonstrate the applicability of this versatile biosensor platform for monitoring complex biochemical processes, including plastic degradation by either purified hydrolytic enzymes or engineered bacteria. This microbial system provides a rapid, sensitive, and readily adaptable tool for monitoring cell factory performance and for environmental analyzes.
Collapse
Affiliation(s)
- Javier M Hernández-Sancho
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Arnaud Boudigou
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Maria V G Alván-Vargas
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Dekel Freund
- Institute of Environmental Sciences, Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot, Israel
| | - Jenny Arnling Bååth
- Department of Biotechnology and Biomedicine Interfacial Enzymology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Peter Westh
- Department of Biotechnology and Biomedicine Interfacial Enzymology, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | - Lianet Noda-García
- Institute of Environmental Sciences, Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot, Israel
| | - Daniel C Volke
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark.
| | - Pablo I Nikel
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark.
| |
Collapse
|
12
|
Ranaivoarisoa TO, Bai W, Karthikeyan R, Steele H, Silberman M, Olabode J, Conners E, Gallagher B, Bose A. Overexpression of RuBisCO form I and II genes in Rhodopseudomonas palustris TIE-1 augments polyhydroxyalkanoate production heterotrophically and autotrophically. Appl Environ Microbiol 2024; 90:e0143824. [PMID: 39162566 PMCID: PMC11409669 DOI: 10.1128/aem.01438-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 07/30/2024] [Indexed: 08/21/2024] Open
Abstract
With the rising demand for sustainable renewable resources, microorganisms capable of producing bioproducts such as bioplastics are attractive. While many bioproduction systems are well-studied in model organisms, investigating non-model organisms is essential to expand the field and utilize metabolically versatile strains. This investigation centers on Rhodopseudomonas palustris TIE-1, a purple non-sulfur bacterium capable of producing bioplastics. To increase bioplastic production, genes encoding the putative regulatory protein PhaR and the depolymerase PhaZ of the polyhydroxyalkanoate (PHA) biosynthesis pathway were deleted. Genes associated with pathways that might compete with PHA production, specifically those linked to glycogen production and nitrogen fixation, were deleted. Additionally, RuBisCO form I and II genes were integrated into TIE-1's genome by a phage integration system, developed in this study. Our results show that deletion of phaR increases PHA production when TIE-1 is grown photoheterotrophically with butyrate and ammonium chloride (NH4Cl). Mutants unable to produce glycogen or fix nitrogen show increased PHA production under photoautotrophic growth with hydrogen and NH4Cl. The most significant increase in PHA production was observed when RuBisCO form I and form I & II genes were overexpressed, five times under photoheterotrophy with butyrate, two times with hydrogen and NH4Cl, and two times under photoelectrotrophic growth with N2 . In summary, inserting copies of RuBisCO genes into the TIE-1 genome is a more effective strategy than deleting competing pathways to increase PHA production in TIE-1. The successful use of the phage integration system opens numerous opportunities for synthetic biology in TIE-1.IMPORTANCEOur planet has been burdened by pollution resulting from the extensive use of petroleum-derived plastics for the last few decades. Since the discovery of biodegradable plastic alternatives, concerted efforts have been made to enhance their bioproduction. The versatile microorganism Rhodopseudomonas palustris TIE-1 (TIE-1) stands out as a promising candidate for bioplastic synthesis, owing to its ability to use multiple electron sources, fix the greenhouse gas CO2, and use light as an energy source. Two categories of strains were meticulously designed from the TIE-1 wild-type to augment the production of polyhydroxyalkanoate (PHA), one such bioplastic produced. The first group includes mutants carrying a deletion of the phaR or phaZ genes in the PHA pathway, and those lacking potential competitive carbon and energy sinks to the PHA pathway (namely, glycogen biosynthesis and nitrogen fixation). The second group comprises TIE-1 strains that overexpress RuBisCO form I or form I & II genes inserted via a phage integration system. By studying numerous metabolic mutants and overexpression strains, we conclude that genetic modifications in the environmental microbe TIE-1 can improve PHA production. When combined with other approaches (such as reactor design, use of microbial consortia, and different feedstocks), genetic and metabolic manipulations of purple nonsulfur bacteria like TIE-1 are essential for replacing petroleum-derived plastics with biodegradable plastics like PHA.
Collapse
Affiliation(s)
| | - Wei Bai
- LifeFoundry, San Jose, California, USA
| | | | - Hope Steele
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Miriam Silberman
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Jennifer Olabode
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Eric Conners
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Brian Gallagher
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Arpita Bose
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
13
|
Chan DTC, Bernstein HC. Pangenomic landscapes shape performances of a synthetic genetic circuit across Stutzerimonas species. mSystems 2024; 9:e0084924. [PMID: 39166875 PMCID: PMC11406997 DOI: 10.1128/msystems.00849-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 07/18/2024] [Indexed: 08/23/2024] Open
Abstract
Engineering identical genetic circuits into different species typically results in large differences in performance due to the unique cellular environmental context of each host, a phenomenon known as the "chassis-effect" or "context-dependency". A better understanding of how genomic and physiological contexts underpin the chassis-effect will improve biodesign strategies across diverse microorganisms. Here, we combined a pangenomic-based gene expression analysis with quantitative measurements of performance from an engineered genetic inverter device to uncover how genome structure and function relate to the observed chassis-effect across six closely related Stutzerimonas hosts. Our results reveal that genome architecture underpins divergent responses between our chosen non-model bacterial hosts to the engineered device. Specifically, differential expression of the core genome, gene clusters shared between all hosts, was found to be the main source of significant concordance to the observed differential genetic device performance, whereas specialty genes from respective accessory genomes were not significant. A data-driven investigation revealed that genes involved in denitrification and components of trans-membrane transporter proteins were among the most differentially expressed gene clusters between hosts in response to the genetic device. Our results show that the chassis-effect can be traced along differences among the most conserved genome-encoded functions and that these differences create a unique biodesign space among closely related species.IMPORTANCEContemporary synthetic biology endeavors often default to a handful of model organisms to host their engineered systems. Model organisms such as Escherichia coli serve as attractive hosts due to their tractability but do not necessarily provide the ideal environment to optimize performance. As more novel microbes are domesticated for use as biotechnology platforms, synthetic biologists are urged to explore the chassis-design space to optimize their systems and deliver on the promises of synthetic biology. The consequences of the chassis-effect will therefore only become more relevant as the field of biodesign grows. In our work, we demonstrate that the performance of a genetic device is highly dependent on the host environment it operates within, promoting the notion that the chassis can be considered a design variable to tune circuit function. Importantly, our results unveil that the chassis-effect can be traced along similarities in genome architecture, specifically the shared core genome. Our study advocates for the exploration of the chassis-design space and is a step forward to empowering synthetic biologists with knowledge for more efficient exploration of the chassis-design space to enable the next generation of broad-host-range synthetic biology.
Collapse
Affiliation(s)
- Dennis Tin Chat Chan
- Faculty of Biosciences, Fisheries and Economics, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Hans C Bernstein
- Faculty of Biosciences, Fisheries and Economics, UiT - The Arctic University of Norway, Tromsø, Norway
- The Arctic Centre for Sustainable Energy, UiT - The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
14
|
Roldán DM, Amarelle V. Identification of novel broad host-range promoter sequences functional in diverse Pseudomonadota by a promoter-trap approach. Braz J Microbiol 2024:10.1007/s42770-024-01512-w. [PMID: 39259478 DOI: 10.1007/s42770-024-01512-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/02/2024] [Indexed: 09/13/2024] Open
Abstract
Finding novel promoter sequences is a cornerstone of synthetic biology. To contribute to the expanding catalog of biological parts, we employed a promoter-trap approach to identify novel sequences within an Antarctic microbial community that act as broad host-range promoters functional in diverse Pseudomonadota. Using Pseudomonas putida KT2440 as host, we generated a library comprising approximately 2,000 clones resulting in the identification of thirteen functional promoter sequences, thereby expanding the genetic toolkit available for this chassis. Some of the discovered promoter sequences prove to be broad host-range as they drove gene expression not only in P. putida KT2440 but also in Escherichia coli DH5α, Cupriavidus taiwanensis R1T, Paraburkholderia phymatum STM 815T, Ensifer meliloti 1021, and an indigenous Antarctic bacterium, Pseudomonas sp. UYIF39. Our findings enrich the existing catalog of biological parts, offering a repertoire of broad host-range promoter sequences that exhibit functionality across diverse members of the phylum Pseudomonadota, proving Antarctic microbial community as a valuable resource for prospecting new biological parts for synthetic biology.
Collapse
Affiliation(s)
- Diego M Roldán
- Departamento de Bioquímica y Genómica Microbianas, Instituto de Investigaciones Biológicas Clemente Estable, Av. Italia 3318, Montevideo, 11600, Uruguay
| | - Vanesa Amarelle
- Departamento de Bioquímica y Genómica Microbianas, Instituto de Investigaciones Biológicas Clemente Estable, Av. Italia 3318, Montevideo, 11600, Uruguay.
| |
Collapse
|
15
|
Bonnaud E, Oger PM, Ohayon A, Louis Y. Haloarchaea as Promising Chassis to Green Chemistry. Microorganisms 2024; 12:1738. [PMID: 39203580 PMCID: PMC11357113 DOI: 10.3390/microorganisms12081738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/14/2024] [Accepted: 08/21/2024] [Indexed: 09/03/2024] Open
Abstract
Climate change and the scarcity of primary resources are driving the development of new, more renewable and environmentally friendly industrial processes. As part of this green chemistry approach, extremozymes (extreme microbial enzymes) can be used to replace all or part of the chemical synthesis stages of traditional industrial processes. At present, the production of these enzymes is limited by the cellular chassis available. The production of a large number of extremozymes requires extremophilic cellular chassis, which are not available. This is particularly true of halophilic extremozymes. The aim of this review is to present the current potential and challenges associated with the development of a haloarchaea-based cellular chassis. By overcoming the major obstacle of the limited number of genetic tools, it will be possible to propose a robust cellular chassis for the production of functional halophilic enzymes that can participate in the industrial transition of many sectors.
Collapse
Affiliation(s)
- Emma Bonnaud
- SEGULA Technologies, 13 Bis Avenue Albert Einstein, 69100 Villeurbanne, France; (E.B.)
- INSA de Lyon, UMR5240 CNRS, Université Claude Bernard Lyon 1, 11, Avenue Jean Capelle, 69621 Villeurbanne, France
| | - Philippe M. Oger
- INSA de Lyon, UMR5240 CNRS, Université Claude Bernard Lyon 1, 11, Avenue Jean Capelle, 69621 Villeurbanne, France
| | - Avigaël Ohayon
- SEGULA Technologies, 13 Bis Avenue Albert Einstein, 69100 Villeurbanne, France; (E.B.)
| | - Yoann Louis
- INSA de Lyon, UMR5240 CNRS, Université Claude Bernard Lyon 1, 11, Avenue Jean Capelle, 69621 Villeurbanne, France
| |
Collapse
|
16
|
Xiao D, Driller M, Dielentheis‐Frenken M, Haala F, Kohl P, Stein K, Blank LM, Tiso T. Advances in Aureobasidium research: Paving the path to industrial utilization. Microb Biotechnol 2024; 17:e14535. [PMID: 39075758 PMCID: PMC11286673 DOI: 10.1111/1751-7915.14535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/10/2024] [Indexed: 07/31/2024] Open
Abstract
We here explore the potential of the fungal genus Aureobasidium as a prototype for a microbial chassis for industrial biotechnology in the context of a developing circular bioeconomy. The study emphasizes the physiological advantages of Aureobasidium, including its polyextremotolerance, broad substrate spectrum, and diverse product range, making it a promising candidate for cost-effective and sustainable industrial processes. In the second part, recent advances in genetic tool development, as well as approaches for up-scaled fermentation, are described. This review adds to the growing body of scientific literature on this remarkable fungus and reveals its potential for future use in the biotechnological industry.
Collapse
Affiliation(s)
- Difan Xiao
- iAMB – Institute of Applied Microbiology, ABBt – Aachen Biology and BiotechnologyRWTH Aachen UniversityAachenGermany
| | - Marielle Driller
- iAMB – Institute of Applied Microbiology, ABBt – Aachen Biology and BiotechnologyRWTH Aachen UniversityAachenGermany
| | - Marie Dielentheis‐Frenken
- iAMB – Institute of Applied Microbiology, ABBt – Aachen Biology and BiotechnologyRWTH Aachen UniversityAachenGermany
| | - Frederick Haala
- iAMB – Institute of Applied Microbiology, ABBt – Aachen Biology and BiotechnologyRWTH Aachen UniversityAachenGermany
| | - Philipp Kohl
- iAMB – Institute of Applied Microbiology, ABBt – Aachen Biology and BiotechnologyRWTH Aachen UniversityAachenGermany
| | - Karla Stein
- iAMB – Institute of Applied Microbiology, ABBt – Aachen Biology and BiotechnologyRWTH Aachen UniversityAachenGermany
| | - Lars M. Blank
- iAMB – Institute of Applied Microbiology, ABBt – Aachen Biology and BiotechnologyRWTH Aachen UniversityAachenGermany
| | - Till Tiso
- iAMB – Institute of Applied Microbiology, ABBt – Aachen Biology and BiotechnologyRWTH Aachen UniversityAachenGermany
| |
Collapse
|
17
|
de Lorenzo V, Pérez-Pantoja D, Nikel PI. Pseudomonas putida KT2440: the long journey of a soil-dweller to become a synthetic biology chassis. J Bacteriol 2024; 206:e0013624. [PMID: 38975763 PMCID: PMC11270871 DOI: 10.1128/jb.00136-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024] Open
Abstract
Although members of the genus Pseudomonas share specific morphological, metabolic, and genomic traits, the diversity of niches and lifestyles adopted by the family members is vast. One species of the group, Pseudomonas putida, thrives as a colonizer of plant roots and frequently inhabits soils polluted with various types of chemical waste. Owing to a combination of historical contingencies and inherent qualities, a particular strain, P. putida KT2440, emerged time ago as an archetype of an environmental microorganism amenable to recombinant DNA technologies, which was also capable of catabolizing chemical pollutants. Later, the same bacterium progressed as a reliable platform for programming traits and activities in various biotechnological applications. This article summarizes the stepwise upgrading of P. putida KT2440 from being a system for fundamental studies on the biodegradation of aromatic compounds (especially when harboring the TOL plasmid pWW0) to its adoption as a chassis of choice in metabolic engineering and synthetic biology. Although there are remaining uncertainties about the taxonomic classification of KT2440, advanced genome editing capabilities allow us to tailor its genetic makeup to meet specific needs. This makes its traditional categorization somewhat less important, while also increasing the strain's overall value for contemporary industrial and environmental uses.
Collapse
Affiliation(s)
- Victor de Lorenzo
- Systems Biology Department, Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, Madrid, Spain
| | - Danilo Pérez-Pantoja
- Instituto Universitario de Investigación y Desarrollo Tecnológico, Universidad Tecnológica Metropolitana (UTEM), Santiago, Chile
- Center of Applied Ecology and Sustainability (CAPES), Santiago, Chile
| | - Pablo I. Nikel
- The Novo Nordisk Foundation Center for Biosustainability, Systems Environmental Microbiology Group, Kgs. Lyngby, Denmark
| |
Collapse
|
18
|
Köbbing S, Lechtenberg T, Wynands B, Blank LM, Wierckx N. Reliable Genomic Integration Sites in Pseudomonas putida Identified by Two-Dimensional Transcriptome Analysis. ACS Synth Biol 2024; 13:2060-2072. [PMID: 38968167 PMCID: PMC11264328 DOI: 10.1021/acssynbio.3c00747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 07/07/2024]
Abstract
Genomic integration is commonly used to engineer stable production hosts. However, so far, for many microbial workhorses, only a few integration sites have been characterized, thereby restraining advanced strain engineering that requires multiple insertions. Here, we report on the identification of novel genomic integration sites, so-called landing pads, for Pseudomonas putida KT2440. We identified genomic regions with constant expression patterns under diverse experimental conditions by using RNA-Seq data. Homologous recombination constructs were designed to insert heterologous genes into intergenic sites in these regions, allowing condition-independent gene expression. Ten potential landing pads were characterized using four different msfGFP expression cassettes. An insulated probe sensor was used to study locus-dependent effects on recombinant gene expression, excluding genomic read-through of flanking promoters under changing cultivation conditions. While the reproducibility of expression in the landing pads was very high, the msfGFP signals varied strongly between the different landing pads, confirming a strong influence of the genomic context. To showcase that the identified landing pads are also suitable candidates for heterologous gene expression in other Pseudomonads, four equivalent landing pads were identified and characterized in Pseudomonas taiwanensis VLB120. This study shows that genomic "hot" and "cold" spots exist, causing strong promoter-independent variations in gene expression. This highlights that the genomic context is an additional parameter to consider when designing integrable genomic cassettes for tailored heterologous expression. The set of characterized genomic landing pads presented here further increases the genetic toolbox for deep metabolic engineering in Pseudomonads.
Collapse
Affiliation(s)
- Sebastian Köbbing
- Aachen
Biology and Biotechnology-ABBt, Institute of Applied Microbiology-iAMB, RWTH Aachen University, 52074 Aachen, Germany
| | - Thorsten Lechtenberg
- Institute
of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich, 52428 Jülich, Germany
| | - Benedikt Wynands
- Institute
of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich, 52428 Jülich, Germany
| | - Lars M. Blank
- Aachen
Biology and Biotechnology-ABBt, Institute of Applied Microbiology-iAMB, RWTH Aachen University, 52074 Aachen, Germany
| | - Nick Wierckx
- Aachen
Biology and Biotechnology-ABBt, Institute of Applied Microbiology-iAMB, RWTH Aachen University, 52074 Aachen, Germany
- Institute
of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich, 52428 Jülich, Germany
| |
Collapse
|
19
|
Doron L, Kerfeld CA. Bacterial microcompartments as a next-generation metabolic engineering tool: utilizing nature's solution for confining challenging catabolic pathways. Biochem Soc Trans 2024; 52:997-1010. [PMID: 38813858 PMCID: PMC11346464 DOI: 10.1042/bst20230229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 05/31/2024]
Abstract
Advancements in synthetic biology have facilitated the incorporation of heterologous metabolic pathways into various bacterial chassis, leading to the synthesis of targeted bioproducts. However, total output from heterologous production pathways can suffer from low flux, enzyme promiscuity, formation of toxic intermediates, or intermediate loss to competing reactions, which ultimately hinder their full potential. The self-assembling, easy-to-modify, protein-based bacterial microcompartments (BMCs) offer a sophisticated way to overcome these obstacles by acting as an autonomous catalytic module decoupled from the cell's regulatory and metabolic networks. More than a decade of fundamental research on various types of BMCs, particularly structural studies of shells and their self-assembly, the recruitment of enzymes to BMC shell scaffolds, and the involvement of ancillary proteins such as transporters, regulators, and activating enzymes in the integration of BMCs into the cell's metabolism, has significantly moved the field forward. These advances have enabled bioengineers to design synthetic multi-enzyme BMCs to promote ethanol or hydrogen production, increase cellular polyphosphate levels, and convert glycerol to propanediol or formate to pyruvate. These pioneering efforts demonstrate the enormous potential of synthetic BMCs to encapsulate non-native multi-enzyme biochemical pathways for the synthesis of high-value products.
Collapse
Affiliation(s)
- Lior Doron
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, U.S.A
| | - Cheryl A. Kerfeld
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, U.S.A
- Environmental Genomics and Systems Biology and Molecular Biophysics and Integrative Bioimaging Divisions, Lawrence Berkeley National Laboratory, Berkeley, CA, U.S.A
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, U.S.A
| |
Collapse
|
20
|
Perrot T, Marc J, Lezin E, Papon N, Besseau S, Courdavault V. Emerging trends in production of plant natural products and new-to-nature biopharmaceuticals in yeast. Curr Opin Biotechnol 2024; 87:103098. [PMID: 38452572 DOI: 10.1016/j.copbio.2024.103098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/07/2024] [Accepted: 02/07/2024] [Indexed: 03/09/2024]
Abstract
Natural products represent an inestimable source of valuable compounds for human health. Notably, those produced by plants remain challenging to access due to their low production. Potential shortages of plant-derived biopharmaceuticals caused by climate change or pandemics also regularly tense the market trends. Thus, biotechnological alternatives of supply based on synthetic biology have emerged. These innovative strategies mostly rely on the use of engineered microbial systems for compound synthesis. In this regard, yeasts remain the easiest-tractable eukaryotic models and a convenient chassis for reconstructing whole biosynthetic routes for the heterologous production of plant-derived metabolites. Here, we highlight the recent discoveries dedicated to the bioproduction of new-to-nature compounds in yeasts and provide an overview of emerging strategies for optimising bioproduction.
Collapse
Affiliation(s)
- Thomas Perrot
- Biomolécules et Biotechnologies Végétales, BBV, EA2106, Université de Tours, Tours, France
| | - Jillian Marc
- Biomolécules et Biotechnologies Végétales, BBV, EA2106, Université de Tours, Tours, France
| | - Enzo Lezin
- Biomolécules et Biotechnologies Végétales, BBV, EA2106, Université de Tours, Tours, France
| | - Nicolas Papon
- Univ Angers, Univ Brest, IRF, SFR ICAT, F-49000 Angers, France
| | - Sébastien Besseau
- Biomolécules et Biotechnologies Végétales, BBV, EA2106, Université de Tours, Tours, France
| | - Vincent Courdavault
- Biomolécules et Biotechnologies Végétales, BBV, EA2106, Université de Tours, Tours, France.
| |
Collapse
|
21
|
Jensen RO, Schulz F, Roux S, Klingeman DM, Mitchell WP, Udwary D, Moraïs S, Reynoso V, Winkler J, Nagaraju S, De Tissera S, Shapiro N, Ivanova N, Reddy TBK, Mizrahi I, Utturkar SM, Bayer EA, Woyke T, Mouncey NJ, Jewett MC, Simpson SD, Köpke M, Jones DT, Brown SD. Phylogenomics and genetic analysis of solvent-producing Clostridium species. Sci Data 2024; 11:432. [PMID: 38693191 PMCID: PMC11063209 DOI: 10.1038/s41597-024-03210-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 04/02/2024] [Indexed: 05/03/2024] Open
Abstract
The genus Clostridium is a large and diverse group within the Bacillota (formerly Firmicutes), whose members can encode useful complex traits such as solvent production, gas-fermentation, and lignocellulose breakdown. We describe 270 genome sequences of solventogenic clostridia from a comprehensive industrial strain collection assembled by Professor David Jones that includes 194 C. beijerinckii, 57 C. saccharobutylicum, 4 C. saccharoperbutylacetonicum, 5 C. butyricum, 7 C. acetobutylicum, and 3 C. tetanomorphum genomes. We report methods, analyses and characterization for phylogeny, key attributes, core biosynthetic genes, secondary metabolites, plasmids, prophage/CRISPR diversity, cellulosomes and quorum sensing for the 6 species. The expanded genomic data described here will facilitate engineering of solvent-producing clostridia as well as non-model microorganisms with innately desirable traits. Sequences could be applied in conventional platform biocatalysts such as yeast or Escherichia coli for enhanced chemical production. Recently, gene sequences from this collection were used to engineer Clostridium autoethanogenum, a gas-fermenting autotrophic acetogen, for continuous acetone or isopropanol production, as well as butanol, butanoic acid, hexanol and hexanoic acid production.
Collapse
Affiliation(s)
| | - Frederik Schulz
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Simon Roux
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | | | | | - Daniel Udwary
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Sarah Moraïs
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | | | | | | | | | - Nicole Shapiro
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Natalia Ivanova
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - T B K Reddy
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Itzhak Mizrahi
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Sagar M Utturkar
- Institute for Cancer Research, Purdue University, West Lafayette, IN, USA
| | - Edward A Bayer
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Tanja Woyke
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- University of California Merced, Life and Environmental Sciences, Merced, CA, USA
| | - Nigel J Mouncey
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Michael C Jewett
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | | | | | - David T Jones
- Department of Microbiology, University of Otago, Dunedin, New Zealand.
| | | |
Collapse
|
22
|
Paredes-Barrada M, Kopsiaftis P, Claassens NJ, van Kranenburg R. Parageobacillus thermoglucosidasius as an emerging thermophilic cell factory. Metab Eng 2024; 83:39-51. [PMID: 38490636 DOI: 10.1016/j.ymben.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/21/2024] [Accepted: 03/05/2024] [Indexed: 03/17/2024]
Abstract
Parageobacillus thermoglucosidasius is a thermophilic and facultatively anaerobic microbe, which is emerging as one of the most promising thermophilic model organisms for metabolic engineering. The use of thermophilic microorganisms for industrial bioprocesses provides the advantages of increased reaction rates and reduced cooling costs for bioreactors compared to their mesophilic counterparts. Moreover, it enables starch or lignocellulose degradation and fermentation to occur at the same temperature in a Simultaneous Saccharification and Fermentation (SSF) or Consolidated Bioprocessing (CBP) approach. Its natural hemicellulolytic capabilities and its ability to convert CO to metabolic energy make P. thermoglucosidasius a potentially attractive host for bio-based processes. It can effectively degrade hemicellulose due to a number of hydrolytic enzymes, carbohydrate transporters, and regulatory elements coded from a genomic cluster named Hemicellulose Utilization (HUS) locus. The growing availability of effective genetic engineering tools in P. thermoglucosidasius further starts to open up its potential as a versatile thermophilic cell factory. A number of strain engineering examples showcasing the potential of P. thermoglucosidasius as a microbial chassis for the production of bulk and fine chemicals are presented along with current research bottlenecks. Ultimately, this review provides a holistic overview of the distinct metabolic characteristics of P. thermoglucosidasius and discusses research focused on expanding the native metabolic boundaries for the development of industrially relevant strains.
Collapse
Affiliation(s)
- Miguel Paredes-Barrada
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | | | - Nico J Claassens
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands.
| | - Richard van Kranenburg
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands; Corbion, Arkelsedijk 46, 4206 AC, Gorinchem, The Netherlands.
| |
Collapse
|
23
|
Bedoya-Pérez LP, Aguilar-Vera A, Sánchez-Pérez M, Utrilla J, Sohlenkamp C. Enhancing Escherichia coli abiotic stress resistance through ornithine lipid formation. Appl Microbiol Biotechnol 2024; 108:288. [PMID: 38587638 PMCID: PMC11001654 DOI: 10.1007/s00253-024-13130-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/21/2024] [Accepted: 03/27/2024] [Indexed: 04/09/2024]
Abstract
Escherichia coli is a common host for biotechnology and synthetic biology applications. During growth and fermentation, the microbes are often exposed to stress conditions, such as variations in pH or solvent concentrations. Bacterial membranes play a key role in response to abiotic stresses. Ornithine lipids (OLs) are a group of membrane lipids whose presence and synthesis have been related to stress resistance in bacteria. We wondered if this stress resistance could be transferred to bacteria not encoding the capacity to form OLs in their genome, such as E. coli. In this study, we engineered different E. coli strains to produce unmodified OLs and hydroxylated OLs by expressing the synthetic operon olsFC. Our results showed that OL formation improved pH resistance and increased biomass under phosphate limitation. Transcriptome analysis revealed that OL-forming strains differentially expressed stress- and membrane-related genes. OL-producing strains also showed better growth in the presence of the ionophore carbonyl cyanide 3-chlorophenylhydrazone (CCCP), suggesting reduced proton leakiness in OL-producing strains. Furthermore, our engineered strains showed improved heterologous violacein production at phosphate limitation and also at low pH. Overall, this study demonstrates the potential of engineering the E. coli membrane composition for constructing robust hosts with an increased abiotic stress resistance for biotechnology and synthetic biology applications. KEY POINTS: • Ornithine lipid production in E. coli increases biomass yield under phosphate limitation. • Engineered strains show an enhanced production phenotype under low pH stress. • Transcriptome analysis and CCCP experiments revealed reduced proton leakage.
Collapse
Affiliation(s)
- Leidy Patricia Bedoya-Pérez
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Av. Universidad S/N Col. Chamilpa, C.P. 62210, Cuernavaca, Mor, México
| | - Alejandro Aguilar-Vera
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Av. Universidad S/N Col. Chamilpa, C.P. 62210, Cuernavaca, Mor, México
| | - Mishael Sánchez-Pérez
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Av. Universidad S/N Col. Chamilpa, C.P. 62210, Cuernavaca, Mor, México
| | - José Utrilla
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Av. Universidad S/N Col. Chamilpa, C.P. 62210, Cuernavaca, Mor, México.
| | - Christian Sohlenkamp
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Av. Universidad S/N Col. Chamilpa, C.P. 62210, Cuernavaca, Mor, México.
| |
Collapse
|
24
|
Godoy P, Udaondo Z, Duque E, Ramos JL. Biosynthesis of fragrance 2-phenylethanol from sugars by Pseudomonas putida. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:51. [PMID: 38566218 PMCID: PMC10986128 DOI: 10.1186/s13068-024-02498-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 03/22/2024] [Indexed: 04/04/2024]
Abstract
BACKGROUND Petrochemicals contribute to environmental issues, with concerns ranging from energy consumption and carbon emission to pollution. In contrast, microbial biorefineries offer eco-friendly alternatives. The solvent-tolerant Pseudomonas putida DOT-T1E serves as a suitable host for producing aromatic compounds, specifically L-phenylalanine and its derivative, 2-phenylethanol (2-PE), which find widespread applications in various industries. RESULTS This study focuses on enhancing 2-PE production in two L-phenylalanine overproducing strains of DOT-T1E, namely CM12-5 and CM12-5Δgcd (xylABE), which grow with glucose and glucose-xylose, respectively. To synthesize 2-PE from L-phenylalanine, these strains were transformed with plasmid pPE-1, bearing the Ehrlich pathway genes, and it was found higher 2-PE production with glucose (about 50-60 ppm) than with xylose (< 3 ppm). To understand the limiting factors, we tested the addition of phenylalanine and intermediates from the Ehrlich and shikimate pathways. The results identified intracellular L-phenylalanine as a key limiting factor for 2-PE production. To overcame this limitation, a chorismate mutase/prephenate dehydratase variant-insentive to feedback inhibition by aromatic amino acids-was introduced in the producing strains. This led to increased L-phenylalanine production and subsequently produced more 2-PE (100 ppm). Random mutagenesis of the strains also produced strains with higher L-phenylalanine titers and increased 2-PE production (up to 120 ppm). The improvements resulted from preventing dead-end product accumulation from shikimate and limiting the catabolism of potential pathway intermediates in the Ehrlich pathway. The study explored agricultural waste substrates, such as corn stover, sugarcane straw and corn-syrup as potential C sources. The best results were obtained using 2G substrates at 3% (between 82 and 100 ppm 2-PE), with glucose being the preferred sugar for 2-PE production among the monomeric sugars in these substrates. CONCLUSIONS The findings of this study offer strategies to enhance phenylalanine production, a key substrate for the synthesis of aromatic compounds. The ability of P. putida DOT-T1E to thrive with various C-sources and its tolerance to substrates, products, and potential toxicants in industrial wastes, are highlighted. The study identified and overcome possible bottlenecks for 2-PE production. Ultimately, the strains have potential to become efficient microbial platforms for synthesizing 2-PE from agro-industrial waste materials.
Collapse
Affiliation(s)
- Patricia Godoy
- Department of Environmental Protection, Estación Experimental del Zaidín, CSIC, c/ Profesor Albareda 1, 1808, Granada, Spain
| | - Zulema Udaondo
- Department of Biomedical Informatics, University of Arkansas for Medical Science, Little Rock, AR, 72205, USA
| | - Estrella Duque
- Department of Environmental Protection, Estación Experimental del Zaidín, CSIC, c/ Profesor Albareda 1, 1808, Granada, Spain
| | - Juan L Ramos
- Department of Environmental Protection, Estación Experimental del Zaidín, CSIC, c/ Profesor Albareda 1, 1808, Granada, Spain.
| |
Collapse
|
25
|
Chaisupa P, Wright RC. State-of-the-art in engineering small molecule biosensors and their applications in metabolic engineering. SLAS Technol 2024; 29:100113. [PMID: 37918525 PMCID: PMC11314541 DOI: 10.1016/j.slast.2023.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/18/2023] [Accepted: 10/25/2023] [Indexed: 11/04/2023]
Abstract
Genetically encoded biosensors are crucial for enhancing our understanding of how molecules regulate biological systems. Small molecule biosensors, in particular, help us understand the interaction between chemicals and biological processes. They also accelerate metabolic engineering by increasing screening throughput and eliminating the need for sample preparation through traditional chemical analysis. Additionally, they offer significantly higher spatial and temporal resolution in cellular analyte measurements. In this review, we discuss recent progress in in vivo biosensors and control systems-biosensor-based controllers-for metabolic engineering. We also specifically explore protein-based biosensors that utilize less commonly exploited signaling mechanisms, such as protein stability and induced degradation, compared to more prevalent transcription factor and allosteric regulation mechanism. We propose that these lesser-used mechanisms will be significant for engineering eukaryotic systems and slower-growing prokaryotic systems where protein turnover may facilitate more rapid and reliable measurement and regulation of the current cellular state. Lastly, we emphasize the utilization of cutting-edge and state-of-the-art techniques in the development of protein-based biosensors, achieved through rational design, directed evolution, and collaborative approaches.
Collapse
Affiliation(s)
- Patarasuda Chaisupa
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA 24061, United States
| | - R Clay Wright
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA 24061, United States; Translational Plant Sciences Center (TPSC), Virginia Tech, Blacksburg, VA 24061, United States.
| |
Collapse
|
26
|
Pal U, Bachmann D, Pelzer C, Christiansen J, Blank LM, Tiso T. A genetic toolbox to empower Paracoccus pantotrophus DSM 2944 as a metabolically versatile SynBio chassis. Microb Cell Fact 2024; 23:53. [PMID: 38360576 PMCID: PMC10870620 DOI: 10.1186/s12934-024-02325-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 02/05/2024] [Indexed: 02/17/2024] Open
Abstract
BACKGROUND To contribute to the discovery of new microbial strains with metabolic and physiological robustness and develop them into successful chasses, Paracoccus pantotrophus DSM 2944, a Gram-negative bacterium from the phylum Alphaproteobacteria and the family Rhodobacteraceae, was chosen. The strain possesses an innate ability to tolerate high salt concentrations. It utilizes diverse substrates, including cheap and renewable feedstocks, such as C1 and C2 compounds. Also, it can consume short-chain alkanes, predominately found in hydrocarbon-rich environments, making it a potential bioremediation agent. The demonstrated metabolic versatility, coupled with the synthesis of the biodegradable polymer polyhydroxyalkanoate, positions this microbial strain as a noteworthy candidate for advancing the principles of a circular bioeconomy. RESULTS The study aims to follow the chassis roadmap, as depicted by Calero and Nikel, and de Lorenzo, to transform wild-type P. pantotrophus DSM 2944 into a proficient SynBio (Synthetic Biology) chassis. The initial findings highlight the antibiotic resistance profile of this prospective SynBio chassis. Subsequently, the best origin of replication (ori) was identified as RK2. In contrast, the non-replicative ori R6K was selected for the development of a suicide plasmid necessary for genome integration or gene deletion. Moreover, when assessing the most effective method for gene transfer, it was observed that conjugation had superior efficiency compared to electroporation, while transformation by heat shock was ineffective. Robust host fitness was demonstrated by stable plasmid maintenance, while standardized gene expression using an array of synthetic promoters could be shown. pEMG-based scarless gene deletion was successfully adapted, allowing gene deletion and integration. The successful integration of a gene cassette for terephthalic acid degradation is showcased. The resulting strain can grow on both monomers of polyethylene terephthalate (PET), with an increased growth rate achieved through adaptive laboratory evolution. CONCLUSION The chassis roadmap for the development of P. pantotrophus DSM 2944 into a proficient SynBio chassis was implemented. The presented genetic toolkit allows genome editing and therewith the possibility to exploit Paracoccus for a myriad of applications.
Collapse
Affiliation(s)
- Upasana Pal
- Institute of Applied Microbiology, RWTH Aachen University, Aachen, Germany
| | - Denise Bachmann
- Institute of Applied Microbiology, RWTH Aachen University, Aachen, Germany
| | - Chiara Pelzer
- Institute of Applied Microbiology, RWTH Aachen University, Aachen, Germany
| | - Julia Christiansen
- Institute of Applied Microbiology, RWTH Aachen University, Aachen, Germany
- Chair of Microbiology, Technical University of Munich, Freising, Germany
| | - Lars M Blank
- Institute of Applied Microbiology, RWTH Aachen University, Aachen, Germany
| | - Till Tiso
- Institute of Applied Microbiology, RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
27
|
Doron L, Raval D, Kerfeld CA. Towards using bacterial microcompartments as a platform for spatial metabolic engineering in the industrially important and metabolically versatile Zymomonas mobilis. Front Bioeng Biotechnol 2024; 12:1344260. [PMID: 38344288 PMCID: PMC10853475 DOI: 10.3389/fbioe.2024.1344260] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 01/08/2024] [Indexed: 10/28/2024] Open
Abstract
Advances in synthetic biology have enabled the incorporation of novel biochemical pathways for the production of high-value products into industrially important bacterial hosts. However, attempts to redirect metabolic fluxes towards desired products often lead to the buildup of toxic or undesirable intermediates or, more generally, unwanted metabolic cross-talk. The use of shells derived from self-assembling protein-based prokaryotic organelles, referred to as bacterial microcompartments (BMCs), as a scaffold for metabolic enzymes represents a sophisticated approach that can both insulate and integrate the incorporation of challenging metabolic pathways into industrially important bacterial hosts. Here we took a synthetic biology approach and introduced the model shell system derived from the myxobacterium Haliangium ochraceum (HO shell) into the industrially relevant organism Zymomonas mobilis with the aim of constructing a BMC-based spatial scaffolding platform. SDS-PAGE, transmission electron microscopy, and dynamic light scattering analyses collectively demonstrated the ability to express and purify empty capped and uncapped HO shells from Z. mobilis. As a proof of concept to internally load or externally decorate the shell surface with enzyme cargo, we have successfully targeted fluorophores to the surfaces of the BMC shells. Overall, our results provide the foundation for incorporating enzymes and constructing BMCs with synthetic biochemical pathways for the future production of high-value products in Z. mobilis.
Collapse
Affiliation(s)
- Lior Doron
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, United States
| | - Dhairya Raval
- Department of Engineering, Michigan State University, East Lansing, MI, United States
| | - Cheryl A. Kerfeld
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, United States
- Environmental Genomics and Systems Biology and Molecular Biophysics and Integrative Bioimaging Divisions, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
- Department of Biochemistry and Molecular Biology Michigan State University, East Lansing, MI, United States
| |
Collapse
|
28
|
Chen S, Yang Z, Zhong Z, Yu S, Zhou J, Li J, Du G, Zhang G. Ultrahigh-throughput screening-assisted in vivo directed evolution for enzyme engineering. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:9. [PMID: 38254175 PMCID: PMC10804518 DOI: 10.1186/s13068-024-02457-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024]
Abstract
BACKGROUND Classical directed evolution is a powerful approach for engineering biomolecules with improved or novel functions. However, it traditionally relies on labour- and time-intensive iterative cycles, due in part to the need for multiple molecular biology steps, including DNA transformation, and limited screening throughput. RESULTS In this study, we present an ultrahigh throughput in vivo continuous directed evolution system with thermosensitive inducible tunability, which is based on error-prone DNA polymerase expression modulated by engineered thermal-responsive repressor cI857, and genomic MutS mutant with temperature-sensitive defect for fixation of mutations in Escherichia coli. We demonstrated the success of the in vivo evolution platform with β-lactamase as a model, with an approximately 600-fold increase in the targeted mutation rate. Furthermore, the platform was combined with ultrahigh-throughput screening methods and employed to evolve α-amylase and the resveratrol biosynthetic pathway. After iterative rounds of enrichment, a mutant with a 48.3% improvement in α-amylase activity was identified via microfluidic droplet screening. In addition, when coupled with an in vivo biosensor in the resveratrol biosynthetic pathway, a variant with 1.7-fold higher resveratrol production was selected by fluorescence-activated cell sorting. CONCLUSIONS In this study, thermal-responsive targeted mutagenesis coupled with ultrahigh-throughput screening was developed for the rapid evolution of enzymes and biosynthetic pathways.
Collapse
Affiliation(s)
- Shuaili Chen
- Science Center for Future Foods, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Zhanhao Yang
- Science Center for Future Foods, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Ze Zhong
- Science Center for Future Foods, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Shiqin Yu
- Science Center for Future Foods, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Jingwen Zhou
- Science Center for Future Foods, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- Engineering Research Center of Ministry of Education On Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Jianghua Li
- Science Center for Future Foods, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- Engineering Research Center of Ministry of Education On Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Guocheng Du
- Science Center for Future Foods, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.
- Engineering Research Center of Ministry of Education On Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.
| | - Guoqiang Zhang
- Science Center for Future Foods, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.
- Engineering Research Center of Ministry of Education On Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.
| |
Collapse
|
29
|
Tian D, Liu Y, Zhang Y, Liu Y, Xia Y, Xu B, Xu J, Yomo T. Implementation of Fluorescent-Protein-Based Quantification Analysis in L-Form Bacteria. Bioengineering (Basel) 2024; 11:81. [PMID: 38247958 PMCID: PMC10813599 DOI: 10.3390/bioengineering11010081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/09/2024] [Accepted: 01/12/2024] [Indexed: 01/23/2024] Open
Abstract
Cell-wall-less (L-form) bacteria exhibit morphological complexity and heterogeneity, complicating quantitative analysis of them under internal and external stimuli. Stable and efficient labeling is needed for the fluorescence-based quantitative cell analysis of L-forms during growth and proliferation. Here, we evaluated the expression of multiple fluorescent proteins (FPs) under different promoters in the Bacillus subtilis L-form strain LR2 using confocal microscopy and imaging flow cytometry. Among others, Pylb-derived NBP3510 showed a superior performance for inducing several FPs including EGFP and mKO2 in both the wild-type and L-form strains. Moreover, NBP3510 was also active in Escherichia coli and its L-form strain NC-7. Employing these established FP-labeled strains, we demonstrated distinct morphologies in the L-form bacteria in a quantitative manner. Given cell-wall-deficient bacteria are considered protocell and synthetic cell models, the generated cell lines in our work could be valuable for L-form-based research.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jian Xu
- Laboratory of Biology and Information Science, School of Life Sciences, East China Normal University, Shanghai 200062, China
| | - Tetsuya Yomo
- Laboratory of Biology and Information Science, School of Life Sciences, East China Normal University, Shanghai 200062, China
| |
Collapse
|
30
|
Atasoy M, Álvarez Ordóñez A, Cenian A, Djukić-Vuković A, Lund PA, Ozogul F, Trček J, Ziv C, De Biase D. Exploitation of microbial activities at low pH to enhance planetary health. FEMS Microbiol Rev 2024; 48:fuad062. [PMID: 37985709 PMCID: PMC10963064 DOI: 10.1093/femsre/fuad062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/31/2023] [Accepted: 11/17/2023] [Indexed: 11/22/2023] Open
Abstract
Awareness is growing that human health cannot be considered in isolation but is inextricably woven with the health of the environment in which we live. It is, however, under-recognized that the sustainability of human activities strongly relies on preserving the equilibrium of the microbial communities living in/on/around us. Microbial metabolic activities are instrumental for production, functionalization, processing, and preservation of food. For circular economy, microbial metabolism would be exploited to produce building blocks for the chemical industry, to achieve effective crop protection, agri-food waste revalorization, or biofuel production, as well as in bioremediation and bioaugmentation of contaminated areas. Low pH is undoubtedly a key physical-chemical parameter that needs to be considered for exploiting the powerful microbial metabolic arsenal. Deviation from optimal pH conditions has profound effects on shaping the microbial communities responsible for carrying out essential processes. Furthermore, novel strategies to combat contaminations and infections by pathogens rely on microbial-derived acidic molecules that suppress/inhibit their growth. Herein, we present the state-of-the-art of the knowledge on the impact of acidic pH in many applied areas and how this knowledge can guide us to use the immense arsenal of microbial metabolic activities for their more impactful exploitation in a Planetary Health perspective.
Collapse
Affiliation(s)
- Merve Atasoy
- UNLOCK, Wageningen University & Research and Technical University Delft, Droevendaalsesteeg 4, 6708 PB,Wageningen, the Netherlands
| | - Avelino Álvarez Ordóñez
- Department of Food Hygiene and Technology and Institute of Food Science and Technology, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | - Adam Cenian
- Institute of Fluid Flow Machinery, Polish Academy of Sciences, Department of Physical Aspects of Ecoenergy, 14 Fiszera St., 80-231 Gdańsk, Poland
| | - Aleksandra Djukić-Vuković
- Department of Biochemical Engineering and Biotechnology, Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11120 Belgrade, Serbia
| | - Peter A Lund
- Institute of Microbiology and Infection,School of Biosciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Fatih Ozogul
- Department of Seafood Processing and Technology, Faculty of Fisheries, Cukurova University, Balcali, 01330, Adana, Turkey
- Biotechnology Research and Application Center, Cukurova University, Balcali, 01330 Adana, Turkey
| | - Janja Trček
- Department of Biology, Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška cesta 160, 2000 Maribor, Slovenia
| | - Carmit Ziv
- Department of Postharvest Science, Agricultural Research Organization – Volcani Center, 68 HaMaccabim Road , P.O.B 15159 Rishon LeZion 7505101, Israel
| | - Daniela De Biase
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica 79, 04100 Latina, Italy
| |
Collapse
|
31
|
Velasquez-Guzman JC, Huttanus HM, Morales DP, Werner TS, Carroll AL, Guss AM, Yeager CM, Dale T, Jha RK. Biosensors for the detection of chorismate and cis,cis-muconic acid in Corynebacterium glutamicum. J Ind Microbiol Biotechnol 2024; 51:kuae024. [PMID: 38944415 PMCID: PMC11258901 DOI: 10.1093/jimb/kuae024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 06/27/2024] [Indexed: 07/01/2024]
Abstract
Corynebacterium glutamicum ATCC 13032 is a promising microbial chassis for industrial production of valuable compounds, including aromatic amino acids derived from the shikimate pathway. In this work, we developed two whole-cell, transcription factor based fluorescent biosensors to track cis,cis-muconic acid (ccMA) and chorismate in C. glutamicum. Chorismate is a key intermediate in the shikimate pathway from which value-added chemicals can be produced, and a shunt from the shikimate pathway can divert carbon to ccMA, a high value chemical. We transferred a ccMA-inducible transcription factor, CatM, from Acinetobacter baylyi ADP1 into C. glutamicum and screened a promoter library to isolate variants with high sensitivity and dynamic range to ccMA by providing benzoate, which is converted to ccMA intracellularly. The biosensor also detected exogenously supplied ccMA, suggesting the presence of a putative ccMA transporter in C. glutamicum, though the external ccMA concentration threshold to elicit a response was 100-fold higher than the concentration of benzoate required to do so through intracellular ccMA production. We then developed a chorismate biosensor, in which a chorismate inducible promoter regulated by natively expressed QsuR was optimized to exhibit a dose-dependent response to exogenously supplemented quinate (a chorismate precursor). A chorismate-pyruvate lyase encoding gene, ubiC, was introduced into C. glutamicum to lower the intracellular chorismate pool, which resulted in loss of dose dependence to quinate. Further, a knockout strain that blocked the conversion of quinate to chorismate also resulted in absence of dose dependence to quinate, validating that the chorismate biosensor is specific to intracellular chorismate pool. The ccMA and chorismate biosensors were dually inserted into C. glutamicum to simultaneously detect intracellularly produced chorismate and ccMA. Biosensors, such as those developed in this study, can be applied in C. glutamicum for multiplex sensing to expedite pathway design and optimization through metabolic engineering in this promising chassis organism. ONE-SENTENCE SUMMARY High-throughput screening of promoter libraries in Corynebacterium glutamicum to establish transcription factor based biosensors for key metabolic intermediates in shikimate and β-ketoadipate pathways.
Collapse
Affiliation(s)
- Jeanette C Velasquez-Guzman
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
- Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
- Agile BioFoundry, Emeryville, CA 94608, USA
| | - Herbert M Huttanus
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
- Agile BioFoundry, Emeryville, CA 94608, USA
| | - Demosthenes P Morales
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Tara S Werner
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
- Agile BioFoundry, Emeryville, CA 94608, USA
| | - Austin L Carroll
- Agile BioFoundry, Emeryville, CA 94608, USA
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - Adam M Guss
- Agile BioFoundry, Emeryville, CA 94608, USA
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - Chris M Yeager
- Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
- Agile BioFoundry, Emeryville, CA 94608, USA
| | - Taraka Dale
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
- Agile BioFoundry, Emeryville, CA 94608, USA
| | - Ramesh K Jha
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
- Agile BioFoundry, Emeryville, CA 94608, USA
| |
Collapse
|
32
|
Li Z. Study on the Construction and Application of Engineering Bacteria. LECTURE NOTES IN COMPUTER SCIENCE 2024:329-342. [DOI: 10.1007/978-3-031-64636-2_25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
33
|
Verhoeven MD, Nielsen PH, Dueholm MKD. Amplicon-guided isolation and cultivation of previously uncultured microbial species from activated sludge. Appl Environ Microbiol 2023; 89:e0115123. [PMID: 38051071 PMCID: PMC10734543 DOI: 10.1128/aem.01151-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/23/2023] [Indexed: 12/07/2023] Open
Abstract
IMPORTANCE Biological wastewater treatment relies on complex microbial communities that assimilate nutrients and break down pollutants in the wastewater. Knowledge about the physiology and metabolism of bacteria in wastewater treatment plants (WWTPs) may therefore be used to improve the efficacy and economy of wastewater treatment. Our current knowledge is largely based on 16S rRNA gene amplicon profiling, fluorescence in situ hybridization studies, and predictions based on metagenome-assembled genomes. Bacterial isolates are often required to validate genome-based predictions as they allow researchers to analyze a specific species without interference from other bacteria and with simple bulk measurements. Unfortunately, there are currently very few pure cultures representing the microbes commonly found in WWTPs. To address this, we introduce an isolation strategy that takes advantage of state-of-the-art microbial profiling techniques to uncover suitable growth conditions for key WWTP microbes. We furthermore demonstrate that this information can be used to isolate key organisms representing global WWTPs.
Collapse
Affiliation(s)
- Maarten D. Verhoeven
- Department of Chemistry and Bioscience, Center for Microbial Communities, Aalborg University, Aalborg, Denmark
| | - Per H. Nielsen
- Department of Chemistry and Bioscience, Center for Microbial Communities, Aalborg University, Aalborg, Denmark
| | - Morten K. D. Dueholm
- Department of Chemistry and Bioscience, Center for Microbial Communities, Aalborg University, Aalborg, Denmark
| |
Collapse
|
34
|
Chainani Y, Bonnanzio G, Tyo KE, Broadbelt LJ. Coupling chemistry and biology for the synthesis of advanced bioproducts. Curr Opin Biotechnol 2023; 84:102992. [PMID: 37688985 DOI: 10.1016/j.copbio.2023.102992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/30/2023] [Accepted: 08/05/2023] [Indexed: 09/11/2023]
Abstract
Chemical and biological syntheses can both lead to a myriad of compounds. Biology enables us to harness the metabolism of microbial cell factories to produce key target molecules from renewable biomass-derived substrates. Although bio-based feedstocks are sustainably sourced and more benign than the rapidly depleting fossil fuels that chemical processes have historically relied on, limiting pathways solely to biological reactions may not equate to a greener process overall. In fact, bioreactors rely on substantial quantities of water and can be inefficient since organisms typically operate around ambient conditions and are sensitive to perturbations in their environment. Hybridizing biosynthetic pathways with green chemistry can instead be a more potent strategy to reduce our net manufacturing footprint. Emerging chemistries have demonstrated considerable success in performing complex transformations on biological feedstocks without significant solvent use. Many of these transformations would be too slow to perform enzymatically or infeasible altogether. Here, we put forth the concept that by carefully considering the merits and drawbacks of synthetic biology and chemistry as well as one's own use case, there exist many opportunities for coupling the two. Merging these syntheses can unlock a wider suite of functional group transformations, thereby enabling future manufacturing processes to sustainably access a larger space of valuable, platform chemicals.
Collapse
Affiliation(s)
- Yash Chainani
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA; Center for Synthetic Biology, Northwestern University, Evanston, IL, USA
| | - Geoffrey Bonnanzio
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA; Center for Synthetic Biology, Northwestern University, Evanston, IL, USA
| | - Keith Ej Tyo
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA; Center for Synthetic Biology, Northwestern University, Evanston, IL, USA
| | - Linda J Broadbelt
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA; Center for Synthetic Biology, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
35
|
Pankratz D, Gomez NO, Nielsen A, Mustafayeva A, Gür M, Arce-Rodriguez F, Nikel PI, Häussler S, Arce-Rodriguez A. An expanded CRISPR-Cas9-assisted recombineering toolkit for engineering genetically intractable Pseudomonas aeruginosa isolates. Nat Protoc 2023; 18:3253-3288. [PMID: 37798358 DOI: 10.1038/s41596-023-00882-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 06/28/2023] [Indexed: 10/07/2023]
Abstract
Much of our current understanding of microbiology is based on the application of genetic engineering procedures. Since their inception (more than 30 years ago), methods based largely on allelic exchange and two-step selection processes have become a cornerstone of contemporary bacterial genetics. While these tools are established for adapted laboratory strains, they have limited applicability in clinical or environmental isolates displaying a large and unknown genetic repertoire that are recalcitrant to genetic modifications. Hence, new tools allowing genetic engineering of intractable bacteria must be developed to gain a comprehensive understanding of them in the context of their biological niche. Herein, we present a method for precise, efficient and rapid engineering of the opportunistic pathogen Pseudomonas aeruginosa. This procedure relies on recombination of short single-stranded DNA facilitated by targeted double-strand DNA breaks mediated by a synthetic Cas9 coupled with the efficient Ssr recombinase. Possible applications include introducing single-nucleotide polymorphisms, short or long deletions, and short DNA insertions using synthetic single-stranded DNA templates, drastically reducing the need of PCR and cloning steps. Our toolkit is encoded on two plasmids, harboring an array of different antibiotic resistance cassettes; hence, this approach can be successfully applied to isolates displaying natural antibiotic resistances. Overall, this toolkit substantially reduces the time required to introduce a range of genetic manipulations to a minimum of five experimental days, and enables a variety of research and biotechnological applications in both laboratory strains and difficult-to-manipulate P. aeruginosa isolates.
Collapse
Affiliation(s)
- Debbie Pankratz
- Department of Molecular Bacteriology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Institute for Molecular Bacteriology, TWINCORE, Centre for Experimental and Clinical Infection Research, Hannover, Germany
| | - Nicolas Oswaldo Gomez
- Department of Molecular Bacteriology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Agnes Nielsen
- Department of Molecular Bacteriology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Ayten Mustafayeva
- Institute of Microbiology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Melisa Gür
- Institute for Molecular Bacteriology, TWINCORE, Centre for Experimental and Clinical Infection Research, Hannover, Germany
- Department of Clinical Microbiology, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
| | - Fabián Arce-Rodriguez
- Department of Molecular Bacteriology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Pablo Ivan Nikel
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Susanne Häussler
- Department of Molecular Bacteriology, Helmholtz Centre for Infection Research, Braunschweig, Germany.
- Institute for Molecular Bacteriology, TWINCORE, Centre for Experimental and Clinical Infection Research, Hannover, Germany.
- Department of Clinical Microbiology, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark.
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany.
| | - Alejandro Arce-Rodriguez
- Department of Molecular Bacteriology, Helmholtz Centre for Infection Research, Braunschweig, Germany.
- Institute of Microbiology, Technische Universität Braunschweig, Braunschweig, Germany.
| |
Collapse
|
36
|
Volke DC, Gurdo N, Milanesi R, Nikel PI. Time-resolved, deuterium-based fluxomics uncovers the hierarchy and dynamics of sugar processing by Pseudomonas putida. Metab Eng 2023; 79:159-172. [PMID: 37454792 DOI: 10.1016/j.ymben.2023.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/30/2023] [Accepted: 07/13/2023] [Indexed: 07/18/2023]
Abstract
Pseudomonas putida, a microbial host widely adopted for metabolic engineering, processes glucose through convergent peripheral pathways that ultimately yield 6-phosphogluconate. The periplasmic gluconate shunt (PGS), composed by glucose and gluconate dehydrogenases, sequentially transforms glucose into gluconate and 2-ketogluconate. Although the secretion of these organic acids by P. putida has been extensively recognized, the mechanism and spatiotemporal regulation of the PGS remained elusive thus far. To address this challenge, we adopted a dynamic 13C- and 2H-metabolic flux analysis strategy, termed D-fluxomics. D-fluxomics demonstrated that the PGS underscores a highly dynamic metabolic architecture in glucose-dependent batch cultures of P. putida, characterized by hierarchical carbon uptake by the PGS throughout the cultivation. Additionally, we show that gluconate and 2-ketogluconate accumulation and consumption can be solely explained as a result of the interplay between growth rate-coupled and decoupled metabolic fluxes. As a consequence, the formation of these acids in the PGS is inversely correlated to the bacterial growth rate-unlike the widely studied overflow metabolism of Escherichia coli and yeast. Our findings, which underline survival strategies of soil bacteria thriving in their natural environments, open new avenues for engineering P. putida towards efficient, sugar-based bioprocesses.
Collapse
Affiliation(s)
- Daniel C Volke
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kongens Lyngby, Denmark.
| | - Nicolas Gurdo
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Riccardo Milanesi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126, Milano, Italy
| | - Pablo I Nikel
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kongens Lyngby, Denmark.
| |
Collapse
|
37
|
Chan DTC, Baldwin GS, Bernstein HC. Revealing the Host-Dependent Nature of an Engineered Genetic Inverter in Concordance with Physiology. BIODESIGN RESEARCH 2023; 5:0016. [PMID: 37849456 PMCID: PMC10432152 DOI: 10.34133/bdr.0016] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 07/17/2023] [Indexed: 10/19/2023] Open
Abstract
Broad-host-range synthetic biology is an emerging frontier that aims to expand our current engineerable domain of microbial hosts for biodesign applications. As more novel species are brought to "model status," synthetic biologists are discovering that identically engineered genetic circuits can exhibit different performances depending on the organism it operates within, an observation referred to as the "chassis effect." It remains a major challenge to uncover which genome-encoded and biological determinants will underpin chassis effects that govern the performance of engineered genetic devices. In this study, we compared model and novel bacterial hosts to ask whether phylogenomic relatedness or similarity in host physiology is a better predictor of genetic circuit performance. This was accomplished using a comparative framework based on multivariate statistical approaches to systematically demonstrate the chassis effect and characterize the performance dynamics of a genetic inverter circuit operating within 6 Gammaproteobacteria. Our results solidify the notion that genetic devices are strongly impacted by the host context. Furthermore, we formally determined that hosts exhibiting more similar metrics of growth and molecular physiology also exhibit more similar performance of the genetic inverter, indicating that specific bacterial physiology underpins measurable chassis effects. The result of this study contributes to the field of broad-host-range synthetic biology by lending increased predictive power to the implementation of genetic devices in less-established microbial hosts.
Collapse
Affiliation(s)
- Dennis Tin Chat Chan
- Faculty of Biosciences, Fisheries and Economics, UiT, The Arctic University of Norway, 9019 Tromsø, Norway
| | - Geoff S. Baldwin
- Department of Life Sciences, Imperial College London, South Kensington, London SW7 2AZ, UK
- Imperial College Centre for Synthetic Biology, Imperial College London, South Kensington, London SW7 2AZ, UK
| | - Hans C. Bernstein
- Faculty of Biosciences, Fisheries and Economics, UiT, The Arctic University of Norway, 9019 Tromsø, Norway
- The Arctic Centre for Sustainable Energy, UiT, The Arctic University of Norway, 9019 Tromsø, Norway
| |
Collapse
|
38
|
Pathiraja D, Park B, Kim B, Stougaard P, Choi IG. Constructing Marine Bacterial Metabolic Chassis for Potential Biorefinery of Red Algal Biomass and Agaropectin Wastes. ACS Synth Biol 2023; 12:1782-1793. [PMID: 37265394 DOI: 10.1021/acssynbio.3c00063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Marine red algal biomass is a promising feedstock for sustainable production of value-added chemicals. However, the major constituents of red algal biomass, such as agar and carrageenan, are not easily assimilated by most industrial metabolic chassis developed to date. Synthetic biology offers a solution by utilizing nonmodel organisms as metabolic chassis for consolidated biological processes. In this study, the marine heterotrophic bacterium Pseudoalteromonas atlantica T6c was harnessed as a metabolic chassis to produce value-added chemicals from the affordable red algal galactans or agaropectin, a byproduct of industrial agarose production. To construct a heterologous gene expression device in P. atlantica T6c, promoters related to agar metabolism were screened from the differentially expressed genes using RNA-Seq analysis. The expression device was built and tested with selected promoters fused to a reporter gene and tuned by incorporation of a cognate repressor predicted from the agar-specific polysaccharide utilization locus. The feasibility of the marine bacterial metabolic chassis was examined by introducing the biosynthetic gene clusters of β-carotene and violacein. Our results demonstrate that the metabolic chassis platform enables direct conversion of low-cost red algal galactans or industrial waste agaropectin into valuable bioactive pigments without any pretreatment of biomass. The developed marine bacterial chassis could potentially be used in a biorefinery framework to produce value-added chemicals from marine algal galactans.
Collapse
Affiliation(s)
- Duleepa Pathiraja
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea
| | - Byeonghyeok Park
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea
| | - Bogun Kim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea
| | - Peter Stougaard
- Department of Environmental Sciences, Aarhus University, DK-4000, Rockslide, Denmark
| | - In-Geol Choi
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea
| |
Collapse
|
39
|
Pearson AN, Thompson MG, Kirkpatrick LD, Ho C, Vuu KM, Waldburger LM, Keasling JD, Shih PM. The pGinger Family of Expression Plasmids. Microbiol Spectr 2023; 11:e0037323. [PMID: 37212656 PMCID: PMC10269703 DOI: 10.1128/spectrum.00373-23] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 05/09/2023] [Indexed: 05/23/2023] Open
Abstract
The pGinger suite of expression plasmids comprises 43 plasmids that will enable precise constitutive and inducible gene expression in a wide range of Gram-negative bacterial species. Constitutive vectors are composed of 16 synthetic constitutive promoters upstream of red fluorescent protein (RFP), with a broad-host-range BBR1 origin and a kanamycin resistance marker. The family also has seven inducible systems (Jungle Express, Psal/NahR, Pm/XylS, Prha/RhaS, LacO1/LacI, LacUV5/LacI, and Ptet/TetR) controlling RFP expression on BBR1/kanamycin plasmid backbones. For four of these inducible systems (Jungle Express, Psal/NahR, LacO1/LacI, and Ptet/TetR), we created variants that utilize the RK2 origin and spectinomycin or gentamicin selection. Relevant RFP expression and growth data have been collected in the model bacterium Escherichia coli as well as Pseudomonas putida. All pGinger vectors are available via the Joint BioEnergy Institute (JBEI) Public Registry. IMPORTANCE Metabolic engineering and synthetic biology are predicated on the precise control of gene expression. As synthetic biology expands beyond model organisms, more tools will be required that function robustly in a wide range of bacterial hosts. The pGinger family of plasmids constitutes 43 plasmids that will enable both constitutive and inducible gene expression in a wide range of nonmodel Proteobacteria.
Collapse
Affiliation(s)
- Allison N. Pearson
- Joint BioEnergy Institute, Emeryville, California, USA
- Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, California, USA
| | - Mitchell G. Thompson
- Joint BioEnergy Institute, Emeryville, California, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Liam D. Kirkpatrick
- Joint BioEnergy Institute, Emeryville, California, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Cindy Ho
- Joint BioEnergy Institute, Emeryville, California, USA
- Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Khanh M. Vuu
- Joint BioEnergy Institute, Emeryville, California, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Lucas M. Waldburger
- Joint BioEnergy Institute, Emeryville, California, USA
- Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
- Department of Bioengineering, University of California, Berkeley, California, USA
| | - Jay D. Keasling
- Joint BioEnergy Institute, Emeryville, California, USA
- Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California, USA
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
- Center for Synthetic Biochemistry, Institute for Synthetic Biology, Shenzhen Institutes for Advanced Technologies, Shenzhen, China
| | - Patrick M. Shih
- Joint BioEnergy Institute, Emeryville, California, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, California, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
- Innovative Genomics Institute, University of California, Berkeley, California, USA
| |
Collapse
|
40
|
Li B, Huang LG, Yang YF, Chen YY, Zhou XJ, Liu ZQ, Zheng YG. Metabolic engineering and pathway construction for O-acetyl-L-homoserine production in Escherichia coli. 3 Biotech 2023; 13:173. [PMID: 37188286 PMCID: PMC10170018 DOI: 10.1007/s13205-023-03564-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 04/15/2023] [Indexed: 05/17/2023] Open
Abstract
O-Acetyl-L-homoserine (OAH) is a potentially important platform metabolic intermediate for the production of homoserine lactone, methionine, 1,4-butanediol and 1,3-propanediol which have giant market value. Currently, multiple strategies have been adopted to explore sustainable production of OAH. However, the production of OAH by consuming cheap bio-based feedstocks with Escherichia coli as the chassis is still in its infancy. Construction of high yield OAH-producing strains is of great significance in industry. In this study, we introduced an exogenous metA from Bacillus cereus (metXbc) and engineered an OAH-producing strain by combinatorial metabolic engineering. Initially, exogenous metXs/metA were screened and used to reconstruct an initial biosynthesis pathway of OAH in E. coli. Subsequently, the disruption of degradation and competitive pathways combined with optimal expression of metXbc were carried out, accumulating 5.47 g/L OAH. Meanwhile, the homoserine pool was enriched by overexpressing metL with producing 7.42 g/L OAH. Lastly, the carbon flux of central carbon metabolism was redistributed to balance the metabolic flux of homoserine and acetyl coenzyme A (acetyl-CoA) in OAH biosynthesis with accumulating 8.29 g/L OAH. The engineered strain produced 24.33 g/L OAH with a yield of 0.23 g/g glucose in fed-batch fermentation. By these strategies, the key nodes for OAH synthesis were clarified and corresponding strategies were proposed. This study would lay a foundation for OAH bioproduction. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03564-5.
Collapse
Affiliation(s)
- Bo Li
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014 People’s Republic of China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014 People’s Republic of China
| | - Liang-Gang Huang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014 People’s Republic of China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014 People’s Republic of China
| | - Yu-Feng Yang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014 People’s Republic of China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014 People’s Republic of China
| | - Yuan-Yuan Chen
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014 People’s Republic of China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014 People’s Republic of China
| | - Xiao-Jie Zhou
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014 People’s Republic of China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014 People’s Republic of China
| | - Zhi-Qiang Liu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014 People’s Republic of China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014 People’s Republic of China
| | - Yu-Guo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014 People’s Republic of China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014 People’s Republic of China
| |
Collapse
|
41
|
Gurdo N, Volke DC, McCloskey D, Nikel PI. Automating the design-build-test-learn cycle towards next-generation bacterial cell factories. N Biotechnol 2023; 74:1-15. [PMID: 36736693 DOI: 10.1016/j.nbt.2023.01.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/15/2023] [Accepted: 01/22/2023] [Indexed: 02/04/2023]
Abstract
Automation is playing an increasingly significant role in synthetic biology. Groundbreaking technologies, developed over the past 20 years, have enormously accelerated the construction of efficient microbial cell factories. Integrating state-of-the-art tools (e.g. for genome engineering and analytical techniques) into the design-build-test-learn cycle (DBTLc) will shift the metabolic engineering paradigm from an almost artisanal labor towards a fully automated workflow. Here, we provide a perspective on how a fully automated DBTLc could be harnessed to construct the next-generation bacterial cell factories in a fast, high-throughput fashion. Innovative toolsets and approaches that pushed the boundaries in each segment of the cycle are reviewed to this end. We also present the most recent efforts on automation of the DBTLc, which heralds a fully autonomous pipeline for synthetic biology in the near future.
Collapse
Affiliation(s)
- Nicolás Gurdo
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens, Lyngby, Denmark
| | - Daniel C Volke
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens, Lyngby, Denmark
| | - Douglas McCloskey
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens, Lyngby, Denmark
| | - Pablo Iván Nikel
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens, Lyngby, Denmark.
| |
Collapse
|
42
|
Malhotra H, Saha BK, Phale PS. Development of efficient modules for recombinant protein expression and periplasmic localiszation in Pseudomonas bharatica CSV86 T. Protein Expr Purif 2023; 210:106310. [PMID: 37211150 DOI: 10.1016/j.pep.2023.106310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 05/23/2023]
Abstract
Escherichia coli has been widely employed as a host for heterologous protein expression. However, due to certain limitations, alternative hosts like Pseudomonas, Lactococcus and Bacillus are being explored. Pseudomonas bharatica CSV86T, a novel soil isolate, preferentially degrades wide range of aromatics over simple carbon sources like glucose and glycerol. Strain also possesses advantageous eco-physiological traits, making it an ideal host for engineering xenobiotic degradation pathways, which necessitates the development of heterologous expression systems. Based on the efficient growth, short lag-phase and rapid metabolism of naphthalene, Pnah and Psal promoters (regulated by NahR) were selected for expression. Pnah was found to be strong and leaky as compared to Psal, using 1-naphthol 2-hydroxylase (1NH, ∼66 kDa) as reporter gene in strain CSV86T. The Carbaryl hydrolase (CH, ∼72kDa) from Pseudomonas sp. C5pp was expressed under Pnah in strain CSV86T and could successfully be translocated to the periplasm due to the presence of the Tmd + Sp sequence. The recombinant CH was purified from the periplasmic fraction and the kinetic characteristics were found to be similar to the native protein from strain C5pp. These results potentiate the suitability of P. bharatica CSV86T as a desirable host, while Pnah and the Tmd + Sp can be employed for overexpression and periplasmic localisation, respectively. Such tools find application in heterologous protein expression and metabolic engineering applications.
Collapse
Affiliation(s)
- Harshit Malhotra
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Powai, Mumbai, 400076, India
| | - Braja Kishor Saha
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Powai, Mumbai, 400076, India
| | - Prashant S Phale
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Powai, Mumbai, 400076, India.
| |
Collapse
|
43
|
Ranaivoarisoa TO, Bai W, Rengasamy K, Steele H, Silberman M, Olabode J, Bose A. Improving bioplastic production by Rhodopseudomonas palustris TIE-1 using synthetic biology and metabolic engineering. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.17.541174. [PMID: 37292853 PMCID: PMC10245724 DOI: 10.1101/2023.05.17.541174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
With the increasing demand for sustainably produced renewable resources, it is important to look towards microorganisms capable of producing bioproducts such as biofuels and bioplastics. Though many systems for bioproduct production are well documented and tested in model organisms, it is essential to look beyond to non-model organisms to expand the field and take advantage of metabolically versatile strains. This investigation centers on Rhodopseudomonas palustris TIE-1, a purple, non-sulfur autotrophic, and anaerobic bacterium capable of producing bioproducts that are comparable to their petroleum-based counterparts. To induce bioplastic overproduction, genes that might have a potential role in the PHB biosynthesis such as the regulator, phaR, and phaZ known for its ability to degrade PHB granules were deleted using markerless deletion. Mutants in pathways that might compete with polyhydroxybutyrate (PHB) production such as glycogen and nitrogen fixation previously created to increase n -butanol production by TIE-1 were also tested. In addition, a phage integration system was developed to insert RuBisCO (RuBisCO form I and II genes) driven by a constitutive promoter P aphII into TIE- 1 genome. Our results show that deletion of the phaR gene of the PHB pathway increases PHB productivity when TIE-1 was grown photoheterotrophically with butyrate and ammonium chloride (NH 4 Cl). Mutants unable to make glycogen or fix dinitrogen gas show an increase in PHB productivity under photoautotrophic growth conditions with hydrogen. In addition, the engineered TIE-1 overexpressing RuBisCO form I and form II produces significantly more polyhydroxybutyrate than the wild type under photoheterotrophy with butyrate and photoautotrophy with hydrogen. Inserting RuBisCO genes into TIE-1 genome is a more effective strategy than deleting competitive pathways to increase PHB production in TIE-1. The phage integration system developed for TIE-1 thus creates numerous opportunities for synthetic biology in TIE-1.
Collapse
|
44
|
Park H, Faulkner M, Toogood HS, Chen GQ, Scrutton N. Online Omics Platform Expedites Industrial Application of Halomonas bluephagenesis TD1.0. Bioinform Biol Insights 2023; 17:11779322231171779. [PMID: 37200674 PMCID: PMC10185862 DOI: 10.1177/11779322231171779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 04/07/2023] [Indexed: 05/20/2023] Open
Abstract
Multi-omic data mining has the potential to revolutionize synthetic biology especially in non-model organisms that have not been extensively studied. However, tangible engineering direction from computational analysis remains elusive due to the interpretability of large datasets and the difficulty in analysis for non-experts. New omics data are generated faster than our ability to use and analyse results effectively, resulting in strain development that proceeds through classic methods of trial-and-error without insight into complex cell dynamics. Here we introduce a user-friendly, interactive website hosting multi-omics data. Importantly, this new platform allows non-experts to explore questions in an industrially important chassis whose cellular dynamics are still largely unknown. The web platform contains a complete KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway enrichment analysis derived from principal components analysis, an interactive bio-cluster heatmap analysis of genes, and the Halomonas TD1.0 genome-scale metabolic (GEM) model. As a case study of the effectiveness of this platform, we applied unsupervised machine learning to determine key differences between Halomonas bluephagenesis TD1.0 cultivated under varied conditions. Specifically, cell motility and flagella apparatus are identified to drive energy expenditure usage at different osmolarities, and predictions were verified experimentally using microscopy and fluorescence labelled flagella staining. As more omics projects are completed, this landing page will facilitate exploration and targeted engineering efforts of the robust, industrial chassis H bluephagenesis for researchers without extensive bioinformatics background.
Collapse
Affiliation(s)
- Helen Park
- EPSRC/BBSRC Future Biomanufacturing Research Hub and BBSRC Synthetic Biology Research Centre SYNBIOCHEM, Manchester Institute of Biotechnology and Department of Chemistry, The University of Manchester, Manchester, UK
- Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Matthew Faulkner
- EPSRC/BBSRC Future Biomanufacturing Research Hub and BBSRC Synthetic Biology Research Centre SYNBIOCHEM, Manchester Institute of Biotechnology and Department of Chemistry, The University of Manchester, Manchester, UK
| | - Helen S Toogood
- EPSRC/BBSRC Future Biomanufacturing Research Hub and BBSRC Synthetic Biology Research Centre SYNBIOCHEM, Manchester Institute of Biotechnology and Department of Chemistry, The University of Manchester, Manchester, UK
| | - Guo-Qiang Chen
- Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Nigel Scrutton
- EPSRC/BBSRC Future Biomanufacturing Research Hub and BBSRC Synthetic Biology Research Centre SYNBIOCHEM, Manchester Institute of Biotechnology and Department of Chemistry, The University of Manchester, Manchester, UK
| |
Collapse
|
45
|
Wilkes RA, Waldbauer J, Carroll A, Nieto-Domínguez M, Parker DJ, Zhang L, Guss AM, Aristilde L. Complex regulation in a Comamonas platform for diverse aromatic carbon metabolism. Nat Chem Biol 2023; 19:651-662. [PMID: 36747056 PMCID: PMC10154247 DOI: 10.1038/s41589-022-01237-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 11/29/2022] [Indexed: 02/08/2023]
Abstract
Critical to a sustainable energy future are microbial platforms that can process aromatic carbons from the largely untapped reservoir of lignin and plastic feedstocks. Comamonas species present promising bacterial candidates for such platforms because they can use a range of natural and xenobiotic aromatic compounds and often possess innate genetic constraints that avoid competition with sugars. However, the metabolic reactions of these species are underexplored, and the regulatory mechanisms are unknown. Here we identify multilevel regulation in the conversion of lignin-related natural aromatic compounds, 4-hydroxybenzoate and vanillate, and the plastics-related xenobiotic aromatic compound, terephthalate, in Comamonas testosteroni KF-1. Transcription-level regulation controls initial catabolism and cleavage, but metabolite-level thermodynamic regulation governs fluxes in central carbon metabolism. Quantitative 13C mapping of tricarboxylic acid cycle and cataplerotic reactions elucidates key carbon routing not evident from enzyme abundance changes. This scheme of transcriptional activation coupled with metabolic fine-tuning challenges outcome predictions during metabolic manipulations.
Collapse
Affiliation(s)
- Rebecca A Wilkes
- Department of Biological and Environmental Engineering, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, USA
- Department of Civil and Environmental Engineering, McCormick School of Engineering and Applied Science, Northwestern University, Evanston, IL, USA
| | - Jacob Waldbauer
- Department of the Geophysical Sciences, University of Chicago, Chicago, IL, USA
| | - Austin Carroll
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Manuel Nieto-Domínguez
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Darren J Parker
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Lichun Zhang
- Department of the Geophysical Sciences, University of Chicago, Chicago, IL, USA
| | - Adam M Guss
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Ludmilla Aristilde
- Department of Biological and Environmental Engineering, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, USA.
- Department of Civil and Environmental Engineering, McCormick School of Engineering and Applied Science, Northwestern University, Evanston, IL, USA.
- Northwestern Center for Synthetic Biology, Evanston, IL, USA.
| |
Collapse
|
46
|
Carranza-Saavedra D, Torres-Bacete J, Blázquez B, Sánchez Henao CP, Zapata Montoya JE, Nogales J. System metabolic engineering of Escherichia coli W for the production of 2-ketoisovalerate using unconventional feedstock. Front Bioeng Biotechnol 2023; 11:1176445. [PMID: 37152640 PMCID: PMC10158823 DOI: 10.3389/fbioe.2023.1176445] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/06/2023] [Indexed: 05/09/2023] Open
Abstract
Replacing traditional substrates in industrial bioprocesses to advance the sustainable production of chemicals is an urgent need in the context of the circular economy. However, since the limited degradability of non-conventional carbon sources often returns lower yields, effective exploitation of such substrates requires a multi-layer optimization which includes not only the provision of a suitable feedstock but the use of highly robust and metabolically versatile microbial biocatalysts. We tackled this challenge by means of systems metabolic engineering and validated Escherichia coli W as a promising cell factory for the production of the key building block chemical 2-ketoisovalerate (2-KIV) using whey as carbon source, a widely available and low-cost agro-industrial waste. First, we assessed the growth performance of Escherichia coli W on mono and disaccharides and demonstrated that using whey as carbon source enhances it significantly. Second, we searched the available literature and used metabolic modeling approaches to scrutinize the metabolic space of E. coli and explore its potential for overproduction of 2-KIV identifying as basic strategies the block of pyruvate depletion and the modulation of NAD/NADP ratio. We then used our model predictions to construct a suitable microbial chassis capable of overproducing 2-KIV with minimal genetic perturbations, i.e., deleting the pyruvate dehydrogenase and malate dehydrogenase. Finally, we used modular cloning to construct a synthetic 2-KIV pathway that was not sensitive to negative feedback, which effectively resulted in a rerouting of pyruvate towards 2-KIV. The resulting strain shows titers of up to 3.22 ± 0.07 g/L of 2-KIV and 1.40 ± 0.04 g/L of L-valine in 24 h using whey in batch cultures. Additionally, we obtained yields of up to 0.81 g 2-KIV/g substrate. The optimal microbial chassis we present here has minimal genetic modifications and is free of nutritional autotrophies to deliver high 2-KIV production rates using whey as a non-conventional substrate.
Collapse
Affiliation(s)
- Darwin Carranza-Saavedra
- Faculty of Pharmaceutical and Food Sciences, Nutrition and Food Technology Group, University of Antioquia, Medellín, Colombia
- Department of Systems Biology, National Centre for Biotechnology (CSIC), Systems Biotechnology Group, Madrid, Spain
- Interdisciplinary Platform for Sustainable Plastics Towards a Circular Economy‐Spanish National Research Council (SusPlast‐CSIC), Madrid, Spain
| | - Jesús Torres-Bacete
- Department of Systems Biology, National Centre for Biotechnology (CSIC), Systems Biotechnology Group, Madrid, Spain
| | - Blas Blázquez
- Department of Systems Biology, National Centre for Biotechnology (CSIC), Systems Biotechnology Group, Madrid, Spain
- Interdisciplinary Platform for Sustainable Plastics Towards a Circular Economy‐Spanish National Research Council (SusPlast‐CSIC), Madrid, Spain
| | - Claudia Patricia Sánchez Henao
- Faculty of Pharmaceutical and Food Sciences, Nutrition and Food Technology Group, University of Antioquia, Medellín, Colombia
| | - José Edgar Zapata Montoya
- Faculty of Pharmaceutical and Food Sciences, Nutrition and Food Technology Group, University of Antioquia, Medellín, Colombia
| | - Juan Nogales
- Department of Systems Biology, National Centre for Biotechnology (CSIC), Systems Biotechnology Group, Madrid, Spain
- Interdisciplinary Platform for Sustainable Plastics Towards a Circular Economy‐Spanish National Research Council (SusPlast‐CSIC), Madrid, Spain
| |
Collapse
|
47
|
Ding Q, Ye C. Recent advances in producing food additive L-malate: Chassis, substrate, pathway, fermentation regulation and application. Microb Biotechnol 2023; 16:709-725. [PMID: 36604311 PMCID: PMC10034640 DOI: 10.1111/1751-7915.14206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 12/22/2022] [Indexed: 01/07/2023] Open
Abstract
In addition to being an important intermediate in the TCA cycle, L-malate is also widely used in the chemical and beverage industries. Due to the resulting high demand, numerous studies investigated chemical methods to synthesize L-malate from petrochemical resources, but such approaches are hampered by complex downstream processing and environmental pollution. Accordingly, there is an urgent need to develop microbial methods for environmentally-friendly and economical L-malate biosynthesis. The rapid progress and understanding of DNA manipulation, cell physiology, and cell metabolism can improve industrial L-malate biosynthesis by applying intelligent biochemical strategies and advanced synthetic biology tools. In this paper, we mainly focused on biotechnological approaches for enhancing L-malate synthesis, encompassing the microbial chassis, substrate utilization, synthesis pathway, fermentation regulation, and industrial application. This review emphasizes the application of novel metabolic engineering strategies and synthetic biology tools combined with a deep understanding of microbial physiology to improve industrial L-malate biosynthesis in the future.
Collapse
Affiliation(s)
- Qiang Ding
- School of Life SciencesAnhui UniversityHefeiChina
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education InstitutesAnhui UniversityHefeiChina
- Anhui Key Laboratory of Modern BiomanufacturingHefeiChina
| | - Chao Ye
- School of Food Science and Pharmaceutical EngineeringNanjing Normal UniversityNanjingChina
| |
Collapse
|
48
|
Cárdenas Espinosa MJ, Schmidgall T, Pohl J, Wagner G, Wynands B, Wierckx N, Heipieper HJ, Eberlein C. Assessment of New and Genome-Reduced Pseudomonas Strains Regarding Their Robustness as Chassis in Biotechnological Applications. Microorganisms 2023; 11:microorganisms11040837. [PMID: 37110260 PMCID: PMC10144732 DOI: 10.3390/microorganisms11040837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/12/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
Organic olvent-tolerant strains of the Gram-negative bacterial genus Pseudomonas are discussed as potential biocatalysts for the biotechnological production of various chemicals. However, many current strains with the highest tolerance are belonging to the species P. putida and are classified as biosafety level 2 strains, which makes them uninteresting for the biotechnological industry. Therefore, it is necessary to identify other biosafety level 1 Pseudomonas strains with high tolerance towards solvents and other forms of stress, which are suitable for establishing production platforms of biotechnological processes. In order to exploit the native potential of Pseudomonas as a microbial cell factory, the biosafety level 1 strain P. taiwanensis VLB120 and its genome-reduced chassis (GRC) variants as well as the plastic-degrading strain P. capeferrum TDA1 were assessed regarding their tolerance towards different n-alkanols (1-butanol, 1-hexanol, 1-octanol, 1-decanol). Toxicity of the solvents was investigated by their effects on bacterial growth rates given as the EC50 concentrations. Hereby, both toxicities as well as the adaptive responses of P. taiwanensis GRC3 and P. capeferrum TDA1 showed EC50 values up to two-fold higher than those previously detected for P. putida DOT-T1E (biosafety level 2), one of the best described solvent-tolerant bacteria. Furthermore, in two-phase solvent systems, all the evaluated strains were adapted to 1-decanol as a second organic phase (i.e., OD560 was at least 0.5 after 24 h of incubation with 1% (v/v) 1-decanol), which shows the potential use of these strains as platforms for the bio-production of a wide variety of chemicals at industrial level.
Collapse
Affiliation(s)
- María José Cárdenas Espinosa
- Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research—UFZ, 04318 Leipzig, Germany
| | - Tabea Schmidgall
- Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research—UFZ, 04318 Leipzig, Germany
| | - Jessica Pohl
- Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research—UFZ, 04318 Leipzig, Germany
| | - Georg Wagner
- Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research—UFZ, 04318 Leipzig, Germany
| | - Benedikt Wynands
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, 52428 Jülich, Germany
| | - Nick Wierckx
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, 52428 Jülich, Germany
| | - Hermann J. Heipieper
- Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research—UFZ, 04318 Leipzig, Germany
| | - Christian Eberlein
- Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research—UFZ, 04318 Leipzig, Germany
- Correspondence:
| |
Collapse
|
49
|
Amarelle V, Roldán DM, Fabiano E, Guazzaroni ME. Synthetic Biology Toolbox for Antarctic Pseudomonas sp. Strains: Toward a Psychrophilic Nonmodel Chassis for Function-Driven Metagenomics. ACS Synth Biol 2023; 12:722-734. [PMID: 36862944 DOI: 10.1021/acssynbio.2c00543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
One major limitation of function-driven metagenomics is the ability of the host to express the metagenomic DNA correctly. Differences in the transcriptional, translational, and post-translational machinery between the organism to which the DNA belongs and the host strain are all factors that influence the success of a functional screening. For this reason, the use of alternative hosts is an appropriate approach to favor the identification of enzymatic activities in function-driven metagenomics. To be implemented, appropriate tools should be designed to build the metagenomic libraries in those hosts. Moreover, discovery of new chassis and characterization of synthetic biology toolbox in nonmodel bacteria is an active field of research to expand the potential of these organisms in processes of industrial interest. Here, we assessed the suitability of two Antarctic psychrotolerant Pseudomonas strains as putative alternative hosts for function-driven metagenomics using pSEVA modular vectors as scaffold. We determined a set of synthetic biology tools suitable for these hosts and, as a proof of concept, we demonstrated their fitness for heterologous protein expression. These hosts represent a step forward for the prospection and identification of psychrophilic enzymes of biotechnological interest.
Collapse
Affiliation(s)
- Vanesa Amarelle
- Departamento de Bioquímica y Genómica Microbianas. Instituto de Investigaciones Biológicas Clemente Estable, Av. Italia 3318, Montevideo 11600, Uruguay
| | - Diego M Roldán
- Departamento de Bioquímica y Genómica Microbianas. Instituto de Investigaciones Biológicas Clemente Estable, Av. Italia 3318, Montevideo 11600, Uruguay
| | - Elena Fabiano
- Departamento de Bioquímica y Genómica Microbianas. Instituto de Investigaciones Biológicas Clemente Estable, Av. Italia 3318, Montevideo 11600, Uruguay
| | - María-Eugenia Guazzaroni
- Departamento de Biologia. FFCLRP, University of São Paulo, 14049-901 Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
50
|
Lai B, Krömer J, Aulenta F, Wu H, Nikel PI. Exploiting synergies between microbial electrochemical technologies and synthetic biology. Microb Biotechnol 2023; 16:485-488. [PMID: 36622031 PMCID: PMC9948174 DOI: 10.1111/1751-7915.14208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 12/22/2022] [Indexed: 01/10/2023] Open
Affiliation(s)
- Bin Lai
- BMBF Junior Research Group Biophotovoltaics, Helmholtz Center for Environmental Research - UFZ, Leipzig, Germany
| | - Jens Krömer
- Systems Biotechnology Group, Helmholtz Center for Environmental Research - UFZ, Leipzig, Germany
| | - Federico Aulenta
- Water Research Institute (IRSA), National Research Council (CNR), Rome, Italy
| | - Hui Wu
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Pablo Ivan Nikel
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark - Kgs, Lyngby, Denmark
| |
Collapse
|