1
|
Liberty JT, Lin H, Kucha C, Sun S, Alsalman FB. Innovative approaches to food traceability with DNA barcoding: Beyond traditional labels and certifications. ECOLOGICAL GENETICS AND GENOMICS 2025; 34:100317. [DOI: 10.1016/j.egg.2024.100317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
2
|
Fahldieck M, Rulik B, Thormann J, Mengual X. A DNA barcode reference library for the Tipulidae (Insecta, Diptera) of Germany. Biodivers Data J 2024; 12:e127190. [PMID: 39360178 PMCID: PMC11445608 DOI: 10.3897/bdj.12.e127190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 09/17/2024] [Indexed: 10/04/2024] Open
Abstract
Tipulidae, commonly known as true crane flies, represent one of the most species-rich dipteran families, boasting approximately 4,500 known species globally. Their larvae serve as vital decomposers across diverse ecosystems, prompting their frequent and close observation in biomonitoring programs. However, traditional morphological identification methods are laborious and time-consuming, underscoring the need for a comprehensive DNA barcode reference library to speed up species determination. In this study, we present the outcomes of the German Barcode of Life initiative focused on Tipulidae. Our DNA barcode library comprises 824 high-quality cytochrome c oxidase I (COI) barcodes encompassing 76 crane fly species, counting for ca. 54% of the German tipulid fauna. Our results significantly increased the number of European tipulid species available in the Barcode of Life Data System (BOLD) by 14%. Additionally, the number of barcodes from European tipulid specimens more than doubled, with an increase of 118%, bolstering the DNA resource for future identification inquiries. Employing diverse species delimitation algorithms - including the multi-rate Poisson tree processes model (mPTP), Barcode Index Number assignments (BIN), Assemble Species by Automatic Partitioning (ASAP), and the TaxCI R-script - we successfully match 76-86% of the morphologically identified species. Further validation through neighbor-joining tree topology analysis and comparison with 712 additional European tipulid barcodes yield a remarkable 89% success rate for the species identification of German tipulids based on COI barcodes. This comprehensive DNA barcode dataset not only enhances species identification accuracy but also serves as a pivotal resource for ecological and biomonitoring studies, fostering a deeper understanding of crane fly diversity and distribution across terrestrial landscapes.
Collapse
Affiliation(s)
- Moritz Fahldieck
- Museum Koenig, Leibniz-Institut zur Analyse des Biodiversitätswandels, Bonn, GermanyMuseum Koenig, Leibniz-Institut zur Analyse des BiodiversitätswandelsBonnGermany
| | - Björn Rulik
- Museum Koenig, Leibniz-Institut zur Analyse des Biodiversitätswandels, Bonn, GermanyMuseum Koenig, Leibniz-Institut zur Analyse des BiodiversitätswandelsBonnGermany
| | - Jana Thormann
- Museum Koenig, Leibniz-Institut zur Analyse des Biodiversitätswandels, Bonn, GermanyMuseum Koenig, Leibniz-Institut zur Analyse des BiodiversitätswandelsBonnGermany
| | - Ximo Mengual
- Museum Koenig, Leibniz-Institut zur Analyse des Biodiversitätswandels, Bonn, GermanyMuseum Koenig, Leibniz-Institut zur Analyse des BiodiversitätswandelsBonnGermany
| |
Collapse
|
3
|
Cassar LF, Massa B, Gauci A, Bartolo AG, Schembri S. A review of the genus Eugaster Serville, 1838 (Orthoptera, Tettigoniidae, Hetrodinae): a multifaceted approach. Zootaxa 2024; 5506:501-532. [PMID: 39646646 DOI: 10.11646/zootaxa.5506.4.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Indexed: 12/10/2024]
Abstract
Overall coloration, size and thoracic morphology have formed the basis for taxonomic differentiation of taxa within the genus Eugaster at specific or subspecific levels over the years. The present study employs a range of methods to examine the morphology of 58 specimens (18♂♂ and 40♀♀) from Morocco, Algeria and Tunisia, collected from altitudes varying between 10 and 1795 metres AMSL. Moroccan sampling sites include localities on both the north and south of the High Atlas and from either side of the Middle Atlas, i.e., the Anti-Atlas, Western Meseta and High Plateau. The various techniques involve the characterisation of the five key colour forms and an investigation to examine links between colour form and geographical location and altitude, biometric analysis comprising selected variables, thoracic structure examination through feature extraction and edge detection, microscopy to examine male stridulatory files, an examination of the male genital sclerite structure for the presence of titillators, as well as molecular and phylogenetic analysis. Statistical tests are performed for results pertaining to biometrics, thoracic skeletisation, and the number of pegs on stridulatory organs. From results obtained, this study finds no basis to support the notion of the various taxa described in the past being assigned the rank of species and considers these to be infraspecific variants or forms. Consequently, the present authors propose to synonymise Eugaster guyoni (Serville, 1838) with Eugaster spinulosa (Johannson, 1763), resulting in the genus Eugaster being represented in North Africa by a unique but highly variable taxon, in terms of coloration, size and thoracic morphology.
Collapse
Affiliation(s)
| | - Bruno Massa
- Department of Agriculture; Food & Forest Sciences; University of Palermo (retd).
| | - Adam Gauci
- Department of Geosciences; Faculty of Science; University of Malta.
| | | | | |
Collapse
|
4
|
Sorokina S, Sevastianov N, Tarasova T, Vedenina V. The Fast Evolution of the Stenobothrini Grasshoppers (Orthoptera, Acrididae, and Gomphocerinae) Revealed by an Analysis of the Control Region of mtDNA, with an Emphasis on the Stenobothrus eurasius Group. INSECTS 2024; 15:592. [PMID: 39194797 DOI: 10.3390/insects15080592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/28/2024] [Accepted: 07/31/2024] [Indexed: 08/29/2024]
Abstract
The two cryptic grasshopper species of the genus Stenobothrus, S. eurasius and S. hyalosuperficies, demonstrate different acoustic behavior despite a strong similarity in morphology. A hybridization between these species is possible in the contact zone; however, there are little molecular data about the relationships of these species. The analysis of the mtDNA control region (CR) reveals that haplotypes of S. hyalosuperficies have more in common with the more distant Stenobothrus species than with the closely related S. eurasius. In the contact zone, S. eurasius has mt-haplotypes shared with S. hyalosuperficies, which might indicate an introgression of mtDNA from S. hyalosuperficies to the S. eurasius gene pool. We also analyze the structure and evolutionary rate of the mtDNA CR for the Stenobothrus genus and estimate the time of divergence of the species within the genus. The phylogenetic tree of the tribe Stenobothrini reconstructed with either the CR or COI gave the same four groups. The phylogenetic tree of the Stenobothrus genus has a star-like topology with each mtDNA haplotype found in any analyzed species, except S. eurasius, which forms a separate branch. The maximum degree of incomplete lineage sorting can demonstrate either ancestral polymorphism or introgression.
Collapse
Affiliation(s)
- Svetlana Sorokina
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 26 Vavilov Street, Moscow 119334, Russia
| | - Nikita Sevastianov
- Institute for Information Transmission Problems, Russian Academy of Sciences, 19 Bolshoy Karetny per., Moscow 127051, Russia
| | - Tatiana Tarasova
- Institute for Information Transmission Problems, Russian Academy of Sciences, 19 Bolshoy Karetny per., Moscow 127051, Russia
| | - Varvara Vedenina
- Institute for Information Transmission Problems, Russian Academy of Sciences, 19 Bolshoy Karetny per., Moscow 127051, Russia
| |
Collapse
|
5
|
Hochkirch A, Dey LS, Husemann M. Splitters versus Lumpers? Subspecies designations must rely on robust morphological and/or genetic data-a response to Nabholz et al. (2024). Zootaxa 2024; 5481:297-300. [PMID: 39646039 DOI: 10.11646/zootaxa.5481.2.8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Indexed: 12/10/2024]
Affiliation(s)
- Axel Hochkirch
- Musée national d'histoire naturelle Luxembourg; 25 rue Münster; 2160 Luxembourg; Luxembourg.
| | - Lara-Sophie Dey
- Senckenberg Deutsches Entomologisches Institut; Eberswalder Straße 90; 15374 Müncheberg; Germany.
| | - Martin Husemann
- Staatliches Museum für Naturkunde Karlsruhe; Erbprinzenstraße 13; 76133 Karlsruhe; Germany.
| |
Collapse
|
6
|
Nabholz B, Puissant S, Defaut B. A cautionary note on synonymization based on mitochondrial data in Orthoptera: a comment of Hochkirch et al. 2023. Zootaxa 2024; 5481:146-150. [PMID: 39646047 DOI: 10.11646/zootaxa.5481.1.10] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Indexed: 12/10/2024]
Abstract
Hochkirch et al. (2023) recently published a phylogeny of the band-winged grasshopper genus Oedipoda. Using three mitochondrial and one nuclear loci, they estimated the phylogeny of 177 specimens. This phylogeny offers insights into the evolutionary history and biogeography of the group and demonstrates the usefulness of molecular data to estimated populations and species histories. They also provide valid taxonomical changes, raising two former subspecies and one former synonymy to the species level. However, we believe that taxonomic changes regarding synonymization proposed by the authors are premature given the data utilized. Indeed, we will illustrate cases below where well-established species lack support from mitochondrial data, which is comparable to or even more extensive than that used by Hochkirch et al. (2023).
Collapse
Affiliation(s)
- Benoit Nabholz
- ISEM; Univ Montpellier; CNRS; IRD; Montpellier; France; Institut Universitaire de France (IUF); Paris; France.
| | - Stéphane Puissant
- Muséum d'Histoire naturelle; Direction Biodiversité - Jardin de l'Arquebuse; 14; rue Jehan de Marville; F-21000 Dijon.
| | | |
Collapse
|
7
|
Liu J, Xu H, Wang Z, Li P, Yan Z, Bai M, Li J. Phylogenetics, Molecular Species Delimitation and Geometric Morphometrics of All Reddish-Brown Species in the Genus Neotriplax Lewis, 1887 (Coleoptera: Erotylidae: Tritomini). INSECTS 2024; 15:508. [PMID: 39057241 PMCID: PMC11277550 DOI: 10.3390/insects15070508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/30/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024]
Abstract
To date, five species of reddish-brown Neotriplax have been described, but their highly similar body color and other phenotypic traits make accurate taxonomy challenging. To clarify species-level taxonomy and validate potential new species, the cytochrome oxidase subunit I (COI) was used for phylogenetic analysis and the geometric morphometrics of elytron, pronotum, and hind wing were employed to distinguish all reddish-brown Neotriplax species. Phylogenetic results using maximum likelihood and Bayesian analyses of COI sequences aligned well with the current taxonomy of the Neotriplax species group. Significant K2P divergences, with no overlap between intra- and interspecific genetic distances, were obtained in Neotriplax species. The automatic barcode gap discovery (ABGD), assemble species by automatic partitioning (ASAP), and generalized mixed Yule coalescent (GMYC) approaches concurred, dividing the similar species into eight molecular operational taxonomic units (MOTUs). Geometric morphometric analysis using pronotum, elytron, hind wing shape and wing vein patterns also validated the classification of all eight species. By integrating these analytical approaches with morphological evidence, we successfully delineated the reddish-brown species of Neotriplax into eight species with three new species: N. qinghaiensis sp. nov., N. maoershanensis sp. nov., and N. guangxiensis sp. nov. Furthermore, we documented the first record of N. lewisii in China. This study underscores the utility of an integrative taxonomy approach in species delimitation within Neotriplax and serves as a reference for the taxonomic revision of other morphologically challenging beetles through integrative taxonomy.
Collapse
Affiliation(s)
- Jing Liu
- College of Plant Protection, Hebei Agricultural University, Baoding 071000, China; (J.L.); (H.X.); (Z.W.)
| | - Huixin Xu
- College of Plant Protection, Hebei Agricultural University, Baoding 071000, China; (J.L.); (H.X.); (Z.W.)
| | - Ziqing Wang
- College of Plant Protection, Hebei Agricultural University, Baoding 071000, China; (J.L.); (H.X.); (Z.W.)
| | - Panpan Li
- Key Laboratory of Animal Biodiversity Conservation and Integrated Pest Management (Chinese Academy of Sciences), Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China;
| | - Zihan Yan
- Shijiazhuang Center for Disease Control and Prevention, Shijiazhuang 050011, China;
| | - Ming Bai
- College of Plant Protection, Hebei Agricultural University, Baoding 071000, China; (J.L.); (H.X.); (Z.W.)
- Key Laboratory of Animal Biodiversity Conservation and Integrated Pest Management (Chinese Academy of Sciences), Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China;
| | - Jing Li
- College of Plant Protection, Hebei Agricultural University, Baoding 071000, China; (J.L.); (H.X.); (Z.W.)
| |
Collapse
|
8
|
Pina S, Pauperio J, Barros F, Chaves C, Martins FMS, Pinto J, Veríssimo J, Mata VA, Beja P, Ferreira S. The InBIO Barcoding Initiative Database: DNA barcodes of Orthoptera from Portugal. Biodivers Data J 2024; 12:e118010. [PMID: 38784157 PMCID: PMC11112160 DOI: 10.3897/bdj.12.e118010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 02/24/2024] [Indexed: 05/25/2024] Open
Abstract
Background The InBIO Barcoding Initiative (IBI) Orthoptera dataset contains records of 420 specimens covering all the eleven Orthoptera families occurring in Portugal. Specimens were collected in continental Portugal from 2005 to 2021 and were morphologically identified to species level by taxonomists. A total of 119 species were identified corresponding to about 77% of all the orthopteran species known from continental Portugal. New information DNA barcodes of 54 taxa were made public for the first time at the Barcode of Life Data System (BOLD). Furthermore, the submitted sequences were found to cluster in 129 BINs (Barcode Index Numbers), 35 of which were new additions to the Barcode of Life Data System (BOLD). All specimens have their DNA barcodes publicly accessible through BOLD online database. Stenobothruslineatus is recorded for the first time for continental Portugal. This dataset greatly increases the knowledge on the DNA barcodes and distribution of Orthoptera from Portugal. All DNA extractions and most specimens are deposited in the IBI collection at CIBIO, Research Center in Biodiversity and Genetic Resources.
Collapse
Affiliation(s)
- Sílvia Pina
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485–661 Vairão, Vila do Conde, PortugalCIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485–661 VairãoVila do CondePortugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485–661 Vairão, Vila do Conde, PortugalBIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485–661 VairãoVila do CondePortugal
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, PortugalCIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Instituto Superior de Agronomia, Universidade de LisboaLisboaPortugal
| | - Joana Pauperio
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485–661 Vairão, Vila do Conde, PortugalCIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485–661 VairãoVila do CondePortugal
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, United KingdomEuropean Molecular Biology Laboratory, European Bioinformatics InstituteWellcome Genome Campus, Hinxton, CambridgeUnited Kingdom
| | - Francisco Barros
- Rua da Eira 3, S. Salvador, 2550-251, Cercal, PortugalRua da Eira 3, S. Salvador, 2550-251CercalPortugal
| | - Cátia Chaves
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485–661 Vairão, Vila do Conde, PortugalCIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485–661 VairãoVila do CondePortugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485–661 Vairão, Vila do Conde, PortugalBIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485–661 VairãoVila do CondePortugal
| | - Filipa MS Martins
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485–661 Vairão, Vila do Conde, PortugalCIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485–661 VairãoVila do CondePortugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485–661 Vairão, Vila do Conde, PortugalBIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485–661 VairãoVila do CondePortugal
| | - Joana Pinto
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485–661 Vairão, Vila do Conde, PortugalCIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485–661 VairãoVila do CondePortugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485–661 Vairão, Vila do Conde, PortugalBIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485–661 VairãoVila do CondePortugal
| | - Joana Veríssimo
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485–661 Vairão, Vila do Conde, PortugalCIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485–661 VairãoVila do CondePortugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485–661 Vairão, Vila do Conde, PortugalBIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485–661 VairãoVila do CondePortugal
| | - Vanessa A Mata
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485–661 Vairão, Vila do Conde, PortugalCIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485–661 VairãoVila do CondePortugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485–661 Vairão, Vila do Conde, PortugalBIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485–661 VairãoVila do CondePortugal
| | - Pedro Beja
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485–661 Vairão, Vila do Conde, PortugalCIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485–661 VairãoVila do CondePortugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485–661 Vairão, Vila do Conde, PortugalBIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485–661 VairãoVila do CondePortugal
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, PortugalCIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Instituto Superior de Agronomia, Universidade de LisboaLisboaPortugal
| | - Sónia Ferreira
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485–661 Vairão, Vila do Conde, PortugalCIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485–661 VairãoVila do CondePortugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485–661 Vairão, Vila do Conde, PortugalBIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485–661 VairãoVila do CondePortugal
- EBM, Estação Biológica de Mertola, Praça Luis de Camoes, Mertola, Mertola, PortugalEBM, Estação Biológica de Mertola, Praça Luis de Camoes, MertolaMertolaPortugal
| |
Collapse
|
9
|
Weissman DB, Song H, Vandergast AG. Phylogenomics, male internal genitalia, a new species, and other notes on New World Stenopelmatus Jerusalem crickets (Orthoptera: Stenopelmatoidea: Stenopelmatini). Zootaxa 2024; 5443:237-252. [PMID: 39646683 DOI: 10.11646/zootaxa.5443.2.6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Indexed: 12/10/2024]
Abstract
Based on past and expanded DNA sampling, the orthopteran families Stenopelmatidae and Anostostomatidae, as currently structured, are shown to be non-monophyletic. The splay-footed cricket genus Comicus is confirmed to be genetically distinct from all Stenopelmatidae. We add two specimens to our previously published phylogenetic tree for New World Stenopelmatus Jerusalem cricket species and report the first multilocus DNA recovery for S. ater from Costa Rica. Male internal genitalia may be of systematic value in Jerusalem crickets, but we believe they should be analyzed when in their unfolded, "physiologically functional" configuration, where morphological characters can be seen in more detail when compared to their preserved, folded state. We describe Stenopelmatus nuevoguatemalae n. sp. from Guatemala.
Collapse
Affiliation(s)
- David B Weissman
- Department of Entomology; California Academy of Sciences; Golden Gate Park; San Francisco; CA 94118; USA.
| | - Hojun Song
- Department of Entomology; Texas A&M University; 2475 TAMU; College Station; TX 77843; USA.
| | - Amy G Vandergast
- U.S. Geological Survey; Western Ecological Research Center; San Diego Field Station; 4165 Spruance Road; Suite 200; San Diego; CA 92101; USA.
| |
Collapse
|
10
|
Schmidt R, Dufresnes C, Krištín A, Künzel S, Vences M, Hawlitschek O. Phylogenetic insights into Central European Chorthippus and Pseudochorthippus (Orthoptera: Acrididae) species using ddRADseq data. Mol Phylogenet Evol 2024; 193:108012. [PMID: 38224796 DOI: 10.1016/j.ympev.2024.108012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/09/2023] [Accepted: 01/06/2024] [Indexed: 01/17/2024]
Abstract
The evolution of several orthopteran groups, especially within the grasshopper family Acrididae, remains poorly understood. This is particularly true for the subfamily Gomphocerinae, which comprises cryptic sympatric and syntopic species. Previous mitochondrial studies have highlighted major discrepancies between taxonomic and phylogenetic hypotheses, thereby emphasizing the necessity of genome-wide approaches. In this study, we employ double-digest restriction site-associated DNA sequencing (ddRADseq) to reconstruct the evolution of Central European Chorthippus and Pseudochorthippus species, especially C.smardai, P.tatrae and the C.biguttulus group. Our phylogenomic analyses recovered deep discordance with mitochondrial DNA barcoding, emphasizing its unreliability in Gomphocerinae grasshoppers. Specifically, our data robustly distinguished the C.biguttulus group and confirmed the distinctiveness of C.eisentrauti, also shedding light on its presence in the Berchtesgaden Alps. Moreover, our results support the reclassification of C.smardai to the genus Pseudochorthippus and of P.tatrae to the genus Chorthippus. Our study demonstrates the efficiency of high-throughput genomic methods such as RADseq without prior optimization to elucidate the complex evolution of grasshopper radiations with direct taxonomic implications. While RADseq has predominantly been utilized for population genomics and within-genus phylogenomics, its application extends to resolve relationships between deeply-diverged clades representative of distinct genera.
Collapse
Affiliation(s)
- Robin Schmidt
- Zoological Institute, Technische Universität Braunschweig, Mendelssohnstraße 4, 38106 Braunschweig, Germany.
| | - Christophe Dufresnes
- LASER, College of Biology and Environment, Nanjing Forestry University, Nanjing 210037, People's Republic of China; Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, Paris, France
| | - Anton Krištín
- Institute of Forest Ecology SAS, Ľ. Štúra 2, Zvolen, Slovakia
| | - Sven Künzel
- Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Miguel Vences
- Zoological Institute, Technische Universität Braunschweig, Mendelssohnstraße 4, 38106 Braunschweig, Germany
| | - Oliver Hawlitschek
- Leibniz Institute for the Analysis of Biodiversity Change (LIB), Museum of Nature, Hamburg, Germany; Department of Evolutionary Biology and Environmental Studies, Universität Zürich, Zürich, Switzerland
| |
Collapse
|
11
|
Schattanek-Wiesmair B, Huemer P, Wieser C, Stark W, Hausmann A, Koblmüller S, Sefc KM. A DNA barcode library of Austrian geometridae (Lepidoptera) reveals high potential for DNA-based species identification. PLoS One 2024; 19:e0298025. [PMID: 38466749 PMCID: PMC10927147 DOI: 10.1371/journal.pone.0298025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 01/12/2024] [Indexed: 03/13/2024] Open
Abstract
Situated in the Eastern section of the European Alps, Austria encompasses a great diversity of different habitat types, ranging from alpine to lowland Pannonian ecosystems, and a correspondingly high level of species diversity, some of which has been addressed in various DNA barcoding projects. Here, we report a DNA barcode library of all the 476 species of Geometridae (Lepidoptera) that have been recorded in Austria. As far as possible, species were sampled from different Austrian regions in order to capture intraspecific genetic variation. In total, 2500 DNA barcode sequences, representing 438 species, were generated in this study. For complete coverage of Austrian geometrid species in the subsequent analyses, the dataset was supplemented with DNA barcodes from specimens of non-Austrian origin. Species delimitations by ASAP, BIN and bPTP methods yielded 465, 510 and 948 molecular operational taxonomic units, respectively. Congruency of BIN and ASAP partitions with morphospecies assignments was reasonably high (85% of morphospecies in unique partitions), whereas bPTP appeared to overestimate the number of taxonomic units. The study furthermore identified taxonomically relevant cases of morphospecies splitting and sharing in the molecular partitions. We conclude that DNA barcoding and sequence analysis revealed a high potential for accurate DNA-based identification of the Austrian Geometridae species. Additionally, the study provides an updated checklist of the geometrid moths of Austria.
Collapse
Affiliation(s)
- Benjamin Schattanek-Wiesmair
- Tiroler Landesmuseen Betriebsges.m.b.H., Innsbruck, Austria
- Institute of Biology, University of Graz, Universitätsplatz, Graz, Austria
| | - Peter Huemer
- Tiroler Landesmuseen Betriebsges.m.b.H., Innsbruck, Austria
| | | | - Wolfgang Stark
- Ökoplus Umweltforschung und Consulting GmbH, Trübensee, Austria
| | - Axel Hausmann
- Zoologische Staatssammlung München, München, Germany
| | - Stephan Koblmüller
- Institute of Biology, University of Graz, Universitätsplatz, Graz, Austria
| | - Kristina M. Sefc
- Institute of Biology, University of Graz, Universitätsplatz, Graz, Austria
| |
Collapse
|
12
|
Kock LS, Körs E, Husemann M, Davaa L, Dey LS. Barcoding Fails to Delimit Species in Mongolian Oedipodinae (Orthoptera, Acrididae). INSECTS 2024; 15:128. [PMID: 38392547 PMCID: PMC10888654 DOI: 10.3390/insects15020128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 02/24/2024]
Abstract
Mongolia, a country in central Asia, with its vast grassland areas represents a hotspot for Orthoptera diversity, especially for the Acrididae. For Mongolia, 128 Acrididae species have been documented so far, of which 41 belong to the subfamily Oedipodinae (band-winged grasshoppers). Yet, few studies concerning the distribution and diversity of Oedipodinae have been conducted in this country. Molecular genetic data is almost completely absent, despite its value for species identification and discovery. Even, the simplest and most used data, DNA barcodes, so far have not been generated for the local fauna. Therefore, we generated the first DNA barcode data for Mongolian band-winged grasshoppers and investigated the resolution of this marker for species delimitation. We were able to assemble 105 DNA barcode (COI) sequences of 35 Oedipodinae species from Mongolia and adjacent countries. Based on this data, we reconstructed maximum likelihood and Bayesian inference phylogenies. We, furthermore, conducted automatic barcode gap discovery and used the Poisson tree process (PTP) for species delimitation. Some resolution was achieved at the tribe and genus level, but all delimitation methods failed to differentiate species by using the COI region. This lack of resolution may have multiple possible reasons, which likely differ between taxa: the lack of resolution in the Bryodemini may be partially explained by their massive genomes, implying the potential presence of large numbers of pseudogenes, while within the Sphingonotini incomplete lineage sorting and incorrect taxonomy are more likely explanations for the lack of signal. Further studies based on a larger number of gene fragments, including nuclear DNA, are needed to distinguish the species also at the molecular level.
Collapse
Affiliation(s)
- Lea-Sophie Kock
- Leibniz Institute for the Analysis of Biodiversity Change, University of Hamburg, Martin-Luther-King-Platz 3, 20146 Hamburg, Germany
| | - Elisabeth Körs
- Leibniz Institute for the Analysis of Biodiversity Change, University of Hamburg, Martin-Luther-King-Platz 3, 20146 Hamburg, Germany
| | - Martin Husemann
- Leibniz Institute for the Analysis of Biodiversity Change, University of Hamburg, Martin-Luther-King-Platz 3, 20146 Hamburg, Germany
- Staatliches Museum für Naturkunde Karlsruhe (SMNK), Erbprinzenstraße 13, 76133 Karlsruhe, Germany
| | - Lkhagvasuren Davaa
- Department of Biology, School of Arts and Sciences, National University of Mongolia, P.O. Box 46A-546, Ulaanbaatar 210646, Mongolia
| | - Lara-Sophie Dey
- Leibniz Institute for the Analysis of Biodiversity Change, University of Hamburg, Martin-Luther-King-Platz 3, 20146 Hamburg, Germany
- Senckenberg German Entomological Institute, Eberswalder Straße 90, 15374 Müncheberg, Germany
| |
Collapse
|
13
|
Höcherl A, Shaw MR, Boudreault C, Rabl D, Haszprunar G, Raupach MJ, Schmidt S, Baranov V, Fernández-Triana J. Scratching the tip of the iceberg: integrative taxonomy reveals 30 new species records of Microgastrinae (Braconidae) parasitoid wasps for Germany, including new Holarctic distributions. Zookeys 2024; 1188:305-386. [PMID: 38250474 PMCID: PMC10797786 DOI: 10.3897/zookeys.1188.112516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 10/24/2023] [Indexed: 01/23/2024] Open
Abstract
Substantial parts of the European and German insect fauna still remain largely unexplored, the so-called "dark taxa". In particular, midges (Diptera) and parasitoid wasps (Hymenoptera) are abundant and species-rich throughout Europe, yet are often neglected in biodiversity research. One such dark taxon is Microgastrinae wasps (Hymenoptera: Braconidae), a group of parasitoids of lepidopteran caterpillars with 252 species reported in Germany so far. As part of the German Barcode of Life Project GBOL III: Dark Taxa, reverse DNA barcoding and integrative taxonomic approaches were used to shed some light on the German Fauna of Microgastrinae wasps. In our workflow, DNA barcoding was used for molecular clustering of our specimens in a first step, morphological examination of the voucher specimens in a second step, and host data compared in a third step. Here, 30 species are reported for the first time in Germany, adding more than 10% to the known German fauna. Information for four species is provided in a new Holarctic context, reporting them for the Nearctic or, respectively, Palaearctic region, and 26 additional country records are added from sequenced material available in the collections accessible to us. Molecular clusters that show signs of discrepancies are discussed. Results show that we are just scratching the tip of the iceberg of the unexplored Microgastrinae diversity in Germany.
Collapse
Affiliation(s)
- Amelie Höcherl
- SNSB-Zoologische Staatssammlung München, Münchhausenstr. 21, 81247 München, GermanySNSB-Zoologische Staatssammlung MünchenMünchenGermany
| | - Mark R. Shaw
- National Museums of Scotland, Chambers Street, Edinburgh EH1 1JF, UKNational Museums of ScotlandEdinburghUnited Kingdom
| | - Caroline Boudreault
- Canadian National Collection of Insects, Arachnids and Nematodes, 960 Carling Ave., Ottawa, K1A0C6, CanadaCanadian National Collection of Insects, Arachnids and NematodesOttawaCanada
| | - Dominik Rabl
- Field Station Fabrikschleichach, Department of Animal Ecology and Tropical Biology, Biocenter, University of Würzburg, Glashüttenstr. 5, Würzburg, 96181 Rauhenebrach, GermanyUniversity of WürzburgWürzburgGermany
| | - Gerhard Haszprunar
- Department Biology II, Ludwig-Maximilians-Universität München (LMU), Großhaderner Str. 2, Martinsried, 82152 Planegg, GermanyLudwig-Maximilians-Universität MünchenPlaneggGermany
| | - Michael J. Raupach
- SNSB-Zoologische Staatssammlung München, Münchhausenstr. 21, 81247 München, GermanySNSB-Zoologische Staatssammlung MünchenMünchenGermany
| | - Stefan Schmidt
- SNSB-Zoologische Staatssammlung München, Münchhausenstr. 21, 81247 München, GermanySNSB-Zoologische Staatssammlung MünchenMünchenGermany
| | - Viktor Baranov
- Estación Biológica de Doñana-CSIC/Doñana Biological Station-CSIC, Seville, SpainEstación Biológica de Doñana-CSICSevilleSpain
| | - José Fernández-Triana
- Canadian National Collection of Insects, Arachnids and Nematodes, 960 Carling Ave., Ottawa, K1A0C6, CanadaCanadian National Collection of Insects, Arachnids and NematodesOttawaCanada
| |
Collapse
|
14
|
Zhang P, Cai Y, Ma L, Chai J, Zhou Z. DNA barcoding of the genus Gampsocleis (Orthoptera, Tettigoniidae) from China. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2024; 115:e22070. [PMID: 38288484 DOI: 10.1002/arch.22070] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/16/2023] [Accepted: 11/18/2023] [Indexed: 02/01/2024]
Abstract
DNA barcoding is a useful addition to the traditional morphology-based taxonomy. A ca. 650 bp fragment of the 5' end of mitochondrial cytochrome c oxidase subunit I (hereafter COI-5P) DNA barcoding was sued as a practical tool for Gampsocleis species identification. DNA barcodes from 889 specimens belonging to 8 putative Gampsocleis species was analyzed, including 687 newly generated DNA barcodes. These barcode sequences were clustered/grouped into Operational Taxonomic Units (OTUs) using the criteria of five algorithms, namely Barcode Index Number (BIN) System, Assemble Species by Automatic Partitioning (ASAP), a Java program uses an explicit, determinate algorithm to define Molecular Operational Taxonomic Unit (jMOTU), Generalized Mixed Yule Coalescent (GMYC), and Bayesian implementation of the Poisson Tree Processes model (bPTP). The Taxon ID Tree grouped sequences of morphospecies and almost all MOTUs in distinct nonoverlapping clusters. Both long- and short-winged Gampsocleis species are reciprocally monophyletic in the Taxon ID Tree. In BOLD, 889 barcode sequences are assigned to 17 BINs. The algorithms ASAP, jMOTU, bPTP and GMYC clustered the barcode sequences into 6, 13, 10, and 23 MOTUs, respectively. BIN, ASAP, and bPTP algorithm placed three long-winged species, G. sedakovii, G. sinensis and G. ussuriensis within the same MOTU. All species delimitation algorithms split two short-winged species,G. fletcheri and G. gratiosa into at least two MOTUs each, except for ASAP algorithm. More detailed molecular and morphological integrative studies are required to clarify the status of these MOTUs in the future.
Collapse
Affiliation(s)
- Pu Zhang
- Key Laboratory of Zoological Systematics and Application of Hebei Province, College of Life Sciences, Hebei University, Baoding, China
| | - Yuting Cai
- Key Laboratory of Zoological Systematics and Application of Hebei Province, College of Life Sciences, Hebei University, Baoding, China
| | - Lan Ma
- Key Laboratory of Zoological Systematics and Application of Hebei Province, College of Life Sciences, Hebei University, Baoding, China
| | - Jinyan Chai
- Key Laboratory of Zoological Systematics and Application of Hebei Province, College of Life Sciences, Hebei University, Baoding, China
| | - Zhijun Zhou
- Key Laboratory of Zoological Systematics and Application of Hebei Province, College of Life Sciences, Hebei University, Baoding, China
- Institute of Life Science and Green Development, Hebei University, Baoding, China
| |
Collapse
|
15
|
Krivosheeva V, Solodovnikov A, Shulepov A, Semerikova D, Ivanova A, Salnitska M. Assessment of the DNA barcode libraries for the study of the poorly-known rove beetle (Staphylinidae) fauna of West Siberia. Biodivers Data J 2023; 11:e115477. [PMID: 38161489 PMCID: PMC10755746 DOI: 10.3897/bdj.11.e115477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 12/07/2023] [Indexed: 01/03/2024] Open
Abstract
Staphylinidae, or rove beetles, are one of the mega-diverse and abundant families of the ground-living terrestrial arthropods that is taxonomically poorly known even in the regions adjacent to Europe where the fauna has been investigated for the longest time. Since DNA barcoding is a tool to accelerate biodiversity research, here we explored if the currently-available COI barcode libraries are representative enough for the study of rove beetles of West Siberia. This is a vast region adjacent to Europe with poorly-known fauna of rove beetles and from where not a single DNA barcode has hitherto been produced for Staphylinidae. First, we investigated the faunal similarity between the rove beetle faunas of the climatically compatible West Siberia in Asia, Fennoscandia in Europe and Canada and Alaska in North America. Second, we investigated barcodes available for Staphylinidae from the latter two regions in BOLD and GenBank, the world's largest DNA barcode libraries. We conclude that the rather different rove beetle faunas of Fennoscandia, on the one hand and Canada and Alaska on the other hand, are well covered in both barcode libraries that complement each other. We also find that even without any barcodes originating from specimens collected in West Siberia, this coverage is helpful for the study of rove beetles there due to the significant number of widespread species shared between West Siberia and Fennoscandia and due to the even larger number of shared genera amongst all three investigated regions. For the first time, we compiled a literature-based checklist for 726 species of the West Siberian Staphylinidae supplemented by their occurrence dataset submitted to GBIF. Our script written for mining unique (i.e. not redundant) barcodes for a given geographic area across global libraries is made available here and can be adopted for any other regions.
Collapse
Affiliation(s)
- Valeria Krivosheeva
- X-BIO Institute, University of Tyumen, Tyumen, RussiaX-BIO Institute, University of TyumenTyumenRussia
| | - Alexey Solodovnikov
- Natural History Museum of Denmark, Copenhagen, DenmarkNatural History Museum of DenmarkCopenhagenDenmark
| | - Aleksandr Shulepov
- MAGNIT information technologies, Krasnodar, RussiaMAGNIT information technologiesKrasnodarRussia
| | - Darya Semerikova
- X-BIO Institute, University of Tyumen, Tyumen, RussiaX-BIO Institute, University of TyumenTyumenRussia
| | - Anastasiya Ivanova
- X-BIO Institute, University of Tyumen, Tyumen, RussiaX-BIO Institute, University of TyumenTyumenRussia
| | - Maria Salnitska
- X-BIO Institute, University of Tyumen, Tyumen, RussiaX-BIO Institute, University of TyumenTyumenRussia
| |
Collapse
|
16
|
Wang L, Chen J, Xue X, Qin G, Gao Y, Li K, Zhang Y, Li XJ. Comparative analysis of mitogenomes among three species of grasshoppers (Orthoptera: Acridoidea: Gomphocerinae) and their phylogenetic implications. PeerJ 2023; 11:e16550. [PMID: 38111661 PMCID: PMC10726767 DOI: 10.7717/peerj.16550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 11/09/2023] [Indexed: 12/20/2023] Open
Abstract
Whole mitochondrial genomes have been widely used in phylogenetic analysis, population genetics and biogeography studies. This study sequenced and characterized three complete mitochondrial genomes (Dasyhippus peipingensis, Myrmeleotettix palpalis, Aeropedellus prominemarginis) and determined their phylogenetic position in Acrididae. The length of the mitochondrial genomes ranged from 15,621-15,629 bp and composed of 13 PCGs, 2 rRNA, 22 tRNA genes and an AT control region. The arrangement and structure of the mitochondrial genomes were similar to those of other invertebrates. Comparative genomics revealed that the three mitochondrial genomes were highly conserved in terms of gene size, structure, and codon usage, all PCGs were purified selections with an ATN start codon and a TAN stop codon. All tRNAs could be folded into the typical clover-leaf structure, except tRNA Ser (AGN) that lacked a dihydrouridine (DHU) arm. Phylogenetic analysis based on 13 PCGs of 34 Acrididae species and seven outgroup species revealed that differences in the shape of antennae within the family Acrididae should be given less weight as a taxonomic character for higher-level classification. Moreover, the divergence time estimates indicates that in Gomphocerinae, the species with clubbed antennae were formed within the nearest 18 Mya, and Pacris xizangensis is more ancient.
Collapse
Affiliation(s)
- Li Wang
- The Key Laboratory of Zoological Systematics and Application, School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, China
| | - Jianyu Chen
- The Key Laboratory of Zoological Systematics and Application, School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, China
| | - Xiaobao Xue
- The Key Laboratory of Zoological Systematics and Application, School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, China
| | - Guoqing Qin
- The Key Laboratory of Zoological Systematics and Application, School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, China
| | - Yuanyi Gao
- The Key Laboratory of Zoological Systematics and Application, School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, China
| | - Kai Li
- The Key Laboratory of Zoological Systematics and Application, School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, China
| | - Yulong Zhang
- The Key Laboratory of Zoological Systematics and Application, School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, China
| | - Xin-Jiang Li
- The Key Laboratory of Zoological Systematics and Application, School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, China
| |
Collapse
|
17
|
Chimeno C, Rulik B, Manfrin A, Kalinkat G, Hölker F, Baranov V. Facing the infinity: tackling large samples of challenging Chironomidae (Diptera) with an integrative approach. PeerJ 2023; 11:e15336. [PMID: 37250705 PMCID: PMC10211366 DOI: 10.7717/peerj.15336] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 04/11/2023] [Indexed: 05/31/2023] Open
Abstract
Background Integrative taxonomy is becoming ever more significant in biodiversity research as scientists are tackling increasingly taxonomically challenging groups. Implementing a combined approach not only guarantees more accurate species identification, but also helps overcome limitations that each method presents when applied on its own. In this study, we present one application of integrative taxonomy for the highly abundant and particularly diverse fly taxon Chironomidae (Diptera). Although non-biting midges are key organisms in merolimnic systems, they are often cast aside in ecological surveys because they are very challenging to identify and extremely abundant. Methods Here, we demonstrate one way of applying integrative methods to tackle this highly diverse taxon. We present a three-level subsampling method to drastically reduce the workload of bulk sample processing, then apply morphological and molecular identification methods in parallel to evaluate species diversity and to examine inconsistencies across methods. Results Our results suggest that using our subsampling approach, identifying less than 10% of a sample's contents can reliably detect >90% of its diversity. However, despite reducing the processing workload drastically, the performance of our taxonomist was affected by mistakes, caused by large amounts of material. We conducted misidentifications for 9% of vouchers, which may not have been recovered had we not applied a second identification method. On the other hand, we were able to provide species information in cases where molecular methods could not, which was the case for 14% of vouchers. Therefore, we conclude that when wanting to implement non-biting midges into ecological frameworks, it is imperative to use an integrative approach.
Collapse
Affiliation(s)
- Caroline Chimeno
- Bavarian State Collection of Zoology (SNSB-ZSM), Munich, Germany
| | - Björn Rulik
- Zoological Research Museum Alexander Koenig, Leibniz Institute for the Analysis of Biodiversity Change (LIB), Bonn, Germany
| | - Alessandro Manfrin
- Institute for Environmental Sciences, iES Landau, RPTU University of Kaiserslautern-Landau, Landau, Germany
| | - Gregor Kalinkat
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany
| | - Franz Hölker
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany
| | - Viktor Baranov
- Estación Biológica de Doñana-CSIC/Doñana Biological Station-CSIC, Seville, Spain
| |
Collapse
|
18
|
Wu YH, Hou SB, Yuan ZY, Jiang K, Huang RY, Wang K, Liu Q, Yu ZB, Zhao HP, Zhang BL, Chen JM, Wang LJ, Stuart BL, Chambers EA, Wang YF, Gao W, Zou DH, Yan F, Zhao GG, Fu ZX, Wang SN, Jiang M, Zhang L, Ren JL, Wu YY, Zhang LY, Yang DC, Jin JQ, Yin TT, Li JT, Zhao WG, Murphy RW, Huang S, Guo P, Zhang YP, Che J. DNA barcoding of Chinese snakes reveals hidden diversity and conservation needs. Mol Ecol Resour 2023. [PMID: 36924341 DOI: 10.1111/1755-0998.13784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 02/25/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023]
Abstract
DNA barcoding has greatly facilitated studies of taxonomy, biodiversity, biological conservation, and ecology. Here, we establish a reliable DNA barcoding library for Chinese snakes, unveiling hidden diversity with implications for taxonomy, and provide a standardized tool for conservation management. Our comprehensive study includes 1638 cytochrome c oxidase subunit I (COI) sequences from Chinese snakes that correspond to 17 families, 65 genera, 228 named species (80.6% of named species) and 36 candidate species. A barcode gap analysis reveals gaps, where all nearest neighbour distances exceed maximum intraspecific distances, in 217 named species and all candidate species. Three species-delimitation methods (ABGD, sGMYC, and sPTP) recover 320 operational taxonomic units (OTUs), of which 192 OTUs correspond to named and candidate species. Twenty-eight other named species share OTUs, such as Azemiops feae and A. kharini, Gloydius halys, G. shedaoensis, and G. intermedius, and Bungarus multicinctus and B. candidus, representing inconsistencies most probably caused by imperfect taxonomy, recent and rapid speciation, weak taxonomic signal, introgressive hybridization, and/or inadequate phylogenetic signal. In contrast, 43 species and candidate species assign to two or more OTUs due to having large intraspecific distances. If most OTUs detected in this study reflect valid species, including the 36 candidate species, then 30% more species would exist than are currently recognized. Several OTU divergences associate with known biogeographic barriers, such as the Taiwan Strait. In addition to facilitating future studies, this reliable and relatively comprehensive reference database will play an important role in the future monitoring, conservation, and management of Chinese snakes.
Collapse
Affiliation(s)
- Yun-He Wu
- State Key Laboratory of Genetic Resources and Evolution & Yunnan Key Laboratory of Biodiversity and Ecological Conservation of Gaoligong Mountain, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
| | - Shao-Bing Hou
- State Key Laboratory of Genetic Resources and Evolution & Yunnan Key Laboratory of Biodiversity and Ecological Conservation of Gaoligong Mountain, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
- Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming, Yunnan, 650204, China
| | - Zhi-Yong Yuan
- State Key Laboratory of Genetic Resources and Evolution & Yunnan Key Laboratory of Biodiversity and Ecological Conservation of Gaoligong Mountain, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
| | - Ke Jiang
- State Key Laboratory of Genetic Resources and Evolution & Yunnan Key Laboratory of Biodiversity and Ecological Conservation of Gaoligong Mountain, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
| | - Ru-Yi Huang
- Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Kai Wang
- State Key Laboratory of Genetic Resources and Evolution & Yunnan Key Laboratory of Biodiversity and Ecological Conservation of Gaoligong Mountain, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
| | - Qin Liu
- Faculty of Agriculture, Forest and Food Engineering, Yibin University, Yibin, Sichuan, 644007, China
| | - Zhong-Bin Yu
- State Key Laboratory of Genetic Resources and Evolution & Yunnan Key Laboratory of Biodiversity and Ecological Conservation of Gaoligong Mountain, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
| | - Hai-Peng Zhao
- School of Life Science, Henan University, Kaifeng, Henan, 475001, China
| | - Bao-Lin Zhang
- State Key Laboratory of Genetic Resources and Evolution & Yunnan Key Laboratory of Biodiversity and Ecological Conservation of Gaoligong Mountain, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
| | - Jin-Min Chen
- State Key Laboratory of Genetic Resources and Evolution & Yunnan Key Laboratory of Biodiversity and Ecological Conservation of Gaoligong Mountain, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
| | - Li-Jun Wang
- School of Life Sciences, Hainan Normal University, Haikou, Hainan, 571158, China
| | - Bryan L Stuart
- Section of Research & Collections, North Carolina Museum of Natural Sciences, Raleigh, North Carolina, 27601, USA
| | - E Anne Chambers
- Department of Environmental Science, Policy, and Management, University of California Berkeley, Berkeley, California, 94720, USA
| | - Yu-Fan Wang
- Zhejiang Forest Resource Monitoring Center, Hangzhou, Zhejiang, 310020, China
| | - Wei Gao
- State Key Laboratory of Genetic Resources and Evolution & Yunnan Key Laboratory of Biodiversity and Ecological Conservation of Gaoligong Mountain, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
| | - Da-Hu Zou
- State Key Laboratory of Genetic Resources and Evolution & Yunnan Key Laboratory of Biodiversity and Ecological Conservation of Gaoligong Mountain, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
- College of Science, Tibet University, Lhasa, Tibet, 850000, China
| | - Fang Yan
- State Key Laboratory of Genetic Resources and Evolution & Yunnan Key Laboratory of Biodiversity and Ecological Conservation of Gaoligong Mountain, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
| | - Gui-Gang Zhao
- State Key Laboratory of Genetic Resources and Evolution & Yunnan Key Laboratory of Biodiversity and Ecological Conservation of Gaoligong Mountain, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
| | - Zhong-Xiong Fu
- Yunnan Senye Biotechnology Co., Ltd, Xishuangbanna, Yunnan, 666100, China
| | - Shao-Neng Wang
- Bureau of Guangxi Mao'er Mountain Nature Reserve, Guilin, Guangxi, 541316, China
| | - Ming Jiang
- Gongshan Bureau of Gaoligongshan National Nature Reserve, Gongshan, Yunnan, 650224, China
| | - Liang Zhang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510260, China
| | - Jin-Long Ren
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan, 610041, China
| | - Ya-Yong Wu
- Faculty of Agriculture, Forest and Food Engineering, Yibin University, Yibin, Sichuan, 644007, China
| | - Lu-Yang Zhang
- Beijing Mountains & Seas Eco Technology Co. Ltd, Beijing, 101100, China
| | - Dian-Cheng Yang
- Anhui Province Key Laboratory of the Conservation and Exploitation of Biological Resource, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, 241000, China
| | - Jie-Qiong Jin
- State Key Laboratory of Genetic Resources and Evolution & Yunnan Key Laboratory of Biodiversity and Ecological Conservation of Gaoligong Mountain, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
| | - Ting-Ting Yin
- State Key Laboratory of Genetic Resources and Evolution & Yunnan Key Laboratory of Biodiversity and Ecological Conservation of Gaoligong Mountain, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
| | - Jia-Tang Li
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan, 610041, China
| | - Wen-Ge Zhao
- College of Life Science and Technology, Harbin Normal University, Harbin, Heilongjiang, 150025, China
| | - Robert W Murphy
- State Key Laboratory of Genetic Resources and Evolution & Yunnan Key Laboratory of Biodiversity and Ecological Conservation of Gaoligong Mountain, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
- Reptilia Zoo and Education Centre, Vaughn, Ontario, L4K 2N6, Canada
| | - Song Huang
- Anhui Province Key Laboratory of the Conservation and Exploitation of Biological Resource, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, 241000, China
| | - Peng Guo
- Faculty of Agriculture, Forest and Food Engineering, Yibin University, Yibin, Sichuan, 644007, China
| | - Ya-Ping Zhang
- State Key Laboratory of Genetic Resources and Evolution & Yunnan Key Laboratory of Biodiversity and Ecological Conservation of Gaoligong Mountain, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
| | - Jing Che
- State Key Laboratory of Genetic Resources and Evolution & Yunnan Key Laboratory of Biodiversity and Ecological Conservation of Gaoligong Mountain, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
| |
Collapse
|
19
|
Zhao Y, Wang H, Huang H, Zhou Z. A DNA barcode library for katydids, cave crickets, and leaf-rolling crickets (Tettigoniidae, Rhaphidophoridae and Gryllacrididae) from Zhejiang Province, China. Zookeys 2022; 1123:147-171. [PMID: 36762040 PMCID: PMC9836636 DOI: 10.3897/zookeys.1123.86704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 09/06/2022] [Indexed: 11/12/2022] Open
Abstract
Barcode libraries are generally assembled with two main objectives in mind: specimen identification and species discovery/delimitation. In this study, the standard COI barcode region was sequenced from 681 specimens belonging to katydids (Tettigoniidae), cave crickets (Rhaphidophoridae), and leaf-rolling crickets (Gryllacrididae) from Zhejiang Province, China. Of these, four COI-5P sequences were excluded from subsequent analyses because they were likely NUMTs (nuclear mitochondrial pseudogenes). The final dataset consisted of 677 barcode sequences representing 90 putative species-level taxa. Automated cluster delineation using the Barcode of Life Data System (BOLD) revealed 118 BINs (Barcodes Index Numbers). Among these 90 species-level taxa, 68 corresponded with morphospecies, while the remaining 22 were identified based on reverse taxonomy using BIN assignment. Thirteen of these morphospecies were represented by a single barcode (so-called singletons), and each of 19 morphospecies were split into more than one BIN. The consensus delimitation scheme yielded 55 Molecular Operational Taxonomic Units (MOTUs). Only four morphospecies (I max > DNN) failed to be recovered as monophyletic clades (i.e., Elimaeaterminalis, Phyllomimusklapperichi, Sinochloraszechwanensis and Xizicushowardi), so it is speculated that these may be species complexes. Therefore, the diversity of katydids, cave crickets, and leaf-rolling crickets in Zhejiang Province is probably slightly higher than what current taxonomy would suggest.
Collapse
Affiliation(s)
- Yizheng Zhao
- Key Laboratory of Zoological Systematics and Application of Hebei Province, College of Life Sciences, Hebei University, Baoding, Hebei 071002, ChinaHebei UniversityBaodingChina
| | - Hui Wang
- Key Laboratory of Zoological Systematics and Application of Hebei Province, College of Life Sciences, Hebei University, Baoding, Hebei 071002, ChinaHebei UniversityBaodingChina
| | - Huimin Huang
- Key Laboratory of Zoological Systematics and Application of Hebei Province, College of Life Sciences, Hebei University, Baoding, Hebei 071002, ChinaHebei UniversityBaodingChina
| | - Zhijun Zhou
- Key Laboratory of Zoological Systematics and Application of Hebei Province, College of Life Sciences, Hebei University, Baoding, Hebei 071002, ChinaHebei UniversityBaodingChina
| |
Collapse
|
20
|
Timm VF, Gonçalves LT, Valente V, Deprá M. The efficiency of the COI gene as a DNA barcode and an overview of Orthoptera (Caelifera and Ensifera) sequences in the BOLD System. CAN J ZOOL 2022. [DOI: 10.1139/cjz-2022-0041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Orthoptera, among the oldest and most numerous insect lineages, is an excellent model for evolutionary studies but has numerous taxonomic problems. To mitigate these issues, the cytochrome c oxidase subunit I (COI), standardized with the DNA barcode for Metazoa, is increasingly used for specimen identification and species delimitation. We tested the performance of COI as a DNA barcode in Orthoptera, using two analyses based on intra- and interspecific distances, barcode gap and Probability of Correct Identification (PCI); and estimated species richness through Automatic Barcode Gap Discovery (ABGD) and Assemble Species by Automatic Partitioning (ASAP). We filtered all sequences of Orthoptera available in Barcode of Life Data System (BOLD) and used 11,605 COI sequences, covering 1,132 species, 226 genera, and 18 families. The overall average PCI was 73.86%. For 82.2% of genera the barcode gap boxplots were classified as good or intermediate, indicating that COI can be effective as a DNA barcode in Orthoptera, although with varying efficiency depending on the need for more information. ABGD and ASAP inferred species richness similar to labels informed by BOLD for the suborders Caelifera and Ensifera. The representation of Orthoptera in the BOLD database and the results of these analyses are discussed.
Collapse
Affiliation(s)
- Vítor Falchi Timm
- Universidade Federal do Rio Grande do Sul, 28124, Departamento de Genética, Porto Alegre, RS, Brazil
| | | | - V.l.S. Valente
- Universidade Federal do Rio Grande do Sul, 28124, Departamento de Genética, Porto Alegre, RS, Brazil,
| | | |
Collapse
|
21
|
Kaczmarek M, Entling MH, Hoffmann C. Using Malaise Traps and Metabarcoding for Biodiversity Assessment in Vineyards: Effects of Weather and Trapping Effort. INSECTS 2022; 13:insects13060507. [PMID: 35735844 PMCID: PMC9224819 DOI: 10.3390/insects13060507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 11/16/2022]
Abstract
Metabarcoding is a powerful tool for ecological studies and monitoring that might provide a solution to the time-consuming taxonomic identification of the vast diversity of insects. Here, we assess how ambient weather conditions during Malaise trap exposure and the effort of trapping affect biomass and taxa richness in vineyards. Biomass varied by more than twofold with weather conditions. It increased with warmer and drier weather but was not significantly related with wind or precipitation. Taxa richness showed a saturating relationship with increasing trapping duration and was influenced by environmental and seasonal effects. Taxa accumulation was high, increasing fourfold from three days of monthly trap exposure compared to continuous trapping and nearly sixfold from sampling at a single site compared to 32 sites. The limited saturation was mainly due to a large number of singletons, such as rare species, in the metabarcoding dataset. Metabarcoding can be key for long-term insect monitoring. We conclude that single traps operated for up to ten days per month are suitable to monitor the presence of common species. However, more intensive trapping is necessary for a good representation of rare species in biodiversity monitoring. The data collected here can potentially guide the design of monitoring studies.
Collapse
Affiliation(s)
- Marvin Kaczmarek
- Julius Kühn Institute—Federal Research Institute for Cultivated Plants, Institute for Plant Protection in Fruit Crops and Viticulture, Geilweilerhof, D-76833 Siebeldingen, Germany;
- Institute for Environmental Sciences—iES Landau, University of Koblenz-Landau, Fortstraße 7, D-76829 Landau in der Pfalz, Germany;
- Correspondence:
| | - Martin H. Entling
- Institute for Environmental Sciences—iES Landau, University of Koblenz-Landau, Fortstraße 7, D-76829 Landau in der Pfalz, Germany;
| | - Christoph Hoffmann
- Julius Kühn Institute—Federal Research Institute for Cultivated Plants, Institute for Plant Protection in Fruit Crops and Viticulture, Geilweilerhof, D-76833 Siebeldingen, Germany;
| |
Collapse
|
22
|
Exploring Large-Scale Patterns of Genetic Variation in the COI Gene among Insecta: Implications for DNA Barcoding and Threshold-Based Species Delimitation Studies. INSECTS 2022; 13:insects13050425. [PMID: 35621761 PMCID: PMC9147995 DOI: 10.3390/insects13050425] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 04/26/2022] [Accepted: 04/29/2022] [Indexed: 12/04/2022]
Abstract
The genetic variation in the COI gene has had a great effect on the final results of species delimitation studies. However, little research has comprehensively investigated the genetic divergence in COI among Insecta. The fast-growing COI data in BOLD provide an opportunity for the comprehensive appraisal of the genetic variation in COI among Insecta. We calculated the K2P distance of 64,414 insect species downloaded from BOLD. The match ratios of the clustering analysis, based on different thresholds, were also compared among 4288 genera (35,068 species). The results indicate that approximately one-quarter of the species of Insecta showed high intraspecific genetic variation (>3%), and a conservative estimate of this proportion ranges from 12.05% to 22.58%. The application of empirical thresholds (e.g., 2% and 3%) in the clustering analysis may result in the overestimation of the species diversity. If the minimum interspecific genetic distance of the congeneric species is greater than or equal to 2%, it is possible to avoid overestimating the species diversity on the basis of the empirical thresholds. In comparison to the fixed thresholds, the “threshOpt” and “localMinima” algorithms are recommended for the provision of a reference threshold for threshold-based species delimitation studies.
Collapse
|
23
|
Hlebec D, Sivec I, Podnar M, Kučinić M. DNA barcoding for biodiversity assessment: Croatian stoneflies (Insecta: Plecoptera). PeerJ 2022; 10:e13213. [PMID: 35469200 PMCID: PMC9034701 DOI: 10.7717/peerj.13213] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 03/12/2022] [Indexed: 01/12/2023] Open
Abstract
Background The hemi-metabolous aquatic order Plecoptera (stoneflies) constitutes an indispensable part of terrestrial and aquatic food webs due to their specific life cycle and habitat requirements. Stoneflies are considered one of the most sensitive groups to environmental changes in freshwater ecosystems and anthropogenic changes have caused range contraction of many species. Given the critical threat to stoneflies, the study of their distribution, morphological variability and genetic diversity should be one of the priorities in conservation biology. However, some aspects about stoneflies, especially a fully resolved phylogeny and their patterns of distribution are not well known. A study that includes comprehensive field research and combines morphological and molecular identification of stoneflies has not been conducted in Croatia so far. Thus, the major aim of this study was to regenerate a comprehensive and taxonomically well-curated DNA barcode database for Croatian stoneflies, to highlight the morphological variability obtained for several species and to elucidate results in light of recent taxonomy. Methods A morphological examination of adult specimens was made using basic characteristics for distinguishing species: terminalia in males and females, head and pronotum patterns, penial morphology, and egg structures. DNA barcoding was applied to many specimens to help circumscribe known species, identify cryptic or yet undescribed species, and to construct a preliminary phylogeny for Croatian stoneflies. Results Sequences (658 bp in length) of 74 morphospecies from all families present in Croatia were recovered from 87% of the analysed specimens (355 of 410), with one partial sequence of 605 bp in length for Capnopsis schilleri balcanica Zwick, 1984. A total of 84% morphological species could be unambiguously identified using COI sequences. Species delineation methods confirmed the existence of five deeply divergent genetic lineages, with monophyletic origin, which also differ morphologically from their congeners and represent distinct entities. BIN (Barcode Index Number) assignment and species delineation methods clustered COI sequences into different numbers of operational taxonomic units (OTUs). ASAP delimited 76 putative species and achieved a maximum match score with morphology (97%). ABGD resulted in 62 and mPTP in 61 OTUs, indicating a more conservative approach. Most BINs were congruent with traditionally recognized species. Deep intraspecific genetic divergences in some clades highlighted the need for taxonomic revision in several species-complexes and species-groups. Research has yielded the first molecular characterization of nine species, with most having restricted distributions and confirmed the existence of several species which had been declared extinct regionally.
Collapse
Affiliation(s)
- Dora Hlebec
- Department of Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia,Zoological Museum Hamburg, Leibniz Institute for the Analysis of Biodiversity Change, Hamburg, Germany,Croatian Biospeleological Society, Zagreb, Croatia
| | - Ignac Sivec
- Slovenian Museum of Natural History, Ljubljana, Slovenia
| | | | - Mladen Kučinić
- Department of Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
24
|
Hawlitschek O, Ortiz EM, Noori S, Webster KC, Husemann M, Pereira RJ. Transcriptomic data reveals nuclear-mitochondrial discordance in Gomphocerinae grasshoppers (Insecta: Orthoptera: Acrididae). Mol Phylogenet Evol 2022; 170:107439. [DOI: 10.1016/j.ympev.2022.107439] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 02/02/2022] [Accepted: 02/03/2022] [Indexed: 11/29/2022]
|
25
|
Muster C, Spelda J, Rulik B, Thormann J, von der Mark L, Astrin JJ. The dark side of pseudoscorpion diversity: The German Barcode of Life campaign reveals high levels of undocumented diversity in European false scorpions. Ecol Evol 2021; 11:13815-13829. [PMID: 34707820 PMCID: PMC8525104 DOI: 10.1002/ece3.8088] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/18/2021] [Accepted: 08/20/2021] [Indexed: 11/12/2022] Open
Abstract
DNA barcoding is particularly useful for identification and species delimitation in taxa with conserved morphology. Pseudoscorpions are arachnids with high prevalence of morphological crypsis. Here, we present the first comprehensive DNA barcode library for Central European Pseudoscorpiones, covering 70% of the German pseudoscorpion fauna (35 out of 50 species). For 21 species, we provide the first publicly available COI barcodes, including the rare Anthrenochernes stellae Lohmander, a species protected by the FFH Habitats Directive. The pattern of intraspecific COI variation and interspecific COI variation (i.e., presence of a barcode gap) generally allows application of the DNA barcoding approach, but revision of current taxonomic designations is indicated in several taxa. Sequences of 36 morphospecies were assigned to 74 BINs (barcode index numbers). This unusually high number of intraspecific BINs can be explained by the presence of overlooked cryptic species and by the accelerated substitution rate in the mitochondrial genome of pseudoscorpions, as known from previous studies. Therefore, BINs may not be an appropriate proxy for species numbers in pseudoscorpions, while partitions built with the ASAP algorithm (Assemble Species by Automatic Partitioning) correspond well with putative species. ASAP delineated 51 taxonomic units from our data, an increase of 42% compared with the present taxonomy. The Neobisium carcionoides complex, currently considered a polymorphic species, represents an outstanding example of cryptic diversity: 154 sequences from our dataset were allocated to 23 BINs and 12 ASAP units.
Collapse
Affiliation(s)
- Christoph Muster
- Zoologisches Institut und MuseumUniversität GreifswaldGreifswaldGermany
| | - Jörg Spelda
- SNSB‐Zoologische Staatssammlung MünchenMunichGermany
| | - Björn Rulik
- Zoologisches Forschungsmuseum A. KoenigZFMKBonnGermany
| | - Jana Thormann
- Zoologisches Forschungsmuseum A. KoenigZFMKBonnGermany
| | | | | |
Collapse
|
26
|
Prieto C, Faynel C, Robbins R, Hausmann A. Congruence between morphology-based species and Barcode Index Numbers (BINs) in Neotropical Eumaeini (Lycaenidae). PeerJ 2021; 9:e11843. [PMID: 34430077 PMCID: PMC8349518 DOI: 10.7717/peerj.11843] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 07/01/2021] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND With about 1,000 species in the Neotropics, the Eumaeini (Theclinae) are one of the most diverse butterfly tribes. Correct morphology-based identifications are challenging in many genera due to relatively little interspecific differences in wing patterns. Geographic infraspecific variation is sometimes more substantial than variation between species. In this paper we present a large DNA barcode dataset of South American Lycaenidae. We analyze how well DNA barcode BINs match morphologically delimited species. METHODS We compare morphology-based species identifications with the clustering of molecular operational taxonomic units (MOTUs) delimitated by the RESL algorithm in BOLD, which assigns Barcode Index Numbers (BINs). We examine intra- and interspecific divergences for genera represented by at least four morphospecies. We discuss the existence of local barcode gaps in a genus by genus analysis. We also note differences in the percentage of species with barcode gaps in groups of lowland and high mountain genera. RESULTS We identified 2,213 specimens and obtained 1,839 sequences of 512 species in 90 genera. Overall, the mean intraspecific divergence value of CO1 sequences was 1.20%, while the mean interspecific divergence between nearest congeneric neighbors was 4.89%, demonstrating the presence of a barcode gap. However, the gap seemed to disappear from the entire set when comparing the maximum intraspecific distance (8.40%) with the minimum interspecific distance (0.40%). Clear barcode gaps are present in many genera but absent in others. From the set of specimens that yielded COI fragment lengths of at least 650 bp, 75% of the a priori morphology-based identifications were unambiguously assigned to a single Barcode Index Number (BIN). However, after a taxonomic a posteriori review, the percentage of matched identifications rose to 85%. BIN splitting was observed for 17% of the species and BIN sharing for 9%. We found that genera that contain primarily lowland species show higher percentages of local barcode gaps and congruence between BINs and morphology than genera that contain exclusively high montane species. The divergence values to the nearest neighbors were significantly lower in high Andean species while the intra-specific divergence values were significantly lower in the lowland species. These results raise questions regarding the causes of observed low inter and high intraspecific genetic variation. We discuss incomplete lineage sorting and hybridization as most likely causes of this phenomenon, as the montane species concerned are relatively young and hybridization is probable. The release of our data set represents an essential baseline for a reference library for biological assessment studies of butterflies in mega diverse countries using modern high-throughput technologies an highlights the necessity of taxonomic revisions for various genera combining both molecular and morphological data.
Collapse
Affiliation(s)
- Carlos Prieto
- Departamento de Biología, Universidad del Atlántico, Barranquilla, Colombia
- Corporación Universitaria Autónoma del Cauca, Popayán, Colombia
| | | | - Robert Robbins
- Department of Entomology, Smithsonian Institution, Washington, USA
| | - Axel Hausmann
- SNSB-Bavarian State Collection of Zoology, Munich, Germany
| |
Collapse
|
27
|
Lukic D, Eberle J, Thormann J, Holzschuh C, Ahrens D. Excluding spatial sampling bias does not eliminate oversplitting in DNA-based species delimitation analyses. Ecol Evol 2021; 11:10327-10337. [PMID: 34367578 PMCID: PMC8328443 DOI: 10.1002/ece3.7836] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/05/2021] [Accepted: 06/07/2021] [Indexed: 01/02/2023] Open
Abstract
DNA barcoding and DNA-based species delimitation are major tools in DNA taxonomy. Sampling has been a central debate in this context, because the geographical composition of samples affects the accuracy and performance of DNA barcoding. Performance of complex DNA-based species delimitation is to be tested under simpler conditions in absence of geographic sampling bias. Here, we present an empirical dataset sampled from a single locality in a Southeast-Asian biodiversity hotspot (Laos: Phou Pan mountain). We investigate the performance of various species delimitation approaches on a megadiverse assemblage of herbivorous chafer beetles (Coleoptera: Scarabaeidae) to infer whether species delimitation suffers in the same way from exaggerate infraspecific variation despite the lack of geographic genetic variation that led to inconsistencies between entities from DNA-based and morphology-based species inference in previous studies. For this purpose, a 658 bp fragment of the mitochondrial cytochrome c oxidase subunit 1 (cox1) was analyzed for a total of 186 individuals of 56 morphospecies. Tree-based and distance-based species delimitation methods were used. All approaches showed a rather limited match ratio (max. 77%) with morphospecies. Poisson tree process (PTP) and statistical parsimony network analysis (TCS) prevailingly over-splitted morphospecies, while 3% clustering and Automatic Barcode Gap Discovery (ABGD) also lumped several species into one entity. ABGD revealed the highest congruence between molecular operational taxonomic units (MOTUs) and morphospecies. Disagreements between morphospecies and MOTUs have to be explained by historically acquired geographic genetic differentiation, incomplete lineage sorting, and hybridization. The study once again highlights how important morphology still is in order to correctly interpret the results of molecular species delimitation.
Collapse
Affiliation(s)
- Daniel Lukic
- Zoologisches Forschungsmuseum Alexander KoenigZentrum für Taxonomie und EvolutionsforschungBonnGermany
| | - Jonas Eberle
- Zoologische EvolutionsbiologieParis‐Lodron‐UniversitätSalzburgAustria
| | - Jana Thormann
- Zoologisches Forschungsmuseum Alexander KoenigZentrum für Taxonomie und EvolutionsforschungBonnGermany
| | | | - Dirk Ahrens
- Zoologisches Forschungsmuseum Alexander KoenigZentrum für Taxonomie und EvolutionsforschungBonnGermany
| |
Collapse
|
28
|
Makhov IA, Gorodilova YYU, Lukhtanov VA. Sympatric occurrence of deeply diverged mitochondrial DNA lineages in Siberian geometrid moths (Lepidoptera: Geometridae): cryptic speciation, mitochondrial introgression, secondary admixture or effect of Wolbachia? Biol J Linn Soc Lond 2021. [DOI: 10.1093/biolinnean/blab089] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Abstract
The divergent sympatric mitochondrial lineages within traditionally recognized species present a challenge regularly faced by taxonomists and evolutionary biologists. We encountered this problem when studying the Siberian geometrid moths, Alcis deversata and Thalera chlorosaria. Within each of these species we found two deeply diverged mitochondrial lineages that demonstrated a level of genetic differentiation exceeding the standard interspecific DNA barcode threshold. Using analyses of nuclear genes, morphology, ecological preferences and Wolbachia endosymbionts, we tested five hypotheses that might explain the mitochondrial pattern observed: cryptic speciation, ancestral polymorphism, interspecific mitochondrial introgression, secondary admixture of allopatrically evolved populations and an effect of intracellular Wolbachia endosymbionts. We demonstrate that in A. deversata and Th. chlorosaria the mitochondrial differences are not correlated with differences in nuclear genes, morphology, ecology and Wolbachia infection status, thus not supporting the hypothesis of cryptic species and an effect of Wolbachia. Mitochondrial introgression can lead to a situation in which one species has both its own mitochondrial lineage and the lineage obtained from another species. We found this situation in the species pair Alcis repandata and Alcis extinctaria. We conclude that the mitochondrial heterogeneity in A. deversata and Th. chlorosaria is most likely to be attributable to the secondary admixture of allopatrically evolved populations.
Collapse
Affiliation(s)
- Ilia A Makhov
- Department of Entomology, Saint Petersburg State University, Universitetskaya Embankment 7/9, 199034 Saint Petersburg, Russia
- Zoological Institute of the Russian Academy of Sciences, Universitetskaya Embankment 1, 199034 Saint Petersburg, Russia
| | - Yelizaveta Y U Gorodilova
- Biological Faculty, Saint Petersburg State University, Botanicheskaya Street 17, Stary Peterhof, Saint Petersburg 198504, Russia
| | - Vladimir A Lukhtanov
- Zoological Institute of the Russian Academy of Sciences, Universitetskaya Embankment 1, 199034 Saint Petersburg, Russia
| |
Collapse
|
29
|
Moser V, Baur H, Lehmann AW, Lehmann GUC. Two species? - Limits of the species concepts in the pygmy grasshoppers of the Tetrix bipunctata complex (Orthoptera, Tetrigidae). Zookeys 2021; 1043:33-59. [PMID: 34163294 PMCID: PMC8213684 DOI: 10.3897/zookeys.1043.68316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 05/25/2021] [Indexed: 11/13/2022] Open
Abstract
Today, integrative taxonomy is often considered the gold standard when it comes to species recognition and delimitation. Using the Tetrix bipunctata complex, we here present a case where even integrative taxonomy may reach its limits. The Tetrix bipunctata complex consists of two morphs, bipunctata and kraussi, which are easily distinguished by a single character, the length of the hind wing. Both morphs are widely distributed in Europe and reported to occur over a large area in sympatry, where they occasionally may live also in syntopy. The pattern has led to disparate classifications, as on the one extreme, the morphs were treated merely as forms or subspecies of a single species, on the other, as separate species. For this paper, we re-visited the morphology by using multivariate ratio analysis (MRA) of 17 distance measurements, checked the distributional data based on verified specimens and examined micro-habitat use. We were able to confirm that hind wing length is, indeed, the only morphological difference between bipunctata and kraussi. We were also able to exclude a mere allometric scaling. The morphs are, furthermore, largely sympatrically distributed, with syntopy occurring regularly. However, a microhabitat niche difference can be observed. Ecological measurements in a shared habitat confirm that kraussi prefers a drier and hotter microhabitat, which possibly also explains the generally lower altitudinal distribution. Based on these results, we can exclude classification as subspecies, but the taxonomic classification as species remains unclear. Even with different approaches to classify the Tetrix bipunctata complex, this case is, therefore, not settled. We recommend continuing to record kraussi and bipunctata separately.
Collapse
Affiliation(s)
- Valentin Moser
- Ochsengasse 66, 4123 Allschwil, SwitzerlandUnaffiliatedAllschwilSwitzerland
| | - Hannes Baur
- Department of Invertebrates, Natural History Museum Bern, Bernastrasse 15, 3005 Bern, SwitzerlandNatural History Museum BernBernSwitzerland
- Institute of Ecology and Evolution, University of Bern, Baltzerstrasse 6, 3012 Bern, SwitzerlandUniversity of BernBernSwitzerland
| | - Arne W. Lehmann
- Specialist Interest Group Tetrigidae (SIGTET), Friedensallee 37, 14532 Stahnsdorf, GermanySpecialist Interest Group TetrigidaeStahnsdorfGermany
| | - Gerlind U. C. Lehmann
- Department of Biology, Evolutionary Ecology, Humboldt University Berlin, Invalidenstrasse 110, 10115 Berlin, GermanyHumboldt University BerlinBerlinGermany
| |
Collapse
|
30
|
Geiger M, Koblmüller S, Assandri G, Chovanec A, Ekrem T, Fischer I, Galimberti A, Grabowski M, Haring E, Hausmann A, Hendrich L, Koch S, Mamos T, Rothe U, Rulik B, Rewicz T, Sittenthaler M, Stur E, Tończyk G, Zangl L, Moriniere J. Coverage and quality of DNA barcode references for Central and Northern European Odonata. PeerJ 2021; 9:e11192. [PMID: 33986985 PMCID: PMC8101477 DOI: 10.7717/peerj.11192] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 03/09/2021] [Indexed: 12/03/2022] Open
Abstract
Background Dragonflies and damselflies (Odonata) are important components in biomonitoring due to their amphibiotic lifecycle and specific habitat requirements. They are charismatic and popular insects, but can be challenging to identify despite large size and often distinct coloration, especially the immature stages. DNA-based assessment tools rely on validated DNA barcode reference libraries evaluated in a supraregional context to minimize taxonomic incongruence and identification mismatches. Methods This study reports on findings from the analysis of the most comprehensive DNA barcode dataset for Central European Odonata to date, with 103 out of 145 recorded European species included and publicly deposited in the Barcode of Life Data System (BOLD). The complete dataset includes 697 specimens (548 adults, 108 larvae) from 274 localities in 16 countries with a geographic emphasis on Central Europe. We used BOLD to generate sequence divergence metrics and to examine the taxonomic composition of the DNA barcode clusters within the dataset and in comparison with all data on BOLD. Results Over 88% of the species included can be readily identified using their DNA barcodes and the reference dataset provided. Considering the complete European dataset, unambiguous identification is hampered in 12 species due to weak mitochondrial differentiation and partial haplotype sharing. However, considering the known species distributions only two groups of five species possibly co-occur, leading to an unambiguous identification of more than 95% of the analysed Odonata via DNA barcoding in real applications. The cases of small interspecific genetic distances and the observed deep intraspecific variation in Cordulia aenea (Linnaeus, 1758) are discussed in detail and the corresponding taxa in the public reference database are highlighted. They should be considered in future applications of DNA barcoding and metabarcoding and represent interesting evolutionary biological questions, which call for in depth analyses of the involved taxa throughout their distribution ranges.
Collapse
Affiliation(s)
- Matthias Geiger
- Zoologisches Forschungsmuseum Alexander Koenig (ZFMK) - Leibniz Institute for Animal Biodiversity, Bonn, Germany
| | | | - Giacomo Assandri
- Area per l'Avifauna Migratrice, Istituto Superiore per la Protezione e la Ricerca Ambientale (ISPRA), Ozzano Emilia, BO, Italy
| | - Andreas Chovanec
- Federal Ministry of Agriculture, Regions and Tourism, Vienna, Austria
| | - Torbjørn Ekrem
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology, Trondheim, Norway
| | - Iris Fischer
- Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria.,Central Research Laboratories, Natural History Museum Vienna, Vienna, Austria.,Department of Evolutionary Biology, University of Vienna, Vienna, Austria
| | - Andrea Galimberti
- Department of Biotechnology and Biosciences, ZooPlantLab, University of Milano - Bicocca, Milano, Italy
| | - Michał Grabowski
- Department of Invertebrate Zoology and Hydrobiology, University of Łódź, Łódź, Poland
| | - Elisabeth Haring
- Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria.,Central Research Laboratories, Natural History Museum Vienna, Vienna, Austria.,Department of Evolutionary Biology, University of Vienna, Vienna, Austria
| | - Axel Hausmann
- SNSB-Zoologische Staatssammlung, München, BY, Germany
| | - Lars Hendrich
- SNSB-Zoologische Staatssammlung, München, BY, Germany
| | - Stefan Koch
- Independent Researcher, Mindelheim, BY, Germany
| | - Tomasz Mamos
- Department of Invertebrate Zoology and Hydrobiology, University of Łódź, Łódź, Poland
| | - Udo Rothe
- Naturkundemuseum Potsdam, Potsdam, BB, Germany
| | - Björn Rulik
- Zoologisches Forschungsmuseum Alexander Koenig (ZFMK) - Leibniz Institute for Animal Biodiversity, Bonn, Germany
| | - Tomasz Rewicz
- Department of Invertebrate Zoology and Hydrobiology, University of Łódź, Łódź, Poland
| | - Marcia Sittenthaler
- Central Research Laboratories, Natural History Museum Vienna, Vienna, Austria
| | - Elisabeth Stur
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology, Trondheim, Norway
| | - Grzegorz Tończyk
- Department of Invertebrate Zoology and Hydrobiology, University of Łódź, Łódź, Poland
| | - Lukas Zangl
- Institute of Biology, University of Graz, Graz, Steiermark, Austria.,ÖKOTEAM - Institute for Animal Ecology and Landscape Planning, Graz, Steiermark, Austria.,Universalmuseum Joanneum, Studienzentrum Naturkunde, Graz, Steiermark, Austria
| | - Jerome Moriniere
- AIM - Advanced Identification Methods GmbH, Leipzig, SN, Germany
| |
Collapse
|
31
|
Ge Y, Xia C, Wang J, Zhang X, Ma X, Zhou Q. The efficacy of DNA barcoding in the classification, genetic differentiation, and biodiversity assessment of benthic macroinvertebrates. Ecol Evol 2021; 11:5669-5681. [PMID: 34026038 PMCID: PMC8131818 DOI: 10.1002/ece3.7470] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 02/26/2021] [Accepted: 03/05/2021] [Indexed: 11/19/2022] Open
Abstract
Macroinvertebrates have been recognized as key ecological indicators of aquatic environment and are the most commonly used approaches for water quality assessment. However, species identification of macroinvertebrates (especially of aquatic insects) proves to be very difficult due to the lack of taxonomic expertise in some regions and can become time-consuming. In this study, we evaluated the feasibility of DNA barcoding for the classification of benthic macroinvertebrates and investigated the genetic differentiation in seven orders (Insecta: Ephemeroptera, Plecoptera, Trichoptera, Diptera, Hemiptera, Coleoptera, and Odonata) from four large transboundary rivers of northwest China and further explored its potential application to biodiversity assessment. A total of 1,144 COI sequences, belonging to 176 species, 112 genera, and 53 families were obtained and analyzed. The barcoding gap analysis showed that COI gene fragment yielded significant intra- and interspecific divergences and obvious barcoding gaps. NJ phylogenetic trees showed that all species group into monophyletic species clusters whether from the same population or not, except two species (Polypedilum. laetum and Polypedilum. bullum). The distance-based (ABGD) and tree-based (PTP and MPTP) methods were utilized for grouping specimens into Operational Taxonomic Units (OTUs) and delimiting species. The ABGD, PTP, and MPTP analysis were divided into 177 (p = .0599), 197, and 195 OTUs, respectively. The BIN analysis generated 186 different BINs. Overall, our study showed that DNA barcoding offers an effective framework for macroinvertebrate species identification and sheds new light on the biodiversity assessment of local macroinvertebrates. Also, the construction of DNA barcode reference library of benthic macroinvertebrates in Eurasian transboundary rivers provides a solid backup for bioassessment studies of freshwater habitats using modern high-throughput technologies in the near future.
Collapse
Affiliation(s)
- Yihao Ge
- Key Laboratory of Freshwater Animal BreedingMinistry of Agriculture and Rural Affair/Key Laboratory of Agricultural Animal Genetics, Breeding and ReproductionMinistry of EducationCollege of FisheriesHuazhong Agricultural UniversityWuhanChina
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic BeltMinistry of EducationWuhanChina
- The Key Laboratory of Aquatic Biodiversity and ConservationInstitute of HydrobiologyChinese Academy of SciencesWuhanChina
| | - Chengxing Xia
- Key Laboratory of Freshwater Animal BreedingMinistry of Agriculture and Rural Affair/Key Laboratory of Agricultural Animal Genetics, Breeding and ReproductionMinistry of EducationCollege of FisheriesHuazhong Agricultural UniversityWuhanChina
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic BeltMinistry of EducationWuhanChina
| | - Jun Wang
- Key Laboratory of Freshwater Animal BreedingMinistry of Agriculture and Rural Affair/Key Laboratory of Agricultural Animal Genetics, Breeding and ReproductionMinistry of EducationCollege of FisheriesHuazhong Agricultural UniversityWuhanChina
- The Key Laboratory of Aquatic Biodiversity and ConservationInstitute of HydrobiologyChinese Academy of SciencesWuhanChina
| | - Xiujie Zhang
- Key Laboratory of Freshwater Animal BreedingMinistry of Agriculture and Rural Affair/Key Laboratory of Agricultural Animal Genetics, Breeding and ReproductionMinistry of EducationCollege of FisheriesHuazhong Agricultural UniversityWuhanChina
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic BeltMinistry of EducationWuhanChina
| | - Xufa Ma
- Key Laboratory of Freshwater Animal BreedingMinistry of Agriculture and Rural Affair/Key Laboratory of Agricultural Animal Genetics, Breeding and ReproductionMinistry of EducationCollege of FisheriesHuazhong Agricultural UniversityWuhanChina
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic BeltMinistry of EducationWuhanChina
| | - Qiong Zhou
- Key Laboratory of Freshwater Animal BreedingMinistry of Agriculture and Rural Affair/Key Laboratory of Agricultural Animal Genetics, Breeding and ReproductionMinistry of EducationCollege of FisheriesHuazhong Agricultural UniversityWuhanChina
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic BeltMinistry of EducationWuhanChina
| |
Collapse
|
32
|
Nolen ZJ, Yildirim B, Irisarri I, Liu S, Groot Crego C, Amby DB, Mayer F, Gilbert MTP, Pereira RJ. Historical isolation facilitates species radiation by sexual selection: Insights from
Chorthippus
grasshoppers. Mol Ecol 2020; 29:4985-5002. [DOI: 10.1111/mec.15695] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 09/29/2020] [Accepted: 10/05/2020] [Indexed: 01/01/2023]
Affiliation(s)
- Zachary J. Nolen
- Division of Evolutionary Biology Faculty of Biology II Ludwig‐ Maximilians‐Universität München München Germany
- Department of Biology Lund University Lund Sweden
| | - Burcin Yildirim
- Division of Evolutionary Biology Faculty of Biology II Ludwig‐ Maximilians‐Universität München München Germany
| | - Iker Irisarri
- Department of Biodiversity and Evolutionary Biology Museo Nacional de Ciencias Naturales (MNCN‐CSIC) Madrid Spain
- Department of Organismal Biology (Systematic Biology) Uppsala University Uppsala Sweden
- Department of Applied Bioinformatics, Institute for Microbiology and Genetics University of Goettingen, Campus Institute Data Science Goettingen Germany
| | - Shanlin Liu
- Natural History Museum of Denmark University of Copenhagen Copenhagen Denmark
- College of Plant Protection China Agricultural University Beijing China
| | - Clara Groot Crego
- Division of Evolutionary Biology Faculty of Biology II Ludwig‐ Maximilians‐Universität München München Germany
| | | | - Frieder Mayer
- Museum für Naturkunde – Leibniz Institute for Evolution and Biodiversity Science Berlin Germany
| | | | - Ricardo J. Pereira
- Division of Evolutionary Biology Faculty of Biology II Ludwig‐ Maximilians‐Universität München München Germany
- Natural History Museum of Denmark University of Copenhagen Copenhagen Denmark
| |
Collapse
|
33
|
Raupach MJ, Hannig K, Morinière J, Hendrich L. A DNA barcode library for ground beetles of Germany: the genus Pterostichus Bonelli, 1810 and allied taxa (Insecta, Coleoptera, Carabidae). Zookeys 2020; 980:93-117. [PMID: 33192140 PMCID: PMC7642132 DOI: 10.3897/zookeys.980.55979] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 09/04/2020] [Indexed: 11/12/2022] Open
Abstract
Species of the ground beetle genus Pterostichus Bonelli, 1810 are some of the most common carabids in Europe. This publication provides a first comprehensive DNA barcode library for this genus and allied taxa including Abax Bonelli, 1810, Molops Bonelli, 1810, Poecilus Bonelli, 1810, and Stomis Clairville, 1806 for Germany and Central Europe in general. DNA barcodes were analyzed from 609 individuals that represent 51 species, including sequences from previous studies as well as more than 198 newly generated sequences. The results showed a 1:1 correspondence between BIN and traditionally recognized species for 44 species (86%), whereas two (4%) species were characterized by two BINs. Three BINs were found for one species (2%), while one BIN for two species was revealed for two species pairs (8%). Low interspecific distances with maximum pairwise K2P values below 2.2% were found for four species pairs. Haplotype sharing was found for two closely related species pairs: Pterostichusadstrictus Eschscholtz, 1823/Pterostichusoblongopunctatus (Fabricius, 1787) and Pterostichusnigrita Paykull, 1790/Pterostichusrhaeticus Heer, 1837. In contrast to this, high intraspecific sequence divergences with values above 2.2% were shown for three species (Molopspiceus (Panzer, 1793), Pterostichuspanzeri (Panzer, 1805), Pterostichusstrenuus (Panzer, 1793)). Summarizing the results, the present DNA barcode library does not only allow the identification of most of the analyzed species, but also provides valuable information for alpha-taxonomy as well as for ecological and evolutionary research. This library represents another step in building a comprehensive DNA barcode library of ground beetles as part of modern biodiversity research.
Collapse
Affiliation(s)
- Michael J Raupach
- Sektion Hemiptera, Bavarian State Collection of Zoology (SNSB - ZSM), Münchhausenstraße 21, 81247 München, Germany
| | | | - Jérome Morinière
- AIM - Advanced Identification Methods GmbH, Spinnereistraße 11, 04179 Leipzig
| | - Lars Hendrich
- Sektion Insecta varia, Bavarian State Collection of Zoology (SNSB - ZSM), Münchhausenstraße 21, 81247 München, Germany
| |
Collapse
|
34
|
Shah A, Hoffman JI, Schielzeth H. Comparative Analysis of Genomic Repeat Content in Gomphocerine Grasshoppers Reveals Expansion of Satellite DNA and Helitrons in Species with Unusually Large Genomes. Genome Biol Evol 2020; 12:1180-1193. [PMID: 32539114 PMCID: PMC7486953 DOI: 10.1093/gbe/evaa119] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/09/2020] [Indexed: 12/12/2022] Open
Abstract
Eukaryotic organisms vary widely in genome size and much of this variation can be explained by differences in the abundance of repetitive elements. However, the phylogenetic distributions and turnover rates of repetitive elements are largely unknown, particularly for species with large genomes. We therefore used de novo repeat identification based on low coverage whole-genome sequencing to characterize the repeatomes of six species of gomphocerine grasshoppers, an insect clade characterized by unusually large and variable genome sizes. Genome sizes of the six species ranged from 8.4 to 14.0 pg DNA per haploid genome and thus include the second largest insect genome documented so far (with the largest being another acridid grasshopper). Estimated repeat content ranged from 79% to 96% and was strongly correlated with genome size. Averaged over species, these grasshopper repeatomes comprised significant amounts of DNA transposons (24%), LINE elements (21%), helitrons (13%), LTR retrotransposons (12%), and satellite DNA (8.5%). The contribution of satellite DNA was particularly variable (ranging from <1% to 33%) as was the contribution of helitrons (ranging from 7% to 20%). The age distribution of divergence within clusters was unimodal with peaks ∼4-6%. The phylogenetic distribution of repetitive elements was suggestive of an expansion of satellite DNA in the lineages leading to the two species with the largest genomes. Although speculative at this stage, we suggest that the expansion of satellite DNA could be secondary and might possibly have been favored by selection as a means of stabilizing greatly expanded genomes.
Collapse
Affiliation(s)
- Abhijeet Shah
- Department of Animal Behaviour, Bielefeld University, Bielefeld, Germany
- Institute of Ecology and Evolution, Friedrich Schiller University Jena, Jena, Germany
| | - Joseph I Hoffman
- Department of Animal Behaviour, Bielefeld University, Bielefeld, Germany
| | - Holger Schielzeth
- Institute of Ecology and Evolution, Friedrich Schiller University Jena, Jena, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Germany
| |
Collapse
|
35
|
Hardulak LA, Morinière J, Hausmann A, Hendrich L, Schmidt S, Doczkal D, Müller J, Hebert PDN, Haszprunar G. DNA metabarcoding for biodiversity monitoring in a national park: Screening for invasive and pest species. Mol Ecol Resour 2020; 20:1542-1557. [PMID: 32559020 DOI: 10.1111/1755-0998.13212] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 06/03/2020] [Accepted: 06/09/2020] [Indexed: 01/09/2023]
Abstract
DNA metabarcoding was utilized for a large-scale, multiyear assessment of biodiversity in Malaise trap collections from the Bavarian Forest National Park (Germany, Bavaria). Principal component analysis of read count-based biodiversities revealed clustering in concordance with whether collection sites were located inside or outside of the National Park. Jaccard distance matrices of the presences of barcode index numbers (BINs) at collection sites in the two survey years (2016 and 2018) were significantly correlated. Overall similar patterns in the presence of total arthropod BINs, as well as BINs belonging to four major arthropod orders across the study area, were observed in both survey years, and are also comparable with results of a previous study based on DNA barcoding of Sanger-sequenced specimens. A custom reference sequence library was assembled from publicly available data to screen for pest or invasive arthropods among the specimens or from the preservative ethanol. A single 98.6% match to the invasive bark beetle Ips duplicatus was detected in an ethanol sample. This species has not previously been detected in the National Park.
Collapse
Affiliation(s)
- Laura A Hardulak
- SNSB-Zoologische Staatssammlung München, Munich, Germany.,Ludwig-Maximilians-Universität München, Munich, Germany
| | | | - Axel Hausmann
- SNSB-Zoologische Staatssammlung München, Munich, Germany
| | - Lars Hendrich
- SNSB-Zoologische Staatssammlung München, Munich, Germany
| | - Stefan Schmidt
- SNSB-Zoologische Staatssammlung München, Munich, Germany
| | - Dieter Doczkal
- SNSB-Zoologische Staatssammlung München, Munich, Germany
| | - Jörg Müller
- National Park Bavarian Forest, Grafenau, Germany.,Field Station Fabrikschleichach, Department of Animal Ecology and Tropical Biology, University of Würzburg, Biocenter, Rauhenebrach, Germany
| | - Paul D N Hebert
- Centre for Biodiversity Genomics, University of Guelph, Guelph, ON, Canada
| | | |
Collapse
|
36
|
Hausmann A, Segerer AH, Greifenstein T, Knubben J, Morinière J, Bozicevic V, Doczkal D, Günter A, Ulrich W, Habel JC. Toward a standardized quantitative and qualitative insect monitoring scheme. Ecol Evol 2020; 10:4009-4020. [PMID: 32489627 PMCID: PMC7244892 DOI: 10.1002/ece3.6166] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 02/19/2020] [Indexed: 12/21/2022] Open
Abstract
The number of insect species and insect abundances decreased severely during the past decades over major parts of Central Europe. Previous studies documented declines of species richness, abundances, shifts in species composition, and decreasing biomass of flying insects. In this study, we present a standardized approach to quantitatively and qualitatively assess insect diversity, biomass, and the abundance of taxa, in parallel. We applied two methods: Malaise traps, and automated and active light trapping. Sampling was conducted from April to October 2018 in southern Germany, at four sites representing conventional and organic farming. Bulk samples obtained from Malaise traps were further analyzed using DNA metabarcoding. Larger moths (Macroheterocera) collected with light trapping were further classified according to their degree of endangerment. Our methods provide valuable quantitative and qualitative data. Our results indicate more biomass and higher species richness, as well as twice the number of Red List lepidopterans in organic farmland than in conventional farmland. This combination of sampling methods with subsequent DNA metabarcoding and assignments of individuals according depending on ecological characteristics and the degree of endangerment allows to evaluate the status of landscapes and represents a suitable setup for large-scale long-term insect monitoring across Central Europe, and elsewhere.
Collapse
Affiliation(s)
| | | | | | | | - Jerôme Morinière
- Bavarian Natural History CollectionsMunichGermany
- Advanced Identification Methods GmbH (AIM)MunichGermany
| | | | | | | | - Werner Ulrich
- Department of Ecology and BiogeographyNicolaus Copernicus University TorunToruńPoland
| | - Jan Christian Habel
- Evolutionary ZoologyDepartment of BiosciencesUniversity of SalzburgSalzburgAustria
| |
Collapse
|
37
|
Wulff NC, Lehmann GUC. Sexual selection on bushcricket genitalia operates in a mosaic pattern. Ecol Evol 2020; 10:2320-2338. [PMID: 32184984 PMCID: PMC7069301 DOI: 10.1002/ece3.6025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 12/24/2019] [Accepted: 01/02/2020] [Indexed: 12/24/2022] Open
Abstract
In most species with internal fertilization, male genitalia evolve faster than other morphological structures. This holds true for genital titillators, which are used exclusively during mating in several bushcricket subfamilies. Several theories have been proposed for the sexual selection forces driving the evolution of internal genitalia, especially sperm competition, sexually antagonistic coevolution (SAC), and cryptic female choice (CFC). However, it is unclear whether the evolution of genitalia can be described with a single hypothesis or a combination of them. The study of species-specific genitalia action could contribute to the controversial debate about the underlying selective evolutionary forces. We studied female mating behaviors in response to experimentally modified titillators in a phylogenetically nested set of four bushcricket species: Roeseliana roeselii, Pholidoptera littoralis littoralis, Tettigonia viridissima (of the subfamily Tettigoniinae), and Letana inflata (Phaneropterinae). Bushcricket titillators have several potential functions; they stimulate females and suppress female resistance, ensure proper ampulla or spermatophore attachment, and facilitate male fixation. In R. roeselii, titillators stimulate females to accept copulations, supporting sexual selection by CFC. Conversely, titillator modification had no observable effect on the female's behavior in T. viridissima. The titillators of Ph. l. littoralis mechanically support the mating position and the spermatophore transfer, pointing to sexual selection by SAC. Mixed support was found in L. inflata, where manipulation resulted in increased female resistance (evidence for CFC) and mating failures by reduced spermatophore transfer success (evidence for SAC). Sexual selection is highly species-specific with a mosaic support for either cryptic female choice or sexually antagonistic coevolution or a combination of both in the four species.
Collapse
Affiliation(s)
- Nadja C. Wulff
- Department of Biology, Evolutionary EcologyHumboldt University BerlinBerlinGermany
| | | |
Collapse
|
38
|
Eberhard WG, Lehmann GUC. Demonstrating sexual selection by cryptic female choice on male genitalia: What is enough? Evolution 2019; 73:2415-2435. [PMID: 31599962 DOI: 10.1111/evo.13863] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 09/17/2019] [Accepted: 09/27/2019] [Indexed: 01/07/2023]
Abstract
Rapid divergence in external genital structures occurs in nearly all animal groups that practice internal insemination; explaining this pattern is a major challenge in evolutionary biology. The hypothesis that species-specific differences in male genitalia evolved under sexual selection as courtship devices to influence cryptic female choice (CFC) has been slow to be accepted. Doubts may stem from its radical departure from previous ideas, observational difficulties because crucial events occur hidden within the female's body, and alternative hypotheses involving biologically important phenomena such as speciation, sperm competition, and male-female conflicts of interest. We assess the current status of the CFC hypothesis by reviewing data from two groups in which crucial predictions have been especially well-tested, Glossina tsetse flies and Roeseliana (formerly Metrioptera) roeselii bushcrickets. Eighteen CFC predictions have been confirmed in Glossina and 19 in Roeseliana. We found data justifying rejection of alternative hypotheses, but none that contradicted CFC predictions. The number and extent of tests confirming predictions of the CFC hypothesis in these species is greater than that for other generally accepted hypotheses regarding the functions of nongenital structures. By this criterion, it is reasonable to conclude that some genital structures in both groups likely involved sexual selection by CFC.
Collapse
Affiliation(s)
- William G Eberhard
- Smithsonian Tropical Research Institute, Universidad de Costa Rica, and Museum of Natural Science, Louisiana State University, Baton Rouge, Louisiana, 70803
| | - Gerlind U C Lehmann
- Evolutionary Ecology, Department of Biology, Humboldt University Berlin, 10117, Berlin, Germany
| |
Collapse
|
39
|
Huemer P, Wieser C, Stark W, Hebert PDN, Wiesmair B. DNA barcode library of megadiverse Austrian Noctuoidea (Lepidoptera) - a nearly perfect match of Linnean taxonomy. Biodivers Data J 2019; 7:e37734. [PMID: 31423084 PMCID: PMC6694074 DOI: 10.3897/bdj.7.e37734] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 07/23/2019] [Indexed: 01/14/2023] Open
Abstract
The aim of the study was to establish a nationwide barcode library for the most diverse group of Austrian Lepidoptera, the Noctuoidea, with 5 families (Erebidae, Euteliidae, Noctuidae, Nolidae, Notodontidae) and around 690 species. Altogether, 3431 DNA barcode sequences from COI gene (cytochrome c oxidase 1) belonging to 671 species were gathered, with 3223 sequences >500 bp. The intraspecific divergence with a mean of only 0.17% is low in most species whereas interspecific distances to the Nearest Neighbour are significantly higher with an average of 4.95%. Diagnostic DNA barcodes were obtained for 658 species. Only 13 species (1.9% of the Austrian Noctuoidea) cannot be reliably identified from their DNA barcode (Setina aurita/Setina irrorella, Conisania leineri/Conisania poelli, Photedes captiuncula/Photedes minima, Euxoa obelisca/Euxoa vitta/Euxoa tritici, Mesapamaea secalella/Mesapamea secalis, Amphipoea fucosa/Amphipoea lucens). A similarly high identification performance was achieved by the Barcode Index (BIN) system. 671 species of Austrian Noctuoidea, representing 3202 records with BINs, are assigned to a total of 678 BINs. The vast majority of 649 species is placed into a single BIN, with only 13 species recognised as BIN-sharing (including the barcode sharing species above). Twenty-one species were assigned to more than one BIN and have to be checked for cryptic diversity in the future.
Collapse
Affiliation(s)
- Peter Huemer
- Tiroler Landesmuseen Betriebsges.m.b.H., Innsbruck, Austria Tiroler Landesmuseen Betriebsges.m.b.H. Innsbruck Austria
| | - Christian Wieser
- Landesmuseum Kärnten, Klagenfurt am Wörthersee, Austria Landesmuseum Kärnten Klagenfurt am Wörthersee Austria
| | | | - Paul D N Hebert
- Biodiversity Institute of Ontario, Guelph, Canada Biodiversity Institute of Ontario Guelph Canada
| | - Benjamin Wiesmair
- Tiroler Landesmuseen Betriebsges.m.b.H., Innsbruck, Austria Tiroler Landesmuseen Betriebsges.m.b.H. Innsbruck Austria
| |
Collapse
|
40
|
Ashfaq M, Blagoev G, Tahir HM, Khan AM, Mukhtar MK, Akhtar S, Butt A, Mansoor S, Hebert PDN. Assembling a DNA barcode reference library for the spiders (Arachnida: Araneae) of Pakistan. PLoS One 2019; 14:e0217086. [PMID: 31116764 PMCID: PMC6530854 DOI: 10.1371/journal.pone.0217086] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 05/04/2019] [Indexed: 01/16/2023] Open
Abstract
Morphological study of 1,795 spiders from sites across Pakistan placed these specimens in 27 families and 202 putative species. COI sequences >400 bp recovered from 1,782 specimens were analyzed using neighbor-joining trees, Bayesian inference, barcode gap, and Barcode Index Numbers (BINs). Specimens of 109 morphological species were assigned to 123 BINs with ten species showing BIN splits, while 93 interim species included representatives of 98 BINs. Maximum conspecific divergences ranged from 0-5.3% while congeneric distances varied from 2.8-23.2%. Excepting one species pair (Oxyopes azhari-Oxyopes oryzae), the maximum intraspecific distance was always less than the nearest-neighbor (NN) distance. Intraspecific divergence values were not significantly correlated with geographic distance. Most (75%) BINs detected in this study were new to science, while those shared with other nations mainly derived from India. The discovery of many new, potentially endemic species and the low level of BIN overlap with other nations highlight the importance of constructing regional DNA barcode reference libraries.
Collapse
Affiliation(s)
- Muhammad Ashfaq
- Centre for Biodiversity Genomics, University of Guelph, Guelph, ON, Canada
| | - Gergin Blagoev
- Centre for Biodiversity Genomics, University of Guelph, Guelph, ON, Canada
| | | | - Arif M. Khan
- Department of Biotechnology, University of Sargodha, Sargodha, Pakistan
| | | | - Saleem Akhtar
- Directorate of Entomology, Ayub Agricultural Research Institute, Faisalabad, Pakistan
| | - Abida Butt
- Department of Zoology, University of the Punjab, Lahore, Pakistan
| | - Shahid Mansoor
- National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
| | - Paul D. N. Hebert
- Centre for Biodiversity Genomics, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
41
|
Morinière J, Balke M, Doczkal D, Geiger MF, Hardulak LA, Haszprunar G, Hausmann A, Hendrich L, Regalado L, Rulik B, Schmidt S, Wägele JW, Hebert PDN. A DNA barcode library for 5,200 German flies and midges (Insecta: Diptera) and its implications for metabarcoding-based biomonitoring. Mol Ecol Resour 2019; 19:900-928. [PMID: 30977972 PMCID: PMC6851627 DOI: 10.1111/1755-0998.13022] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 03/22/2019] [Accepted: 03/25/2019] [Indexed: 11/29/2022]
Abstract
This study summarizes results of a DNA barcoding campaign on German Diptera, involving analysis of 45,040 specimens. The resultant DNA barcode library includes records for 2,453 named species comprising a total of 5,200 barcode index numbers (BINs), including 2,700 COI haplotype clusters without species‐level assignment, so called “dark taxa.” Overall, 88 out of 117 families (75%) recorded from Germany were covered, representing more than 50% of the 9,544 known species of German Diptera. Until now, most of these families, especially the most diverse, have been taxonomically inaccessible. By contrast, within a few years this study provided an intermediate taxonomic system for half of the German Dipteran fauna, which will provide a useful foundation for subsequent detailed, integrative taxonomic studies. Using DNA extracts derived from bulk collections made by Malaise traps, we further demonstrate that species delineation using BINs and operational taxonomic units (OTUs) constitutes an effective method for biodiversity studies using DNA metabarcoding. As the reference libraries continue to grow, and gaps in the species catalogue are filled, BIN lists assembled by metabarcoding will provide greater taxonomic resolution. The present study has three main goals: (a) to provide a DNA barcode library for 5,200 BINs of Diptera; (b) to demonstrate, based on the example of bulk extractions from a Malaise trap experiment, that DNA barcode clusters, labelled with globally unique identifiers (such as OTUs and/or BINs), provide a pragmatic, accurate solution to the “taxonomic impediment”; and (c) to demonstrate that interim names based on BINs and OTUs obtained through metabarcoding provide an effective method for studies on species‐rich groups that are usually neglected in biodiversity research projects because of their unresolved taxonomy.
Collapse
Affiliation(s)
| | | | | | - Matthias F Geiger
- Zoological Research Museum Alexander Koenig - Leibniz Institute for Animal Biodiversity, Bonn, Germany
| | | | | | | | | | | | - Björn Rulik
- Zoological Research Museum Alexander Koenig - Leibniz Institute for Animal Biodiversity, Bonn, Germany
| | | | - Johann-Wolfgang Wägele
- Zoological Research Museum Alexander Koenig - Leibniz Institute for Animal Biodiversity, Bonn, Germany
| | - Paul D N Hebert
- Centre for Biodiversity Genomics, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
42
|
Lin SW, Lopardo L, Haase M, Uhl G. Taxonomic revision of the dwarf spider genus Shaanxinus Tanasevitch, 2006 (Araneae, Linyphiidae, Erigoninae), with new species from Taiwan and Vietnam. ORG DIVERS EVOL 2019. [DOI: 10.1007/s13127-018-00389-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
43
|
Zhou Z, Guo H, Han L, Chai J, Che X, Shi F. Singleton molecular species delimitation based on COI-5P barcode sequences revealed high cryptic/undescribed diversity for Chinese katydids (Orthoptera: Tettigoniidae). BMC Evol Biol 2019; 19:79. [PMID: 30871464 PMCID: PMC6419471 DOI: 10.1186/s12862-019-1404-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 02/25/2019] [Indexed: 12/14/2022] Open
Abstract
Background DNA barcoding has been developed as a useful tool for species discrimination. Several sequence-based species delimitation methods, such as Barcode Index Number (BIN), REfined Single Linkage (RESL), Automatic Barcode Gap Discovery (ABGD), a Java program uses an explicit, determinate algorithm to define Molecular Operational Taxonomic Unit (jMOTU), Generalized Mixed Yule Coalescent (GMYC), and Bayesian implementation of the Poisson Tree Processes model (bPTP), were used. Our aim was to estimate Chinese katydid biodiversity using standard DNA barcode cytochrome c oxidase subunit I (COI-5P) sequences. Results Detection of a barcoding gap by similarity-based analyses and clustering-base analyses indicated that 131 identified morphological species (morphospecies) were assigned to 196 BINs and were divided into four categories: (i) MATCH (83/131 = 64.89%), morphospecies were a perfect match between morphospecies and BINs (including 61 concordant BINs and 22 singleton BINs); (ii) MERGE (14/131 = 10.69%), morphospecies shared its unique BIN with other species; (iii) SPLIT (33/131 = 25.19%, when 22 singleton species were excluded, it rose to 33/109 = 30.28%), morphospecies were placed in more than one BIN; (iv) MIXTURE (4/131 = 5.34%), morphospecies showed a more complex partition involving both a merge and a split. Neighbor-joining (NJ) analyses showed that nearly all BINs and most morphospecies formed monophyletic cluster with little variation. The molecular operational taxonomic units (MOTUs) were defined considering only the more inclusive clades found by at least four of seven species delimitation methods. Our results robustly supported 61 of 109 (55.96%) morphospecies represented by more than one specimen, 159 of 213 (74.65%) concordant BINs, and 3 of 8 (37.5%) discordant BINs. Conclusions Molecular species delimitation analyses generated a larger number of MOTUs compared with morphospecies. If these MOTU splits are proven to be true, Chinese katydids probably contain a seemingly large proportion of cryptic/undescribed taxa. Future amplification of additional molecular markers, particularly from the nuclear DNA, may be especially useful for specimens that were identified here as problematic taxa. Electronic supplementary material The online version of this article (10.1186/s12862-019-1404-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhijun Zhou
- Key Laboratory of Invertebrate Systematics and Application of Hebei Province, College of Life Sciences, Hebei University, Baoding, 071002, Hebei, China.
| | - Huifang Guo
- Key Laboratory of Invertebrate Systematics and Application of Hebei Province, College of Life Sciences, Hebei University, Baoding, 071002, Hebei, China
| | - Li Han
- Key Laboratory of Invertebrate Systematics and Application of Hebei Province, College of Life Sciences, Hebei University, Baoding, 071002, Hebei, China
| | - Jinyan Chai
- Key Laboratory of Invertebrate Systematics and Application of Hebei Province, College of Life Sciences, Hebei University, Baoding, 071002, Hebei, China
| | - Xuting Che
- Key Laboratory of Invertebrate Systematics and Application of Hebei Province, College of Life Sciences, Hebei University, Baoding, 071002, Hebei, China
| | - Fuming Shi
- Key Laboratory of Invertebrate Systematics and Application of Hebei Province, College of Life Sciences, Hebei University, Baoding, 071002, Hebei, China.
| |
Collapse
|
44
|
DNA Barcoding and Taxonomic Challenges in Describing New Putative Species: Examples from Sootywing and Cloudywing Butterflies (Lepidoptera: Hesperiidae). DIVERSITY 2018. [DOI: 10.3390/d10040111] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
DNA barcoding has resulted in the ‘discovery’ of a vast number of new species and subspecies. Assigning formal scientific names to these taxa remains a major challenge. Names sometimes are newly designated. Alternatively, available valid names can be resurrected from synonymy, based on barcode analyses together with classical taxonomic characters. For the most part, however, new putative species revealed by barcoding studies go undescribed. This situation is most often attributed to insufficient taxonomic expertise with the authors conducting the study, together with a critical lack of formally trained taxonomists. However, even with formal training, and additional supportive data from morphological, ecological or life history characters, other factors can arise that impede new species descriptions. In the present paper, several specific taxonomic challenges that have arisen from barcode analyses in two groups of skipper butterflies (Lepidoptera: Hesperiidae), the Sootywings (Pholisora catullus and P. mejicanus) and the Coyote Cloudywing (Achalarus toxeus) are highlighted and discussed. Both P. catullus and A. toxeus show relatively large intraspecific genetic divergences of barcodes (2–3%) which suggests the possibility of previously unrecognized cryptic speciation within each group. Some of the challenges to providing formal names and clarifying taxonomic status of these cryptic taxa could be largely overcome by (1) barcoding type specimens, (2) clarifying imprecise and often vague or suspect type localities, and (3) by conducting in-depth comparative studies on genitalic morphology.
Collapse
|
45
|
Forsman A. On the role of sex differences for evolution in heterogeneous and changing fitness landscapes: insights from pygmy grasshoppers. Philos Trans R Soc Lond B Biol Sci 2018; 373:20170429. [PMID: 30150227 PMCID: PMC6125723 DOI: 10.1098/rstb.2017.0429] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/25/2018] [Indexed: 12/16/2022] Open
Abstract
Much research has been devoted to study evolution of local adaptations by natural selection, and to explore the roles of neutral processes and developmental plasticity for patterns of diversity among individuals, populations and species. Some aspects, such as evolution of adaptive variation in phenotypic traits in stable environments, and the role of plasticity in predictable changing environments, are well understood. Other aspects, such as the role of sex differences for evolution in spatially heterogeneous and temporally changing environments and dynamic fitness landscapes, remain elusive. An increased understanding of evolution requires that sex differences in development, physiology, morphology, life-history and behaviours are more broadly considered. Studies of selection should take into consideration that the relationships linking phenotypes to fitness may vary not only according to environmental conditions but also differ between males and females. Such opposing selection, sex-by-environment interaction effects of selection and sex-specific developmental plasticity can have consequences for population differentiation, local adaptations and for the dynamics of polymorphisms. Integrating sex differences in analytical frameworks and population comparisons can therefore illuminate neglected evolutionary drivers and reconcile unexpected patterns. Here, I illustrate these issues using empirical examples from over 20 years of research on colour polymorphic Tetrix subulata and Tetrix undulata pygmy grasshoppers, and summarize findings from observational field studies, manipulation experiments, common garden breeding experiments and population genetics studies.This article is part of the theme issue 'Linking local adaptation with the evolution of sex differences'.
Collapse
Affiliation(s)
- Anders Forsman
- Ecology and Evolution in Microbial Model Systems, EEMiS, Department of Biology and Environmental Science, Linnaeus University, 391 82 Kalmar, Sweden
| |
Collapse
|
46
|
Hawlitschek O, Fernández-González A, Balmori-de la Puente A, Castresana J. A pipeline for metabarcoding and diet analysis from fecal samples developed for a small semi-aquatic mammal. PLoS One 2018; 13:e0201763. [PMID: 30106960 PMCID: PMC6091967 DOI: 10.1371/journal.pone.0201763] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 07/20/2018] [Indexed: 12/17/2022] Open
Abstract
Metabarcoding allows the genetic analysis of pooled samples of various sources. It is becoming popular in the study of animal diet, especially because it allows the analysis of the composition of feces without the need of handling animals. In this work, we studied the diet of the Pyrenean desman (Galemys pyrenaicus), a small semi-aquatic mammal endemic to the Iberian Peninsula and the Pyrenees, by sequencing COI minibarcodes from feces using next-generation sequencing techniques. For the identification of assembled sequences, we employed a tree-based identification method that used a reference tree of sequences of freshwater organisms. The comparison of freshly collected fecal samples and older samples showed that fresh samples produced significantly more sequencing reads. They also rendered more operational taxonomical units (OTUs), but not significantly. Our analyses of 41 samples identified 224 OTUs corresponding to species of the reference tree. Ephemeroptera, Diptera excl. Chironomidae, and Chironomidae were the most highly represented groups in terms of reads as well as samples. Other groups of freshwater organisms detected were Plecoptera, Trichoptera, Neuropteroida, Coleoptera, Crustacea, and Annelida. Our results are largely in line with previous morphological and genetic studies on the diet of the Pyrenean desman, but allowed the identification of a higher diversity of OTUs in each sample. Additionally, the bioinformatic pipeline we developed for deep sequencing of fecal samples will enable the quantitative analysis of the diet of this and other species, which can be highly useful to determine their ecological requirements.
Collapse
Affiliation(s)
- Oliver Hawlitschek
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Passeig Maritim de la Barceloneta, Barcelona, Spain
- Zoologische Staatssammlung München (ZSM-SNSB), München, Germany
- * E-mail:
| | | | - Alfonso Balmori-de la Puente
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Passeig Maritim de la Barceloneta, Barcelona, Spain
| | - Jose Castresana
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Passeig Maritim de la Barceloneta, Barcelona, Spain
| |
Collapse
|
47
|
Dörler D, Kropf M, Laaha G, Zaller JG. Occurrence of the invasive Spanish slug in gardens: can a citizen science approach help deciphering underlying factors? BMC Ecol 2018; 18:23. [PMID: 30068321 PMCID: PMC6071400 DOI: 10.1186/s12898-018-0179-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 07/22/2018] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND The Spanish slug (Arion vulgaris, also known as A. lusitanicus) is considered one of the most invasive species in agriculture, horticulture and private gardens all over Europe. Although this slug has been problematic for decades, there is still not much known about its occurrence across private gardens and the underlying meteorological and ecological factors. One reason for this knowledge gap is the limited access of researchers to private gardens. Here we used a citizen science approach to overcome this obstacle and examined whether the occurrence of Arionidae in Austrian gardens was associated with meteorological (air temperature, precipitation, global solar radiation, relative humidity) or ecological factors (plant diversity, earthworm activity). Occurrence of the invasive A. vulgaris versus the similar-looking native A. rufus was compared using a DNA-barcoding approach. RESULTS Slugs were collected from 1061 gardens from the dry Pannonian lowland to the wet alpine climate (altitudinal range 742 m). Slug abundance in gardens was best explained and negatively associated with the parameters "sum of the mean air temperature in spring", "number of frost days in the previous winter" and "mean daily global solar radiation on the day of data collection". Precipitation, plant diversity and earthworm activity were also related to slug abundance, but positively. Out of our genetic sampling of collected slugs, 92% belonged to A. vulgaris. CONCLUSIONS Our study showed that citizen science (i) is a feasible approach to record species occurrence in restricted areas across a wide geographical range and (ii) could be more widely employed in order to identify underlying environmental factors of species occurrence.
Collapse
Affiliation(s)
- Daniel Dörler
- Institute of Zoology, University of Natural Resources and Life Sciences, Vienna, Vienna, Austria
| | - Matthias Kropf
- Institute for Integrative Nature Conservation Research, University of Natural Resources and Life Sciences, Vienna, Vienna, Austria
| | - Gregor Laaha
- Institute of Applied Statistics and Computing, University of Natural Resources and Life Sciences, Vienna, Vienna, Austria
| | - Johann G. Zaller
- Institute of Zoology, University of Natural Resources and Life Sciences, Vienna, Vienna, Austria
| |
Collapse
|
48
|
Chimeno C, Morinière J, Podhorna J, Hardulak L, Hausmann A, Reckel F, Grunwald JE, Penning R, Haszprunar G. DNA Barcoding in Forensic Entomology - Establishing a DNA Reference Library of Potentially Forensic Relevant Arthropod Species. J Forensic Sci 2018; 64:593-601. [PMID: 29995972 DOI: 10.1111/1556-4029.13869] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Revised: 06/11/2018] [Accepted: 06/12/2018] [Indexed: 11/29/2022]
Abstract
Throughout the years, DNA barcoding has gained in importance in forensic entomology as it leads to fast and reliable species determination. High-quality results, however, can only be achieved with a comprehensive DNA barcode reference database at hand. In collaboration with the Bavarian State Criminal Police Office, we have initiated at the Bavarian State Collection of Zoology the establishment of a reference library containing arthropods of potential forensic relevance to be used for DNA barcoding applications. CO1-5P' DNA barcode sequences of hundreds of arthropods were obtained via DNA extraction, PCR and Sanger Sequencing, leading to the establishment of a database containing 502 high-quality sequences which provide coverage for 88 arthropod species. Furthermore, we demonstrate an application example of this library using it as a backbone to a high throughput sequencing analysis of arthropod bulk samples collected from human corpses, which enabled the identification of 31 different arthropod Barcode Index Numbers.
Collapse
Affiliation(s)
- Caroline Chimeno
- Zoologische Staatssammlung München (SNSB-ZSM), Münchhausenstrasse 21, 81247, München, Germany
| | - Jérôme Morinière
- Zoologische Staatssammlung München (SNSB-ZSM), Münchhausenstrasse 21, 81247, München, Germany
| | - Jana Podhorna
- Mendel University in Brno (MEDELU), Zemedelska 1, Brno, 613 00, Czech Republic
| | - Laura Hardulak
- Zoologische Staatssammlung München (SNSB-ZSM), Münchhausenstrasse 21, 81247, München, Germany
| | - Axel Hausmann
- Zoologische Staatssammlung München (SNSB-ZSM), Münchhausenstrasse 21, 81247, München, Germany
| | - Frank Reckel
- Abteilung II, Bayerisches Landeskriminalamt, Maillingerstraße 15, 80636, München, Germany
| | - Jan E Grunwald
- Abteilung II, Bayerisches Landeskriminalamt, Maillingerstraße 15, 80636, München, Germany
| | - Randolph Penning
- Institute of Legal Medicine, Ludwig-Maximilians Universität, München, Germany
| | - Gerhard Haszprunar
- Zoologische Staatssammlung München (SNSB-ZSM), Münchhausenstrasse 21, 81247, München, Germany
| |
Collapse
|
49
|
Grzywacz B, Lehmann AW, Chobanov DP, Lehmann GU. Multiple origin of flightlessness in Phaneropterinae bushcrickets and redefinition of the tribus Odonturini (Orthoptera: Tettigonioidea: Phaneropteridae). ORG DIVERS EVOL 2018. [DOI: 10.1007/s13127-018-0370-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
50
|
Raupach MJ, Hannig K, Moriniére J, Hendrich L. A DNA barcode library for ground beetles of Germany: the genus Amara Bonelli, 1810 (Insecta, Coleoptera, Carabidae). Zookeys 2018; 759:57-80. [PMID: 29853775 PMCID: PMC5968077 DOI: 10.3897/zookeys.759.24129] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 03/27/2018] [Indexed: 01/08/2023] Open
Abstract
The genus Amara Bonelli, 1810 is a very speciose and taxonomically difficult genus of the Carabidae. The identification of many of the species is accomplished with considerable difficulty, in particular for females and immature stages. In this study the effectiveness of DNA barcoding, the most popular method for molecular species identification, was examined to discriminate various species of this genus from Central Europe. DNA barcodes from 690 individuals and 47 species were analysed, including sequences from previous studies and more than 350 newly generated DNA barcodes. Our analysis revealed unique BINs for 38 species (81%). Interspecific K2P distances below 2.2% were found for three species pairs and one species trio, including haplotype sharing between Amara alpina/Amara torrida and Amara communis/Amara convexior/Amara makolskii. This study represents another step in generating an extensive reference library of DNA barcodes for carabids, highly valuable bioindicators for characterizing disturbances in various habitats.
Collapse
Affiliation(s)
- Michael J. Raupach
- Institute for Biology and Environmental Sciences, Carl von Ossietzky University Oldenburg, Carl von Ossietzky Straße 9-11, 26111 Oldenburg, Germany
| | | | - Jérôme Moriniére
- Taxonomic coordinator – German Barcode of Life (GBOL), Bavarian State Collection of Zoology (SNSB – ZSM), Münchhausenstraße 21, 81247 München, Germany
| | - Lars Hendrich
- Sektion Insecta varia, Bavarian State Collection of Zoology (SNSB – ZSM), Münchhausenstraße 21, 81247 München, Germany
| |
Collapse
|