1
|
Silva GAA, Harder AM, Kirksey KB, Mathur S, Willoughby JR. Detectability of runs of homozygosity is influenced by analysis parameters and population-specific demographic history. PLoS Comput Biol 2024; 20:e1012566. [PMID: 39480880 DOI: 10.1371/journal.pcbi.1012566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 10/17/2024] [Indexed: 11/02/2024] Open
Abstract
Wild populations are increasingly threatened by human-mediated climate change and land use changes. As populations decline, the probability of inbreeding increases, along with the potential for negative effects on individual fitness. Detecting and characterizing runs of homozygosity (ROHs) is a popular strategy for assessing the extent of individual inbreeding present in a population and can also shed light on the genetic mechanisms contributing to inbreeding depression. Here, we analyze simulated and empirical datasets to demonstrate the downstream effects of program selection and long-term demographic history on ROH inference, leading to context-dependent biases in the results. Through a sensitivity analysis we evaluate how various parameter values impact on ROH-calling results, highlighting its utility as a tool for parameter exploration. Our results indicate that ROH inferences are sensitive to factors such as sequencing depth and ROH length distribution, and with bias direction and magnitude varying with demographic history and the programs used. Estimation biases are particularly pronounced at lower sequencing depths, potentially leading to either underestimation or overestimation of inbreeding. These results are particularly important for the management of endangered species, as underestimating inbreeding signals in the genome can substantially undermine conservation initiatives. We also found that small true ROHs can be incorrectly lumped together and called as longer ROHs, leading to erroneous inference of recent inbreeding. To address these challenges, we suggest using a combination of ROH detection tools and ROH length-specific inferences, along with sensitivity analysis, to generate robust and context-appropriate population inferences regarding inbreeding history. We outline these recommendations for ROH estimation at multiple levels of sequencing effort, which are typical of conservation genomics studies.
Collapse
Affiliation(s)
- Gabriel A A Silva
- College of Forestry, Wildlife, and Environment, Auburn University, Auburn, Alabama, United States of America
| | - Avril M Harder
- College of Forestry, Wildlife, and Environment, Auburn University, Auburn, Alabama, United States of America
| | - Kenneth B Kirksey
- Walker College of Business, Appalachian State University, Boone, North Carolina, United States of America
| | - Samarth Mathur
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, Ohio, United States of America
| | - Janna R Willoughby
- College of Forestry, Wildlife, and Environment, Auburn University, Auburn, Alabama, United States of America
| |
Collapse
|
2
|
Mc Cartney AM, Scholz AH, Groussin M, Staunton C. Benefit-Sharing by Design: A Call to Action for Human Genomics Research. Annu Rev Genomics Hum Genet 2024; 25:369-395. [PMID: 38608642 DOI: 10.1146/annurev-genom-021623-104241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2024]
Abstract
The ethical standards for the responsible conduct of human research have come a long way; however, concerns surrounding equity remain in human genetics and genomics research. Addressing these concerns will help society realize the full potential of human genomics research. One outstanding concern is the fair and equitable sharing of benefits from research on human participants. Several international bodies have recognized that benefit-sharing can be an effective tool for ethical research conduct, but international laws, including the Convention on Biological Diversity and its Nagoya Protocol on Access and Benefit-Sharing, explicitly exclude human genetic and genomic resources. These agreements face significant challenges that must be considered and anticipated if similar principles are applied in human genomics research. We propose that benefit-sharing from human genomics research can be a bottom-up effort and embedded into the existing research process. We propose the development of a "benefit-sharing by design" framework to address concerns of fairness and equity in the use of human genomic resources and samples and to learn from the aspirations and decade of implementation of the Nagoya Protocol.
Collapse
Affiliation(s)
- Ann M Mc Cartney
- Genomics Institute, University of California, Santa Cruz, California, USA;
| | - Amber Hartman Scholz
- Department of Science Policy and Internationalisation, Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany;
| | - Mathieu Groussin
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany;
| | - Ciara Staunton
- School of Law, University of KwaZulu-Natal, Durban, South Africa
- Institute for Biomedicine, Eurac Research, Bolzano, Italy;
| |
Collapse
|
3
|
Höglund J, Dias G, Olsen RA, Soares A, Bunikis I, Talla V, Backström N. A Chromosome-Level Genome Assembly and Annotation for the Clouded Apollo Butterfly (Parnassius mnemosyne): A Species of Global Conservation Concern. Genome Biol Evol 2024; 16:evae031. [PMID: 38368625 PMCID: PMC10901555 DOI: 10.1093/gbe/evae031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/06/2024] [Accepted: 02/10/2024] [Indexed: 02/20/2024] Open
Abstract
The clouded apollo (Parnassius mnemosyne) is a palearctic butterfly distributed over a large part of western Eurasia, but population declines and fragmentation have been observed in many parts of the range. The development of genomic tools can help to shed light on the genetic consequences of the decline and to make informed decisions about direct conservation actions. Here, we present a high-contiguity, chromosome-level genome assembly of a female clouded apollo butterfly and provide detailed annotations of genes and transposable elements. We find that the large genome (1.5 Gb) of the clouded apollo is extraordinarily repeat rich (73%). Despite that, the combination of sequencing techniques allowed us to assemble all chromosomes (nc = 29) to a high degree of completeness. The annotation resulted in a relatively high number of protein-coding genes (22,854) compared with other Lepidoptera, of which a large proportion (21,635) could be assigned functions based on homology with other species. A comparative analysis indicates that overall genome structure has been largely conserved, both within the genus and compared with the ancestral lepidopteran karyotype. The high-quality genome assembly and detailed annotation presented here will constitute an important tool for forthcoming efforts aimed at understanding the genetic consequences of fragmentation and decline, as well as for assessments of genetic diversity, population structure, inbreeding, and genetic load in the clouded apollo butterfly.
Collapse
Affiliation(s)
- Jacob Höglund
- Animal Ecology Program, Department of Ecology and Genetics (IEG), Uppsala University, Uppsala SE-752 36, Sweden
| | - Guilherme Dias
- National Bioinformatics Infrastructure Sweden (NBIS), Science for Life Laboratory, Uppsala 752 37, Sweden
| | - Remi-André Olsen
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Solna 17165, Sweden
| | - André Soares
- National Bioinformatics Infrastructure Sweden (NBIS), Science for Life Laboratory, Uppsala 752 37, Sweden
| | - Ignas Bunikis
- Uppsala Genome Center, Department of Immunology, Genetics and Pathology, Uppsala University, National Genomics Infrastructure hosted by SciLifeLab, Uppsala, Sweden
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala 752 37, Sweden
| | - Venkat Talla
- Evolutionary Biology Program, Department of Ecology and Genetics (IEG), Uppsala University, Uppsala SE-752 36, Sweden
| | - Niclas Backström
- Evolutionary Biology Program, Department of Ecology and Genetics (IEG), Uppsala University, Uppsala SE-752 36, Sweden
| |
Collapse
|
4
|
Mochales-Riaño G, Fontsere C, de Manuel M, Talavera A, Burriel-Carranza B, Tejero-Cicuéndez H, AlGethami RHM, Shobrak M, Marques-Bonet T, Carranza S. Genomics reveals introgression and purging of deleterious mutations in the Arabian leopard ( Panthera pardus nimr). iScience 2023; 26:107481. [PMID: 37601769 PMCID: PMC10432787 DOI: 10.1016/j.isci.2023.107481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/21/2023] [Accepted: 07/24/2023] [Indexed: 08/22/2023] Open
Abstract
In endangered species, low-genetic variation and inbreeding result from recent population declines. Genetic screenings in endangered populations help to assess their vulnerability to extinction and to create informed management actions toward their conservation efforts. The leopard, Panthera pardus, is a highly generalist predator with currently eight different subspecies. Yet, genomic data are still lacking for the Critically Endangered Arabian leopard (P. p. nimr). Here, we sequenced the whole genome of two Arabian leopards and assembled the most complete genomic dataset for leopards to date. Our phylogenomic analyses show that leopards are divided into two deeply divergent clades: the African and the Asian. Conservation genomic analyses indicate a prolonged population decline, which has led to an increase in inbreeding and runs of homozygosity, with consequent purging of deleterious mutations in both Arabian individuals. Our study represents the first attempt to genetically inform captive breeding programmes for this Critically Endangered subspecies.
Collapse
Affiliation(s)
| | - Claudia Fontsere
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
- Center for Evolutionary Hologenomics, The Globe Institute, University of Copenhagen, Øster Farimagsgade 5A, 1352 Copenhagen, Denmark
| | - Marc de Manuel
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
| | - Adrián Talavera
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
| | | | - Héctor Tejero-Cicuéndez
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
- Department of Biodiversity, Ecology and Evolution, Faculty of Biology, Universidad Complutense de Madrid, Madrid, Spain
| | - Raed Hamoud M. AlGethami
- National Center for Wildlife, Prince Saud Al-Faisal for Wildlife Research, P. O Box 1086, Taif, Taif 21944, Saudi Arabia
| | - Mohammed Shobrak
- National Center for Wildlife, Prince Saud Al-Faisal for Wildlife Research, P. O Box 1086, Taif, Taif 21944, Saudi Arabia
| | - Tomas Marques-Bonet
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- Catalan Institution of Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Salvador Carranza
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
| |
Collapse
|
5
|
Revolinski SR, Maughan PJ, Coleman CE, Burke IC. Preadapted to adapt: underpinnings of adaptive plasticity revealed by the downy brome genome. Commun Biol 2023; 6:326. [PMID: 36973344 PMCID: PMC10042881 DOI: 10.1038/s42003-023-04620-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 02/21/2023] [Indexed: 03/29/2023] Open
Abstract
Bromus tectorum L. is arguably the most successful invasive weed in the world. It has fundamentally altered arid ecosystems of the western United States, where it now found on an excess of 20 million hectares. Invasion success is related to avoidance of abiotic stress and human management. Early flowering is a heritable trait utilized by B. tectorum, enabling the species to temporally monopolize limited resources and outcompete the native plant community. Thus, understanding the genetic underpinning of flowering time is critical for the design of integrated management strategies. To study flowering time traits in B. tectorum, we assembled a chromosome scale reference genome for B. tectorum. To assess the utility of the assembled genome, 121 diverse B. tectorum accessions are phenotyped and subjected to a genome wide association study (GWAS). Candidate genes, representing homologs of genes that have been previously associated with plant height or flowering phenology traits in related species are located near QTLs we identified. This study uses a high-resolution GWAS to identify reproductive phenology genes in a weedy species and represents a considerable step forward in understanding the mechanisms underlying genetic plasticity in one of the most successful invasive weed species.
Collapse
Affiliation(s)
- Samuel R Revolinski
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, USA
| | - Peter J Maughan
- Department of Plant & Wildlife Science, Brigham Young University, Provo, UT, USA
| | - Craig E Coleman
- Department of Plant & Wildlife Science, Brigham Young University, Provo, UT, USA
| | - Ian C Burke
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, USA.
| |
Collapse
|
6
|
Olawoye O, Salami KK, Azeez A, Adebola P, Sarimiye T, Imaledo J, Realini T, Hauser MA, Ashaye A. The social construction of genomics and genetic analysis in ocular diseases in Ibadan, South-western Nigeria. PLoS One 2022; 17:e0278286. [PMID: 36454870 PMCID: PMC9714877 DOI: 10.1371/journal.pone.0278286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 11/15/2022] [Indexed: 12/03/2022] Open
Abstract
Genomics, an emerging field to improve public health practice, has potential benefits to understanding ocular diseases. This study explored the social construction of genomics in ocular diseases in the blind community in Ibadan, Nigeria, through two focus group discussions and twelve in-depth interview sessions conducted among people living with ocular disorders. The data were thematic and content-analysed. Although the participants had limited knowledge about ocular diseases, genomics, and their nexus, they maintained a positive attitude toward its potential benefits. This informed their willingness to participate in genomics testing for ocular diseases. The participants preferred saliva-based sample collection over blood-based, and expressed concern for the procedure and accrued benefits of genomics studies. Thus, public sensitisation about ocular diseases and client-centred genomics testing procedures should be engendered.
Collapse
Affiliation(s)
- Olusola Olawoye
- Department of Ophthalmology, Faculty of Clinical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
- Department of Ophthalmology, University College Hospital Ibadan, Ibadan, Nigeria
| | - Kabiru K. Salami
- Department of Sociology, Faculty of the Social Sciences, University of Ibadan, Ibadan, Nigeria
| | - Abolaji Azeez
- Department of Sociology, Faculty of the Social Sciences, University of Ibadan, Ibadan, Nigeria
| | - Precious Adebola
- Department of Ophthalmology, University College Hospital Ibadan, Ibadan, Nigeria
| | - Tarela Sarimiye
- Department of Ophthalmology, Faculty of Clinical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
- Department of Ophthalmology, University College Hospital Ibadan, Ibadan, Nigeria
| | - John Imaledo
- Department of Health Promotion and Education, Faculty of Public Health, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Tony Realini
- Department of Ophthalmology and Visual Sciences, School of Medicine, West Virginia University, Morgantown, West Virginia, United States of America
| | - Michael A. Hauser
- Department of Medicine, Duke University School of Medicine, Duke University, Durham, North Carolina, United States of America
- Department of Ophthalmology, Duke University School of Medicine, Duke University, Durham, North Carolina, United States of America
| | - Adeyinka Ashaye
- Department of Ophthalmology, Faculty of Clinical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
- Department of Ophthalmology, University College Hospital Ibadan, Ibadan, Nigeria
| |
Collapse
|
7
|
Bock SL, Smaga CR, McCoy JA, Parrott BB. Genome-wide DNA methylation patterns harbour signatures of hatchling sex and past incubation temperature in a species with environmental sex determination. Mol Ecol 2022; 31:5487-5505. [PMID: 35997618 PMCID: PMC9826120 DOI: 10.1111/mec.16670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/15/2022] [Accepted: 08/18/2022] [Indexed: 01/11/2023]
Abstract
Conservation of thermally sensitive species depends on monitoring organismal and population-level responses to environmental change in real time. Epigenetic processes are increasingly recognized as key integrators of environmental conditions into developmentally plastic responses, and attendant epigenomic data sets hold potential for revealing cryptic phenotypes relevant to conservation efforts. Here, we demonstrate the utility of genome-wide DNA methylation (DNAm) patterns in the face of climate change for a group of especially vulnerable species, those with temperature-dependent sex determination (TSD). Due to their reliance on thermal cues during development to determine sexual fate, contemporary shifts in temperature are predicted to skew offspring sex ratios and ultimately destabilize sensitive populations. Using reduced-representation bisulphite sequencing, we profiled the DNA methylome in blood cells of hatchling American alligators (Alligator mississippiensis), a TSD species lacking reliable markers of sexual dimorphism in early life stages. We identified 120 sex-associated differentially methylated cytosines (DMCs; FDR < 0.1) in hatchlings incubated under a range of temperatures, as well as 707 unique temperature-associated DMCs. We further developed DNAm-based models capable of predicting hatchling sex with 100% accuracy (in 20 training samples and four test samples) and past incubation temperature with a mean absolute error of 1.2°C (in four test samples) based on the methylation status of 20 and 24 loci, respectively. Though largely independent of epigenomic patterning occurring in the embryonic gonad during TSD, DNAm patterns in blood cells may serve as nonlethal markers of hatchling sex and past incubation conditions in conservation applications. These findings also raise intriguing questions regarding tissue-specific epigenomic patterning in the context of developmental plasticity.
Collapse
Affiliation(s)
- Samantha L. Bock
- Eugene P. Odum School of EcologyUniversity of GeorgiaAthensGeorgiaUSA
- Savannah River Ecology LaboratoryAikenSouth CarolinaUSA
| | - Christopher R. Smaga
- Eugene P. Odum School of EcologyUniversity of GeorgiaAthensGeorgiaUSA
- Savannah River Ecology LaboratoryAikenSouth CarolinaUSA
| | - Jessica A. McCoy
- Department of BiologyCollege of CharlestonCharlestonSouth CarolinaUSA
| | - Benjamin B. Parrott
- Eugene P. Odum School of EcologyUniversity of GeorgiaAthensGeorgiaUSA
- Savannah River Ecology LaboratoryAikenSouth CarolinaUSA
| |
Collapse
|
8
|
Liu G, Zhang BF, Chang J, Hu XL, Li C, Xu TT, Liu SQ, Hu DF. Population genomics reveals moderate genetic differentiation between populations of endangered Forest Musk Deer located in Shaanxi and Sichuan. BMC Genomics 2022; 23:668. [PMID: 36138352 PMCID: PMC9503231 DOI: 10.1186/s12864-022-08896-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 09/12/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Many endangered species exist in small, genetically depauperate, or inbred populations, hence promoting genetic differentiation and reducing long-term population viability. Forest Musk Deer (Moschus berezovskii) has been subject to illegal hunting for hundreds of years due to the medical and commercial values of musk, resulting in a significant decline in population size. However, it is still unclear to what extent the genetic exchange and inbreeding levels are between geographically isolated populations. By using whole-genome data, we reconstructed the demographic history, evaluated genetic diversity, and characterized the population genetic structure of Forest Musk Deer from one wild population in Sichuan Province and two captive populations from two ex-situ centers in Shaanxi Province. RESULTS SNP calling by GATK resulted in a total of 44,008,662 SNPs. Principal component analysis (PCA), phylogenetic tree (NJ tree), ancestral component analysis (ADMIXTURE) and the ABBA-BABA test separated Sichuan and Shaanxi Forest Musk Deer as two genetic clusters, but no obvious genetic differentiation was observed between the two captive populations. The average pairwise FST value between the populations in Sichuan and Shaanxi ranged from 0.05-0.07, suggesting a low to moderate genetic differentiation. The mean heterozygous SNPs rate was 0.14% (0.11%-0.15%) for Forest Musk Deer at the genomic scale, and varied significantly among three populations (Chi-square = 1.22, p < 0.05, Kruskal-Wallis Test), with the Sichuan population having the lowest (0.11%). The nucleotide diversity of three populations varied significantly (p < 0.05, Kruskal-Wallis Test), with the Sichuan population having the lowest genetic θπ (1.69 × 10-3). CONCLUSIONS Genetic diversity of Forest Musk Deer was moderate at the genomic scale compared with other endangered species. Genetic differentiation between populations in Sichuan and Shaanxi may not only result from historical biogeographical factors but also be associated with contemporary human disturbances. Our findings provide scientific aid for the conservation and management of Forest Musk Deer. They can extend the proposed measures at the genomic level to apply to other musk deer species worldwide.
Collapse
Affiliation(s)
- Gang Liu
- Institute of Wetland Research, Chinese Academy of Forestry, Beijing Key Laboratory of Wetland Services and Restoration, Beijing, 100091, China.
| | - Bao-Feng Zhang
- College of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100085, China
| | - Jiang Chang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Xiao-Long Hu
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330022, China
| | - Chao Li
- Institute of Wetland Research, Chinese Academy of Forestry, Beijing Key Laboratory of Wetland Services and Restoration, Beijing, 100091, China
| | - Tin-Tao Xu
- College of Plant Science, Jilin University, Changchun, 130062, China
| | - Shu-Qiang Liu
- College of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100085, China
| | - De-Fu Hu
- College of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100085, China.
| |
Collapse
|
9
|
Wit J, Workentine ML, Redman E, Laing R, Stevens L, Cotton JA, Chaudhry U, Ali Q, Andersen EC, Yeaman S, Wasmuth JD, Gilleard JS. Genomic signatures of selection associated with benzimidazole drug treatments in Haemonchus contortus field populations. Int J Parasitol 2022; 52:677-689. [PMID: 36113620 DOI: 10.1016/j.ijpara.2022.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/19/2022] [Accepted: 07/19/2022] [Indexed: 11/22/2022]
Abstract
Genome-wide methods offer a powerful approach to detect signatures of drug selection. However, limited availability of suitable reference genomes and the difficulty of obtaining field populations with well-defined, distinct drug treatment histories mean there is little information on the signatures of selection in parasitic nematodes and on how best to detect them. This study addresses these knowledge gaps by using field populations of Haemonchus contortus with well-defined benzimidazole treatment histories, leveraging a recently completed chromosomal-scale reference genome assembly. We generated a panel of 49,393 genomic markers to genotype 20 individual adult worms from each of four H. contortus populations: two from closed sheep flocks with an approximate 20 year history of frequent benzimidazole treatment, and two populations with a history of little or no treatment. Sampling occurred in the same geographical region to limit genetic differentiation and maximise the detection sensitivity. A clear signature of selection was detected on chromosome I, centred on the isotype-1 β-tubulin gene. Two additional, but weaker, signatures of selection were detected; one near the middle of chromosome I spanning 3.75 Mbp and 259 annotated genes, and one on chromosome II spanning a region of 3.3 Mbp and 206 annotated genes, including the isotype-2 β-tubulin locus. We also assessed how sensitivity was impacted by sequencing depth, worm number, and pooled versus individual worm sequence data. This study provides the first known direct genome-wide evidence for any parasitic nematode, that the isotype-1 β-tubulin gene is quantitatively the single most important benzimidazole resistance locus. It also identified two additional genomic regions that likely contain benzimidazole resistance loci of secondary importance. This study provides an experimental framework to maximise the power of genome-wide approaches to detect signatures of selection driven by anthelmintic drug treatments in field populations of parasitic nematodes.
Collapse
Affiliation(s)
- Janneke Wit
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada; Host-Parasite Interactions (HPI) Program, University of Calgary, Calgary, Alberta, Canada
| | | | - Elizabeth Redman
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Roz Laing
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Garscube Campus, Glasgow, UK
| | - Lewis Stevens
- Tree of Life, Wellcome Sanger Institute, Cambridge, UK
| | - James A Cotton
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, UK
| | - Umer Chaudhry
- University of Edinburgh, Roslin Institute, Easter Bush Veterinary Centre, Roslin, Midlothian, UK
| | - Qasim Ali
- Department of Parasitology FVAS, University of Agriculture, D.I. Khan, Pakistan
| | - Erik C Andersen
- Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Samuel Yeaman
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - James D Wasmuth
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada; Host-Parasite Interactions (HPI) Program, University of Calgary, Calgary, Alberta, Canada
| | - John S Gilleard
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada; Host-Parasite Interactions (HPI) Program, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
10
|
Guan DL, Zhao L, Li Y, Xing LX, Huang H, Xu SQ. Genome assembly of Luehdorfia taibai, an endangered butterfly endemic to Qinling Moutains in China with extremely small populations. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.955246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Conservation genomic resources over the past decade has drastically improved, since genomes can be used to predict diverse parameters vital to conservation management. Luehdorfia taibai is an endemic butterfly only found in restricted aeras in middle-west China and is critically endangered. It was classfied as a vunerlable (VN) species in the “China species red list.” Here we generated 34.38 Gb of raw DNA sequencing reads and obtained a high-qualified draft genome assembly of L. taibai. The final genome is ~683.3 Mb, with contig N50 size of 10.19 Mb. Further, 98.6% of single-copy orthologous genes have been recovered by BUSCO. An estimated 42.34% of the genome of L. taibai consists of repetitive elements. Combined with gene prediction and transcriptome sequencing, genome annotation produced 15,968 protein-coding genes. Additionally, a nearly 1:1 orthology ratio of syntenic blocks between L. taibai and its closest genome Luehdorfia chinensis suggested that the genome structures have not changed much after speciation. The genome of L. taibai have not undergone a whole genome duplication event. Population dynamics analyses indicates that L. taibai has an extremely low heterozygosity of 0.057%, and its population size has declined dramatically over the past 10 thousand years. Our study describes a draft genome assembly of the L. taibai, the first implication of this species. We consider the globally overexploited of the host plants is not the main reason to threaten L. taibai. The genome will provide advice for the conservation to the economically important Luehdorfia lineage and this specific species.
Collapse
|
11
|
Lok S, Lau TNH, Trost B, Tong AHY, Wintle RF, Engstrom MD, Stacy E, Waits LP, Scrafford M, Scherer SW. Chromosomal-level reference genome assembly of the North American wolverine (Gulo gulo luscus): a resource for conservation genomics. G3 (BETHESDA, MD.) 2022; 12:jkac138. [PMID: 35674384 PMCID: PMC9339297 DOI: 10.1093/g3journal/jkac138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/19/2022] [Indexed: 11/21/2022]
Abstract
We report a chromosomal-level genome assembly of a male North American wolverine (Gulo gulo luscus) from the Kugluktuk region of Nunavut, Canada. The genome was assembled directly from long-reads, comprising: 758 contigs with a contig N50 of 36.6 Mb; contig L50 of 20; base count of 2.39 Gb; and a near complete representation (99.98%) of the BUSCO 5.2.2 set of 9,226 genes. A presumptive chromosomal-level assembly was generated by scaffolding against two chromosomal-level Mustelidae reference genomes, the ermine and the Eurasian river otter, to derive a final scaffold N50 of 144.0 Mb and a scaffold L50 of 7. We annotated a comprehensive set of genes that have been associated with models of aggressive behavior, a trait which the wolverine is purported to have in the popular literature. To support an integrated, genomics-based wildlife management strategy at a time of environmental disruption from climate change, we annotated the principal genes of the innate immune system to provide a resource to study the wolverine's susceptibility to new infectious and parasitic diseases. As a resource, we annotated genes involved in the modality of infection by the coronaviruses, an important class of viral pathogens of growing concern as shown by the recent spillover infections by severe acute respiratory syndrome coronavirus-2 to naïve wildlife. Tabulation of heterozygous single nucleotide variants in our specimen revealed a heterozygosity level of 0.065%, indicating a relatively diverse genetic pool that would serve as a baseline for the genomics-based conservation of the wolverine, a rare cold-adapted carnivore now under threat.
Collapse
Affiliation(s)
- Si Lok
- The Centre for Applied Genomics, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Timothy N H Lau
- The Centre for Applied Genomics, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Brett Trost
- The Centre for Applied Genomics, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Amy H Y Tong
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, ON M5S 3E1, Canada
| | - Richard F Wintle
- The Centre for Applied Genomics, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Mark D Engstrom
- Department of Natural History, Royal Ontario Museum, Toronto, ON M5S 2C6, Canada
| | - Elise Stacy
- Environmental Science Program, University of Idaho, Moscow, ID 83844, USA
- Wildlife Conservation Society, Arctic Beringia, Fairbanks, AK 99709, USA
| | - Lisette P Waits
- Department of Fish and Wildlife, University of Idaho, Moscow, ID 83844, USA
| | - Matthew Scrafford
- Wildlife Conservation Society Canada, Thunder Bay, ON P7A 4K9, Canada
| | - Stephen W Scherer
- The Centre for Applied Genomics, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- McLaughlin Centre, University of Toronto, Toronto, ON M5G 0A4, Canada
- Department of Molecular Genetics, Faculty of Medicine, University of Toronto, ON M5S 1A8, Canada
| |
Collapse
|
12
|
Farquharson KA, McLennan EA, Cheng Y, Alexander L, Fox S, Lee AV, Belov K, Hogg CJ. Restoring faith in conservation action: Maintaining wild genetic diversity through the Tasmanian devil insurance program. iScience 2022; 25:104474. [PMID: 35754729 PMCID: PMC9218385 DOI: 10.1016/j.isci.2022.104474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 04/06/2022] [Accepted: 05/20/2022] [Indexed: 11/28/2022] Open
Abstract
Conservation breeding programs aim to maintain 90% wild genetic diversity, but rarely assess functional diversity. Here, we compare both genome-wide and functional diversity (in over 500 genes) of Tasmanian devils (Sarcophilus harrisii) within the insurance metapopulation and across the species’ range (64,519 km2). Populations have declined by 80% since 1996 due to a contagious cancer, devil facial tumor disease (DFTD). However, predicted local extinctions have not occurred. Recent suggestions of selection for “resistance” alleles in the wild precipitated concerns that insurance population devils may be unsuitable for translocations. Using 830 wild samples collected at 31 locations between 2012 and 2021, and 553 insurance metapopulation devils, we show that the insurance metapopulation is representative of current wild genetic diversity. Allele frequencies at DFTD-associated loci were not substantially different between captive and wild devils. Methods presented here are valuable for others investigating evolutionary potential in threatened species, particularly ones under significant selective pressures. Developed target capture to assess functional diversity at over 500 genes Fine-scale structure exists in the genetically depauperate Tasmanian devil Insurance metapopulation is representative of wild genetic diversity Allele frequencies at disease-associated loci were similar in captivity to the wild
Collapse
Affiliation(s)
| | - Elspeth A McLennan
- School of Life and Environmental Sciences, The University of Sydney, NSW 2006, Australia
| | - Yuanyuan Cheng
- School of Life and Environmental Sciences, The University of Sydney, NSW 2006, Australia
| | - Lauren Alexander
- School of Life and Environmental Sciences, The University of Sydney, NSW 2006, Australia
| | - Samantha Fox
- Save the Tasmanian Devil Program, NRE Tasmania, Hobart, Tas 7001, Australia.,Toledo Zoo, 2605 Broadway, Toledo, OH 43609, USA
| | - Andrew V Lee
- Save the Tasmanian Devil Program, NRE Tasmania, Hobart, Tas 7001, Australia.,Toledo Zoo, 2605 Broadway, Toledo, OH 43609, USA
| | - Katherine Belov
- School of Life and Environmental Sciences, The University of Sydney, NSW 2006, Australia
| | - Carolyn J Hogg
- School of Life and Environmental Sciences, The University of Sydney, NSW 2006, Australia.,San Diego Zoo Wildlife Alliance, PO BOX 120551, San Diego, CA 92112, USA
| |
Collapse
|
13
|
Hubbs NW, Hurt CR, Niedzwiecki J, Leckie B, Withers D. Conservation genomics of urban populations of Streamside Salamander (Ambystoma barbouri). PLoS One 2022; 17:e0260178. [PMID: 35771804 PMCID: PMC9246143 DOI: 10.1371/journal.pone.0260178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 06/14/2022] [Indexed: 11/20/2022] Open
Abstract
In Tennessee, populations of the state endangered Streamside Salamander (Ambystoma barbouri) are in decline as their distribution lies mostly within rapidly developing areas in the Nashville Basin. Information regarding the partitioning of genetic variation among populations of A. barbouri and the taxonomic status of these populations relative to northern populations and their congener, the Small-mouthed Salamander (A. texanum), have important implications for management and conservation of this species. Here we combined mitochondrial sequencing and genome-wide single nucleotide polymorphism (SNP) data generated using Genotyping-by-Sequencing (GBS) to investigate patterns of genetic variation within Tennessee populations of A. barbouri, to assess their relationship to populations in Kentucky, and to examine their phylogenetic relationship to the closely related A. texanum. Results from phylogenetic reconstructions reveal a complex history of Tennessee A. barbouri populations with regards to northern populations, unisexual A. barbouri, and A. texanum. Patterns of mitochondrial sequence variation suggest that A. barbouri may have originated within Tennessee and expanded north multiple times into Kentucky, Ohio, Indiana, and West Virginia. Phylogenetic reconstructions based on genome-wide SNP data contradict results based on mitochondrial DNA and correspond to geographic and taxonomic boundaries. Variation in allele frequencies at SNP genotypes, as identified by multivariate analyses and Bayesian assignment tests, identified three evolutionary significant units (ESUs) for A. barbouri within Tennessee. Collectively, these results emphasize the need for prioritizing conservation needs for Tennessee populations of A. barbouri to ensure the long-term persistence of this species.
Collapse
Affiliation(s)
- N. Wade Hubbs
- Department of Biology, Tennessee Technological University, Cookeville, TN, United States of America
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Carla R. Hurt
- Department of Biology, Tennessee Technological University, Cookeville, TN, United States of America
- * E-mail:
| | | | - Brian Leckie
- Department of Biology, Tennessee Technological University, Cookeville, TN, United States of America
| | - David Withers
- Tennessee Department of Environment and Conservation, Nashville, TN, United States of America
| |
Collapse
|
14
|
Kutschera VE, Kierczak M, van der Valk T, von Seth J, Dussex N, Lord E, Dehasque M, Stanton DWG, Khoonsari PE, Nystedt B, Dalén L, Díez-Del-Molino D. GenErode: a bioinformatics pipeline to investigate genome erosion in endangered and extinct species. BMC Bioinformatics 2022; 23:228. [PMID: 35698034 PMCID: PMC9195343 DOI: 10.1186/s12859-022-04757-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/30/2022] [Indexed: 11/25/2022] Open
Abstract
Background Many wild species have suffered drastic population size declines over the past centuries, which have led to ‘genomic erosion’ processes characterized by reduced genetic diversity, increased inbreeding, and accumulation of harmful mutations. Yet, genomic erosion estimates of modern-day populations often lack concordance with dwindling population sizes and conservation status of threatened species. One way to directly quantify the genomic consequences of population declines is to compare genome-wide data from pre-decline museum samples and modern samples. However, doing so requires computational data processing and analysis tools specifically adapted to comparative analyses of degraded, ancient or historical, DNA data with modern DNA data as well as personnel trained to perform such analyses. Results Here, we present a highly flexible, scalable, and modular pipeline to compare patterns of genomic erosion using samples from disparate time periods. The GenErode pipeline uses state-of-the-art bioinformatics tools to simultaneously process whole-genome re-sequencing data from ancient/historical and modern samples, and to produce comparable estimates of several genomic erosion indices. No programming knowledge is required to run the pipeline and all bioinformatic steps are well-documented, making the pipeline accessible to users with different backgrounds. GenErode is written in Snakemake and Python3 and uses Conda and Singularity containers to achieve reproducibility on high-performance compute clusters. The source code is freely available on GitHub (https://github.com/NBISweden/GenErode). Conclusions GenErode is a user-friendly and reproducible pipeline that enables the standardization of genomic erosion indices from temporally sampled whole genome re-sequencing data. Supplementary Information The online version contains supplementary material available at 10.1186/s12859-022-04757-0.
Collapse
Affiliation(s)
- Verena E Kutschera
- Department of Biochemistry and Biophysics, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Stockholm University, Solna, Sweden.
| | - Marcin Kierczak
- Department of Cell and Molecular Biology, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Tom van der Valk
- Department of Cell and Molecular Biology, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Johanna von Seth
- Centre for Palaeogenetics, Svante Arrhenius väg 20C, 106 91, Stockholm, Sweden.,Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden.,Department of Zoology, Stockholm University, 106 91, Stockholm, Sweden
| | - Nicolas Dussex
- Centre for Palaeogenetics, Svante Arrhenius väg 20C, 106 91, Stockholm, Sweden.,Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden.,Department of Zoology, Stockholm University, 106 91, Stockholm, Sweden
| | - Edana Lord
- Centre for Palaeogenetics, Svante Arrhenius väg 20C, 106 91, Stockholm, Sweden.,Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden.,Department of Zoology, Stockholm University, 106 91, Stockholm, Sweden
| | - Marianne Dehasque
- Centre for Palaeogenetics, Svante Arrhenius väg 20C, 106 91, Stockholm, Sweden.,Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden.,Department of Zoology, Stockholm University, 106 91, Stockholm, Sweden
| | - David W G Stanton
- Centre for Palaeogenetics, Svante Arrhenius väg 20C, 106 91, Stockholm, Sweden.,Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden
| | - Payam Emami Khoonsari
- Department of Biochemistry and Biophysics, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Stockholm University, Solna, Sweden
| | - Björn Nystedt
- Department of Cell and Molecular Biology, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Love Dalén
- Centre for Palaeogenetics, Svante Arrhenius väg 20C, 106 91, Stockholm, Sweden.,Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden.,Department of Zoology, Stockholm University, 106 91, Stockholm, Sweden
| | - David Díez-Del-Molino
- Centre for Palaeogenetics, Svante Arrhenius väg 20C, 106 91, Stockholm, Sweden. .,Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden. .,Department of Zoology, Stockholm University, 106 91, Stockholm, Sweden.
| |
Collapse
|
15
|
Wright AL, Anson JR, Leo V, Wright BR, Newsome TM, Grueber CE. Urban restoration of common species: population genetics of reintroduced native bush rats
Rattus fuscipes
in Sydney, Australia. Anim Conserv 2022. [DOI: 10.1111/acv.12787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- A. L. Wright
- School of Life and Environmental Sciences, Faculty of Science The University of Sydney Sydney NSW Australia
| | - J. R. Anson
- Australian Wildlife Conservancy Perth WA Australia
| | - V. Leo
- Australian Wildlife Conservancy Perth WA Australia
| | - B. R. Wright
- School of Life and Environmental Sciences, Faculty of Science The University of Sydney Sydney NSW Australia
- Sydney School of Veterinary Sciences The University of Sydney Faculty of Science, The University of Sydney Sydney NSW Australia
| | - T. M. Newsome
- School of Life and Environmental Sciences, Faculty of Science The University of Sydney Sydney NSW Australia
| | - C. E. Grueber
- School of Life and Environmental Sciences, Faculty of Science The University of Sydney Sydney NSW Australia
| |
Collapse
|
16
|
Feigin C, Frankenberg S, Pask A. A Chromosome-Scale Hybrid Genome Assembly of the Extinct Tasmanian Tiger (Thylacinus cynocephalus). Genome Biol Evol 2022; 14:evac048. [PMID: 35349647 PMCID: PMC9007325 DOI: 10.1093/gbe/evac048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2022] [Indexed: 11/13/2022] Open
Abstract
The extinct Tasmanian tiger or thylacine (Thylacinus cynocephalus) was a large marsupial carnivore native to Australia. Once ranging across parts of the mainland, the species remained only on the island of Tasmania by the time of European colonization. It was driven to extinction in the early 20th century and is an emblem of native species loss in Australia. The thylacine was a striking example of convergent evolution with placental canids, with which it shared a similar skull morphology. Consequently, it has been the subject of extensive study. While the original thylacine assemblies published in 2018 enabled the first exploration of the species' genome biology, further progress is hindered by the lack of high-quality genomic resources. Here, we present a new chromosome-scale hybrid genome assembly for the thylacine, which compares favorably with many recent de novo marsupial genomes. In addition, we provide homology-based gene annotations, characterize the repeat content of the thylacine genome, and show that consistent with demographic decline, the species possessed a low rate of heterozygosity even compared to extant, threatened marsupials.
Collapse
Affiliation(s)
- Charles Feigin
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
- Department of Molecular Biology, Princeton University, New Jersey, USA
| | - Stephen Frankenberg
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Andrew Pask
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
- Department of Sciences, Museums Victoria, Carlton, Victoria, Australia
| |
Collapse
|
17
|
Balmori-de la Puente A, Ventura J, Miñarro M, Somoano A, Hey J, Castresana J. Divergence time estimation using ddRAD data and an isolation-with-migration model applied to water vole populations of Arvicola. Sci Rep 2022; 12:4065. [PMID: 35260719 PMCID: PMC8904462 DOI: 10.1038/s41598-022-07877-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 02/21/2022] [Indexed: 01/18/2023] Open
Abstract
Molecular dating methods of population splits are crucial in evolutionary biology, but they present important difficulties due to the complexity of the genealogical relationships of genes and past migrations between populations. Using the double digest restriction-site associated DNA (ddRAD) technique and an isolation-with-migration (IM) model, we studied the evolutionary history of water vole populations of the genus Arvicola, a group of complex evolution with fossorial and semi-aquatic ecotypes. To do this, we first estimated mutation rates of ddRAD loci using a phylogenetic approach. An IM model was then used to estimate split times and other relevant demographic parameters. A set of 300 ddRAD loci that included 85 calibrated loci resulted in good mixing and model convergence. The results showed that the two populations of A. scherman present in the Iberian Peninsula split 34 thousand years ago, during the last glaciation. In addition, the much greater divergence from its sister species, A. amphibius, may help to clarify the controversial taxonomy of the genus. We conclude that this approach, based on ddRAD data and an IM model, is highly useful for analyzing the origin of populations and species.
Collapse
Affiliation(s)
- Alfonso Balmori-de la Puente
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37, 08003, Barcelona, Spain
| | - Jacint Ventura
- Departament de Biologia Animal, de Biologia Vegetal i d'Ecologia, Facultat de Biociències, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Barcelona, Spain.,Àrea de Recerca en Petits Mamífers, Granollers Museum of Natural Sciences, Palaudàries, 102, 08402, Granollers, Barcelona, Spain
| | - Marcos Miñarro
- Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA), Ctra AS-267, PK 19, 33300, Villaviciosa, Asturias, Spain
| | - Aitor Somoano
- Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA), Ctra AS-267, PK 19, 33300, Villaviciosa, Asturias, Spain
| | - Jody Hey
- Department of Biology, Center for Computational Genetics and Genomics, Temple University, Philadelphia, PA, 19122, USA
| | - Jose Castresana
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37, 08003, Barcelona, Spain.
| |
Collapse
|
18
|
Metapopulation management of a critically endangered marsupial in the age of genomics. Glob Ecol Conserv 2021. [DOI: 10.1016/j.gecco.2021.e01869] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
19
|
Foster Y, Dutoit L, Grosser S, Dussex N, Foster BJ, Dodds KG, Brauning R, Van Stijn T, Robertson F, McEwan JC, Jacobs JME, Robertson BC. Genomic signatures of inbreeding in a critically endangered parrot, the kākāpō. G3 (BETHESDA, MD.) 2021; 11:jkab307. [PMID: 34542587 PMCID: PMC8527487 DOI: 10.1093/g3journal/jkab307] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 08/23/2021] [Indexed: 02/06/2023]
Abstract
Events of inbreeding are inevitable in critically endangered species. Reduced population sizes and unique life-history traits can increase the severity of inbreeding, leading to declines in fitness and increased risk of extinction. Here, we investigate levels of inbreeding in a critically endangered flightless parrot, the kākāpō (Strigops habroptilus), wherein a highly inbred island population and one individual from the mainland of New Zealand founded the entire extant population. Genotyping-by-sequencing (GBS), and a genotype calling approach using a chromosome-level genome assembly, identified a filtered set of 12,241 single-nucleotide polymorphisms (SNPs) among 161 kākāpō, which together encompass the total genetic potential of the extant population. Multiple molecular-based estimates of inbreeding were compared, including genome-wide estimates of heterozygosity (FH), the diagonal elements of a genomic-relatedness matrix (FGRM), and runs of homozygosity (RoH, FRoH). In addition, we compared levels of inbreeding in chicks from a recent breeding season to examine if inbreeding is associated with offspring survival. The density of SNPs generated with GBS was sufficient to identify chromosomes that were largely homozygous with RoH distributed in similar patterns to other inbred species. Measures of inbreeding were largely correlated and differed significantly between descendants of the two founding populations. However, neither inbreeding nor ancestry was found to be associated with reduced survivorship in chicks, owing to unexpected mortality in chicks exhibiting low levels of inbreeding. Our study highlights important considerations for estimating inbreeding in critically endangered species, such as the impacts of small population sizes and admixture between diverse lineages.
Collapse
Affiliation(s)
- Yasmin Foster
- Department of Zoology, University of Otago, Dunedin 9054, New Zealand
| | - Ludovic Dutoit
- Department of Zoology, University of Otago, Dunedin 9054, New Zealand
| | - Stefanie Grosser
- Department of Zoology, University of Otago, Dunedin 9054, New Zealand
| | - Nicolas Dussex
- Centre for Palaeogenetics, SE-106 91 Stockholm, Sweden
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, SE-104 05 Stockholm, Sweden
- Department of Zoology, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Brodie J Foster
- Department of Zoology, University of Otago, Dunedin 9054, New Zealand
| | - Ken G Dodds
- AgResearch Invermay Agricultural Centre, Mosgiel 9053, New Zealand
| | - Rudiger Brauning
- AgResearch Invermay Agricultural Centre, Mosgiel 9053, New Zealand
| | - Tracey Van Stijn
- AgResearch Invermay Agricultural Centre, Mosgiel 9053, New Zealand
| | - Fiona Robertson
- Department of Zoology, University of Otago, Dunedin 9054, New Zealand
| | - John C McEwan
- AgResearch Invermay Agricultural Centre, Mosgiel 9053, New Zealand
| | | | - Bruce C Robertson
- Department of Zoology, University of Otago, Dunedin 9054, New Zealand
| |
Collapse
|
20
|
Zhang S, Li C, Li Y, Chen Q, Hu D, Cheng Z, Wang X, Shan Y, Bai J, Liu G. Genetic Differentiation of Reintroduced Père David's Deer ( Elaphurus davidianus) Based on Population Genomics Analysis. Front Genet 2021; 12:705337. [PMID: 34557217 PMCID: PMC8452920 DOI: 10.3389/fgene.2021.705337] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 08/10/2021] [Indexed: 11/13/2022] Open
Abstract
The reintroduction is an important conservation tool to restore a species in its historically distribution area, but the rate of reintroduction success varies across species or regions due to different reasons. Genetic evaluation is important to the conservation management of reintroduced species. Conservation concerns relate to genetic threats for species with a small population size or severely historically bottle-necked species, such as negative consequences associated with loss of genetic diversity and inbreeding. The last 40years have seen a rapid increasing of population size for Père David's deer (Elaphurus davidianus), which originated from a limited founder population. However, the genetic structure of reintroduced Père David's deer has not been investigated in terms of population genomics, and it is still not clear about the evolutionary history of Père David's deer and to what extent the inbreeding level is. Conservation genomics methods were used to reconstruct the demographic history of Père David's deer, evaluate genetic diversity, and characterize genetic structure among 18 individuals from the captive, free-ranging and wild populations. The results showed that 1,456,457 single nucleotide polymorphisms (SNPs) were obtained for Père David's deer, and low levels of genome-wide genetic diversity were observed in Père David's deer compared with Red deer (Cervus elaphus) and Sika deer (Cervus nippon). A moderate population genetic differentiation was detected among three populations of Père David's deer, especially between the captive population in Beijing Père David's deer park and the free-ranging population in Jiangsu Dafeng National Nature Reserve. The effective population size of Père David's deer started to decline ~25.8ka, and the similar levels of three populations' LD reflected the genetic impacts of long-term population bottlenecks in the Père David's deer. The findings of this study could highlight the necessity of individual exchange between different facilities, and genetic management should generally be integrated into conservation planning with other management considerations.
Collapse
Affiliation(s)
- Shumiao Zhang
- Beijing Milu Ecological Research Center, Beijing, China
| | - Chao Li
- Beijing Key Laboratory of Wetland Services and Restoration, Institute of Wetland Research, Chinese Academy of Forestry, Beijing, China
| | - Yiping Li
- Beijing Milu Ecological Research Center, Beijing, China
| | - Qi Chen
- Beijing Milu Ecological Research Center, Beijing, China
| | - Defu Hu
- College of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Zhibin Cheng
- Beijing Milu Ecological Research Center, Beijing, China
| | - Xiao Wang
- Beijing Milu Ecological Research Center, Beijing, China
| | - Yunfang Shan
- Beijing Milu Ecological Research Center, Beijing, China
| | - Jiade Bai
- Beijing Milu Ecological Research Center, Beijing, China
| | - Gang Liu
- Beijing Key Laboratory of Wetland Services and Restoration, Institute of Wetland Research, Chinese Academy of Forestry, Beijing, China
| |
Collapse
|
21
|
Teixeira TM, Nazareno AG. One Step Away From Extinction: A Population Genomic Analysis of A Narrow Endemic, Tropical Plant Species. FRONTIERS IN PLANT SCIENCE 2021; 12:730258. [PMID: 34630476 PMCID: PMC8496504 DOI: 10.3389/fpls.2021.730258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 08/09/2021] [Indexed: 06/13/2023]
Abstract
Intraspecific genetic variation plays a fundamental role in maintaining the evolutionary potential of wild populations. Hence, the assessment of genetic diversity patterns becomes essential to guide biodiversity conservation policies, particularly for threatened species. To inform management strategies for conservation of Mimosa catharinensis - a narrow endemic, critically endangered plant species - we identified 1,497 unlinked SNP markers derived from a reduced representation sequencing method (i.e., double digest restriction site associated DNA sequencing, or ddRADseq). This set of molecular markers was employed to assess intrapopulation genetic parameters and the demographic history of one extremely small population of M. catharinensis (N=33) located in the Brazilian Atlantic Forest. Contrary to what is expected for narrow endemic and threatened species with small population sizes, we observed a moderate level of genetic diversity for M. catharinensis [uH E(0%missing data)=0.205, 95% CI (0.160, 0.250); uH E(30%missing data)=0.233, 95% CI (0.174, 0.292)]. Interestingly, M. catharinensis, which is a lianescent shrub with no indication of seed production for at least two decades, presented high levels of outcrossing [t (0%missing data)=0.883, SE±0.0483; t (30%missing data)=0.909, SE±0.011] and an apparent absence of inbreeding [F (0%missing data)=-0.145, 95% CI (-0.189, -0.101); F (30%missing data)=-0.105, 95% CI (-0.199, -0.011)]. However, the reconstruction of demographic history of M. catharinensis indicated that the population should be suffered a recent bottleneck. Our population genomic study tackles a central issue in evolution and conservation biology and we expect that it will be useful to help safeguard the remaining genetic diversity reported for this unique genetic resource.
Collapse
Affiliation(s)
- Thais M. Teixeira
- Department of Genetics, Ecology and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Alison G. Nazareno
- Department of Genetics, Ecology and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
22
|
Tao Y, Chen B, Kang M, Liu Y, Wang J. Genome-Wide Evidence for Complex Hybridization and Demographic History in a Group of Cycas From China. Front Genet 2021; 12:717200. [PMID: 34527022 PMCID: PMC8435751 DOI: 10.3389/fgene.2021.717200] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 08/10/2021] [Indexed: 11/24/2022] Open
Abstract
Cycads represent one of the most ancestral living seed plants as well as one of the most threatened plant groups in the world. South China is a major center and potential origin of Cycas, the most rapidly diversified lineage of cycads. However, genomic-wide diversity of Cycas remains poorly understood due to the challenge of generating genomic markers associated with their inherent large genomes. Here, we perform a comprehensive conservation genomic study based on restriction-site associated DNA sequencing (RADseq) data in six representative species of Cycas in South China. Consistently low genetic diversity and strong genetic differentiation were detected across species. Both phylogenetic inference and genetic structure analysis via several methods revealed generally congruent groups among the six Cycas species. The analysis with ADMIXTURE showed low mixing of genetic composition among species, while individuals of C. dolichophylla exhibited substantial genetic admixture with C. bifida, C. changjiangensis, and C. balansae. Furthermore, the results from Treemix, f4-statistic, and ABBA-BABA test were generally consistent and revealed the complex patterns of interspecific gene flow. Relatively strong signals of hybridization were detected between C. dolichophylla and C. szechuanensis, and the ancestor of C. taiwaniana and C. changjiangensis. Distinct patterns of demographic history were inferred for these species by Stairway Plot, and our results suggested that both climate fluctuation and frequent geological activities during the late Pleistocene exerted deep impacts on the population dynamics of these species in South China. Finally, we explore the practical implications of our findings for the development of conservation strategies in Cycas. The present study demonstrates the efficiency of RADseq for conservation genomic studies on non-model species with large and complex genomes. Given the great significance of cycads as a radical transition in the evolution of plant biodiversity, our study provides important insights into the mechanisms of diversification in such recently radiated living fossil taxa.
Collapse
Affiliation(s)
- Yueqi Tao
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Bin Chen
- Shanghai Chenshan Botanical Garden, Shanghai, China.,Eastern China Conservation Center for Wild Endangered Plant Resources, Shanghai, China
| | - Ming Kang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.,Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, China
| | - Yongbo Liu
- State Environment Protection Key Laboratory of Regional Ecological Process and Functional Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Jing Wang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.,Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
23
|
Wold J, Koepfli KP, Galla SJ, Eccles D, Hogg CJ, Le Lec MF, Guhlin J, Santure AW, Steeves TE. Expanding the conservation genomics toolbox: Incorporating structural variants to enhance genomic studies for species of conservation concern. Mol Ecol 2021; 30:5949-5965. [PMID: 34424587 PMCID: PMC9290615 DOI: 10.1111/mec.16141] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 07/28/2021] [Accepted: 08/18/2021] [Indexed: 12/28/2022]
Abstract
Structural variants (SVs) are large rearrangements (>50 bp) within the genome that impact gene function and the content and structure of chromosomes. As a result, SVs are a significant source of functional genomic variation, that is, variation at genomic regions underpinning phenotype differences, that can have large effects on individual and population fitness. While there are increasing opportunities to investigate functional genomic variation in threatened species via single nucleotide polymorphism (SNP) data sets, SVs remain understudied despite their potential influence on fitness traits of conservation interest. In this future-focused Opinion, we contend that characterizing SVs offers the conservation genomics community an exciting opportunity to complement SNP-based approaches to enhance species recovery. We also leverage the existing literature-predominantly in human health, agriculture and ecoevolutionary biology-to identify approaches for readily characterizing SVs and consider how integrating these into the conservation genomics toolbox may transform the way we manage some of the world's most threatened species.
Collapse
Affiliation(s)
- Jana Wold
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Klaus-Peter Koepfli
- Smithsonian-Mason School of Conservation, Front Royal, Virginia, USA.,Centre for Species Survival, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, District of Columbia, USA.,Computer Technologies Laboratory, ITMO University, Saint Petersburg, Russia
| | - Stephanie J Galla
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand.,Department of Biological Sciences, Boise State University, Boise, Idaho, USA
| | - David Eccles
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Carolyn J Hogg
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Marissa F Le Lec
- Department of Biochemistry, University of Otago, Dunedin, Otago, New Zealand
| | - Joseph Guhlin
- Department of Biochemistry, University of Otago, Dunedin, Otago, New Zealand.,Genomics Aotearoa, Dunedin, Otago, New Zealand
| | - Anna W Santure
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Tammy E Steeves
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| |
Collapse
|
24
|
Narum S, Kelley J, Fountain-Jones N, Hooper R, Ortiz-Barrientos D, O'Boyle B, Sibbett B. Editorial 2021. Mol Ecol Resour 2021; 21:1-10. [PMID: 33332771 DOI: 10.1111/1755-0998.13304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 11/25/2020] [Indexed: 11/30/2022]
|
25
|
Genomic Approaches for Conservation Management in Australia under Climate Change. Life (Basel) 2021; 11:life11070653. [PMID: 34357024 PMCID: PMC8304512 DOI: 10.3390/life11070653] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/02/2021] [Accepted: 07/03/2021] [Indexed: 12/28/2022] Open
Abstract
Conservation genetics has informed threatened species management for several decades. With the advent of advanced DNA sequencing technologies in recent years, it is now possible to monitor and manage threatened populations with even greater precision. Climate change presents a number of threats and challenges, but new genomics data and analytical approaches provide opportunities to identify critical evolutionary processes of relevance to genetic management under climate change. Here, we discuss the applications of such approaches for threatened species management in Australia in the context of climate change, identifying methods of facilitating viability and resilience in the face of extreme environmental stress. Using genomic approaches, conservation management practices such as translocation, targeted gene flow, and gene-editing can now be performed with the express intention of facilitating adaptation to current and projected climate change scenarios in vulnerable species, thus reducing extinction risk and ensuring the protection of our unique biodiversity for future generations. We discuss the current barriers to implementing conservation genomic projects and the efforts being made to overcome them, including communication between researchers and managers to improve the relevance and applicability of genomic studies. We present novel approaches for facilitating adaptive capacity and accelerating natural selection in species to encourage resilience in the face of climate change.
Collapse
|
26
|
Podsiadlowski L, Tunström K, Espeland M, Wheat CW. The genome assembly and annotation of the Apollo butterfly Parnassius apollo, a flagship species for conservation biology. Genome Biol Evol 2021; 13:6296838. [PMID: 34115121 PMCID: PMC8536933 DOI: 10.1093/gbe/evab122] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2021] [Indexed: 11/13/2022] Open
Abstract
Conservation genomics has made dramatic improvements over the past decade, leveraging the power of genomes to infer diverse parameters central to conservation management questions. However, much of this effort has focused upon vertebrate species, despite insects providing similar flagship status with the added benefit of smaller genomes, shorter generation times and extensive historical collections in museums. Here we present the genome of the Apollo butterfly (Parnassius apollo, Papilionidae), an iconic endangered butterfly, which like many species in this genus, needs conservation genomic attention yet lacks a genome. Using 68.7 Gb of long-read data (N50 = 15.2 kb) we assembled a 1.4 Gb genome for the Apollo butterfly, making this the largest sequenced Lepidopteran genome to date. The assembly was highly contiguous (N50 = 7.1 Mb) and complete (97% of Lepidopteran BUSCOs were single-copy and complete) and consisted of 1,707 contigs. Using RNAseq data and Arthropoda proteins, we annotated 28.3K genes. Alignment with the closest-related chromosome-level assembly, Papilio bianor, reveals a highly conserved chromosomal organization, albeit genome size is highly expanded in the Apollo butterfly, due primarily to a dramatic increase in repetitive element content. Using this alignment for superscaffolding places the P. apollo genome in to 31 chromosomal scaffolds, and together with our functional annotation, provides an essential resource for advancing conservation genomics in a flagship species for insect conservation.
Collapse
Affiliation(s)
| | - Kalle Tunström
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | | | | |
Collapse
|
27
|
Genomics for conservation: a case study of behavioral genes in the Tasmanian devil. CONSERV GENET 2021. [DOI: 10.1007/s10592-021-01354-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
28
|
Stahlke AR, Epstein B, Barbosa S, Margres MJ, Patton AH, Hendricks SA, Veillet A, Fraik AK, Schönfeld B, McCallum HI, Hamede R, Jones ME, Storfer A, Hohenlohe PA. Contemporary and historical selection in Tasmanian devils ( Sarcophilus harrisii) support novel, polygenic response to transmissible cancer. Proc Biol Sci 2021; 288:20210577. [PMID: 34034517 PMCID: PMC8150010 DOI: 10.1098/rspb.2021.0577] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 05/04/2021] [Indexed: 12/17/2022] Open
Abstract
Tasmanian devils (Sarcophilus harrisii) are evolving in response to a unique transmissible cancer, devil facial tumour disease (DFTD), first described in 1996. Persistence of wild populations and the recent emergence of a second independently evolved transmissible cancer suggest that transmissible cancers may be a recurrent feature in devils. Here, we compared signatures of selection across temporal scales to determine whether genes or gene pathways under contemporary selection (six to eight generations) have also been subject to historical selection (65-85 Myr). First, we used targeted sequencing, RAD-capture, in approximately 2500 devils in six populations to identify genomic regions subject to rapid evolution. We documented genome-wide contemporary evolution, including 186 candidate genes related to cell cycling and immune response. Then we used a molecular evolution approach to identify historical positive selection in devils compared to other marsupials and found evidence of selection in 1773 genes. However, we found limited overlap across time scales, with only 16 shared candidate genes, and no overlap in enriched functional gene sets. Our results are consistent with a novel, multi-locus evolutionary response of devils to DFTD. Our results can inform conservation by identifying high priority targets for genetic monitoring and guiding maintenance of adaptive potential in managed populations.
Collapse
Affiliation(s)
- Amanda R. Stahlke
- Institute for Bioinformatics and Evolutionary Studies (IBEST), University of Idaho, Moscow, ID 83844, USA
| | - Brendan Epstein
- School of Biological Sciences, Washington State University, Pullman, WA 99164, USA
| | - Soraia Barbosa
- Institute for Bioinformatics and Evolutionary Studies (IBEST), University of Idaho, Moscow, ID 83844, USA
- Department of Fish and Wildlife Sciences, University of Idaho, Moscow, ID 83844, USA
| | - Mark J. Margres
- School of Biological Sciences, Washington State University, Pullman, WA 99164, USA
- Department of Integrative Biology, University of South Florida, Tampa, FL 33620, USA
| | - Austin H. Patton
- School of Biological Sciences, Washington State University, Pullman, WA 99164, USA
- Department of Integrative Biology and Museum of Vertebrate Zoology, University of California, Berkeley, CA 94720, USA
| | - Sarah A. Hendricks
- Institute for Bioinformatics and Evolutionary Studies (IBEST), University of Idaho, Moscow, ID 83844, USA
| | - Anne Veillet
- Institute for Bioinformatics and Evolutionary Studies (IBEST), University of Idaho, Moscow, ID 83844, USA
| | - Alexandra K. Fraik
- School of Biological Sciences, Washington State University, Pullman, WA 99164, USA
| | - Barbara Schönfeld
- School of Natural Sciences, University of Tasmania, Hobart, Tasmania 7005, Australia
| | - Hamish I. McCallum
- Environmental Futures Research Institute, Griffith University, Nathan, Queensland 4111, Australia
| | - Rodrigo Hamede
- School of Natural Sciences, University of Tasmania, Hobart, Tasmania 7005, Australia
| | - Menna E. Jones
- School of Natural Sciences, University of Tasmania, Hobart, Tasmania 7005, Australia
| | - Andrew Storfer
- School of Biological Sciences, Washington State University, Pullman, WA 99164, USA
| | - Paul A. Hohenlohe
- Institute for Bioinformatics and Evolutionary Studies (IBEST), University of Idaho, Moscow, ID 83844, USA
| |
Collapse
|
29
|
Schweizer RM, Saarman N, Ramstad KM, Forester BR, Kelley JL, Hand BK, Malison RL, Ackiss AS, Watsa M, Nelson TC, Beja-Pereira A, Waples RS, Funk WC, Luikart G. Big Data in Conservation Genomics: Boosting Skills, Hedging Bets, and Staying Current in the Field. J Hered 2021; 112:313-327. [PMID: 33860294 DOI: 10.1093/jhered/esab019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 04/13/2021] [Indexed: 02/07/2023] Open
Abstract
A current challenge in the fields of evolutionary, ecological, and conservation genomics is balancing production of large-scale datasets with additional training often required to handle such datasets. Thus, there is an increasing need for conservation geneticists to continually learn and train to stay up-to-date through avenues such as symposia, meetings, and workshops. The ConGen meeting is a near-annual workshop that strives to guide participants in understanding population genetics principles, study design, data processing, analysis, interpretation, and applications to real-world conservation issues. Each year of ConGen gathers a diverse set of instructors, students, and resulting lectures, hands-on sessions, and discussions. Here, we summarize key lessons learned from the 2019 meeting and more recent updates to the field with a focus on big data in conservation genomics. First, we highlight classical and contemporary issues in study design that are especially relevant to working with big datasets, including the intricacies of data filtering. We next emphasize the importance of building analytical skills and simulating data, and how these skills have applications within and outside of conservation genetics careers. We also highlight recent technological advances and novel applications to conservation of wild populations. Finally, we provide data and recommendations to support ongoing efforts by ConGen organizers and instructors-and beyond-to increase participation of underrepresented minorities in conservation and eco-evolutionary sciences. The future success of conservation genetics requires both continual training in handling big data and a diverse group of people and approaches to tackle key issues, including the global biodiversity-loss crisis.
Collapse
Affiliation(s)
- Rena M Schweizer
- Division of Biological Sciences, University of Montana, Missoula, MT
| | - Norah Saarman
- Department of Biology, Utah State University, Logan, UT
| | - Kristina M Ramstad
- Department of Biology and Geology, University of South Carolina Aiken, Aiken, SC
| | | | - Joanna L Kelley
- School of Biological Sciences, Washington State University, Pullman, WA
| | - Brian K Hand
- Division of Biological Sciences, University of Montana, Missoula, MT.,Flathead Lake Biological Station, University of Montana, Polson, MT
| | - Rachel L Malison
- Flathead Lake Biological Station, University of Montana, Polson, MT
| | - Amanda S Ackiss
- Wisconsin Cooperative Fishery Research Unit, University of Wisconsin Stevens Point, Stevens Point, WI
| | | | | | - Albano Beja-Pereira
- Centro de Investigação em Biodiversidade e Recursos Genéticos (CIBIO-UP), InBIO, Universidade do Porto, Vairão, Portugal.,DGAOT, Faculty of Sciences, University of Porto, Porto, Portugal.,Sustainable Agrifood Production Research Centre (GreenUPorto), Faculty of Sciences, University of Porto, Porto, Portugal
| | - Robin S Waples
- Northwest Fisheries Science Center, NOAA Fisheries, Seattle, WA
| | - W Chris Funk
- Department of Biology, Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO
| | - Gordon Luikart
- Division of Biological Sciences, University of Montana, Missoula, MT.,Flathead Lake Biological Station, University of Montana, Polson, MT
| |
Collapse
|
30
|
González-Pech RA, Stephens TG, Chen Y, Mohamed AR, Cheng Y, Shah S, Dougan KE, Fortuin MDA, Lagorce R, Burt DW, Bhattacharya D, Ragan MA, Chan CX. Comparison of 15 dinoflagellate genomes reveals extensive sequence and structural divergence in family Symbiodiniaceae and genus Symbiodinium. BMC Biol 2021; 19:73. [PMID: 33849527 PMCID: PMC8045281 DOI: 10.1186/s12915-021-00994-6] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 02/25/2021] [Indexed: 02/07/2023] Open
Abstract
Background Dinoflagellates in the family Symbiodiniaceae are important photosynthetic symbionts in cnidarians (such as corals) and other coral reef organisms. Breakdown of the coral-dinoflagellate symbiosis due to environmental stress (i.e. coral bleaching) can lead to coral death and the potential collapse of reef ecosystems. However, evolution of Symbiodiniaceae genomes, and its implications for the coral, is little understood. Genome sequences of Symbiodiniaceae remain scarce due in part to their large genome sizes (1–5 Gbp) and idiosyncratic genome features. Results Here, we present de novo genome assemblies of seven members of the genus Symbiodinium, of which two are free-living, one is an opportunistic symbiont, and the remainder are mutualistic symbionts. Integrating other available data, we compare 15 dinoflagellate genomes revealing high sequence and structural divergence. Divergence among some Symbiodinium isolates is comparable to that among distinct genera of Symbiodiniaceae. We also recovered hundreds of gene families specific to each lineage, many of which encode unknown functions. An in-depth comparison between the genomes of the symbiotic Symbiodinium tridacnidorum (isolated from a coral) and the free-living Symbiodinium natans reveals a greater prevalence of transposable elements, genetic duplication, structural rearrangements, and pseudogenisation in the symbiotic species. Conclusions Our results underscore the potential impact of lifestyle on lineage-specific gene-function innovation, genome divergence, and the diversification of Symbiodinium and Symbiodiniaceae. The divergent features we report, and their putative causes, may also apply to other microbial eukaryotes that have undergone symbiotic phases in their evolutionary history. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-00994-6.
Collapse
Affiliation(s)
- Raúl A González-Pech
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia. .,Present address: Department of Integrative Biology, University of South Florida, Tampa, FL, 33620, USA.
| | - Timothy G Stephens
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia.,Present address: Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Yibi Chen
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia.,Australian Centre for Ecogenomics, The University of Queensland, Brisbane, QLD, 4072, Australia.,School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Amin R Mohamed
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture and Food, Queensland Bioscience Precinct, St Lucia, QLD, 4072, Australia.,Present address: Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Yuanyuan Cheng
- UQ Genomics Initiative, The University of Queensland, Brisbane, QLD, 4072, Australia.,Present address: School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Sarah Shah
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia.,Australian Centre for Ecogenomics, The University of Queensland, Brisbane, QLD, 4072, Australia.,School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Katherine E Dougan
- Australian Centre for Ecogenomics, The University of Queensland, Brisbane, QLD, 4072, Australia.,School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Michael D A Fortuin
- Australian Centre for Ecogenomics, The University of Queensland, Brisbane, QLD, 4072, Australia.,School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Rémi Lagorce
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia.,École Polytechnique Universitaire de l'Université de Nice, Université Nice-Sophia-Antipolis, 06410, Nice, Provence-Alpes-Côte d'Azur, France
| | - David W Burt
- UQ Genomics Initiative, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Debashish Bhattacharya
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Mark A Ragan
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Cheong Xin Chan
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia. .,Australian Centre for Ecogenomics, The University of Queensland, Brisbane, QLD, 4072, Australia. .,School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
31
|
Batley KC, Sandoval-Castillo J, Kemper CM, Zanardo N, Tomo I, Beheregaray LB, Möller LM. Whole genomes reveal multiple candidate genes and pathways involved in the immune response of dolphins to a highly infectious virus. Mol Ecol 2021; 30:6434-6448. [PMID: 33675577 DOI: 10.1111/mec.15873] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 02/11/2021] [Accepted: 02/22/2021] [Indexed: 01/02/2023]
Abstract
Wildlife species are challenged by various infectious diseases that act as important demographic drivers of populations and have become a great conservation concern particularly under growing environmental changes. The new era of whole genome sequencing provides new opportunities and avenues to explore the role of genetic variants in the plasticity of immune responses, particularly in non-model systems. Cetacean morbillivirus (CeMV) has emerged as a major viral threat to cetacean populations worldwide, contributing to the death of thousands of individuals of multiple dolphin and whale species. To understand the genomic basis of immune responses to CeMV, we generated and analysed whole genomes of 53 Indo-Pacific bottlenose dolphins (Tursiops aduncus) exposed to Australia's largest known CeMV-related mortality event that killed at least 50 dolphins from three different species. The genomic data set consisted of 10,168,981 SNPs anchored onto 23 chromosome-length scaffolds and 77 short scaffolds. Whole genome analysis indicated that levels of inbreeding in the dolphin population did not influence the outcome of an individual. Allele frequency estimates between survivors and nonsurvivors of the outbreak revealed 15,769 candidate SNPs, of which 689 were annotated to 295 protein coding genes. These included 50 genes with functions related to innate and adaptive immune responses, and cytokine signalling pathways and genes thought to be involved in immune responses to other morbilliviruses. Our study characterised genomic regions and pathways that may contribute to CeMV immune responses in dolphins. This represents a stride towards clarifying the complex interactions of the cetacean immune system and emphasises the value of whole genome data sets in understanding genetic elements that are essential for species conservation, including disease susceptibility and adaptation.
Collapse
Affiliation(s)
- Kimberley C Batley
- Molecular Ecology Laboratory, College of Science and Engineering, Flinders University, Adelaide, South Australia, Australia.,Cetacean Ecology, Behaviour, and Evolution Laboratory, College of Science and Engineering, Flinders University, Adelaide, South Australia, Australia
| | - Jonathan Sandoval-Castillo
- Molecular Ecology Laboratory, College of Science and Engineering, Flinders University, Adelaide, South Australia, Australia
| | | | - Nikki Zanardo
- Molecular Ecology Laboratory, College of Science and Engineering, Flinders University, Adelaide, South Australia, Australia.,Cetacean Ecology, Behaviour, and Evolution Laboratory, College of Science and Engineering, Flinders University, Adelaide, South Australia, Australia
| | - Ikuko Tomo
- South Australian Museum, Adelaide, South Australia, Australia
| | - Luciano B Beheregaray
- Molecular Ecology Laboratory, College of Science and Engineering, Flinders University, Adelaide, South Australia, Australia
| | - Luciana M Möller
- Molecular Ecology Laboratory, College of Science and Engineering, Flinders University, Adelaide, South Australia, Australia.,Cetacean Ecology, Behaviour, and Evolution Laboratory, College of Science and Engineering, Flinders University, Adelaide, South Australia, Australia
| |
Collapse
|
32
|
Baveja P, Garg KM, Chattopadhyay B, Sadanandan KR, Prawiradilaga DM, Yuda P, Lee JGH, Rheindt FE. Using historical genome-wide DNA to unravel the confused taxonomy in a songbird lineage that is extinct in the wild. Evol Appl 2021; 14:698-709. [PMID: 33767745 PMCID: PMC7980273 DOI: 10.1111/eva.13149] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 10/13/2020] [Indexed: 11/29/2022] Open
Abstract
Urgent conservation action for terminally endangered species is sometimes hampered by taxonomic uncertainty, especially in illegally traded animals that are often cross-bred in captivity. To overcome these problems, we used a genomic approach to analyze historical DNA from museum samples across the Asian Pied Starling (Gracupica contra) complex in tropical Asia, a popular victim of the ongoing songbird crisis whose distinct Javan population ("Javan Pied Starling") is extinct in the wild and subject to admixture in captivity. Comparing genomic profiles across the entire distribution, we detected three deeply diverged lineages at the species level characterized by a lack of genomic intermediacy near areas of contact. Our study demonstrates that the use of historical DNA can be instrumental in delimiting species in situations of taxonomic uncertainty, especially when modern admixture may obfuscate species boundaries. Results of our research will enable conservationists to commence a dedicated ex situ breeding program for the Javan Pied Starling, and serve as a blueprint for similar conservation problems involving terminally endangered species subject to allelic infiltration from close congeners.
Collapse
Affiliation(s)
- Pratibha Baveja
- Department of Biological SciencesNational University of SingaporeSingaporeSingapore
| | - Kritika M. Garg
- Department of Biological SciencesNational University of SingaporeSingaporeSingapore
- Institute of Bioinformatics and Applied BiotechnologyBangaloreIndia
| | - Balaji Chattopadhyay
- Department of Biological SciencesNational University of SingaporeSingaporeSingapore
| | - Keren R. Sadanandan
- Department of Biological SciencesNational University of SingaporeSingaporeSingapore
- Max Planck Institute for OrnithologySeewiesenGermany
| | | | - Pramana Yuda
- Fakultas TeknobiologiUniversitas Atma Jaya YogyakartaYogyakartaIndonesia
| | - Jessica G. H. Lee
- Department of Conservation and ResearchWildlife Reserves SingaporeSingaporeSingapore
| | - Frank E. Rheindt
- Department of Biological SciencesNational University of SingaporeSingaporeSingapore
| |
Collapse
|
33
|
Skorupski J. Fifty Years of Research on European Mink Mustela lutreola L., 1761 Genetics: Where Are We Now in Studies on One of the Most Endangered Mammals? Genes (Basel) 2020; 11:E1332. [PMID: 33187363 PMCID: PMC7696698 DOI: 10.3390/genes11111332] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/28/2020] [Accepted: 11/06/2020] [Indexed: 02/06/2023] Open
Abstract
The purpose of this review is to present the current state of knowledge about the genetics of European mink Mustela lutreola L., 1761, which is one of the most endangered mammalian species in the world. This article provides a comprehensive description of the studies undertaken over the last 50 years in terms of cytogenetics, molecular genetics, genomics (including mitogenomics), population genetics of wild populations and captive stocks, phylogenetics, phylogeography, and applied genetics (including identification by genetic methods, molecular ecology, and conservation genetics). An extensive and up-to-date review and critical analysis of the available specialist literature on the topic is provided, with special reference to conservation genetics. Unresolved issues are also described, such as the standard karyotype, systematic position, and whole-genome sequencing, and hotly debated issues are addressed, like the origin of the Southwestern population of the European mink and management approaches of the most distinct populations of the species. Finally, the most urgent directions of future research, based on the research questions arising from completed studies and the implementation of conservation measures to save and restore M. lutreola populations, are outlined. The importance of the popularization of research topics related to European mink genetics among scientists is highlighted.
Collapse
Affiliation(s)
- Jakub Skorupski
- Institute of Marine and Environmental Sciences, University of Szczecin, Adama Mickiewicza 16 St., 70-383 Szczecin, Poland; ; Tel.: +48-914-441-685
- Polish Society for Conservation Genetics LUTREOLA, Maciejkowa 21 St., 71-784 Szczecin, Poland
| |
Collapse
|