1
|
Long Y, Lu KJ, Xia CS, Feng JH, Li WY, Ma YT, Sun YY, Fan CH, Li C. Altered CD226/TIGIT expressions were associated with NK phenotypes in primary antiphospholipid syndrome and affected by IL-4/JAK pathway. Clin Exp Immunol 2024; 216:132-145. [PMID: 38386917 PMCID: PMC11036109 DOI: 10.1093/cei/uxae016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/08/2023] [Accepted: 02/21/2024] [Indexed: 02/24/2024] Open
Abstract
Natural killer (NK) cells were reported to be involved in the pathogenesis of primary antiphospholipid syndrome (pAPS). Immunosuppressive receptor T-cell immunoreceptor with Ig and ITIM domains (TIGIT) and activating receptor cluster of differentiation 226 (CD226) are specifically expressed on NK cells with competitive functions. This study aims to investigate the expression diversities of CD226/TIGIT on NK subsets and their associations with NK subsets activation phenotypes and potential clinical significance, furthermore, to explore potential cause for CD226/TIGIT expression diversities in pAPS. We comparatively assessed the changes of CD56brightNK, CD56dimNK, and NK-like cells in 70 pAPS patients compared with control groups, including systemic lupus erythematosus, asymptomatic antiphospholipid antibodies carriers (asymp-aPLs carriers), and healthy controls and their expression diversities of CD226/TIGIT by flow cytometry. CD25, CD69, CD107α expression, and interferon gamma (IFN-γ) secretion levels of NK subsets were detected to determine the potential association of CD226/TIGIT expression with NK subsets phenotypes. CD226/TIGIT expression levels were compared among different subgroups divided by aPLs status. Moreover, in vitro cultures were conducted to explore the potential mechanisms of CD226/TIGIT expression imbalance. CD56brightNK and CD3+CD56+NK-like cells were significantly increased while CD56dimNK cells were obviously decreased in pAPS, and CD56brightNK and NK-like cells exhibited significantly higher CD226 but lower TIGIT expressions. CD226+CD56brightNK and TIGIT-CD56brightNK cells show higher CD69 expression and IFN-γ secretion capacity, and CD226+NK-like and TIGIT-NK-like cells showed higher expressions of CD25 and CD69 but lower apoptosis rate than CD226- and TIGIT+CD56brightNK/NK-like cells, respectively. The imbalanced CD226/TIGIT expressions were most significant in aPLs triple-positive group. Imbalanced expressions of CD226/TIGIT on CD56brightNK and NK-like cells were aggravated after interleukin-4 (IL-4) stimulation and recovered after tofacitinib blocking. Our data revealed significant imbalanced CD226/TIGIT expressions on NK subsets in pAPS, which closely associated with NK subsets phenotypes and more complicated autoantibody status. CD226/TIGIT imbalanced may be affected by IL-4/Janus Kinase (JAK) pathway activation.
Collapse
Affiliation(s)
- Yan Long
- Department of Clinical Laboratory, Peking University People’s Hospital, Beijing, China
| | - Ke-Jia Lu
- Department of Clinical Laboratory, Peking University People’s Hospital, Beijing, China
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Peking University Health Science Center, Beijing, China
| | - Chang-Sheng Xia
- Department of Clinical Laboratory, Peking University People’s Hospital, Beijing, China
| | - Jing-Hong Feng
- Department of Clinical Laboratory, Peking University People’s Hospital, Beijing, China
| | - Wen-Yi Li
- Department of Clinical Laboratory, Peking University People’s Hospital, Beijing, China
| | - Yin-Ting Ma
- Department of Clinical Laboratory, Peking University People’s Hospital, Beijing, China
| | - Yuan-Yuan Sun
- Department of Clinical Laboratory, Peking University People’s Hospital, Beijing, China
| | - Chun-Hong Fan
- Department of Clinical Laboratory, Peking University People’s Hospital, Beijing, China
| | - Chun Li
- Department of Rheumatology and Immunology, Peking University People’s Hospital, Beijing, China
| |
Collapse
|
2
|
Chen Y, Lu M, Lin M, Gao Q. Network pharmacology and molecular docking to elucidate the common mechanism of hydroxychloroquine treatment in lupus nephritis and IgA nephropathy. Lupus 2024; 33:347-356. [PMID: 38285068 DOI: 10.1177/09612033241230377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
OBJECTIVE Hydroxychloroquine (HCQ), characterized by a broad effect on immune regulation, has been widely used in the treatment of autoimmune glomerulonephritis such as lupus nephritis (LN) and immunoglobulin A nephropathy (IgAN). The current research investigates whether HCQ plays a role in the treatment of LN and IgAN through common mechanisms since the pathogenesis of both LN and IgAN is closely related to immune complex deposition, complement activation, and ultimately inflammation. METHODS Seventy-two common targets were obtained related to the common mechanism of HCQ treatment of LN and IgAN. Targets associated with LN and IgAN were collected based on DisGeNET, GeneCards, and OMIM databases. Possible HCQ targets were obtained from the PubChem database and PharmMapper databases. The overlapping targets of HCQ ingredients, IgAN, and LN were discovered via the Venn 2.1.0 online platform. Through the DAVID database, the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were conducted. Cytoscape (v3.9.1) was used to build a protein-protein interaction (PPI) network. Molecular docking was performed by using AutoDockTools 1.5.6 software and PyMol software to match the binding activity between HCQ and the 10 core targets. RESULTS The results showed that core targets (including MMP 2, PPARG, IL-2, MAPK14, MMP 9, and SRC), three signaling pathways (including the PI3K-Akt, AGE-RAGE, and MAPK), and cell differentiation (including Th1, Th2, and Th17) might be related to the body's immunity and inflammation. These results suggested that HCQ might act on targets and pathways involved in inflammation and immune regulation to exert a common effect on the treatment of LN and IgAN. CONCLUSIONS The current study provided new evidence for the protective mechanism and clinical utility of HCQ against LN and IgAN.
Collapse
Affiliation(s)
- Yixuan Chen
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, China
| | - Meiqi Lu
- Department of Nephrology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Mengshu Lin
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, China
| | - Qing Gao
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, China
- Department of Nephrology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
3
|
Chen N, Dai Y, Li H, Long X, Ke J, Zhang J, Sun H, Gao F, Lin H, Yan Q. Increased ILT2 + natural killer T cells correlate with disease activity in systemic lupus erythematosus. Clin Rheumatol 2023; 42:3113-3121. [PMID: 37695380 DOI: 10.1007/s10067-023-06750-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/14/2023] [Accepted: 08/19/2023] [Indexed: 09/12/2023]
Abstract
OBJECTIVE Numerous immune cell types, such as B and T lymphocytes, natural killer cells (NK), and NKT cells, are related to the pathogenesis of diseases in systemic lupus erythematosus (SLE). Our goal in this investigation is to examine the phenotype of NK cells and NKT cells alterations in individuals with SLE. METHODS Typically, 50 SLE patients and 24 age-matched healthy people had their PBMCs obtained. Employing flow cytometry, the phenotype of NK and NKT cells and immunoglobulin-like transcript 2 (ILT2) expressions were identified. ELISA was utilized to evaluate the amounts of interleukin-15 (IL-15) and sHLA-G in the serum. RESULTS The frequencies of the circulating NK and NKT cells in individuals with SLE were decreased compared to healthy controls. Furthermore, ILT2 expression was significantly increased in NKT cells, but showed no obvious change in NK cells. Clinical severity and active nephritis were substantially associated with ILT2+ NKT cell frequencies. The correlation study showed that the upregulation of ILT2 expression was related to sHLA-G in plasma but not to IL-15. CONCLUSIONS ILT2+ NKT cells have a vital function in the immune abnormalities of SLE, which can also supply a viable goal for therapeutic intervention. Key Points •ILT2 expression was significantly increased in NKT cells in SLE patients. •ILT2+ NKT cell frequencies were associated with clinical severity which may be used as an indicator for evaluating disease activity in patients with SLE.
Collapse
Affiliation(s)
- Ning Chen
- Department of Infectious Diseases, South Branch of Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian Province, China
- Department of Emergency, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Key Laboratory of Emergency Medicine, Fuzhou, Fujian Province, China
| | - Yijun Dai
- Department of Rheumatology and Immunology, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian Province, China
| | - Hui Li
- Department of Rheumatology and Immunology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu Province, China
| | - Xianming Long
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Jun Ke
- Department of Emergency, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Key Laboratory of Emergency Medicine, Fuzhou, Fujian Province, China
| | - Jiuyun Zhang
- Department of Emergency, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Key Laboratory of Emergency Medicine, Fuzhou, Fujian Province, China
| | - Hong Sun
- Department of Pharmacy, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian Province, China.
| | - Fei Gao
- Department of Rheumatology and Immunology, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian Province, China.
| | - He Lin
- Department of Rheumatology and Immunology, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian Province, China
| | - Qing Yan
- Department of Emergency, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Key Laboratory of Emergency Medicine, Fuzhou, Fujian Province, China.
- Department of Rheumatology and Immunology, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian Province, China.
| |
Collapse
|
4
|
Hayashi K, Sada KE, Asano Y, Katayama Y, Ohashi K, Morishita M, Miyawaki Y, Watanabe H, Katsuyama T, Narazaki M, Matsumoto Y, Yajima N, Yoshimi R, Shimojima Y, Ohno S, Kajiyama H, Ichinose K, Sato S, Fujiwara M, Wada J. Real-world data on vitamin D supplementation and its impacts in systemic lupus erythematosus: Cross-sectional analysis of a lupus registry of nationwide institutions (LUNA). PLoS One 2022; 17:e0270569. [PMID: 35767524 PMCID: PMC9242469 DOI: 10.1371/journal.pone.0270569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 06/13/2022] [Indexed: 12/25/2022] Open
Abstract
Background Although vitamin D concentration is reportedly associated with the pathogenesis and pathology of systemic lupus erythematosus (SLE), benefits of vitamin D supplementation in SLE patients have not been elucidated, to our knowledge. We investigated the clinical impacts of vitamin D supplementation in SLE. Methods A cross-sectional analysis was performed using data from a lupus registry of nationwide institutions. We evaluated vitamin D supplementation status associated with disease-related Systemic Lupus International Collaborating Clinics/American College of Rheumatology Damage Index (SDI) as a parameter of long-term disease activity control. Results Of the enrolled 870 patients (mean age: 45 years, mean disease duration: 153 months), 426 (49%) received vitamin D supplementation. Patients with vitamin D supplementation were younger (43.2 vs 47.5 years, P < 0.0001), received higher doses of prednisolone (7.6 vs 6.8 mg/day, P = 0.002), and showed higher estimated glomerular filtration rates (79.3 vs 75.3 mL/min/1.73m2, P = 0.02) than those without supplementation. Disease-related SDI (0.73 ± 1.12 vs 0.73 ± 1.10, P = 0.75), total SDI, and SLE Disease Activity Index (SLEDAI) did not significantly differ between patients receiving and not receiving vitamin D supplementation. Even after excluding 136 patients who were highly recommended vitamin D supplementation (with age ≥ 75 years, history of bone fracture or avascular necrosis, denosumab use, and end-stage renal failure), disease-related SDI, total SDI, and SLEDAI did not significantly differ between the two groups. Conclusions Even with a possible Vitamin D deficiency and a high risk of bone fractures in SLE patients, only half of our cohort received its supplementation. The effect of vitamin D supplementation for disease activity control was not observed.
Collapse
Affiliation(s)
- Keigo Hayashi
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Ken-Ei Sada
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
- Department of Clinical Epidemiology, Kochi Medical School, Nankoku, Japan
- * E-mail:
| | - Yosuke Asano
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yu Katayama
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Keiji Ohashi
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Michiko Morishita
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yoshia Miyawaki
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Haruki Watanabe
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Takayuki Katsuyama
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Mariko Narazaki
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yoshinori Matsumoto
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Nobuyuki Yajima
- Department of Medicine, Division of Rheumatology, Showa University School of Medicine, Tokyo, Japan
- Center for Innovative Research for Communities and Clinical Excellence, Fukushima Medical University, Fukushima, Japan
| | - Ryusuke Yoshimi
- Department of Stem Cell and Immune Regulation, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Yasuhiro Shimojima
- Department of Medicine (Neurology and Rheumatology), Shinshu University School of Medicine, Matsumoto, Japan
| | - Shigeru Ohno
- Center for Rheumatic Diseases, Yokohama City University Medical Center, Yokohama, Japan
| | - Hiroshi Kajiyama
- Department of Rheumatology and Applied Immunology, Faculty of Medicine, Saitama Medical University, Saitama, Japan
| | - Kunihiro Ichinose
- Department of Immunology and Rheumatology, Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Shuzo Sato
- Department of Rheumatology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Michio Fujiwara
- Department of Rheumatology, Yokohama Rosai Hospital, Yokohama, Japan
| | - Jun Wada
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
5
|
Girbash EF, Abdelwahab SM, Fahmi DS, Abdeldayem HM, Ghonaim R, Atta DS. Preliminary study on Anti‐Müllerian hormone, Antral follicle count, menstruation and lymphocyte subsets in systemic lupus erythematosus patients. Int J Gynaecol Obstet 2022; 159:129-135. [DOI: 10.1002/ijgo.14109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/18/2021] [Accepted: 01/20/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Ehab F. Girbash
- Obstetrics & Gynecology Department, Faculty of Medicine ‐ Zagazig University
| | - Shaimaa M Abdelwahab
- Rheumatology & Rehabilitation Department, Faculty of Medicine ‐Zagazig University
| | - Dalia S Fahmi
- Rheumatology & Rehabilitation Department, Faculty of Medicine ‐Zagazig University
| | | | - Rania Ghonaim
- Clinical Pathology Department, Faculty of Medicine ‐Zagazig University
| | - Doaa S Atta
- Rheumatology & Rehabilitation Department, Faculty of Medicine ‐Zagazig University
| |
Collapse
|
6
|
Kucuksezer UC, Aktas Cetin E, Esen F, Tahrali I, Akdeniz N, Gelmez MY, Deniz G. The Role of Natural Killer Cells in Autoimmune Diseases. Front Immunol 2021; 12:622306. [PMID: 33717125 PMCID: PMC7947192 DOI: 10.3389/fimmu.2021.622306] [Citation(s) in RCA: 124] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 01/07/2021] [Indexed: 12/15/2022] Open
Abstract
Natural killer (NK) cells, the large granular lymphocytes differentiated from the common lymphoid progenitors, were discovered in early 1970's. They are members of innate immunity and were initially defined by their strong cytotoxicity against virus-infected cells and by their important effector functions in anti-tumoral immune responses. Nowadays, NK cells are classified among the recently discovered innate lymphoid cell subsets and have capacity to influence both innate and adaptive immune responses. Therefore, they can be considered as innate immune cells that stands between the innate and adaptive arms of immunity. NK cells don't express T or B cell receptors and are recognized by absence of CD3. There are two major subgroups of NK cells according to their differential expression of CD16 and CD56. While CD16+CD56dim subset is best-known by their cytotoxic functions, CD16-CD56bright NK cell subset produces a bunch of cytokines comparable to CD4+ T helper cell subsets. Another subset of NK cells with production of interleukin (IL)-10 was named as NK regulatory cells, which has suppressive properties and could take part in immune-regulatory responses. Activation of NK cells is determined by a delicate balance of cell-surface receptors that have either activating or inhibitory properties. On the other hand, a variety of cytokines including IL-2, IL-12, IL-15, and IL-18 influence NK cell activity. NK-derived cytokines and their cytotoxic functions through induction of apoptosis take part in regulation of the immune responses and could contribute to the pathogenesis of many immune mediated diseases including ankylosing spondylitis, Behçet's disease, multiple sclerosis, rheumatoid arthritis, psoriasis, systemic lupus erythematosus and type-1 diabetes. Dysregulation of NK cells in autoimmune disorders may occur through multiple mechanisms. Thanks to the rapid developments in biotechnology, progressive research in immunology enables better characterization of cells and their delicate roles in the complex network of immunity. As NK cells stand in between innate and adaptive arms of immunity and "bridge" them, their contribution in inflammation and immune regulation deserves intense investigations. Better understanding of NK-cell biology and their contribution in both exacerbation and regulation of inflammatory disorders is a requisite for possible utilization of these multi-faceted cells in novel therapeutic interventions.
Collapse
Affiliation(s)
- Umut Can Kucuksezer
- Department of Immunology, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Esin Aktas Cetin
- Department of Immunology, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Fehim Esen
- Department of Immunology, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
- Department of Ophthalmology, Medical Faculty, Istanbul Medeniyet University, Istanbul, Turkey
| | - Ilhan Tahrali
- Department of Immunology, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Nilgun Akdeniz
- Department of Immunology, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Metin Yusuf Gelmez
- Department of Immunology, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Gunnur Deniz
- Department of Immunology, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| |
Collapse
|
7
|
Activation status of CD56 dim natural killer cells is associated with disease activity of patients with systemic lupus erythematosus. Clin Rheumatol 2020; 40:1103-1112. [PMID: 32797360 DOI: 10.1007/s10067-020-05306-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 07/07/2020] [Accepted: 07/21/2020] [Indexed: 01/11/2023]
Abstract
OBJECTIVES Decreased natural killer (NK) cells have been reported in systemic lupus erythematosus (SLE) patients. However, the role of NK cells in the pathogenesis of SLE is not well understood. In this study, we aimed to characterize NK cell subsets, phenotypes, and cytokine-secreting functions and investigate the clinical relevance of NK cells in SLE patients. METHODS Peripheral blood samples from 81 SLE patients and 59 healthy donors (HDs) were collected. The frequency and phenotype of NK cells were measured by flow cytometry. Intracellular interferon-γ (IFN-γ) production by NK cells was evaluated by flow cytometry after stimulation with interleukin-12 (IL-12) and IL-18. RESULTS The percentages of NK cells in the peripheral blood of SLE patients were significantly lower than those in HDs, and the percentages of CD56dim NK cells among total NK cells showed a trend toward decrease. The CD56dim NK cells in SLE patients showed increased production of IFN-γ and displayed relatively activated phenotypic characteristics, including significant increases in NKp44, NKp46, and CD69 and decreased expression of CD16 and CD158a/h/g. Furthermore, CD56dim NK cells in active SLE patients had higher percentages of NKp44+ cells and lower percentages of CD158a/h/g+ cells than those in inactive SLE patients. The percentages of CD158a/h/g+ cells among CD56dim NK cells were negatively correlated with the systemic lupus erythematosus disease activity index (SLEDAI) and positively correlated with C3 and C4 levels. CONCLUSION CD56dim NK cells in SLE patients show a reduced proportion tendency among total NK cells and are activated, which partially reflects the disease activity. CD158a/h/g expression on CD56dim NK cells may be considered an index of disease activity. Key Points • In patients with SLE, the proportion of CD56dim NK cells showed a decreased trend and CD56dim NK cells were phenotypically activated which partially reflects the disease activity. • CD158a/h/g expression on CD56dim NK cells were decreased which may be used as an indicator for evaluating disease activity in SLE patients.
Collapse
|
8
|
Klarquist J, Cantrell R, Lehn MA, Lampe K, Hennies CM, Hoebe K, Janssen EM. Type I IFN Drives Experimental Systemic Lupus Erythematosus by Distinct Mechanisms in CD4 T Cells and B Cells. Immunohorizons 2020; 4:140-152. [PMID: 32161059 PMCID: PMC7294741 DOI: 10.4049/immunohorizons.2000005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 02/20/2020] [Indexed: 12/20/2022] Open
Abstract
Myriad studies have linked type I IFN to the pathogenesis of autoimmune diseases, including systemic lupus erythematosus (SLE). Although increased levels of type I IFN are found in patients with SLE, and IFN blockade ameliorates disease in many mouse models of lupus, its precise roles in driving SLE pathogenesis remain largely unknown. In this study, we dissected the effect of type I IFN sensing by CD4 T cells and B cells on the development of T follicular helper cells (TFH), germinal center (GC) B cells, plasmablasts, and antinuclear dsDNA IgG levels using the bm12 chronic graft-versus-host disease model of SLE-like disease. Type I IFN sensing by B cells decreased their threshold for BCR signaling and increased their expression of MHC class II, CD40, and Bcl-6, requirements for optimal GC B cell functions. In line with these data, ablation of type I IFN sensing in B cells significantly reduced the accumulation of GC B cells, plasmablasts, and autoantibodies. Ablation of type I IFN sensing in T cells significantly inhibited TFH expansion and subsequent B cell responses. In contrast to the effect in B cells, type I IFN did not promote proliferation in the T cells but protected them from NK cell-mediated killing. Consequently, ablation of either perforin or NK cells completely restored TFH expansion of IFNAR-/- TFH and, subsequently, restored the B cell responses. Together, our data provide evidence for novel roles of type I IFN and immunoregulatory NK cells in the context of sterile inflammation and SLE-like disease.
Collapse
Affiliation(s)
- Jared Klarquist
- Department of Immunology and Microbiology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045;
| | - Rachel Cantrell
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229; and
| | - Maria A Lehn
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229; and
| | - Kristin Lampe
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229; and
| | - Cassandra M Hennies
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229; and
| | - Kasper Hoebe
- Janssen Research and Development, Johnson & Johnson, Spring House, PA 19477
| | - Edith M Janssen
- Janssen Research and Development, Johnson & Johnson, Spring House, PA 19477
| |
Collapse
|
9
|
Cytotoxic Function and Cytokine Production of Natural Killer Cells and Natural Killer T-Like Cells in Systemic Lupus Erythematosis Regulation with Interleukin-15. Mediators Inflamm 2019; 2019:4236562. [PMID: 31049024 PMCID: PMC6462338 DOI: 10.1155/2019/4236562] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 11/25/2018] [Accepted: 12/13/2018] [Indexed: 11/17/2022] Open
Abstract
Natural killer cells and NKT-like cells are the first line immune defense against tumor and virus infection. Deficient NK and NKT-like cell effector function may contribute to increased susceptibility to infection in SLE patients. We sought to examine the perforin and granzyme B expression, interferon-gamma (IFN-γ), and tumor-necrosis factor-alpha (TNF-α) production and CD107a degranulation of NK and NKT-like cells from SLE patients and their regulation by IL-15. We established that (1) perforin expression on SLE NK cells was decreased but unrelated to disease activity; (2) the MFI of granzyme B was increased in NK cells from SLE patients with active disease, associated with increased percentages of granzyme B+ CD56bright NK cells; (3) NK cells from active SLE patients, both CD56dim and CD56bright NK subsets, produced higher IFN-γ compared to controls; (4) CD56dim, but not CD56bright NK cells from active SLE patients, produced lower TNF-α, compared to inactive SLE patients and controls; (5) CD107a degranulation of SLE NK cells was comparable to controls; (6) IL-15 enhanced perforin/granzyme B expression, IFN-γ/TNF-α production, and CD107a degranulation of NK cells from SLE patients; and (7) similar observations were found for CD56+CD3+ NKT-like cells. Taken together, we demonstrated the differential expression of the heightened granzyme B and decreased TNF-α in NK and NKT-like cells in SLE patients. Higher granzyme B expression of NK and NKT-like cells in active SLE patients, further enhanced by circulating IL-15, may contribute to the maintenance of inflammation in SLE.
Collapse
|
10
|
Doi A, Kano S, Asano M, Takahashi Y, Mimori T, Mimori A, Kaneko H. Autoantibodies to killer cell immunoglobulin-like receptor 3DL1 in patients with systemic lupus erythematosus. Clin Exp Immunol 2018; 195:358-363. [PMID: 30421793 DOI: 10.1111/cei.13235] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/05/2018] [Indexed: 10/27/2022] Open
Abstract
A genetic variant of the killer immunoglobulin-like receptor 3DL1 (KIR3DL1) has been found in patients with systemic lupus erythematosus (SLE). Herein, we investigated the presence of autoantibodies to KIR3DL1 in a cohort of patients with SLE. We tested sera from 28 patients with SLE, 11 patients with rheumatoid arthritis (RA) and 17 healthy control subjects for anti-KIR3DL1 activity by an enzyme-linked immunosorbent assay (ELISA) using recombinant KIR3DL1-enhanced green fluorescent protein (EGFP) and EGFP proteins. Anti-KIR3DL1 antibodies were detected in 22 (79%) of the 28 patients with SLE, whereas they were present in only three (27%) of the 11 patients with RA examined. Notably, 10 (91%) of the 11 samples from patients with SLE prior to therapy had anti-KIR3DL1 antibodies. None of the samples from healthy donors were positive for the antibodies. Here, we report the presence of anti-KIR3DL1 antibodies in the sera of patients with SLE for the first time. Anti-KIR3DL1 autoantibodies may be involved in the pathogenesis of autoimmune diseases.
Collapse
Affiliation(s)
- A Doi
- Department of Intractable Diseases, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan.,Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
| | - S Kano
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan.,Department of Tropical Medicine and Malaria, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - M Asano
- Division of Rheumatic Diseases, Hospital, National Center for Global Health and Medicine, Tokyo, Japan.,Graduate School of Medical Science, Nagoya City University, Nagoya, Japan
| | - Y Takahashi
- Division of Rheumatic Diseases, Hospital, National Center for Global Health and Medicine, Tokyo, Japan
| | - T Mimori
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - A Mimori
- Division of Rheumatic Diseases, Hospital, National Center for Global Health and Medicine, Tokyo, Japan
| | - H Kaneko
- Division of Rheumatic Diseases, Hospital, National Center for Global Health and Medicine, Tokyo, Japan
| |
Collapse
|
11
|
Suárez-Fueyo A, Bradley SJ, Katsuyama T, Solomon S, Katsuyama E, Kyttaris VC, Moulton VR, Tsokos GC. Downregulation of CD3ζ in NK Cells from Systemic Lupus Erythematosus Patients Confers a Proinflammatory Phenotype. THE JOURNAL OF IMMUNOLOGY 2018; 200:3077-3086. [PMID: 29602774 DOI: 10.4049/jimmunol.1700588] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 03/06/2018] [Indexed: 01/14/2023]
Abstract
Cytotoxic function and cytokine profile of NK cells are compromised in patients with systemic lupus erythematosus (SLE). CD3ζ, an important molecule for NK cell activation, is downregulated in SLE T cells and contributes to their altered function. However, little is known about the role of CD3ζ in SLE NK cells. We studied CD3ζ levels and its contribution to cytotoxic, degranulation, and cytokine production capacity of NK cells from patients with SLE. Furthermore, we studied the human NK cell line, NKL, in which manipulation of CD3ζ levels was achieved using small interfering RNA and NK cells from Rag2 mice deficient in CD3ζ. We found reduced CD3ζ expression in NK cells from SLE patients independent of disease activity. Downregulation of CD3ζ expression in NK cells is mediated, at least in part, by Caspase 3, the activity of which is higher in NK cells from patients with SLE compared with NK cells from healthy donors. CD3ζ levels correlated inversely with natural cytotoxicity and the percentage of cells capable of producing the proinflammatory cytokines IFN-γ and TNF. In contrast, CD3ζ levels showed a direct correlation with levels of Ab-dependent cellular cytotoxicity. Experiments performed in CD3ζ-silenced NKL and CD3ζ-deficient NK cells from Rag2 mice confirmed the dependence of NK cell function on CD3ζ levels. Our results demonstrate a differential role for CD3ζ in natural cytotoxicity and Ab-dependent cellular cytotoxicity. We conclude that downregulated CD3ζ confers a proinflammatory phenotype to SLE NK cells and contributes to their altered function in patients with SLE.
Collapse
Affiliation(s)
- Abel Suárez-Fueyo
- Division of Rheumatology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115
| | - Sean J Bradley
- Division of Rheumatology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115
| | - Takayuki Katsuyama
- Division of Rheumatology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115
| | - Sarah Solomon
- Division of Rheumatology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115
| | - Eri Katsuyama
- Division of Rheumatology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115
| | - Vasileios C Kyttaris
- Division of Rheumatology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115
| | - Vaishali R Moulton
- Division of Rheumatology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115
| | - George C Tsokos
- Division of Rheumatology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
12
|
Poli A, Michel T, Patil N, Zimmer J. Revisiting the Functional Impact of NK Cells. Trends Immunol 2018; 39:460-472. [PMID: 29496432 DOI: 10.1016/j.it.2018.01.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 12/08/2017] [Accepted: 01/23/2018] [Indexed: 01/28/2023]
Abstract
Immune responses are critical for the maintenance of homeostasis but can also upset the equilibrium, depending on the context and magnitude of the response. Natural killer (NK) cells are well known for their important roles in antiviral and antitumor immune responses, and they are currently used, mostly under optimized forms, as immunotherapeutic agents against cancer. Nevertheless, with accumulating examples of deleterious effects of NK cells, it is paramount to consider their negative contributions. Here, we critically review and comment on the literature surrounding undesirable aspects of NK cell activity, focusing on situations where they play a harmful rather than a protective role.
Collapse
Affiliation(s)
- Aurélie Poli
- Department of Infection and Immunity, Luxembourg Institute of Health, 29 Rue Henri Koch, L-4354 Esch-sur-Alzette, Luxembourg; These authors contributed equally to this work and share first authorship
| | - Tatiana Michel
- Department of Infection and Immunity, Luxembourg Institute of Health, 29 Rue Henri Koch, L-4354 Esch-sur-Alzette, Luxembourg; These authors contributed equally to this work and share first authorship
| | - Neha Patil
- Department of Infection and Immunity, Luxembourg Institute of Health, 29 Rue Henri Koch, L-4354 Esch-sur-Alzette, Luxembourg
| | - Jacques Zimmer
- Department of Infection and Immunity, Luxembourg Institute of Health, 29 Rue Henri Koch, L-4354 Esch-sur-Alzette, Luxembourg.
| |
Collapse
|
13
|
Cruz-González DDJ, Gómez-Martin D, Layseca-Espinosa E, Baranda L, Abud-Mendoza C, Alcocer-Varela J, González-Amaro R, Monsiváis-Urenda AE. Analysis of the regulatory function of natural killer cells from patients with systemic lupus erythematosus. Clin Exp Immunol 2017; 191:288-300. [PMID: 29058308 DOI: 10.1111/cei.13073] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2017] [Indexed: 12/15/2022] Open
Abstract
Natural killer (NK) cells participate in the regulation of the immune response. However, the immunomodulatory function of NK cells in systemic lupus erythematosus (SLE) is not well understood. The aim of this study was to evaluate the regulatory function of NK cells in SLE patients and to identify the NK cells involved in the pathogenesis of this complex disease. We analysed the expression of NK receptors and co-stimulatory molecules in peripheral NK cells (CD3- CD56+ ) from SLE patients, as well as the numbers of human leucocyte antigen D-related (HLA-DR)/CD11c+ NK cells. In addition, NK cell regulatory function was assessed by the detection of NK cell-mediated dendritic cell (DC) lysis. We found that SLE patients showed increased numbers of immunoglobulin-like transcript 2 (ILT2)+ , CD86+ and CD134+ NK cells. Furthermore, NK cells from SLE patients induced higher levels of DC lysis. We were able to identify a new subset of NK cells co-expressing CD11c and HLA-DR. These atypical NK cells were increased in SLE patients when compared with controls. We have identified an expanded new subset of NK cells in SLE patients. This is the first study, to our knowledge, which demonstrates that NK cells in SLE patients have an altered phenotype with a high expression of receptors characteristic of dendritic cells. Our results suggest that the impairment in the regulatory function of NK cells, together with the increased number of DC-like NK cells, could play an important role in the development of SLE and highlight the importance of NK cells as a future therapeutic target.
Collapse
Affiliation(s)
- D de J Cruz-González
- Medicina Molecular y Traslacional, Centro de Investigación en Ciencias de la Salud y Biomedicina, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí
| | - D Gómez-Martin
- Departamento de Reumatología e Inmunología, Instituto Nacional de Ciencias Médicas y Nutrición 'Salvador Zubirán', Ciudad de México
| | - E Layseca-Espinosa
- Medicina Molecular y Traslacional, Centro de Investigación en Ciencias de la Salud y Biomedicina, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí
| | - L Baranda
- Unidad de Reumatología y Osteoporosis, Hospital Central 'Ignacio Morones Prieto', San Luis Potosí, Mexico
| | - C Abud-Mendoza
- Unidad de Reumatología y Osteoporosis, Hospital Central 'Ignacio Morones Prieto', San Luis Potosí, Mexico
| | - J Alcocer-Varela
- Departamento de Reumatología e Inmunología, Instituto Nacional de Ciencias Médicas y Nutrición 'Salvador Zubirán', Ciudad de México
| | - R González-Amaro
- Medicina Molecular y Traslacional, Centro de Investigación en Ciencias de la Salud y Biomedicina, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí
| | - A E Monsiváis-Urenda
- Medicina Molecular y Traslacional, Centro de Investigación en Ciencias de la Salud y Biomedicina, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí
| |
Collapse
|
14
|
Gao H, Ma J, Wang X, Lv T, Liu J, Ren Y, Li Y, Zhang Y. Preliminary study on the changes of ovarian reserve, menstruation, and lymphocyte subpopulation in systemic lupus erythematosus (SLE) patients of childbearing age. Lupus 2017; 27:445-453. [PMID: 28820360 DOI: 10.1177/0961203317726378] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Objective The main aim of this study was to investigate the ovarian reserve, menstruation, and lymphocyte subpopulation in systemic lupus erythematosus (SLE) patients of childbearing age. Methods We enrolled 40 SLE patients of childbearing age and 40 age-matched healthy controls. Anti-Müllerian hormone (AMH) was tested by electrochemiluminescence, and lymphocyte subsets were tested by flow cytometry. Menstruation situation was obtained by interview. Results The AMH level of the SLE group was significantly lower than that of the control group ( p < 0.001), which was negatively correlated with erythrocyte sedimentation rate (ESR ( r = −0.316, p = 0.047)) and disease activity (SLEDAI ( r = −0.338, p = 0.033)). The AMH concentration of SLE patients with normal menstruation was higher than those with abnormal menstruation ( p < 0.001). The percentages of CD4+ T lymphocytes and NK (natural killer) cells in the SLE group were significantly lower than those in the control group ( p < 0.001). However, the percentages of B cells and CD8+ T lymphocytes in the SLE group were higher than those in the control group ( p < 0.05). Conclusion Decreased AMH and high incidence of abnormal menstruation indicated that autoimmunity activities of SLE can impair the ovarian reserve of female patients. Lymphocytes in SLE patients were in a state of disorder.
Collapse
Affiliation(s)
- H Gao
- Department of Rheumatology and Immunology, Tangdu Hospital of The Fourth Military Medical University, Xi'an, China
| | - J Ma
- Department of Rheumatology and Immunology, Tangdu Hospital of The Fourth Military Medical University, Xi'an, China
| | - X Wang
- Department of Rheumatology and Immunology, Tangdu Hospital of The Fourth Military Medical University, Xi'an, China
| | - T Lv
- Department of Rheumatology and Immunology, Tangdu Hospital of The Fourth Military Medical University, Xi'an, China
| | - J Liu
- Department of Rheumatology and Immunology, Tangdu Hospital of The Fourth Military Medical University, Xi'an, China
| | - Y Ren
- Department of Rheumatology and Immunology, Tangdu Hospital of The Fourth Military Medical University, Xi'an, China
| | - Y Li
- Department of Rheumatology and Immunology, Tangdu Hospital of The Fourth Military Medical University, Xi'an, China
| | - Y Zhang
- Department of Rheumatology and Immunology, Tangdu Hospital of The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
15
|
Morawski PA, Bolland S. Expanding the B Cell-Centric View of Systemic Lupus Erythematosus. Trends Immunol 2017; 38:373-382. [PMID: 28274696 DOI: 10.1016/j.it.2017.02.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 01/26/2017] [Accepted: 02/08/2017] [Indexed: 12/29/2022]
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disorder characterized by a breakdown of self-tolerance in B cells and the production of antibodies against nuclear self-antigens. Increasing evidence supports the notion that additional cellular contributors beyond B cells are important for lupus pathogenesis. In this review we consider recent advances regarding both the pathogenic and the regulatory role of lymphocytes in SLE beyond the production of IgG autoantibodies. We also discuss various inflammatory effector cell types involved in cytokine production, removal of self-antigens, and responses to autoreactive IgE antibodies. We aim to integrate these ideas to expand the current understanding of the cellular components that contribute to disease progression and ultimately help in the design of novel, targeted therapeutics.
Collapse
Affiliation(s)
- Peter A Morawski
- Laboratory of Immunogenetics, National Institute of Allergic and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Silvia Bolland
- Laboratory of Immunogenetics, National Institute of Allergic and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA.
| |
Collapse
|
16
|
Dynamic changes in the numbers of different subsets of peripheral blood NK cells in patients with systemic lupus erythematosus following classic therapy. Clin Rheumatol 2014; 33:1603-10. [PMID: 25024095 DOI: 10.1007/s10067-014-2712-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 06/01/2014] [Indexed: 10/25/2022]
Abstract
Imbalance of natural killer (NK) cells is associated with the development of systemic lupus erythematosus (SLE). However, little is known about the dynamic changes on NK cells following therapy. This study aimed at examining the impact of classic therapies on the numbers of different subsets of NK cells in new-onset SLE patients. The numbers of different subsets of peripheral blood NK cells in 24 new-onset SLE patients before, 4 and 12 weeks post the classic therapies, and 7 healthy controls were determined by flow cytometry. The potential correlation between the numbers of NK cells and the values of clinical measures was analyzed. In comparison with that before treatment, the numbers of NK, NKG2C+, and KIR2DL3+ NK cells were significantly increased while the numbers of NKp46+ and NKG2A + NK cells significantly decreased at 4 and/or 12 weeks post the treatment only in the drug well-responding patients, but not in those poor responders (P < 0.05 for all). The numbers of NKG2C + NK cells were correlated positively with the levels of serum C3 while the numbers of KIR2DL3+ NK cells were correlated negatively with the scores of SLEDAI in these patients at 4 weeks post the treatment. The classic therapies modulated the numbers of some subsets of NK cells in drug well-responding SLE patients. The changes in the numbers of some subsets of NK cells may serve as biomarkers for evaluating the therapeutic responses of SLE.
Collapse
|