1
|
Colejo-Durán L, Pelletier F, Dillon L, Gagnon A, Bergeron P. Early and adult life environmental effects on reproductive performance in preindustrial women. PLoS One 2024; 19:e0290212. [PMID: 39466728 PMCID: PMC11515999 DOI: 10.1371/journal.pone.0290212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 08/16/2024] [Indexed: 10/30/2024] Open
Abstract
Early life environments can have long-lasting effects on adult reproductive performance, but disentangling the influence of early and adult life environments on fitness is challenging, especially for long-lived species. Using a detailed dataset spanning over two centuries, we studied how both early and adult life environments impacted reproductive performance in preindustrial women. Due to a wide geographic range, agricultural production was lower in northern compared to southern parishes, and health conditions were worse in urban than rural parishes. We tested whether reproductive traits and offspring survival varied between early and adult life environments by comparing women who moved between different environments during their lifetime with those who moved parishes but remained in the same environment. Our findings reveal that urban-born women had an earlier age at first reproduction and less offspring surviving to adulthood than rural-born women. Moreover, switching from urban to rural led to increased offspring survival, while switching from rural to urban had the opposite effect. Finally, women who switched from rural to urban and from South to North had their first child at an older age compared to those who stayed in the same environment type. Our study underscores the complex and interactive effects of early and adult life environments on reproductive traits, highlighting the need to consider both when studying environmental effects on reproductive outcomes.
Collapse
Affiliation(s)
- Lidia Colejo-Durán
- Département de Biologie, Université de Sherbrooke, Sherbrooke, Québec, Canada
- Department of Biology and Biochemistry, Bishop’s University, Sherbrooke, Québec, Canada
| | - Fanie Pelletier
- Département de Biologie, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Lisa Dillon
- Department of Demography, Université de Montréal, Montréal, Québec, Canada
| | - Alain Gagnon
- Department of Demography, Université de Montréal, Montréal, Québec, Canada
| | - Patrick Bergeron
- Department of Biology and Biochemistry, Bishop’s University, Sherbrooke, Québec, Canada
| |
Collapse
|
2
|
Ajmal MS, Ali S, Jamal A, Saeed MF, Radicetti E, Civolani S. Feeding and Growth Response of Fall Armyworm Spodoptera frugiperda (Lepidoptera: Noctuidae) towards Different Host Plants. INSECTS 2024; 15:789. [PMID: 39452365 PMCID: PMC11508452 DOI: 10.3390/insects15100789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 10/26/2024]
Abstract
The fall armyworm, Spodoptera frugiperda, is a major migratory polyphagous insect pest of various crops. The essential nutrient and mineral profile of the host plants determines the feeding fitness of herbivorous insects. As a result, the growth and development of insects is affected. To determine the effect of the nutrient and mineral profile of different host plants (maize, castor bean, cotton, cabbage, okra, and sugarcane) on the growth and development of S. frugiperda, biological parameters like larval weight, pupal weight (male/female), and feeding and growth indices were calculated. The proximate compositions such as crude protein, crude fat, crude fibre, and ash and mineral contents of the tested host plants showed significant differences (p < 0.05). The feeding indices on these host plants also differed significantly (p < 0.05). The maximum relative growth rate (RGR), relative consumption rate (RCR), and consumption index (CI) were recorded in S. frugiperda larvae that fed on maize and castor bean leaves. The crude protein, dry matter, and ash contents in maize and castor bean were significantly higher and positively correlated with the RGR and RCR of S. frugiperda larvae. The larval, male and female pupal weights were the maximum in the larvae feeding on the castor bean host plant. These findings provide novel information based on nutritional ecology to develop sustainable integrated pest management strategies using selective crop rotation.
Collapse
Affiliation(s)
- Muhammad Saqib Ajmal
- Department of Entomology, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan;
| | - Sajjad Ali
- Department of Entomology, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan;
| | - Aftab Jamal
- Department of Soil and Environmental Sciences, Faculty of Crop Production Sciences, The University of Agriculture, Peshawar 25130, Pakistan;
| | - Muhammad Farhan Saeed
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari 61100, Pakistan;
| | - Emanuele Radicetti
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Borsari 46, 44121 Ferrara, Italy;
| | - Stefano Civolani
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Borsari 46, 44121 Ferrara, Italy;
| |
Collapse
|
3
|
Arnold PA, Wang S, Notarnicola RF, Nicotra AB, Kruuk LEB. Testing the evolutionary potential of an alpine plant: phenotypic plasticity in response to growth temperature outweighs parental environmental effects and other genetic causes of variation. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:5971-5988. [PMID: 38946283 PMCID: PMC11427842 DOI: 10.1093/jxb/erae290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 06/28/2024] [Indexed: 07/02/2024]
Abstract
Phenotypic plasticity and rapid evolution are fundamental processes by which organisms can maintain their function and fitness in the face of environmental changes. Here we quantified the plasticity and evolutionary potential of an alpine herb Wahlenbergia ceracea. Utilizing its mixed-mating system, we generated outcrossed and self-pollinated families that were grown in either cool or warm environments, and that had parents that had also been grown in either cool or warm environments. We then analysed the contribution of environmental and genetic factors to variation in a range of phenotypic traits including phenology, leaf mass per area, photosynthetic function, thermal tolerance, and reproductive fitness. The strongest effect was that of current growth temperature, indicating strong phenotypic plasticity. All traits except thermal tolerance were plastic, whereby warm-grown plants flowered earlier, grew larger, and produced more reproductive stems compared with cool-grown plants. Flowering onset and biomass were heritable and under selection, with early flowering and larger plants having higher relative fitness. There was little evidence for transgenerational plasticity, maternal effects, or genotype×environment interactions. Inbreeding delayed flowering and reduced reproductive fitness and biomass. Overall, we found that W. ceracea has the capacity to respond rapidly to climate warming via plasticity, and the potential for evolutionary change.
Collapse
Affiliation(s)
- Pieter A Arnold
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | - Shuo Wang
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT, Australia
- Liaoning Key Laboratory for Biological Invasions and Global Changes, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning Province 110866, China
| | - Rocco F Notarnicola
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT, Australia
- Evolutionary Biology Group, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Adrienne B Nicotra
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | - Loeske E B Kruuk
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT, Australia
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| |
Collapse
|
4
|
Benowitz-Fredericks ZM, Will AP, Pete SN, Whelan S, Kitaysky AS. Corticosterone release in very young siblicidal seabird chicks (Rissa tridactyla) is sensitive to environmental variability and responds rapidly and robustly to external challenges. Gen Comp Endocrinol 2024; 355:114545. [PMID: 38701975 DOI: 10.1016/j.ygcen.2024.114545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 04/25/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024]
Abstract
In birds, patterns of development of the adrenocortical response to stressors vary among individuals, types of stressors, and species. Since there are benefits and costs of exposure to elevated glucocorticoids, this variation is presumably a product of selection such that animals modulate glucocorticoid secretion in contexts where doing so increases their fitness. In this study, we evaluated hypothalamo-pituitary-adrenal (HPA) activity in first-hatched free-living seabird nestlings that engage in intense sibling competition and facultative siblicide (black-legged kittiwakes, Rissa tridactyla). We sampled 5 day old chicks (of the ∼45 day nestling period), a critical early age when food availability drives establishment of important parent-offspring and intra-brood dynamics. We experimentally supplemented parents with food ("supplemented") and measured chick baseline corticosterone secretion and capacity to rapidly increase corticosterone in response to an acute challenge (handling and 15 min of restraint in a bag). We also used topical administration of corticosterone to evaluate the ability of chicks to downregulate physiologically relevant corticosterone levels on a short time scale (minutes). We found that 5 day old chicks are not hypo-responsive but release corticosterone in proportion to the magnitude of the challenge, showing differences in baseline between parental feeding treatments (supplemented vs non-supplemented), moderate increases in response to handling, and a larger response to restraint (comparable to adults) that also differed between chicks from supplemented and control nests. Topical application of exogenous corticosterone increased circulating levels nearly to restraint-induced levels and induced downregulation of HPA responsiveness to the acute challenge of handling. Parental supplemental feeding did not affect absorbance/clearance or negative feedback. Thus, while endogenous secretion of corticosterone in young chicks is sensitive to environmental context, other aspects of the HPA function, such as rapid negative feedback and/or the ability to clear acute elevations in corticosterone, are not. We conclude that 5 day old kittiwake chicks are capable of robust adrenocortical responses to novel challenges, and are sensitive to parental food availability, which may be transduced behaviorally, nutritionally, or via maternal effects. Questions remain about the function of such rapid, large acute stress-induced increases in corticosterone in very young chicks.
Collapse
Affiliation(s)
| | - A P Will
- World Wildlife Fund, US Arctic Program, United States; University of Alaska Fairbanks, Department of Biology and Wildlife, Institute of Arctic Biology, United States
| | - S N Pete
- Bucknell University, Department of Biology, 1 Dent Drive, Lewisburg, PA, United States
| | - S Whelan
- Institute for Seabird Research and Conservation, United States
| | - A S Kitaysky
- University of Alaska Fairbanks, Department of Biology and Wildlife, Institute of Arctic Biology, United States
| |
Collapse
|
5
|
Ramos-Muñoz M, Blanco-Sánchez M, Pías B, Escudero A, Matesanz S. Transgenerational plasticity to drought: contrasting patterns of non-genetic inheritance in two semi-arid Mediterranean shrubs. ANNALS OF BOTANY 2024; 134:101-116. [PMID: 38488820 PMCID: PMC11161564 DOI: 10.1093/aob/mcae039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 03/14/2024] [Indexed: 06/09/2024]
Abstract
BACKGROUND AND AIMS Intra- and transgenerational plasticity may provide substantial phenotypic variation to cope with environmental change. Since assessing the unique contribution of the maternal environment to the offspring phenotype is challenging in perennial, outcrossing plants, little is known about the evolutionary and ecological implications of transgenerational plasticity and its persistence over the life cycle in these species. We evaluated how intra- and transgenerational plasticity interplay to shape the adaptive responses to drought in two perennial Mediterranean shrubs. METHODS We used a novel common garden approach that reduced within-family genetic variation in both the maternal and offspring generations by growing the same maternal individual in two contrasting watering environments, well-watered and drought, in consecutive years. We then assessed phenotypic differences at the reproductive stage between offspring reciprocally grown in the same environments. KEY RESULTS Maternal drought had an effect on offspring performance only in Helianthemum squamatum. Offspring of drought-stressed plants showed more inflorescences, less sclerophyllous leaves and higher growth rates in both watering conditions, and heavier seeds under drought, than offspring of well-watered maternal plants. Maternal drought also induced similar plasticity patterns across maternal families, showing a general increase in seed mass in response to offspring drought, a pattern not observed in the offspring of well-watered plants. In contrast, both species expressed immediate adaptive plasticity, and the magnitude of intragenerational plasticity was larger than the transgenerational plastic responses. CONCLUSIONS Our results highlight that adaptive effects associated with maternal drought can persist beyond the seedling stage and provide evidence of species-level variation in the expression of transgenerational plasticity. Such differences between co-occurring Mediterranean species in the prevalence of this form of non-genetic inheritance may result in differential vulnerability to climate change.
Collapse
Affiliation(s)
- Marina Ramos-Muñoz
- Área de Biodiversidad y Conservación, Universidad Rey Juan Carlos, C/Tulipán s/n, 28933 Móstoles, Spain
| | - Mario Blanco-Sánchez
- Área de Biodiversidad y Conservación, Universidad Rey Juan Carlos, C/Tulipán s/n, 28933 Móstoles, Spain
| | - Beatriz Pías
- Departamento de Biodiversidad, Ecología y Evolución, Universidad Complutense de Madrid, C/José Antonio Nováis 2, 28040, Madrid, Spain
| | - Adrián Escudero
- Área de Biodiversidad y Conservación, Universidad Rey Juan Carlos, C/Tulipán s/n, 28933 Móstoles, Spain
| | - Silvia Matesanz
- Área de Biodiversidad y Conservación, Universidad Rey Juan Carlos, C/Tulipán s/n, 28933 Móstoles, Spain
| |
Collapse
|
6
|
Lopez-Hervas K, Porwal N, Delacoux M, Vezyrakis A, Guenther A. Is the speed of adjusting to environmental change condition dependent? An experiment with house mice ( Mus musculus). Curr Zool 2024; 70:350-360. [PMID: 39035765 PMCID: PMC11256001 DOI: 10.1093/cz/zoae005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 02/15/2024] [Indexed: 07/23/2024] Open
Abstract
Environmental conditions change constantly either by anthropogenic perturbation or naturally across space and time. Often, a change in behavior is the first response to changing conditions. Behavioral flexibility can potentially improve an organism's chances to survive and reproduce. Currently, we lack an understanding on the time-scale such behavioral adjustments need, how they actually affect reproduction and survival and whether behavioral adjustments are sufficient in keeping up with changing conditions. We used house mice (Mus musculus) to test whether personality and life-history traits can adjust to an experimentally induced food-switch flexibly in adulthood or by intergenerational plasticity, that is, adjustments only becoming visible in the offspring generation. Mice lived in 6 experimental populations of semi-natural environments either on high or standard quality food for 4 generations. We showed previously that high-quality food induced better conditions and a less risk-prone personality. Here, we tested whether the speed and/ or magnitude of adjustment shows condition-dependency and whether adjustments incur fitness effects. Life-history but not personality traits reacted flexibly to a food-switch, primarily by a direct reduction of reproduction and slowed-down growth. Offspring whose parents received a food-switch developed a more active stress-coping personality and gained weight at a slower rate compared with their respective controls. Furthermore, the modulation of most traits was condition-dependent, with animals previously fed with high-quality food showing stronger responses. Our study highlights that life-history and personality traits adjust at different speed toward environmental change, thus, highlighting the importance of the environment and the mode of response for evolutionary models.
Collapse
Affiliation(s)
- Karem Lopez-Hervas
- RG Behavioural Ecology of Individual Differences, Max Planck Institute for Evolutionary Biology, 24306 Plön, Germany
| | - Neelam Porwal
- RG Behavioural Ecology of Individual Differences, Max Planck Institute for Evolutionary Biology, 24306 Plön, Germany
- Department of Evolutionary Biology, Faculty of Biology, Adam Mickiewicz University, Wieniawskiego 1, 61-712 Poznań, Poland
| | - Mathilde Delacoux
- RG Behavioural Ecology of Individual Differences, Max Planck Institute for Evolutionary Biology, 24306 Plön, Germany
- Department for Collective Behaviour, Max Planck Institute of Animal Behaviour, 78464 Constance, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, 78464 Constance, Germany
| | - Alexandros Vezyrakis
- RG Behavioural Ecology of Individual Differences, Max Planck Institute for Evolutionary Biology, 24306 Plön, Germany
- Animal Ecology, Institute for Biochemistry and Biology, University of Potsdam, 14469 Potsdam, Germany
| | - Anja Guenther
- RG Behavioural Ecology of Individual Differences, Max Planck Institute for Evolutionary Biology, 24306 Plön, Germany
| |
Collapse
|
7
|
Martínez-De León G, Fahrni M, Thakur MP. Temperature-size responses during ontogeny are independent of progenitors' thermal environments. PeerJ 2024; 12:e17432. [PMID: 38799056 PMCID: PMC11127640 DOI: 10.7717/peerj.17432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 04/29/2024] [Indexed: 05/29/2024] Open
Abstract
Background Warming generally induces faster developmental and growth rates, resulting in smaller asymptotic sizes of adults in warmer environments (a pattern known as the temperature-size rule). However, whether temperature-size responses are affected across generations, especially when thermal environments differ from one generation to the next, is unclear. Here, we tested temperature-size responses at different ontogenetic stages and in two consecutive generations using two soil-living Collembola species from the family Isotomidae: Folsomia candida (asexual) and Proisotoma minuta (sexually reproducing). Methods We used individuals (progenitors; F0) from cultures maintained during several generations at 15 °C or 20 °C, and exposed their offspring in cohorts (F1) to various thermal environments (15 °C, 20 °C, 25 °C and 30 °C) during their ontogenetic development (from egg laying to first reproduction; i.e., maturity). We measured development and size traits in the cohorts (egg diameter and body length at maturity), as well as the egg diameters of their progeny (F2). We predicted that temperature-size responses would be predominantly determined by within-generation plasticity, given the quick responsiveness of growth and developmental rates to changing thermal environments. However, we also expected that mismatches in thermal environments across generations would constrain temperature-size responses in offspring, possibly due to transgenerational plasticity. Results We found that temperature-size responses were generally weak in the two Collembola species, both for within- and transgenerational plasticity. However, egg and juvenile development were especially responsive at higher temperatures and were slightly affected by transgenerational plasticity. Interestingly, plastic responses among traits varied non-consistently in both Collembola species, with some traits showing plastic responses in one species but not in the other and vice versa. Therefore, our results do not support the view that the mode of reproduction can be used to explain the degree of phenotypic plasticity at the species level, at least between the two Collembola species used in our study. Our findings provide evidence for a general reset of temperature-size responses at the start of each generation and highlight the importance of measuring multiple traits across ontogenetic stages to fully understand species' thermal responses.
Collapse
Affiliation(s)
| | - Micha Fahrni
- Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| | - Madhav P. Thakur
- Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| |
Collapse
|
8
|
Metcalfe NB. How important is hidden phenotypic plasticity arising from alternative but converging developmental trajectories, and what limits it? J Exp Biol 2024; 227:jeb246010. [PMID: 38449324 PMCID: PMC10949067 DOI: 10.1242/jeb.246010] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Developmental plasticity -- the capacity for a genotype to develop into different phenotypes, depending on the environment - is typically viewed from the perspective of the resulting phenotype. Thus, if development is viewed as a trajectory towards a target, then developmental plasticity allows environmentally induced alterations to the target. However, there can also be variations in the trajectory. This is seen with compensatory responses, for instance where growth accelerates after an earlier period of food shortage, or where investment in sexual ornaments is maintained even when resources are limiting. If the compensation is complete, the adult phenotype can appear 'normal' (i.e. the different developmental trajectories converge on the same target). However, alternative trajectories to a common target can have multiple long-term consequences, including altered physiological programming and rates of senescence, possibly owing to trade-offs between allocating resources to the prioritized trait versus to body maintenance. This suggests that plasticity in developmental trajectories towards a common target leads to variation in the resilience and robustness of the adult body. This form of developmental plasticity is far more hidden than plasticity in final adult target, but it may be more common. Here, I discuss the causes, consequences and limitations of these different kinds of plasticity, with a special focus on whether they are likely to be adaptive. I emphasize the need to study plasticity in developmental trajectories, and conclude with suggestions for future research to tease apart the different forms of developmental plasticity and the factors that influence their evolution and expression.
Collapse
Affiliation(s)
- Neil B. Metcalfe
- School of Biodiversity, One Health & Veterinary Medicine, Graham Kerr Building, University of Glasgow, Glasgow G12 8QQ, UK
| |
Collapse
|
9
|
Walsh MR, Christian A, Feder M, Korte M, Tran K. Are parental condition transfer effects more widespread than is currently appreciated? J Exp Biol 2024; 227:jeb246094. [PMID: 38449326 DOI: 10.1242/jeb.246094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
It has long been recognized that the environment experienced by parents can influence the traits of offspring (i.e. 'parental effects'). Much research has explored whether mothers respond to predictable shifts in environmental signals by modifying offspring phenotypes to best match future conditions. Many organisms experience conditions that theory predicts should favor the evolution of such 'anticipatory parental effects', but such predictions have received limited empirical support. 'Condition transfer effects' are an alternative to anticipatory effects that occur when the environment experienced by parents during development influences offspring fitness. Condition transfer effects occur when parents that experience high-quality conditions produce offspring that exhibit higher fitness irrespective of the environmental conditions in the offspring generation. Condition transfer effects are not driven by external signals but are instead a byproduct of past environmental quality. They are also likely adaptive but have received far less attention than anticipatory effects. Here, we review the generality of condition transfer effects and show that they are much more widespread than is currently appreciated. Condition transfer effects are observed across taxa and are commonly associated with experimental manipulations of resource conditions experienced by parents. Our Review calls for increased research into condition transfer effects when considering the role of parental effects in ecology and evolution.
Collapse
Affiliation(s)
- Matthew R Walsh
- Department of Biology, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Anne Christian
- Department of Biology, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Mikaela Feder
- Department of Biology, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Meghan Korte
- Department of Biology, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Kevin Tran
- Department of Biology, University of Texas at Arlington, Arlington, TX 76019, USA
| |
Collapse
|
10
|
Vitikainen EIK, Meniri M, Marshall HH, Thompson FJ, Businge R, Mwanguhya F, Kyabulima S, Mwesige K, Ahabonya S, Sanderson JL, Kalema-Zikusoka G, Hoffman JI, Wells D, Lewis G, Walker SL, Nichols HJ, Blount JD, Cant MA. The social formation of fitness: lifetime consequences of prenatal nutrition and postnatal care in a wild mammal population. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220309. [PMID: 37381858 PMCID: PMC10291432 DOI: 10.1098/rstb.2022.0309] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/19/2023] [Indexed: 06/30/2023] Open
Abstract
Research in medicine and evolutionary biology suggests that the sequencing of parental investment has a crucial impact on offspring life history and health. Here, we take advantage of the synchronous birth system of wild banded mongooses to test experimentally the lifetime consequences to offspring of receiving extra investment prenatally versus postnatally. We provided extra food to half of the breeding females in each group during pregnancy, leaving the other half as matched controls. This manipulation resulted in two categories of experimental offspring in synchronously born litters: (i) 'prenatal boost' offspring whose mothers had been fed during pregnancy, and (ii) 'postnatal boost' offspring whose mothers were not fed during pregnancy but who received extra alloparental care in the postnatal period. Prenatal boost offspring lived substantially longer as adults, but postnatal boost offspring had higher lifetime reproductive success (LRS) and higher glucocorticoid levels across the lifespan. Both types of experimental offspring had higher LRS than offspring from unmanipulated litters. We found no difference between the two experimental categories of offspring in adult weight, age at first reproduction, oxidative stress or telomere lengths. These findings are rare experimental evidence that prenatal and postnatal investments have distinct effects in moulding individual life history and fitness in wild mammals. This article is part of the theme issue 'Evolutionary ecology of inequality'.
Collapse
Affiliation(s)
- E. I. K. Vitikainen
- Centre for Ecology and Conservation, University of Exeter, Penryn, Cornwall, TR10 9FE, UK
- Organismal and Evolutionary Biology, University of Helsinki, Helsinki, PO Box 65, 00014 Finland
| | - M. Meniri
- Centre for Ecology and Conservation, University of Exeter, Penryn, Cornwall, TR10 9FE, UK
| | - H. H. Marshall
- Centre for Ecology and Conservation, University of Exeter, Penryn, Cornwall, TR10 9FE, UK
- Centre for Research in Ecology, Evolution and Behaviour, University of Roehampton, Roehampton Lane, London SW15 5PJ, UK
| | - F. J. Thompson
- Centre for Ecology and Conservation, University of Exeter, Penryn, Cornwall, TR10 9FE, UK
| | - R. Businge
- Banded Mongoose Research Project, Queen Elizabeth National Park, PO Box 66 Lake Katwe, Kasese District, Uganda
| | - F. Mwanguhya
- Banded Mongoose Research Project, Queen Elizabeth National Park, PO Box 66 Lake Katwe, Kasese District, Uganda
| | - S. Kyabulima
- Banded Mongoose Research Project, Queen Elizabeth National Park, PO Box 66 Lake Katwe, Kasese District, Uganda
| | - K. Mwesige
- Banded Mongoose Research Project, Queen Elizabeth National Park, PO Box 66 Lake Katwe, Kasese District, Uganda
| | - S. Ahabonya
- Banded Mongoose Research Project, Queen Elizabeth National Park, PO Box 66 Lake Katwe, Kasese District, Uganda
| | - J. L. Sanderson
- Centre for Ecology and Conservation, University of Exeter, Penryn, Cornwall, TR10 9FE, UK
| | - G. Kalema-Zikusoka
- Conservation Through Public Health, PO Box 75298, Uringi Crescent Rd, Entebbe, Uganda
| | - J. I. Hoffman
- Department of Behavioural Ecology, University of Bielefeld, Bielefeld, Konsequenz 45, 33619, Germany
| | - D. Wells
- Department of Behavioural Ecology, University of Bielefeld, Bielefeld, Konsequenz 45, 33619, Germany
| | - G. Lewis
- Department of Biosciences, Wallace Building, Swansea University, Singleton Park, Swansea SA2 8PP, UK
| | - S. L. Walker
- Chester Zoo Endocrine Laboratory, Endocrinology, Science Centre, Caughall Road, Upton-by-Chester, Chester, CH2 1LH, UK
| | - H. J. Nichols
- Department of Biosciences, Wallace Building, Swansea University, Singleton Park, Swansea SA2 8PP, UK
| | - J. D. Blount
- Centre for Ecology and Conservation, University of Exeter, Penryn, Cornwall, TR10 9FE, UK
| | - M. A. Cant
- Centre for Ecology and Conservation, University of Exeter, Penryn, Cornwall, TR10 9FE, UK
- Banded Mongoose Research Project, Queen Elizabeth National Park, PO Box 66 Lake Katwe, Kasese District, Uganda
- German Primate Center, University of Goettingen, Kellnerweg 4, 37077 Göttingen, Germany
| |
Collapse
|
11
|
Downey BC, Tucker CB. Early life access to hay does not affect later life oral behavior in feed-restricted heifers. J Dairy Sci 2023:S0022-0302(23)00354-5. [PMID: 37331875 DOI: 10.3168/jds.2022-23041] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 02/08/2023] [Indexed: 06/20/2023]
Abstract
Dairy cattle are often raised in environments that lack natural feeding opportunities, and they perform abnormal repetitive behaviors (ARBs) as a result. Early life restriction can affect later life behavior. We evaluated whether access to hay in the milk-fed period would affect later life behavior in heifers experiencing short-term feed restriction and whether individuals were consistent in behavioral expression over time. We had 2 competing ideas about how this would unfold. First, being raised with hay, which reduced early life ARBs, could lead to fewer ARBs later in life. Alternatively, heifers that were raised without hay and performed more ARBs in early life might be more prepared for a later feed-restricted environment and thus engage in fewer ARBs than those raised with hay. We studied 24 pair-housed Holstein heifers. As calves, they were fed milk and grain from 0 to 7 wk of age (control) or given additional forage (hay). Tongue rolling, tongue flicking, nonnutritive oral manipulation (NNOM) of pen fixtures, self-grooming, and water drinking were recorded for 12 h (0800-2000 h) during wk 4 and 6 of life using 1-0 sampling at 5-s intervals. At the start of weaning at d 50, all calves were fed a total mixed ration. All calves were fully weaned at d 60 and socially housed by d 65 to 70. After this point, all individuals were raised the same way, according to farm protocol, in groups that included both treatments. At 12.4 ± 0.6 mo of age (mean ± standard deviation), heifers were restricted to 50% of their ad libitum total mixed ration intake for 2 d as part of a short-term feed challenge. Using continuous video recording from 0800 to 2000 h on d 2 of feed restriction, we scored time spent performing oral behaviors: the 5 previously scored while they were calves, along with intersucking, allogrooming, drinking urine, NNOM of rice hull bedding, and NNOM of feed bins. We found that early life access to hay did not affect behavior performed by heifers experiencing short-term feed restriction 1 yr later. Most heifers performed a wide variety of behaviors that appeared abnormal. All heifers performed tongue rolling and NNOM, and at higher levels than when they were calves, while tongue flicks and self-grooming were performed less by heifers. Individual performance of NNOM and tongue rolling were not related across age classes [correlation coefficient (r) = 0.17 and 0.11, respectively], but tongue flicks tended to be correlated (r = 0.37). Intersucking was recorded in 67% of heifers, despite their not being able to suckle a conspecific or dam in early life. Oral behaviors were highly variable across heifers, particularly tongue rolling and intersucking. Outliers, or extreme performance of oral behaviors relative to the rest of the population, were present for many behaviors. Most outliers were expressed by unique heifers that were not extreme in other behaviors. Overall, feeding individually housed, milk-limited calves hay for their first 7 wk did not affect later life performance of oral behaviors. The considerable variability, inconsistency across ages, and excessive performance of some behaviors raises additional questions about how these develop in cattle across life stages and about what we label "abnormal."
Collapse
Affiliation(s)
- Blair C Downey
- Center for Animal Welfare, Department of Animal Science, University of California, Davis 95616; Animal Behavior Graduate Group, University of California, Davis 95616
| | - Cassandra B Tucker
- Center for Animal Welfare, Department of Animal Science, University of California, Davis 95616.
| |
Collapse
|
12
|
Dantzer B. Frank Beach Award Winner: The centrality of the hypothalamic-pituitary-adrenal axis in dealing with environmental change across temporal scales. Horm Behav 2023; 150:105311. [PMID: 36707334 DOI: 10.1016/j.yhbeh.2023.105311] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 01/02/2023] [Accepted: 01/06/2023] [Indexed: 01/26/2023]
Abstract
Understanding if and how individuals and populations cope with environmental change is an enduring question in evolutionary ecology that has renewed importance given the pace of change in the Anthropocene. Two evolutionary strategies of coping with environmental change may be particularly important in rapidly changing environments: adaptive phenotypic plasticity and/or bet hedging. Adaptive plasticity could enable individuals to match their phenotypes to the expected environment if there is an accurate cue predicting the selective environment. Diversifying bet hedging involves the production of seemingly random phenotypes in an unpredictable environment, some of which may be adaptive. Here, I review the central role of the hypothalamic-pituitary-adrenal (HPA) axis and glucocorticoids (GCs) in enabling vertebrates to cope with environmental change through adaptive plasticity and bet hedging. I first describe how the HPA axis mediates three types of adaptive plasticity to cope with environmental change (evasion, tolerance, recovery) over short timescales (e.g., 1-3 generations) before discussing how the implications of GCs on phenotype integration may depend upon the timescale under consideration. GCs can promote adaptive phenotypic integration, but their effects on phenotypic co-variation could also limit the dimensions of phenotypic space explored by animals over longer timescales. Finally, I discuss how organismal responses to environmental stressors can act as a bet hedging mechanism and therefore enhance evolvability by increasing genetic or phenotypic variability or reducing patterns of genetic and phenotypic co-variance. Together, this emphasizes the crucial role of the HPA axis in understanding fundamental questions in evolutionary ecology.
Collapse
Affiliation(s)
- Ben Dantzer
- Department of Psychology, University of Michigan, MI 48109 Ann Arbor, MI, USA; Department of Ecology and Evolutionary Biology, University of Michigan, MI 48109, Ann Arbor, MI, USA.
| |
Collapse
|
13
|
Fu QY, Yu CL, Dong R, Shi J, Luo FL, Gao JQ, Li HL, Dong BC, Yu FH. Transgenerational Herbivory Effects on Performance of Clonal Offspring of the Invasive Plant Alternanthera philoxeroides. PLANTS (BASEL, SWITZERLAND) 2023; 12:1180. [PMID: 36904040 PMCID: PMC10005396 DOI: 10.3390/plants12051180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/20/2023] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
Interactions between alien plants and local enemies in introduced ranges may determine plant invasion success. However, little is known about whether herbivory-induced responses are transmitted across vegetative generations of plants and whether epigenetic changes are involved during this process. In a greenhouse experiment, we examined the effects of herbivory by the generalist herbivore Spodoptera litura on the growth, physiology, biomass allocation and DNA methylation level of the invasive plant Alternanthera philoxeroides in the first- (G1), second- (G2) and third-generation (G3). We also tested the effects of root fragments with different branching orders (i.e., the primary- or secondary-root fragments of taproots) of G1 on offspring performance. Our results showed that G1 herbivory promoted the growth of the plants in G2 that sprouted from the secondary-root fragments of G1 but had a neutral or negative effect on the growth of the plants in G2 from the primary-root fragments. The growth of plants in G3 was significantly reduced by G3 herbivory but not affected by G1 herbivory. Plants in G1 exhibited a higher level of DNA methylation when they were damaged by herbivores than when they were not, while neither plants in G2 nor G3 showed herbivory-induced changes in DNA methylation. Overall, the herbivory-induced growth response within one vegetative generation may represent the rapid acclimatization of A. philoxeroides to the unpredictable generalist herbivores in the introduced ranges. Herbivory-induced trans-generational effects may be transient for clonal offspring of A. philoxeroides, which can be influenced by the branching order of taproots, but be less characterized by DNA methylation.
Collapse
Affiliation(s)
- Qiu-Yue Fu
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
- Institute of Wetland Ecology & Clone Ecology/Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou 318000, China
| | - Cheng-Ling Yu
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - Ran Dong
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - Juan Shi
- School of Forestry, Beijing Forestry University, Beijing 100083, China
| | - Fang-Li Luo
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
- The Key Laboratory of Ecological Protection in the Yellow River Basin of National Forestry and Grassland Administration, Beijing Forestry University, Beijing 100083, China
| | - Jun-Qin Gao
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
- The Key Laboratory of Ecological Protection in the Yellow River Basin of National Forestry and Grassland Administration, Beijing Forestry University, Beijing 100083, China
| | - Hong-Li Li
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
- The Key Laboratory of Ecological Protection in the Yellow River Basin of National Forestry and Grassland Administration, Beijing Forestry University, Beijing 100083, China
| | - Bi-Cheng Dong
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
- The Key Laboratory of Ecological Protection in the Yellow River Basin of National Forestry and Grassland Administration, Beijing Forestry University, Beijing 100083, China
| | - Fei-Hai Yu
- Institute of Wetland Ecology & Clone Ecology/Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou 318000, China
| |
Collapse
|
14
|
Stamps JA, Luttbeg B. Sensitive Period Diversity: Insights From Evolutionary Models. THE QUARTERLY REVIEW OF BIOLOGY 2022. [DOI: 10.1086/722637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
15
|
Wang LH, Si J, Luo FL, Dong BC, Yu FH. Parental effects driven by resource provisioning in Alternanthera philoxeroides-A simulation case study. FRONTIERS IN PLANT SCIENCE 2022; 13:872065. [PMID: 36160980 PMCID: PMC9490186 DOI: 10.3389/fpls.2022.872065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 08/02/2022] [Indexed: 06/16/2023]
Abstract
Parental environmental effects can be a rapid and effective means for clonal plants in response to temporally or spatially varying environments. However, few studies have quantitatively measured the ecological significance of parental effects in aquatic clonal plants. In this study, we developed a two-generation (parent-offspring) growth model to examine the parental effects of nitrogen (N) conditions on summed and mean performance of clonal offspring of one wetland species Alternanthera philoxeroides. We also examined the role of survival status and developmental stage of clonal offspring in the consequence of parental effects in aquatic clonal plants. Our results indicated direct evidence that (1) there were significant non-linear correlations between the performance of parental plants and initial status of clonal offspring (i.e., the mass and number of clonal propagules); (2) parental N effects on the summed performance of clonal offspring were content-dependent (i.e., there were significant interactions between parental and offspring N effects), while parental effects on the mean performance of offspring were independent of offspring conditions; (3) parental effects mainly occurred at the early development stage of clonal offspring, and then gradually declined at the late stage; (4) the context-dependent parental effects on the summed performance of clonal offspring gradually strengthened when offspring survival was high. The mathematical models derived from the experimental data may help researchers to not only deeply explore the ecological significance of parental environmental effects in aquatic clonal plants, but also to reveal the importance of potential factors that have been often neglected in empirical studies.
Collapse
Affiliation(s)
- Lan-Hui Wang
- School of Economics and Management, Beijing Forestry University, Beijing, China
| | - Jing Si
- School of Economics and Management, Beijing Forestry University, Beijing, China
- Department of Arts and Crafts, Wuhan No. 2 Vocational Education Center School, Wuhan, Hubei, China
| | - Fang-Li Luo
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
- The Key Laboratory of Ecological Protection in the Yellow River Basin of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| | - Bi-Cheng Dong
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
- The Key Laboratory of Ecological Protection in the Yellow River Basin of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| | - Fei-Hai Yu
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, China
| |
Collapse
|
16
|
Matesanz S, Ramos-Muñoz M, Rubio Teso ML, Iriondo JM. Effects of parental drought on offspring fitness vary among populations of a crop wild relative. Proc Biol Sci 2022; 289:20220065. [PMID: 36000234 PMCID: PMC9399706 DOI: 10.1098/rspb.2022.0065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 07/26/2022] [Indexed: 01/17/2023] Open
Abstract
Transgenerational plasticity is a form of non-genetic inheritance that can reduce or enhance offspring fitness depending on parental stress. Yet, the adaptive value of such parental environmental effects and whether their expression varies among populations remain largely unknown. We used self-fertilized lines from climatically distinct populations of the crop wild relative Lupinus angustifolius. In the parental generation, full-siblings were grown in two contrasting watering environments. Then, to robustly separate the within-generation and transgenerational response to drought, we reciprocally assigned the offspring of parents to the same experimental treatments. We measured key functional traits and assessed lifetime reproductive fitness. Offspring of drought-stressed parents produced less reproductive biomass, but a similar number of lighter seeds, in dry soil compared to offspring of genetically identical, well-watered parents, an effect not mediated by differences in seed provisioning. Importantly, while the offspring of parents grown in the favourable environment responded to drought by slightly increasing individual seed mass, the pattern of plasticity of the offspring of drought-grown parents showed the opposite direction, and the negative effects of parental drought on seed mass were more pronounced in populations from cooler and moist habitats. Overall, our results show that parental effects may override immediate adaptive responses to drought and provide evidence of population-level variation in the expression of transgenerational plasticity.
Collapse
Affiliation(s)
- Silvia Matesanz
- Área de Biodiversidad y Conservación, Universidad Rey Juan Carlos, C/Tulipán s/n, 28933 Móstoles, Madrid, Spain
| | - Marina Ramos-Muñoz
- Área de Biodiversidad y Conservación, Universidad Rey Juan Carlos, C/Tulipán s/n, 28933 Móstoles, Madrid, Spain
| | - María Luisa Rubio Teso
- Área de Biodiversidad y Conservación, Universidad Rey Juan Carlos, C/Tulipán s/n, 28933 Móstoles, Madrid, Spain
| | - José María Iriondo
- Área de Biodiversidad y Conservación, Universidad Rey Juan Carlos, C/Tulipán s/n, 28933 Móstoles, Madrid, Spain
| |
Collapse
|
17
|
Morimoto J. Parental ecological history can differentially modulate parental age effects on offspring physiological traits in Drosophila. Curr Zool 2022; 68:391-399. [PMID: 36090145 PMCID: PMC9450179 DOI: 10.1093/cz/zoab081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/24/2021] [Indexed: 11/16/2022] Open
Abstract
Parents adjust their reproductive investment over their lifespan based on their condition, age, and social environment, creating the potential for inter-generational effects to differentially affect offspring physiology. To date, however, little is known about how social environments experienced by parents throughout development and adulthood influence the effect of parental age on the expression of life-history traits in the offspring. Here, I collected data on Drosophila melanogaster offspring traits (i.e., body weight, water content, and lipid reserves) from populations where either mothers, fathers both, or neither parents experienced different social environments during development (larval crowding) and adulthood. Parental treatment modulated parental age effects on offspring lipid reserves but did not influence parental age effects on offspring water content. Importantly, parents in social environments where all individuals were raised in uncrowded larval densities produced daughters and sons lighter than parental treatments which produced the heaviest offspring. The peak in offspring body weight was delayed relative to the peak in parental reproductive success, but more strongly so for daughters from parental treatments where some or all males in the parental social environments were raised in crowded larval densities (irrespective of their social context), suggesting a potential father-to-daughter effect. Overall, the findings of this study reveal that parental ecological history (here, developmental and adult social environments) can modulate the effects of parental age at reproduction on the expression of offspring traits.
Collapse
Affiliation(s)
- Juliano Morimoto
- School of Biological Sciences, University of Aberdeen, Zoology Building, Tillydrone Avenue, Aberdeen AB24 2TZ, UK
| |
Collapse
|
18
|
Sanghvi K, Iglesias‐Carrasco M, Zajitschek F, Kruuk LEB, Head ML. Effects of developmental and adult environments on ageing. Evolution 2022; 76:1868-1882. [PMID: 35819127 PMCID: PMC9543291 DOI: 10.1111/evo.14567] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 06/03/2022] [Accepted: 06/28/2022] [Indexed: 01/22/2023]
Abstract
Developmental and adult environments can interact in complex ways to influence the fitness of individuals. Most studies investigating effects of the environment on fitness focus on environments experienced and traits expressed at a single point in an organism's life. However, environments vary with time, so the effects of the environments that organisms experience at different ages may interact to affect how traits change throughout life. Here, we test whether thermal stress experienced during development leads individuals to cope better with thermal stress as adults. We manipulated temperature during both development and adulthood and measured a range of life-history traits, including senescence, in male and female seed beetles (Callosobruchus maculatus). We found that thermal stress during development reduced adult reproductive performance of females. In contrast, life span and age-dependent mortality were affected more by adult than developmental environments, with high adult temperatures decreasing longevity and increasing age-dependent mortality. Aside from an interaction between developmental and adult environments to affect age-dependent changes in male weight, we did not find any evidence of a beneficial acclimation response to developmental thermal stress. Overall, our results show that effects of developmental and adult environments can be both sex and trait specific, and that a full understanding of how environments interact to affect fitness and ageing requires the integrated study of conditions experienced during different stages of ontogeny.
Collapse
Affiliation(s)
- Krish Sanghvi
- Reserach School of BiologyAustralian National UniversityCanberraACT2601Australia
| | | | - Felix Zajitschek
- School of Biology Earth and Environmental SciencesUniversity of New South WalesSydneyNSW2052Australia
| | - Loeske E. B. Kruuk
- Reserach School of BiologyAustralian National UniversityCanberraACT2601Australia
| | - Megan L. Head
- Reserach School of BiologyAustralian National UniversityCanberraACT2601Australia
| |
Collapse
|
19
|
Chen YH, Wei GW, Cui Y, Luo FL. Nutrient Inputs Alleviate Negative Effects of Early and Subsequent Flooding on Growth of Polygonum hydropiper With the Aid of Adventitious Roots. FRONTIERS IN PLANT SCIENCE 2022; 13:919409. [PMID: 35937344 PMCID: PMC9355131 DOI: 10.3389/fpls.2022.919409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
Riparian plants are exposed to harmful stress induced by flooding, which is often accompanied by eutrophication in the Three Gorges Reservoir Region. The phenomenon is mainly caused by domestic sewage discharges, slow water flow, and agricultural fertilizer pollution. Simulating abiotic stress, such as flooding at the initial period, can act as a signal and induce positive responses of plants to subsequent severe stress. In addition, eutrophication supplies nutrients, provides a favorable environment in the early stages of plant, and facilitates good performance in later development. However, whether early flooding (with or without eutrophication) acts as positive cue or as stress on plants at different developmental stages remains unclear. To address this question, seeds of Polygonum hydropiper were collected from low and high elevations in the hydro-fluctuation belt of the Three Gorges Reservoir Region. Plants germinated from these seeds were subjected to shallower and shorter early flooding treatments with or without eutrophication. Subsequently, plants were subjected to deeper and longer flooding treatments with or without eutrophication. Early flooding and eutrophic flooding significantly induced generation of adventitious roots, suggesting morphological adaptation to flooding. Although early flooding and eutrophic flooding treatments did not increase plant biomass in subsequent treatments compared with control, stem length, length and width of the 1st fully expanded leaf, and biomass of plants in the early eutrophic treatment were higher than these of the early flooding treatment plants. These results suggest a negative lag-effect of early flooding, and also indicate that nutrient inputs can alleviate such effects. Similarly, subsequent eutrophic flooding also enhanced plant growth compared with subsequent flooding, showing significantly higher values of leaf traits and adventitious root number. Plants originated from low elevation had significantly higher functional leaf length and stem biomass compared with those from high elevation. These results suggest that nutrient inputs can alleviate negative effects of early and subsequent flooding on growth of P. hydropiper with the generation of adventitious roots.
Collapse
Affiliation(s)
- Yu-Han Chen
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Guan-Wen Wei
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Yuan Cui
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Fang-Li Luo
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
- The Key Laboratory of Ecological Protection in the Yellow River Basin of National Forestry and Grassland Administration, Beijing, China
| |
Collapse
|
20
|
Xue W, Huang L, Yu F, Bezemer TM. Light condition experienced by parent plants influences the response of offspring to light via both parental effects and soil legacy effects. Funct Ecol 2022. [DOI: 10.1111/1365-2435.14136] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Wei Xue
- Institute of Wetland Ecology & Clone Ecology / Zhejiang Provincial Key Laboratory of Evolutionary Ecology and Conservation Taizhou University Taizhou China
| | - Lin Huang
- Institute of Wetland Ecology & Clone Ecology / Zhejiang Provincial Key Laboratory of Evolutionary Ecology and Conservation Taizhou University Taizhou China
| | - Fei‐Hai Yu
- Institute of Wetland Ecology & Clone Ecology / Zhejiang Provincial Key Laboratory of Evolutionary Ecology and Conservation Taizhou University Taizhou China
| | - T. Martijn Bezemer
- Institute of Biology Leiden (IBL) Aboveground Belowground Interactions Group, Leiden University Leiden The Netherlands
- Department of Terrestrial Ecology Netherlands Institute of Ecology (NIOO‐KNAW) Wageningen The Netherlands
| |
Collapse
|
21
|
Camilleri T, Piper MDW, Robker RL, Dowling DK. Maternal and paternal sugar consumption interact to modify offspring life history and physiology. Funct Ecol 2022. [DOI: 10.1111/1365-2435.14024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
| | | | - Rebecca L. Robker
- School of Biomedicine Robinson Research Institute The University of Adelaide Adelaide SA Australia
- School of Biomedical Sciences Monash University Clayton VIC Australia
| | - Damian K. Dowling
- School of Biological Sciences Monash University Clayton VIC Australia
| |
Collapse
|
22
|
Paul SC, Singh P, Dennis AB, Müller C. Intergenerational Effects of Early Life Starvation on Life-History, Consumption, and Transcriptome of a Holometabolous Insect. Am Nat 2022; 199:E229-E243. [DOI: 10.1086/719397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
23
|
Bernal MA, Ravasi T, Rodgers GG, Munday PL, Donelson JM. Plasticity to ocean warming is influenced by transgenerational, reproductive, and developmental exposure in a coral reef fish. Evol Appl 2022; 15:249-261. [PMID: 35233246 PMCID: PMC8867710 DOI: 10.1111/eva.13337] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 12/10/2021] [Indexed: 11/28/2022] Open
Abstract
Global warming is expected to drive some ectothermic species beyond their thermal tolerance in upcoming decades. Phenotypic plasticity, via developmental or transgenerational acclimation, is a critical mechanism for compensation in the face of environmental change. Yet, it remains to be determined if the activation of beneficial phenotypes requires direct exposure throughout development, or if compensation can be obtained just through the experience of previous generations. In this study, we exposed three generations of a tropical damselfish to combinations of current-day (Control) and projected future (+1.5°C) water temperatures. Acclimation was evaluated with phenotypic (oxygen consumption, hepatosomatic index, physical condition) and molecular (liver gene expression) measurements of third-generation juveniles. Exposure of grandparents/parents to warm conditions improved the aerobic capacity of fish regardless of thermal conditions experienced afterwards, representing a true transgenerational effect. This coincided with patterns of gene expression related to inflammation and immunity seen in the third generation. Parental effects due to reproductive temperature significantly affected the physical condition and routine metabolic rate (oxygen consumption) of offspring, but had little impact on gene expression of the F3. Developmental temperature of juveniles, and whether they matched conditions during parental reproduction, had the largest influence on the liver transcriptional program. Using a combination of both phenotypic and molecular approaches, this study highlights how the conditions experienced by both previous and current generations can influence plasticity to global warming in upcoming decades.
Collapse
Affiliation(s)
- Moisés A. Bernal
- Department of Biological SciencesAuburn UniversityAuburnAlabamaUSA
| | - Timothy Ravasi
- Marine Climate Change UnitOkinawa Institute of Science and Technology Graduate UniversityOnna‐son, OkinawaJapan
- ARC Centre of Excellence for Coral Reef StudiesJames Cook UniversityTownsvilleQLDAustralia
| | - Giverny G. Rodgers
- College of Science and EngineeringJames Cook UniversityTownsvilleQLDAustralia
| | - Philip L. Munday
- ARC Centre of Excellence for Coral Reef StudiesJames Cook UniversityTownsvilleQLDAustralia
| | - Jennifer M. Donelson
- ARC Centre of Excellence for Coral Reef StudiesJames Cook UniversityTownsvilleQLDAustralia
| |
Collapse
|
24
|
Li N, Jiang L, Wang JS, Hua BZ. Integrative taxonomy of the seasonally polyphenic scorpionfly Panorpa liui Hua, 1997 (Mecoptera: Panorpidae). ORG DIVERS EVOL 2021. [DOI: 10.1007/s13127-021-00498-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
25
|
Stamps JA, Bell AM. Combining information from parental and personal experiences: Simple processes generate diverse outcomes. PLoS One 2021; 16:e0250540. [PMID: 34255774 PMCID: PMC8277055 DOI: 10.1371/journal.pone.0250540] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 06/08/2021] [Indexed: 12/04/2022] Open
Abstract
Experiences of parents and/or offspring are often assumed to affect the development of trait values in offspring because they provide information about the external environment. However, it is currently unclear how information from parental and offspring experiences might jointly affect the information-states that provide the foundation for the offspring phenotypes observed in empirical studies of developmental plasticity in response to environmental cues. We analyze Bayesian models designed to mimic fully-factorial experimental studies of trans and within- generational plasticity (TWP), in which parents, offspring, both or neither are exposed to cues from predators, to determine how different durations of cue exposure for parents and offspring, the devaluation of information from parents or the degradation of information from parents would affect offspring estimates of environmental states related to risk of predation at the end of such experiments. We show that the effects of different cue durations, the devaluation of information from parents, and the degradation of information from parents on offspring estimates are all expected to vary as a function of interactions with two other key components of information-based models of TWP: parental priors and the relative cue reliability in the different treatments. Our results suggest empiricists should expect to observe considerable variation in the patterns observed in experimental studies of TWP based on simple principles of information-updating, without needing to invoke additional assumptions about costs, tradeoffs, development constraints, the fitness consequences of different trait values, or other factors.
Collapse
Affiliation(s)
- Judy A. Stamps
- Department of Evolution and Ecology, University of California, Davis, Davis, California, United States of America
| | - Alison M. Bell
- Department of Evolution, Ecology, and Behavior, University of Illinois, Urbana-Champaign, Urbana, Illinois, United States of America
| |
Collapse
|
26
|
Bebbington K, Groothuis TGG. Who listens to mother? A whole-family perspective on the evolution of maternal hormone allocation. Biol Rev Camb Philos Soc 2021; 96:1951-1968. [PMID: 33988906 PMCID: PMC8518390 DOI: 10.1111/brv.12733] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/30/2021] [Accepted: 05/04/2021] [Indexed: 12/14/2022]
Abstract
Maternal effects, or the influence of maternal environment and phenotype on offspring phenotype, may allow mothers to fine-tune their offspring's developmental trajectory and resulting phenotype sometimes long after the offspring has reached independence. However, maternal effects on offspring phenotype do not evolve in isolation, but rather within the context of a family unit, where the separate and often conflicting evolutionary interests of mothers, fathers and offspring are all at play. While intrafamilial conflicts are routinely invoked to explain other components of reproductive strategy, remarkably little is known about how intrafamilial conflicts influence maternal effects. We argue that much of the considerable variation in the relationship between maternally derived hormones, nutrients and other compounds and the resulting offspring phenotype might be explained by the presence of conflicting selection pressures on different family members. In this review, we examine the existing literature on maternal hormone allocation as a case study for maternal effects more broadly, and explore new hypotheses that arise when we consider current findings within a framework that explicitly incorporates the different evolutionary interests of the mother, her offspring and other family members. Specifically, we hypothesise that the relationship between maternal hormone allocation and offspring phenotype depends on a mother's ability to manipulate the signals she sends to offspring, the ability of family members to be plastic in their response to those signals and the capacity for the phenotypes and strategies of various family members to interact and influence one another on both behavioural and evolutionary timescales. We also provide suggestions for experimental, comparative and theoretical work that may be instrumental in testing these hypotheses. In particular, we highlight that manipulating the level of information available to different family members may reveal important insights into when and to what extent maternal hormones influence offspring development. We conclude that the evolution of maternal hormone allocation is likely to be shaped by the conflicting fitness optima of mothers, fathers and offspring, and that the outcome of this conflict depends on the relative balance of power between family members. Extending our hypotheses to incorporate interactions between family members, as well as more complex social groups and a wider range of taxa, may provide exciting new developments in the fields of endocrinology and maternal effects.
Collapse
Affiliation(s)
- Kat Bebbington
- Behavioural Biology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, Groningen, 9747AG, The Netherlands.,Animal Sciences, Wageningen University and Research, de Elst 1, Wageningen, 6708WD, The Netherlands
| | - Ton G G Groothuis
- Behavioural Biology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, Groningen, 9747AG, The Netherlands
| |
Collapse
|
27
|
Warriner TR, Semeniuk CAD, Pitcher TE, Heath DD, Love OP. Mimicking Transgenerational Signals of Future Stress: Thermal Tolerance of Juvenile Chinook Salmon Is More Sensitive to Elevated Rearing Temperature Than Exogenously Increased Egg Cortisol. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.548939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
28
|
The information provided by the absence of cues: insights from Bayesian models of within and transgenerational plasticity. Oecologia 2020; 194:585-596. [PMID: 33128089 DOI: 10.1007/s00442-020-04792-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 10/20/2020] [Indexed: 10/23/2022]
Abstract
Empirical studies of phenotypic plasticity often use an experimental design in which the subjects in experimental treatments are exposed to cues, while the subjects in control treatments are maintained in the absence of those cues. However, researchers have virtually ignored the question of what, if any, information might be provided to subjects by the absence of the cues in control treatments. We apply basic principles of information-updating to several experimental protocols used to study phenotypic plasticity in response to cues from predators to show why the reliability of the information provided by the absence of those cues in a control treatment might vary as a function of the subjects' experiences in the experimental treatment. We then analyze Bayesian models designed to mimic fully factorial experimental studies of trans and within-generational plasticity, in which parents, offspring, both or neither are exposed to cues from predators, and the information-states of the offspring in the different groups are compared at the end of the experiment. The models predict that the pattern of differences in offspring information-state across the four treatment groups will vary among experiments, depending on the reliability of the information provided by the control treatment, and the parent's initial estimate of the value of the state (the parental Prior). We suggest that variation among experiments in the reliability of the information provided by the absence of particular cues in the control treatment may be a general phenomenon, and that Bayesian approaches can be useful in interpreting the results of such experiments.
Collapse
|
29
|
Diaz F, Kuijper B, Hoyle RB, Talamantes N, Coleman JM, Matzkin LM. Environmental predictability drives adaptive within‐ and transgenerational plasticity of heat tolerance across life stages and climatic regions. Funct Ecol 2020. [DOI: 10.1111/1365-2435.13704] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Fernando Diaz
- Department of Entomology University of Arizona Tucson AZ USA
| | - Bram Kuijper
- Center for Ecology and Conservation University of Exeter Penryn UK
| | - Rebecca B. Hoyle
- School of Mathematical Sciences University of Southampton Southampton UK
| | | | | | - Luciano M. Matzkin
- Department of Entomology University of Arizona Tucson AZ USA
- BIO5 InstituteUniversity of Arizona Tucson AZ USA
- Department of Ecology and Evolutionary Biology University of Arizona Tucson AZ USA
| |
Collapse
|
30
|
Sánchez-Tójar A, Lagisz M, Moran NP, Nakagawa S, Noble DWA, Reinhold K. The jury is still out regarding the generality of adaptive 'transgenerational' effects. Ecol Lett 2020; 23:1715-1718. [PMID: 32844521 DOI: 10.1111/ele.13479] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/02/2020] [Accepted: 01/23/2020] [Indexed: 12/30/2022]
Abstract
A recent meta-analysis concluded, 'transgenerational effects are widespread, strong and persistent'. We identify biases in the literature search, data and analyses, questioning that conclusion. Re-analyses indicate few studies actually tested transgenerational effects - making it challenging to disentangle condition-transfer from anticipatory parental effects, and providing little insight into the underlying mechanisms.
Collapse
Affiliation(s)
| | - Malgorzata Lagisz
- Evolution & Ecology Research Centre and School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, Australia
| | - Nicholas P Moran
- Department of Evolutionary Biology, Bielefeld University, Bielefeld, Germany
| | - Shinichi Nakagawa
- Evolution & Ecology Research Centre and School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, Australia
| | - Daniel W A Noble
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, Australia
| | - Klaus Reinhold
- Department of Evolutionary Biology, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
31
|
Trade-offs of strategic sperm adjustments and their consequences under phenotype–environment mismatches in guppies. Anim Behav 2020. [DOI: 10.1016/j.anbehav.2020.06.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
32
|
Rösvik A, Lhomme P, Khallaf MA, Anderson P. Plant-Induced Transgenerational Plasticity Affecting Performance but Not Preference in a Polyphagous Moth. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00254] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
33
|
Snell-Rood E, Snell-Rood C. The developmental support hypothesis: adaptive plasticity in neural development in response to cues of social support. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190491. [PMID: 32475336 PMCID: PMC7293157 DOI: 10.1098/rstb.2019.0491] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2020] [Indexed: 12/13/2022] Open
Abstract
Across mammals, cues of developmental support, such as touching, licking or attentiveness, stimulate neural development, behavioural exploration and even overall body growth. Why should such fitness-related traits be so sensitive to developmental conditions? Here, we review what we term the 'developmental support hypothesis', a potential adaptive explanation of this plasticity. Neural development can be a costly process, in terms of time, energy and exposure. However, environmental variability may sometimes compromise parental care during this costly developmental period. We propose this environmental variation has led to the evolution of adaptive plasticity of neural and behavioural development in response to cues of developmental support, where neural development is stimulated in conditions that support associated costs. When parental care is compromised, offspring grow less and adopt a more resilient and stress-responsive strategy, improving their chances of survival in difficult conditions, similar to existing ideas on the adaptive value of early-life programming of stress. The developmental support hypothesis suggests new research directions, such as testing the adaptive value of reduced neural growth and metabolism in stressful conditions, and expanding the range of potential cues animals may attend to as indicators of developmental support. Considering evolutionary and ecologically appropriate cues of social support also has implications for promoting healthy neural development in humans. This article is part of the theme issue 'Life history and learning: how childhood, caregiving and old age shape cognition and culture in humans and other animals'.
Collapse
Affiliation(s)
- Emilie Snell-Rood
- Department of Ecology, Evolution and Behavior, University of Minnesota, 1479 Gortner Avenue, Gortner 140, St Paul, MN 55108, USA
| | - Claire Snell-Rood
- School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| |
Collapse
|
34
|
Pei Y, Forstmeier W, Kempenaers B. Offspring performance is well buffered against stress experienced by ancestors. Evolution 2020; 74:1525-1539. [PMID: 32463119 DOI: 10.1111/evo.14026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/14/2020] [Accepted: 05/17/2020] [Indexed: 11/27/2022]
Abstract
Evolution should render individuals resistant to stress and particularly to stress experienced by ancestors. However, many studies report negative effects of stress experienced by one generation on the performance of subsequent generations. To assess the strength of such transgenerational effects we propose a strategy aimed at overcoming the problem of type I errors when testing multiple proxies of stress in multiple ancestors against multiple offspring performance traits, and we apply it to a large observational dataset on captive zebra finches (Taeniopygia guttata). We combine clear one-tailed hypotheses with steps of validation, meta-analytic summary of mean effect sizes, and independent confirmatory testing. We find that drastic differences in early growth conditions (nestling body mass 8 days after hatching varied sevenfold between 1.7 and 12.4 g) had only moderate direct effects on adult morphology (95% confidence interval [CI]: r = 0.19-0.27) and small direct effects on adult fitness traits (r = 0.02-0.12). In contrast, we found no indirect effects of parental or grandparental condition (r = -0.017 to 0.002; meta-analytic summary of 138 effect sizes), and mixed evidence for small benefits of matching environments between parents and offspring, as the latter was not robust to confirmatory testing in independent datasets. This study shows that evolution has led to a remarkable robustness of zebra finches against undernourishment. Our study suggests that transgenerational effects are absent in this species, because CIs exclude all biologically relevant effect sizes.
Collapse
Affiliation(s)
- Yifan Pei
- Department of Behavioural Ecology and Evolutionary Genetics, Max Planck Institute for Ornithology, Seewiesen, 82319, Germany
| | - Wolfgang Forstmeier
- Department of Behavioural Ecology and Evolutionary Genetics, Max Planck Institute for Ornithology, Seewiesen, 82319, Germany
| | - Bart Kempenaers
- Department of Behavioural Ecology and Evolutionary Genetics, Max Planck Institute for Ornithology, Seewiesen, 82319, Germany
| |
Collapse
|
35
|
Evidence of trans-generational developmental modifications induced by simulated heat waves in an arthropod. Sci Rep 2020; 10:4098. [PMID: 32139738 PMCID: PMC7058005 DOI: 10.1038/s41598-020-61040-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 02/05/2020] [Indexed: 11/30/2022] Open
Abstract
Heat waves are considered to pose a greater risk to arthropods with their limited thermoregulation abilities than the increase of mean temperatures. Theoretically, within- and trans-generational modifications may allow populations to keep pace with rapidly occurring heat waves. Here, we evaluated this assumption using individuals of predatory mite Amblydromalus limonicus from the F1 and F2 generation, which were exposed to summer or simulated heat wave conditions during juvenile development. Independent of generation, survival and male body size were insensitive to heat waves. Heat stress elongated juvenile development of F1 males and females, and lowered the F1 female size at maturity indicating non-adaptive within-generational effects. Trans-generational modifications speeded up the development of F2 males and females and resulted in larger body size of F2 females deriving from the heat wave-experienced F1 generation. Faster F2 development should be adaptive, because it reduces the exposure time to heat waves and promotes an early beginning of mating activities. Being large at extreme high temperatures maybe a benefit for the F2 females, because large individuals are less vulnerable to dehydration and overheating. Thus, the potential fitness loss from reduced F1 growth should be compensated by increased fitness in the F2 indicating adaptive trans-generational modifications.
Collapse
|
36
|
Fuxjäger L, Wanzenböck S, Ringler E, Wegner KM, Ahnelt H, Shama LNS. Within-generation and transgenerational plasticity of mate choice in oceanic stickleback under climate change. Philos Trans R Soc Lond B Biol Sci 2020; 374:20180183. [PMID: 30966960 DOI: 10.1098/rstb.2018.0183] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Plasticity, both within and across generations, can shape sexual traits involved in mate choice and reproductive success, and thus direct measures of fitness. Especially, transgenerational plasticity (TGP), where parental environment influences offspring plasticity in future environments, could compensate for otherwise negative effects of environmental change on offspring sexual traits. We conducted a mate choice experiment using stickleback ( Gasterosteus aculeatus) with different thermal histories (ambient 17°C or elevated 21°C) within and across generations under simulated ocean warming using outdoor mesocosms. Parentage analysis of egg clutches revealed that maternal developmental temperature and reproductive (mesocosm) environment affected egg size, with females that developed at 17°C laying smaller eggs in 21°C mesocosms, likely owing to metabolic costs at elevated temperature. Paternal developmental temperature interacted with the reproductive environment to influence mating success, particularly under simulated ocean warming, with males that developed at 21°C showing lower overall mating success compared with 17°C males, but higher mating success in 21°C mesocosms. Furthermore, mating success of males was influenced by the interaction between F1 developmental temperature and F0 parent acclimation temperature, demonstrating the potential role of both TGP and within-generation plasticity in shaping traits involved in sexual selection and mate choice, potentially facilitating rapid responses to environmental change. This article is part of the theme issue 'The role of plasticity in phenotypic adaptation to rapid environmental change'.
Collapse
Affiliation(s)
- Lukas Fuxjäger
- 1 Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung , Coastal Ecology Section, Wadden Sea Station Sylt, Hafenstrasse 43, 25992 List , Germany.,2 Department of Theoretical Biology, University of Vienna , Althanstrasse 14, Vienna , Austria
| | - Sylvia Wanzenböck
- 1 Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung , Coastal Ecology Section, Wadden Sea Station Sylt, Hafenstrasse 43, 25992 List , Germany.,2 Department of Theoretical Biology, University of Vienna , Althanstrasse 14, Vienna , Austria
| | - Eva Ringler
- 3 Messerli Research Institute, University of Veterinary Medicine Vienna, Medical University of Vienna, University of Vienna , Veterinaerplatz 1, 1210 Vienna , Austria
| | - K Mathias Wegner
- 1 Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung , Coastal Ecology Section, Wadden Sea Station Sylt, Hafenstrasse 43, 25992 List , Germany
| | - Harald Ahnelt
- 2 Department of Theoretical Biology, University of Vienna , Althanstrasse 14, Vienna , Austria.,4 First Zoological Department, Natural History Museum in Vienna , Burgring 7, 1010 Vienna , Austria
| | - Lisa N S Shama
- 1 Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung , Coastal Ecology Section, Wadden Sea Station Sylt, Hafenstrasse 43, 25992 List , Germany
| |
Collapse
|
37
|
Rodríguez-Ruiz G, López P, Martín J. Dietary vitamin D in female rock lizards induces condition-transfer effects in their offspring. Behav Ecol 2020. [DOI: 10.1093/beheco/araa008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Abstract
One way that maternal effects may benefit the offspring is by informing them about the characteristics of the environment. Through gestation, environmentally induced maternal effects might promote in the offspring-specific behavioral responses like dispersal or residence according to their new habitat characteristics. Females of the Carpetan rock lizard (Iberolacerta cyreni) seem to choose their home ranges using the smell of provitamin D3 in scent marks produced by males. Here, we supplemented gravid females of I. cyreni with dietary provitamin D3 or vitamin D3 to examine whether these food resources, also associated with the scent of males, affect the motivation to disperse and the locomotor performance of their offspring. Our results suggest that the supplementary availability of the resource (vitamin D3) to mothers may provoke condition-transfer maternal effects that motivate the residence or the dispersal of the offspring in their postnatal habitat. Thus, hatchlings of supplemented females had a lower dispersal trend in spite of having a greater climbing ability than hatchlings from nonsupplemented females. This suggests that the levels of provitamin D3 and vitamin D3 inside the body of the mother could act as an informative compound of the habitat quality for the offspring.
Collapse
Affiliation(s)
- Gonzalo Rodríguez-Ruiz
- Department of Evolutionary Ecology, Museo Nacional de Ciencias Naturales, CSIC, Madrid, Spain
| | - Pilar López
- Department of Evolutionary Ecology, Museo Nacional de Ciencias Naturales, CSIC, Madrid, Spain
| | - José Martín
- Department of Evolutionary Ecology, Museo Nacional de Ciencias Naturales, CSIC, Madrid, Spain
| |
Collapse
|
38
|
Paul SC, Putra R, Müller C. Early life starvation has stronger intra-generational than transgenerational effects on key life-history traits and consumption measures in a sawfly. PLoS One 2019; 14:e0226519. [PMID: 31856200 PMCID: PMC6922382 DOI: 10.1371/journal.pone.0226519] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 11/26/2019] [Indexed: 11/19/2022] Open
Abstract
Resource availability during development shapes not only adult phenotype but also the phenotype of subsequent offspring. When resources are absent and periods of starvation occur in early life, such developmental stress often influences key life-history traits in a way that benefits individuals and their offspring when facing further bouts of starvation. Here we investigated the impacts of different starvation regimes during larval development on life-history traits and measures of consumption in the turnip sawfly, Athalia rosae (Hymenoptera: Tenthredinidae). We then assessed whether offspring of starved and non-starved parents differed in their own life-history if reared in conditions that either matched that of their parents or were a mismatch. Early life starvation effects were more pronounced within than across generations in A. rosae, with negative impacts on adult body mass and increases in developmental time, but no effects on adult longevity in either generation. We found some evidence of higher growth rates in larvae having experienced starvation, although this did not ameliorate the overall negative effect of larval starvation on adult size. However, further work is necessary to disentangle the effects of larval size and instar from those of starvation treatment. Finally, we found weak evidence for transgenerational effects on larval growth, with intra-generational larval starvation experience being more decisive for life-history traits. Our study demonstrates that intra-generational effects of starvation are stronger than transgenerational effects on life-history traits and consumption measures in A. rosae.
Collapse
Affiliation(s)
| | - Rocky Putra
- Chemical Ecology, Bielefeld University, Bielefeld, Germany
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | - Caroline Müller
- Chemical Ecology, Bielefeld University, Bielefeld, Germany
- * E-mail:
| |
Collapse
|
39
|
Patlar B, Ramm SA. Genotype‐by‐environment interactions for seminal fluid expression and sperm competitive ability. J Evol Biol 2019; 33:225-236. [DOI: 10.1111/jeb.13568] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/25/2019] [Accepted: 11/06/2019] [Indexed: 12/01/2022]
Affiliation(s)
- Bahar Patlar
- Evolutionary Biology Bielefeld University Bielefeld Germany
| | - Steven A. Ramm
- Evolutionary Biology Bielefeld University Bielefeld Germany
| |
Collapse
|
40
|
Pigeon G, Loe LE, Bischof R, Bonenfant C, Forchhammer M, Irvine RJ, Ropstad E, Stien A, Veiberg V, Albon S. Silver spoon effects are constrained under extreme adult environmental conditions. Ecology 2019; 100:e02886. [PMID: 31502296 DOI: 10.1002/ecy.2886] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 07/30/2019] [Accepted: 08/01/2019] [Indexed: 11/05/2022]
Abstract
Early-life environmental conditions may generate cohort differences in individual fitness, subsequently affecting population growth rates. Three, nonmutually exclusive hypotheses predict the nature of these fitness differences: (1) silver spoon effects, where individuals born in good conditions perform better across the range of adult environments; (2) the "environmental saturation" hypothesis, where fitness differences only occur in intermediate adult environmental conditions; and (3) the "environmental matching" or "predictive adaptive response" (PAR) hypothesis, where fitness is highest when adult environmental conditions match those experienced in early life. We quantified the context-dependent effect of early-life environment on subsequent reproductive success, survival, and population growth rate (λ) of Svalbard reindeer, and explored how well it was explained by the three hypotheses. We found that good early-life conditions increased reproductive success compared to poor early-life conditions, but only when experiencing intermediate adult environmental conditions. This is the first example of what appears to be both "beneficial" and "detrimental environmental saturation" in a natural system. Despite weak early-life effects on survival, cohorts experiencing good early-life conditions contributed to higher population growth rates, when simulating realistic variation in adult environmental conditions. Our results show how the combination of a highly variable environment and biological constraints on fitness components can suppress silver spoon effects at both extremes of the adult environmental gradient.
Collapse
Affiliation(s)
- Gabriel Pigeon
- Faculty of Ecology and Natural Resource Management, Norwegian University of Life Sciences, Ås, NO-1432, Norway
| | - Leif Egil Loe
- Faculty of Ecology and Natural Resource Management, Norwegian University of Life Sciences, Ås, NO-1432, Norway
| | - Richard Bischof
- Faculty of Ecology and Natural Resource Management, Norwegian University of Life Sciences, Ås, NO-1432, Norway
| | - Christophe Bonenfant
- Laboratoire de Biométrie et Biologie Évolutive, UMR CNRS 5558, Université de Lyon, Villeurbanne, 69622, France
| | - Mads Forchhammer
- The University Centre in Svalbard, Longyearbyen, NO-9170, Norway
| | - R Justin Irvine
- The James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH, UK
| | - Erik Ropstad
- Faculty of Veterinary Science, Norwegian University of Life Sciences, P.O. Box 8146, Dep, Oslo, NO-0033, Norway
| | - Audun Stien
- Department for Arctic Ecology, Norwegian Institute for Nature Research, Fram Centre, Tromsø, NO-9296, Norway
| | - Vebjørn Veiberg
- Norwegian Institute for Nature Research, P.O. Box 5685, Torgarden, Trondheim, NO-7485, Norway
| | - Steve Albon
- The James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH, UK
| |
Collapse
|
41
|
Loisel A, Isla A, Daufresne M. Variation of thermal plasticity in growth and reproduction patterns: Importance of ancestral and developmental temperatures. J Therm Biol 2019; 84:460-468. [DOI: 10.1016/j.jtherbio.2019.07.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 07/09/2019] [Accepted: 07/26/2019] [Indexed: 11/25/2022]
|
42
|
Bell AM, Hellmann JK. An Integrative Framework for Understanding the Mechanisms and Multigenerational Consequences of Transgenerational Plasticity. ANNUAL REVIEW OF ECOLOGY, EVOLUTION, AND SYSTEMATICS 2019; 50:97-118. [PMID: 36046014 PMCID: PMC9427003 DOI: 10.1146/annurev-ecolsys-110218-024613] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Transgenerational plasticity (TGP) occurs when the environment experienced by a parent influences the development of their offspring. In this article, we develop a framework for understanding the mechanisms and multi-generational consequences of TGP. First, we conceptualize the mechanisms of TGP in the context of communication between parents (senders) and offspring (receivers) by dissecting the steps between an environmental cue received by a parent and its resulting effects on the phenotype of one or more future generations. Breaking down the problem in this way highlights the diversity of mechanisms likely to be involved in the process. Second, we review the literature on multigenerational effects and find that the documented patterns across generations are diverse. We categorize different multigenerational patterns and explore the proximate and ultimate mechanisms that can generate them. Throughout, we highlight opportunities for future work in this dynamic and integrative area of study.
Collapse
Affiliation(s)
- Alison M Bell
- Department of Evolution, Ecology and Behavior, School of Integrative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Program in Neuroscience and Program in Ecology, Evolution and Conservation, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Jennifer K Hellmann
- Department of Evolution, Ecology and Behavior, School of Integrative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| |
Collapse
|
43
|
The cost of carryover effects in a changing environment: context-dependent benefits of a behavioural phenotype in a coral reef fish. Anim Behav 2019. [DOI: 10.1016/j.anbehav.2019.01.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
44
|
Giraudeau M, Angelier F, Sepp T. Do Telomeres Influence Pace-of-Life-Strategies in Response to Environmental Conditions Over a Lifetime and Between Generations? Bioessays 2019; 41:e1800162. [DOI: 10.1002/bies.201800162] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 12/06/2018] [Indexed: 12/21/2022]
Affiliation(s)
- Mathieu Giraudeau
- CREEC; 911 Avenue Agropolis; BP 6450134394 Montpellier Cedex 5 France
- MIVEGEC; UMR IRD/CNRS/UM 5290; 911 Avenue Agropolis, BP 6450134394 Montpellier Cedex 5 France
| | - Frederic Angelier
- CNRS CEBC-ULR; UMR 7372; Villiers en Bois 79360 Beauvoir sur Niort France
| | - Tuul Sepp
- Institute of Ecology and Earth Sciences; University of Tartu; Vanemuise 46 51014 Tartu Estonia
| |
Collapse
|
45
|
Low food availability during gestation enhances offspring post-natal growth, but reduces survival, in a viviparous lizard. Oecologia 2019; 189:611-620. [PMID: 30725369 DOI: 10.1007/s00442-019-04349-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 01/30/2019] [Indexed: 10/27/2022]
Abstract
The environment experienced by a mother can have profound effects on the fitness of her offspring (i.e., maternal effects). Maternal effects can be adaptive when the developmental environments experienced by offspring promote phenotypes that provide fitness benefits either via matching offspring phenotype to the post-developmental environment (also known as anticipatory maternal effects) or through direct effects on offspring growth and survival. We tested these hypotheses in a viviparous lizard using a factorial experimental design in which mothers received either high or low amounts of food during gestation, and resultant offspring were raised on either high or low amounts of food post-birth. We found no effect of food availability during gestation on reproductive traits of mothers or offspring traits at birth. However, offspring from mothers who received low food during gestation exhibited a greater increase in condition in the post-birth period, suggesting some form of priming of offspring by mothers to cope with an anticipated poor environment after birth. Offspring that received low food during gestation were also more likely to die, suggesting a trade-off for this accelerated growth. There were also significant effects of post-birth food availability on offspring snout-vent length and body condition growth, with offspring with high food availability post birth doing better. However, the effects of the pre- and post-natal resource evnironment on offspring growth were independent on one another, therefore, providing no support for the presence of anticipatory maternal effects in the traditional sense.
Collapse
|
46
|
Cavieres G, Alruiz JM, Medina NR, Bogdanovich JM, Bozinovic F. Transgenerational and within-generation plasticity shape thermal performance curves. Ecol Evol 2019; 9:2072-2082. [PMID: 30847093 PMCID: PMC6392392 DOI: 10.1002/ece3.4900] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 12/16/2018] [Accepted: 12/20/2018] [Indexed: 01/03/2023] Open
Abstract
Thermal performance curves (TPCs) compute the effects of temperature on the performance of ectotherms and are frequently used to predict the effect of environmental conditions and currently, climate change, on organismal vulnerability and sensitivity. Using Drosophila melanogaster as an animal model, we examined how different thermal environments affected the shape of the performance curve and their parameters. We measured the climbing speed as a measure of locomotor performance in adult flies and tested the ontogenetic and transgenerational effects of thermal environment on TPC shape. Parents and offspring were reared at 28 ± 0ºC (28C), 28 ± 4ºC (28V), and 30 ± 0ºC (30C). We found that both, environmental thermal variability (28V) and high temperature (30C) experienced during early ontogeny shaped the fruit fly TPC sensitivity. Flies reared at variable thermal environments shifted the TPC to the right and increased heat tolerance. Flies held at high and constant temperature exhibited lower maximum performance than flies reared at the variable thermal environment. Furthermore, these effects were extended to the next generation. The parental thermal environment had a significative effect on TPC and its parameters. Indeed, flies reared at 28V whose parents were held at a high and constant temperature (30C) had a lower heat tolerance than F1 of flies reared at 28C or 28V. Also, offspring of flies reared at variable thermal environment (28V) reached the maximum performance at a higher temperature than offspring of flies reared at 28C or 30C. Consequently, since TPC parameters are not fixed, we suggest cautiousness when using TPCs to predict the impact of climate change on natural populations.
Collapse
Affiliation(s)
- Grisel Cavieres
- Center of Applied Ecology and Sustainability (CAPES), Departamento de Ecologia, Facultad de Ciencias Biológicas Pontificia Universidad Católica de Chile Santiago Chile
- CCT-Mendoza CONICET, Grupo de Investigaciones de la Biodiversidad, CONICET Instituto Argentino de Investigaciones de Zonas Áridas Mendoza Argentina
| | - José M Alruiz
- Center of Applied Ecology and Sustainability (CAPES), Departamento de Ecologia, Facultad de Ciencias Biológicas Pontificia Universidad Católica de Chile Santiago Chile
| | - Nadia R Medina
- Center of Applied Ecology and Sustainability (CAPES), Departamento de Ecologia, Facultad de Ciencias Biológicas Pontificia Universidad Católica de Chile Santiago Chile
| | - José M Bogdanovich
- Center of Applied Ecology and Sustainability (CAPES), Departamento de Ecologia, Facultad de Ciencias Biológicas Pontificia Universidad Católica de Chile Santiago Chile
| | - Francisco Bozinovic
- Center of Applied Ecology and Sustainability (CAPES), Departamento de Ecologia, Facultad de Ciencias Biológicas Pontificia Universidad Católica de Chile Santiago Chile
| |
Collapse
|
47
|
Pigeon G, Pelletier F. Direct and indirect effects of early-life environment on lifetime fitness of bighorn ewes. Proc Biol Sci 2019; 285:rspb.2017.1935. [PMID: 29321295 DOI: 10.1098/rspb.2017.1935] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 12/04/2017] [Indexed: 12/12/2022] Open
Abstract
Cohort effects, when a common environment affects long-term performance, can have a major impact on population dynamics. Very few studies of wild animals have obtained the necessary data to study the mechanisms leading to cohort effects. We exploited 42 years of individual-based data on bighorn sheep to test for causal links between birth density, body mass, age at first reproduction (AFR), longevity and lifetime reproductive success (LRS) using path analysis. Specifically, we investigated whether the effect of early-life environment on lifetime fitness was the result of indirect effects through body mass or direct effects of early-life environment on fitness. Additionally, we evaluated whether the effects of early-life environment were dependant on the environment experienced during adulthood. Contrary to expectation, the effect on LRS mediated through body mass was weak compared to the effects found via a delay in AFR, reduced longevity and the direct effect of birth density. Birth density also had an important indirect effect on LRS through reduced longevity, but only when adult density was high. Our results show that the potential long-term consequences of a harsh early-life environment on fitness are likely to be underestimated if investigations are limited to body mass instead of fitness at several life stages, or if the interactions between past and present environment are ignored.
Collapse
Affiliation(s)
- Gabriel Pigeon
- Département de Biologie, Université de Sherbrooke, Sherbrooke, Quebec, Canada .,Department of Ecology and Natural Resource Management, Norwegian University of Life Sciences, Ås, Norway
| | - Fanie Pelletier
- Département de Biologie, Université de Sherbrooke, Sherbrooke, Quebec, Canada .,Canada Research Chair in Evolutionary Demography and Conservation, Département de Biologie, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| |
Collapse
|
48
|
Radersma R, Hegg A, Noble DWA, Uller T. Timing of maternal exposure to toxic cyanobacteria and offspring fitness in Daphnia magna: Implications for the evolution of anticipatory maternal effects. Ecol Evol 2018; 8:12727-12736. [PMID: 30619577 PMCID: PMC6309005 DOI: 10.1002/ece3.4700] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 10/11/2018] [Indexed: 01/22/2023] Open
Abstract
Organisms that regularly encounter stressful environments are expected to use cues to develop an appropriate phenotype. Water fleas (Daphnia spp.) are exposed to toxic cyanobacteria during seasonal algal blooms, which reduce growth and reproductive investment. Because generation time is typically shorter than the exposure to cyanobacteria, maternal effects provide information about the local conditions subsequent generations will experience. Here, we evaluate if maternal effects in response to microcystin, a toxin produced by cyanobacteria, represent an inheritance system evolved to transmit information in Daphnia magna. We exposed mothers as juveniles and/or as adults, and tested the offspring's fitness in toxic and non-toxic environments. Maternal exposure until reproduction reduced offspring fitness, both in the presence and in the absence of toxic cyanobacteria. However, this effect was accompanied by a small positive fitness effect, relative to offspring from unexposed mothers, in the presence of toxic cyanobacteria. This effect was mainly elicited in response to maternal exposure to toxic cyanobacteria early in life and less so during reproduction. None of these effects were explained by changes in egg size. A meta-analysis using our and others' experiments suggests that the adaptive value of maternal effects to cyanobacteria exposure is weak at best. We suggest that the beneficial maternal effect in our study is an example of phenotypic accommodation spanning generations, rather than a mechanism evolved to transmit information about cyanobacteria presence between generations.
Collapse
Affiliation(s)
| | | | - Daniel W. A. Noble
- Ecology and Evolution Research Centre, School of Biological, Earth and Environmental SciencesThe University of New South WalesSydneyNew South WalesAustralia
| | | |
Collapse
|
49
|
Kristensen TN, Ketola T, Kronholm I. Adaptation to environmental stress at different timescales. Ann N Y Acad Sci 2018; 1476:5-22. [PMID: 30259990 DOI: 10.1111/nyas.13974] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 08/24/2018] [Accepted: 09/08/2018] [Indexed: 12/21/2022]
Abstract
Environments are changing rapidly, and to cope with these changes, organisms have to adapt. Adaptation can take many shapes and occur at different speeds, depending on the type of response, the trait, the population, and the environmental conditions. The biodiversity crisis that we are currently facing illustrates that numerous species and populations are not capable of adapting with sufficient speed to ongoing environmental changes. Here, we discuss current knowledge on the ability of animals and plants to adapt to environmental stress on different timescales, mainly focusing on thermal stress and ectotherms. We discuss within-generation responses that can be fast and induced within minutes or hours, evolutionary adaptations that are often slow and take several generations, and mechanisms that lay somewhere in between and that include epigenetic transgenerational effects. To understand and predict the impacts of environmental change and stress on biodiversity, we suggest that future studies should (1) have an increased focus on understanding the type and speed of responses to fast environmental changes; (2) focus on the importance of environmental fluctuations and the predictability of environmental conditions on adaptive capabilities, preferably in field studies encompassing several fitness components; and (3) look at ecosystem responses to environmental stress and their resilience when disturbed.
Collapse
Affiliation(s)
- Torsten Nygaard Kristensen
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark.,Department of Bioscience, University of Aarhus, Aarhus, Denmark
| | - Tarmo Ketola
- Department of Biology and Environmental Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Ilkka Kronholm
- Department of Biology and Environmental Sciences, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
50
|
Watve M. Developmental plasticity: Need to go beyond naïve thinking. Evol Med Public Health 2018; 2017:178-180. [PMID: 29424840 PMCID: PMC5798149 DOI: 10.1093/emph/eox020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 10/26/2017] [Indexed: 01/09/2023] Open
Affiliation(s)
- Milind Watve
- Department of Biology, Indian Institute of Science Education and Research, Pashan, Pune 411008, India
| |
Collapse
|