1
|
Seale B, Slotabec L, Nguyen JD, Wang H, Patterson C, Filho F, Rouhi N, Adenawoola MI, Li J. Sestrin2 serves as a scaffold protein to maintain cardiac energy and metabolic homeostasis during pathological stress. FASEB J 2024; 38:e70106. [PMID: 39404019 DOI: 10.1096/fj.202401404r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/23/2024] [Accepted: 09/30/2024] [Indexed: 10/25/2024]
Abstract
Cardiovascular diseases (CVDs) are a leading cause of morbidity and mortality worldwide. Metabolic imbalances and pathological stress often contribute to increased mortality. Sestrin2 (Sesn2) is a stress-inducible protein crucial in maintaining cardiac energy and metabolic homeostasis under pathological conditions. Sesn2 is upregulated in response to various stressors, including oxidative stress, hypoxia, and energy depletion, and mediates multiple cellular pathways to enhance antioxidant defenses, promote autophagy, and inhibit inflammation. This review explores the mechanisms through which Sesn2 regulates these pathways, focusing on the AMPK-mTORC1, Sesn2-Nrf2, and HIF1α-Sesn2 pathways, among others. We can identify the potential therapeutic targets for treating CVDs and related metabolic disorders by comprehending these complex mechanisms. Sesn2's unique ability to respond thoroughly to metabolic challenges, oxidative stress, and inflammation makes it a promising prospect for enhancing cardiac health and resilience against pathological stress.
Collapse
Affiliation(s)
- Blaise Seale
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Lily Slotabec
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, Mississippi, USA
- Research, G.V. (Sonny) Montgomery VA Medical Center, Jackson, Mississippi, USA
| | - Jennie D Nguyen
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Hao Wang
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Cory Patterson
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Fernanda Filho
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Nadiyeh Rouhi
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Michael I Adenawoola
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Ji Li
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, Mississippi, USA
- Research, G.V. (Sonny) Montgomery VA Medical Center, Jackson, Mississippi, USA
| |
Collapse
|
2
|
Zarzycka W, Kobak KA, King CJ, Peelor FF, Miller BF, Chiao YA. Hyperactive mTORC1/4EBP1 signaling dysregulates proteostasis and accelerates cardiac aging. GeroScience 2024:10.1007/s11357-024-01368-w. [PMID: 39379739 DOI: 10.1007/s11357-024-01368-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 09/25/2024] [Indexed: 10/10/2024] Open
Abstract
The mechanistic target of rapamycin complex 1 (mTORC1) has a major impact on aging by regulation of proteostasis. It is well established that mTORC1 signaling is hyperactivated with aging and age-related diseases. Previous studies have shown that partial inhibition of mTOR signaling by rapamycin reverses age-related deteriorations in cardiac function and structure in old mice. However, the downstream signaling pathways involved in this protection against cardiac aging have not been established. mTORC1 phosphorylates 4E-binding protein 1 (4EBP1) to promote the initiation of cap-dependent translation. The objective of this project is to examine the role of the mTORC1/4EBP1 axis in age-related cardiac dysfunction. We used a whole-body 4EBP1 KO mouse model, which mimics a hyperactive mTORC1/4EBP1/eIF4E axis, to investigate the effects of hyperactive mTORC1/4EBP1 axis in cardiac aging. Echocardiographic measurements of middle-aged 4EBP1 KO mice show impaired diastolic function and myocardial performance compared to age-matched WT mice and these parameters are at similar levels as old WT mice, suggesting that 4EBP1 KO mice experience accelerated cardiac aging. Old 4EBP1 KO mice show further decline in systolic and diastolic function compared to middle-aged counterparts and have worse systolic and diastolic function than age-matched WT mice. Gene expression levels of heart failure markers are not different between 4EBP1 KO and WT hearts. However, ribosomal biogenesis and protein ubiquitination are significantly increased in 4EBP1 KO hearts when compared to WT controls, suggesting dysregulated proteostasis in 4EBP1 KO hearts. Together, these results show that a hyperactive mTORC1/4EBP1 axis accelerates cardiac aging, potentially by dysregulating proteostasis.
Collapse
Affiliation(s)
- Weronika Zarzycka
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
- Department of Biochemistry and Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Kamil A Kobak
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Catherine J King
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Frederick F Peelor
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Benjamin F Miller
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
- Oklahoma City VA, Oklahoma City, OK, USA
| | - Ying Ann Chiao
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA.
- Department of Biochemistry and Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
3
|
Stanfield B, Kaeberlein M, Leroux B, Jones J, Lucas R, Arroll B. A single-center, double-blind, randomized, placebo-controlled, two-arm study to evaluate the safety and efficacy of once-weekly sirolimus (rapamycin) on muscle strength and endurance in older adults following a 13-week exercise program. Trials 2024; 25:642. [PMID: 39354527 PMCID: PMC11443903 DOI: 10.1186/s13063-024-08490-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/20/2024] [Indexed: 10/03/2024] Open
Abstract
BACKGROUND Aging leads to a decline in muscle mass and strength, contributing to frailty and decreased quality of life. Sirolimus (rapamycin) , an mTOR inhibitor, has shown potential in preclinical studies to extend lifespan and improve health span. This study evaluates the safety and efficacy of once-weekly sirolimus (rapamycin) administration on muscle strength and endurance in older adults engaged in a 13-week exercise program. METHODS This randomized, double-blind, placebo-controlled trial will enroll 40 participants aged 65-85. Participants will be randomly assigned to receive either sirolimus (rapamycin) 6 mg/week or placebo for 13 weeks, in conjunction with an at-home exercise program. The primary outcome measure is the change in muscle strength and endurance, assessed by the 30-Second Chair-Stand Test. Secondary outcome measures include adverse events, changes in muscle strength and endurance as measured by the 6-min walk test, handgrip strength, and participant-reported outcomes using the SF-36 survey. Assessments will be conducted at baseline, mid-intervention (week 6), and post-intervention (week 13). Blood samples will be collected for hematology and biochemistry analyses, including full blood count, urea and electrolytes, liver function tests, HbA1c, lipids, serum IGF-1, and hs-CRP. DNA methylation will be analyzed using TruDiagnostic™ to explore changes in biological age. DISCUSSION This study aims to provide insights into the potential benefits of intermittent sirolimus (rapamycin) administration on muscle performance in older adults. By alternating periods of mTOR inhibition through rapamycin and activation via exercise, this study will explore a novel approach to enhancing muscle strength and endurance in the aging population. The results could have significant implications for developing interventions to improve physical function and overall health outcomes in older adults. Safety and tolerability will also be closely monitored to ensure the feasibility of this regimen for wider application. TRIAL REGISTRATION Australia New Zealand Clinical Trials Registry, ACTRN12624000790549. Registered on 26 June 2024 https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?ACTRN=12624000790549 .
Collapse
Affiliation(s)
- Brad Stanfield
- Royal New Zealand College of General Practitioners, Wellington Central, Wellington, 6011, New Zealand.
- University of Auckland, Auckland, New Zealand.
| | - Matt Kaeberlein
- Optispan, Inc., Seattle, WA, USA
- Department of Oral Health Sciences, University of Washington, Seattle, WA, USA
| | - Brian Leroux
- Department of Oral Health Sciences, University of Washington, Seattle, WA, USA
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | | | | | - Bruce Arroll
- General Practice and Primary Health Care, University of Auckland, Auckland, New Zealand
| |
Collapse
|
4
|
Rose RA, Howlett SE. Preclinical Studies on the Effects of Frailty in the Aging Heart. Can J Cardiol 2024; 40:1379-1393. [PMID: 38460611 DOI: 10.1016/j.cjca.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/20/2024] [Accepted: 03/04/2024] [Indexed: 03/11/2024] Open
Abstract
Age is a major risk factor for the development of cardiovascular diseases in men and in women. However, not all people age at the same rate and those who are aging rapidly are considered frail, compared with their fit counterparts. Frailty is an important clinical challenge because those who are frail are more likely to develop and die from illnesses, including cardiovascular diseases, than fit people of the same age. This increase in susceptibility to cardiovascular diseases in older individuals might occur as the cellular and molecular mechanisms involved in the aging process facilitate structural and functional damage in the heart. Consistent with this, recent studies in murine frailty models have provided strong evidence that maladaptive cardiac remodelling in older mice is the most pronounced in mice with a high level of frailty. For example, there is evidence that ventricular hypertrophy and contractile dysfunction increase as frailty increases in aging mice. Additionally, fibrosis and slowing of conduction in the sinoatrial node and atria are proportional to the level of frailty. These modifications could predispose frail older adults to diseases like heart failure and atrial fibrillation. This preclinical work also raises the possibility that emerging interventions designed to "treat frailty" might also treat or prevent cardiovascular diseases. These findings might help to explain why frail older people are most likely to develop these disorders as they age.
Collapse
Affiliation(s)
- Robert A Rose
- Department of Cardiac Sciences, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Department of Physiology and Pharmacology, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
| | - Susan E Howlett
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada; Department of Medicine (Geriatric Medicine), Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada.
| |
Collapse
|
5
|
Alibhai FJ, Li RK. Rejuvenation of the Aging Heart: Molecular Determinants and Applications. Can J Cardiol 2024; 40:1394-1411. [PMID: 38460612 DOI: 10.1016/j.cjca.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/20/2024] [Accepted: 03/04/2024] [Indexed: 03/11/2024] Open
Abstract
In Canada and worldwide, the elderly population (ie, individuals > 65 years of age) is increasing disproportionately relative to the total population. This is expected to have a substantial impact on the health care system, as increased aged is associated with a greater incidence of chronic noncommunicable diseases. Within the elderly population, cardiovascular disease is a leading cause of death, therefore developing therapies that can prevent or slow disease progression in this group is highly desirable. Historically, aging research has focused on the development of anti-aging therapies that are implemented early in life and slow the age-dependent decline in cell and organ function. However, accumulating evidence supports that late-in-life therapies can also benefit the aged cardiovascular system by limiting age-dependent functional decline. Moreover, recent studies have demonstrated that rejuvenation (ie, reverting cellular function to that of a younger phenotype) of the already aged cardiovascular system is possible, opening new avenues to develop therapies for older individuals. In this review, we first provide an overview of the functional changes that occur in the cardiomyocyte with aging and how this contributes to the age-dependent decline in heart function. We then discuss the various anti-aging and rejuvenation strategies that have been pursued to improve the function of the aged cardiomyocyte, with a focus on therapies implemented late in life. These strategies include 1) established systemic approaches (caloric restriction, exercise), 2) pharmacologic approaches (mTOR, AMPK, SIRT1, and autophagy-targeting molecules), and 3) emerging rejuvenation approaches (partial reprogramming, parabiosis/modulation of circulating factors, targeting endogenous stem cell populations, and senotherapeutics). Collectively, these studies demonstrate the exciting potential and limitations of current rejuvenation strategies and highlight future areas of investigation that will contribute to the development of rejuvenation therapies for the aged heart.
Collapse
Affiliation(s)
- Faisal J Alibhai
- Toronto General Research Hospital Institute, University Health Network, Toronto, Ontario, Canada
| | - Ren-Ke Li
- Toronto General Research Hospital Institute, University Health Network, Toronto, Ontario, Canada; Department of Surgery, Division of Cardiovascular Surgery, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
6
|
Ma C, Liu Y, Fu Z. Implications of endoplasmic reticulum stress and autophagy in aging and cardiovascular diseases. Front Pharmacol 2024; 15:1413853. [PMID: 39119608 PMCID: PMC11306071 DOI: 10.3389/fphar.2024.1413853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 06/24/2024] [Indexed: 08/10/2024] Open
Abstract
The average lifespan of humans has been increasing, resulting in a rapidly rising percentage of older individuals and high morbidity of aging-associated diseases, especially cardiovascular diseases (CVDs). Diverse intracellular and extracellular factors that interrupt homeostatic functions in the endoplasmic reticulum (ER) induce ER stress. Cells employ a dynamic signaling pathway of unfolded protein response (UPR) to buffer ER stress. Recent studies have demonstrated that ER stress triggers various cellular processes associated with aging and many aging-associated diseases, including CVDs. Autophagy is a conserved process involving lysosomal degradation and recycling of cytoplasmic components, proteins, organelles, and pathogens that invade the cytoplasm. Autophagy is vital for combating the adverse influence of aging on the heart. The present report summarizes recent studies on the mechanism of ER stress and autophagy and their overlap in aging and on CVD pathogenesis in the context of aging. It also discusses possible therapeutic interventions targeting ER stress and autophagy that might delay aging and prevent or treat CVDs.
Collapse
Affiliation(s)
- Chenguang Ma
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yang Liu
- 32295 Troops of P.L.A, Liaoyang, China
| | - Zhiling Fu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
7
|
Sun Y, Xu M, Duan Q, Bryant JL, Xu X. The role of autophagy in the progression of HIV infected cardiomyopathy. Front Cell Dev Biol 2024; 12:1372573. [PMID: 39086659 PMCID: PMC11289186 DOI: 10.3389/fcell.2024.1372573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 06/05/2024] [Indexed: 08/02/2024] Open
Abstract
Although highly active antiretroviral therapy (HAART) has changed infection with human immunodeficiency virus (HIV) from a diagnosis with imminent mortality to a chronic illness, HIV positive patients who do not develop acquired immunodeficiency syndrome (AIDs) still suffer from a high rate of cardiac dysfunction and fibrosis. Regardless of viral load and CD count, HIV-associated cardiomyopathy (HIVAC) still causes a high rate of mortality and morbidity amongst HIV patients. While this is a well characterized clinical phenomena, the molecular mechanism of HIVAC is not well understood. In this review, we consolidate, analyze, and discuss current research on the intersection between autophagy and HIVAC. Multiple studies have linked dysregulation in various regulators and functional components of autophagy to HIV infection regardless of mode of viral entry, i.e., coronary, cardiac chamber, or pericardial space. HIV proteins, including negative regulatory factor (Nef), glycoprotein 120 (gp120), and transactivator (Tat), have been shown to interact with type II microtubule-associated protein-1 β light chain (LC3-II), Rubiquitin, SQSTM1/p62, Rab7, autophagy-specific gene 7 (ATG7), and lysosomal-associated membrane protein 1 (LAMP1), all molecules critical to normal autophagy. HIV infection can also induce dysregulation of mitochondrial bioenergetics by altering production and equilibrium of adenosine triphosphate (ATP), mitochondrial reactive oxygen species (ROS), and calcium. These changes alter mitochondrial mass and morphology, which normally trigger autophagy to clear away dysfunctional organelles. However, with HIV infection also triggering autophagy dysfunction, these abnormal mitochondria accumulate and contribute to myocardial dysfunction. Likewise, use of HAART, azidothymidine and Abacavir, have been shown to induce cardiac dysfunction and fibrosis by inducing abnormal autophagy during antiretroviral therapy. Conversely, studies have shown that increasing autophagy can reduce the accumulation of dysfunctional mitochondria and restore cardiomyocyte function. Interestingly, Rapamycin, a mammalian target of rapamycin (mTOR) inhibitor, has also been shown to reduce HIV-induced cytotoxicity by regulating autophagy-related proteins, making it a non-antiviral agent with the potential to treat HIVAC. In this review, we synthesize these findings to provide a better understanding of the role autophagy plays in HIVAC and discuss the potential pharmacologic targets unveiled by this research.
Collapse
Affiliation(s)
- Yuting Sun
- Laboratory of Cell Biology, Genetics and Developmental Biology, College of Life Sciences and University Hospital, Shaanxi Normal University, Xi’an, China
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Mengmeng Xu
- Department of Pediatrics, Morgan Stanley Children’s Hospital, Columbia University, New York, NY, United States
| | - Qinchun Duan
- Laboratory of Cell Biology, Genetics and Developmental Biology, College of Life Sciences and University Hospital, Shaanxi Normal University, Xi’an, China
| | - Joseph L. Bryant
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Xuehong Xu
- Laboratory of Cell Biology, Genetics and Developmental Biology, College of Life Sciences and University Hospital, Shaanxi Normal University, Xi’an, China
| |
Collapse
|
8
|
Zarzycka W, Kobak KA, King CJ, Peelor FF, Miller BF, Chiao YA. Hyperactive mTORC1/4EBP1 Signaling Dysregulates Proteostasis and Accelerates Cardiac Aging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.13.594044. [PMID: 38798509 PMCID: PMC11118374 DOI: 10.1101/2024.05.13.594044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
The mechanistic target of rapamycin complex 1 (mTORC1) has a major impact on aging by regulation of proteostasis. It is well established that mTORC1 signaling is hyperactivated with aging and age-related diseases. Previous studies have shown that partial inhibition of mTOR signaling by rapamycin reverses the age-related decline in cardiac function and structure in old mice. However, the downstream signaling pathways involved in this protection against cardiac aging have not been established. TORC1 phosphorylates 4E-binding protein 1 (4EBP1) to promote the initiation of cap-dependent translation. The aim of this project is to examine the role of the mTORC1/4EBP1 axis in age-related cardiac dysfunction. We utilized a whole-body 4EBP1 KO mouse model, which mimics a hyperactive 4EBP1/eIF4E axis, to investigate the effects of hyperactive mTORC1/4EBP1 axis in cardiac aging. Echocardiographic measurements revealed that young 4EBP1 KO mice have no difference in cardiac function at baseline compared to WT mice. Interestingly, middle-aged (14-15-month-old) 4EBP1 KO mice show impaired diastolic function and myocardial performance compared to age-matched WT mice and their diastolic function and myocardial performance are at similar levels as 24-month-old WT mice, suggesting that 4EBP1 KO mice experience accelerated cardiac aging. Old 4EBP1 KO mice show further declines in systolic and diastolic function compared to middle-aged 4EBP1 KO mice and have worse systolic and diastolic function than age-matched old WT mice. Gene expression levels of heart failure markers are not different between 4EBP1 KO and WT mice at these advanced ages. However, ribosomal biogenesis and overall protein ubiquitination are significantly increased in 4EBP1 KO mice when compared to WT, which suggests dysregulated proteostasis. Together, these results show that a hyperactive 4EBP1/eIF4E axis accelerates cardiac aging, potentially by dysregulating proteostasis.
Collapse
|
9
|
Zhang H, Muhetarijiang M, Chen RJ, Hu X, Han J, Zheng L, Chen T. Mitochondrial Dysfunction: A Roadmap for Understanding and Tackling Cardiovascular Aging. Aging Dis 2024:AD.2024.0058. [PMID: 38739929 DOI: 10.14336/ad.2024.0058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 05/08/2024] [Indexed: 05/16/2024] Open
Abstract
Cardiovascular aging is a progressive remodeling process constituting a variety of cellular and molecular alterations that are closely linked to mitochondrial dysfunction. Therefore, gaining a deeper understanding of the changes in mitochondrial function during cardiovascular aging is crucial for preventing cardiovascular diseases. Cardiac aging is accompanied by fibrosis, cardiomyocyte hypertrophy, metabolic changes, and infiltration of immune cells, collectively contributing to the overall remodeling of the heart. Similarly, during vascular aging, there is a profound remodeling of blood vessel structure. These remodeling present damage to endothelial cells, increased vascular stiffness, impaired formation of new blood vessels (angiogenesis), the development of arteriosclerosis, and chronic vascular inflammation. This review underscores the role of mitochondrial dysfunction in cardiac aging, exploring its impact on fibrosis and myocardial alterations, metabolic remodeling, immune response remodeling, as well as in vascular aging in the heart. Additionally, we emphasize the significance of mitochondria-targeted therapies in preventing cardiovascular diseases in the elderly.
Collapse
Affiliation(s)
- Han Zhang
- Department of Cardiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Mairedan Muhetarijiang
- Department of Cardiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Ryan J Chen
- School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaosheng Hu
- Department of Cardiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jie Han
- Department of Cardiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Liangrong Zheng
- Department of Cardiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Ting Chen
- Department of Cardiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Affiliated First Hospital of Ningbo University, Ningbo, China
| |
Collapse
|
10
|
Goyal P, Maurer MS, Roh J. Aging in Heart Failure: Embracing Biology Over Chronology: JACC Family Series. JACC. HEART FAILURE 2024; 12:795-809. [PMID: 38597865 PMCID: PMC11331491 DOI: 10.1016/j.jchf.2024.02.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 02/12/2024] [Accepted: 02/21/2024] [Indexed: 04/11/2024]
Abstract
Age is among the most potent risk factors for developing heart failure and is strongly associated with adverse outcomes. As the global population continues to age and the prevalence of heart failure rises, understanding the role of aging in the development and progression of this chronic disease is essential. Although chronologic age is on a fixed course, biological aging is more variable and potentially modifiable in patients with heart failure. This review describes the current knowledge on mechanisms of biological aging that contribute to the pathogenesis of heart failure. The discussion focuses on 3 hallmarks of aging-impaired proteostasis, mitochondrial dysfunction, and deregulated nutrient sensing-that are currently being targeted in therapeutic development for older adults with heart failure. In assessing existing and emerging therapeutic strategies, the review also enumerates the importance of incorporating geriatric conditions into the management of older adults with heart failure and in ongoing clinical trials.
Collapse
Affiliation(s)
- Parag Goyal
- Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Mathew S Maurer
- Department of Medicine, Columbia University Medical Center, New York, New York, USA.
| | - Jason Roh
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
11
|
Baghdadi M, Nespital T, Monzó C, Deelen J, Grönke S, Partridge L. Intermittent rapamycin feeding recapitulates some effects of continuous treatment while maintaining lifespan extension. Mol Metab 2024; 81:101902. [PMID: 38360109 PMCID: PMC10900781 DOI: 10.1016/j.molmet.2024.101902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/26/2024] [Accepted: 02/12/2024] [Indexed: 02/17/2024] Open
Abstract
OBJECTIVE Rapamycin, a powerful geroprotective drug, can have detrimental effects when administered chronically. We determined whether intermittent treatment of mice can reduce negative effects while maintaining benefits of chronic treatment. METHODS From 6 months of age, male and female C3B6F1 hybrid mice were either continuously fed with 42 mg/kg rapamycin, or intermittently fed by alternating weekly feeding of 42 mg/kg rapamycin food with weekly control feeding. Survival of these mice compared to control animals was measured. Furthermore, longitudinal phenotyping including metabolic (body composition, GTT, ITT, indirect calorimetry) and fitness phenotypes (treadmil, rotarod, electrocardiography and open field) was performed. Organ specific pathology was assessed at 24 months of age. RESULTS Chronic rapamycin treatment induced glucose intolerance, which was partially ameliorated by intermittent treatment. Chronic and intermittent rapamycin treatments increased lifespan equally in males, while in females chronic treatment resulted in slightly higher survival. The two treatments had equivalent effects on testicular degeneration, heart fibrosis and liver lipidosis. In males, the two treatment regimes led to a similar increase in motor coordination, heart rate and Q-T interval, and reduction in spleen weight, while in females, they equally reduced BAT inflammation and spleen weight and maintained heart rate and Q-T interval. However, other health parameters, including age related pathologies, were better prevented by continuous treatment. CONCLUSIONS Intermittent rapamycin treatment is effective in prolonging lifespan and reduces some side-effects of chronic treatment, but chronic treatment is more beneficial to healthspan.
Collapse
Affiliation(s)
- Maarouf Baghdadi
- Max-Planck Institute for Biology of Ageing, Cologne, Germany; Cluster of Excellence Cellular Stress Responses in Aging-associated Diseases (CECAD), Faculty of Mathematics and Natural Sciences, University of Cologne, Cologne, Germany
| | - Tobias Nespital
- Max-Planck Institute for Biology of Ageing, Cologne, Germany
| | - Carolina Monzó
- Max-Planck Institute for Biology of Ageing, Cologne, Germany; Institute for Integrative Systems Biology, Spanish National Research Council, Catedràtic Agustín Escardino Benlloch, Paterna, Spain
| | - Joris Deelen
- Max-Planck Institute for Biology of Ageing, Cologne, Germany; Cluster of Excellence Cellular Stress Responses in Aging-associated Diseases (CECAD), Faculty of Mathematics and Natural Sciences, University of Cologne, Cologne, Germany
| | | | - Linda Partridge
- Max-Planck Institute for Biology of Ageing, Cologne, Germany; Institute of Healthy Ageing and Department of Genetics, Evolution and Environment, University College London, London, UK.
| |
Collapse
|
12
|
Lee DJW, Hodzic Kuerec A, Maier AB. Targeting ageing with rapamycin and its derivatives in humans: a systematic review. THE LANCET. HEALTHY LONGEVITY 2024; 5:e152-e162. [PMID: 38310895 DOI: 10.1016/s2666-7568(23)00258-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/22/2023] [Accepted: 11/24/2023] [Indexed: 02/06/2024] Open
Abstract
Rapamycin and its derivatives (rapalogs) are inhibitors of mTOR, a major regulator of the ageing process. We aimed to summarise the effects of rapamycin and its derivatives on the severity of ageing-related physiological changes and disease in adults. A search across five databases yielded 18 400 unique articles, resulting in 19 included studies. Rapamycin and its derivatives improved physiological parameters associated with ageing in the immune, cardiovascular, and integumentary systems of healthy individuals or individuals with ageing-related diseases. Overall, no significant effects on the endocrine, muscular, or neurological systems were found. The effects of rapamycin or its derivatives on the respiratory, digestive, renal, and reproductive systems were not assessed. No serious adverse events attributed to rapamycin and its derivatives were reported in healthy individuals; however, there were increased numbers of infections and increases in total cholesterol, LDL cholesterol, and triglycerides in individuals with ageing-related diseases. Future studies should assess the remaining unexamined systems and test the effects of long-term exposure to rapamycin and its derivatives.
Collapse
Affiliation(s)
- Deborah J W Lee
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Ajla Hodzic Kuerec
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Centre for Healthy Longevity, @AgeSingapore National University Health System, Singapore
| | - Andrea B Maier
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Centre for Healthy Longevity, @AgeSingapore National University Health System, Singapore; Department of Human Movement Sciences, @AgeAmsterdam, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, Netherlands.
| |
Collapse
|
13
|
Gao P, Gao X, Xie B, Tse G, Liu T. Aging and atrial fibrillation: A vicious circle. Int J Cardiol 2024; 395:131445. [PMID: 37848123 DOI: 10.1016/j.ijcard.2023.131445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 09/17/2023] [Accepted: 10/12/2023] [Indexed: 10/19/2023]
Abstract
Atrial fibrillation (AF) is the commonest sustained cardiac arrhythmia observed in clinical practice. Its prevalence increases dramatically with advancing age. This review article discusses the recent advances in studies investigating the relationship between aging and AF and the possible underlying mechanisms.
Collapse
Affiliation(s)
- Pan Gao
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Xinyi Gao
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Bingxin Xie
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Gary Tse
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China; School of Nursing and Health Studies, Hong Kong Metropolitan University, Hong Kong, China
| | - Tong Liu
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China.
| |
Collapse
|
14
|
Samidurai A, Olex AL, Ockaili R, Kraskauskas D, Roh SK, Kukreja RC, Das A. Integrated Analysis of lncRNA-miRNA-mRNA Regulatory Network in Rapamycin-Induced Cardioprotection against Ischemia/Reperfusion Injury in Diabetic Rabbits. Cells 2023; 12:2820. [PMID: 38132140 PMCID: PMC10742118 DOI: 10.3390/cells12242820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/01/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023] Open
Abstract
The inhibition of mammalian target of rapamycin (mTOR) with rapamycin (RAPA) provides protection against myocardial ischemia/reperfusion (I/R) injury in diabetes. Since interactions between transcripts, including long non-coding RNA (lncRNA), microRNA(miRNA) and mRNA, regulate the pathophysiology of disease, we performed unbiased miRarray profiling in the heart of diabetic rabbits following I/R injury with/without RAPA treatment to identify differentially expressed (DE) miRNAs and their predicted targets of lncRNAs/mRNAs. Results showed that among the total of 806 unique miRNAs targets, 194 miRNAs were DE after I/R in diabetic rabbits. Specifically, eight miRNAs, including miR-199a-5p, miR-154-5p, miR-543-3p, miR-379-3p, miR-379-5p, miR-299-5p, miR-140-3p, and miR-497-5p, were upregulated and 10 miRNAs, including miR-1-3p, miR-1b, miR-29b-3p, miR-29c-3p, miR-30e-3p, miR-133c, miR-196c-3p, miR-322-5p, miR-499-5p, and miR-672-5p, were significantly downregulated after I/R injury. Interestingly, RAPA treatment significantly reversed these changes in miRNAs. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis indicated the participation of miRNAs in the regulation of several signaling pathways related to I/R injury, including MAPK signaling and apoptosis. Furthermore, in diabetic hearts, the expression of lncRNAs, HOTAIR, and GAS5 were induced after I/R injury, but RAPA suppressed these lncRNAs. In contrast, MALAT1 was significantly reduced following I/R injury, with the increased expression of miR-199a-5p and suppression of its target, the anti-apoptotic protein Bcl-2. RAPA recovered MALAT1 expression with its sponging effect on miR-199-5p and restoration of Bcl-2 expression. The identification of novel targets from the transcriptome analysis in RAPA-treated diabetic hearts could potentially lead to the development of new therapeutic strategies for diabetic patients with myocardial infarction.
Collapse
Affiliation(s)
- Arun Samidurai
- Division of Cardiology, Pauley Heart Center, Internal Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; (A.S.); (R.O.); (D.K.); (S.K.R.)
| | - Amy L. Olex
- Wright Center for Clinical and Translational Research, Virginia Commonwealth University, Richmond, VA 23298, USA;
| | - Ramzi Ockaili
- Division of Cardiology, Pauley Heart Center, Internal Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; (A.S.); (R.O.); (D.K.); (S.K.R.)
| | - Donatas Kraskauskas
- Division of Cardiology, Pauley Heart Center, Internal Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; (A.S.); (R.O.); (D.K.); (S.K.R.)
| | - Sean K. Roh
- Division of Cardiology, Pauley Heart Center, Internal Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; (A.S.); (R.O.); (D.K.); (S.K.R.)
| | - Rakesh C. Kukreja
- Division of Cardiology, Pauley Heart Center, Internal Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; (A.S.); (R.O.); (D.K.); (S.K.R.)
| | - Anindita Das
- Division of Cardiology, Pauley Heart Center, Internal Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; (A.S.); (R.O.); (D.K.); (S.K.R.)
| |
Collapse
|
15
|
Lee MB, Blue B, Muir M, Kaeberlein M. The million-molecule challenge: a moonshot project to rapidly advance longevity intervention discovery. GeroScience 2023; 45:3103-3113. [PMID: 37432607 PMCID: PMC10643437 DOI: 10.1007/s11357-023-00867-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 06/30/2023] [Indexed: 07/12/2023] Open
Abstract
Targeting aging is the future of twenty-first century preventative medicine. Small molecule interventions that promote healthy longevity are known, but few are well-developed and discovery of novel, robust interventions has stagnated. To accelerate longevity intervention discovery and development, high-throughput systems are needed that can perform unbiased drug screening and directly measure lifespan and healthspan metrics in whole animals. C. elegans is a powerful model system for this type of drug discovery. Combined with automated data capture and analysis technologies, truly high-throughput longevity drug discovery is possible. In this perspective, we propose the "million-molecule challenge", an effort to quantitatively assess 1,000,000 interventions for longevity within five years. The WormBot-AI, our best-in-class robotics and AI data analysis platform, provides a tool to achieve the million-molecule challenge for pennies per animal tested.
Collapse
Affiliation(s)
- Mitchell B Lee
- Ora Biomedical, Inc., 12101 Tukwila International Blvd Suite 210, Seattle, WA, 98168, USA.
| | - Benjamin Blue
- Ora Biomedical, Inc., 12101 Tukwila International Blvd Suite 210, Seattle, WA, 98168, USA
| | - Michael Muir
- Ora Biomedical, Inc., 12101 Tukwila International Blvd Suite 210, Seattle, WA, 98168, USA
| | - Matt Kaeberlein
- Ora Biomedical, Inc., 12101 Tukwila International Blvd Suite 210, Seattle, WA, 98168, USA
- Optispan Geroscience, Seattle, WA, USA
| |
Collapse
|
16
|
Owesny P, Grune T. The link between obesity and aging - insights into cardiac energy metabolism. Mech Ageing Dev 2023; 216:111870. [PMID: 37689316 DOI: 10.1016/j.mad.2023.111870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/04/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023]
Abstract
Obesity and aging are well-established risk factors for a range of diseases, including cardiovascular diseases and type 2 diabetes. Given the escalating prevalence of obesity, the aging population, and the subsequent increase in cardiovascular diseases, it is crucial to investigate the underlying mechanisms involved. Both aging and obesity have profound effects on the energy metabolism through various mechanisms, including metabolic inflexibility, altered substrate utilization for energy production, deregulated nutrient sensing, and mitochondrial dysfunction. In this review, we aim to present and discuss the hypothesis that obesity, due to its similarity in changes observed in the aging heart, may accelerate the process of cardiac aging and exacerbate the clinical outcomes of elderly individuals with obesity.
Collapse
Affiliation(s)
- Patricia Owesny
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany; DZHK (German Center for Cardiovascular Research), partner site Berlin, Berlin, Germany
| | - Tilman Grune
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany; DZHK (German Center for Cardiovascular Research), partner site Berlin, Berlin, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany.
| |
Collapse
|
17
|
Opałka B, Żołnierczuk M, Grabowska M. Immunosuppressive Agents-Effects on the Cardiovascular System and Selected Metabolic Aspects: A Review. J Clin Med 2023; 12:6935. [PMID: 37959400 PMCID: PMC10647341 DOI: 10.3390/jcm12216935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 10/28/2023] [Accepted: 11/02/2023] [Indexed: 11/15/2023] Open
Abstract
The widespread use of immunosuppressive drugs makes it possible to reduce inflammation in autoimmune diseases, as well as prevent transplant rejection in organ recipients. Despite their key action in blocking the body's immune response, these drugs have many side effects. These actions primarily affect the cardiovascular system, and the incidence of complications in patients using immunosuppressive drugs is significant, being associated with a higher incidence of cardiovascular incidents such as myocardial infarction and stroke. This paper analyzes the mechanisms of action of commonly used immunosuppressive drugs and their impact on the cardiovascular system. The adverse effect of immunosuppressive drugs is associated with toxicity within the cardiovascular system, which may be a problem in the clinical management of patients after transplantation. Immunosuppressants act on the cardiovascular system in a variety of ways, including fibrosis and myocardial remodeling, endothelium disfunction, hypertension, atherosclerosis, dyslipidemia or hyperglycaemia, metabolic syndrome, and hyperuricemia. The use of multidrug protocols makes it possible to develop regimens that can reduce the incidence of cardiovascular events. A better understanding of their mechanism of action and the range of complications could enable physicians to select the appropriate therapy for a given patient, as well as to reduce complications and prolong life.
Collapse
Affiliation(s)
- Bianka Opałka
- Department of Histology and Developmental Biology, Faculty of Health Sciences, Pomeranian Medical University, 71-210 Szczecin, Poland;
| | - Michał Żołnierczuk
- Department of Plastic, Endocrine and General Surgery, Pomeranian Medical University, 72-010 Szczecin, Poland;
| | - Marta Grabowska
- Department of Histology and Developmental Biology, Faculty of Health Sciences, Pomeranian Medical University, 71-210 Szczecin, Poland;
| |
Collapse
|
18
|
Abdellatif M, Rainer PP, Sedej S, Kroemer G. Hallmarks of cardiovascular ageing. Nat Rev Cardiol 2023; 20:754-777. [PMID: 37193857 DOI: 10.1038/s41569-023-00881-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/21/2023] [Indexed: 05/18/2023]
Abstract
Normal circulatory function is a key determinant of disease-free life expectancy (healthspan). Indeed, pathologies affecting the cardiovascular system, which are growing in prevalence, are the leading cause of global morbidity, disability and mortality, whereas the maintenance of cardiovascular health is necessary to promote both organismal healthspan and lifespan. Therefore, cardiovascular ageing might precede or even underlie body-wide, age-related health deterioration. In this Review, we posit that eight molecular hallmarks are common denominators in cardiovascular ageing, namely disabled macroautophagy, loss of proteostasis, genomic instability (in particular, clonal haematopoiesis of indeterminate potential), epigenetic alterations, mitochondrial dysfunction, cell senescence, dysregulated neurohormonal signalling and inflammation. We also propose a hierarchical order that distinguishes primary (upstream) from antagonistic and integrative (downstream) hallmarks of cardiovascular ageing. Finally, we discuss how targeting each of the eight hallmarks might be therapeutically exploited to attenuate residual cardiovascular risk in older individuals.
Collapse
Affiliation(s)
- Mahmoud Abdellatif
- Department of Cardiology, Medical University of Graz, Graz, Austria.
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France.
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France.
- BioTechMed Graz, Graz, Austria.
| | - Peter P Rainer
- Department of Cardiology, Medical University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
| | - Simon Sedej
- Department of Cardiology, Medical University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France.
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France.
- Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.
| |
Collapse
|
19
|
Kaeberlein TL, Green AS, Haddad G, Hudson J, Isman A, Nyquist A, Rosen BS, Suh Y, Zalzala S, Zhang X, Blagosklonny MV, An JY, Kaeberlein M. Evaluation of off-label rapamycin use to promote healthspan in 333 adults. GeroScience 2023; 45:2757-2768. [PMID: 37191826 PMCID: PMC10187519 DOI: 10.1007/s11357-023-00818-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/02/2023] [Indexed: 05/17/2023] Open
Abstract
Rapamycin (sirolimus) is an FDA-approved drug with immune-modulating and growth-inhibitory properties. Preclinical studies have shown that rapamycin extends lifespan and healthspan metrics in yeast, invertebrates, and rodents. Several physicians are now prescribing rapamycin off-label as a preventative therapy to maintain healthspan. Thus far, however, there is limited data available on side effects or efficacy associated with use of rapamycin in this context. To begin to address this gap in knowledge, we collected data from 333 adults with a history of off-label use of rapamycin by survey. Similar data were also collected from 172 adults who had never used rapamycin. Here, we describe the general characteristics of a patient cohort using off-label rapamycin and present initial evidence that rapamycin can be used safely in adults of normal health status.
Collapse
Affiliation(s)
- Tammi L Kaeberlein
- Department of Oral Health Sciences, University of Washington, Seattle, WA, 98195, USA
| | | | | | - Johnny Hudson
- Department of Oral Health Sciences, University of Washington, Seattle, WA, 98195, USA
| | | | | | | | - Yousin Suh
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | | | - Xingyu Zhang
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, PA, 15219, USA
| | | | - Jonathan Y An
- Department of Oral Health Sciences, University of Washington, Seattle, WA, 98195, USA
| | - Matt Kaeberlein
- Optispan Geroscience, Seattle, WA, 98168, USA.
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
20
|
Konopka AR, Lamming DW. Blazing a trail for the clinical use of rapamycin as a geroprotecTOR. GeroScience 2023; 45:2769-2783. [PMID: 37801202 PMCID: PMC10643772 DOI: 10.1007/s11357-023-00935-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/04/2023] [Indexed: 10/07/2023] Open
Abstract
Treatment with rapamycin, an inhibitor of the mechanistic Target Of Rapamycin Complex One (mTORC1) protein kinase, has been repeatedly demonstrated to extend lifespan and prevent or delay age-related diseases in diverse model systems. Concerns over the risk of potentially serious side effects in humans, including immunosuppression and metabolic disruptions, have cautiously limited the translation of rapamycin and its analogs as a treatment for aging associated conditions. During the last decade, we and others have developed a working model that suggests that while inhibition of mTORC1 promotes healthy aging, many of the negative side effects of rapamycin are associated with "off-target" inhibition of a second mTOR complex, mTORC2. Differences in the kinetics and molecular mechanisms by which rapamycin inhibits mTORC1 and mTORC2 suggest that a therapeutic window for rapamycin could be exploited using intermittent dosing schedules or alternative rapalogs that may enable more selective inhibition of mTORC1. However, the optimal dosing schedules and the long-term efficacy of such interventions in humans are unknown. Here, we highlight ongoing or upcoming clinical trials that will address outstanding questions regarding the safety, pharmacokinetics, pharmacodynamics, and efficacy of rapamycin and rapalogs on several clinically oriented outcomes. Results from these early phase studies will help guide the design of phase 3 clinical trials to determine whether rapamycin can be used safely to inhibit mTORC1 for the treatment and prevention of age-related diseases in humans.
Collapse
Affiliation(s)
- Adam R Konopka
- Division of Geriatrics, Department of Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA.
- William S. Middleton Memorial Veterans Hospital, Madison, WI, 53705, USA.
- Division of Geriatrics and Gerontology, Department of Medicine, Geriatric Research Education and Clinical Center (GRECC), William S. Middleton Memorial Veterans Hospital, University of Wisconsin-Madison, 2500 Overlook Terrace, Madison, WI, 53705, USA.
| | - Dudley W Lamming
- William S. Middleton Memorial Veterans Hospital, Madison, WI, 53705, USA
- Division of Endocrinology, Department of Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA
| |
Collapse
|
21
|
Wei H, Yin Y, Yang W, Zhu J, Chen L, Guo R, Yang Z, Li S. Nuciferine induces autophagy to relieve vascular cell adhesion molecule 1 activation via repressing the Akt/mTOR/AP1 signal pathway in the vascular endothelium. Front Pharmacol 2023; 14:1264324. [PMID: 37841916 PMCID: PMC10569124 DOI: 10.3389/fphar.2023.1264324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/14/2023] [Indexed: 10/17/2023] Open
Abstract
Pro-inflammatory factor-associated vascular cell adhesion molecule 1 (VCAM1) activation initiates cardiovascular events. This study aimed to explore the protective role of nuciferine on TNFα-induced VCAM1 activation. Nuciferine was administrated to both high-fat diet (HFD)-fed mice and the TNFα-exposed human vascular endothelial cell line. VCAM1 expression and further potential mechanism(s) were explored. Our data revealed that nuciferine intervention alleviated VCAM1 activation in response to both high-fat diet and TNFα exposure, and this protective effect was closely associated with autophagy activation since inhibiting autophagy by either genetic or pharmaceutical approaches blocked the beneficial role of nuciferine. Mechanistical studies revealed that Akt/mTOR inhibition, rather than AMPK, SIRT1, and p38 signal pathways, contributed to nuciferine-activated autophagy, which further ameliorated TNFα-induced VCAM1 via repressing AP1 activation, independent of transcriptional regulation by IRF1, p65, SP1, and GATA6. Collectively, our data uncovered a novel biological function for nuciferine in protecting VCAM1 activation, implying its potential application in improving cardiovascular events.
Collapse
Affiliation(s)
- Haibin Wei
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China
- Department of Biobank, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yujie Yin
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Wenwen Yang
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jinyan Zhu
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China
| | - Lin Chen
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China
| | - Rui Guo
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhen Yang
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Songtao Li
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China
- Department of Clinical Nutrition, Affiliated Zhejiang Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
22
|
Miceli C, Leri M, Stefani M, Bucciantini M. Autophagy-related proteins: Potential diagnostic and prognostic biomarkers of aging-related diseases. Ageing Res Rev 2023; 89:101967. [PMID: 37270146 DOI: 10.1016/j.arr.2023.101967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/19/2023] [Accepted: 05/31/2023] [Indexed: 06/05/2023]
Abstract
Autophagy plays a key role in cellular, tissue and organismal homeostasis and in the production of the energy load needed at critical times during development and in response to nutrient shortage. Autophagy is generally considered as a pro-survival mechanism, although its deregulation has been linked to non-apoptotic cell death. Autophagy efficiency declines with age, thus contributing to many different pathophysiological conditions, such as cancer, cardiomyopathy, diabetes, liver disease, autoimmune diseases, infections, and neurodegeneration. Accordingly, it has been proposed that the maintenance of a proper autophagic activity contributes to the extension of the lifespan in different organisms. A better understanding of the interplay between autophagy and risk of age-related pathologies is important to propose nutritional and life-style habits favouring disease prevention as well as possible clinical applications aimed at promoting long-term health.
Collapse
Affiliation(s)
- Caterina Miceli
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy
| | - Manuela Leri
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Massimo Stefani
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Monica Bucciantini
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy.
| |
Collapse
|
23
|
Shi F, Collins S. Regulation of mTOR Signaling: Emerging Role of Cyclic Nucleotide-Dependent Protein Kinases and Implications for Cardiometabolic Disease. Int J Mol Sci 2023; 24:11497. [PMID: 37511253 PMCID: PMC10380887 DOI: 10.3390/ijms241411497] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/07/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
The mechanistic target of rapamycin (mTOR) kinase is a central regulator of cell growth and metabolism. It is the catalytic subunit of two distinct large protein complexes, mTOR complex 1 (mTORC1) and mTORC2. mTOR activity is subjected to tight regulation in response to external nutrition and growth factor stimulation. As an important mechanism of signaling transduction, the 'second messenger' cyclic nucleotides including cAMP and cGMP and their associated cyclic nucleotide-dependent kinases, including protein kinase A (PKA) and protein kinase G (PKG), play essential roles in mediating the intracellular action of a variety of hormones and neurotransmitters. They have also emerged as important regulators of mTOR signaling in various physiological and disease conditions. However, the mechanism by which cAMP and cGMP regulate mTOR activity is not completely understood. In this review, we will summarize the earlier work establishing the ability of cAMP to dampen mTORC1 activation in response to insulin and growth factors and then discuss our recent findings demonstrating the regulation of mTOR signaling by the PKA- and PKG-dependent signaling pathways. This signaling framework represents a new non-canonical regulation of mTOR activity that is independent of AKT and could be a novel mechanism underpinning the action of a variety of G protein-coupled receptors that are linked to the mTOR signaling network. We will further review the implications of these signaling events in the context of cardiometabolic disease, such as obesity, non-alcoholic fatty liver disease, and cardiac remodeling. The metabolic and cardiac phenotypes of mouse models with targeted deletion of Raptor and Rictor, the two essential components for mTORC1 and mTORC2, will be summarized and discussed.
Collapse
Affiliation(s)
- Fubiao Shi
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Sheila Collins
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| |
Collapse
|
24
|
Sagar S, Gustafsson AB. Cardiovascular aging: the mitochondrial influence. THE JOURNAL OF CARDIOVASCULAR AGING 2023; 3:33. [PMID: 37583788 PMCID: PMC10426788 DOI: 10.20517/jca.2023.22] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
Age-associated cardiovascular disease is becoming progressively prevalent due to the increased lifespan of the population. However, the fundamental mechanisms underlying the aging process and the corresponding decline in tissue functions are still poorly understood. The heart has a very high energy demand and the cellular energy needed to sustain contraction is primarily generated by mitochondrial oxidative phosphorylation. Mitochondria are also involved in supporting various metabolic processes, as well as activation of the innate immune response and cell death pathways. Given the central role of mitochondria in energy metabolism and cell survival, the heart is highly susceptible to the effects of mitochondrial dysfunction. These key organelles have been implicated as underlying drivers of cardiac aging. Here, we review the evidence demonstrating the mitochondrial contribution to the cardiac aging process and disease susceptibility. We also discuss the potential mechanisms responsible for the age-related decline in mitochondrial function.
Collapse
Affiliation(s)
- Shakti Sagar
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Asa B Gustafsson
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
25
|
Chakraborty AD, Kooiker K, Kobak KA, Cheng Y, Lee CF, Razumova M, Granzier H H, Regnier M, Rabinovitch PS, Moussavi-Harami F, Chiao YA. Late-life Rapamycin Treatment Enhances Cardiomyocyte Relaxation Kinetics and Reduces Myocardial Stiffness. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.12.544619. [PMID: 37398078 PMCID: PMC10312630 DOI: 10.1101/2023.06.12.544619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Diastolic dysfunction is a key feature of the aging heart. We have shown that late-life treatment with mTOR inhibitor, rapamycin, reverses age-related diastolic dysfunction in mice but the molecular mechanisms of the reversal remain unclear. To dissect the mechanisms by which rapamycin improves diastolic function in old mice, we examined the effects of rapamycin treatment at the levels of single cardiomyocyte, myofibril and multicellular cardiac muscle. Compared to young cardiomyocytes, isolated cardiomyocytes from old control mice exhibited prolonged time to 90% relaxation (RT 90 ) and time to 90% Ca 2+ transient decay (DT 90 ), indicating slower relaxation kinetics and calcium reuptake with age. Late-life rapamycin treatment for 10 weeks completely normalized RT 90 and partially normalized DT 90 , suggesting improved Ca 2+ handling contributes partially to the rapamycin-induced improved cardiomyocyte relaxation. In addition, rapamycin treatment in old mice enhanced the kinetics of sarcomere shortening and Ca 2+ transient increase in old control cardiomyocytes. Myofibrils from old rapamycin-treated mice displayed increased rate of the fast, exponential decay phase of relaxation compared to old controls. The improved myofibrillar kinetics were accompanied by an increase in MyBP-C phosphorylation at S282 following rapamycin treatment. We also showed that late-life rapamycin treatment normalized the age-related increase in passive stiffness of demembranated cardiac trabeculae through a mechanism independent of titin isoform shift. In summary, our results showed that rapamycin treatment normalizes the age-related impairments in cardiomyocyte relaxation, which works conjointly with reduced myocardial stiffness to reverse age-related diastolic dysfunction.
Collapse
|
26
|
Van Skike CE, DeRosa N, Galvan V, Hussong SA. Rapamycin restores peripheral blood flow in aged mice and in mouse models of atherosclerosis and Alzheimer's disease. GeroScience 2023; 45:1987-1996. [PMID: 37052770 PMCID: PMC10400743 DOI: 10.1007/s11357-023-00786-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 03/19/2023] [Indexed: 04/14/2023] Open
Abstract
Peripheral artery disease (PAD), defined as reduced blood flow to the lower limbs, is a serious disorder that can lead to loss of function in the lower extremities and even loss of limbs. One of the main risk factors for PAD is age, with up to 25% of adults over the age of 55 and up to 40% over the age of 80 presenting with some form of the disease. While age is the largest risk factor for PAD, other risk factors include atherosclerosis, smoking, hypertension, and diabetes. Furthermore, previous studies have suggested that the incidence of PAD is significantly increased in patients with Alzheimer's disease (AD). Attenuation of mTOR with rapamycin significantly improves cerebral blood flow and heart function in aged rodents as well as in mouse models of atherosclerosis, atherosclerosis-driven cognitive impairment, and AD. In this study, we show that rapamycin treatment improves peripheral blood flow in aged mice and in mouse models of atherosclerosis and AD. Inhibition of mTOR with rapamycin ameliorates deficits in baseline hind paw perfusion in aged mice and restores levels of blood flow to levels indistinguishable from those of young controls. Furthermore, rapamycin treatment ameliorates peripheral blood flow deficits in mouse models of atherosclerosis and AD. These data indicate that mTOR is causally involved in the reduction of blood flow to lower limbs associated with aging, atherosclerosis, and AD-like progression in model mice. Rapamycin or other mTOR inhibitors may have potential as interventions to treat peripheral artery disease and other peripheral circulation-related conditions.
Collapse
Affiliation(s)
- Candice E Van Skike
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center San Antonio, San Antonio, TX, 78229, USA
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center San Antonio, San Antonio, TX, 78229, USA
| | - Nicholas DeRosa
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center San Antonio, San Antonio, TX, 78229, USA
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center San Antonio, San Antonio, TX, 78229, USA
| | - Veronica Galvan
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA.
- Oklahoma City Veterans Health Care System, Oklahoma City, OK, 73104, USA.
- Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA.
| | - Stacy A Hussong
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
- Oklahoma City Veterans Health Care System, Oklahoma City, OK, 73104, USA
| |
Collapse
|
27
|
Mannick JB, Lamming DW. Targeting the biology of aging with mTOR inhibitors. NATURE AGING 2023; 3:642-660. [PMID: 37142830 PMCID: PMC10330278 DOI: 10.1038/s43587-023-00416-y] [Citation(s) in RCA: 74] [Impact Index Per Article: 74.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 04/07/2023] [Indexed: 05/06/2023]
Abstract
Inhibition of the protein kinase mechanistic target of rapamycin (mTOR) with the Food and Drug Administration (FDA)-approved therapeutic rapamycin promotes health and longevity in diverse model organisms. More recently, specific inhibition of mTORC1 to treat aging-related conditions has become the goal of basic and translational scientists, clinicians and biotechnology companies. Here, we review the effects of rapamycin on the longevity and survival of both wild-type mice and mouse models of human diseases. We discuss recent clinical trials that have explored whether existing mTOR inhibitors can safely prevent, delay or treat multiple diseases of aging. Finally, we discuss how new molecules may provide routes to the safer and more selective inhibition of mTOR complex 1 (mTORC1) in the decade ahead. We conclude by discussing what work remains to be done and the questions that will need to be addressed to make mTOR inhibitors part of the standard of care for diseases of aging.
Collapse
Affiliation(s)
| | - Dudley W Lamming
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
28
|
Nehme J, Altulea A, Gheorghe T, Demaria M. The effects of macronutrients metabolism on cellular and organismal aging. Biomed J 2023; 46:100585. [PMID: 36801257 PMCID: PMC10209809 DOI: 10.1016/j.bj.2023.02.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/08/2023] [Accepted: 02/11/2023] [Indexed: 02/17/2023] Open
Abstract
Evidence supports the notion that metabolic pathways are major regulators of organismal aging, and that metabolic perturbations can extend health- and lifespan. For this reason, dietary interventions and compounds perturbing metabolism are currently explored as anti-aging strategies. A common target for metabolic interventions delaying aging is cellular senescence, a state of stable growth arrest that is accompanied by various structural and functional changes including the activation of a pro-inflammatory secretome. Here, we summarize the current knowledge on the molecular and cellular events associated with carbohydrate, lipid and protein metabolism, and define how macronutrients can regulate induction or prevention of cellular senescence. We discuss how various dietary interventions can achieve prevention of disease and extension of healthy longevity by partially modulating senescence-associated phenotypes. We also emphasize the importance of developing personalized nutritional interventions that take into account the current health and age status of the individual.
Collapse
Affiliation(s)
- Jamil Nehme
- University of Groningen, European Research Institute for the Biology of Aging (ERIBA), University Medical Center Groningen (UMCG), Groningen, Netherlands
| | - Abdullah Altulea
- University of Groningen, European Research Institute for the Biology of Aging (ERIBA), University Medical Center Groningen (UMCG), Groningen, Netherlands
| | - Teodora Gheorghe
- University of Groningen, European Research Institute for the Biology of Aging (ERIBA), University Medical Center Groningen (UMCG), Groningen, Netherlands
| | - Marco Demaria
- University of Groningen, European Research Institute for the Biology of Aging (ERIBA), University Medical Center Groningen (UMCG), Groningen, Netherlands.
| |
Collapse
|
29
|
Bitto A, Grillo AS, Ito TK, Stanaway IB, Nguyen BMG, Ying K, Tung H, Smith K, Tran N, Velikanje G, Urfer SR, Snyder JM, Barton J, Sharma A, Kayser EB, Wang L, Smith DL, Thompson JW, DuBois L, DePaolo W, Kaeberlein M. Acarbose suppresses symptoms of mitochondrial disease in a mouse model of Leigh syndrome. Nat Metab 2023; 5:955-967. [PMID: 37365290 DOI: 10.1038/s42255-023-00815-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 05/04/2023] [Indexed: 06/28/2023]
Abstract
Mitochondrial diseases represent a spectrum of disorders caused by impaired mitochondrial function, ranging in severity from mortality during infancy to progressive adult-onset disease. Mitochondrial dysfunction is also recognized as a molecular hallmark of the biological ageing process. Rapamycin, a drug that increases lifespan and health during normative ageing, also increases survival and reduces neurological symptoms in a mouse model of the severe mitochondrial disease Leigh syndrome. The Ndufs4 knockout (Ndufs4-/-) mouse lacks the complex I subunit NDUFS4 and shows rapid onset and progression of neurodegeneration mimicking patients with Leigh syndrome. Here we show that another drug that extends lifespan and delays normative ageing in mice, acarbose, also suppresses symptoms of disease and improves survival of Ndufs4-/- mice. Unlike rapamycin, acarbose rescues disease phenotypes independently of inhibition of the mechanistic target of rapamycin. Furthermore, rapamycin and acarbose have additive effects in delaying neurological symptoms and increasing maximum lifespan in Ndufs4-/- mice. We find that acarbose remodels the intestinal microbiome and alters the production of short-chain fatty acids. Supplementation with tributyrin, a source of butyric acid, recapitulates some effects of acarbose on lifespan and disease progression, while depletion of the endogenous microbiome in Ndufs4-/- mice appears to fully recapitulate the effects of acarbose on healthspan and lifespan in these animals. To our knowledge, this study provides the first evidence that alteration of the gut microbiome plays a significant role in severe mitochondrial disease and provides further support for the model that biological ageing and severe mitochondrial disorders share underlying common mechanisms.
Collapse
Affiliation(s)
- Alessandro Bitto
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Anthony S Grillo
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Takashi K Ito
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
- RIKEN Center for Sustainable Resource Science, Saitama, Japan
| | - Ian B Stanaway
- Division of Nephrology, School of Medicine, University of Washington, Seattle, WA, USA
- Harborview Medical Center, Kidney Research Institute, Seattle, WA, USA
| | - Bao M G Nguyen
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Kejun Ying
- T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | | | | | - Ngoc Tran
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Gunnar Velikanje
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Silvan R Urfer
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Jessica M Snyder
- Department of Comparative Medicine, University of Washington, Seattle, WA, USA
| | - Jacob Barton
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Ayush Sharma
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | | | - Lu Wang
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Daniel L Smith
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL, USA
| | - J Will Thompson
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Laura DuBois
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC, USA
| | - William DePaolo
- Department of Microbiology, University of Washington, Seattle, WA, USA
| | - Matt Kaeberlein
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA.
| |
Collapse
|
30
|
Knufinke M, MacArthur MR, Ewald CY, Mitchell SJ. Sex differences in pharmacological interventions and their effects on lifespan and healthspan outcomes: a systematic review. FRONTIERS IN AGING 2023; 4:1172789. [PMID: 37305228 PMCID: PMC10249017 DOI: 10.3389/fragi.2023.1172789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/10/2023] [Indexed: 06/13/2023]
Abstract
With an increasing aging population, the burden of age-related diseases magnifies. To alleviate this burden, geroprotection has been an area of intense research focus with the development of pharmacological interventions that target lifespan and/or healthspan. However, there are often sex differences, with compounds mostly tested in male animals. Given the importance of considering both sexes in preclinical research, this neglects potential benefits for the female population, as interventions tested in both sexes often show clear sexual dimorphisms in their biological responses. To further understand the prevalence of sex differences in pharmacological geroprotective intervention studies, we performed a systematic review of the literature according to the PRISMA guidelines. Seventy-two studies met our inclusion criteria and were classified into one of five subclasses: FDA-repurposed drugs, novel small molecules, probiotics, traditional Chinese medicine, and antioxidants, vitamins, or other dietary supplements. Interventions were analyzed for their effects on median and maximal lifespan and healthspan markers, including frailty, muscle function and coordination, cognitive function and learning, metabolism, and cancer. With our systematic review, we found that twenty-two out of sixty-four compounds tested were able to prolong both lifespan and healthspan measures. Focusing on the use of female and male mice, and on comparing their outcomes, we found that 40% of studies only used male mice or did not clarify the sex. Notably, of the 36% of pharmacologic interventions that did use both male and female mice, 73% of these studies showed sex-specific outcomes on healthspan and/or lifespan. These data highlight the importance of studying both sexes in the search for geroprotectors, as the biology of aging is not the same in male and female mice. Systematic Review Registration: [website], identifier [registration number].
Collapse
|
31
|
Barnett BG, Wesselowski SR, Gordon SG, Saunders AB, Promislow DEL, Schwartz SM, Chou L, Evans JB, Kaeberlein M, Creevy KE. A masked, placebo-controlled, randomized clinical trial evaluating safety and the effect on cardiac function of low-dose rapamycin in 17 healthy client-owned dogs. Front Vet Sci 2023; 10:1168711. [PMID: 37275618 PMCID: PMC10233048 DOI: 10.3389/fvets.2023.1168711] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 05/03/2023] [Indexed: 06/07/2023] Open
Abstract
Introduction Geroscience studies of low-dose rapamycin in laboratory species have identified numerous benefits, including reversing age-related cardiac dysfunction. Cardiovascular benefits have been observed in dogs with 10 weeks of treatment, raising questions about possible benefits and adverse effects of long-term use of low-dose rapamycin. The objectives of this study were to assess the impact of 6 months of low-dose rapamycin on echocardiographic indices of cardiac function in healthy dogs and to document the occurrence of adverse events. Methods Seventeen client-owned dogs aged 6-10 years, weighing 18-36 kg, and without significant systemic disease were included in a prospective, randomized, placebo-controlled, masked clinical trial. Low-dose rapamycin (0.025 mg/kg) or placebo was administered three times per week for 6 months. Baseline, 6-month, and 12-month evaluation included physical examination, cardiology examination, and clinicopathology. Three-month evaluation included physical examination and clinicopathology. Owners completed online questionnaires every 2 weeks. Results There were no statistically significant differences in echocardiographic parameters between rapamycin and placebo groups at 6 or 12 months. No clinically significant adverse events occurred. In 26.8% of the bi-weekly surveys owners whose dogs received rapamycin reported perceived positive changes in behavior or health, compared to 8.1% in the placebo group (p = 0.04). Discussion While no clinically significant change in cardiac function was observed in dogs treated with low-dose rapamycin, the drug was well-tolerated with no significant adverse events.
Collapse
Affiliation(s)
- Brian G. Barnett
- Department of Small Animal Clinical Sciences, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States
| | - Sonya R. Wesselowski
- Department of Small Animal Clinical Sciences, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States
| | - Sonya G. Gordon
- Department of Small Animal Clinical Sciences, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States
| | - Ashley B. Saunders
- Department of Small Animal Clinical Sciences, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States
| | - Daniel E. L. Promislow
- Department of Biology, University of Washington, Seattle, WA, United States
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States
| | - Stephen M. Schwartz
- Epidemiology Program, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - Lucy Chou
- Department of Small Animal Clinical Sciences, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States
| | - Jeremy B. Evans
- Department of Small Animal Clinical Sciences, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States
| | - Matt Kaeberlein
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States
| | - Kate E. Creevy
- Department of Small Animal Clinical Sciences, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States
| |
Collapse
|
32
|
Bao H, Cao J, Chen M, Chen M, Chen W, Chen X, Chen Y, Chen Y, Chen Y, Chen Z, Chhetri JK, Ding Y, Feng J, Guo J, Guo M, He C, Jia Y, Jiang H, Jing Y, Li D, Li J, Li J, Liang Q, Liang R, Liu F, Liu X, Liu Z, Luo OJ, Lv J, Ma J, Mao K, Nie J, Qiao X, Sun X, Tang X, Wang J, Wang Q, Wang S, Wang X, Wang Y, Wang Y, Wu R, Xia K, Xiao FH, Xu L, Xu Y, Yan H, Yang L, Yang R, Yang Y, Ying Y, Zhang L, Zhang W, Zhang W, Zhang X, Zhang Z, Zhou M, Zhou R, Zhu Q, Zhu Z, Cao F, Cao Z, Chan P, Chen C, Chen G, Chen HZ, Chen J, Ci W, Ding BS, Ding Q, Gao F, Han JDJ, Huang K, Ju Z, Kong QP, Li J, Li J, Li X, Liu B, Liu F, Liu L, Liu Q, Liu Q, Liu X, Liu Y, Luo X, Ma S, Ma X, Mao Z, Nie J, Peng Y, Qu J, Ren J, Ren R, Song M, Songyang Z, Sun YE, Sun Y, Tian M, Wang S, Wang S, Wang X, Wang X, Wang YJ, Wang Y, Wong CCL, Xiang AP, Xiao Y, Xie Z, Xu D, Ye J, Yue R, Zhang C, Zhang H, Zhang L, Zhang W, Zhang Y, Zhang YW, Zhang Z, Zhao T, Zhao Y, Zhu D, Zou W, Pei G, Liu GH. Biomarkers of aging. SCIENCE CHINA. LIFE SCIENCES 2023; 66:893-1066. [PMID: 37076725 PMCID: PMC10115486 DOI: 10.1007/s11427-023-2305-0] [Citation(s) in RCA: 108] [Impact Index Per Article: 108.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 02/27/2023] [Indexed: 04/21/2023]
Abstract
Aging biomarkers are a combination of biological parameters to (i) assess age-related changes, (ii) track the physiological aging process, and (iii) predict the transition into a pathological status. Although a broad spectrum of aging biomarkers has been developed, their potential uses and limitations remain poorly characterized. An immediate goal of biomarkers is to help us answer the following three fundamental questions in aging research: How old are we? Why do we get old? And how can we age slower? This review aims to address this need. Here, we summarize our current knowledge of biomarkers developed for cellular, organ, and organismal levels of aging, comprising six pillars: physiological characteristics, medical imaging, histological features, cellular alterations, molecular changes, and secretory factors. To fulfill all these requisites, we propose that aging biomarkers should qualify for being specific, systemic, and clinically relevant.
Collapse
Affiliation(s)
- Hainan Bao
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
| | - Jiani Cao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Mengting Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Min Chen
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Clinical Research Center of Metabolic and Cardiovascular Disease, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wei Chen
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Xiao Chen
- Department of Nuclear Medicine, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Yanhao Chen
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yu Chen
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Yutian Chen
- The Department of Endovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Zhiyang Chen
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Ageing and Regenerative Medicine, Jinan University, Guangzhou, 510632, China
| | - Jagadish K Chhetri
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Yingjie Ding
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Junlin Feng
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Jun Guo
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China
| | - Mengmeng Guo
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Chuting He
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Yujuan Jia
- Department of Neurology, First Affiliated Hospital, Shanxi Medical University, Taiyuan, 030001, China
| | - Haiping Jiang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Ying Jing
- Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China
| | - Dingfeng Li
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230036, China
| | - Jiaming Li
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jingyi Li
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Qinhao Liang
- College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China
| | - Rui Liang
- Research Institute of Transplant Medicine, Organ Transplant Center, NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Nankai University, Tianjin, 300384, China
| | - Feng Liu
- MOE Key Laboratory of Gene Function and Regulation, Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Institute of Healthy Aging Research, Sun Yat-sen University, Guangzhou, 510275, China
| | - Xiaoqian Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Zuojun Liu
- School of Life Sciences, Hainan University, Haikou, 570228, China
| | - Oscar Junhong Luo
- Department of Systems Biomedical Sciences, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Jianwei Lv
- School of Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Jingyi Ma
- The State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Kehang Mao
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Quantitative Biology (CQB), Peking University, Beijing, 100871, China
| | - Jiawei Nie
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine (Shanghai), International Center for Aging and Cancer, Collaborative Innovation Center of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xinhua Qiao
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xinpei Sun
- Peking University International Cancer Institute, Health Science Center, Peking University, Beijing, 100101, China
| | - Xiaoqiang Tang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Jianfang Wang
- Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Qiaoran Wang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Siyuan Wang
- Clinical Research Institute, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100730, China
| | - Xuan Wang
- Hepatobiliary and Pancreatic Center, Medical Research Center, Beijing Tsinghua Changgung Hospital, Beijing, 102218, China
| | - Yaning Wang
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yuhan Wang
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Rimo Wu
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China
| | - Kai Xia
- Center for Stem Cell Biologyand Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China
- National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Fu-Hui Xiao
- CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China
- State Key Laboratory of Genetic Resources and Evolution, Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Lingyan Xu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yingying Xu
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
| | - Haoteng Yan
- Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China
| | - Liang Yang
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China
| | - Ruici Yang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yuanxin Yang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Yilin Ying
- Department of Geriatrics, Medical Center on Aging of Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- International Laboratory in Hematology and Cancer, Shanghai Jiao Tong University School of Medicine/Ruijin Hospital, Shanghai, 200025, China
| | - Le Zhang
- Gerontology Center of Hubei Province, Wuhan, 430000, China
- Institute of Gerontology, Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Weiwei Zhang
- Department of Cardiology, The Second Medical Centre, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, 100853, China
| | - Wenwan Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xing Zhang
- Key Laboratory of Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Zhuo Zhang
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
- Research Unit of New Techniques for Live-cell Metabolic Imaging, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Min Zhou
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, 410008, China
| | - Rui Zhou
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Qingchen Zhu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Zhengmao Zhu
- Department of Genetics and Cell Biology, College of Life Science, Nankai University, Tianjin, 300071, China
- Haihe Laboratory of Cell Ecosystem, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Feng Cao
- Department of Cardiology, The Second Medical Centre, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, 100853, China.
| | - Zhongwei Cao
- State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, 610041, China.
| | - Piu Chan
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
| | - Chang Chen
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Guobing Chen
- Department of Microbiology and Immunology, School of Medicine, Jinan University, Guangzhou, 510632, China.
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, Guangzhou, 510000, China.
| | - Hou-Zao Chen
- Department of Biochemistryand Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China.
| | - Jun Chen
- Peking University Research Center on Aging, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, Department of Integration of Chinese and Western Medicine, School of Basic Medical Science, Peking University, Beijing, 100191, China.
| | - Weimin Ci
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China.
| | - Bi-Sen Ding
- State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, 610041, China.
| | - Qiurong Ding
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Feng Gao
- Key Laboratory of Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, Xi'an, 710032, China.
| | - Jing-Dong J Han
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Quantitative Biology (CQB), Peking University, Beijing, 100871, China.
| | - Kai Huang
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Clinical Research Center of Metabolic and Cardiovascular Disease, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Zhenyu Ju
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Ageing and Regenerative Medicine, Jinan University, Guangzhou, 510632, China.
| | - Qing-Peng Kong
- CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China.
- State Key Laboratory of Genetic Resources and Evolution, Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.
| | - Ji Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Jian Li
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China.
| | - Xin Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Baohua Liu
- School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen, 518060, China.
| | - Feng Liu
- Metabolic Syndrome Research Center, The Second Xiangya Hospital, Central South Unversity, Changsha, 410011, China.
| | - Lin Liu
- Department of Genetics and Cell Biology, College of Life Science, Nankai University, Tianjin, 300071, China.
- Haihe Laboratory of Cell Ecosystem, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.
- Institute of Translational Medicine, Tianjin Union Medical Center, Nankai University, Tianjin, 300000, China.
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300350, China.
| | - Qiang Liu
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230036, China.
| | - Qiang Liu
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China.
- Tianjin Institute of Immunology, Tianjin Medical University, Tianjin, 300070, China.
| | - Xingguo Liu
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China.
| | - Yong Liu
- College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China.
| | - Xianghang Luo
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, 410008, China.
| | - Shuai Ma
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Xinran Ma
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| | - Zhiyong Mao
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| | - Jing Nie
- The State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Yaojin Peng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Jing Qu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Jie Ren
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Ruibao Ren
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine (Shanghai), International Center for Aging and Cancer, Collaborative Innovation Center of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- International Center for Aging and Cancer, Hainan Medical University, Haikou, 571199, China.
| | - Moshi Song
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Zhou Songyang
- MOE Key Laboratory of Gene Function and Regulation, Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Institute of Healthy Aging Research, Sun Yat-sen University, Guangzhou, 510275, China.
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
| | - Yi Eve Sun
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China.
| | - Yu Sun
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China.
- Department of Medicine and VAPSHCS, University of Washington, Seattle, WA, 98195, USA.
| | - Mei Tian
- Human Phenome Institute, Fudan University, Shanghai, 201203, China.
| | - Shusen Wang
- Research Institute of Transplant Medicine, Organ Transplant Center, NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Nankai University, Tianjin, 300384, China.
| | - Si Wang
- Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
- Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China.
| | - Xia Wang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China.
| | - Xiaoning Wang
- Institute of Geriatrics, The second Medical Center, Beijing Key Laboratory of Aging and Geriatrics, National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, 100853, China.
| | - Yan-Jiang Wang
- Department of Neurology and Center for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, 400042, China.
| | - Yunfang Wang
- Hepatobiliary and Pancreatic Center, Medical Research Center, Beijing Tsinghua Changgung Hospital, Beijing, 102218, China.
| | - Catherine C L Wong
- Clinical Research Institute, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100730, China.
| | - Andy Peng Xiang
- Center for Stem Cell Biologyand Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China.
- National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Yichuan Xiao
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Zhengwei Xie
- Peking University International Cancer Institute, Health Science Center, Peking University, Beijing, 100101, China.
- Beijing & Qingdao Langu Pharmaceutical R&D Platform, Beijing Gigaceuticals Tech. Co. Ltd., Beijing, 100101, China.
| | - Daichao Xu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210, China.
| | - Jing Ye
- Department of Geriatrics, Medical Center on Aging of Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- International Laboratory in Hematology and Cancer, Shanghai Jiao Tong University School of Medicine/Ruijin Hospital, Shanghai, 200025, China.
| | - Rui Yue
- Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| | - Cuntai Zhang
- Gerontology Center of Hubei Province, Wuhan, 430000, China.
- Institute of Gerontology, Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Hongbo Zhang
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Liang Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Weiqi Zhang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Yong Zhang
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China.
- The State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China.
| | - Yun-Wu Zhang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, 361102, China.
| | - Zhuohua Zhang
- Key Laboratory of Molecular Precision Medicine of Hunan Province and Center for Medical Genetics, Institute of Molecular Precision Medicine, Xiangya Hospital, Central South University, Changsha, 410078, China.
- Department of Neurosciences, Hengyang Medical School, University of South China, Hengyang, 421001, China.
| | - Tongbiao Zhao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Yuzheng Zhao
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China.
- Research Unit of New Techniques for Live-cell Metabolic Imaging, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| | - Dahai Zhu
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China.
- The State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China.
| | - Weiguo Zou
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Gang Pei
- Shanghai Key Laboratory of Signaling and Disease Research, Laboratory of Receptor-Based Biomedicine, The Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, Shanghai, 200070, China.
| | - Guang-Hui Liu
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China.
| |
Collapse
|
33
|
González-Rodríguez P, Füllgrabe J, Joseph B. The hunger strikes back: an epigenetic memory for autophagy. Cell Death Differ 2023:10.1038/s41418-023-01159-4. [PMID: 37031275 DOI: 10.1038/s41418-023-01159-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/24/2023] [Accepted: 03/28/2023] [Indexed: 04/10/2023] Open
Abstract
Historical and demographical human cohorts of populations exposed to famine, as well as animal studies, revealed that exposure to food deprivation is associated to lasting health-related effects for the exposed individuals, as well as transgenerational effects in their offspring that affect their diseases' risk and overall longevity. Autophagy, an evolutionary conserved catabolic process, serves as cellular response to cope with nutrient starvation, allowing the mobilization of an internal source of stored nutrients and the production of energy. We review the evidence obtained in multiple model organisms that support the idea that autophagy induction, including through dietary regimes based on reduced food intake, is in fact associated to improved health span and extended lifespan. Thereafter, we expose autophagy-induced chromatin remodeling, such as DNA methylation and histone posttranslational modifications that are known heritable epigenetic marks, as a plausible mechanism for transgenerational epigenetic inheritance of hunger.
Collapse
Affiliation(s)
- Patricia González-Rodríguez
- Division of Biochemistry, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Jens Füllgrabe
- Cambridge Epigenetix Ltd, The Trinity Building, Chesterford Research Park, Cambridge, UK
| | - Bertrand Joseph
- Institute of Environmental Medicine, Toxicology Unit, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
34
|
Salazar AM, Aparicio R, Clark RI, Rera M, Walker DW. Intestinal barrier dysfunction: an evolutionarily conserved hallmark of aging. Dis Model Mech 2023; 16:dmm049969. [PMID: 37144684 PMCID: PMC10184675 DOI: 10.1242/dmm.049969] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023] Open
Abstract
A major challenge in the biology of aging is to understand how specific age-onset pathologies relate to the overall health of the organism. The integrity of the intestinal epithelium is essential for the wellbeing of the organism throughout life. In recent years, intestinal barrier dysfunction has emerged as an evolutionarily conserved feature of aged organisms, as reported in worms, flies, fish, rodents and primates. Moreover, age-onset intestinal barrier dysfunction has been linked to microbial alterations, elevated immune responses, metabolic alterations, systemic health decline and mortality. Here, we provide an overview of these findings. We discuss early work in the Drosophila model that sets the stage for examining the relationship between intestinal barrier integrity and systemic aging, then delve into research in other organisms. An emerging concept, supported by studies in both Drosophila and mice, is that directly targeting intestinal barrier integrity is sufficient to promote longevity. A better understanding of the causes and consequences of age-onset intestinal barrier dysfunction has significant relevance to the development of interventions to promote healthy aging.
Collapse
Affiliation(s)
- Anna M. Salazar
- Department of Molecular Biology and Chemistry, Christopher Newport University, Newport News, VA 23606, USA
| | - Ricardo Aparicio
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA 90095, USA
| | - Rebecca I. Clark
- Department of Biosciences, Durham University, Durham DH1 3LE, UK
| | - Michael Rera
- Université de Paris, Inserm U1284, Center for Research and Interdisciplinarity, Paris 75004, France
| | - David W. Walker
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
35
|
Lee H, Wilson D, Bunting KV, Kotecha D, Jackson T. Repurposing digoxin for geroprotection in patients with frailty and multimorbidity. Ageing Res Rev 2023; 86:101860. [PMID: 36682465 DOI: 10.1016/j.arr.2023.101860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/22/2022] [Accepted: 01/18/2023] [Indexed: 01/21/2023]
Abstract
The geroscience hypothesis proposes biological hallmarks of ageing are modifiable. Increasing evidence supports targeting these hallmarks with therapeutics could prevent and ameliorate age-related conditions - collectively termed "geroprotector drugs". Cellular senescence is a hallmark with considerable potential to be modified with geroprotector drugs. Senotherapeutics are drugs that target cellular senescence for therapeutic benefit. Repurposing commonly used medications with secondary geroprotector properties is a strategy of interest to promote incorporation of geroprotector drugs into clinical practice. One candidate is the cardiac glycoside digoxin. Evidence in mouse models of pulmonary fibrosis, Alzheimer's disease, arthritis and atherosclerosis support digoxin as a senotherapeutic agent. Proposed senolytic mechanisms are upregulation of intrinsic apoptotic pathways and promoting intracellular acidification. Digoxin also appears to have a senomorphic mechanism - altering the T cell pool to ameliorate pro-inflammatory SASP. Despite being widely prescribed to treat atrial fibrillation and heart failure, often in multimorbid older adults, it is not known whether digoxin exerts senotherapeutic effects in humans. Further cellular and animal studies, and ultimately clinical trials with participation of pre-frail older adults, are required to identify whether digoxin has senotherapeutic effect at low dose. This paper reviews the biological mechanisms identified in preliminary cellular and animal studies that support repurposing digoxin as a geroprotector in patients with frailty and multimorbidity.
Collapse
Affiliation(s)
- Helena Lee
- Institute of Inflammation and Ageing, University of Birmingham Research Laboratories, Queen Elizabeth Hospital, Mindelsohn Way, Edgbaston, Birmingham B15 2WD, UK.
| | - Daisy Wilson
- Institute of Inflammation and Ageing, University of Birmingham Research Laboratories, Queen Elizabeth Hospital, Mindelsohn Way, Edgbaston, Birmingham B15 2WD, UK
| | - Karina V Bunting
- Institute of Cardiovascular Sciences, University of Birmingham, Medical School, Vincent Drive, Birmingham B15 2TT, UK; University Hospitals Birmingham NHS Foundation Trust, Institute of Translational Medicine, Queen Elizabeth Hospital, Mindelsohn Way, Birmingham B15 2GW, UK
| | - Dipak Kotecha
- Institute of Cardiovascular Sciences, University of Birmingham, Medical School, Vincent Drive, Birmingham B15 2TT, UK; University Hospitals Birmingham NHS Foundation Trust, Institute of Translational Medicine, Queen Elizabeth Hospital, Mindelsohn Way, Birmingham B15 2GW, UK
| | - Thomas Jackson
- Institute of Inflammation and Ageing, University of Birmingham Research Laboratories, Queen Elizabeth Hospital, Mindelsohn Way, Edgbaston, Birmingham B15 2WD, UK
| |
Collapse
|
36
|
Li Z, Tian M, Wang G, Cui X, Ma J, Liu S, Shen B, Liu F, Wu K, Xiao X, Zhu C. Senotherapeutics: An emerging approach to the treatment of viral infectious diseases in the elderly. Front Cell Infect Microbiol 2023; 13:1098712. [PMID: 37065192 PMCID: PMC10094634 DOI: 10.3389/fcimb.2023.1098712] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 03/06/2023] [Indexed: 03/31/2023] Open
Abstract
In the context of the global COVID-19 pandemic, the phenomenon that the elderly have higher morbidity and mortality is of great concern. Existing evidence suggests that senescence and viral infection interact with each other. Viral infection can lead to the aggravation of senescence through multiple pathways, while virus-induced senescence combined with existing senescence in the elderly aggravates the severity of viral infections and promotes excessive age-related inflammation and multiple organ damage or dysfunction, ultimately resulting in higher mortality. The underlying mechanisms may involve mitochondrial dysfunction, abnormal activation of the cGAS-STING pathway and NLRP3 inflammasome, the role of pre-activated macrophages and over-recruited immune cells, and accumulation of immune cells with trained immunity. Thus, senescence-targeted drugs were shown to have positive effects on the treatment of viral infectious diseases in the elderly, which has received great attention and extensive research. Therefore, this review focused on the relationship between senescence and viral infection, as well as the significance of senotherapeutics for the treatment of viral infectious diseases.
Collapse
Affiliation(s)
- Zhiqiang Li
- Department of Clinical Laboratory, Institute of Translational Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Mingfu Tian
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Guolei Wang
- Department of Clinical Laboratory, Institute of Translational Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xianghua Cui
- Department of Clinical Laboratory, Institute of Translational Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jun’e Ma
- Department of Clinical Laboratory, Institute of Translational Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Siyu Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Bingzheng Shen
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, China
| | - Fang Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Kailang Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xuan Xiao
- Department of Clinical Laboratory, Institute of Translational Medicine, Renmin Hospital of Wuhan University, Wuhan, China
- *Correspondence: Chengliang Zhu, ; Xuan Xiao,
| | - Chengliang Zhu
- Department of Clinical Laboratory, Institute of Translational Medicine, Renmin Hospital of Wuhan University, Wuhan, China
- *Correspondence: Chengliang Zhu, ; Xuan Xiao,
| |
Collapse
|
37
|
Herrera JJ, Pifer K, Louzon S, Leander D, Fiehn O, Day SM, Miller RA, Garratt M. Early or Late-Life Treatment With Acarbose or Rapamycin Improves Physical Performance and Affects Cardiac Structure in Aging Mice. J Gerontol A Biol Sci Med Sci 2023; 78:397-406. [PMID: 36342748 PMCID: PMC9977253 DOI: 10.1093/gerona/glac221] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Indexed: 11/09/2022] Open
Abstract
Pharmacological treatments can extend the life span of mice. For optimal translation in humans, treatments should improve health during aging, and demonstrate efficacy when started later in life. Acarbose (ACA) and rapamycin (RAP) extend life span in mice when treatment is started early or later in life. Both drugs can also improve some indices of healthy aging, although there has been little systematic study of whether health benefits accrue differently depending on the age at which treatment is started. Here we compare the effects of early (4 months) versus late (16 months) onset ACA or RAP treatment on physical function and cardiac structure in genetically heterogeneous aged mice. ACA or RAP treatment improve rotarod acceleration and endurance capacity compared to controls, with effects that are largely similar in mice starting treatment from early or late in life. Compared to controls, cardiac hypertrophy is reduced by ACA or RAP in both sexes regardless of age at treatment onset. ACA has a greater effect on the cardiac lipidome than RAP, and the effects of early-life treatment are recapitulated by late-life treatment. These results indicate that late-life treatment with these drugs provide at least some of the benefits of life long treatment, although some of the benefits occur only in males, which could lead to sex differences in health outcomes later in life.
Collapse
Affiliation(s)
- Jonathan J Herrera
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Kaitlyn Pifer
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Sean Louzon
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Danielle Leander
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Oliver Fiehn
- Genome Center, University of California Davis, Davis, California, USA
| | - Sharlene M Day
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Richard A Miller
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Geriatrics Center, University of Michigan, Ann Arbor, Michigan, USA
| | - Michael Garratt
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
38
|
Endothelial senescence in vascular diseases: current understanding and future opportunities in senotherapeutics. Exp Mol Med 2023; 55:1-12. [PMID: 36599934 PMCID: PMC9898542 DOI: 10.1038/s12276-022-00906-w] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/25/2022] [Accepted: 10/31/2022] [Indexed: 01/05/2023] Open
Abstract
Senescence compromises the essential role that the endothelium plays in maintaining vascular homeostasis, so promoting endothelial dysfunction and the development of age-related vascular diseases. Their biological and clinical significance calls for strategies for identifying and therapeutically targeting senescent endothelial cells. While senescence and endothelial dysfunction have been studied extensively, distinguishing what is distinctly endothelial senescence remains a barrier to overcome for an effective approach to addressing it. Here, we review the mechanisms underlying endothelial senescence and the evidence for its clinical importance. Furthermore, we discuss the current state and the limitations in the approaches for the detection and therapeutic intervention of target cells, suggesting potential directions for future research.
Collapse
|
39
|
Santos AL, Sinha S. Ageing, Metabolic Dysfunction, and the Therapeutic Role of Antioxidants. Subcell Biochem 2023; 103:341-435. [PMID: 37120475 DOI: 10.1007/978-3-031-26576-1_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Abstract
The gradual ageing of the world population has been accompanied by a dramatic increase in the prevalence of obesity and metabolic diseases, especially type 2 diabetes. The adipose tissue dysfunction associated with ageing and obesity shares many common physiological features, including increased oxidative stress and inflammation. Understanding the mechanisms responsible for adipose tissue dysfunction in obesity may help elucidate the processes that contribute to the metabolic disturbances that occur with ageing. This, in turn, may help identify therapeutic targets for the treatment of obesity and age-related metabolic disorders. Because oxidative stress plays a critical role in these pathological processes, antioxidant dietary interventions could be of therapeutic value for the prevention and/or treatment of age-related diseases and obesity and their complications. In this chapter, we review the molecular and cellular mechanisms by which obesity predisposes individuals to accelerated ageing. Additionally, we critically review the potential of antioxidant dietary interventions to counteract obesity and ageing.
Collapse
Affiliation(s)
- Ana L Santos
- IdISBA - Fundación de Investigación Sanitaria de las Islas Baleares, Palma, Spain.
| | | |
Collapse
|
40
|
Cai Y, Song W, Li J, Jing Y, Liang C, Zhang L, Zhang X, Zhang W, Liu B, An Y, Li J, Tang B, Pei S, Wu X, Liu Y, Zhuang CL, Ying Y, Dou X, Chen Y, Xiao FH, Li D, Yang R, Zhao Y, Wang Y, Wang L, Li Y, Ma S, Wang S, Song X, Ren J, Zhang L, Wang J, Zhang W, Xie Z, Qu J, Wang J, Xiao Y, Tian Y, Wang G, Hu P, Ye J, Sun Y, Mao Z, Kong QP, Liu Q, Zou W, Tian XL, Xiao ZX, Liu Y, Liu JP, Song M, Han JDJ, Liu GH. The landscape of aging. SCIENCE CHINA. LIFE SCIENCES 2022; 65:2354-2454. [PMID: 36066811 PMCID: PMC9446657 DOI: 10.1007/s11427-022-2161-3] [Citation(s) in RCA: 125] [Impact Index Per Article: 62.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 07/05/2022] [Indexed: 02/07/2023]
Abstract
Aging is characterized by a progressive deterioration of physiological integrity, leading to impaired functional ability and ultimately increased susceptibility to death. It is a major risk factor for chronic human diseases, including cardiovascular disease, diabetes, neurological degeneration, and cancer. Therefore, the growing emphasis on "healthy aging" raises a series of important questions in life and social sciences. In recent years, there has been unprecedented progress in aging research, particularly the discovery that the rate of aging is at least partly controlled by evolutionarily conserved genetic pathways and biological processes. In an attempt to bring full-fledged understanding to both the aging process and age-associated diseases, we review the descriptive, conceptual, and interventive aspects of the landscape of aging composed of a number of layers at the cellular, tissue, organ, organ system, and organismal levels.
Collapse
Affiliation(s)
- Yusheng Cai
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Wei Song
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, College of Life Sciences, Wuhan University, Wuhan, 430071, China
| | - Jiaming Li
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ying Jing
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Chuqian Liang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Liyuan Zhang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
| | - Xia Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Wenhui Zhang
- University of Chinese Academy of Sciences, Beijing, 100049, China
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Beibei Liu
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
| | - Yongpan An
- Peking University International Cancer Institute, Peking University Health Science Center, Peking University, Beijing, 100191, China
| | - Jingyi Li
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Baixue Tang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Siyu Pei
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xueying Wu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yuxuan Liu
- School of Pharmaceutical Sciences, Beijing Advanced Innovation Center for Structural Biology, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing, 100084, China
| | - Cheng-Le Zhuang
- Colorectal Cancer Center/Department of Gastrointestinal Surgery, Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai, 200072, China
| | - Yilin Ying
- Department of Geriatrics, Medical Center on Aging of Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
- International Laboratory in Hematology and Cancer, Shanghai Jiaotong University School of Medicine/Ruijin Hospital, Shanghai, 200025, China
| | - Xuefeng Dou
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yu Chen
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Fu-Hui Xiao
- State Key Laboratory of Genetic Resources and Evolution/Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China
| | - Dingfeng Li
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Ruici Yang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Ya Zhao
- Aging and Vascular Diseases, Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang, 330031, China
| | - Yang Wang
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Lihui Wang
- Institute of Ageing Research, Hangzhou Normal University, School of Basic Medical Sciences, Hangzhou, 311121, China
| | - Yujing Li
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Shuai Ma
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Si Wang
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China.
- Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital Capital Medical University, Beijing, 100053, China.
- The Fifth People's Hospital of Chongqing, Chongqing, 400062, China.
| | - Xiaoyuan Song
- MOE Key Laboratory of Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, Neurodegenerative Disorder Research Center, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China.
| | - Jie Ren
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Liang Zhang
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Jun Wang
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Weiqi Zhang
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital Capital Medical University, Beijing, 100053, China.
| | - Zhengwei Xie
- Peking University International Cancer Institute, Peking University Health Science Center, Peking University, Beijing, 100191, China.
| | - Jing Qu
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Jianwei Wang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China.
| | - Yichuan Xiao
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Ye Tian
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Gelin Wang
- School of Pharmaceutical Sciences, Beijing Advanced Innovation Center for Structural Biology, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing, 100084, China.
| | - Ping Hu
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Colorectal Cancer Center/Department of Gastrointestinal Surgery, Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai, 200072, China.
- Guangzhou Laboratory, Guangzhou International Bio Island, Guangzhou, 510005, China.
| | - Jing Ye
- Department of Geriatrics, Medical Center on Aging of Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China.
- International Laboratory in Hematology and Cancer, Shanghai Jiaotong University School of Medicine/Ruijin Hospital, Shanghai, 200025, China.
| | - Yu Sun
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China.
- Department of Medicine and VAPSHCS, University of Washington, Seattle, 98195, USA.
| | - Zhiyong Mao
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| | - Qing-Peng Kong
- State Key Laboratory of Genetic Resources and Evolution/Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.
- CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China.
| | - Qiang Liu
- CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China.
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China.
| | - Weiguo Zou
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Xiao-Li Tian
- Aging and Vascular Diseases, Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang, 330031, China.
| | - Zhi-Xiong Xiao
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China.
| | - Yong Liu
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, College of Life Sciences, Wuhan University, Wuhan, 430071, China.
| | - Jun-Ping Liu
- Institute of Ageing Research, Hangzhou Normal University, School of Basic Medical Sciences, Hangzhou, 311121, China.
- Department of Immunology and Pathology, Monash University Faculty of Medicine, Prahran, Victoria, 3181, Australia.
- Hudson Institute of Medical Research, and Monash University Department of Molecular and Translational Science, Clayton, Victoria, 3168, Australia.
| | - Moshi Song
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Jing-Dong J Han
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Quantitative Biology, Peking University, Beijing, 100871, China.
| | - Guang-Hui Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China.
- Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital Capital Medical University, Beijing, 100053, China.
| |
Collapse
|
41
|
Cho JM, Ghosh R, Mookherjee S, Boudina S, Symons JD. Reduce, Reuse, Recycle, Run ! : 4 Rs to improve cardiac health in advanced age. Aging (Albany NY) 2022; 14:9388-9392. [PMID: 36470665 PMCID: PMC9792203 DOI: 10.18632/aging.204415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 11/21/2022] [Indexed: 12/03/2022]
Abstract
During the aging process damaged/dysfunctional proteins and organelles accumulate and contribute to organ dysfunction. Luckily, there is a conserved intracellular process to reuse and recycle these dysregulated cellular components termed macroautophagy (autophagy). Unfortunately, strong evidence indicates autophagy is compromised with aging, protein quality control is jeopardized, and resultant proteotoxicity can contribute significantly to age-associated organ dysfunction. Are there interventions that can re-establish autophagic flux that is otherwise impaired with aging? With particular regard to the heart, here we review evidence that caloric-restriction, the polyamine spermidine, and the mTOR inhibitor rapamycin, even when initiated late-in-life, restore cardiomyocyte autophagy to an extent that lessens age-associated cardiac dysfunction. Cho et al. provide a physiological intervention to this list i.e., regular physical exercise initiated late-in-life boosts cardiomyocyte autophagic flux and rejuvenates cardiac function in male mice. While this study provides strong evidence for a mechanism whereby heightened physical activity can lead to improved heart health in the context of aging, (i) only male mice were studied; (ii) the intensity of exercise-training might not be suitable for all; and (iii) mice with aging-associated comorbidities were not investigated. Nonetheless, Cho et al. provide robust evidence that a low-cost and simple behavioral intervention initiated late-in-life improves cardiomyocyte autophagic flux and rejuvenates cardiac function.
Collapse
Affiliation(s)
- Jae Min Cho
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT 84112, USA
| | - Rajeshwary Ghosh
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT 84112, USA
| | - Sohom Mookherjee
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT 84112, USA
| | - Sihem Boudina
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT 84112, USA,Division of Endocrinology, Metabolism and Diabetes, and Program in Molecular Medicine, University of Utah, Salt Lake City, UT 84112, USA
| | - J. David Symons
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT 84112, USA,Division of Endocrinology, Metabolism and Diabetes, and Program in Molecular Medicine, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
42
|
Stoeger T, Grant RA, McQuattie-Pimentel AC, Anekalla KR, Liu SS, Tejedor-Navarro H, Singer BD, Abdala-Valencia H, Schwake M, Tetreault MP, Perlman H, Balch WE, Chandel NS, Ridge KM, Sznajder JI, Morimoto RI, Misharin AV, Budinger GRS, Nunes Amaral LA. Aging is associated with a systemic length-associated transcriptome imbalance. NATURE AGING 2022; 2:1191-1206. [PMID: 37118543 PMCID: PMC10154227 DOI: 10.1038/s43587-022-00317-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 10/21/2022] [Indexed: 12/14/2022]
Abstract
Aging is among the most important risk factors for morbidity and mortality. To contribute toward a molecular understanding of aging, we analyzed age-resolved transcriptomic data from multiple studies. Here, we show that transcript length alone explains most transcriptional changes observed with aging in mice and humans. We present three lines of evidence supporting the biological importance of the uncovered transcriptome imbalance. First, in vertebrates the length association primarily displays a lower relative abundance of long transcripts in aging. Second, eight antiaging interventions of the Interventions Testing Program of the National Institute on Aging can counter this length association. Third, we find that in humans and mice the genes with the longest transcripts enrich for genes reported to extend lifespan, whereas those with the shortest transcripts enrich for genes reported to shorten lifespan. Our study opens fundamental questions on aging and the organization of transcriptomes.
Collapse
Affiliation(s)
- Thomas Stoeger
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA.
- Northwestern Institute on Complex Systems, Northwestern University, Evanston, IL, USA.
- Center for Genetic Medicine, Northwestern University, Evanston, IL, USA.
| | - Rogan A Grant
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
- Division of Pulmonary and Critical Care Medicine, Northwestern University, Evanston, IL, USA
| | | | - Kishore R Anekalla
- Division of Pulmonary and Critical Care Medicine, Northwestern University, Evanston, IL, USA
| | - Sophia S Liu
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA
| | | | - Benjamin D Singer
- Division of Pulmonary and Critical Care Medicine, Northwestern University, Evanston, IL, USA
- Simpson Querrey Lung Institute for Translational Science at Northwestern University (SQLIFTSNU), Evanston, IL, USA
- Department of Biochemistry and Molecular Genetics, Northwestern University, Evanston, IL, USA
| | - Hiam Abdala-Valencia
- Division of Pulmonary and Critical Care Medicine, Northwestern University, Evanston, IL, USA
| | - Michael Schwake
- Department of Neurology, Northwestern University, Evanston, IL, USA
- Faculty of Chemistry, University of Bielefeld, Bielefeld, Germany
| | - Marie-Pier Tetreault
- Division of Gastroenterology and Hepatology, Northwestern University, Evanston, IL, USA
| | - Harris Perlman
- Division of Rheumatology, Northwestern University, Evanston, IL, USA
| | | | - Navdeep S Chandel
- Division of Pulmonary and Critical Care Medicine, Northwestern University, Evanston, IL, USA
- Simpson Querrey Lung Institute for Translational Science at Northwestern University (SQLIFTSNU), Evanston, IL, USA
| | - Karen M Ridge
- Division of Pulmonary and Critical Care Medicine, Northwestern University, Evanston, IL, USA
- Simpson Querrey Lung Institute for Translational Science at Northwestern University (SQLIFTSNU), Evanston, IL, USA
| | - Jacob I Sznajder
- Division of Pulmonary and Critical Care Medicine, Northwestern University, Evanston, IL, USA
- Simpson Querrey Lung Institute for Translational Science at Northwestern University (SQLIFTSNU), Evanston, IL, USA
| | - Richard I Morimoto
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA.
- Rice Institute for Biomedical Research, Northwestern University, Evanston, IL, USA.
| | - Alexander V Misharin
- Division of Pulmonary and Critical Care Medicine, Northwestern University, Evanston, IL, USA.
- Simpson Querrey Lung Institute for Translational Science at Northwestern University (SQLIFTSNU), Evanston, IL, USA.
| | - G R Scott Budinger
- Division of Pulmonary and Critical Care Medicine, Northwestern University, Evanston, IL, USA.
- Simpson Querrey Lung Institute for Translational Science at Northwestern University (SQLIFTSNU), Evanston, IL, USA.
| | - Luis A Nunes Amaral
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA.
- Northwestern Institute on Complex Systems, Northwestern University, Evanston, IL, USA.
- Department of Physics and Astronomy, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
43
|
Blagosklonny MV. Rapamycin treatment early in life reprograms aging: hyperfunction theory and clinical practice. Aging (Albany NY) 2022; 14:8140-8149. [PMID: 36332147 PMCID: PMC9648808 DOI: 10.18632/aging.204354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 10/20/2022] [Indexed: 11/25/2022]
Abstract
Making provocative headlines, three outstanding publications demonstrated that early-life treatment with rapamycin, including treatments during developmental growth, extends lifespan in animals, confirming predictions of hyperfunction theory, which views aging as a quasi-program (an unintended continuation of developmental growth) driven in part by mTOR. Despite their high theoretical importance, clinical applications of two of these studies in mice, Drosophila and Daphnia cannot be implemented in humans because that would require growth retardation started at birth. A third study demonstrated that a transient (around 20% of total lifespan in Drosophila) treatment with rapamycin early in Drosophila adult life is as effective as lifelong treatment, whereas a late-life treatment is not effective. However, previous studies in mice demonstrated that a transient late-life treatment is highly effective. Based on hyperfunction theory, this article attempts to reconcile conflicting results and suggests the optimal treatment strategy to extend human lifespan.
Collapse
|
44
|
Pant A, Yao X, Lavedrine A, Viret C, Dockterman J, Chauhan S, Chong-Shan Shi, Manjithaya R, Cadwell K, Kufer TA, Kehrl JH, Coers J, Sibley LD, Faure M, Taylor GA, Chauhan S. Interactions of Autophagy and the Immune System in Health and Diseases. AUTOPHAGY REPORTS 2022; 1:438-515. [PMID: 37425656 PMCID: PMC10327624 DOI: 10.1080/27694127.2022.2119743] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
Autophagy is a highly conserved process that utilizes lysosomes to selectively degrade a variety of intracellular cargo, thus providing quality control over cellular components and maintaining cellular regulatory functions. Autophagy is triggered by multiple stimuli ranging from nutrient starvation to microbial infection. Autophagy extensively shapes and modulates the inflammatory response, the concerted action of immune cells, and secreted mediators aimed to eradicate a microbial infection or to heal sterile tissue damage. Here, we first review how autophagy affects innate immune signaling, cell-autonomous immune defense, and adaptive immunity. Then, we discuss the role of non-canonical autophagy in microbial infections and inflammation. Finally, we review how crosstalk between autophagy and inflammation influences infectious, metabolic, and autoimmune disorders.
Collapse
Affiliation(s)
- Aarti Pant
- Autophagy Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
| | - Xiaomin Yao
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University Grossman School of Medicine, New York, New York, United States of America
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, United States of America
| | - Aude Lavedrine
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France
- Equipe Labellisée par la Fondation pour la Recherche Médicale, FRM
| | - Christophe Viret
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France
- Equipe Labellisée par la Fondation pour la Recherche Médicale, FRM
| | - Jake Dockterman
- Department of Immunology, Duke University, Medical Center, Durham, North Carolina, USA
| | - Swati Chauhan
- Cell biology and Infectious diseases, Institute of Life Sciences, Bhubaneswar, India
| | - Chong-Shan Shi
- Laboratory of Immunoregulation, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Ravi Manjithaya
- Autophagy Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
| | - Ken Cadwell
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University Grossman School of Medicine, New York, New York, United States of America
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, United States of America
- Division of Gastroenterology and Hepatology, Department of Medicine, New York University Grossman School of Medicine, New York, New York, United States of America
| | - Thomas A. Kufer
- Department of Immunology, Institute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany
| | - John H. Kehrl
- Laboratory of Immunoregulation, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Jörn Coers
- Department of Immunology, Duke University, Medical Center, Durham, North Carolina, USA
- Department of Molecular Genetics and Microbiology, Duke University, Medical Center, Durham, North Carolina, USA
| | - L. David Sibley
- Department of Molecular Microbiology, Washington University Sch. Med., St Louis, MO, 63110, USA
| | - Mathias Faure
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France
- Equipe Labellisée par la Fondation pour la Recherche Médicale, FRM
| | - Gregory A Taylor
- Department of Immunology, Duke University, Medical Center, Durham, North Carolina, USA
- Department of Molecular Genetics and Microbiology, Duke University, Medical Center, Durham, North Carolina, USA
- Department of Molecular Microbiology, Washington University Sch. Med., St Louis, MO, 63110, USA
- Geriatric Research, Education, and Clinical Center, VA Health Care Center, Durham, North Carolina, USA
- Departments of Medicine, Division of Geriatrics, and Center for the Study of Aging and Human Development, Duke University, Medical Center, Durham, North Carolina, USA
| | - Santosh Chauhan
- Cell biology and Infectious diseases, Institute of Life Sciences, Bhubaneswar, India
- CSIR–Centre For Cellular And Molecular Biology (CCMB), Hyderabad, Telangana
| |
Collapse
|
45
|
Juricic P, Lu YX, Leech T, Drews LF, Paulitz J, Lu J, Nespital T, Azami S, Regan JC, Funk E, Fröhlich J, Grönke S, Partridge L. Long-lasting geroprotection from brief rapamycin treatment in early adulthood by persistently increased intestinal autophagy. NATURE AGING 2022; 2:824-836. [PMID: 37118497 PMCID: PMC10154223 DOI: 10.1038/s43587-022-00278-w] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 08/03/2022] [Indexed: 04/30/2023]
Abstract
The licensed drug rapamycin has potential to be repurposed for geroprotection. A key challenge is to avoid adverse side effects from continuous dosing. Here we show that geroprotective effects of chronic rapamycin treatment can be obtained with a brief pulse of the drug in early adulthood in female Drosophila and mice. In Drosophila, a brief, early rapamycin treatment of adults extended lifespan and attenuated age-related decline in the intestine to the same degree as lifelong dosing. Lasting memory of earlier treatment was mediated by elevated autophagy in intestinal enterocytes, accompanied by increased levels of intestinal LManV and lysozyme. Brief elevation of autophagy in early adulthood itself induced a long-term increase in autophagy. In mice, a 3-month, early treatment also induced a memory effect, with maintenance similar to chronic treatment, of lysozyme distribution, Man2B1 level in intestinal crypts, Paneth cell architecture and gut barrier function, even 6 months after rapamycin was withdrawn.
Collapse
Affiliation(s)
- Paula Juricic
- Max Planck Institute for Biology of Ageing, Cologne, Germany
- Lunaphore Technologies SA, Tolochenaz, Switzerland
| | - Yu-Xuan Lu
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Thomas Leech
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Lisa F Drews
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | | | - Jiongming Lu
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Tobias Nespital
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Sina Azami
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Jennifer C Regan
- Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, London, UK
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, UK
| | - Emilie Funk
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Jenny Fröhlich
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | | | - Linda Partridge
- Max Planck Institute for Biology of Ageing, Cologne, Germany.
- Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, London, UK.
| |
Collapse
|
46
|
New Trends in Aging Drug Discovery. Biomedicines 2022; 10:biomedicines10082006. [PMID: 36009552 PMCID: PMC9405986 DOI: 10.3390/biomedicines10082006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/13/2022] [Accepted: 08/15/2022] [Indexed: 11/17/2022] Open
Abstract
Aging is considered the main risk factor for many chronic diseases that frequently appear at advanced ages. However, the inevitability of this process is being questioned by recent research that suggests that senescent cells have specific features that differentiate them from younger cells and that removal of these cells ameliorates senescent phenotype and associated diseases. This opens the door to the design of tailored therapeutic interventions aimed at reducing and delaying the impact of senescence in life, that is, extending healthspan and treating aging as another chronic disease. Although these ideas are still far from reaching the bedside, it is conceivable that they will revolutionize the way we understand aging in the next decades. In this review, we analyze the main and well-validated cellular pathways and targets related to senescence as well as their implication in aging-associated diseases. In addition, the most relevant small molecules with senotherapeutic potential, with a special emphasis on their mechanism of action, ongoing clinical trials, and potential limitations, are discussed. Finally, a brief overview of alternative strategies that go beyond the small molecule field, together with our perspectives for the future of the field, is provided.
Collapse
|
47
|
Barone M, D'Amico F, Rampelli S, Brigidi P, Turroni S. Age-related diseases, therapies and gut microbiome: A new frontier for healthy aging. Mech Ageing Dev 2022; 206:111711. [PMID: 35868543 DOI: 10.1016/j.mad.2022.111711] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 07/17/2022] [Accepted: 07/18/2022] [Indexed: 02/07/2023]
Abstract
The gut microbiome is undoubtedly a key modulator of human health, which can promote or impair homeostasis throughout life. This is even more relevant in old age, when there is a gradual loss of function in multiple organ systems, related to growth, metabolism, and immunity. Several studies have described changes in the gut microbiome across age groups up to the extreme limits of lifespan, including maladaptations that occur in the context of age-related conditions, such as frailty, neurodegenerative diseases, and cardiometabolic diseases. The gut microbiome can also interact bi-directionally with anti-age-related disease therapies, being affected and in turn influencing their efficacy. In this framework, the development of integrated microbiome-based intervention strategies, aimed at favoring a eubiotic configuration and trajectory, could therefore represent an innovative approach for the promotion of healthy aging and the achievement of longevity.
Collapse
Affiliation(s)
- Monica Barone
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy; Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy.
| | - Federica D'Amico
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy; Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy.
| | - Simone Rampelli
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy.
| | - Patrizia Brigidi
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy.
| | - Silvia Turroni
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy.
| |
Collapse
|
48
|
Pharmacological Approaches to Decelerate Aging: A Promising Path. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4201533. [PMID: 35860429 PMCID: PMC9293537 DOI: 10.1155/2022/4201533] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 05/24/2022] [Accepted: 06/26/2022] [Indexed: 11/17/2022]
Abstract
Biological aging or senescence is a course in which cellular function decreases over a period of time and is a consequence of altered signaling mechanisms that are triggered in stressed cells leading to cell damage. Aging is among the principal risk factors for many chronic illnesses such as cancer, cardiovascular disorders, and neurodegenerative diseases. Taking this into account, targeting fundamental aging mechanisms therapeutically may effectively impact numerous chronic illnesses. Selecting ideal therapeutic options in order to hinder the process of aging and decelerate the progression of age-related diseases is valuable. Along therapeutic options, life style modifications may well render the process of aging. The process of aging is affected by alteration in many cellular and signaling pathways amid which mTOR, SIRT1, and AMPK pathways are the most emphasized. Herein, we have discussed the mechanisms of aging focusing mainly on the mentioned pathways as well as the role of inflammation and autophagy in aging. Moreover, drugs and natural products with antiaging properties are discussed in detail.
Collapse
|
49
|
Kouzu H, Tatekoshi Y, Chang HC, Shapiro JS, McGee WA, De Jesus A, Ben-Sahra I, Arany Z, Leor J, Chen C, Blackshear PJ, Ardehali H. ZFP36L2 suppresses mTORc1 through a P53-dependent pathway to prevent peripartum cardiomyopathy in mice. J Clin Invest 2022; 132:e154491. [PMID: 35316214 PMCID: PMC9106345 DOI: 10.1172/jci154491] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 03/17/2022] [Indexed: 01/13/2023] Open
Abstract
Pregnancy is associated with substantial physiological changes of the heart, and disruptions in these processes can lead to peripartum cardiomyopathy (PPCM). The molecular processes that cause physiological and pathological changes in the heart during pregnancy are not well characterized. Here, we show that mTORc1 was activated in pregnancy to facilitate cardiac enlargement that was reversed after delivery in mice. mTORc1 activation in pregnancy was negatively regulated by the mRNA-destabilizing protein ZFP36L2 through its degradation of Mdm2 mRNA and P53 stabilization, leading to increased SESN2 and REDD1 expression. This pathway impeded uncontrolled cardiomyocyte hypertrophy during pregnancy, and mice with cardiac-specific Zfp36l2 deletion developed rapid cardiac dysfunction after delivery, while prenatal treatment of these mice with rapamycin improved postpartum cardiac function. Collectively, these data provide what we believe to be a novel pathway for the regulation of mTORc1 through mRNA stabilization of a P53 ubiquitin ligase. This pathway was critical for normal cardiac growth during pregnancy, and its reduction led to PPCM-like adverse remodeling in mice.
Collapse
Affiliation(s)
- Hidemichi Kouzu
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Feinberg Cardiovascular and Renal Research Institute and
| | - Yuki Tatekoshi
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Feinberg Cardiovascular and Renal Research Institute and
| | - Hsiang-Chun Chang
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Feinberg Cardiovascular and Renal Research Institute and
| | - Jason S. Shapiro
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Feinberg Cardiovascular and Renal Research Institute and
| | - Warren A. McGee
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Adam De Jesus
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Feinberg Cardiovascular and Renal Research Institute and
| | - Issam Ben-Sahra
- Department of Biochemistry, Northwestern University, Chicago, Illinois, USA
| | - Zoltan Arany
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jonathan Leor
- Cardiovascular Research Institute, Tel Aviv University and Sheba Medical Center, Tel Aviv, Israel
| | - Chunlei Chen
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Feinberg Cardiovascular and Renal Research Institute and
| | - Perry J. Blackshear
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Hossein Ardehali
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Feinberg Cardiovascular and Renal Research Institute and
| |
Collapse
|
50
|
Jiang Z, Wang J, Imai D, Snider T, Klug J, Mangalindan R, Morton J, Zhu L, Salmon AB, Wezeman J, Hu J, Menon V, Marka N, Neidernhofer L, Ladiges W. Short term treatment with a cocktail of rapamycin, acarbose and phenylbutyrate delays aging phenotypes in mice. Sci Rep 2022; 12:7300. [PMID: 35508491 PMCID: PMC9067553 DOI: 10.1038/s41598-022-11229-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 04/14/2022] [Indexed: 12/18/2022] Open
Abstract
Pharmaceutical intervention of aging requires targeting multiple pathways, thus there is rationale to test combinations of drugs targeting different but overlapping processes. In order to determine if combining drugs shown to extend lifespan and healthy aging in mice would have greater impact than any individual drug, a cocktail diet containing 14 ppm rapamycin, 1000 ppm acarbose, and 1000 ppm phenylbutyrate was fed to 20-month-old C57BL/6 and HET3 4-way cross mice of both sexes for three months. Mice treated with the cocktail showed a sex and strain-dependent phenotype consistent with healthy aging including decreased body fat, improved cognition, increased strength and endurance, and decreased age-related pathology compared to mice treated with individual drugs or control. The severity of age-related lesions in heart, lungs, liver, and kidney was consistently decreased in mice treated with the cocktail compared to mice treated with individual drugs or control, suggesting an interactive advantage of the three drugs. This study shows that a combination of three drugs, each previously shown to enhance lifespan and health span in mice, is able to delay aging phenotypes in middle-aged mice more effectively than any individual drug in the cocktail over a 3-month treatment period.
Collapse
Affiliation(s)
- Zhou Jiang
- Department of Comparative Medicine, School of Medicine, University of Washington, Seattle, WA, USA
| | - Juan Wang
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Denise Imai
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Tim Snider
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK, USA
| | - Jenna Klug
- Department of Comparative Medicine, School of Medicine, University of Washington, Seattle, WA, USA
| | - Ruby Mangalindan
- Department of Comparative Medicine, School of Medicine, University of Washington, Seattle, WA, USA
| | - John Morton
- Department of Comparative Medicine, School of Medicine, University of Washington, Seattle, WA, USA
| | - Lida Zhu
- In Vivo Pharmacology, HD Bioscience Co., Ltd, Shanghai, China
| | - Adam B Salmon
- Department of Molecular Medicine, San Antonio Sam and Ann Barshop Institute for Longevity and Aging Studies, South Texas Veterans Health Care System, Geriatric Research Education and Clinical Center, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Jackson Wezeman
- Department of Comparative Medicine, School of Medicine, University of Washington, Seattle, WA, USA
| | - Jiayi Hu
- Department of Biochemistry, Molecular Biology, and Biophysics, Institute on the Biology of Aging and Metabolism, University of Minnesota, Saint Paul, MN, USA
| | - Vinal Menon
- Department of Biochemistry, Molecular Biology, and Biophysics, Institute on the Biology of Aging and Metabolism, University of Minnesota, Saint Paul, MN, USA
| | - Nicholas Marka
- Clinical and Translational Sciences Institute, Biostatistical Design and Analysis Center, University of Minnesota, Minneapolis, MN, USA
| | - Laura Neidernhofer
- Department of Biochemistry, Molecular Biology, and Biophysics, Institute on the Biology of Aging and Metabolism, University of Minnesota, Saint Paul, MN, USA
| | - Warren Ladiges
- Department of Comparative Medicine, School of Medicine, University of Washington, Seattle, WA, USA.
| |
Collapse
|