1
|
Vanacore G, Christensen JB, Bayin NS. Age-dependent regenerative mechanisms in the brain. Biochem Soc Trans 2024; 52:2243-2252. [PMID: 39584473 DOI: 10.1042/bst20230547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 10/17/2024] [Accepted: 10/29/2024] [Indexed: 11/26/2024]
Abstract
Repairing the adult mammalian brain represents one of the greatest clinical challenges in medicine. Injury to the adult brain often results in substantial loss of neural tissue and permanent functional impairment. In contrast with the adult, during development, the mammalian brain exhibits a remarkable capacity to replace lost cells. A plethora of cell-intrinsic and extrinsic factors regulate the age-dependent loss of regenerative potential in the brain. As the developmental window closes, neural stem cells undergo epigenetic changes, limiting their proliferation and differentiation capacities, whereas, changes in the brain microenvironment pose additional challenges opposing regeneration, including inflammation and gliosis. Therefore, studying the regenerative mechanisms during development and identifying what impairs them with age may provide key insights into how to stimulate regeneration in the brain. Here, we will discuss how the mammalian brain engages regenerative mechanisms upon injury or neuron loss. Moreover, we will describe the age-dependent changes that affect these processes. We will conclude by discussing potential therapeutic approaches to overcome the age-dependent regenerative decline and stimulate regeneration.
Collapse
Affiliation(s)
- Giada Vanacore
- Gurdon Institute, University of Cambridge, Cambridge, U.K
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, U.K
| | - Jens Bager Christensen
- Gurdon Institute, University of Cambridge, Cambridge, U.K
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, U.K
| | - N Sumru Bayin
- Gurdon Institute, University of Cambridge, Cambridge, U.K
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, U.K
| |
Collapse
|
2
|
Chen M. Beyond variability: a novel gene expression stability metric to unveil homeostasis and regulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.28.596283. [PMID: 38854149 PMCID: PMC11160662 DOI: 10.1101/2024.05.28.596283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
The concept of gene expression stability within a homeostatic cell is explored through the gene homeostasis Z-index, a measure that highlights genes under active regulation in response to internal and external stimuli. This index reveals distinct regulatory activities and patterns in different organs, such as enhanced synaptic transmission in pancreatic islets. The research indicates that traditional mean-based methods may miss these nuances, underlining the significance of new metrics in identifying gene regulation specifics in cellular adaptation.
Collapse
|
3
|
Zhu X, Ma S, Wong WH. Genetic effects of sequence-conserved enhancer-like elements on human complex traits. Genome Biol 2024; 25:1. [PMID: 38167462 PMCID: PMC10759394 DOI: 10.1186/s13059-023-03142-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 12/08/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND The vast majority of findings from human genome-wide association studies (GWAS) map to non-coding sequences, complicating their mechanistic interpretations and clinical translations. Non-coding sequences that are evolutionarily conserved and biochemically active could offer clues to the mechanisms underpinning GWAS discoveries. However, genetic effects of such sequences have not been systematically examined across a wide range of human tissues and traits, hampering progress to fully understand regulatory causes of human complex traits. RESULTS Here we develop a simple yet effective strategy to identify functional elements exhibiting high levels of human-mouse sequence conservation and enhancer-like biochemical activity, which scales well to 313 epigenomic datasets across 106 human tissues and cell types. Combined with 468 GWAS of European (EUR) and East Asian (EAS) ancestries, these elements show tissue-specific enrichments of heritability and causal variants for many traits, which are significantly stronger than enrichments based on enhancers without sequence conservation. These elements also help prioritize candidate genes that are functionally relevant to body mass index (BMI) and schizophrenia but were not reported in previous GWAS with large sample sizes. CONCLUSIONS Our findings provide a comprehensive assessment of how sequence-conserved enhancer-like elements affect complex traits in diverse tissues and demonstrate a generalizable strategy of integrating evolutionary and biochemical data to elucidate human disease genetics.
Collapse
Affiliation(s)
- Xiang Zhu
- Department of Statistics, The Pennsylvania State University, 326 Thomas Building, University Park, 16802, PA, USA.
- Huck Institutes of the Life Sciences, The Pennsylvania State University, 201 Huck Life Sciences Building, University Park, 16802, PA, USA.
- Department of Statistics, Stanford University, 390 Jane Stanford Way, Stanford, 94305, CA, USA.
| | - Shining Ma
- Department of Statistics, Stanford University, 390 Jane Stanford Way, Stanford, 94305, CA, USA
- Department of Biomedical Data Science, Stanford University School of Medicine, 1265 Welch Road MC5464, Stanford, 94305, CA, USA
| | - Wing Hung Wong
- Department of Statistics, Stanford University, 390 Jane Stanford Way, Stanford, 94305, CA, USA.
- Department of Biomedical Data Science, Stanford University School of Medicine, 1265 Welch Road MC5464, Stanford, 94305, CA, USA.
| |
Collapse
|
4
|
Li M, Guo H, Carey M, Huang C. Transcriptional and epigenetic dysregulation impairs generation of proliferative neural stem and progenitor cells during brain aging. NATURE AGING 2024; 4:62-79. [PMID: 38177329 PMCID: PMC10947366 DOI: 10.1038/s43587-023-00549-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 11/29/2023] [Indexed: 01/06/2024]
Abstract
The decline in stem cell function during aging may affect the regenerative capacity of mammalian organisms; however, the gene regulatory mechanism underlying this decline remains unclear. Here we show that the aging of neural stem and progenitor cells (NSPCs) in the male mouse brain is characterized by a decrease in the generation efficacy of proliferative NSPCs rather than the changes in lineage specificity of NSPCs. We reveal that the downregulation of age-dependent genes in NSPCs drives cell aging by decreasing the population of actively proliferating NSPCs while increasing the expression of quiescence markers. We found that epigenetic deregulation of the MLL complex at promoters leads to transcriptional inactivation of age-dependent genes, highlighting the importance of the dynamic interaction between histone modifiers and gene regulatory elements in regulating transcriptional program of aging cells. Our study sheds light on the key intrinsic mechanisms driving stem cell aging through epigenetic regulators and identifies potential rejuvenation targets that could restore the function of aging stem cells.
Collapse
Affiliation(s)
- Meiyang Li
- Center for Neurobiology, Shantou University Medical College, Shantou, China
| | - Hongzhi Guo
- Center for Neurobiology, Shantou University Medical College, Shantou, China
| | - Michael Carey
- Department of Biological Chemistry, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, USA.
| | - Chengyang Huang
- Center for Neurobiology, Shantou University Medical College, Shantou, China.
- Department of Biological Chemistry, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
5
|
Yeo RW, Zhou OY, Zhong BL, Sun ED, Navarro Negredo P, Nair S, Sharmin M, Ruetz TJ, Wilson M, Kundaje A, Dunn AR, Brunet A. Chromatin accessibility dynamics of neurogenic niche cells reveal defects in neural stem cell adhesion and migration during aging. NATURE AGING 2023; 3:866-893. [PMID: 37443352 PMCID: PMC10353944 DOI: 10.1038/s43587-023-00449-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 06/02/2023] [Indexed: 07/15/2023]
Abstract
The regenerative potential of brain stem cell niches deteriorates during aging. Yet the mechanisms underlying this decline are largely unknown. Here we characterize genome-wide chromatin accessibility of neurogenic niche cells in vivo during aging. Interestingly, chromatin accessibility at adhesion and migration genes decreases with age in quiescent neural stem cells (NSCs) but increases with age in activated (proliferative) NSCs. Quiescent and activated NSCs exhibit opposing adhesion behaviors during aging: quiescent NSCs become less adhesive, whereas activated NSCs become more adhesive. Old activated NSCs also show decreased migration in vitro and diminished mobilization out of the niche for neurogenesis in vivo. Using tension sensors, we find that aging increases force-producing adhesions in activated NSCs. Inhibiting the cytoskeletal-regulating kinase ROCK reduces these adhesions, restores migration in old activated NSCs in vitro, and boosts neurogenesis in vivo. These results have implications for restoring the migratory potential of NSCs and for improving neurogenesis in the aged brain.
Collapse
Affiliation(s)
- Robin W Yeo
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Olivia Y Zhou
- Department of Genetics, Stanford University, Stanford, CA, USA
- Stanford Biophysics Program, Stanford University, Stanford, CA, USA
- Stanford Medical Scientist Training Program, Stanford University, Stanford, CA, USA
| | - Brian L Zhong
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Eric D Sun
- Department of Genetics, Stanford University, Stanford, CA, USA
- Biomedical Informatics Graduate Program, Stanford University, Stanford, CA, USA
| | | | - Surag Nair
- Department of Computer Science, Stanford University, Stanford, CA, USA
| | - Mahfuza Sharmin
- Department of Genetics, Stanford University, Stanford, CA, USA
- Department of Computer Science, Stanford University, Stanford, CA, USA
| | - Tyson J Ruetz
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Mikaela Wilson
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Anshul Kundaje
- Department of Genetics, Stanford University, Stanford, CA, USA
- Department of Computer Science, Stanford University, Stanford, CA, USA
| | - Alexander R Dunn
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Anne Brunet
- Department of Genetics, Stanford University, Stanford, CA, USA.
- Glenn Laboratories for the Biology of Aging, Stanford University, Stanford, CA, USA.
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
6
|
Murtaj V, Butti E, Martino G, Panina-Bordignon P. Endogenous neural stem cells characterization using omics approaches: Current knowledge in health and disease. Front Cell Neurosci 2023; 17:1125785. [PMID: 37091923 PMCID: PMC10113633 DOI: 10.3389/fncel.2023.1125785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 03/03/2023] [Indexed: 04/08/2023] Open
Abstract
Neural stem cells (NSCs), an invaluable source of neuronal and glial progeny, have been widely interrogated in the last twenty years, mainly to understand their therapeutic potential. Most of the studies were performed with cells derived from pluripotent stem cells of either rodents or humans, and have mainly focused on their potential in regenerative medicine. High-throughput omics technologies, such as transcriptomics, epigenetics, proteomics, and metabolomics, which exploded in the past decade, represent a powerful tool to investigate the molecular mechanisms characterizing the heterogeneity of endogenous NSCs. The transition from bulk studies to single cell approaches brought significant insights by revealing complex system phenotypes, from the molecular to the organism level. Here, we will discuss the current literature that has been greatly enriched in the “omics era”, successfully exploring the nature and function of endogenous NSCs and the process of neurogenesis. Overall, the information obtained from omics studies of endogenous NSCs provides a sharper picture of NSCs function during neurodevelopment in healthy and in perturbed environments.
Collapse
Affiliation(s)
- Valentina Murtaj
- Division of Neuroscience, San Raffaele Vita-Salute University, Milan, Italy
- Neuroimmunology, Division of Neuroscience, Institute of Experimental Neurology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Erica Butti
- Neuroimmunology, Division of Neuroscience, Institute of Experimental Neurology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Gianvito Martino
- Division of Neuroscience, San Raffaele Vita-Salute University, Milan, Italy
- Neuroimmunology, Division of Neuroscience, Institute of Experimental Neurology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Paola Panina-Bordignon
- Division of Neuroscience, San Raffaele Vita-Salute University, Milan, Italy
- Neuroimmunology, Division of Neuroscience, Institute of Experimental Neurology, IRCCS Ospedale San Raffaele, Milan, Italy
- *Correspondence: Paola Panina-Bordignon
| |
Collapse
|
7
|
Zocher S, Toda T. Epigenetic aging in adult neurogenesis. Hippocampus 2023; 33:347-359. [PMID: 36624660 DOI: 10.1002/hipo.23494] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/11/2022] [Accepted: 12/06/2022] [Indexed: 01/11/2023]
Abstract
Neural stem cells (NSCs) in the hippocampus generate new neurons throughout life, which functionally contribute to cognitive flexibility and mood regulation. Yet adult hippocampal neurogenesis substantially declines with age and age-related impairments in NSC activity underlie this reduction. Particularly, increased NSC quiescence and consequently reduced NSC proliferation are considered to be major drivers of the low neurogenesis levels in the aged brain. Epigenetic regulators control the gene expression programs underlying NSC quiescence, proliferation and differentiation and are hence critical to the regulation of adult neurogenesis. Epigenetic alterations have also emerged as central hallmarks of aging, and recent studies suggest the deterioration of the NSC-specific epigenetic landscape as a driver of the age-dependent decline in adult neurogenesis. In this review, we summarize the recently accumulating evidence for a role of epigenetic dysregulation in NSC aging and propose perspectives for future research directions.
Collapse
Affiliation(s)
- Sara Zocher
- Nuclear Architecture in Neural Plasticity and Aging Laboratory, German Center for Neurodegenerative Diseases (DZNE), Dresden, Germany
| | - Tomohisa Toda
- Nuclear Architecture in Neural Plasticity and Aging Laboratory, German Center for Neurodegenerative Diseases (DZNE), Dresden, Germany
- Institute of Medical Physics and Microtissue Engineering, Faculty of Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
8
|
Buckley MT, Sun ED, George BM, Liu L, Schaum N, Xu L, Reyes JM, Goodell MA, Weissman IL, Wyss-Coray T, Rando TA, Brunet A. Cell-type-specific aging clocks to quantify aging and rejuvenation in neurogenic regions of the brain. NATURE AGING 2023; 3:121-137. [PMID: 37118510 PMCID: PMC10154228 DOI: 10.1038/s43587-022-00335-4] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 11/14/2022] [Indexed: 12/24/2022]
Abstract
The diversity of cell types is a challenge for quantifying aging and its reversal. Here we develop 'aging clocks' based on single-cell transcriptomics to characterize cell-type-specific aging and rejuvenation. We generated single-cell transcriptomes from the subventricular zone neurogenic region of 28 mice, tiling ages from young to old. We trained single-cell-based regression models to predict chronological age and biological age (neural stem cell proliferation capacity). These aging clocks are generalizable to independent cohorts of mice, other regions of the brains, and other species. To determine if these aging clocks could quantify transcriptomic rejuvenation, we generated single-cell transcriptomic datasets of neurogenic regions for two interventions-heterochronic parabiosis and exercise. Aging clocks revealed that heterochronic parabiosis and exercise reverse transcriptomic aging in neurogenic regions, but in different ways. This study represents the first development of high-resolution aging clocks from single-cell transcriptomic data and demonstrates their application to quantify transcriptomic rejuvenation.
Collapse
Affiliation(s)
- Matthew T Buckley
- Department of Genetics, Stanford University, Stanford, CA, USA
- Genetics Graduate Program, Stanford University, Stanford, CA, USA
| | - Eric D Sun
- Department of Genetics, Stanford University, Stanford, CA, USA
- Biomedical Informatics Graduate Program, Stanford University, Stanford, CA, USA
| | - Benson M George
- Stanford Medical Scientist Training Program, Stanford University, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA
| | - Ling Liu
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Department of Neurology, UCLA, Los Angeles, CA, USA
| | - Nicholas Schaum
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Lucy Xu
- Department of Genetics, Stanford University, Stanford, CA, USA
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Jaime M Reyes
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Margaret A Goodell
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Irving L Weissman
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA
- Ludwig Center for Cancer Stem Cell Research and Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Tony Wyss-Coray
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
- Glenn Center for the Biology of Aging, Stanford University, Stanford, CA, USA
| | - Thomas A Rando
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Glenn Center for the Biology of Aging, Stanford University, Stanford, CA, USA
- Neurology Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
- Department of Neurology, UCLA, Los Angeles, CA, USA
- Broad Stem Cell Research Center, UCLA, Los Angeles, CA, USA
| | - Anne Brunet
- Department of Genetics, Stanford University, Stanford, CA, USA.
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA.
- Glenn Center for the Biology of Aging, Stanford University, Stanford, CA, USA.
| |
Collapse
|
9
|
Identification and functional characterization of CD133+GFAP+CD117+Sca1+ neural stem cells. Mol Cell Biochem 2022; 477:897-914. [DOI: 10.1007/s11010-021-04339-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 12/15/2021] [Indexed: 02/03/2023]
|
10
|
He R, Zhang X, Ding L. DBX2 promotes glioblastoma cell proliferation by regulating REST expression. Curr Pharm Biotechnol 2021; 23:1101-1108. [PMID: 34463226 DOI: 10.2174/1389201022666210830142827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Glioblastoma (GBM) is the most common but lethal brain cancer with poor prognosis. The developing brain homeobox 2 (DBX2) has been reported to play important roles in tumor growth. However, the mechanisms of DBX2 in GBM are still unknown. OBJECTIVE This study aims to investigate the function and mechanisms of DBX2 in GBM. METHODS The expressions of DBX2 and REST in GBM were measured by analyzing data from databases, and the results were checked by qPCR and/or western blot of GBM cell lines. Cell proliferation was determined by CCK8 assay, immunohistochemistry and colony formation assay. ChIP-qPCR was used to determine the binding sites of DBX2 on REST. RESULTS In this study, we found that the expression of DBX2 was upregulated in the GBM cell lines. The cell proliferation was damaged after blocking DBX2 expression in U87 and U251 GBM cell lines. The expression level of DBX2 had a positive relationship with that of REST. Our ChIP-qPCR results showed that DBX2 is directly bound to the promoter region of REST. Additionally, the increased GBM cell proliferation caused by DBX2 overexpression can be rescued by REST loss of function. CONCLUSION DBX2 could promote cell proliferation of GBM by binding to the promoter region of REST gene and increasing REST expression.
Collapse
Affiliation(s)
- Ruixing He
- Neurosurgery Department, the Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Jiangsu. China
| | - Xiaotian Zhang
- Neurosurgery Department, Hongze Huai'an District People's Hospital, Jiangsu. China
| | - Lianshu Ding
- Neurosurgery Department, the Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Jiangsu. China
| |
Collapse
|
11
|
Lattke M, Goldstone R, Ellis JK, Boeing S, Jurado-Arjona J, Marichal N, MacRae JI, Berninger B, Guillemot F. Extensive transcriptional and chromatin changes underlie astrocyte maturation in vivo and in culture. Nat Commun 2021; 12:4335. [PMID: 34267208 PMCID: PMC8282848 DOI: 10.1038/s41467-021-24624-5] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 06/16/2021] [Indexed: 11/08/2022] Open
Abstract
Astrocytes have essential functions in brain homeostasis that are established late in differentiation, but the mechanisms underlying the functional maturation of astrocytes are not well understood. Here we identify extensive transcriptional changes that occur during murine astrocyte maturation in vivo that are accompanied by chromatin remodelling at enhancer elements. Investigating astrocyte maturation in a cell culture model revealed that in vitro-differentiated astrocytes lack expression of many mature astrocyte-specific genes, including genes for the transcription factors Rorb, Dbx2, Lhx2 and Fezf2. Forced expression of these factors in vitro induces distinct sets of mature astrocyte-specific transcripts. Culturing astrocytes in a three-dimensional matrix containing FGF2 induces expression of Rorb, Dbx2 and Lhx2 and improves astrocyte maturity based on transcriptional and chromatin profiles. Therefore, extrinsic signals orchestrate the expression of multiple intrinsic regulators, which in turn induce in a modular manner the transcriptional and chromatin changes underlying astrocyte maturation.
Collapse
Affiliation(s)
- Michael Lattke
- Neural Stem Cell Biology Laboratory, The Francis Crick Institute, London, UK
| | - Robert Goldstone
- Advanced Sequencing Facility, The Francis Crick Institute, London, UK
| | - James K Ellis
- Metabolomics Science Technology Platform, The Francis Crick Institute, London, UK
| | - Stefan Boeing
- Software Development & Machine Learning Team, The Francis Crick Institute, London, UK
- Bioinformatics & Biostatistics, The Francis Crick Institute, London, UK
| | - Jerónimo Jurado-Arjona
- Institute of Psychiatry, Psychology & Neuroscience, Centre for Developmental Neurobiology, King's College London, London, UK
| | - Nicolás Marichal
- Institute of Psychiatry, Psychology & Neuroscience, Centre for Developmental Neurobiology, King's College London, London, UK
| | - James I MacRae
- Metabolomics Science Technology Platform, The Francis Crick Institute, London, UK
| | - Benedikt Berninger
- Institute of Psychiatry, Psychology & Neuroscience, Centre for Developmental Neurobiology, King's College London, London, UK
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- The Francis Crick Institute, London, UK
| | - Francois Guillemot
- Neural Stem Cell Biology Laboratory, The Francis Crick Institute, London, UK.
| |
Collapse
|
12
|
Mouthon MA, Morizur L, Dutour L, Pineau D, Kortulewski T, Boussin FD. Syndecan-1 Stimulates Adult Neurogenesis in the Mouse Ventricular-Subventricular Zone after Injury. iScience 2020; 23:101784. [PMID: 33294792 PMCID: PMC7695966 DOI: 10.1016/j.isci.2020.101784] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 09/25/2020] [Accepted: 11/05/2020] [Indexed: 11/28/2022] Open
Abstract
The production of neurons from neural stem cells (NSCs) persists throughout life in the mouse ventricular-subventricular zone (V-SVZ). We have previously reported that NSCs from adult V-SVZ are contained in cell populations expressing the carbohydrate SSEA-1/LeX, which exhibit either characteristics of quiescent NSCs (qNSCs) or of actively dividing NSCs (aNSCs) based on the absence or the presence of EGF-receptor, respectively. Using the fluorescence ubiquitination cell cycle indicator-Cdt1 transgenic mice to mark cells in G0/G1 phase of the cell cycle, we uncovered a subpopulation of qNSCs which were primed to enter the cell cycle in vitro. Besides, we found that treatment with Syndecan-1, a heparan sulfate proteoglycan involved in NSC proliferation, hastened the division of qNSCs and increased proliferation of aNSCs shortening their G1 phase in vitro. Furthermore, administration of Syndecan-1 ameliorated the recovery of neurogenic populations in the V-SVZ after radiation-induced injury providing potential cure for neurogenesis decline during brain aging or after injury. A subpopulation of quiescent NSCs are primed to enter cell cycle The content of primed quiescent NSCs decreases rapidly with age Syndecan-1 favors cell cycle progression of NSCs in vitro and in vivo
Collapse
Affiliation(s)
- Marc-André Mouthon
- Université de Paris and Université Paris-Saclay, Inserm, LRP/iRCM/IBFJ CEA, UMR Stabilité Génétique Cellules Souches et Radiations, 92265 Fontenay-aux-Roses, France
| | - Lise Morizur
- Université de Paris and Université Paris-Saclay, Inserm, LRP/iRCM/IBFJ CEA, UMR Stabilité Génétique Cellules Souches et Radiations, 92265 Fontenay-aux-Roses, France
| | - Léa Dutour
- Université de Paris and Université Paris-Saclay, Inserm, LRP/iRCM/IBFJ CEA, UMR Stabilité Génétique Cellules Souches et Radiations, 92265 Fontenay-aux-Roses, France
| | - Donovan Pineau
- Université de Paris and Université Paris-Saclay, Inserm, LRP/iRCM/IBFJ CEA, UMR Stabilité Génétique Cellules Souches et Radiations, 92265 Fontenay-aux-Roses, France
| | - Thierry Kortulewski
- Université de Paris and Université Paris-Saclay, Inserm, LRP/iRCM/IBFJ CEA, UMR Stabilité Génétique Cellules Souches et Radiations, 92265 Fontenay-aux-Roses, France
| | - François D Boussin
- Université de Paris and Université Paris-Saclay, Inserm, LRP/iRCM/IBFJ CEA, UMR Stabilité Génétique Cellules Souches et Radiations, 92265 Fontenay-aux-Roses, France
| |
Collapse
|
13
|
Navarro Negredo P, Yeo RW, Brunet A. Aging and Rejuvenation of Neural Stem Cells and Their Niches. Cell Stem Cell 2020; 27:202-223. [PMID: 32726579 DOI: 10.1016/j.stem.2020.07.002] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Aging has a profound and devastating effect on the brain. Old age is accompanied by declining cognitive function and enhanced risk of brain diseases, including cancer and neurodegenerative disorders. A key question is whether cells with regenerative potential contribute to brain health and even brain "rejuvenation." This review discusses mechanisms that regulate neural stem cells (NSCs) during aging, focusing on the effect of metabolism, genetic regulation, and the surrounding niche. We also explore emerging rejuvenating strategies for old NSCs. Finally, we consider how new technologies may help harness NSCs' potential to restore healthy brain function during physiological and pathological aging.
Collapse
Affiliation(s)
| | - Robin W Yeo
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Anne Brunet
- Department of Genetics, Stanford University, Stanford, CA 94305, USA; Glenn Laboratories for the Biology of Aging, Stanford, CA 94305, USA.
| |
Collapse
|
14
|
Linc-FOXD3 knockdown enhances hippocampal NSCs activation through upregulation of the Wnt/β-catenin pathway. Neurosci Lett 2020; 729:134991. [DOI: 10.1016/j.neulet.2020.134991] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 03/31/2020] [Accepted: 04/14/2020] [Indexed: 12/12/2022]
|
15
|
X-ray irradiated cultures of mouse cortical neural stem/progenitor cells recover cell viability and proliferation with dose-dependent kinetics. Sci Rep 2020; 10:6562. [PMID: 32300147 PMCID: PMC7162981 DOI: 10.1038/s41598-020-63348-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 03/24/2020] [Indexed: 12/13/2022] Open
Abstract
Exposure of the developing or adult brain to ionizing radiation (IR) can cause cognitive impairment and/or brain cancer, by targeting neural stem/progenitor cells (NSPCs). IR effects on NSPCs include transient cell cycle arrest, permanent cell cycle exit/differentiation, or cell death, depending on the experimental conditions. In vivo studies suggest that brain age influences NSPC response to IR, but whether this is due to intrinsic NSPC changes or to niche environment modifications remains unclear. Here, we describe the dose-dependent, time-dependent effects of X-ray IR in NSPC cultures derived from the mouse foetal cerebral cortex. We show that, although cortical NSPCs are resistant to low/moderate IR doses, high level IR exposure causes cell death, accumulation of DNA double-strand breaks, activation of p53-related molecular pathways and cell cycle alterations. Irradiated NSPC cultures transiently upregulate differentiation markers, but recover control levels of proliferation, viability and gene expression in the second week post-irradiation. These results are consistent with previously described in vivo effects of IR in the developing mouse cortex, and distinct from those observed in adult NSPC niches or in vitro adult NSPC cultures, suggesting that intrinsic differences in NSPCs of different origins might determine, at least in part, their response to IR.
Collapse
|
16
|
Zambusi A, Pelin Burhan Ö, Di Giaimo R, Schmid B, Ninkovic J. Granulins Regulate Aging Kinetics in the Adult Zebrafish Telencephalon. Cells 2020; 9:E350. [PMID: 32028681 PMCID: PMC7072227 DOI: 10.3390/cells9020350] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/31/2020] [Accepted: 01/31/2020] [Indexed: 12/26/2022] Open
Abstract
Granulins (GRN) are secreted factors that promote neuronal survival and regulate inflammation in various pathological conditions. However, their roles in physiological conditions in the brain remain poorly understood. To address this knowledge gap, we analysed the telencephalon in Grn-deficient zebrafish and identified morphological and transcriptional changes in microglial cells, indicative of a pro-inflammatory phenotype in the absence of any insult. Unexpectedly, activated mutant microglia shared part of their transcriptional signature with aged human microglia. Furthermore, transcriptome profiles of the entire telencephali isolated from young Grn-deficient animals showed remarkable similarities with the profiles of the telencephali isolated from aged wildtype animals. Additionally, 50% of differentially regulated genes during aging were regulated in the telencephalon of young Grn-deficient animals compared to their wildtype littermates. Importantly, the telencephalon transcriptome in young Grn-deficent animals changed only mildly with aging, further suggesting premature aging of Grn-deficient brain. Indeed, Grn loss led to decreased neurogenesis and oligodendrogenesis, and to shortening of telomeres at young ages, to an extent comparable to that observed during aging. Altogether, our data demonstrate a role of Grn in regulating aging kinetics in the zebrafish telencephalon, thus providing a valuable tool for the development of new therapeutic approaches to treat age-associated pathologies.
Collapse
Affiliation(s)
- Alessandro Zambusi
- Institute of Stem Cell Research, Helmholtz Center Munich, 85764 Neuherberg, Germany
- Graduate School of Systemic Neuroscience; Biomedical Center, Faculty of Medicine, LMU Munich, 82152 Planegg, Germany
| | - Özge Pelin Burhan
- German Center for Neurodegenerative Diseases (DZNE), 81377 München, Germany; (Ö.P.B.); (B.S.)
| | - Rossella Di Giaimo
- Department of Biology, University of Naples Federico II, 80134 Naples, Italy;
| | - Bettina Schmid
- German Center for Neurodegenerative Diseases (DZNE), 81377 München, Germany; (Ö.P.B.); (B.S.)
| | - Jovica Ninkovic
- Institute of Stem Cell Research, Helmholtz Center Munich, 85764 Neuherberg, Germany
- Graduate School of Systemic Neuroscience; Biomedical Center, Faculty of Medicine, LMU Munich, 82152 Planegg, Germany
| |
Collapse
|
17
|
Poiana G, Gioia R, Sineri S, Cardarelli S, Lupo G, Cacci E. Transcriptional regulation of adult neural stem/progenitor cells: tales from the subventricular zone. Neural Regen Res 2020; 15:1773-1783. [PMID: 32246617 PMCID: PMC7513981 DOI: 10.4103/1673-5374.280301] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
In rodents, well characterized neurogenic niches of the adult brain, such as the subventricular zone of the lateral ventricles and the subgranular zone of the hippocampus, support the maintenance of neural/stem progenitor cells (NSPCs) and the production of new neurons throughout the lifespan. The adult neurogenic process is dependent on the intrinsic gene expression signatures of NSPCs that make them competent for self-renewal and neuronal differentiation. At the same time, it is receptive to regulation by various extracellular signals that allow the modulation of neuronal production and integration into brain circuitries by various physiological stimuli. A drawback of this plasticity is the sensitivity of adult neurogenesis to alterations of the niche environment that can occur due to aging, injury or disease. At the core of the molecular mechanisms regulating neurogenesis, several transcription factors have been identified that maintain NSPC identity and mediate NSPC response to extrinsic cues. Here, we focus on REST, Egr1 and Dbx2 and their roles in adult neurogenesis, especially in the subventricular zone. We review recent work from our and other laboratories implicating these transcription factors in the control of NSPC proliferation and differentiation and in the response of NSPCs to extrinsic influences from the niche. We also discuss how their altered regulation may affect the neurogenic process in the aged and in the diseased brain. Finally, we highlight key open questions that need to be addressed to foster our understanding of the transcriptional mechanisms controlling adult neurogenesis.
Collapse
Affiliation(s)
- Giancarlo Poiana
- Department of Biology and Biotechnology "C. Darwin", Sapienza University of Rome, Rome, Italy
| | - Roberta Gioia
- Department of Biology and Biotechnology "C. Darwin", Sapienza University of Rome, Rome, Italy
| | - Serena Sineri
- Department of Biology and Biotechnology "C. Darwin", Sapienza University of Rome, Rome, Italy
| | - Silvia Cardarelli
- Department of Biology and Biotechnology "C. Darwin", Sapienza University of Rome, Rome, Italy
| | - Giuseppe Lupo
- Department of Biology and Biotechnology "C. Darwin", Sapienza University of Rome, Rome, Italy
| | - Emanuele Cacci
- Department of Biology and Biotechnology "C. Darwin", Sapienza University of Rome, Rome, Italy
| |
Collapse
|
18
|
Bast L, Calzolari F, Strasser MK, Hasenauer J, Theis FJ, Ninkovic J, Marr C. Increasing Neural Stem Cell Division Asymmetry and Quiescence Are Predicted to Contribute to the Age-Related Decline in Neurogenesis. Cell Rep 2019; 25:3231-3240.e8. [PMID: 30566852 DOI: 10.1016/j.celrep.2018.11.088] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 07/31/2018] [Accepted: 11/21/2018] [Indexed: 02/06/2023] Open
Abstract
Adult murine neural stem cells (NSCs) generate neurons in drastically declining numbers with age. How cellular dynamics sustain neurogenesis and how alterations with age may result in this decline are unresolved issues. We therefore clonally traced NSC lineages using confetti reporters in young and middle-aged adult mice. To understand the underlying mechanisms, we derived mathematical models that explain observed clonal cell type abundances. The best models consistently show self-renewal of transit-amplifying progenitors and rapid neuroblast cell cycle exit. In middle-aged mice, we identified an increased probability of asymmetric stem cell divisions at the expense of symmetric differentiation, accompanied by an extended persistence of quiescence between activation phases. Our model explains existing longitudinal population data and identifies particular cellular properties underlying adult NSC homeostasis and the aging of this stem cell compartment.
Collapse
Affiliation(s)
- Lisa Bast
- Institute of Computational Biology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany; Department of Mathematics, Chair of Mathematical Modeling of Biological Systems, Technische Universität München, Garching, Germany
| | - Filippo Calzolari
- Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany; Institute of Stem Cell Research, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany; Department of Physiological Genomics, Ludwig-Maximilians University Munich, Munich, Germany.
| | - Michael K Strasser
- Institute of Computational Biology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Jan Hasenauer
- Institute of Computational Biology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany; Department of Mathematics, Chair of Mathematical Modeling of Biological Systems, Technische Universität München, Garching, Germany
| | - Fabian J Theis
- Institute of Computational Biology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany; Department of Mathematics, Chair of Mathematical Modeling of Biological Systems, Technische Universität München, Garching, Germany
| | - Jovica Ninkovic
- Institute of Stem Cell Research, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany; Department of Physiological Genomics, Ludwig-Maximilians University Munich, Munich, Germany; Department for Cell Biology and Anatomy, Biomedical Center of LMU, Ludwig-Maximilians University Munich, Munich, Germany.
| | - Carsten Marr
- Institute of Computational Biology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany.
| |
Collapse
|
19
|
Mofazzal Jahromi MA, Abdoli A, Rahmanian M, Bardania H, Bayandori M, Moosavi Basri SM, Kalbasi A, Aref AR, Karimi M, Hamblin MR. Microfluidic Brain-on-a-Chip: Perspectives for Mimicking Neural System Disorders. Mol Neurobiol 2019; 56:8489-8512. [PMID: 31264092 PMCID: PMC6842047 DOI: 10.1007/s12035-019-01653-2] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 05/15/2019] [Indexed: 01/09/2023]
Abstract
Neurodegenerative diseases (NDDs) include more than 600 types of nervous system disorders in humans that impact tens of millions of people worldwide. Estimates by the World Health Organization (WHO) suggest NDDs will increase by nearly 50% by 2030. Hence, development of advanced models for research on NDDs is needed to explore new therapeutic strategies and explore the pathogenesis of these disorders. Different approaches have been deployed in order to investigate nervous system disorders, including two-and three-dimensional (2D and 3D) cell cultures and animal models. However, these models have limitations, such as lacking cellular tension, fluid shear stress, and compression analysis; thus, studying the biochemical effects of therapeutic molecules on the biophysiological interactions of cells, tissues, and organs is problematic. The microfluidic "organ-on-a-chip" is an inexpensive and rapid analytical technology to create an effective tool for manipulation, monitoring, and assessment of cells, and investigating drug discovery, which enables the culture of various cells in a small amount of fluid (10-9 to 10-18 L). Thus, these chips have the ability to overcome the mentioned restrictions of 2D and 3D cell cultures, as well as animal models. Stem cells (SCs), particularly neural stem cells (NSCs), induced pluripotent stem cells (iPSCs), and embryonic stem cells (ESCs) have the capability to give rise to various neural system cells. Hence, microfluidic organ-on-a-chip and SCs can be used as potential research tools to study the treatment of central nervous system (CNS) and peripheral nervous system (PNS) disorders. Accordingly, in the present review, we discuss the latest progress in microfluidic brain-on-a-chip as a powerful and advanced technology that can be used in basic studies to investigate normal and abnormal functions of the nervous system.
Collapse
Affiliation(s)
- Mirza Ali Mofazzal Jahromi
- Department of Advanced Medical Sciences & Technologies, School of Medicine, Jahrom University of Medical Sciences, Jahrom, Iran
- Research Center for Noncommunicable Diseases, School of Medicine, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Amir Abdoli
- Research Center for Noncommunicable Diseases, School of Medicine, Jahrom University of Medical Sciences, Jahrom, Iran
- Department of Parasitology and Mycology, School of Medicine, Jahrom University of Medical Sciences, Jahrom, Iran
- Zoonoses Research Center, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Mohammad Rahmanian
- Research Center for Noncommunicable Diseases, School of Medicine, Jahrom University of Medical Sciences, Jahrom, Iran
- Department of Anesthesiology, Critical Care, and Pain Medicine, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Hassan Bardania
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Mehrdad Bayandori
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Alireza Kalbasi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Amir Reza Aref
- Department of Cancer Biology, Center for Cancer Systems Biology, Dana-Farber Cancer Institute, Department of Genetics, Harvard Medical School, Boston, MA, 02215, USA
| | - Mahdi Karimi
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran.
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.
- Research Center for Science and Technology in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Department of Dermatology, Harvard Medical School, Boston, MA, USA.
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, USA.
| |
Collapse
|
20
|
Lupo G, Gaetani S, Cacci E, Biagioni S, Negri R. Molecular Signatures of the Aging Brain: Finding the Links Between Genes and Phenotypes. Neurotherapeutics 2019; 16:543-553. [PMID: 31161490 PMCID: PMC6694319 DOI: 10.1007/s13311-019-00743-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Aging is associated with cognitive decline and increased vulnerability to neurodegenerative diseases. The progressive extension of the average human lifespan is bound to lead to a corresponding increase in the fraction of cognitively impaired elderly individuals among the human population, with an enormous societal and economic burden. At the cellular and tissue levels, cognitive decline is linked to a reduction in specific neuronal subpopulations, a widespread decrease in synaptic plasticity and an increase in neuroinflammation due to an enhanced activation of astrocytes and microglia, but the molecular mechanisms underlying these functional changes during normal aging and in neuropathological conditions remain poorly understood. In this review, we summarize very recent and outstanding progress in elucidating the molecular changes associated with cognitive decline through the genome-wide profiling of aging brain cells at different molecular levels (genomic, epigenomic, transcriptomic, proteomic). We discuss how the correlation of different molecular and phenotypic traits driven by mathematical and computational analyses of large datasets has led to the prediction of key molecular nodes of neurodegenerative pathways, and provide a few examples of candidate regulators of cognitive decline identified with these approaches. Furthermore, we highlight the dysregulation of the synaptic transcriptome in neuronal cells and of the inflammatory transcriptome in glial cells as some of the key events during normal and neuropathological human brain aging.
Collapse
Affiliation(s)
- Giuseppe Lupo
- Department of Chemistry, Sapienza University of Rome, Piazzale A. Moro, 00185, Rome, Italy.
| | - Silvana Gaetani
- Department of Physiology and Farmacology "V. Erspamer", Sapienza University of Rome, Piazzale A. Moro, 00185, Rome, Italy
| | - Emanuele Cacci
- Department of Biology and Biotechnology "C. Darwin", Sapienza University of Rome, Piazzale A. Moro, 00185, Rome, Italy
| | - Stefano Biagioni
- Department of Biology and Biotechnology "C. Darwin", Sapienza University of Rome, Piazzale A. Moro, 00185, Rome, Italy
| | - Rodolfo Negri
- Department of Biology and Biotechnology "C. Darwin", Sapienza University of Rome, Piazzale A. Moro, 00185, Rome, Italy
| |
Collapse
|
21
|
Luo J, Liu K, Yao Y, Sun Q, Zheng X, Zhu B, Zhang Q, Xu L, Shen Y, Ren B. DMBX1 promotes tumor proliferation and regulates cell cycle progression via repressing OTX2-mediated transcription of p21 in lung adenocarcinoma cell. Cancer Lett 2019; 453:45-56. [DOI: 10.1016/j.canlet.2019.03.045] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 03/21/2019] [Accepted: 03/22/2019] [Indexed: 12/17/2022]
|
22
|
Altuna M, Urdánoz-Casado A, Sánchez-Ruiz de Gordoa J, Zelaya MV, Labarga A, Lepesant JMJ, Roldán M, Blanco-Luquin I, Perdones Á, Larumbe R, Jericó I, Echavarri C, Méndez-López I, Di Stefano L, Mendioroz M. DNA methylation signature of human hippocampus in Alzheimer's disease is linked to neurogenesis. Clin Epigenetics 2019; 11:91. [PMID: 31217032 PMCID: PMC6585076 DOI: 10.1186/s13148-019-0672-7] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 04/25/2019] [Indexed: 12/22/2022] Open
Abstract
Background Drawing the epigenome landscape of Alzheimer’s disease (AD) still remains a challenge. To characterize the epigenetic molecular basis of the human hippocampus in AD, we profiled genome-wide DNA methylation levels in hippocampal samples from a cohort of pure AD patients and controls by using the Illumina 450K methylation arrays. Results Up to 118 AD-related differentially methylated positions (DMPs) were identified in the AD hippocampus, and extended mapping of specific regions was obtained by bisulfite cloning sequencing. AD-related DMPs were significantly correlated with phosphorylated tau burden. Functional analysis highlighted that AD-related DMPs were enriched in poised promoters that were not generally maintained in committed neural progenitor cells, as shown by ChiP-qPCR experiments. Interestingly, AD-related DMPs preferentially involved neurodevelopmental and neurogenesis-related genes. Finally, InterPro ontology analysis revealed enrichment in homeobox-containing transcription factors in the set of AD-related DMPs. Conclusions These results suggest that altered DNA methylation in the AD hippocampus occurs at specific regulatory regions crucial for neural differentiation supporting the notion that adult hippocampal neurogenesis may play a role in AD through epigenetic mechanisms. Graphical abstract ![]()
Electronic supplementary material The online version of this article (10.1186/s13148-019-0672-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Miren Altuna
- Neuroepigenetics Laboratory, Navarrabiomed, Public University of Navarre (UPNA), IdiSNA (Navarra Institute for Health Research), c/ Irunlarrea, 3, 31008, Pamplona, Spain.,Department of Neurology, Complejo Hospitalario de Navarra, IdiSNA (Navarra Institute for Health Research), Pamplona, Spain
| | - Amaya Urdánoz-Casado
- Neuroepigenetics Laboratory, Navarrabiomed, Public University of Navarre (UPNA), IdiSNA (Navarra Institute for Health Research), c/ Irunlarrea, 3, 31008, Pamplona, Spain
| | - Javier Sánchez-Ruiz de Gordoa
- Neuroepigenetics Laboratory, Navarrabiomed, Public University of Navarre (UPNA), IdiSNA (Navarra Institute for Health Research), c/ Irunlarrea, 3, 31008, Pamplona, Spain.,Department of Neurology, Complejo Hospitalario de Navarra, IdiSNA (Navarra Institute for Health Research), Pamplona, Spain
| | - María V Zelaya
- Department of Pathology, Complejo Hospitalario de Navarra- IdiSNA (Navarra Institute for Health Research), Pamplona, Spain
| | - Alberto Labarga
- Bioinformatics Unit, Navarrabiomed, Public University of Navarre (UPNA), IdiSNA (Navarra Institute for Health Research), Pamplona, Spain
| | - Julie M J Lepesant
- Laboratoire de biologie cellulaire et moléculaire du contrôle de la prolifération (LBCMCP), Université Paul Sabatier, CNRS, Toulouse, France
| | - Miren Roldán
- Neuroepigenetics Laboratory, Navarrabiomed, Public University of Navarre (UPNA), IdiSNA (Navarra Institute for Health Research), c/ Irunlarrea, 3, 31008, Pamplona, Spain
| | - Idoia Blanco-Luquin
- Neuroepigenetics Laboratory, Navarrabiomed, Public University of Navarre (UPNA), IdiSNA (Navarra Institute for Health Research), c/ Irunlarrea, 3, 31008, Pamplona, Spain
| | - Álvaro Perdones
- Bioinformatics Unit, Navarrabiomed, Public University of Navarre (UPNA), IdiSNA (Navarra Institute for Health Research), Pamplona, Spain
| | - Rosa Larumbe
- Neuroepigenetics Laboratory, Navarrabiomed, Public University of Navarre (UPNA), IdiSNA (Navarra Institute for Health Research), c/ Irunlarrea, 3, 31008, Pamplona, Spain.,Department of Neurology, Complejo Hospitalario de Navarra, IdiSNA (Navarra Institute for Health Research), Pamplona, Spain
| | - Ivonne Jericó
- Department of Neurology, Complejo Hospitalario de Navarra, IdiSNA (Navarra Institute for Health Research), Pamplona, Spain
| | - Carmen Echavarri
- Neuroepigenetics Laboratory, Navarrabiomed, Public University of Navarre (UPNA), IdiSNA (Navarra Institute for Health Research), c/ Irunlarrea, 3, 31008, Pamplona, Spain.,Department of Neurology, Complejo Hospitalario de Navarra, IdiSNA (Navarra Institute for Health Research), Pamplona, Spain
| | - Iván Méndez-López
- Neuroepigenetics Laboratory, Navarrabiomed, Public University of Navarre (UPNA), IdiSNA (Navarra Institute for Health Research), c/ Irunlarrea, 3, 31008, Pamplona, Spain.,Department of Internal Medicine, Hospital García-Orcoyen, Estella, Spain
| | - Luisa Di Stefano
- Laboratoire de biologie cellulaire et moléculaire du contrôle de la prolifération (LBCMCP), Université Paul Sabatier, CNRS, Toulouse, France
| | - Maite Mendioroz
- Neuroepigenetics Laboratory, Navarrabiomed, Public University of Navarre (UPNA), IdiSNA (Navarra Institute for Health Research), c/ Irunlarrea, 3, 31008, Pamplona, Spain. .,Department of Neurology, Complejo Hospitalario de Navarra, IdiSNA (Navarra Institute for Health Research), Pamplona, Spain.
| |
Collapse
|
23
|
Lai RW, Lu R, Danthi PS, Bravo JI, Goumba A, Sampathkumar NK, Benayoun BA. Multi-level remodeling of transcriptional landscapes in aging and longevity. BMB Rep 2019. [PMID: 30526773 PMCID: PMC6386224 DOI: 10.5483/bmbrep.2019.52.1.296] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
In multi-cellular organisms, the control of gene expression is key not only for development, but also for adult cellular homeostasis, and gene expression has been observed to be deregulated with aging. In this review, we discuss the current knowledge on the transcriptional alterations that have been described to occur with age in metazoans. First, we discuss age-related transcriptional changes in protein-coding genes, the expected functional impact of such changes, and how known pro-longevity interventions impact these changes. Second, we discuss the changes and impact of emerging aspects of transcription in aging, including age-related changes in splicing, lncRNAs and circRNAs. Third, we discuss the changes and potential impact of transcription of transposable elements with aging. Fourth, we highlight small ncRNAs and their potential impact on the regulation of aging phenotypes. Understanding the aging transcriptome will be key to identify important regulatory targets, and ultimately slow-down or reverse aging and extend healthy lifespan in humans.
Collapse
Affiliation(s)
- Rochelle W Lai
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Ryan Lu
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Prakroothi S Danthi
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Juan I Bravo
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089; Graduate program in the Biology of Aging, University of Southern California, Los Angeles, CA 90089, USA
| | - Alexandre Goumba
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | | | - Bérénice A Benayoun
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089; USC Norris Comprehensive Cancer Center, Epigenetics and Gene Regulation, Los Angeles, CA 90089; USC Stem Cell Initiative, Los Angeles, CA 90089, USA
| |
Collapse
|
24
|
Lupo G, Gioia R, Nisi PS, Biagioni S, Cacci E. Molecular Mechanisms of Neurogenic Aging in the Adult Mouse Subventricular Zone. J Exp Neurosci 2019; 13:1179069519829040. [PMID: 30814846 PMCID: PMC6381424 DOI: 10.1177/1179069519829040] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 01/10/2019] [Indexed: 12/31/2022] Open
Abstract
In the adult rodent brain, the continuous production of new neurons by neural stem/progenitor cells (NSPCs) residing in specialized neurogenic niches and their subsequent integration into pre-existing cerebral circuitries supports odour discrimination, spatial learning, and contextual memory capabilities. Aging is recognized as the most potent negative regulator of adult neurogenesis. The neurogenic process markedly declines in the aged brain, due to the reduction of the NSPC pool and the functional impairment of the remaining NSPCs. This decline has been linked to the progressive cognitive deficits of elderly individuals and it may also be involved in the onset/progression of neurological disorders. Since the human lifespan has been dramatically extended, the incidence of age-associated neuropsychiatric conditions in the human population has increased. This has prompted efforts to shed light on the mechanisms underpinning the age-related decline of adult neurogenesis, whose knowledge may foster therapeutic approaches to prevent or delay cognitive alterations in elderly patients. In this review, we summarize recent progress in elucidating the molecular causes of neurogenic aging in the most abundant NSPC niche of the adult mouse brain: the subventricular zone (SVZ). We discuss the age-associated changes occurring both in the intrinsic NSPC molecular networks and in the extrinsic signalling pathways acting in the complex environment of the SVZ niche, and how all these changes may steer young NSPCs towards an aged phenotype.
Collapse
Affiliation(s)
- Giuseppe Lupo
- Department of Chemistry, Sapienza University of Rome, Rome, Italy
| | - Roberta Gioia
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, Rome, Italy
| | - Paola Serena Nisi
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, Rome, Italy
| | - Stefano Biagioni
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, Rome, Italy
| | - Emanuele Cacci
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, Rome, Italy
| |
Collapse
|
25
|
Świtońska K, Szlachcic WJ, Handschuh L, Wojciechowski P, Marczak Ł, Stelmaszczuk M, Figlerowicz M, Figiel M. Identification of Altered Developmental Pathways in Human Juvenile HD iPSC With 71Q and 109Q Using Transcriptome Profiling. Front Cell Neurosci 2019; 12:528. [PMID: 30713489 PMCID: PMC6345698 DOI: 10.3389/fncel.2018.00528] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 12/19/2018] [Indexed: 12/29/2022] Open
Abstract
In Huntington disease (HD) subtle symptoms in patients may occur years or even decades prior to diagnosis. HD changes at a molecular level may begin as early as in cells that are non-lineage committed such as stem cells or HD patients induced pluripotent stem cells (iPSCs) offering opportunity to enhance the understanding of the HD pathogenesis. In addition, juvenile HD non-linage committed cells were previously not directly investigated in detail by RNA-seq. In the present manuscript, we define the early HD and juvenile HD transcriptional alterations using 6 human HD iPS cell lines from two patients, one with 71 CAGs and one with 109 CAG repeats. We identified 107 (6 HD lines), 198 (3 HD71Q lines) and 217 (3 HD109Q lines) significantly dysregulated mRNAs in each comparison group. The analyses showed that many of dysregulated transcripts in HD109Q iPSC lines are involved in DNA damage response and apoptosis, such as CCND1, CDKN1A, TP53, BAX, TNFRSF10B, TNFRSF10C, TNFRSF10D, DDB2, PLCB1, PRKCQ, HSH2D, ZMAT3, PLK2, and RPS27L. Most of them were identified as downregulated and their proteins are direct interactors with TP53. HTT probably alters the level of several TP53 interactors influencing apoptosis. This may lead to accumulation of an excessive number of progenitor cells and potential disruption of cell differentiation and production of mature neurons. In addition, HTT effects on cell polarization also demonstrated in the analysis may result in a generation of incorrect progenitors. Bioinformatics analysis of transcripts dysregulated in HD71Q iPSC lines showed that several of them act as transcription regulators during the early multicellular stages of development, such as ZFP57, PIWIL2, HIST1H3C, and HIST1H2BB. Significant upregulation of most of these transcripts may lead to a global increase in expression level of genes involved in pathways critical for embryogenesis and early neural development. In addition, MS analysis revealed altered levels of TP53 and ZFP30 proteins reflecting the functional significance of dysregulated mRNA levels of these proteins which were associated with apoptosis and DNA binding. Our finding very well corresponds to the fact that mutation in the HTT gene may cause precocious neurogenesis and identifies pathways likely disrupted during development.
Collapse
Affiliation(s)
- Karolina Świtońska
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| | | | - Luiza Handschuh
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| | - Paweł Wojciechowski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland.,Institute of Computing Science, Poznan University of Technology, Poznań, Poland
| | - Łukasz Marczak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| | - Michał Stelmaszczuk
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| | - Marek Figlerowicz
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| | - Maciej Figiel
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| |
Collapse
|
26
|
Lai RW, Lu R, Danthi PS, Bravo JI, Goumba A, Sampathkumar NK, Benayoun BA. Multi-level remodeling of transcriptional landscapes in aging and longevity. BMB Rep 2019; 52:86-108. [PMID: 30526773 PMCID: PMC6386224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Indexed: 07/15/2024] Open
Abstract
In multi-cellular organisms, the control of gene expression is key not only for development, but also for adult cellular homeostasis, and gene expression has been observed to be deregulated with aging. In this review, we discuss the current knowledge on the transcriptional alterations that have been described to occur with age in metazoans. First, we discuss age-related transcriptional changes in protein-coding genes, the expected functional impact of such changes, and how known pro-longevity interventions impact these changes. Second, we discuss the changes and impact of emerging aspects of transcription in aging, including age-related changes in splicing, lncRNAs and circRNAs. Third, we discuss the changes and potential impact of transcription of transposable elements with aging. Fourth, we highlight small ncRNAs and their potential impact on the regulation of aging phenotypes. Understanding the aging transcriptome will be key to identify important regulatory targets, and ultimately slow-down or reverse aging and extend healthy lifespan in humans. [BMB Reports 2019; 52(1): 86-108].
Collapse
Affiliation(s)
| | | | - Prakroothi S. Danthi
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089,
USA
| | - Juan I. Bravo
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089,
USA
- Graduate program in the Biology of Aging, University of Southern California, Los Angeles, CA 90089,
USA
| | - Alexandre Goumba
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089,
USA
| | | | - Bérénice A. Benayoun
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089,
USA
- USC Norris Comprehensive Cancer Center, Epigenetics and Gene Regulation, Los Angeles, CA 90089,
USA
- USC Stem Cell Initiative, Los Angeles, CA 90089,
USA
| |
Collapse
|
27
|
Lupo G, Nisi PS, Esteve P, Paul YL, Novo CL, Sidders B, Khan MA, Biagioni S, Liu HK, Bovolenta P, Cacci E, Rugg-Gunn PJ. Molecular profiling of aged neural progenitors identifies Dbx2 as a candidate regulator of age-associated neurogenic decline. Aging Cell 2018; 17:e12745. [PMID: 29504228 PMCID: PMC5946077 DOI: 10.1111/acel.12745] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/04/2018] [Indexed: 12/22/2022] Open
Abstract
Adult neurogenesis declines with aging due to the depletion and functional impairment of neural stem/progenitor cells (NSPCs). An improved understanding of the underlying mechanisms that drive age‐associated neurogenic deficiency could lead to the development of strategies to alleviate cognitive impairment and facilitate neuroregeneration. An essential step towards this aim is to investigate the molecular changes that occur in NSPC aging on a genomewide scale. In this study, we compare the transcriptional, histone methylation and DNA methylation signatures of NSPCs derived from the subventricular zone (SVZ) of young adult (3 months old) and aged (18 months old) mice. Surprisingly, the transcriptional and epigenomic profiles of SVZ‐derived NSPCs are largely unchanged in aged cells. Despite the global similarities, we detect robust age‐dependent changes at several hundred genes and regulatory elements, thereby identifying putative regulators of neurogenic decline. Within this list, the homeobox gene Dbx2 is upregulated in vitro and in vivo, and its promoter region has altered histone and DNA methylation levels, in aged NSPCs. Using functional in vitro assays, we show that elevated Dbx2 expression in young adult NSPCs promotes age‐related phenotypes, including the reduced proliferation of NSPC cultures and the altered transcript levels of age‐associated regulators of NSPC proliferation and differentiation. Depleting Dbx2 in aged NSPCs caused the reverse gene expression changes. Taken together, these results provide new insights into the molecular programmes that are affected during mouse NSPC aging, and uncover a new functional role for Dbx2 in promoting age‐related neurogenic decline.
Collapse
Affiliation(s)
- Giuseppe Lupo
- Department of Chemistry; Sapienza University of Rome; Rome Italy
| | - Paola S. Nisi
- Department of Biology and Biotechnology “C. Darwin”; Sapienza University of Rome; Rome Italy
| | - Pilar Esteve
- Centro de Biologia Molecular “Severo Ochoa”; Consejo Superior de Investigaciones Cientificas-Universidad Autonoma de Madrid; Madrid Spain
- CIBER of Rare Diseases; ISCIII; Madrid Spain
| | - Yu-Lee Paul
- Epigenetics Programme; The Babraham Institute; Cambridge UK
| | | | - Ben Sidders
- Bioscience; Oncology; IMED Biotech Unit; AstraZeneca; Cambridge UK
| | - Muhammad A. Khan
- Division of Molecular Neurogenetics; German Cancer Research Centre (DKFZ); DKFZ-ZMBH Alliance; Heidelberg Germany
| | - Stefano Biagioni
- Department of Biology and Biotechnology “C. Darwin”; Sapienza University of Rome; Rome Italy
| | - Hai-Kun Liu
- Division of Molecular Neurogenetics; German Cancer Research Centre (DKFZ); DKFZ-ZMBH Alliance; Heidelberg Germany
| | - Paola Bovolenta
- Centro de Biologia Molecular “Severo Ochoa”; Consejo Superior de Investigaciones Cientificas-Universidad Autonoma de Madrid; Madrid Spain
- CIBER of Rare Diseases; ISCIII; Madrid Spain
| | - Emanuele Cacci
- Department of Biology and Biotechnology “C. Darwin”; Sapienza University of Rome; Rome Italy
| | - Peter J. Rugg-Gunn
- Epigenetics Programme; The Babraham Institute; Cambridge UK
- Wellcome Trust - Medical Research Council Cambridge Stem Cell Institute; University of Cambridge; Cambridge UK
| |
Collapse
|