1
|
Zhang Y, Guo J, Chen Z, Chang Y, Zhang X, Liu Z, Li X, Zha X, Sun G, Li Y. Triclocarban disrupts the activation and differentiation of human CD8 + T cells by suppressing the vitamin D receptor signaling. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136096. [PMID: 39383692 DOI: 10.1016/j.jhazmat.2024.136096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/04/2024] [Accepted: 10/05/2024] [Indexed: 10/11/2024]
Abstract
Triclocarban (TCC) is a widely applied environmental endocrine-disrupting chemical (EDC). Similar to most of EDCs, TCC potentially damages the immunity of various species. However, whether and how TCC impacts the adaptive immunity in mammals has yet to be determined. Herein, we discovered that TCC disrupts the activation and differentiation of CD8+ T cells in primary human peripheral blood samples, purified CD8+ T cells, and in mice in vivo. Mechanistically, TCC might block the activation of the vitamin D receptor (VDR) and reduce the synthesis of cholesterol, a precursor of vitamin D, resulting in inhibition of VDR signaling due to the suppression of both its ligand and the receptor itself by TCC. Our findings elucidate the hazard and potential mechanisms of TCC in mammalian adaptive immunity and highlighted VDR as a potential therapeutic target for the immunodeficiency caused by TCC.
Collapse
Affiliation(s)
- Yikai Zhang
- Guangdong Provincial Key Laboratory of Spine and Spinal Cord Reconstruction, The Fifth Affiliated Hospital of Jinan University (Heyuan Shenhe People's Hospital), Jinan University, Heyuan 517000, China; Department of Hematology, First Affiliated Hospital of Jinan University, Guangzhou 510632, China; Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, Jinan University, Guangzhou 510632, China
| | - Jiafan Guo
- Department of Clinical Laboratory, First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Zhixi Chen
- Department of Hematology, First Affiliated Hospital of Jinan University, Guangzhou 510632, China; Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, Jinan University, Guangzhou 510632, China
| | - Yiming Chang
- Department of Pediatrics, First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Xingwei Zhang
- Department of Clinical Laboratory, First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Zirui Liu
- Department of Hematology, First Affiliated Hospital of Jinan University, Guangzhou 510632, China; Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, Jinan University, Guangzhou 510632, China
| | - Xinye Li
- Department of Hematology, First Affiliated Hospital of Jinan University, Guangzhou 510632, China; Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, Jinan University, Guangzhou 510632, China
| | - Xianfeng Zha
- Department of Clinical Laboratory, First Affiliated Hospital of Jinan University, Guangzhou 510632, China.
| | - Guodong Sun
- Guangdong Provincial Key Laboratory of Spine and Spinal Cord Reconstruction, The Fifth Affiliated Hospital of Jinan University (Heyuan Shenhe People's Hospital), Jinan University, Heyuan 517000, China.
| | - Yangqiu Li
- Department of Hematology, First Affiliated Hospital of Jinan University, Guangzhou 510632, China; Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
2
|
Hsu FM, Mohanty RP, Rubbi L, Thompson M, Pickering H, Reed EF, Greenland JR, Schaenman JM, Pellegrini M. An epigenetic human cytomegalovirus infection score predicts viremia risk in seropositive lung transplant recipients. Epigenetics 2024; 19:2408843. [PMID: 39360678 PMCID: PMC11451273 DOI: 10.1080/15592294.2024.2408843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 08/28/2024] [Accepted: 09/04/2024] [Indexed: 10/04/2024] Open
Abstract
Cytomegalovirus (CMV) infection and reactivation in solid organ transplant (SOT) recipients increases the risk of viremia, graft failure and death. Clinical studies of CMV serostatus indicate that donor positive recipient negative (D+/R-) patients have greater viremia risk than D-/R-. The majority of patients are R+ having intermediate serologic risk. To characterize the long-term impact of CMV infection and assess viremia risk, we sought to measure the effects of CMV on the recipient immune epigenome. Specifically, we profiled DNA methylation in 156 individuals before lung or kidney transplant. We found that the methylome of CMV positive SOT recipients is hyper-methylated at loci associated with neural development and Polycomb group (PcG) protein binding, and hypo-methylated at regions critical for the maturation of lymphocytes. In addition, we developed a machine learning-based model to predict the recipient CMV serostatus after correcting for cell type composition and ancestry. This CMV episcore measured at baseline in R+ individual stratifies viremia risk accurately in the lung transplant cohort, and along with serostatus the CMV episcore could be a potential biomarker for identifying R+ patients at high viremia risk.
Collapse
Affiliation(s)
- Fei-Man Hsu
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA
- Institute for Quantitative and Computational Biosciences – The Collaboratory, University of California Los Angeles, Los Angeles, CA, USA
| | - Rashmi P. Mohanty
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Liudmilla Rubbi
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA
| | - Michael Thompson
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA
| | - Harry Pickering
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Elaine F. Reed
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - John R. Greenland
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Joanna M. Schaenman
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Matteo Pellegrini
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA
- Institute for Quantitative and Computational Biosciences – The Collaboratory, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
3
|
Li Y, Xiao J, Li C, Yang M. Memory inflation: Beyond the acute phase of viral infection. Cell Prolif 2024; 57:e13705. [PMID: 38992867 PMCID: PMC11628752 DOI: 10.1111/cpr.13705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/09/2024] [Accepted: 06/14/2024] [Indexed: 07/13/2024] Open
Abstract
Memory inflation is confirmed as the most commonly dysregulation of host immunity with antigen-independent manner in mammals after viral infection. By generating large numbers of effector/memory and terminal differentiated effector memory CD8+ T cells with diminished naïve subsets, memory inflation is believed to play critical roles in connecting the viral infection and the onset of multiple diseases. Here, we reviewed the current understanding of memory inflated CD8+ T cells in their distinct phenotypic features that different from exhausted subsets; the intrinsic and extrinsic roles in regulating the formation of memory inflation; and the key proteins in maintaining the expansion and proliferation of inflationary populations. More importantly, based on the evidences from both clinic and animal models, we summarized the potential mechanisms of memory inflation to trigger autoimmune neuropathies, such as Guillain-Barré syndrome and multiple sclerosis; the correlations of memory inflation between tumorigenesis and resistance of tumour immunotherapies; as well as the effects of memory inflation to facilitate vascular disease progression. To sum up, better understanding of memory inflation could provide us an opportunity to beyond the acute phase of viral infection, and shed a light on the long-term influences of CD8+ T cell heterogeneity in dampen host immune homeostasis.
Collapse
Affiliation(s)
- Yanfei Li
- School of Basic Medical SciencesChengdu University of Traditional Chinese MedicineChengduChina
| | - Jie Xiao
- Centre for Translational Research in Cancer, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of MedicineUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Chen Li
- Centre for Translational Research in Cancer, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of MedicineUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Mu Yang
- School of Basic Medical SciencesChengdu University of Traditional Chinese MedicineChengduChina
- Centre for Translational Research in Cancer, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of MedicineUniversity of Electronic Science and Technology of ChinaChengduChina
| |
Collapse
|
4
|
Abrams ED, Basu A, Zavorka Thomas ME, Henrickson SE, Abraham RS. Expanding the diagnostic toolbox for complex genetic immune disorders. J Allergy Clin Immunol 2024:S0091-6749(24)01241-7. [PMID: 39581295 DOI: 10.1016/j.jaci.2024.11.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/29/2024] [Accepted: 11/12/2024] [Indexed: 11/26/2024]
Abstract
Laboratory-based immunology evaluation is essential to the diagnostic workup of patients with complex immune disorders, and is as essential, if not more so, depending on the context, as genetic testing, because it enables identification of aberrant pathways amenable to therapeutic intervention and clarifies variants of uncertain significance. There have been considerable advances in techniques and instrumentation in the clinical laboratory in the past 2 decades, although there are still "miles to go." One of the goals of the clinical laboratory is to ensure advanced diagnostic testing is widely accessible to physicians and thus patients, through reference laboratories, particularly in the context of academic medical centers. This ensures a greater likelihood of translating research discoveries into the diagnostic laboratory, on the basis of patient care needs rather than a sole emphasis on commercial utility. However, these advances are under threat from burdensome regulatory oversight that can compromise, at best, and curtail, at worst, the ability to rapidly diagnose rare immune disorders and ensure delivery of precision medicine. This review discusses the clinical utility of diagnostic immunology tools, beyond cellular immunophenotyping of lymphocyte subsets, which can be used in conjunction with clinical and other laboratory data for diagnosis as well as monitoring of therapeutic response in patients with genetic immunologic diseases.
Collapse
Affiliation(s)
- Eric D Abrams
- Division of Allergy and Immunology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pa
| | - Amrita Basu
- Diagnostic Immunology Laboratory, Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Columbus, Ohio
| | - Megan E Zavorka Thomas
- Diagnostic Immunology Laboratory, Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Columbus, Ohio
| | - Sarah E Henrickson
- Division of Allergy and Immunology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pa; Institute for Immunology and Immune Health, University of Pennsylvania, Philadelphia, Pa; Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pa
| | - Roshini S Abraham
- Diagnostic Immunology Laboratory, Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Columbus, Ohio.
| |
Collapse
|
5
|
Ransmayr B, Bal SK, Thian M, Svaton M, van de Wetering C, Hafemeister C, Segarra-Roca A, Block J, Frohne A, Krolo A, Altunbas MY, Bilgic-Eltan S, Kıykım A, Aydiner O, Kesim S, Inanir S, Karakoc-Aydiner E, Ozen A, Aba Ü, Çomak A, Tuğcu GD, Pazdzior R, Huber B, Farlik M, Kubicek S, von Bernuth H, Simonitsch-Klupp I, Rizzi M, Halbritter F, Tumanov AV, Kraakman MJ, Metin A, Castanon I, Erman B, Baris S, Boztug K. LTβR deficiency causes lymph node aplasia and impaired B cell differentiation. Sci Immunol 2024; 9:eadq8796. [PMID: 39576873 DOI: 10.1126/sciimmunol.adq8796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 10/22/2024] [Indexed: 11/24/2024]
Abstract
Secondary lymphoid organs (SLOs) provide the confined microenvironment required for stromal cells to interact with immune cells to initiate adaptive immune responses resulting in B cell differentiation. Here, we studied three patients from two families with functional hyposplenism, absence of tonsils, and complete lymph node aplasia, leading to recurrent bacterial and viral infections. We identified biallelic loss-of-function mutations in LTBR, encoding the lymphotoxin beta receptor (LTβR), primarily expressed on stromal cells. Patients with LTβR deficiency had hypogammaglobulinemia, diminished memory B cells, regulatory and follicular T helper cells, and dysregulated expression of several tumor necrosis factor family members. B cell differentiation in an ex vivo coculture system was intact, implying that the observed B cell defects were not intrinsic in nature and instead resulted from LTβR-dependent stromal cell interaction signaling critical for SLO formation. Collectively, we define a human inborn error of immunity caused primarily by a stromal defect affecting the development and function of SLOs.
Collapse
Affiliation(s)
- Bernhard Ransmayr
- St. Anna Children's Cancer Research Institute, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
| | - Sevgi Köstel Bal
- St. Anna Children's Cancer Research Institute, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
| | - Marini Thian
- St. Anna Children's Cancer Research Institute, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
| | - Michael Svaton
- St. Anna Children's Cancer Research Institute, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Cheryl van de Wetering
- St. Anna Children's Cancer Research Institute, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | | | | | - Jana Block
- St. Anna Children's Cancer Research Institute, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
| | | | - Ana Krolo
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
| | - Melek Yorgun Altunbas
- Department of Pediatrics, Division of Allergy and Immunology, Marmara University School of Medicine, Istanbul, Turkey
- Istanbul Jeffrey Modell Diagnostic Center for Primary Immunodeficiency Diseases, Istanbul, Turkey
- Işıl Berat Barlan Center for Translational Medicine, Marmara University, Istanbul, Turkey
- Marmara University, Immune Deficiency Application and Research Center, Istanbul, Turkey
| | - Sevgi Bilgic-Eltan
- Department of Pediatrics, Division of Allergy and Immunology, Marmara University School of Medicine, Istanbul, Turkey
- Istanbul Jeffrey Modell Diagnostic Center for Primary Immunodeficiency Diseases, Istanbul, Turkey
- Işıl Berat Barlan Center for Translational Medicine, Marmara University, Istanbul, Turkey
- Marmara University, Immune Deficiency Application and Research Center, Istanbul, Turkey
| | - Ayça Kıykım
- Istanbul University-Cerrahpasa, Faculty of Medicine, Department of Pediatric Allergy and Immunology, Istanbul, Turkey
| | - Omer Aydiner
- Kartal Dr. Lütfi Kırdar City Hospital, Department of Radiology, Istanbul, Turkey
| | - Selin Kesim
- Marmara University, Faculty of Medicine, Department of Nuclear Medicine, Istanbul, Turkey
| | - Sabahat Inanir
- Marmara University, Faculty of Medicine, Department of Nuclear Medicine, Istanbul, Turkey
| | - Elif Karakoc-Aydiner
- Department of Pediatrics, Division of Allergy and Immunology, Marmara University School of Medicine, Istanbul, Turkey
- Istanbul Jeffrey Modell Diagnostic Center for Primary Immunodeficiency Diseases, Istanbul, Turkey
- Işıl Berat Barlan Center for Translational Medicine, Marmara University, Istanbul, Turkey
- Marmara University, Immune Deficiency Application and Research Center, Istanbul, Turkey
| | - Ahmet Ozen
- Department of Pediatrics, Division of Allergy and Immunology, Marmara University School of Medicine, Istanbul, Turkey
- Istanbul Jeffrey Modell Diagnostic Center for Primary Immunodeficiency Diseases, Istanbul, Turkey
- Işıl Berat Barlan Center for Translational Medicine, Marmara University, Istanbul, Turkey
- Marmara University, Immune Deficiency Application and Research Center, Istanbul, Turkey
| | - Ümran Aba
- Can Sucak Research Laboratory for Translational Immunology, Hacettepe University, Ankara, Turkey
- Institute of Child Health, Hacettepe University, Ankara, Turkey
| | - Aylin Çomak
- Ankara Bilkent City Hospital, Children's Hospital, Department of Nuclear Medicine, Ankara, Turkey
| | - Gökçen Dilşa Tuğcu
- Ankara Bilkent City Hospital, Children's Hospital, Department of Pediatric Pulmonology, Ankara, Turkey
| | - Robert Pazdzior
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Bettina Huber
- Medical University of Vienna, Department of Dermatology, Vienna, Austria
| | - Matthias Farlik
- Medical University of Vienna, Department of Dermatology, Vienna, Austria
| | - Stefan Kubicek
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Horst von Bernuth
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité University Medicine, Berlin, Corporate Member of Free University and Humboldt University and Berlin Institute of Health, Berlin, Germany
- Labor Berlin Charité-Vivantes, Department of Immunology, Berlin, Germany
- Berlin Institute of International Health Global Health Center Charité - Universitätsmedizin Berlin, Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Berlin, Germany
| | | | - Marta Rizzi
- Department of Rheumatology and Clinical Immunology and Center for Chronic Immunodeficiency, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Vienna, Austria
| | | | - Alexei V Tumanov
- Department of Microbiology, Immunology, and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Michael J Kraakman
- St. Anna Children's Cancer Research Institute, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
| | - Ayşe Metin
- Ankara Bilkent City Hospital, Children's Hospital, Department of Pediatric Immunology and Allergy, Ankara, Turkey
| | - Irinka Castanon
- St. Anna Children's Cancer Research Institute, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Baran Erman
- Can Sucak Research Laboratory for Translational Immunology, Hacettepe University, Ankara, Turkey
- Institute of Child Health, Hacettepe University, Ankara, Turkey
| | - Safa Baris
- Department of Pediatrics, Division of Allergy and Immunology, Marmara University School of Medicine, Istanbul, Turkey
- Istanbul Jeffrey Modell Diagnostic Center for Primary Immunodeficiency Diseases, Istanbul, Turkey
- Işıl Berat Barlan Center for Translational Medicine, Marmara University, Istanbul, Turkey
- Marmara University, Immune Deficiency Application and Research Center, Istanbul, Turkey
| | - Kaan Boztug
- St. Anna Children's Cancer Research Institute, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
- Medical University of Vienna, Department of Pediatrics and Adolescent Medicine, Vienna, Austria
- St. Anna Children's Hospital, Vienna, Austria
| |
Collapse
|
6
|
Iuliano M, Mongiovì RM, Parente A, Grimaldi L, Kertusha B, Carraro A, Marocco R, Mancarella G, Del Borgo C, Dorrucci M, Lichtner M, Mangino G, Romeo G. Memory T Cells Subpopulations in a Cohort of COVID-19 Vaccinated or Recovered Subjects. Viral Immunol 2024; 37:440-445. [PMID: 39474707 DOI: 10.1089/vim.2024.0065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2024] Open
Abstract
Following viral infection, antigen-restricted T lymphocytes are activated and recognize infected cells to eliminate them. A subset of T cells differentiates into memory lymphocytes able to counteract viral rechallenge in a faster and enhanced way. SARS-CoV-2 can escape immune responses leading to a poor clinical outcome. Immune escape can be associated with the failure of the development of T cell memory compartments. The aim of this study is to characterize the T memory subsets and to test the immune response against class I- and II-restricted immunodominant epitopes shared by ancestral and SARS-CoV-2 variants strains. T memory subsets and recognition of SARS-CoV-2S Spike-specific epitopes were analyzed by flow cytometry on 14 fully vaccinated healthy donors (HDV) and 18 COVID-19 recovered patients (CD). The results obtained showed that CD8+ T naïve subset numbers decreased in association with a significant increase of the effector memory T cell subset whereas there was a small increase in the percentage of SARS-CoV-2 antigen-restricted T clones in both CD4+ and CD8+ subset in the CD compared to HDV sample. Collectively, these features may reflect a broader cytotoxic T cell repertoire stimulated by the virus during the natural infection compared to the spike-restricted response activated during vaccination.
Collapse
Affiliation(s)
- Marco Iuliano
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - Roberta Maria Mongiovì
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Alberico Parente
- Department of Public Health and Infectious Disease, S. Maria Goretti Hospital, Sapienza University of Rome, Latina, Italy
| | - Lorenzo Grimaldi
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - Blerta Kertusha
- Department of Public Health and Infectious Disease, S. Maria Goretti Hospital, Sapienza University of Rome, Latina, Italy
| | - Anna Carraro
- Department of Public Health and Infectious Disease, S. Maria Goretti Hospital, Sapienza University of Rome, Latina, Italy
| | - Raffaella Marocco
- Department of Public Health and Infectious Disease, S. Maria Goretti Hospital, Sapienza University of Rome, Latina, Italy
| | - Giulia Mancarella
- Department of Public Health and Infectious Disease, S. Maria Goretti Hospital, Sapienza University of Rome, Latina, Italy
| | - Cosmo Del Borgo
- Department of Public Health and Infectious Disease, S. Maria Goretti Hospital, Sapienza University of Rome, Latina, Italy
| | - Maria Dorrucci
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Miriam Lichtner
- Department of General Surgery and Surgical Specialty, Sapienza University of Rome, Latina, Italy
| | - Giorgio Mangino
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - Giovanna Romeo
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| |
Collapse
|
7
|
Kabakibo TS, Arnold E, Padhan K, Lemieux A, Ortega-Delgado GG, Routy JP, Shoukry N, Dubé M, Kaufmann DE. Artificial antigen-presenting cell system reveals CD28's role in modulating T cell functions during human immunodeficiency virus infection. iScience 2024; 27:110947. [PMID: 39381752 PMCID: PMC11460474 DOI: 10.1016/j.isci.2024.110947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/16/2024] [Accepted: 09/10/2024] [Indexed: 10/10/2024] Open
Abstract
T cell immune dysfunction is a prominent feature of chronic HIV infection. To evaluate non-specific dysfunction, a method involving both generic activation and T cell receptor (TCR) stimulation is necessary. We created a tunable artificial antigen-presenting cell (aAPC) system. This system consists of lipid bilayers on cytometry-compatible silica microbeads (5 μm). When only anti-CD3 is incorporated, T cell activation is limited. Introducing anti-CD28 agonists significantly elevates the cytokine expression and upregulation of activation-induced markers. CD28 co-stimulation modulates the response profile, preferentially promoting IL-2 expression relative to other cytokines. aAPCs-stimulated CD4+ and CD8+ T cells from untreated HIV-infected individuals exhibit altered effector functions and diminished CD28 dependence. These functions are skewed toward TNFα, IFNγ and CD107a, with reduced IL-2. Antiretroviral therapy partially normalizes this distorted profile in CD4+ T cells, but not in CD8+ T cells. Our findings show T cell intrinsic biases that may contribute to persistent systemic T cell dysfunction associated with HIV pathogenesis.
Collapse
Affiliation(s)
- Tayma Shaaban Kabakibo
- Research Centre of the Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
- Université de Montréal, Montréal, QC, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC H2X 0A9, Canada
| | - Edwige Arnold
- Research Centre of the Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
- Université de Montréal, Montréal, QC, Canada
| | - Kartika Padhan
- Research Centre of the Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Audrée Lemieux
- Research Centre of the Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
- Université de Montréal, Montréal, QC, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC H2X 0A9, Canada
| | | | - Jean-Pierre Routy
- Chronic Viral Illnesses Service and Division of Hematology, McGill University Health Centre, Montreal, QC H4A 3J1, Canada
- Infectious Diseases and Immunity in Global Health Program, Research Institute, McGill University Health Centre, Montreal, QC, Canada
| | - Naglaa Shoukry
- Research Centre of the Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
- Université de Montréal, Montréal, QC, Canada
- Département de Médecine, Université de Montréal, Montréal, QC H2X 0A9, Canada
| | - Mathieu Dubé
- Research Centre of the Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Daniel E. Kaufmann
- Research Centre of the Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
- Université de Montréal, Montréal, QC, Canada
- Département de Médecine, Université de Montréal, Montréal, QC H2X 0A9, Canada
- Division of Infectious Diseases, Department of Medicine, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
8
|
Peixoto RF, de Sousa Palmeira PH, Csordas BG, Cavalcante-Silva LHA, de Andrade AG, de Medeiros IA, de Lourdes Assunção Araújo de Azevedo F, Veras RC, Janebro D, Do Amaral IPG, Keesen TSL. Predominance of CD137 + And TNF-α Expressing CD8 + Central Memory T Cells in Mild COVID-19 Recovered Patients Upon SARS-CoV-2 Re-Exposure. Immunol Invest 2024; 53:1092-1101. [PMID: 38994913 DOI: 10.1080/08820139.2024.2376003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
INTRODUCTION Memory CD8+ T cells are essential for long-term immune protection in viral infections, including COVID-19. METHODS This study examined the responses of CD8+ TEM, TEMRA, and TCM subsets from unvaccinated individuals who had recovered from mild and severe COVID-19 by flow cytometry. RESULTS AND DISCUSSION The peptides triggered a higher frequency of CD8+ TCM cells in the recovered mild group. CD8+ TCM and TEM cells showed heterogeneity in CD137 expression between evaluated groups. In addition, a predominance of CD137 expression in naïve CD8+ T cells, TCM, and TEM was observed in the mild recovered group when stimulated with peptides. Furthermore, CD8+ TCM and TEM cell subsets from mild recovered volunteers had higher TNF-α expression. In contrast, the expression partner of IFN-γ, IL-10, and IL-17 indicated an antiviral signature by CD8+ TEMRA cells. These findings underscore the distinct functional capabilities of each memory T cell subset in individuals who have recovered from COVID-19 upon re-exposure to SARS-CoV-2 antigens.
Collapse
Affiliation(s)
- Rephany Fonseca Peixoto
- Immunology Laboratory of Infectious Diseases, Department of Cellular and Molecular Biology, Federal University of Paraiba, João Pessoa, Brazil
| | - Pedro Henrique de Sousa Palmeira
- Immunology Laboratory of Infectious Diseases, Department of Cellular and Molecular Biology, Federal University of Paraiba, João Pessoa, Brazil
| | - Bárbara Guimarães Csordas
- Immunology Laboratory of Infectious Diseases, Department of Cellular and Molecular Biology, Federal University of Paraiba, João Pessoa, Brazil
| | - Luiz Henrique Agra Cavalcante-Silva
- Immunology Laboratory of Infectious Diseases, Department of Cellular and Molecular Biology, Federal University of Paraiba, João Pessoa, Brazil
| | - Arthur Gomes de Andrade
- Immunology Laboratory of Infectious Diseases, Department of Cellular and Molecular Biology, Federal University of Paraiba, João Pessoa, Brazil
| | | | | | | | - Daniele Janebro
- Department of Pharmaceutical Sciences, Health Science Center, João Pessoa, Brazil
| | - Ian P G Do Amaral
- Biotechnology Graduation Program, Federal University of Paraiba, João Pessoa, Brazil
| | - Tatjana Souza Lima Keesen
- Immunology Laboratory of Infectious Diseases, Department of Cellular and Molecular Biology, Federal University of Paraiba, João Pessoa, Brazil
| |
Collapse
|
9
|
Zhou T, Gao Y, Wang Z, Dai C, Lei M, Liew A, Yan S, Yao Z, Hu D, Qi F. CD8 positive T-cells decrease neurogenesis and induce anxiety-like behaviour following hepatitis B vaccination. Brain Commun 2024; 6:fcae315. [PMID: 39386089 PMCID: PMC11462449 DOI: 10.1093/braincomms/fcae315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/23/2024] [Accepted: 09/12/2024] [Indexed: 10/12/2024] Open
Abstract
Mounting evidence indicates the involvement of peripheral immunity in the regulation of brain function, influencing aspects such as neuronal development, emotion, and cognitive abilities. Previous studies from our laboratory have revealed that neonatal hepatitis B vaccination can downregulate hippocampal neurogenesis, synaptic plasticity and spatial learning memory. In the current post-epidemic era characterized by universal vaccination, understanding the impact of acquired immunity on neuronal function and neuropsychiatric disorders, along with exploring potential underlying mechanisms, becomes imperative. We employed hepatitis B vaccine-induced CD3 positive T cells in immunodeficient mice to investigate the key mechanisms through which T cell subsets modulate hippocampal neurogenesis and anxiety-like behaviours. Our data revealed that mice receiving hepatitis B vaccine-induced T cells exhibited heightened anxiety and decreased hippocampal cell proliferation compared to those receiving phosphate-buffered saline-T cells or wild-type mice. Importantly, these changes were predominantly mediated by infiltrated CD8+ T cells into the brain, rather than CD4+ T cells. Transcriptome profiling of CD8+ T cells unveiled that C-X-C motif chemokine receptor 6 positive (CXCR6+) CD8+ T cells were recruited into the brain through microglial and astrocyte-derived C-X-C motif chemokine ligand 16 (CXCL16). This recruitment process impaired neurogenesis and induced anxiety-like behaviour via tumour necrosis factor-α-dependent mechanisms. Our findings highlight the role of glial cell derived CXCL16 in mediating the recruitment of CXCR6+CD8+ T cell subsets into the brain. This mechanism represents a potential avenue for modulating hippocampal neurogenesis and emotion-related behaviours after hepatitis B vaccination.
Collapse
Affiliation(s)
- Tuo Zhou
- Children's Health Section, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Yuxuan Gao
- Breast Disease Center, The First Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Guangzhou 510080, China
| | - Zhiling Wang
- Department of Orthopedic Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Chunfang Dai
- Children's Health Section, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Ming Lei
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Aubrey Liew
- Department of Immunology, Mayo Clinic, Rochester 55905, USA
| | - Sen Yan
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 519070, China
| | - Zhibin Yao
- Department of Anatomy and Physiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| | - Dandan Hu
- Children's Health Section, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Fangfang Qi
- Department of Anatomy and Physiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
- Department of Neurology, Mayo Clinic, Rochester 55905, USA
| |
Collapse
|
10
|
Liu J, Liu D, Sun Q, Su Y, Tang L, Liang H, Ye F, Chen Y, Zhang Q. Plasma proteomic signature of neonates in the context of placental histological chorioamnionitis. BMJ Paediatr Open 2024; 8:e002708. [PMID: 39237269 PMCID: PMC11381644 DOI: 10.1136/bmjpo-2024-002708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 08/16/2024] [Indexed: 09/07/2024] Open
Abstract
BACKGROUND Placental histological chorioamnionitis (HCA) is recognised as a significant risk factor for various adverse neonatal outcomes. This study aims to explore if the inflammatory protein levels in neonates were associated with HCA. METHODS All women with singleton births from February 2020 to November 2022 were selected and divided into three groups based on maternal placental pathology results: the HCA-stage 1 group (n=24), the HCA-stage 2 group (n=16) and the control group (n=17). Olink Target 96 Inflammation Panel was used to detect the levels of 92 inflammation-related proteins in the plasma of newborns from all three groups within 24 hours after birth. We compared the protein profiles through differential protein expression analysis. RESULTS A total of six inflammation-related proteins exhibited significant differences between the HCA-stage 1 and the control group. Specifically, TRANCE and CST5 were significantly upregulated (p=0.006, p=0.025, respectively), whereas the expression of IFN-gamma, CXCL9, CXCL10 and CCL19 was significantly downregulated (p=0.040, p=0.046, p=0.007, p=0.006, respectively). HCA-stage 2 newborns had significantly elevated levels of CD5 and CD6 and decreased IFN-gamma, CXCL10 and CCL19 in comparison to controls. These differential proteins were significantly enriched in positive regulation of cytokine activity, leucocyte chemotaxis and positive regulation of T-cell activation pathway-related Gene Ontology terms. Kyoto Encyclopedia of Genes and Genomes pathway analysis revealed that viral protein interaction with cytokine and cytokine receptor, interleukin-17/NF-kappa B/toll-like receptor/chemokine signalling pathway, and cytokine-cytokine receptor interaction exhibited significant differences. Spearman analysis demonstrated a significant positive connection between the levels of CD6 and CD5 proteins, not only in neonatal leucocytes but also in maternal leucocytes. Additionally, CD6 was found to be associated with neonatal birth weight. CONCLUSIONS In conclusion, placental histological changes associated with chorioamnionitis appear to influence the expression of inflammatory proteins in offspring. Notably, CD6 and CD5 proteins may potentially contribute to the pathogenesis of HCA-related neonatal diseases.
Collapse
Affiliation(s)
- Jing Liu
- Department of Pediatrics, China-Japan Friendship Hospital, Beijing, China
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Die Liu
- Department of Pediatrics, China-Japan Friendship Hospital, Beijing, China
| | - Qi Sun
- Department of Pediatrics, China-Japan Friendship Hospital, Beijing, China
| | - Yunchao Su
- Department of Pathology, China-Japan Friendship Hospital, Beijing, China
| | - Lijuan Tang
- Department of Pediatrics, China-Japan Friendship Hospital, Beijing, China
| | - Haixiao Liang
- Department of Pediatrics, China-Japan Friendship Hospital, Beijing, China
| | - Fang Ye
- Department of Pediatrics, China-Japan Friendship Hospital, Beijing, China
| | - Yuanmei Chen
- Department of Pediatrics, China-Japan Friendship Hospital, Beijing, China
| | - Qi Zhang
- Department of Pediatrics, China-Japan Friendship Hospital, Beijing, China
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
11
|
Xu Y, Wang Z, Li S, Su J, Gao L, Ou J, Lin Z, Luo OJ, Xiao C, Chen G. An in-depth understanding of the role and mechanisms of T cells in immune organ aging and age-related diseases. SCIENCE CHINA. LIFE SCIENCES 2024:10.1007/s11427-024-2695-x. [PMID: 39231902 DOI: 10.1007/s11427-024-2695-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 07/28/2024] [Indexed: 09/06/2024]
Abstract
T cells play a critical and irreplaceable role in maintaining overall health. However, their functions undergo alterations as individuals age. It is of utmost importance to comprehend the specific characteristics of T-cell aging, as this knowledge is crucial for gaining deeper insights into the pathogenesis of aging-related diseases and developing effective therapeutic strategies. In this review, we have thoroughly examined the existing studies on the characteristics of immune organ aging. Furthermore, we elucidated the changes and potential mechanisms that occur in T cells during the aging process. Additionally, we have discussed the latest research advancements pertaining to T-cell aging-related diseases. These findings provide a fresh perspective for the study of T cells in the context of aging.
Collapse
Affiliation(s)
- Yudai Xu
- Department of Microbiology and Immunology, School of Medicine; Institute of Geriatric Immunology, School of Medicine, Jinan University, Guangzhou, 510632, China
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, 510632, China
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Zijian Wang
- Department of Microbiology and Immunology, School of Medicine; Institute of Geriatric Immunology, School of Medicine, Jinan University, Guangzhou, 510632, China
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, 510632, China
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Shumin Li
- Department of Microbiology and Immunology, School of Medicine; Institute of Geriatric Immunology, School of Medicine, Jinan University, Guangzhou, 510632, China
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, 510632, China
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Jun Su
- First Affiliated Hospital, Jinan University, Guangzhou, 510630, China
| | - Lijuan Gao
- Department of Microbiology and Immunology, School of Medicine; Institute of Geriatric Immunology, School of Medicine, Jinan University, Guangzhou, 510632, China
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, 510632, China
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Junwen Ou
- Anti Aging Medical Center, Clifford Hospital, Guangzhou, 511495, China
| | - Zhanyi Lin
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Oscar Junhong Luo
- Department of Systems Biomedical Sciences, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Chanchan Xiao
- Department of Microbiology and Immunology, School of Medicine; Institute of Geriatric Immunology, School of Medicine, Jinan University, Guangzhou, 510632, China.
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, 510632, China.
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou, 510632, China.
- The Sixth Affiliated Hospital of Jinan University (Dongguan Eastern Central Hospital), Jinan University, Dongguan, 523000, China.
- Zhuhai Institute of Jinan University, Jinan University, Zhuhai, 519070, China.
| | - Guobing Chen
- Department of Microbiology and Immunology, School of Medicine; Institute of Geriatric Immunology, School of Medicine, Jinan University, Guangzhou, 510632, China.
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, 510632, China.
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou, 510632, China.
- The Sixth Affiliated Hospital of Jinan University (Dongguan Eastern Central Hospital), Jinan University, Dongguan, 523000, China.
- Zhuhai Institute of Jinan University, Jinan University, Zhuhai, 519070, China.
| |
Collapse
|
12
|
Zhang T, Wen R, Fan H, Yu Y, Jia H, Peng Z, Zhou L, Yu G, Zhang W. Impact and potential value of immunosenescence on solid gastrointestinal tumors. Front Immunol 2024; 15:1375730. [PMID: 39007138 PMCID: PMC11239362 DOI: 10.3389/fimmu.2024.1375730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 06/17/2024] [Indexed: 07/16/2024] Open
Abstract
Solid gastrointestinal tumors often respond poorly to immunotherapy for the complex tumor microenvironment (TME), which is exacerbated by immune system alterations. Immunosenescence is the process of increased diversification of immune genes due to aging and other factors, leading to a decrease in the recognition function of the immune system. This process involves immune organs, immune cells, and the senescence-associated secretory phenotype (SASP). The most fundamental change is DNA damage, resulting in TME remodeling. The main manifestations are worsening inflammation, increased immunosuppressive SASP production, decreased immune cell antitumor activity, and the accumulation of tumor-associated fibroblasts and myeloid-derived suppressor cells, making antitumor therapy less effective. Senotherapy strategies to remove senescent cells and block key senescence processes can have synergistic effects with other treatments. This review focuses on immunoenescence and its impact on the solid TME. We characterize the immunosenescent TME and discuss future directions for antitumor therapies targeting senescence.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Leqi Zhou
- Department of Colorectal Surgery, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Guanyu Yu
- Department of Colorectal Surgery, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Wei Zhang
- Department of Colorectal Surgery, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
13
|
Kinney BL, Brammer B, Kansal V, Parrish CJ, Kissick HT, Liu Y, Saba NF, Buchwald ZS, El-Deiry MW, Patel MR, Boyce BJ, Kaka AS, Gross JH, Baddour HM, Chen AY, Schmitt NC. CD28-CD57+ T cells from head and neck cancer patients produce high levels of cytotoxic granules and type II interferon but are not senescent. Oncoimmunology 2024; 13:2367777. [PMID: 38887372 PMCID: PMC11181932 DOI: 10.1080/2162402x.2024.2367777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 06/10/2024] [Indexed: 06/20/2024] Open
Abstract
T lymphocytes expressing CD57 and lacking costimulatory receptors CD27/CD28 have been reported to accumulate with aging, chronic infection, and cancer. These cells are described as senescent, with inability to proliferate but enhanced cytolytic and cytokine-producing capacity. However, robust functional studies on these cells taken directly from cancer patients are lacking. We isolated these T cells and their CD27/28+ counterparts from blood and tumor samples of 50 patients with previously untreated head and neck cancer. Functional studies confirmed that these cells have enhanced ability to degranulate and produce IFN-γ. They also retain the ability to proliferate, thus are not senescent. These data suggest that CD27/28-CD57+ CD8+ T cells are a subset of highly differentiated, CD45RA+ effector memory (TEMRA) cells with retained proliferative capacity. Patients with > 34% of these cells among CD8+ T cells in the blood had a higher rate of locoregional disease relapse, suggesting these cells may have prognostic significance.
Collapse
Affiliation(s)
- Brendan L.C. Kinney
- Department of Otolaryngology – Head and Neck Surgery, Emory University, Atlanta, GA, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Brianna Brammer
- Department of Otolaryngology – Head and Neck Surgery, Emory University, Atlanta, GA, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Vikash Kansal
- Department of Otolaryngology – Head and Neck Surgery, Emory University, Atlanta, GA, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Connor J. Parrish
- School of Medicine, St. Louis University School of Medicine, St. Louis, MO, USA
| | - Haydn T. Kissick
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
- Department of Urology, Emory University, Atlanta, GA, USA
- Department of Microbiology and Immunology, Emory University, Atlanta, GA, USA
| | - Yuan Liu
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
- Department of Biostatistics and Bioinformatics, Emory University, Atlanta, GA, USA
| | - Nabil F. Saba
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA, USA
| | | | - Mark W. El-Deiry
- Department of Otolaryngology – Head and Neck Surgery, Emory University, Atlanta, GA, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Mihir R. Patel
- Department of Otolaryngology – Head and Neck Surgery, Emory University, Atlanta, GA, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Brian J. Boyce
- Department of Otolaryngology – Head and Neck Surgery, Emory University, Atlanta, GA, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Azeem S. Kaka
- Department of Otolaryngology – Head and Neck Surgery, Emory University, Atlanta, GA, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Jennifer H. Gross
- Department of Otolaryngology – Head and Neck Surgery, Emory University, Atlanta, GA, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - H. Michael Baddour
- Department of Otolaryngology – Head and Neck Surgery, Emory University, Atlanta, GA, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Amy Y. Chen
- Department of Otolaryngology – Head and Neck Surgery, Emory University, Atlanta, GA, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Nicole C. Schmitt
- Department of Otolaryngology – Head and Neck Surgery, Emory University, Atlanta, GA, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| |
Collapse
|
14
|
Winford E, Lutshumba J, Martin BJ, Wilcock DM, Jicha GA, Nikolajczyk BS, Stowe AM, Bachstetter AD. Terminally differentiated effector memory T cells associate with cognitive and AD-related biomarkers in an aging-based community cohort. Immun Ageing 2024; 21:36. [PMID: 38867294 PMCID: PMC11167815 DOI: 10.1186/s12979-024-00443-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 05/31/2024] [Indexed: 06/14/2024]
Abstract
BACKGROUND AND PURPOSE The immune response changes during aging and the progression of Alzheimer's disease (AD) and related dementia (ADRD). Terminally differentiated effector memory T cells (called TEMRA) are important during aging and AD due to their cytotoxic phenotype and association with cognitive decline. However, it is not clear if the changes seen in TEMRAs are specific to AD-related cognitive decline specifically or are more generally correlated with cognitive decline. This study aimed to examine whether TEMRAs are associated with cognition and plasma biomarkers of AD, neurodegeneration, and neuroinflammation in a community-based cohort of older adults. METHODS Study participants from a University of Kentucky Alzheimer's Disease Research Center (UK-ADRC) community-based cohort of aging and dementia were used to test our hypothesis. There were 84 participants, 44 women and 40 men. Participants underwent physical examination, neurological examination, medical history, cognitive testing, and blood collection to determine plasma biomarker levels (Aβ42/Aβ40 ratio, total tau, Neurofilament Light chain (Nf-L), Glial Fibrillary Acidic Protein (GFAP)) and to isolate peripheral blood mononuclear cells (PBMCs). Flow cytometry was used to analyze PBMCs from study participants for effector and memory T cell populations, including CD4+ and CD8+ central memory T cells (TCM), Naïve T cells, effector memory T cells (TEM), and effector memory CD45RA+ T cells (TEMRA) immune cell markers. RESULTS CD8+ TEMRAs were positively correlated with Nf-L and GFAP. We found no significant difference in CD8+ TEMRAs based on cognitive scores and no associations between CD8+ TEMRAs and AD-related biomarkers. CD4+ TEMRAs were associated with cognitive impairment on the MMSE. Gender was not associated with TEMRAs, but it did show an association with other T cell populations. CONCLUSION These findings suggest that the accumulation of CD8+ TEMRAs may be a response to neuronal injury (Nf-L) and neuroinflammation (GFAP) during aging or the progression of AD and ADRD. As our findings in a community-based cohort were not clinically-defined AD participants but included all ADRDs, this suggests that TEMRAs may be associated with changes in systemic immune T cell subsets associated with the onset of pathology.
Collapse
Affiliation(s)
- Edric Winford
- Department of Neuroscience, University of Kentucky, 741 S. Limestone St. Rm B459, Lexington, KY, 40536, USA
| | - Jenny Lutshumba
- Department of Neuroscience, University of Kentucky, 741 S. Limestone St. Rm B459, Lexington, KY, 40536, USA
| | - Barbara J Martin
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - Donna M Wilcock
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
- Department of Physiology, University of Kentucky, Lexington, Lexington, KY, USA
| | - Gregory A Jicha
- Department of Neurology, University of Kentucky, Lexington, KY, USA
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - Barbara S Nikolajczyk
- Department of Pharmacology and Nutritional Science, and Barnstable Brown Diabetes and Obesity Center, University of Kentucky, Lexington, KY, USA
| | - Ann M Stowe
- Department of Neuroscience, University of Kentucky, 741 S. Limestone St. Rm B459, Lexington, KY, 40536, USA
- Department of Neurology, University of Kentucky, Lexington, KY, USA
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - Adam D Bachstetter
- Department of Neuroscience, University of Kentucky, 741 S. Limestone St. Rm B459, Lexington, KY, 40536, USA.
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA.
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
15
|
Kado A, Tsutsumi T, Yotsuyanagi H, Ikeuchi K, Okushin K, Moriya K, Koike K, Fujishiro M. Differential peripheral memory T cell subsets sensitively indicate the severity of nonalcoholic fatty liver disease. Hepatol Res 2024; 54:525-539. [PMID: 38157267 DOI: 10.1111/hepr.14009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/19/2023] [Accepted: 12/23/2023] [Indexed: 01/03/2024]
Abstract
AIM Differential patterns of peripheral memory T cell subsets in nonalcoholic fatty liver disease (NAFLD) were assessed using flow cytometry (FCM) to elucidate their association with NAFLD severity and provide a new noninvasive method to sensitively detect the disease severity in addition to existing biomarkers. METHODS We assessed the differential frequencies of peripheral memory T cell subsets in 103 patients with NAFLD according to the degree of liver fibrosis (FIB) using FCM analysis. We focused on the following populations: CCR7+ CD45RA+ naïve T, CCR7+ CD45RA- central memory T cells (TCM), CCR7- CD45RA- effector memory T, and CCR7- CD45RA+ terminally differentiated effector memory T (TEMRA) cells in CD4+ and CD8+ T, Th1, Th2, and Th17 cells, respectively. To evaluate the pathological progression of the disease, these frequencies were also examined according to the degree of the NAFLD activity score (NAS). RESULTS Several significant correlations were observed between laboratory parameters and peripheral memory T lymphocyte frequencies according to the degree of liver FIB and NAS in NAFLD. In univariate and multivariate analyses, the frequency of CD8+ TEMRA cells predicted severe FIB, and the predictive power was validated in an independent cohort. Furthermore, the frequencies of several memory T cell subsets sensitively indicated the pathological progression of NAFLD (Th17 TCM: steatosis, CD4+ TCM: lobular inflammation, and CD8+ TEMRA and effector memory T cells: hepatocellular ballooning). CONCLUSIONS Our results suggest that the analysis of peripheral memory T lymphocyte frequencies can noninvasively predict severe FIB and sensitively indicate the pathological progression of NAFLD.
Collapse
Affiliation(s)
- Akira Kado
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Division for Health Service Promotion, The University of Tokyo, Tokyo, Japan
| | - Takeya Tsutsumi
- Department of Infection Control and Prevention, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Infectious Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroshi Yotsuyanagi
- Division of Infectious Diseases, Advanced Clinical Research Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Kazuhiko Ikeuchi
- Department of Infectious Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kazuya Okushin
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Infection Control and Prevention, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kyoji Moriya
- Division of Infection Control and Prevention, Education Research Center, The Tokyo Health Care University, Tokyo, Japan
| | - Kazuhiko Koike
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Gastroenterology, Kanto Central Hospital, Tokyo, Japan
| | - Mitsuhiro Fujishiro
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
16
|
Zheng JM, Lou CX, Huang YL, Song WT, Luo YC, Mo GY, Tan LY, Chen SW, Li BJ. Associations between immune cell phenotypes and lung cancer subtypes: insights from mendelian randomization analysis. BMC Pulm Med 2024; 24:242. [PMID: 38755605 PMCID: PMC11100125 DOI: 10.1186/s12890-024-03059-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 05/10/2024] [Indexed: 05/18/2024] Open
Abstract
INTRODUCTION Lung cancer is a common malignant tumor, and different types of immune cells may have different effects on the occurrence and development of lung cancer subtypes, including lung squamous cell carcinoma (LUSC) and lung adenocarcinoma (LUAD). However, the causal relationship between immune phenotype and lung cancer is still unclear. METHODS This study utilized a comprehensive dataset containing 731 immune phenotypes from the European Bioinformatics Institute (EBI) to evaluate the potential causal relationship between immune phenotypes and LUSC and LUAD using the inverse variance weighted (IVW) method in Mendelian randomization (MR). Sensitivity analyses, including MR-Egger intercept, Cochran Q test, and others, were conducted for the robustness of the results. The study results were further validated through meta-analysis using data from the Transdisciplinary Research Into Cancer of the Lung (TRICL) data. Additionally, confounding factors were excluded to ensure the robustness of the findings. RESULTS Among the final selection of 729 immune cell phenotypes, three immune phenotypes exhibited statistically significant effects with LUSC. CD28 expression on resting CD4 regulatory T cells (OR 1.0980, 95% CI: 1.0627-1.1344, p < 0.0001) and CD45RA + CD28- CD8 + T cell %T cell (OR 1.0011, 95% CI: 1.0007; 1.0015, p < 0.0001) were associated with increased susceptibility to LUSC. Conversely, CCR2 expression on monocytes (OR 0.9399, 95% CI: 0.9177-0.9625, p < 0.0001) was correlated with a decreased risk of LUSC. However, no significant causal relationships were established between any immune cell phenotypes and LUAD. CONCLUSION This study demonstrates that specific immune cell types are associated with the risk of LUSC but not with LUAD. While these findings are derived solely from European populations, they still provide clues for a deeper understanding of the immunological mechanisms underlying lung cancer and may offer new directions for future therapeutic strategies and preventive measures.
Collapse
Affiliation(s)
- Jin-Min Zheng
- Department of Surgery, Guangxi Medical University, Nanning, Guangxi, China
| | - Chen-Xi Lou
- Department of Surgery, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Yu-Liang Huang
- Department of Surgery, Guangxi Medical University, Nanning, Guangxi, China
| | - Wen-Tao Song
- Department of Surgery, Youjiang Medical University For Nationalities, Baise, Guangxi, China
| | - Yi-Chen Luo
- Department of thoracic surgery, Guangxi Academy of Medical Sciences and the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
| | - Guan-Yong Mo
- Department of thoracic surgery, Guilin Medical University, Guilin, Guangxi, China
| | - Lin-Yuan Tan
- Department of Surgery, Guangxi Medical University, Nanning, Guangxi, China
| | - Shang-Wei Chen
- Department of thoracic surgery, Guangxi Academy of Medical Sciences and the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China.
| | - Bai-Jun Li
- Department of thoracic surgery, Tumor Hospital of Guangxi Medical University, Nanning, Guangxi, China.
| |
Collapse
|
17
|
Ben Hamza A, Welters C, Stadler S, Brüggemann M, Dietze K, Brauns O, Brümmendorf TH, Winkler T, Bullinger L, Blankenstein T, Rosenberger L, Leisegang M, Kammertöns T, Herr W, Moosmann A, Strobel J, Hackstein H, Dornmair K, Beier F, Hansmann L. Virus-reactive T cells expanded in aplastic anemia eliminate hematopoietic progenitor cells by molecular mimicry. Blood 2024; 143:1365-1378. [PMID: 38277625 DOI: 10.1182/blood.2023023142] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 01/28/2024] Open
Abstract
ABSTRACT Acquired aplastic anemia is a bone marrow failure syndrome characterized by hypocellular bone marrow and peripheral blood pancytopenia. Frequent clinical responses to calcineurin inhibition and antithymocyte globulin strongly suggest critical roles for hematopoietic stem/progenitor cell-reactive T-cell clones in disease pathophysiology; however, their exact contribution and antigen specificities remain unclear. We determined differentiation states and targets of dominant T-cell clones along with their potential to eliminate hematopoietic progenitor cells in the bone marrow of 15 patients with acquired aplastic anemia. Single-cell sequencing and immunophenotyping revealed oligoclonal expansion and effector differentiation of CD8+ T-cell compartments. We reexpressed 28 dominant T-cell receptors (TCRs) of 9 patients in reporter cell lines to determine reactivity with (1) in vitro-expanded CD34+ bone marrow, (2) CD34- bone marrow, or (3) peptide pools covering immunodominant epitopes of highly prevalent viruses. Besides 5 cytomegalovirus-reactive TCRs, we identified 3 TCRs that recognized antigen presented on hematopoietic progenitor cells. T cells transduced with these TCRs eliminated hematopoietic progenitor cells of the respective patients in vitro. One progenitor cell-reactive TCR (11A5) also recognized an epitope of the Epstein-Barr virus-derived latent membrane protein 1 (LMP1) presented on HLA-A∗02:01. We identified 2 LMP1-related mimotopes within the human proteome as activating targets of TCR 11A5, providing proof of concept that molecular mimicry of viral and self-epitopes can drive T cell-mediated elimination of hematopoietic progenitor cells in aplastic anemia.
Collapse
Affiliation(s)
- Amin Ben Hamza
- Department of Hematology, Oncology and Tumor Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Carlotta Welters
- Department of Hematology, Oncology and Tumor Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Serena Stadler
- Department of Hematology, Oncology and Tumor Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- German Cancer Consortium, Partner Site Berlin, and German Cancer Research Center, Heidelberg, Germany
| | - Monika Brüggemann
- Department of Medicine II, Hematology and Oncology, University Hospital Schleswig Holstein, Kiel, Germany
| | - Kerstin Dietze
- Department of Hematology, Oncology and Tumor Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Olaf Brauns
- Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany
| | - Tim H Brümmendorf
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Medical Faculty, RWTH Aachen University, Aachen, Germany
- Center for Integrated Oncology, Aachen Bonn Cologne Düsseldorf, Aachen, Germany
| | - Thomas Winkler
- Division of Genetics, Department of Biology, Friedrich Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Lars Bullinger
- Department of Hematology, Oncology and Tumor Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- German Cancer Consortium, Partner Site Berlin, and German Cancer Research Center, Heidelberg, Germany
| | - Thomas Blankenstein
- Molecular Immunology and Gene Therapy, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Leonie Rosenberger
- Institute of Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Matthias Leisegang
- German Cancer Consortium, Partner Site Berlin, and German Cancer Research Center, Heidelberg, Germany
- Institute of Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- David and Etta Jonas Center for Cellular Therapy, The University of Chicago, Chicago, IL
| | - Thomas Kammertöns
- Institute of Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Wolfgang Herr
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Andreas Moosmann
- Department of Medicine III, Klinikum der Universität München, Munich, Germany
- German Center for Infection Research, Munich, Germany
- Helmholtz Munich, Munich, Germany
| | - Julian Strobel
- Department of Transfusion Medicine and Hemostaseology, University Hospital Erlangen, Friedrich Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Holger Hackstein
- Department of Transfusion Medicine and Hemostaseology, University Hospital Erlangen, Friedrich Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Klaus Dornmair
- Institute of Clinical Neuroimmunology, University Hospital, Ludwig Maximilian University Munich, Munich, Germany
- Biomedical Center, Faculty of Medicine, Ludwig Maximilian University Munich, Martinsried, Germany
| | - Fabian Beier
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Medical Faculty, RWTH Aachen University, Aachen, Germany
- Center for Integrated Oncology, Aachen Bonn Cologne Düsseldorf, Aachen, Germany
| | - Leo Hansmann
- Department of Hematology, Oncology and Tumor Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- German Cancer Consortium, Partner Site Berlin, and German Cancer Research Center, Heidelberg, Germany
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
18
|
McLeish E, Sooda A, Slater N, Beer K, Cooper I, Mastaglia FL, Needham M, Coudert JD. Identification of distinct immune signatures in inclusion body myositis by peripheral blood immunophenotyping using machine learning models. Clin Transl Immunology 2024; 13:e1504. [PMID: 38585335 PMCID: PMC10990804 DOI: 10.1002/cti2.1504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 02/13/2024] [Accepted: 03/25/2024] [Indexed: 04/09/2024] Open
Abstract
Objective Inclusion body myositis (IBM) is a progressive late-onset muscle disease characterised by preferential weakness of quadriceps femoris and finger flexors, with elusive causes involving immune, degenerative, genetic and age-related factors. Overlapping with normal muscle ageing makes diagnosis and prognosis problematic. Methods We characterised peripheral blood leucocytes in 81 IBM patients and 45 healthy controls using flow cytometry. Using a random forest classifier, we identified immune changes in IBM compared to HC. K-means clustering and the random forest one-versus-rest model classified patients into three immunophenotypic clusters. Functional outcome measures including mTUG, 2MWT, IBM-FRS, EAT-10, knee extension and grip strength were assessed across clusters. Results The random forest model achieved a 94% AUC ROC with 82.76% specificity and 100% sensitivity. Significant differences were found in IBM patients, including increased CD8+ T-bet+ cells, CD4+ T cells skewed towards a Th1 phenotype and altered γδ T cell repertoire with a reduced proportion of Vγ9+Vδ2+ cells. IBM patients formed three clusters: (i) activated and inflammatory CD8+ and CD4+ T-cell profile and the highest proportion of anti-cN1A-positive patients in cluster 1; (ii) limited inflammation in cluster 2; (iii) highly differentiated, pro-inflammatory T-cell profile in cluster 3. Additionally, no significant differences in patients' age and gender were detected between immunophenotype clusters; however, worsening trends were detected with several functional outcomes. Conclusion These findings unveil distinct immune profiles in IBM, shedding light on underlying pathological mechanisms for potential immunoregulatory therapeutic development.
Collapse
Affiliation(s)
- Emily McLeish
- Centre for Molecular Medicine and Innovative TherapeuticsMurdoch UniversityMurdochWAAustralia
| | - Anuradha Sooda
- Centre for Molecular Medicine and Innovative TherapeuticsMurdoch UniversityMurdochWAAustralia
| | - Nataliya Slater
- Centre for Molecular Medicine and Innovative TherapeuticsMurdoch UniversityMurdochWAAustralia
| | - Kelly Beer
- Centre for Molecular Medicine and Innovative TherapeuticsMurdoch UniversityMurdochWAAustralia
- Perron Institute for Neurological and Translational ScienceNedlandsWAAustralia
| | - Ian Cooper
- Centre for Molecular Medicine and Innovative TherapeuticsMurdoch UniversityMurdochWAAustralia
- Perron Institute for Neurological and Translational ScienceNedlandsWAAustralia
| | - Frank L Mastaglia
- Perron Institute for Neurological and Translational ScienceNedlandsWAAustralia
| | - Merrilee Needham
- Centre for Molecular Medicine and Innovative TherapeuticsMurdoch UniversityMurdochWAAustralia
- Perron Institute for Neurological and Translational ScienceNedlandsWAAustralia
- School of MedicineUniversity of Notre Dame AustraliaFremantleWAAustralia
- Department of NeurologyFiona Stanley HospitalMurdochWAAustralia
| | - Jerome D Coudert
- Centre for Molecular Medicine and Innovative TherapeuticsMurdoch UniversityMurdochWAAustralia
- Perron Institute for Neurological and Translational ScienceNedlandsWAAustralia
- School of MedicineUniversity of Notre Dame AustraliaFremantleWAAustralia
| |
Collapse
|
19
|
Deecke L, Homann J, Goldeck D, Ohlei O, Dobricic V, Drewelies J, Demuth I, Pawelec G, Bertram L, Lill CM. No increase of CD8+ TEMRA cells in the blood of healthy adults at high genetic risk of Alzheimer's disease. Alzheimers Dement 2024; 20:3116-3118. [PMID: 38273437 PMCID: PMC11032529 DOI: 10.1002/alz.13709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 11/27/2023] [Indexed: 01/27/2024]
Affiliation(s)
- Laura Deecke
- Institute of Epidemiology and Social MedicineUniversity of MünsterMünsterGermany
| | - Jan Homann
- Institute of Epidemiology and Social MedicineUniversity of MünsterMünsterGermany
| | - David Goldeck
- Department of Internal Medicine 2University of TübingenTübingenGermany
- Fairfax CentreKidlingtonUK
| | - Olena Ohlei
- Lübeck Interdisciplinary Platform for Genome Analytics (LIGA)University of LübeckLübeckGermany
| | - Valerija Dobricic
- Lübeck Interdisciplinary Platform for Genome Analytics (LIGA)University of LübeckLübeckGermany
| | - Johanna Drewelies
- Department of Endocrinology and Metabolic Diseases (including Division of Lipid Metabolism)Charité – Universitätsmedizin Berlincorporate member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
| | - Ilja Demuth
- Department of Endocrinology and Metabolic Diseases (including Division of Lipid Metabolism)Charité – Universitätsmedizin Berlincorporate member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
- Berlin Institute of Health at Charité – Universitätsmedizin BerlinBCRT – Berlin Institute of Health Center for Regenerative TherapiesBerlinGermany
| | - Graham Pawelec
- Department of ImmunologyUniversity of TübingenTübingenGermany
- Health Sciences North Research Institute of CanadaSudburyOntarioCanada
| | - Lars Bertram
- Lübeck Interdisciplinary Platform for Genome Analytics (LIGA)University of LübeckLübeckGermany
| | - Christina M. Lill
- Institute of Epidemiology and Social MedicineUniversity of MünsterMünsterGermany
- Ageing and Epidemiology Unit (AGE)School of Public Health, Imperial College LondonLondonUK
| |
Collapse
|
20
|
Zhang F, Ge Q, Meng J, Chen J, Liang C, Zhang M. Characterizing CD8+ TEMRA Cells in CP/CPPS Patients: Insights from Targeted Single-Cell Transcriptomic and Functional Investigations. Immunotargets Ther 2024; 13:111-121. [PMID: 38435982 PMCID: PMC10906729 DOI: 10.2147/itt.s451199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/17/2024] [Indexed: 03/05/2024] Open
Abstract
Background The specific involvement of the CD8+ T effector memory RA (TEMRA) subset in patients with chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS) has largely not been explored in the literature. Methods Targeted single-cell RNA sequencing (scRNA-seq) profiles were generated from peripheral blood mononuclear cells (PBMCs) obtained from two CP/CPPS patients and two healthy controls (HCs) in our recent study. Pseudotime series algorithms were used to reveal the differentiation trajectory, CellChat analysis was used to explore the communication between individual cells, and the SCENIC program was used to identify potential transcription factors (TFs). Based on the cosine similarity, clusters of differentially expressed genes (DEGs) were considered to be further enriched in different pathways. To confirm the functional role of the critical clusters, flow cytometry was employed. Results The results revealed the molecular landscape of these clusters, with TEMRA cells exhibiting pronounced cytokine-mediated signaling pathway enrichment. Pseudotime trajectory analysis further mapped the evolution from naïve T cells to that of TEMRA cells, elucidating the developmental pathways involved in the immune context. A significant finding from CellChat analysis was the differential expression of ligands and receptors, with CD8+ TEMRA cells showing enhanced signaling, particularly in the CP/CPPS context, compared to HCs. Flow cytometry confirmed these results, revealing a heightened proinflammatory cytokine profile in patients with chronic prostatitis-like symptoms (CP-LS), suggesting that TEMRA cells play a significant role in disease pathogenesis. TF profiling across the T-cell clusters identified key regulators of cellular identity, identifying novel therapeutic targets. Elevated TNF signaling activity in CD8+ TEMRA cells underscored the involvement of these cells in disease mechanisms. Conclusion This study elucidates the pivotal role of the CD8+ TEMRA cell subset in CP/CPPS, which is characterized by increased TNF signaling and proinflammatory factor expression, highlighting potential biomarkers and opening new avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Fei Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University; Institute of Urology, Anhui Medical University; Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei, 230022, People's Republic of China
| | - Qintao Ge
- Department of Urology, The First Affiliated Hospital of Anhui Medical University; Institute of Urology, Anhui Medical University; Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei, 230022, People's Republic of China
| | - Jialin Meng
- Department of Urology, The First Affiliated Hospital of Anhui Medical University; Institute of Urology, Anhui Medical University; Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei, 230022, People's Republic of China
| | - Jia Chen
- Department of Urology, The First Affiliated Hospital of Anhui Medical University; Institute of Urology, Anhui Medical University; Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei, 230022, People's Republic of China
| | - Chaozhao Liang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University; Institute of Urology, Anhui Medical University; Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei, 230022, People's Republic of China
| | - Meng Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University; Institute of Urology, Anhui Medical University; Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei, 230022, People's Republic of China
| |
Collapse
|
21
|
Türk L, Filippov I, Arnold C, Zaugg J, Tserel L, Kisand K, Peterson P. Cytotoxic CD8 + Temra cells show loss of chromatin accessibility at genes associated with T cell activation. Front Immunol 2024; 15:1285798. [PMID: 38370415 PMCID: PMC10870784 DOI: 10.3389/fimmu.2024.1285798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 01/15/2024] [Indexed: 02/20/2024] Open
Abstract
As humans age, their memory T cell compartment expands due to the lifelong exposure to antigens. This expansion is characterized by terminally differentiated CD8+ T cells (Temra), which possess NK cell-like phenotype and are associated with chronic inflammatory conditions. Temra cells are predominantly driven by the sporadic reactivation of cytomegalovirus (CMV), yet their epigenomic patterns and cellular heterogeneity remain understudied. To address this gap, we correlated their gene expression profiles with chromatin openness and conducted single-cell transcriptome analysis, comparing them to other CD8+ subsets and CMV-responses. We confirmed that Temra cells exhibit high expression of genes associated with cytotoxicity and lower expression of costimulatory and chemokine genes. The data revealed that CMV-responsive CD8+ T cells (Tcmv) were predominantly derived from a mixed population of Temra and memory cells (Tcm/em) and shared their transcriptomic profiles. Using ATAC-seq analysis, we identified 1449 differentially accessible chromatin regions between CD8+ Temra and Tcm/em cells, of which only 127 sites gained chromatin accessibility in Temra cells. We further identified 51 gene loci, including costimulatory CD27, CD28, and ICOS genes, whose chromatin accessibility correlated with their gene expression. The differential chromatin regions Tcm/em cells were enriched in motifs that bind multiple transcriptional activators, such as Jun/Fos, NFkappaB, and STAT, whereas the open regions in Temra cells mainly contained binding sites of T-box transcription factors. Our single-cell analysis of CD8+CCR7loCD45RAhi sorted Temra population showed several subsets of Temra and NKT-like cells and CMC1+ Temra populations in older individuals that were shifted towards decreased cytotoxicity. Among CD8+CCR7loCD45RAhi sorted cells, we found a decreased proportion of IL7R+ Tcm/em-like and MAIT cells in individuals with high levels of CMV antibodies (CMVhi). These results shed new light on the molecular and cellular heterogeneity of CD8+ Temra cells and their relationship to aging and CMV infection.
Collapse
Affiliation(s)
- Lehte Türk
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Igor Filippov
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
- Qiagen Aarhus A/S, Aarhus, Denmark
| | - Christian Arnold
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Heidelberg, Germany
| | - Judith Zaugg
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Heidelberg, Germany
| | - Liina Tserel
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Kai Kisand
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Pärt Peterson
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| |
Collapse
|
22
|
Ya X, Li H, Ge P, Xu Y, Liu Z, Zheng Z, Mou S, Liu C, Zhang Y, Wang R, Zhang Q, Ye X, Wang W, Zhang D, Zhao J. Single-Cell Atlas of Atherosclerosis Patients by Cytof: Circulatory and Local Immune Disorders. Aging Dis 2024; 15:245-258. [PMID: 37307820 PMCID: PMC10796097 DOI: 10.14336/ad.2023.0426-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 04/28/2023] [Indexed: 06/14/2023] Open
Abstract
Atherosclerosis (AS) is a common underlying pathology of coronary artery disease, peripheral artery disease, and stroke. The characteristics of immune cells within plaques and their functional relationships with blood are crucial in AS. In this study, Mass cytometry (CyTOF), RNA-sequencing and immunofluorescence were combined to comprehensively analyze plaque tissues and peripheral blood from 25 AS patients (22 for Mass cytometry and 3 for RNA-sequencing), as well as blood from 20 healthy individuals. The study identified a complexity of leukocytes in the plaque, including both defined anti-inflammatory and pro-inflammatory subsets such as M2-like CD163+ macrophages, Natural killer T cells (NKT), CD11b+ CD4+ T effector memory cells (Tem), and CD8+ terminally differentiated effector memory cells (TEMRA). Functionally activated cell subsets were also found in peripheral blood in AS patients, highlighting the vivid interactions between leukocytes in plaque and blood. The study provides an atlas of the immune landscape in atherosclerotic patients, where pro-inflammatory activation was found to be a major feature of peripheral blood. The study identified NKT, CD11b+ CD4+ Tem, CD8+ TEMRA and CD163+ macrophages as key players in the local immune environment.
Collapse
Affiliation(s)
- Xiaolong Ya
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
- China National Clinical Research Center for Neurological Diseases, Beijing, China.
| | - Hao Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
- China National Clinical Research Center for Neurological Diseases, Beijing, China.
| | - Peicong Ge
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
- China National Clinical Research Center for Neurological Diseases, Beijing, China.
| | - Yiqiao Xu
- Capital Medical University, Beijing, China.
| | - Zechen Liu
- Department of Biostatistics, Harvard School of Public Health, Boston, USA.
| | - Zhiyao Zheng
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
- Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Siqi Mou
- University of Chinese Academy of Sciences, Beijing, China.
| | - Chenglong Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
- China National Clinical Research Center for Neurological Diseases, Beijing, China.
| | - Yan Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
- China National Clinical Research Center for Neurological Diseases, Beijing, China.
| | - Rong Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
- China National Clinical Research Center for Neurological Diseases, Beijing, China.
| | - Qian Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
- China National Clinical Research Center for Neurological Diseases, Beijing, China.
| | - Xun Ye
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
- China National Clinical Research Center for Neurological Diseases, Beijing, China.
| | - Wenjing Wang
- Beijing Institute of Hepatology, Beijing YouAn Hospital, Capital Medical University, Beijing, China.
| | - Dong Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
- Beijing Institute of Hepatology, Beijing YouAn Hospital, Capital Medical University, Beijing, China.
| | - Jizong Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
- Beijing Institute of Hepatology, Beijing YouAn Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
23
|
Winford E, Lutshumba J, Martin BJ, Wilcock DM, Jicha GA, Nikolajczyk BS, Stowe AM, Bachstetter AD. Terminally differentiated effector memory T cells associate with cognitive and AD-related biomarkers in an aging-based community cohort. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.27.568812. [PMID: 38077088 PMCID: PMC10705256 DOI: 10.1101/2023.11.27.568812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2023]
Abstract
Background and Purpose The immune response changes during aging and the progression of Alzheimer's disease (AD) and related dementia (ADRD). Terminally differentiated effector memory T cells (called TEMRA) are important during aging and AD due to their cytotoxic phenotype and association with cognitive decline. However, it is not clear if the changes seen in TEMRAs are specific to AD-related cognitive decline specifically or are more generally correlated with cognitive decline. This study aimed to examine whether TEMRAs are associated with cognition and plasma biomarkers of AD, neurodegeneration, and neuroinflammation in a community-based cohort of older adults. Methods Study participants from a University of Kentucky Alzheimer's Disease Research Center (UK-ADRC) community-based cohort of aging and dementia were used to test our hypothesis. There were 84 participants, 44 women and 40 men. Participants underwent physical examination, neurological examination, medical history, cognitive testing, and blood collection to determine plasma biomarker levels (Aβ42/Aβ40 ratio, total tau, Neurofilament Light chain (Nf-L), Glial Fibrillary Acidic Protein (GFAP)) and to isolate peripheral blood mononuclear cells (PBMCs). Flow cytometry was used to analyze PBMCs from study participants for effector and memory T cell populations, including CD4+ and CD8+ central memory T cells (TCM), Naïve T cells, effector memory T cells (TEM), and effector memory CD45RA+ T cells (TEMRA) immune cell markers. Results CD8+ TEMRAs were positively correlated with Nf-L and GFAP. We found no significant difference in CD8+ TEMRAs based on cognitive scores and no associations between CD8+ TEMRAs and AD-related biomarkers. CD4+ TEMRAs were associated with cognitive impairment on the MMSE. Gender was not associated with TEMRAs, but it did show an association with other T cell populations. Conclusion These findings suggest that the accumulation of CD8+ TEMRAs may be a response to neuronal injury (Nf-L) and neuroinflammation (GFAP) during aging or the progression of AD and ADRD. As our findings in a community-based cohort were not clinically-defined AD participants but included all ADRDs, this suggests that TEMRAs may be associated with changes in systemic immune T cell subsets associated with the onset of pathology.
Collapse
Affiliation(s)
- Edric Winford
- Department of Neuroscience, University of Kentucky; Lexington, Kentucky, USA
| | - Jenny Lutshumba
- Department of Neuroscience, University of Kentucky; Lexington, Kentucky, USA
| | - Barbara J. Martin
- Sanders-Brown Center on Aging, University of Kentucky; Lexington, Kentucky, USA
| | - Donna M. Wilcock
- Sanders-Brown Center on Aging, University of Kentucky; Lexington, Kentucky, USA
- Department of Physiology, University of Kentucky, Lexington; Lexington, Kentucky, USA
| | - Gregory A. Jicha
- Department of Neurology, University of Kentucky; Lexington, Kentucky, USA
- Sanders-Brown Center on Aging, University of Kentucky; Lexington, Kentucky, USA
| | - Barbara S. Nikolajczyk
- Department of Pharmacology and Nutritional Science, and Barnstable Brown Diabetes and Obesity Center, University of Kentucky; Lexington, Kentucky, USA
| | - Ann M Stowe
- Department of Neuroscience, University of Kentucky; Lexington, Kentucky, USA
- Department of Neurology, University of Kentucky; Lexington, Kentucky, USA
- Sanders-Brown Center on Aging, University of Kentucky; Lexington, Kentucky, USA
| | - Adam D. Bachstetter
- Department of Neuroscience, University of Kentucky; Lexington, Kentucky, USA
- Sanders-Brown Center on Aging, University of Kentucky; Lexington, Kentucky, USA
- Spinal Cord and Brain Injury Research Center, University of Kentucky; Lexington, Kentucky, USA
| |
Collapse
|
24
|
Naigeon M, Roulleaux Dugage M, Danlos FX, Boselli L, Jouniaux JM, de Oliveira C, Ferrara R, Duchemann B, Berthot C, Girard L, Flippot R, Albiges L, Farhane S, Saulnier P, Lacroix L, Griscelli F, Roman G, Hulett T, Marabelle A, Cassard L, Besse B, Chaput N. Human virome profiling identified CMV as the major viral driver of a high accumulation of senescent CD8 + T cells in patients with advanced NSCLC. SCIENCE ADVANCES 2023; 9:eadh0708. [PMID: 37939189 PMCID: PMC10631735 DOI: 10.1126/sciadv.adh0708] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 10/05/2023] [Indexed: 11/10/2023]
Abstract
Circulating senescent CD8+ T (T8sen) cells are characterized by a lack of proliferative capacities but retain cytotoxic activity and have been associated to resistance to immunotherapy in patients with advanced non-small cell lung cancer (aNSCLC). We aimed to better characterize T8sen and to determine which factors were associated with their accumulation in patients with aNSCLC. Circulating T8sen cells were characterized by a higher expression of SA-βgal and the transcription factor T-bet, confirming their senescent status. Using whole virome profiling, cytomegalovirus (CMV) was the only virus associated with T8sen. CMV was necessary but not sufficient to explain high accumulation of T8sen (T8senhigh status). In CMV+ patients, the proportion of T8sen cells increased with cancer progression. Last, CMV-induced T8senhigh phenotype but not CMV seropositivity itself was associated with worse progression-free and overall survival in patients treated with anti-PD-(L)1 therapy but not with chemotherapy. Overall, CMV is the unique viral driver of T8sen-driven resistance to anti-PD-(L)1 antibodies in patients with aNSCLC.
Collapse
Affiliation(s)
- Marie Naigeon
- Laboratoire d'Immunomonitoring en Oncologie, INSERM US23, CNRS UMS 3655, Gustave Roussy, Villejuif, France
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
- Faculté de Pharmacie, Université Paris-Saclay, Orsay, France
| | - Matthieu Roulleaux Dugage
- Laboratoire d'Immunomonitoring en Oncologie, INSERM US23, CNRS UMS 3655, Gustave Roussy, Villejuif, France
- Service d’Oncologie Médicale, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
- Département d’Innovation Thérapeutique et d’Essais Précoces (DITEP), Gustave Roussy, Villejuif, France
| | - François-Xavier Danlos
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
- Département d’Innovation Thérapeutique et d’Essais Précoces (DITEP), Gustave Roussy, Villejuif, France
- Laboratoire de Recherche Translationnelle en Immunothérapie (LRTI), INSERM U1015 and Centre d’Investigation Clinique BIOTHERIS, INSERM CIC1428, Gustave Roussy, Villejuif, France
| | - Lisa Boselli
- Laboratoire d'Immunomonitoring en Oncologie, INSERM US23, CNRS UMS 3655, Gustave Roussy, Villejuif, France
| | - Jean-Mehdi Jouniaux
- Laboratoire d'Immunomonitoring en Oncologie, INSERM US23, CNRS UMS 3655, Gustave Roussy, Villejuif, France
| | - Caroline de Oliveira
- Laboratoire d'Immunomonitoring en Oncologie, INSERM US23, CNRS UMS 3655, Gustave Roussy, Villejuif, France
| | - Roberto Ferrara
- Laboratoire d'Immunomonitoring en Oncologie, INSERM US23, CNRS UMS 3655, Gustave Roussy, Villejuif, France
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Boris Duchemann
- Laboratoire d'Immunomonitoring en Oncologie, INSERM US23, CNRS UMS 3655, Gustave Roussy, Villejuif, France
- Département d’oncologie thoracique et médicale, Hôpitaux Universitaires Paris Seine-Saint-Denis, Hôpital Avicenne, AP-HP, Bobigny, France
| | - Caroline Berthot
- Laboratoire d'Immunomonitoring en Oncologie, INSERM US23, CNRS UMS 3655, Gustave Roussy, Villejuif, France
| | - Lou Girard
- Laboratoire d'Immunomonitoring en Oncologie, INSERM US23, CNRS UMS 3655, Gustave Roussy, Villejuif, France
- Faculté de Pharmacie, Université Paris-Saclay, Orsay, France
| | - Ronan Flippot
- Laboratoire d'Immunomonitoring en Oncologie, INSERM US23, CNRS UMS 3655, Gustave Roussy, Villejuif, France
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Laurence Albiges
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
- Département de Médecine Oncologique, Gustave Roussy, Villejuif, France
| | - Siham Farhane
- Département d’Innovation Thérapeutique et d’Essais Précoces (DITEP), Gustave Roussy, Villejuif, France
- Laboratoire de Recherche Translationnelle en Immunothérapie (LRTI), INSERM U1015 and Centre d’Investigation Clinique BIOTHERIS, INSERM CIC1428, Gustave Roussy, Villejuif, France
| | | | - Ludovic Lacroix
- AMMICa, UAR 3655/US23, Gustave Roussy, Villejuif, France
- Département de Biologie Médicale et Pathologie Médicales, Gustave Roussy, Villejuif, France
| | - Frank Griscelli
- Département de Biologie Médicale et Pathologie Médicales, Gustave Roussy, Villejuif, France
| | - Gabriel Roman
- CDI Laboratories Inc., 1 N. Haven Street, Suite B001, Baltimore, MD 21224, USA
| | - Tyler Hulett
- CDI Laboratories Inc., 1 N. Haven Street, Suite B001, Baltimore, MD 21224, USA
| | - Aurélien Marabelle
- Département d’Innovation Thérapeutique et d’Essais Précoces (DITEP), Gustave Roussy, Villejuif, France
- Laboratoire de Recherche Translationnelle en Immunothérapie (LRTI), INSERM U1015 and Centre d’Investigation Clinique BIOTHERIS, INSERM CIC1428, Gustave Roussy, Villejuif, France
| | - Lydie Cassard
- Laboratoire d'Immunomonitoring en Oncologie, INSERM US23, CNRS UMS 3655, Gustave Roussy, Villejuif, France
| | - Benjamin Besse
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
- Département de Médecine Oncologique, Gustave Roussy, Villejuif, France
| | - Nathalie Chaput
- Laboratoire d'Immunomonitoring en Oncologie, INSERM US23, CNRS UMS 3655, Gustave Roussy, Villejuif, France
- Faculté de Pharmacie, Université Paris-Saclay, Orsay, France
| |
Collapse
|
25
|
de Fàbregues O, Sellés M, Ramos-Vicente D, Roch G, Vila M, Bové J. Relevance of tissue-resident memory CD8 T cells in the onset of Parkinson's disease and examination of its possible etiologies: infectious or autoimmune? Neurobiol Dis 2023; 187:106308. [PMID: 37741513 DOI: 10.1016/j.nbd.2023.106308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 05/05/2023] [Accepted: 09/20/2023] [Indexed: 09/25/2023] Open
Abstract
Tissue-resident memory CD8 T cells are responsible for local immune surveillance in different tissues, including the brain. They constitute the first line of defense against pathogens and cancer cells and play a role in autoimmunity. A recently published study demonstrated that CD8 T cells with markers of residency containing distinct granzymes and interferon-γ infiltrate the parenchyma of the substantia nigra and contact dopaminergic neurons in an early premotor stage of Parkinson's disease. This infiltration precedes α-synuclein aggregation and neuronal loss in the substantia nigra, suggesting a relevant role for CD8 T cells in the onset of the disease. To date, the nature of the antigen that initiates the adaptive immune response remains unknown. This review will discuss the role of tissue-resident memory CD8 T cells in brain immune homeostasis and in the onset of Parkinson's disease and other neurological diseases. We also discuss how aging and genetic factors can affect the CD8 T cell immune response and how animal models can be misleading when studying human-related immune response. Finally, we speculate about a possible infectious or autoimmune origin of Parkinson's disease.
Collapse
Affiliation(s)
- Oriol de Fàbregues
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute, Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Barcelona, Catalonia, Spain; Movement Disorders Unit, Neurology Department, Vall d'Hebron University Hospital
| | - Maria Sellés
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute, Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Barcelona, Catalonia, Spain
| | - David Ramos-Vicente
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute, Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Barcelona, Catalonia, Spain
| | - Gerard Roch
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute, Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Barcelona, Catalonia, Spain
| | - Miquel Vila
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute, Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Barcelona, Catalonia, Spain; Department of Biochemistry and Molecular Biology, Autonomous University of Barcelona, Barcelona, Catalonia, Spain; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA; Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Catalonia, Spain
| | - Jordi Bové
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute, Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Barcelona, Catalonia, Spain.
| |
Collapse
|
26
|
Vanker M, Särekannu K, Fekkar A, Jørgensen SE, Haljasmägi L, Kallaste A, Kisand K, Lember M, Peterson P, Menon M, Hussell T, Knight S, Moore-Stanley J, Bastard P, Zhang SY, Mogensen TH, Philippot Q, Zhang Q, Puel A, Casanova JL, Kisand K. Autoantibodies Neutralizing Type III Interferons Are Uncommon in Patients with Severe Coronavirus Disease 2019 Pneumonia. J Interferon Cytokine Res 2023; 43:379-393. [PMID: 37253131 PMCID: PMC10517334 DOI: 10.1089/jir.2023.0003] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 03/07/2023] [Indexed: 06/01/2023] Open
Abstract
Autoantibodies (AABs) neutralizing type I interferons (IFN) underlie about 15% of cases of critical coronavirus disease 2019 (COVID-19) pneumonia. The impact of autoimmunity toward type III IFNs remains unexplored. We included samples from 1,002 patients with COVID-19 (50% with severe disease) and 1,489 SARS-CoV-2-naive individuals. We studied the prevalence and neutralizing capacity of AABs toward IFNλ and IFNα. Luciferase-based immunoprecipitation method was applied using pooled IFNα (subtypes 1, 2, 8, and 21) or pooled IFNλ1-IFNλ3 as antigens, followed by reporter cell-based neutralization assay. In the SARS-CoV-2-naive cohort, IFNλ AABs were more common (8.5%) than those targeting IFNα2 (2.9%) and were related with older age. In the COVID-19 cohort the presence of autoreactivity to IFNλ did not associate with severe disease [odds ratio (OR) 0.84; 95% confidence interval (CI) 0.40-1.73], unlike to IFNα (OR 4.88; 95% CI 2.40-11.06; P < 0.001). Most IFNλ AAB-positive COVID-19 samples (67%) did not neutralize any of the 3 IFNλ subtypes. Pan-IFNλ neutralization occurred in 5 patients (0.50%), who all suffered from severe COVID-19 pneumonia, and 4 of them neutralized IFNα2 in addition to IFNλ. Overall, AABs to type III IFNs are rarely neutralizing, and do not seem to predispose to severe COVID-19 pneumonia on their own.
Collapse
Affiliation(s)
- Martti Vanker
- Institute of Biomedicine and Translational Medicine; Institute of Clinical Medicine; University of Tartu, Tartu, Estonia
| | - Karita Särekannu
- Institute of Biomedicine and Translational Medicine; Institute of Clinical Medicine; University of Tartu, Tartu, Estonia
| | - Arnaud Fekkar
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Service de Parasitologie-Mycologie, Groupe Hospitalier Pitié Salpêtrière, AP-HP, Paris, France
| | - Sofie Eg Jørgensen
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus N, Denmark
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - Liis Haljasmägi
- Institute of Biomedicine and Translational Medicine; Institute of Clinical Medicine; University of Tartu, Tartu, Estonia
| | - Anne Kallaste
- Department of Internal Medicine, Tartu University Hospital, Tartu, Estonia
| | - Kalle Kisand
- Department of Internal Medicine, Institute of Clinical Medicine; University of Tartu, Tartu, Estonia
| | - Margus Lember
- Department of Internal Medicine, Tartu University Hospital, Tartu, Estonia
- Department of Internal Medicine, Institute of Clinical Medicine; University of Tartu, Tartu, Estonia
| | - Pärt Peterson
- Institute of Biomedicine and Translational Medicine; Institute of Clinical Medicine; University of Tartu, Tartu, Estonia
| | - Madhvi Menon
- Lydia Becker Institute of Immunology and Inflammation, Division of Immunology, Immunity to Infection and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Tracy Hussell
- Lydia Becker Institute of Immunology and Inflammation, Division of Immunology, Immunity to Infection and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Sean Knight
- Lydia Becker Institute of Immunology and Inflammation, Division of Immunology, Immunity to Infection and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
- Respiratory Department, Salford Care Organisation, Northern Care Alliance Foundation Trust, Manchester, United Kingdom
| | - James Moore-Stanley
- Lydia Becker Institute of Immunology and Inflammation, Division of Immunology, Immunity to Infection and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Paul Bastard
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University of Paris, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York, USA
- Department of Pediatrics, Necker Hospital for Sick Children, AP-HP, Paris, France
| | - Shen-Ying Zhang
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University of Paris, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York, USA
| | - Trine H. Mogensen
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus N, Denmark
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - Quentin Philippot
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University of Paris, Imagine Institute, Paris, France
| | - Qian Zhang
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University of Paris, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York, USA
| | - Anne Puel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University of Paris, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York, USA
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University of Paris, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York, USA
- Department of Pediatrics, Necker Hospital for Sick Children, AP-HP, Paris, France
- Howard Hughes Medical Institute, New York, New York, USA
| | - Kai Kisand
- Institute of Biomedicine and Translational Medicine; Institute of Clinical Medicine; University of Tartu, Tartu, Estonia
| |
Collapse
|
27
|
Pongkunakorn T, Manosan T, Surawit A, Ophakas S, Mongkolsucharitkul P, Pumeiam S, Suta S, Pinsawas B, Sookrung N, Saelim N, Mahasongkram K, Prangtaworn P, Tungtrongchitr A, Tangjittipokin W, Mangmee S, Boonnak K, Narkdontri T, Teerawattanapong N, Wanitphadeedecha R, Mayurasakorn K. Immune Response after SARS-CoV-2 Infection with Residual Post-COVID Symptoms. Vaccines (Basel) 2023; 11:1413. [PMID: 37766091 PMCID: PMC10535557 DOI: 10.3390/vaccines11091413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/17/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
Many patients develop post-acute COVID syndrome (long COVID (LC)). We compared the immune response of LC and individuals with post-COVID full recovery (HC) during the Omicron pandemic. Two hundred ninety-two patients with confirmed COVID infections from January to May 2022 were enrolled. We observed anti-SARS-CoV-2 receptor-binding domain immunoglobulin G, surrogate virus neutralization test, T cell subsets, and neutralizing antibodies against Wuhan, BA.1, and BA.5 viruses (NeuT). NeuT was markedly reduced against BA.1 and BA.5 in HC and LC groups, while antibodies were more sustained with three doses and an updated booster shot than ≤2-dose vaccinations. The viral neutralization ability declined at >84-days after COVID-19 onset (PC) in both groups. PD1-expressed central and effector memory CD4+ T cells, and central memory CD8+ T cells were reduced in the first months PC in LC. Therefore, booster vaccines may be required sooner after the most recent infection to rescue T cell function for people with symptomatic LC.
Collapse
Affiliation(s)
- Tanyaporn Pongkunakorn
- Siriraj Population Health and Nutrition Research Group, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (T.P.); (T.M.); (A.S.); (S.O.); (P.M.); (S.P.); (S.S.); (B.P.)
| | - Thamonwan Manosan
- Siriraj Population Health and Nutrition Research Group, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (T.P.); (T.M.); (A.S.); (S.O.); (P.M.); (S.P.); (S.S.); (B.P.)
| | - Apinya Surawit
- Siriraj Population Health and Nutrition Research Group, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (T.P.); (T.M.); (A.S.); (S.O.); (P.M.); (S.P.); (S.S.); (B.P.)
| | - Suphawan Ophakas
- Siriraj Population Health and Nutrition Research Group, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (T.P.); (T.M.); (A.S.); (S.O.); (P.M.); (S.P.); (S.S.); (B.P.)
| | - Pichanun Mongkolsucharitkul
- Siriraj Population Health and Nutrition Research Group, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (T.P.); (T.M.); (A.S.); (S.O.); (P.M.); (S.P.); (S.S.); (B.P.)
| | - Sureeporn Pumeiam
- Siriraj Population Health and Nutrition Research Group, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (T.P.); (T.M.); (A.S.); (S.O.); (P.M.); (S.P.); (S.S.); (B.P.)
| | - Sophida Suta
- Siriraj Population Health and Nutrition Research Group, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (T.P.); (T.M.); (A.S.); (S.O.); (P.M.); (S.P.); (S.S.); (B.P.)
| | - Bonggochpass Pinsawas
- Siriraj Population Health and Nutrition Research Group, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (T.P.); (T.M.); (A.S.); (S.O.); (P.M.); (S.P.); (S.S.); (B.P.)
| | - Nitat Sookrung
- Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (N.S.); (N.S.); (K.M.); (P.P.); (A.T.)
| | - Nawannaporn Saelim
- Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (N.S.); (N.S.); (K.M.); (P.P.); (A.T.)
| | - Kodchakorn Mahasongkram
- Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (N.S.); (N.S.); (K.M.); (P.P.); (A.T.)
| | - Pannathee Prangtaworn
- Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (N.S.); (N.S.); (K.M.); (P.P.); (A.T.)
| | - Anchalee Tungtrongchitr
- Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (N.S.); (N.S.); (K.M.); (P.P.); (A.T.)
| | - Watip Tangjittipokin
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (W.T.); (S.M.); (K.B.)
| | - Suthee Mangmee
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (W.T.); (S.M.); (K.B.)
| | - Kobporn Boonnak
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (W.T.); (S.M.); (K.B.)
| | - Tassanee Narkdontri
- Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (T.N.); (N.T.)
| | - Nipaporn Teerawattanapong
- Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (T.N.); (N.T.)
| | - Rungsima Wanitphadeedecha
- Department of Dermatology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand;
| | - Korapat Mayurasakorn
- Siriraj Population Health and Nutrition Research Group, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (T.P.); (T.M.); (A.S.); (S.O.); (P.M.); (S.P.); (S.S.); (B.P.)
| |
Collapse
|
28
|
Alamino VA, Onofrio LI, Acosta CDV, Ferrero PV, Zacca ER, Cadile II, Mussano ED, Onetti LB, Montes CL, Gruppi A, Acosta Rodriguez EV. Tofacitinib treatment of rheumatoid arthritis increases senescent T cell frequency in patients and limits T cell function in vitro. Eur J Immunol 2023; 53:e2250353. [PMID: 37179252 PMCID: PMC10524217 DOI: 10.1002/eji.202250353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 04/11/2023] [Accepted: 05/11/2023] [Indexed: 05/15/2023]
Abstract
Unraveling the immune signatures in rheumatoid arthritis (RA) patients receiving various treatment regimens can aid in comprehending the immune mechanisms' role in treatment efficacy and side effects. Given the critical role of cellular immunity in RA pathogenesis, we sought to identify T-cell profiles characterizing RA patients under specific treatments. We compared 75 immunophenotypic and biochemical variables in healthy donors (HD) and RA patients, including those receiving different treatments as well as treatment-free patients. Additionally, we conducted in vitro experiments to evaluate the direct effect of tofacitinib on purified naïve and memory CD4+ and CD8+ T cells. Multivariate analysis revealed that tofacitinib-treated patients segregated from HD at the expense of T-cell activation, differentiation, and effector function-related variables. Additionally, tofacitinib led to an accumulation of peripheral senescent memory CD4+ and CD8+ T cells. In vitro, tofacitinib impaired the activation, proliferation, and effector molecules expression and triggered senescence pathways in T-cell subsets upon TCR-engagement, with the most significant impact on memory CD8+ T cells. Our findings suggest that tofacitinib may activate immunosenescence pathways while simultaneously inhibiting effector functions in T cells, both effects likely contributing to the high clinical success and reported side effects of this JAK inhibitor in RA.
Collapse
Affiliation(s)
- Vanina A Alamino
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba (UNC), Córdoba, Argentina
- Laboratorio de Inmunología, Hospital Nacional de Clínicas, UNC, Córdoba, Argentina
| | - Luisina I Onofrio
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba (UNC), Córdoba, Argentina
- Laboratorio de Inmunología, Hospital Nacional de Clínicas, UNC, Córdoba, Argentina
| | | | - Paola V Ferrero
- Laboratorio de Inmunología, Hospital Nacional de Clínicas, UNC, Córdoba, Argentina
| | - Estefanía R Zacca
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba (UNC), Córdoba, Argentina
- Laboratorio de Inmunología, Hospital Nacional de Clínicas, UNC, Córdoba, Argentina
| | - Isaac I Cadile
- Servicio de Reumatología, Hospital Nacional de Clínicas, UNC, Córdoba, Argentina
| | - Eduardo D Mussano
- Servicio de Reumatología, Hospital Nacional de Clínicas, UNC, Córdoba, Argentina
| | - Laura B Onetti
- Servicio de Reumatología, Hospital Nacional de Clínicas, UNC, Córdoba, Argentina
| | - Carolina L Montes
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba (UNC), Córdoba, Argentina
| | - Adriana Gruppi
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba (UNC), Córdoba, Argentina
| | - Eva V Acosta Rodriguez
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba (UNC), Córdoba, Argentina
| |
Collapse
|
29
|
van Olst L, Kamermans A, van der Pol SMA, Rodríguez E, Hulshof LA, van Dijk RE, Vonk DN, Schouten M, Witte ME, de Vries HE, Middeldorp J. Age-associated systemic factors change central and peripheral immunity in adult male mice. Brain Behav Immun 2023; 111:395-411. [PMID: 37169133 DOI: 10.1016/j.bbi.2023.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 05/01/2023] [Accepted: 05/05/2023] [Indexed: 05/13/2023] Open
Abstract
Aging coincides with major changes in brain immunity that aid in a decline in neuronal function. Here, we postulate that systemic, pro-aging factors contribute to immunological changes that occur within the brain during aging. To investigate this hypothesis, we comprehensively characterized the central and peripheral immune landscape of 20-month-old male mice using cytometry by time-of-flight (CyTOF) and investigated the role of age-associated circulating factors. We found that CD8+ T cells expressing programmed cell death protein 1 (PD1) and tissue-resident memory CD8+ T cells accumulated in the aged brain while levels of memory T cells rose in the periphery. Injections of plasma derived from 20-month-old mice into 5-month-old receiving mice decreased the frequency of splenic and circulating naïve T cells, increased memory CD8+ T cells, and non-classical, patrolling monocytes in the spleen, and elevated levels of regulatory T cells and non-classical monocytes in the blood. Notably, CD8+ T cells accumulated within white matter areas of plasma-treated mice, which coincided with the expression of vascular cell adhesion molecule 1 (VCAM-1), a mediator of immune cell trafficking, on the brain vasculature. Taken together, we here describe age-related immune cell changes in the mouse brain and circulation and show that age-associated systemic factors induce the expansion of CD8+ T cells in the aged brain.
Collapse
Affiliation(s)
- L van Olst
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Amsterdam, the Netherlands; Amsterdam Neuroscience, Amsterdam, the Netherlands.
| | - A Kamermans
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Amsterdam, the Netherlands; Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - S M A van der Pol
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Amsterdam, the Netherlands; Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - E Rodríguez
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Amsterdam, the Netherlands; Cancer Center Amsterdam, Amsterdam, the Netherlands; Amsterdam Infection and Immunity Institute, Amsterdam, the Netherlands
| | - L A Hulshof
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Centre Utrecht, University Utrecht, Utrecht, the Netherlands
| | - R E van Dijk
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Centre Utrecht, University Utrecht, Utrecht, the Netherlands
| | - D N Vonk
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Centre Utrecht, University Utrecht, Utrecht, the Netherlands
| | - M Schouten
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Amsterdam, the Netherlands; Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - M E Witte
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Amsterdam, the Netherlands; Amsterdam Neuroscience, Amsterdam, the Netherlands; Amsterdam Infection and Immunity Institute, Amsterdam, the Netherlands
| | - H E de Vries
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Amsterdam, the Netherlands; Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - J Middeldorp
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Centre Utrecht, University Utrecht, Utrecht, the Netherlands; Department of Neurobiology and Aging, Biomedical Primate Research Centre, Rijswijk, the Netherlands
| |
Collapse
|
30
|
Nehlin JO. Senolytic and senomorphic interventions to defy senescence-associated mitochondrial dysfunction. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 136:217-247. [PMID: 37437979 DOI: 10.1016/bs.apcsb.2023.02.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
The accumulation of senescent cells in the aging individual is associated with an increase in the occurrence of age-associated pathologies that contribute to poor health, frailty, and mortality. The number and type of senescent cells is viewed as a contributor to the body's senescence burden. Cellular models of senescence are based on induction of senescence in cultured cells in the laboratory. One type of senescence is triggered by mitochondrial dysfunction. There are several indications that mitochondria defects contribute to body aging. Senotherapeutics, targeting senescent cells, have been shown to induce their lysis by means of senolytics, or repress expression of their secretome, by means of senomorphics, senostatics or gerosuppressors. An outline of the mechanism of action of various senotherapeutics targeting mitochondria and senescence-associated mitochondria dysfunction will be here addressed. The combination of geroprotective interventions together with senotherapeutics will help to strengthen mitochondrial energy metabolism, biogenesis and turnover, and lengthen the mitochondria healthspan, minimizing one of several molecular pathways contributing to the aging phenotype.
Collapse
Affiliation(s)
- Jan O Nehlin
- Department of Clinical Research, Copenhagen University Hospital, Amager and Hvidovre, Hvidovre, Denmark.
| |
Collapse
|
31
|
Lei T, Wu G, Xu Y, Zhuang W, Lu J, Han S, Zhuang Y, Dong X, Yang H. Peripheral immune cell profiling of double-hit lymphoma by mass cytometry. BMC Cancer 2023; 23:184. [PMID: 36823603 PMCID: PMC9948356 DOI: 10.1186/s12885-023-10657-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 02/17/2023] [Indexed: 02/25/2023] Open
Abstract
BACKGROUND Double-hit or Triple-hit lymphoma (DHL/THL) is a subset of high-grade B cell lymphoma harboring rearrangements of MYC and BCL2 and/or BCL6, and usually associate with aggressive profile, while current therapies tend to provide poor clinical outcomes and eventually relapsed. Further explorations of DHL at cellular and molecular levels are in demand to offer guidance for clinical activity. METHODS We collected the peripheral blood of DHL patients and diffused large B cell lymphoma (DLBCL) patients from single institute and converted them into PBMC samples. Mass cytometry was then performed to characterize these samples by 42 antibody markers with samples of healthy people as control. We divided the immune cell subtypes based on the expression profile of surface antigens, and the proportion of each cell subtype was also analyzed. By comparing the data of the DLBCL group and the healthy group, we figured out the distinguished immune cell subtypes of DHL patients according to their abundance and marker expression level. We further analyzed the heterogeneity of DHL samples by pairwise comparison based on clinical characteristics. RESULTS We found double-positive T cells (DPT) cells were in a significantly high percentage in DHL patients, whereas the ratio of double-negative T cells (DNT) was largely reduced in patients. Besides, CD38 was uniquely expressed at a high level on some naïve B cells of DHL patients, which could be a marker for the diagnosis of DHL (distinguishing from DLBCL), or even be a drug target for the treatment of DHL. In addition, we illustrated the heterogeneity of DHL patients in terms of immune cell landscape, and highlighted TP53 as a major factor that contributes to the heterogeneity of the T cells profile. CONCLUSION Our study demonstrated the distinct peripheral immune cell profile of DHL patients by contrast to DLBCL patients and healthy people, as well as the heterogeneity within the DHL group, which could provide valuable guidance for the diagnosis and treatment of DHL.
Collapse
Affiliation(s)
- Tao Lei
- grid.410726.60000 0004 1797 8419Department of Lymphoma, Institute of Basic Medicine and Cancer (IBMC), The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Chinese Academy of Sciences, Hangzhou, P. R. China
| | - Gongqiang Wu
- grid.268099.c0000 0001 0348 3990Department of Hematology, Dongyang People’s Hospital, Dongyang Hospital Affiliated to Wenzhou Medical University, Dongyang, Zhejiang P. R. China
| | - Yongjin Xu
- grid.410726.60000 0004 1797 8419Department of Lymphoma, Institute of Basic Medicine and Cancer (IBMC), The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Chinese Academy of Sciences, Hangzhou, P. R. China
| | - Weihao Zhuang
- grid.13402.340000 0004 1759 700XHangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, P. R. China
| | - Jialiang Lu
- grid.13402.340000 0004 1759 700XHangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, P. R. China
| | - Shuiyun Han
- grid.410726.60000 0004 1797 8419Department of Lymphoma, Institute of Basic Medicine and Cancer (IBMC), The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Chinese Academy of Sciences, Hangzhou, P. R. China
| | - Yuxin Zhuang
- grid.13402.340000 0004 1759 700XHangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, P. R. China
| | - Xiaowu Dong
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, P. R. China. .,Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, P. R. China. .,Cancer Center, Zhejiang University, Hangzhou, P. R. China.
| | - Haiyan Yang
- Department of Lymphoma, Institute of Basic Medicine and Cancer (IBMC), The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Chinese Academy of Sciences, Hangzhou, P. R. China.
| |
Collapse
|
32
|
Prospective Evaluation of CD45RA+/CCR7- Effector Memory T (T EMRA) Cell Subsets in Patients with Primary and Secondary Brain Tumors during Radiotherapy of the Brain within the Scope of the Prospective Glio-CMV-01 Clinical Trial. Cells 2023; 12:cells12040516. [PMID: 36831183 PMCID: PMC9954596 DOI: 10.3390/cells12040516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/20/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
Radiotherapy (RT) of the brain is a common treatment for patients with high-grade gliomas and brain metastases. It has previously been shown that reactivation of cytomegalovirus (CMV) frequently occurs during RT of the brain. This causes neurological decline, demands antiviral treatment, and is associated with a worse prognosis. CMV-specific T cells are characterized by a differentiated effector memory phenotype and CD45RA+ CCR7- effector memory T (TEMRA) cells were shown to be enriched in CMV seropositive individuals. In this study, we investigated the distribution of TEMRA cells and their subsets in the peripheral blood of healthy donors and, for the first time, prospectively within the scope of the prospective Glio-CMV-01 clinical trial of patients with high-grade glioma and brain metastases during radiation therapy as a potential predictive marker. First, we developed a multicolor flow cytometry-based assay to monitor the frequency and distribution of TEMRA cells in a longitudinal manner. The CMV serostatus and age were considered as influencing factors. We revealed that patients who had a reactivation of CMV have significantly higher amounts of CD8+ TEMRA cells. Further, the distribution of the subsets of TEMRA cells based on the expression of CD27, CD28, and CD57 is highly dependent on the CMV serostatus. We conclude that the percentage of CD8+ TEMRA cells out of all CD8+ T cells has the potential to serve as a biomarker for predicting the risk of CMV reactivation during RT of the brain. Furthermore, this study highlights the importance of taking the CMV serostatus into account when analyzing TEMRA cells and their subsets.
Collapse
|
33
|
Zhao J, Guan K, Xing J. Construction and evaluation of an aging-associated genes-based model for pancreatic adenocarcinoma prognosis and therapies. Int J Immunopathol Pharmacol 2023; 37:3946320231172072. [PMID: 37072128 PMCID: PMC10127222 DOI: 10.1177/03946320231172072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023] Open
Abstract
Objectives: Pancreatic adenocarcinoma (PAAD) is a highly malignant tumor. Despite extensive research, the precise role of aging-related genes in the initiation, microenvironment regulation, and progression of PAAD remains unclear.Methods: Patients with PAAD were selected from the International Cancer Genome Consortium (ICGC), and The Cancer Genome Atlas (TCGA) cohorts and the cell senescence-associated genes were obtained from CellAge. ConsensusClusterPlus was utilized for cluster identification. The least absolute shrinkage and selection operator (LASSO) Cox regression analysis was performed to construct a prognosis prediction model.Results: We identified three clusters (C1, C2, and C3) based on aging-associated gene profiles. The C1 cluster had a shorter overall survival time, advanced clinical grades, lower immune ESTIMATE score, and tumor immune dysfunction and exclusion (TIDE) score than the C3 subgroup. Moreover, signaling pathways for cell cycle activation were enriched in the C1 cluster. We also identified eight hub genes and constructed a risk model. The high cellular senescence-related signature (CSRS) score subtype exhibited poor prognosis, advanced clinical grades, M2 macrophage infiltration, higher immune checkpoint gene expression, and lower immunotherapeutic benefits.Conclusion: Our risk score model shows high prediction accuracy and survival prediction ability in individual clinical prognosis and pre-immunotherapy evaluation.
Collapse
Affiliation(s)
- Junjie Zhao
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Chin
| | - Kelei Guan
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Chin
| | - Jiyuan Xing
- Infectious Diseases Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|